intero f £f1ice
d i g i t a 1
| | | memo,r andunmnm
R el T +
To: Distribution Date: 18 Jul 83

From: Mike Uhler é?ﬁ4m\f
Dept: Large Systems A/D
DTN: (8-)231-6448
Loc/Mail stop: MROl-1/L26
Net mail: UHLER at IO

Subject: KD10 Architectural Design Specification

Distribution:

Gordon Bell MLO12-1/A51 Dave Braithwaite MRO1-2/L10
Ulf Fagerquist MRO1-1/M12 Jim Flemming MRO1-2/L10
Rose Ann Giordano MR02-2/C2 Judy Hall MRO1-2/L10
Per Hjerppe MRO2-2/C2 Peter Hurley MRO1-2/L10
Jan Jafferian MRO1-2/E85 Bill Johnson MLO12-1/U29
Sean Keenan MRO1-2/E18 Walter Manter MRO1-1/835
Arnold Miller MRO1-2/L10 Dan Murphy MRO1-2/L10
Ron Setera MRO1-2/E18 Jeff Singer MRO1-2/E89

Pat Sullivan MRO1-2/E85 Rich Whitman MRO2-2/C2

Attached is a copy of the KD10 Architectural Design Specification.
The KD10 is a small PDP-10 system as proposed in "A Low-Cost,
Space-Efficient PDP-10 Technical Proposal", dated 16-Jun-83, by Pat
Sullivan and myself.

Even thbugh there appears to be little chance that the machine will
be built, I felt that it was important to complete the specification
for several reasons:

0 We gained a great deal of architectural knowledge during
the course of the Jupiter project. The KDI0O specification
preserves and documents much of this knowledge in a single
document.

o The desire to move the PDP-10 customer base 1into the
distributed computing environment 1is a prime goal of the
corporation. The KDIO specification describes a proposed
PDP-10 processor that makes it easy to make that move
without also requiring a change in architecture. A
subsequent change of architecture is easier because the

Page 2

customer has already made the change into the distributed
environment.

0 The KD10 specification provides the preliminary information
necessary for an outside vendor to build a” KD10 CPU under
license from Digital should the corporation choose to grant
such a license.

The specification describes the basic structure of the machine and
includes sections on the architectural design and software
environment, the changes necessary to upgrade the KS10 hardware and
microcode to the KD10 design, and estimates of the necessary
software and diagnostic changes.

In terms of completeness, I believe that the architectural design
and software environment, as described in chapters 3 and 4, is quite
complete and will require little or no additional work. The chapter
on Extended Addressing reflects the latest changes made by the
PDP-10 Architecture Committee.

The chapters on Microcode, CPU Hardware, and Memory Controller and
Memory Array Changes (chapters 5, 6, and 7) reflect a first-pass
investigation of moderate detail. Additional investigation 1is
required in these areas, but I doubt if there are any major errors
or omissions.

The chapters on I1I/0 Adapter Hardware, Console Hardware and
Microcode, and Software Changes (chapters 8, 9, and 10) are the
least detailed and are the areas where the most additional work is
required.

! ! ! ! ! ! ! ! interof fice
tdalitltglittlatlil!l

! ! ! ! ! ! ! ! memorandum
o e +

To: KDI10 review list Date: 18 Jul 83

From: Mike Uhler

Dept: L.S.E.G.

DTN: (8-)231-6L44L8
Loc/Mail stop: MRO1-1/L26
Net mail: UHLER at 10

Subject: KD10 Architectural Design Specification

This spec describes the architectural design of the KD10 system. It
also covers the hardware, microcode, software, and diagnostic
- changes required to build the system.

The KD10 design, as described in this memo, assumes certain
priorities about the goals of the project. These goals, in priority
order, are as follows:

o Runs TOPS-10 and TOPS-20 with minimum software changes.
o Time-to-market of 18 months or less.

o |Is compatible with existing PDP-10 processors, but includes
most architectural changes approved by the Architecture
Committee during the course of the Jupiter project.

o Uses existing hardware, software, and microcode designs
whenever possible in an attempt to use minimum engineering
resources.

o Performance in the range 0.3 to 0.5 times a KL10, with most
timesharing loads in the upper part of the range.

o Low manufacturing and sale cost.
o Low risk, high reliability technology.

Certain parts of the design of the machine are, in all probability,
sub-optimal. In most cases, this is the result of decisions made
with time-to-market in mind. We've tried to indicate such decisions
in the text, with possible alternatives.

It is assumed that the reader has also read A Low-Cost,
Space-Efficient PDP-10 Technical Proposal', dated 16 Jun 83, by Pa
Sultlivan and Mike Uhler. '

KB10 Architectural Design Spec

CHAPTER 1

— o —
.
W N —

CHAPTER 2

NN
P
N —

CHAPTER

.

.

P N e G pp— ol ot —
® o o o o

—
.

.

—
.
—
-

p¥e]

Table of Contents

SYSTEM DESCRIPTION

Functional description
System interconnects
1/0 structure . . « v v o v o o 0 o e

PACKAGING AND MECHANICAL CONSIDERATIONS

Packaging . . e v e
Mechanical con51derattons e e e e

SOFTWARE ENVIRONMENT

The instruction set
The user mode environment
New user mode instructions
PUSHM - Push multiple ACs
POPM - Pop multipie ACs
PUSHI - Push immediate
The exec mode environment
Privileged instructions
APRO, APRT, and APR2 |nstruct|ons

* e
W N —

1

1.1 APRID - APR identification . .

1.2 WRAPR - Write APR conditions . .

1.3 RDAPR - Read APR conditions .

1.4 SZAPR - Skip on masked APR condltlons all
zero

1.5 SNAPR - Sklp on any mask APR condltson
non-zero

.1.6 WRPI - Write PI condltlons

1.7 RDPI - Read Pl conditions

.1.8 SZP| - Skip on masked Pl conditions all

zZero

NON=ZEro . « + « ¢ o « o »

SETCU - Set CST-update- needed blts .

Wwwwuwuwuwuwwwuww w wWww w W WwWwWwwiwwiwwwwww w
« o o . o o e o o e o o .

.
Wwwwwuwwuwuwwuww W (VSR VERVE w WWWWWWWNNNNDN -
e ¢ o e o o o e . P . e o e e e o . .
—t el d —] ol —) — -] — — vt —t
. e o e e .
ot ol el el w—) - — v—) — ——) —

SNPI - Sk|p on any masked PI condltlon

.1.10 .
.11 RDUBR - Read User Base Register .
L1012 CLRPT - Clear page table entry
.1.13 WRUBR - Write User Base Register . . .
L1.14 WREBR - Write Exec Base Register .
.15 RDEBR - Read Exec Base Register . .
.16 RDSPB - Read SPT Base Register
.17 -~ RDCSB - Read CST Base Register . . .
.18 RDPUR - Read Process Use Register .
.1.19 WRPUR - Write Process Use Register . .
.20 RDTIM - Read timebase conditions . .
.1.21 RDINT - Read interval timer conditions

Page 3

.
—)) —
1
W -

o« o 3-1
. 3-4
.« 3-4
.« 35
. 3-7

- - 39
. 3-10
. 3-10
.« 3-11
3-12
3-13
3-15

. 317
. 3-17
. 3-18
. 3-19
3-20
3-20

. 3-21
3-22
3-24
3-25

. 3-27
3-28
3-29

. 3-29
. 3-30
. 3-30
. 3-31
. 3-31

KD10 Architectural Design Spec Page L4

L)
—

RDHSB - Read Halt Status Block address . .
WRSPB - Write SPT Base Register
WRCSB - Write CST Base Register
RDCSTM - Read CST Mask Register
WRCSTM - Write CST Mask Register
WRTIM - Write timebase conditions
WRINT - Write interval timer conditions .
WRHSB - Write Halt Status Block Address .
External |/0 instructions
Other privilieged instructions
UMOVE - User move . . . v « +v v ¢ v « . .
UMOVEM - User move to memory
PMOVE - Physical move
PMOVEM - Physical move to memory
LDPAC - Load previous AC blocks
STPAC - Store previous AC blocks
MAP - Map an address
Changes to JRST v v v v v v v v v . .
Cache hardware and control
Paging hardware and data structures
Paging hardware
Caching of paging information other than the
L=
Pager data structure
Pointers & ¢ v v v v 0w ...,
1 Super Section Pointers
.2 Section Pointers
3 Map pointers
Page address words . . . e e e e e e e
Conversion of Virtual to Physical Addresses
Page refill
1 CST updates v v v v v v v W . .
2 CST entry format v v « « . .
3 CST mask register format
4 Process Use Register format
5
6

1
WWWWwWwWwbwwwwwiww

ww
=

ww
.
w
— —

w w
. e
pe—

1

o o
. .

W BN U FW N

.
p—
.

LI B |

wWwwww
: -

ol w—
.

wWwww W
Lol
. .
1
=W

.
— —
.
1

.

N Ewh —
N—=OWBIIGCTANT & o

.« o .« o
WAWWWWAWWAWAN N = i o et et et
PR . . o s e

.

1
viviu £ oo E ol it

.
N
W\NW\NL?’W\NUJW

L . -
L |

LR BA R RV, RV, RN |

Translation buffer state bits
Write references
Page fail conditions and formats
1 Page fail codes and additional data
1.1 Additional data words for a pointer
trace . ¢ v v vttt e e e e e e
Process context variables
Introduction
1 New flag-PC double word
o2 Context changing, ..
6 Trap handling v v v .o ..
6.1 Trap Function Word
6.2 Trap enable
.7 MUUO handling . . & « . v v v v v v v v v W
8
S
1
1

.
]

WWWLWWWWWWWWWwWwwWwWwWwwww

— O~V N —=-OWOUN NN O

w
PR Sl P i o o i R i i S A FEEErwN -
w\f\»w

1 11
oYY ON o\ U \n

LUUO handling . . ¢ v v v v v v v v v o v v .
Interrupt handling
.10 Summary of EPT and UPT formats

1 Halt status ¢« v v v v v v v v v v .

QOSNIN NN NN
FOONONWNOO NN~

KD10 Architectural Design Spec

CHAPTER &4 EXTENDED ADDRESSING

Reference materials . « ¢ ¢ ¢« ¢ ¢« o« o o« o o o &
Historical summary of extended addressing . . .
Definition of terms . « & © ¢ ¢ ¢ ¢ o« ¢ « o @
Effective Address Calculations . . . « . « . .
Description of the EA-calc algorithm
1 No indexing . « & ¢ ¢ v v v ¢« o o o o o o &
2 IFIW with local index . . ¢« ¢« ¢ ¢ ¢ ¢ « « &
3 IFIW with global index . « ¢« ¢« ¢« « « ¢ o « &
b EFIW with global index . « « + + ¢ ¢« ¢ « + .
5
6

References to section zero
Summary of EA-calc rules
Results of an EA-calc « ¢ ¢« « ¢« o & &
Simple EA-calc examples . « ¢« ¢ ¢ ¢ v o o & &
Use of the local/global flag e e e e e e
1 AC references o s s & s s a s s
.2 Incrementing EA ¢ . o . . .
Multi-section EA-calc's . . + v v ¢« « ¢« o« o« « &
Special case instructions « . « « . .
Byte instructions . . ¢« v ¢« ¢« ¢ ¢ ¢ 4 ¢ o o @
1 Byte pointer interpretation
.2 Byte pointer EA-calc . . . « ¢ . ¢ ¢« ¢« + o .
EXTEND instructions . . . e e e e e e e
1 Byte pointer lnterpretatlon e« e e e
.2 Byte pointer EA-calc «
.3 Extended opcode EA-calc
L EDIT pattern and mark addresses

.

1

1

1

2

2

2

2

2

3 JSP and JSR & & &« ¢ ¢ v ¢ vttt e e e e .

4 Stack instructions ¢« ¢ « 4 ¢ o ¢ o o .
.5 JSA and JRA & ¢ v ¢ it i e e e e e e e e e

6 LUUDS v v v e o e e e e e e e e e e e e e e

7 - T

8 XBLT ¢ v 6 6 6 6 e e e et e e e e e e e e e

9 JRSTF e e e e e e e e e e e e e e

1 XMOVE! and XHLLI e e e s s s o e s e s e e o

1 XCT @ v v v e v o o o W e e e e e e e

1

1

1

1

1

.

. o

1 Default section for EA- calc «
2 Relationship with skip and jump |nstructions
.3 PC storing instructions
L

5

o e

Local stack references . . . « « « « + « .
Generalizations for XCT + . « « &
Summary of default sections for EA-calc . . .
Section zero vs. non-zero section rules . . .
Special consideration for ACs « . .
AC references . « & ¢ v v ¢ v ¢ v o« v o« o o
Instruction fetches ¢ . ¢« ¢« « « .
Storing PC
Storing EA for LUUO MUUO and page fauls .
An example . v ¢« v ¢ v i et e e e e e e e
PXCT & v v v e e o o 6 et st e e e e e e e
Previous context « « « ¢« « « « « & .
Use of the previous context state varlables
References to previous context
Applicabtle instructions . . .« « « « « + .+ .

.

Ui w N —

.

. . . . e . . e o o o . .
e e et e e et) e et WD QOSSN SN N SN NN NSNSNSNNNSNNNNNNNNNNNY O TSI NN W N —

— ekt - —- OO OO0O0O0O0

L i Sl -l -l Sl ol ol P i N i o fT Y ol i i Y R N g O o I - g R O - R O S

.
Ed VU N P

Page 5

[B o i i
el . L I L I I
O O\W\O VOO0 Wi

1
et cvd ol —) — ——
FWW — — O

-l-‘-l-“-!:‘#‘-ll:'-l:'-l:‘-r

L-15

-l:'-llf'-l’-"'
el voved ol
NN~

L-18
L-19

-1
L-41
L-42

KD10 Architectural Design Spec

CHAPTER

k.1
L.11.6

k.11

U\ U
e & o e e o o
NN —

. e e o

AU R R R RU AL EU R R R R R R R R R R GRS, R
. . L] » L)
WWWWWWULWUWWWWWWWWWWWwWhNnNN

.

(ARG R RG AL RV RV RV RV U RV R RE RU: R RCRCRC
D R, S e -l ol it o = N POR PP PO YRR

e s o o
W

O O~ OVU1L W N -

o

-5

7.3

Interpretatibn of the AC field bits

.

.

Modifications to the EA-calc algorithm .

Section zero vs. non-zero section rules

Stack instructions
Byte instructions

EXTENDed MOVSLJ instruction

MICROCODE CHANGES

Microcode assemblers
New functionality

—

.
—

Extended addressing effectlve address

calculation

PXCT and the effective address calculat:on .

G- ~-floating instructions . .
Unbiased rounding . . . e
PUSHM, POPM, and PUSHI . . .

Changes to existing instructions

.
-_—
—

e s e o .
— et e d -t —

e o

L.
w W w
L]

wWwwwwww
. L]
\O O~ OV W N —

Double word instructions .
Lo
MUuos
Byte instructions .

Stack instructions . . .

JSR and JSP

JSA and JRA

BLT 0.
XBLT « . ..
JRST o e e e e
XMOVE| and XHLLI .« e e . .
EXTEND string anstructlons .
The privilteged instructions
APRID«
WRAPR
SETCU
RDUBR and WRUBR
RDEBR and WREBR
CLRPT
PMOVE and PMOVEM
LDPAC and STPAC
Y

Other functional changes . . .

Processing page fails .
Classifying page fails .

Interrupt, NXM, or memory error

invalid translation . .
Address break
Write violation
CST update needed . .

Trap enable
Processing traps
Processing interrupts . . .

Changes for a VMA and VMA flags
Getting address computations correct

.

.

.

. e

Reading a translation buffer entry

.

.

.

.

.

.

.

|
— —

LN I I T R R I |
NNNNOOONUITTE W —

ARV R R RV RV, RV RN, | U \n

RV RV, RN,]
LI S N I |

L]
O O\W\O\WW\O W oo

!
— ot

KD10 Architectural Design Spec

CHAPTER

CHAPTER

CHAPTER

CHAPTER

CHAPTER

CHAPTER

5.4.6

.

.

oo oONONONONONON O o

.

. ¢ o ® e
= \0 O OV W N —

o

[S J—

(Xe RNe] (Xe)
. .
N —

it1.1

11.1.1
11.1.2
11.1.3

Storing PCand EA « . .

- CPU HARDWARE CHANGES

Changes necessary for EA-calc
Dispatches for stack instructions
Hardware support for G-floating
Workspace . . . ¢ ¢« v v i v b e e e e e e
Extension of VMA
Pl changes . . « « ¢ ¢« ¢ v v ¢ o o« o o o &
Translation buffer +. . . « « . .
Cache . . . + ¢ v ¢ v v v v v o o & 0 o
Microcode dispatches + « « + . .
Miscellaneous . . + ¢ ¢« ¢ ¢ ¢« o o« & &+ o« &

MEMORY CONTROLLER AND MEMORY ARRAY CHANGES

Memory controller ; . . e
Memory array modules . . + + ¢« « « « « o &
1/0 ADAPTER HARDWARE CHANGES
Changes to the KS1I0 UBA
Changes to the UDAS0 « « .+ &
CONSOLE HARDWARE AND MICROCODE CHANGES
Console hardware changes
Console microcode changes
SOFTWARE CHANGES
Monitor software changes
Diagnostic software changes
ADDITIONAL INVESTIGATIONS
Possible performance enhancements .

Cache sweeps ¢ + « ¢« v v o« « .

Cache and TB organizations
Barrel shifter . «+ v o o . .

OO~V FWWN —

11-1
11-1
11-2
11-2

CHAPTER 1

SYSTEM DESCRIPTION

This chapter provides a functional overview of the components of the
KD10 system.

1.1 Functional description

The system described by this spec contains a single-CPU PDP-10
processor capable of supporting 20-32 users. The performance goal is
0.3 to 0.5 times a KL10 model B. Disk storage is provided by an RA60
disk drive with provision for 1 to 3 additional RA60/RA81 drives.
Synchronous and asynchronous communication is initially provided by
traditional line interfaces connected to a Unibus. This will
ultimately be upgraded to the use the NI with additional hardware and
software work.

The system is built around a PDP-10 processor with full 30-bit
extended addressing support. The processor is an upgraded version of
the KS10 (2020) design, which we call the KD10, and it uses as much of
the existing KS10 design as possible. The processor also contains a
2K, one-word block size, one-way associative write-through cache and a
1K, one-word block size, one-way associative translation buffer.

The processor fits on two extended hex modules and uses the AMD2901
family and Schottky TTL MS| parts as did the KS10, although the parts
are significantly faster than those used on the KS10 design.

The KS10 design was chosen as the starting point for the KDI0 design
because the internal structure of the machine was very simple. We
felt we could exploit this fact in order to minimize time-to-market.
The functional differences between the KS10 design and the KD10 design
are as follows:

o The KD10 CPU contains full 30-bit extended addressing
support.

o The KD10 CPU and memory system éan address up to L4 MWords of
physical memory.

SYSTEM DESCRIPTION Page 1-2

© The KD10 can support up to 4 1/0 adapters and the ultimate
I/0 interconnects will be to the CI, NI, and SI buses. .

© The KD10 design exploits the advances in ‘ technology made
since the KS10 was designed.

The memory subsystem contains a memory controller module and one to
four 1 Mword memory modules for a total memory capacity of 4 Mwords.
The memory modules use 256K MOS RAM parts and include parity and ECC
bits to allow single error correction and double error detection.

The 1/0 subsystem consists of 2 to 4 1[/0 adapters where, in the
minimum configuration, one adapter is used for disks and the other is
used for all other [/0 functions.

The console is a single extended hex module containing an 8080
microprocessor with console code in PROM and RAM. It is an almost
exact copy of the KS10 console module, modified only where absolutely
necessary. *

The main interconnect between the CPU, memory, and the |/0 adapters is
the KD10 bus which provides a control and data path between the system
components. Bus operation is identical to that of the KS10 bus used
in the KS10 processor.

SYSTEM DESCRIPTION | Page 1-3

1.2 System interconnects

The following diagram shows the major interconnections between the
components of the system:

+--—+
! !

! ! o +

! ! ! !

! I<===>! C(Console !

! ! ! !

! ! ! !

! ! e ettt +

! !

! ! Frrm e ————— +

! ! e e + 1

! ! ! L o +

! I<===>] CPU 1 Fommm e +1

! ! ! I Fmmmm e +11

! ! ! P -+ Fmm e + 111

! ! o +] Por

! ! +==>! Memory ! !+

! K ! Fommmm e + I Array I 1+

! p! ! ! L -+

P 1 I<===>] Memory I< b e +

! 01 | controller ! (1 to &)

! ! ! !

! B! o ————— +

1u!

1 s ! B e + e +

! ! ! ! ! !

! I<===>] 1/0 b==> |/0 | 1/0 I==> 1/0
! ! ! Adapter ! interconnect !! | Adapter I interconnect
! ! ! ! 1 !

! ! Fomm e + L I e T T +

L 1

! I< t

! !

! !

! ! Fommm e ———— + e e +

! ! ! ! ! !

! I<===>1 1/0 l== 1/0 +==> 1/0 I==> /0
! ! ! Adapter ! interconnect !! | Adapter ! interconnect
! ! ! ! L !

! ! Fom + | ittt +

! ! 1

! I< }

! !

s

Comparison of this diagram with the equivalent diagram for the KS10
reveals that the basic structure is almost identical. This was done
intentionally in an attempt to limit the number and extent of changes
required. Most changes are upgrades to the existing KS10 design (with
the exception of the addition of extended addressing, which is a bit

SYSTEM DESCRIPTION Page 1-L

more than a simple upgrade).

However, we would expect that the design would be incrementally
improved after FCS and ultimately result in a more optimal design.
For example, the KD10 -bus structure and write-through cache 1lend
themselves well to multi-processing strategies and it might be
possible to extend the design to support symmetric multiprocessing
quite easily.

1.3 1/0 structure

The FCS 1/0 structure uses two Unibus Adapters for all 1/0. Disk 1/0
is through a UBA to a UDA50 disk adapter and from there to the new
corporate disk products (RA81, RA60, etc). A second UBA will be used
for all other 1/0 including asynchronous and synchronous
communication, a line printer, tape drives, etc. The FCS machine will
have an |/0 structure that looks like:

1///1

! !

! ! e + T L +

! ! ! ! I ! S| bus to

! I<===>1 UBA I<===>| UDA50 disk !<===> RAGO/RAS8]

! ! ! ! ! controller ! disks

! K ! ! ! ! !

' D! Fom e + e +

P 1t } + -+ -+ :: > Unibus
1ot 1 1 ! 11 1

! ! ' 1 1 I 1 R

! B! _ o) H ' +==> Tapes
Pull For + 1! |3 1 +==> Line printer
1 s | ! [N ' +==> Synchronous comm

! I <===>1 UBA I<== ==> Asynchronous comm

! 1 1 !

! ! ! !

! ! Fomm— e +

Fo——t

Using such a structure for the FCS machine avoids having to engineer
complex adapters and takes advantage of some of the |/0 software
already developed for the KS10. ‘

SYSTEM DESCRIPTION Page 1-5

Because this structure isn't particularly attractive in terms of
taking advantage of new corporate buses, several new |/0 adapter types
should be developed after FCS. The wultimate |/0 structure might
include Cl, NI, and S| adapters and look like: :

1///}

oot

! ! Fmmm—————— +

1 ! ! ! S| bus

! I<===>] S| adapter !<===> RA60/RA81

! ! ! ! disks

! ! ! !

! ! B ettt +

! !

P K ! B +

1 D! ! ! Nl bus for

!' 1 l<===>! NI adapter l<===> synchronous/asynchronous
1ol ! ! communication and unit record
! ! ! ! devices

I B! R +

T'ul

! s ! o ————— +

! ! ! ! Cl bus for inter-computer
! I<===>| C| adapter I<===> interconnect and possible
! ! ! ! HSC50 communication

1 ! 1 !

! ! o - +

+-——+

This leaves a spare adapter slot for use in special applications or to
increase 1/0 bandwidth.

CHAPTER 2

PACKAGING AND MECHANICAL CONSIDERATIONS

This chapter discusses the proposed packaging scheme, including some
of the mechanical considerations.

2.1 Packaging

Space efficiency of a system has become increasingly important over
the 1last few vyears. Because of the size of KL10 systems, customers
have discovered that they are limited by the amount of floor space
necessary to support their computing needs. In addition to
price/performance ratios, today's customers are also using MIPS/square
foot as a figure of merit in considering systems. We were very aware
of this factor when considering proposed packages for the KD10.

The proposed package for the KD10 system uses an RA81 cabinet to house
an RA60 removable media disk, the CPU, memory, |/0 adapters, and other
1/0-related modules. This package looks like:

PACKAGING AND MECHANICAL CONSIDERATIONS Page 2-2

dommmme e +
/ /!
/ /!
/ / !
/ / !
e + /1
! P/
! RA60 t/ 1
! 1/ !
e ! !
IBackplane ! !
! for hex ! !
! and ! /+
! extended ! //
! hex v //
! modules 1//
oo Y/
e +

Possible package using
RA81 cabinet

Additional disk storage is obtained by placing another RA81 cabinet
next to the KD10 cabinet and installing one to three RA81/RA60 drives
in the cabinet. This package looks like:

oo T T —— +
/ / a
/ / /!
/ / / !
/ / / !
et tm————————— + /1
! s VAN
! RA60 ! RA81 VAR
! ! 1/ !
R e ! /1
IBackplane ! | VA
! for hex | - RA8I '/ !
! and ! '/ +
! extended !--=--ue--o ! /
! hex | v/
I moduies ! RA81 1/
R il ! 1/
Fommm e LT . +

Possible package with
additional RA81 cabinet

Total disk capacity with 3 additional RA8] drives is 1.5 giga-bytes.

PACKAGING AND MECHANICAL CONSIDERATIONS Page 2-3

2.2 Mechanical considerations

The CPU and memory modules used in the KS10 design are primarily
extended Hex modules. To minimize the changes necessary, we've
assumed that the KD10 module set would also be primarily extended Hex.
Other |/0O-related modules are either hex or quad modules.

Preliminary module counts are as follows:

Type Count Type
CPU 2 Ext. Hex
Memory controller 1 Ext. Hex
Memory arrays L Ext. Hex
1/0 adapters L Ext. Hex
UDA50 2 Hex

Comm 2-3 Hex

This yields 12 extended Hex modules and 4 to 5 hex modules as a
preliminary count.

Our preliminary investigations indicate that a modified BA11K drawer
is the best bet for module connections. The BA11K must be modified
because it will not handle extended Hex modules. The advantage of the
BAT1K over a KS10-style backpanel is that the entire module set can be
placed in one card cage. |In addition, the BA1lK contains 1its own
power supply which removes the need for a separate power supply in the
cabinet.

CHAPTER 3

SOFTWARE ENVIRONMENT

This chapter describes the software environment provided by the KD10
hardware and microcode.

3.1 The instruction set

The instruction set supported by the KD1O CPU contains most
instructions that have been approved by the Architecture Committee. A
map of the opcodes follows:

0 1 2 3 L 5 6 7
000 uuo LUUO LUUO Luuo LUUo LUUO Luuo LUuUo
010 LUUO Luuo LUuUO LUuo Luuo Luuo Luuo LUUO
020 LuuUo Luuo Luuo LUUO Luuo Luuo LUUO Luuo
030 Luuo LuUuo LUuo LUUO Luuo Luuo Luuo LUUO
oko uuo uuo uuo uuo uuo uuo uuo uuo
050 uuo uuo uuo uuo uuo uuo uuo uuo
060 uuo uuo uuo uuo uuo uuo uuo uuo
070 uuo uuo uuo uuo uuo uuo uuo uuo

0 1 2 3 L 5 6 7
100 uuo uuo GFAD GFSB JSYS ADJSP GFMP GFDV
110 DFAD DFSB DFMP DFDV DADD DSUB DMUL DDIV
120 DMOVE DMOVN FIX EXTEND DMOVEM DMOVNM FIXR FLTR
130 uuo uuo FSC IBP ILDB LDB IDPB DPB
140 FAD uuo FADM FADB FADR FADRI FADRM FADRB
150 FSB uuo FSBM FSBB FSBR FSBRI FSBRM FSBRB
160 FMP uuo FMPM FMPB FMPR FMPRI FMPRM FMPRB
170 Fbv uuo FDVM FDVB FDVR FDVRI FDVRM FDVRB

0 1 2 3 L 5 6 7
200 MOVE MOVE I MOVEM MOVES MOVS MOVS| MOVSM MOVSS
210 MOVN MOVNI MOVNM MOVNS ~ MOVM MOVMI MOVMM MOVMS
220 I MUL IMULI IMULM IMULB MUL MUL | MULM MULB
230 IDIV IDIVI IDIVM iDIVB DIV DIVI DIVM DIVB
240 ASH ROT LSH JFFO ASHC ROTC LSHC uuo
250 EXCH BLT AOBJP AOBJN JRST JFCL XCT MAP
260 PUSHJ PUSH POP POPJ JSR JSP JSA JRA

270 ADD ADDI ADDM ADDB SUB SUBI SUBM SUBB

SOFTWARE ENVIRONMENT

300
310
320
330
340
350
360
370

Loo
k1o
L20
430
LLo
450
L6o
L70

500
510
520
530
540
550
560
570

600
610
620
630
640
650
660
670

700
710
720
730
740
750
760
770

0
CAl
CAM
JUMP
SKIP
A0J
A0S
S0J
S0S

SETZ
ANDCA
ANDCM
XOR
ANDCB
SETCA
SETCM
ORCB

HLL

HLLZ
HLLO
HLLE
HRR

HRRZ
HRRO
HRRE

TRN
TDN
TRZ
TDZ
TRC
TDC
TRO
TDO

APRO
uuo
TIOE
TIOEB
PUSHM
uuo
uuo
uuo

1
CAIL
CAML
JUMPL
SKIPL
AOJL
AOSL
SOJL
sosL

1
SETZI
ANDCAI
ANDCM|
XORI
ANDCB|
SETCAI
SETCMI
ORCB|
1
XHLL|
HLLZI
HLLO|
HLLE |
HRR |
HRRZ |
HRRO |
HRRE |
1

TLN
TSN
TLZ
TSZ
TLC
TSC
TLO
TS0

1

APR1
uuo
TION
TIONB
POPM
uuo
uuo
uuo

2
CAIE
CAME
JUMPE
SKIPE
AOJE
AOSE
SOJE
SOSE

2
SETZM
ANDCAM
ANDCMM
XORM
ANDCBM
SETCAM

SETCMM

ORCBM
2
HLLM
HLLZM
HLLOM
HLLEM
HRRM
HRRZM
HRROM
HRREM
2
TRNE
TDNE
TRZE
TDZE
TRCE
TDCE
TROE
TDOE
2
APR2
uuo
RDIO
RD10B
PUSHI
uuo-
uuo
uuo

3
CAILE
CAMLE
JUMPLE
SKIPLE
AOJLE
AOSLE
SOJLE
SOSLE
3
SETZB
ANDCAB
ANDCMB
XORB
ANDCBB
SETCAB
SETCMB
ORCBB
3

HLLS
HLLZS
HLLOS
HLLES
HRRS
HRRZS
HRROS
HRRES
3
TLNE
TSNE
TLZE
TSZE
TLCE
TSCE
TLOE
TSOE

3

uuo
uuo
WRI0
WR10B
uuo
uuo
uuo
uuo

L
CAIA
CAMA
JUMPA
SKIPA
AOJA
AOSA
SOJA
SOSA
L
AND
SETM
SETA
I0R
EQV
ORCA
ORCM
SETO
L
HRL
HRLZ
HRLO
HRLE
HLR
HLRZ
HLRO
HLRE
L
TRNA
TDNA
TRZA
TDZA
TRCA
TDCA
TROA
TDOA
L
UMOVE
uuo
BS10
BS10B
uuo
uuo
uuo
uuo

5

CAIGE
CAMGE
JUMPGE
SK1PGE
AOJGE
AOSGE
SOJGE
SOSGE
5

AND |
XMOVE |
SETAI
IOR|
EQVI
ORCAI
ORCMI
SETOI
5

HRL |
HRLZ|
HRLO|
HRLE |
HLRI
HLRZ|
HLRO|
HLRE |
5
TLNA
TSNA
TLZA
TSZA
TLCA
TSCA
TLOA
TSOA

5
UMOVEM
uuo
BCIO

'BCIOB

uuo
uuo
uuo
uuo

6
CAIN
CAMN
JUMPN
SK1PN
AOJIN
AOSN
SOJN
SOSN
6
ANDM
SETMM
SETAM
| ORM
EQVM
ORCAM
ORCMM
SETOM
6
HRLM
HRLZM
HRLOM
HRLEM
HLRM
HLRZM
HLROM
HLREM
6
TRNN
TDNN
TRZN
TDZN
TRCN
TDCN
TRON
TDON
6
PMOVE
LDPAC
uuo
uuo
uuo
uuo
uuo
uuo

Page 3-2

7
CAlIG
CAMG
JUMPG
SKIPG
AOJG
AOSG
S0JG
S0SG
7
ANDB
SETMB
SETAB
10RB
EQVB
ORCAB
ORCMB
SETOB
7
HRLS
HRLZS
HRLOS
HRLES
HLRS
HLRZS
HLROS
HLRES
7
TLNN
TSNN
TLZN
TSZN
TLCN
TSCN
TLON
TSON
7
PMOVEM
STPAC
uuo
uuo
uuo
uuo
uuo
uuo

SOFTWARE ENVIRONMENT

The opcode map for EXTEND instructions is given below.
missing EXTEND opcodes trap as a UUO.

000
010
020
030

0

uuo
CVTDBO
XBLT
GFLTR

1
CMPSL
CVTDBT
GSNGL
GFSC

2
CMPSE
CVTBDO
GDBLE
uuo

3
CMPSLE
CVTBDT
GDFIX
uuo

L
EDIT
MOVSO
GFIX
uuo

5
CMPSGE
MOVST
GDF I XR
uuo

Page 3-3

Note that the

6 7
CMPSN CMPSG
MOVSLJ MOVSRJ
GFIXR DGFLTR
uuo - uuo

SOFTWARE ENVIRONMENT . Page 3-L

3.2 The user mode environment

The user mode environment is very similar to that proposed for the
KC10 processor. Because the user mode environment is not identical to
the KL10, users may notice the following differences between KD10 and
KL10 processors:

(o}

o

3.2.1

One-word global byte pointers are legal in all sections
(including section zero).

XBLT is legal in all sections (including section zero).
Certain of the privileged JRST functions which were legal
with User 1/0 mode on the KL10 are legal only in kernal mode
on the KD10.

SFM is legal in all sections (including section.zero).

XJRST has been added.

The G-floating instructions have been added.

NOTE
Due to time-to-market considerations, the G- floating

conversion instructions under EXTEND may trap to the
monitor for emulation in the FCS machine.

When rounding is applicable to an instructions, the KD10 uses
unbiased rounding instead of biased rounding.

NOTE

Due to time-to-market considerations, the FCS machine
may implement biased rounding.

New user mode instructions

This section describes the new user mode instructions that are
supported by the KD10.

SOFTWARE ENVIRONMENT Page 3-5

3.2.1.1 PUSHM - Push multiple ACs

Fomm—————— o e e e e e +
! 740 ! AC !@! XR ! Y ! OPDEF PUSHM [740000,,0]
Fomm—————— Fom e e e +

Push ACs onto the stack addressed by the stack pointer in AC as
directed by the word in location E. The format of this word is as
follows:

0-17 lgnored
18-19 Function code. See below.
20-35 Bit mask of ACs to push. Bit 20 corresponds to AC 0; bit

35 corresponds to AC 17.

Bits 18 and 19 are interpreted as a function code, as follows:

Code Result
0 Push ACs indicated by bits 20~35 on the stack.
1 Reserved. |If this function code is used, the instruction

will generate a page fail trap to the monitor.

2 Push ACs indicated by bits 20-35 on the stack. When this
is complete, push the full 30-bit effective address of the
instruction on the stack.

3 Push ACs indicated by bits 20-35 on the stack. Whern this
is complete, push the full 30-bit effective address of the
instruction on the stack.

The ACs corresponding to the bit mask in bits 20-35 are pushed onto
the stack beginning with AC O and continuing through AC 17. If the
stack pointer is designated as one of the ACs to be pushed, the value
pushed onto the stack is the contents of the stack pointer at the
start of the instruction (before it is incremented).

When all designated ACs are pushed onto the stack, the effective
address of the instruction (including section number) is also pushed
onto the stack if the function code is 2 or 3.

If the stack pointer overflows during the process of pushing ACs or E,
the word which caused the stack pointer to overflow is pushed on the
stack (into the location one past the end of stack) and the
instruction aborts, setting the trap 2 flag.

If the instruction fails to complete successfully (stack overflow,
page fail, interrupt, etc.), the stack pointer in AC is left unchanged
(the value that it had at the beginning of the instruction). Note

SOFTWARE ENVIRONMENT _ Page 3-6
that in this event, some locations on the stack following the stack
pointer may have been modified.
This instruction is identical to the KC10 PUSHM instruction and is not
currently implemented by the KS10 microcode.
NOTE
Due to time-to-market considerations,

this instruction may not be implemented
by the microcode for the FCS machine.

SOFTWARE ENVIRONMENT A Page 3-7

3.2.1.2 POPM - Pop multiple ACs

Hmmmmmm e e s et L L P +
1 741 ! AC 1@! XR ! Y ! OPDEF POPM [7L41000,,0]
et e it + ‘

V Pop ACs from the stack addressed by the stack pointer in AC as
directed by bits 18-35 of the effective address. The format of these
bits is as follows:

18-19 Function code. See below.

20-35 Bit mask of ACs to pop. Bit 20 corresponds to AC 0; bit
35 corresponds to AC 17.

Bits 18 and 19 are interpreted as a function code, as follows:

Code Result

0 Pop ACs indicated by bits 20-35 from the stack.

1 Reserved. |f this function code is used, the instruction
will generate a page fail trap to the monitor.

2 Pop ACs indicated by bits 20-35 from the stack. When this

is complete, pop another stack location and take the next
instruction from the address specified by the contents of
the additional stack location. The effect is to perform a
POPJ after all ACs have been popped.

3 Pop ACs indicated by bits 20-35 from the stack. When this
is complete, pop another stack location and take the next
instruction from the address specified by the contents+]
of the additional stack location (i.e., increment the
contents). The effect is to perform the instruction

sequence:
A0S 0 (P)
POPJ P,

after all ACs have been popped.

The ACs corresponding to the bit mask in bits 20~-35 are popped from
the stack beginning with AC 17 and continuing through AC 0. [f the
stack pointer is designated as one of the ACs to be popped, the
results of the operation are undefined.

When all designated ACs are popped from the stack, a non-skip or skip
return may be performed if the function code is 2 or 3.

If the stack pointer underflows during the process of popping ACs or
performing the optional return, the instruction is aborted and the

SOFTWARE ENVIRONMENT : Page 3-8

trap 2 flag is ‘set. In the case where the underflow is detected while
performing the return, PC is changed to the value from the stack
location before the trap occurs.

If the instruction fails to complete successfully (stack underflow,
page fail, interrupt, etc.), the stack pointer in AC is left unchanged
(the value that it had at the beginning of the instruction). Note
that in this event, some ACs may have been modified.

This instruction is identical to the KC10 POPM instruction and is not
currently implemented by the KS10 microcode.
NOTE
Due to time-to-market considerations,

this ‘instruction may not be implemented
by the microcode for the FCS machine.

SOFTWARE ENVIRONMENT Page 3-9

3.2.1.3 PUSHI - Push immediate

e T +
! 742 I AC t@! XR ! Y ! OPDEF PUSHI [742000,,0]
o e S +

If PC section is non-zero, push the full 30-bit effective address onto
the stack. If the effective address calculation results in a local
reference to an AC in a non-zero section, the effective address is
first converted to the global AC address form before being pushed on
the stack.)

If PC section is zero, 0,,EA is pushed onto the stack.

PUSHI P,E is therefore functionally equivalent to the following
sequence:

XMOVEI AC,E
PUSH P,AC

except that no AC is destroyed.
Note that because of the conversion of local AC references to global
AC form, the following instruction, when executed in a non-zero
section, pushes 1,,10 on the stack instead of 0,,10:
PUSHI P, 10
This instruction is identical to the KC10 PUSH! instruction and is not
currently implemented by the KS10 microcode.
NOTE
Due - to time-to-market considerations,

this instruction may not be implemented
by the microcode for the FCS machine.

SOFTWARE ENVIRONMENT Page 3-10

3.3 The exec mode environment

Because exec mode software already exists for the proposed KC10
design, the KD10 exec mode environment is as quite similar to the KC10
exec mode environment. The one exception to this is the external /0
instructions. Because the FCS machine uses UBAs for [/0, the external
I/0 interface is done with the KS10 set of I/0 instructions. The set
of external 1/0 instructions will necessarily change as new adapters
are added to the system.

The exec mode environment includes not only the privileged instruction
set, but also data structures and protocols for processing page fails,
traps, MUUOs, LUUOs, and interrupts. This section describes each in
detail.

3.3.1 Privileged instructions

The KD10 privileged instructions include instructions to control the
processor, manipulate 1/0 devices, etc. Each instruction is described
separately below.

Each privileged instruction is nominally 1legal only in exec mode.
Certain instructions are also legal in user mode if the USER 1/0 PC
flag is set.

SOFTWARE ENVIRONMENT Page 3-11

3.3.1.1 APRO, APR1, and APR2 instructions

The APRO (opcode 700), APR1 (opcode 701), and APR2 (opcode 702)
instructions control the internal processor devices. The AC field of
the instruction is decoded to produce a 1-of-16 sub-instructions.

Most of the instructions described below have functions and bit
definitions that are close to the equivalent KC10 instructions. There
are a few exceptions to this rule, notably the cache sweep
instructions (which don't exist in the KD10), and the timebase and
interval timer instruétions (which are identical to the KS10).

Note that the AC field value for each sub-instruction is the same as
the KS10 value rather than the KC10 value for ease in modifying the
microcode. Since the software definitions are in a parameter file,
this change should not pose particular problems.

The following table gives the instruction mnemonic for each AC field
decode:

AC APRO APR1 APR2
00 APRID SETCU RDSPB
01 -‘Uuo RDUBR RDCSB
02 uuo CLRPT RBDPUR
03 uuo WRUBR WRPUR
Ok WRAPR WREBR RDTIM
05 RDAPR RDEBR RDINT
06 SZAPR uuo RDHSB
07 SNAPR uuo uuo.
10 uuo uuo WRSPB
11 uuo uuo WRCSB
12 uuo uuo RDCSTHM
13 uuo uuo WRCSTM
14 WRPI uuo WRT I M
15 RDPI uuo WRINT
16 SZPI uuo WRHSB

17 SNPI uuo uuo

SOFTWARE ENVIRONMENT) Page 3-12

3.3.1.1.1 APRID - APR identification

mmm e e B e T ———— +
! 700 ! 00 I@! XR ! Y ! OPDEF APRID [700000,,0]
e e el o TSP — +

Read the microcode version number, the processor serial number, and
the microcode and hardware options into location E in the format
specified below. At present, there are no microcode or hardware
options defined.

The format of the information stored into location E is as follows:

0-5 Microcode options
6-17 Microcode version number
18-20 Hardware options
21-35 Proceséor serial number

This format is identical to that stored by the KS10 with the exception
that the microcode options field is 3 bits narrower and the microcode
version number field is 3 bits wider. It differs from the KC10 in
that the KC10 stored two words of information.

SOFTWARE ENVIRONMENT Page 3-13

3.3.1.1.2 WRAPR - Write APR conditions

ommmmmmm T e +
! 700 ! o4 t@! XR ! Y ! OPDEF WRAPR [700200,,0]
it s s St ST T LR +

Perform the specified APR-related functions as specified by bits 18-35
of the effective address. Bits 18 and 20-23 control the operation of
the instruction. 1Is in these bits produce the indicated results; Os
cause no change. The result of putting 1s in both bits 20 and 21 .or
22 and 23 is indeterminate.

The bits in the effective address are as follows:

18 Assign an interrupt Jlevel to the processor from bits
33-35.
20 Enable the setting of the flags selected by bits 24-31 to

request an interrupt on the level assigned to the
processor.

21 Disable the setting of the flags selected by bits 24-31
from requesting an interrupt.

22 Clear the flags selected by bits 24-31

23 Set the flags selected by bits 24-31

24-21 Selected flags. These bits represent individual APR

flags, as indicated below, that can be set, cleared,
enabied, or disabled with the appropriate combination of
bits 20-23. The individual flags are as follows:

24 Unassigned APR flag.

25 Interrupt console. Setting this flag causes an
interrupt to the console. The microcode clears this
flag after two clock periods to produce a pulse on the
console interrupt line.

26 Power failure.

27 No memory (NXM).

28 Bad memory data (double bit memory error).

29 Corrected memory data (single bit memory error).
30 Interval done.

31 Console interrupt.

SOFTWARE ENVIRONMENT ' Page 3-14

33-35 Pl level to be assigned to the procéssof;

With the exception of the addition of bit 18, these bit definitions
are identical to those defined by the KS10. It differs from the KC10

in that there is no 1/0 reset (bit 19), and the APR flags are
different.

Note that the operation of this instruction is cumulative over time.
For example, a WRAPR 1B20+1B26 enables interrupts on power failures.
A subsequent WRAPR 1B20+1B27 enables interrupts on NXMs, but leaves
power fail interrupts enabled also. One can think of the operation of
this instruction as logically ORing the flag bits for the ""enable" and
'set" functions with the pPrevious state of the flags. Similarly the
""disable" and 'clear" functions logically AND the complement of the
flag bits with the previous state of the flags.

SOFTWARE ENVIRONMENT o Page 3-15

3.3.1.1.3 RDAPR - Read APR conditions

e i s T —————— +

! 05 1@! XR ! Y ! OPDEF RDAPR [7002k0,,0]

Fommmmmem e et +

Read the status of the processor flags into location E in the format
specified below. Bits 24-31 represent conditions that can cause
interrupts if the condition has been enabled.

The format of the information stored into location E is as follows:

6-13

24-31

24

25

26
2]

28

29

30

31

Flags indicating which APR conditions are enabled to cause
interrupts. A 1 in any of these bits indicates that
setting the corresponding flag in bits 24-31 will request
an interrupt on the level assigned to the processor.

Flags indicating which APR conditions have occurred. Each
flag is discussed separately below.

Unassigned APR flag. This flag is available to the
program for any purpose.

When read, this flag should always be 0, as any' WRAPR
that sets it also clears it to provide a pulse on the
interrupt line to the console.

AC power has failed.

NXM. The processor was granted the bus for access to
memory, but the memory controller did not respond
within two bus cycles. This is most likely because the
memory subsystem contained no array board corresponding
to the address given, or there has been a refresh
error. Note that this condition also produces a page
failure. Since a NXM supplies zero data, on read this
error may be accompanied by a 1 in bit 28.

Double bit error. In a read reference, the ECC logic
in the memory controller detected a double bit memory
error. This condition also produces a page failure.

Single bit error. In a read reference, the ECC logic
in the memory controller detected and corrected a
single bit memory error.

Interval timer expired. The microcode has completed a
count of the interval specified by the program.

Console interrupt request. The console is requesting a
processor interrupt.

SOFTWARE ENVIRONMENT : Page 3-16

32

33-35

Some APR condition is currently requesting an -interrupt,
i.e., some flag in bits 24-31 is set and has been enabled
to interrupt as indicated by a 1 in the corresponding
position in bits 6-13.

Pl level assigned to the processor.

The bits returned by this instruction are identical to those returned
by the KS10. It is also identical to the KC10 RDAPR instruction with
the exception that the APR flags are different.

SOFTWARE ENV{IRONMENT Page 3-17

3.3.1.1.4 SZAPR - Skip on masked APR conditions all zero

mmmmmm e e et ettt +
! 700 ! 06 !'@! XR ! Y ! OPDEF SZAPR [700300,,0]
mmmmmmmem it S ittt +

Test the conditions as returned by RDAPR against the mask produced by
bits 18-35 of the effective address. |If all masked bits selected by
1s in E are zero, skip the next instruction in sequence.

This instruction is identical to CONSZ APR,E on both KS10 and KC10.

3.3.1.1.5 SNAPR - Skip on any mask APR condition non-zero

it At et SRR P +

! 700 ! 07 1e! XR ! Y ! OPDEF SNAPR [700340,,0]
i e i ST T T +

Test the conditions as returned by RDAPR against the mask produced by
bits 18-35 of the effective address. |f any masked bit selected by Is
in E is one, skip the next instruction in sequence.

This instruction is identical to CONSO APR,E on both KS10 aﬁd KC10.

SOFTWARE ENVIRONMENT Page 3-18

3.3.1.1.6 WRPI - Write PI conditions

e L e e ian st T LT TPt . +
! 700 ! 14 1@! XR ! Y ! OPDEF WRPI [700600,,0]
L i st LT S +

Perform the Pl-related functions as specified by bits 18-35 of the
effective address. Bits 22-28 control the operation of the
~instruction. 1Is in these bits produce the indicated results; Os
cause no change. The result of putting 1s in both bits 22 and 2k, 25
and 26, or 27 and 28 is indeterminate.

The bits in the effective address are as follows:

22 On the 1levels selected by bits 29-35, turn off any
interrupt requests made in a previous WRP! with bit 24 on.

23 Turn off the Pl system, turn off all levels, drop all
program-set requests, and dismiss all interrupts that are
currently being held.

24 Request interrupts on levels selected by bits 29-35, but
hold the interrupt if the specified level has not been
turned on.

25 Turn on the levels selected by bits 29-35.

26 Turn off the levels selected by bits 29-35.

27 Turn off the Pl system.

28 Turn on the Pl system.

29-35 Se;e;ged levels (1-7) to be controlled by bits 22, 24, 25,
an .

These definitioﬁs are identical to those of the KS10 and KC10.

Note that the operation of this instruction is cumulative over .time.
For example, a WRPI 1B25+1B31 turns on level 3. A subsequent
WRPI 1B25+1B33 turns on level 5, but leaves level 3 on also. One can
think of the operation of this instruction as logically ORing the
levels for the "initiate interrupt" and “turn on" functions with the
previous state of the levels. Similarly the ''drop request" and "turn
of f!" functions logically AND the complement of the selected level bits
with the previous state of the levels.

SOFTWARE ENVIRONMENT Page 3-19

3.3.1.1.7 RDPI - Read P! conditions

Fmmmm————— R s i ST T +

! 700 ! 15 1@! XR ! Y ! OPDEF RDP! [700640,,0]
e ———— Fmm e e e +

Read the status of the Pl system into 1location E in the format
specified below.

The format of the information stored into location E is as follows:

11-17 Pl levels (1-7) on which program requests have been made
(with a WRPI with a 1 in bit 24).

21-27 Pl levels (1-7) on which interrupts are currently in
progress.

28 Pl system is on.

29-35 Pi levels (1-7) which have been turned on (with a WRPI

with a 1 in bit 25).

This format is identical td that stored by the KS10 and KC10.

SOFTWARE ENVIRONMENT Page 3-20

3.3.1.1.8 SZPI - Skip on masked Pl conditions all zero

e e e e L +
! 700 1 16 1@! XR ! Y ! OPDEF SzPI [700700,,0]
Fomm e e R eI +

Test the conditions as returned by RDPI against the mask produced by
bits 18-35 of the effective address. If all masked bits selected by
Is in E are zero, skip the next instruction in sequence.

This instruction is identical to CONSZ PI,E on the KS10 and KCi0.

3.3.1.1.9 SNPI - Skip on any masked P! condition non-zero

i e e e e e L +

! 700 1 17 1@! XR ! Y ! OPDEF SNP! [7007L0,,0]
e Ao e e L +

Test the conditions as returned by RDPI against the mask produced by
bits 18-35 of the effective address. |f any masked bit selected by 1s
in E is one, skip the next instruction in sequence.

This instruction is identical to CONSO Pl,Evon KS10 and KC10.

SOFTWARE ENVIRONMENT Page 3-21

3.3.1.1.10 SETCU - Set CST-update-needed bits

- e et et T +
1 701 ! 00 I@! XR ! Y ! OPDEF SETcU [701000,,0]
Fommm————— S et +

Sweep the translation buffer and set the ''CST update needed" bit for
each entry. Setting this bit in a translation buffer entry causes a
page fail to occur on the next virtual reference to each page.

The indirect, index register, and Y fields of this instruction are not
used and should be zero.

This instruction is identical to the KC10 SETCU instruction and is
currently not implemented by the KS10 microcode.

SOFTWARE ENVIRONMENT Page 3-22

3.3.1.1.11 RDUBR - Read User Base Register

R e Rl e +
! 701 ! 01 !1@! XR ! Y ! OPDEF RDUBR [701040,,0]
Fmm——————- Ea e e L R T T . + ,

Read the process status of the pager and the current address break
information into the 1locations addressed by E through E+2. The
information stored is the same as that supplied by a WRUBR.

The format of the first word (E) is as follows:

0 Returned as a 1 (Load AC blocks in WRUBR).

1 Returned as a 1 (Load PCS in WRUBR).

2 Returned as a 1 (Load UBR in WRUBR).
8 Returned as a 1 (Load address break conditions in WRUBR) .
18-35 Physical page number of the UPT.

The format of the second word (E+1) is as follows:

18-20 Current AC block number.
21-23 Previous AC block number.
24-35 Previous context section.

The format of the third word (E+2) is as follows:
o Address break enabled for a normal fetch of an instruction
in the program under control of PC.

1 Address break enabled for any reference that reads except
the normal fetch of an instruction.

2 Address break enabled for any reference that writes.

3 Address break enabled for a reference made in user virtual
address space (0 implies exec address space) .

4 Address break is enabled.

5 Returned as a 0 (Maintain address break conditions in
WRUBR) . : '

SOFTWARE ENVIRONMENT " Page 3-23
6-35 Virtual break address.

The format of the information stored by this instruction is very
different from that stored by the KS10. It is much closer to the
information stored by the KC10 RDCTX instruction, but the address
break information requires two fewer words.

NOTE
The ability to implement any address
break functionality is subject to
question. |If it becomes impossible to
do so, RDUBR will store only words E and

E+1, and bit 8 in word E will become
undefined.

SOFTWARE ENVIRONMENT Page 3-2Lk

3.3.1.1.12 CLRPT - Clear page table entry

o R Ea e T T T u— +
! 701 ! 02 1@! XR ! Y ! OPDEF CLRPT [701100,,0]
e T i ettt T . +

Invalidate the translation buffer entry corresponding to the page
referenced by the effective address. Clear the appropriate parts of
the internal cache of paging information.

In terms of the effect on the translation buffer, this instruction is
identical to that on the KSI10. However, the KS10 also swept the
entire cache because it was virtually addressed. Because the KD10
cache is physically addressed, it need not be swept on a CLRPT.

SOFTWARE ENVIRONMENT - Page 3-25

3.3.1.1.13 WRUBR - Write User Base Register

o ————— R R -+
! 701 ! 03 1@! XR ! Y ! OPDEF WRUBR [701140,,0]
Frem———— et e T T e L L +

Set up the process-oriented elements of the pager and - address break
conditions according to the contents of the locations address by E
through E+2.

The first word (E) contains control information and the physical page
number of the UPT. A 1 in a control bit causes the specified action
to happen; a O causes no change. The format is as follows:

0 Load the current and previous AC block numbers from bits
18-23 of word E+1.

1 Load previous context section from bits 24-35 of word E+1.

2 Load bits 18-35 of word E into the user base register.
Invalidate the entire translation buffer and cache by
clearing the valid bits in all entries. Clear the cache
of internal paging information. If paging is on,
reinitialize the internal cache of paging information from
the EPT and UPT.

8 Load the address break conditions from word E+2. |If this
bit is a 0, the microcode will not reference word E+2.
18-35 Physical page number of the UPT.

The second word (E+1) contains the CAB, PAB, and PCS fields. The
format is as follows:

18-20 Current AC block number.
21-23 Previous AC block number.
24-35 Previous context section.

The third word contains address break conditions and the address break
address.

0o Enable address break for a normal fetch of an instruction
in the program under control of PC.

SOFTWARE ENVIRONMENT Page 3-26

T Enable address break for any reference that reads except
the normal fetch of an instruction.

2 Enable address break for any reference that writes.

3 Enable address break for a reference made in user virtual
address space (0 implies exec address space).

L Turn on address break. |If this bit is a 0, turn off -
address break.

5 Ignore bits 0-3 and 6-35 and use the previous condition
bits and break address. By setting this bit, the program
can turn address break on and off without having to reload
the conditions and break address. If this bit is a 0,
load new address break conditions and the break address
from bits 0-3 and 6-35. ’

6-35 Virtual break address.

The format of the information supplied to this instruction is very
different from that used by the KS10. It is much closer to the
information supplied to the KC10 WRCTX instruction, but the address
break information requires two fewer words.

NOTE

The ability to implement any address
break functionality is subject to
question. If it becomes impossible to
do so, WRUBR will take only two
arguments in words E and E+1, and bit §
in word E will be ignored. '

.SOFTWARE ENVIRONMENT Page 3-27

3.3.1.1.14 WREBR - Write Exec Base Register

Fommmm e et T +
! 701 ! Ok !@! XR ! Y ! OPDEF WREBR [701200,,0]
Fomm—————— Fmm e e e +

Set up the system-oriented characteristics of the pager according to
the contents of location E.

The format of the argument is as follows:

3 Impiement TOPS-20 mode. At present, both TOPS-10 and use
the same style of paging so this bit is currently ignored.
In the future, it can be used to distinguish TOPS-10 wvs.
TOPS-20 features.

L Enable the pager. invaliidate the entire translation
buffer and cache by clearing the valid bits in each entry.
Clear the internal cache of paging information. If this
bit is on, reinitialize the cache from the EPT and UPT.

7 Load trap enable from bit 8. |If this bit is a 0, ‘do not
change the state of trap enable.

8 Enable full processing of traps, LUUOs, MUUOs, and page
fails. If bit 7 is a 1 and this bit is a 0, the
processing of these conditions is modified. See the
section on trap handling for details. |If bit 7 is a 1 and
this bit is a 1, the processing of these conditions s
done normally.

18-35 Physical page number of the EPT.

The information supplied to this instruction is different from the
KS10 WREBR instruction. The information is identical to that supplied
to the KC10 WREBR instruction with the exception that there are no
cache control bits defined.

SOFTWARE ENVIRONMENT : Page 3-28

3.3.1.1.15 RDEBR - Read Exec Base Register

e e e e Tl L TP +
! 701 1 05 1@! XR ! Y ! OPDEF RDEBR [701240,,0]
e B R T +

Read the system-oriented characteristics of the pager into location E.
The information read is that same as that supplied to to WREBR.

The format of the information stored is as follows:

3 TOPS-20 mode is impfemented.

L Paging is enabled.

7 Returned as a 0 (Load trap enable in WREBR).

8 Full processing of traps, LUUOs, MUUOs, and page fails s
enabled.

18-35 Physical page number of the EPT.

The information stored is dissimilar with that stored by the KS10. It
is identical to that stored by the KC10 RDEBR instruction with the
exception that there are no cache control bits.

SOFTWARE ENVIRONMENT ‘ - Page 3-29

3.3.1.1.16 RDSPB - Read SPT Base Register

Frm o ———— e b T e L L L LTS +
! 702 ! 00 I@! XR ! Y ! OPBEF RDSPB [702000,,0]
Fomm—————— S e T

Read the contents of the SPT base register into bits 9-35 of location

.

This instruction is identical to the KS10 and KC10 RDSPB instructions.

3.3.1.1.17 RDCSB - Read CST Base Register

e ———— o e e e e +
1 702 1 01 !I@! XR ! Y ! OPDEF RDCSB [702040,,0]
tommm————— e e e L e L L L LT L L +

Read the contents of the of the CST base register into bits 9-35 of
location E.

This instruction is identical to the KS10 and KC10 RDCSB instructions.

SOFTWARE ENVIRONMENT : Page 3-30

3.3.1.1.18 RDPUR - Read Process Use Register

Fommm—————m S R il T, -—+
' 702 1 02 1@! XR ! Y ! OPDEF RDPUR [702100,,0]
D e St T LT T P e +

Read the process use register into location E.

This instruction is identical to the KS10 and KC10 RDPUR instructions.

3.3.1.1.19 WRPUR - Write Process Use Register

Fommmmmee o b L +
! 702 ! 03 I@! xR ! Y ! OPDEF WRPUR [702140,,0]
T B e e + .

Load the contents of location E into the process use register for use
as the process use word in CST updating.

This instruction is identical to the KS10 and KC10 WRPUR instructions.

SOFTWARE ENVIRONMENT Page 3-31

3.3.1.1.20 RDTIM - Read timebase conditions

it e i e T +
! 702 I o4 1@! XR ! Y ! OPDEF RDTIM [702200,,0]
fmmmmm s e L L L +

Update the timebase double word kept in internal storage with the
hardware counter and store the result into locations E and E+1.

This instruction is identical with the KS10 RDTIM instruction.

3.3.1.1.21 RDINT - Read interval timer conditions

o ——— e i T TSR +

! 702 1 05 1@! XR ! Y ! OPDEF RDINT [702240,,0]
Fo————— et e R et -+

Read the contents of the interval register into location E. The
period read is the same as that supplied to WRINT.

This instruction is identical with the KS10 RDINT instruction.

SOFTWARE ENVIRONMENT Page 3-32

3.3.1.1.22 RDHSB - Read Halt Status Block address

Fmmm e it LT P SO +
! 702 1 06 1@! XR ! Y ! OPDEF RDHSB [702300,,0]
e e e +

Read the physical address of the halt status block into location E.

This instruction is identical with the KS10 RDHSB instruction.

3.3.1.1.23 WRSPB - Write SPT Base Register

ommmmeen B e T +

! 702 ! 10 1@! XR ! Y ! OPDEF WRSPB (702400, ,0]
Fommmm e e Tl L +

Load the contents of location E into the SPT base register.

This instruction is identical to the KS10 and KC10 WRSPB instructions.

SOFTWARE ENVIRONMENT - Page 3-33

3.3.1.1.2k WRCSB - Write CST Base Register

o ——— e Rt e et L T T +
! 702 ! 11 1@! XR ! Y ! OPDEF WRCSB [7024L0,,0]
Fomm———— e +

Load the contents of location E into the CST base register.

this instruction is identical to the KS10 and KC10 WRCSB instructions.

3.3.1.1.25 RDCSTM - Read CST Mask Register

Fommmmm e e Eatt +
! 702 ! 12 1@! XR ! Y ! OPDEF RDCSTM [702500,,0]
mmmmmm o m e m e e +

Read the contents of the CST mask register into location E.

This instruction 1is identical to the KS10 and KC10 RDCSTM
instructions.

SOFTWARE ENVIRONMENT Page 3-34

3.3.1.1.26 WRCSTM - Write CST Mask Register

T e e T +
! 702 1 13 1@! XR ! Y ! OPDEF WRCSTM [702540,,0]
Fmmmmmem e m e L + '

Load the contents of location E into the CST mask register for use as
the mask in CST updating. ’

This instruction is identical to the KS10 and KC10 WRCSTM
instructions.

3.3.1.1.27 WRTIM - Write timebase conditions

ommmmme oo o e e e L +
! 702 V14 1@1 XR ! Y ! OPDEF WRTIM [702600,,0]
e e M e Tt

Read the contents of location E and E+1, clear the right twelve bits
of the low order word, and place the result in the timebase registers
in internal storage.

This }nstruction is identical to the KS10 WRTIM instruction.

SOFTWARE ENVIRONMENT Page 3-35

3.3.1.1.28 WRINT - Write interval timer conditions

o == m e e +
! 702 ! 15 1@! XR ! Y ! OPDEF WRINT [702640,,0]
Fmmmmmm e s Eaantt T T TP +

Load the contents of location E into internal storage.

This instruction is identical to the Ks10 WRINT instruction.

3.3.1.1.29 WRHSB - Write Halt Status Block Address

e e T et +
! 702 ! 16 1@! XR ! Y ! OPDEF WRHSB[702700,,0]
e et e T L P +

Load bits 9-35 of location E into the halt status block base register
in the workspace. If bit 0 of the word in E is 0, this address will
be used as the physical address for storing halt status. If bit 0 is
1, no status will be stored.

This instruction is identical to the KS10 WRHSB instruction.

SOFTWARE ENVIRONMENT Page 3-36

3.3.1.2 External |/0 instructions

1/0 on the FCS machine will be done through (modified) Unibus adapters
similar to those on the KS10. As a result, the KS10 external 1/0
instructions have been carried over to the KD10 design unchanged, with
the exception that the opcodes have changed.

The external 1/0 instructions and their opcodes are as follows:

Opcode Mnemonic
720 TIOE
721 TION
722 RDIO
723 WRIO
724 BSIO
725 BCIO
730 TIOEB
731 TIONB
732 RD10B
733 WRI0B
734 BS10B
735 BC!10B

As new adapter types are added, new external 1/0 instructions may also
have to be added. For example, the KC10 queue instructions might be
useful with future adapters.

3.3.1.3 Other privileged instructions

Besides the APRO, APR1, and APR2 instructions, and the external 1/0
instructions, there are several more privilege instructions. Each of
these instructions is discussed separately below.

SOFTWARE ENVIRONMENT Page 3-37

3.3.1.3.1 UMOVE - User move

O e S ST SRR +
! 704 ! AC !@! XR ! Y ! OPDEF UMOVE [704000,,0]
T e e e +

Perform an effective address calculation in current context, then read
the data from the specified location in previous context. Store the
result in AC.

This instruction is functionally equivalent to PXCT L, [MOVE AC,E] and
is identical to the KS10 and KC10 UMOVE instructions.

3.3.1.3.2 UMOVEM - User move to memory

mmmmm - T e e L +
! 705 ! AC 1@! XR ! Y ! OPDEF UMOVEM [705000,,0]
Fommmm e T et T T L +

Perform an effective address calculation in current context, then
store the contents of AC into the specified location in previous
context.

This instruction is functionally equivalent to PXCT L4, [MOVEM AC,E] and
is identical to the KS10 and KC10 UMOVEM instructions.

SOFTWARE ENVIRONMENT " Page 3-38

3.3.1.3.3 PMOVE - Physical move

oo ee e T LR +
] 706 ! AC !1@! XR ! Y ’ ! OPDEF PMOVE [706000,,0]
e e Tt Tt T +

Perform a physical effective address calculation using the word in
location E, then read the specified physical memory location and store
the result in AC. :

A physical effective address calculation evaluates a physical EA-calc
word. Such a word is similar to a virtual EFIW word and looks as
follows:

e o e e e e +
lolot XR ! Y !
e o e e e - +
012 56 35

Bits 2-5 of the physical EA-calc word are the index register address,
and bits 6-35 are the physical memory address Y. The physical
effective address is Y alone if XR is zero. If XR is non-zero, the
contents of the specified index register are added to Y to produce a
27-bit physical addresses. Bits 0-1 of the physical EA-calc word must
be zero and the microcode will generate a page fail if they are not.

Note that addresses in the range 0-17, inclusive, reference physical
memory locations 0-17 and not the ACs. Also, because this instruction
makes a physical reference, no CST update is performed by the
instruction.

This instruction is identical to the KC10 PMOVE instruction and is not
currently implemented by the KS10.

SOFTWARE ENVIRONMENT Page 3-39

3.3.1.3.4 PMOVEM - Physical move to memory

o e s T e PR +
! 707 ! AC I@! XR ! Y ! OPDEF PMOVEM [707000,,0]
fomm e s et S +

Perform a physical effective address calculation using the word in
location E, then store the contents of AC into the specified physical
memory location.

The physical effective address calculation algorithm is described
under PMOVE above.

Note that addresses in the range 0-17, inclusive, reference physical
memory locations 0-17 and not the ACs. Also, because this instruction
makes a physical reference, no CST update is performed by the
instruction.

This instruction is identical to the KC10 PMOVEM instruction and is
not currently implemented by the KS10.

SOFTWARE ENVIRONMENT : Page 3-L0

3.3.1.3.5 LDPAC - Load previous AC blocks

e e b D +
! 716 I AC 1@! XR ! Y ! OPDEF LDPAC [716000,,0]
e i e e T +

Load the previous context ACs (from the AC block specified by the
current PAB value) from the block beginning at the location addressed
by E. Continue to transfer words from the block until a word has been
transferred to the previous context AC specified by the AC field of
the instruction.

The 16 word block must not cross section boundaries.

To load all previous context ACs from the 16-word current context
block beginning at USERAC, one would execute the following
instruction:

LDPAC 17,USERAC

This instruction is identical to the KC10 LDPAC instruction and is
currently not implemented by the KS10.

SOFTWARE ENVIRONMENT Page 3-41

3.3.1.3.6 STPAC - Store previous AC blocks

Fmmmmm s e T e +
! 717 ! AC I@! XR ! Y ! OPDEF STPAC [717000,,0]
fommm———— e e e e +

Store the previous context ACs (as specified by the current PAB value)
into the block beginning at the location addressed by E. Continue to
transfer words from the previous context ACs to the block until a word
has been transferred from the previous context AC specified by the AC
field of the instruction.

The 16 word block must not cross section boundaries.

To store all previous context ACs into the 16-word current context
block beginning at USERAC, one would execute the following
instruction:

STPAC 17,USERAC

This instruction is identical to the KC10 STPAC instruction and is
currently not implemented by the KS10.

- SOFTWARE ENVIRONMENT Page 3-42

3.3.1.3.7 MAP - Map an address

e B s et T U +
! 257 ! AC !@! XR ! Y ! OPDEF MAP [257000,,0]
Hmmmm e B s T ——— +

If the pager is on and the processor is in exec mode or user 1/0 mode,
map the page number of the virtual effective address E and place the
resulting physical address and other map data in AC.

To do this, the microcode performs a pointer trace as if a reference
to the page caused a page fail. The translation buffer is not changed
as the result of this pointer trace.

The generic format of the information returned in the AC by the MAP
instruction is as follows:

!
futolvimMiwlotolcto! 000 ! Physical
ISY ILIDIT! t IHY ! Address
!

0123567809

W
5 —
U

The fields are as follows:

0 User. If this bit is a 1, the mapping is in user space.
If the bit is a 0, the mapping is in exec space.

2 Valid. |If this bit is a 1, the mapping is wvalid. That
is, bits 14-35 contain the physical address corresponding
to the virtual effective address:

3 Modified. If this bit is a 1, the page has been modified
(according to the W bit in the CST entry for the page).

4 Writable. |If this bit is a 1, the page is writable (as
indicated by the fact that the logical AND of the W bits
in all pointers was a 1).

7 Cachable. |If this bit is a 1, the page is cachable (as
indicated by the fact that the logical AND of the C bits
in all pointers was a 1).

14-35 Physical address.

The information returned in the AC by the MAP instruction can be in
one of three different formats, as follows:

If the pager is off, bits 14-35 of the effective address are returned
in bits 14-35 of AC. In addition, the valid, modified, and writable

SOFTWARE ENVIRONMENT : Page 3-43

bits are also set. This looks as follows:

!
tototitititolototi! o000 ! Bits 14-35 of effective
frrrrr eyt ! Address

!
0123456789

N s
o
Ul w

Fermat of AC if paging is off

If the pager is on and there is a valid mapping for the specified
virtual address, the format of the information returned in the AC is
as follows:

tutoliimMiwlotlotlcto! o000 ! Physical
ISt ! IptT! ! HH! 1} | Address
!

0123456789

Ul w

11
34
Format of AC if a valid mapping was found

If the pager is on and there was no valid mapping for the effective
address, the entire left half o AC is zero (including the valid bit)
and the right half has the same format as the right half of the page
fail word that would be returned if a reference was made to the
specified page. This looks as follows:

! 1
! 0 ILev! Page fail !
! ! i code !
! !
0 1122 3

7801 5

Format of AC if no valid mapping exists

This format is a combination of the KS10 and KC10 formats. The main
difference between this format and the KC10 format is the position of
the valid bit in the AC (the KC10 valid bit was bit 3).

SOFTWARE ENVIRONMENT | Page 3-kk

3.3.2 Changes to JRST

The KD10 implementation of JRST is identical to the KC10
implementation. It is also very similar to the KS10 and extended KL10
implementation with several exceptions. The exceptions are as
follows:

F Mnemonic Function

01 Previously PORTAL. Because the KD10 processor does not
implement public mode, this is treated as a normal
JRST O, .

05 XJRSTF Restore the program flags (as appropriate for the mode of
the processor) and PC from the flag-PC double word in
locations E and E+1 and continue performing instructions
in normal sequence beginning at .the 1location then
addressed by PC. If the instruction is executed in exec
mode, also restore CAB, PAB, and PCS from the first word
of the flag-PC double word.

06 XJEN Restore the level on which the highest priority interrupt
is currently being held and then perform an XJRSTF.

07 XPCW Save the program flags, CAB, PAB, PCS, and PC in a flag PC
double word in locations E and E+]1. Then restore the
program flags, CAB, and PC from the flag-PC double word in
locations E+2 and E+3 and continue performing instructions
in normal sequence beginning at the location then
addressed by PC. Do not restore PAB or PCS from E+2.

10 Always execute as an MUUO through the 1/0 undefined opcode
new PC words in the UPT.

12 Previously JEN. Always execute as an MUUO through the 1/0
undefined opcode new PC words in the UPT. Since the KD10
always stores flag-PC double words in XJEN format, there
is no need for JEN.

14 SFM Save the program flags in bits 0-12 of the word addressed
by E and clear bits 13-17. If the instruction is executed
in exec mode, store CAB, PAB, and PCS in bits 18-20,
21-23, and 24-35, respectively, of the same word. I|f the
instruction is executed in user mode, «clear bits 18-35.
This instruction is legal in any section.

15 XJRST Restore the PC from bits 6-35 of the word addressed by E
and continue performing instructions in normal sequence
beginning at the location then addressed by PC. Do not
change the program flags, CAB, PAB, or PCS.

SOFTWARE ENVIRONMENT Page 3-45

For each of the 16 possible JRST functions, the table given below
indicates where each form of the instruction is legal. The meanings
of the symbols used to define the legal domains of the functions are
as follows: ’

Yes Legal everywhere
Z Legal only in section zero
K Legal only in kernel (executive) mode
No Legal nowhere
-H Legal where indicated by first symbol but causes a halt
If the JRST function is illegal in the mode or context in which it is

executed, the instruction traps as an MUUO through the 1/0 undefined
opcode new PC words in the UPT.

Function Mnemonic Legal domain

JRST O, JRST Yes
JRST 1, JRSTCI Yes
JRST 2, JRSTF Y4

JRST 3, : No
JRST &4, HALT K-H
JRST 5, XJRSTF Yes
JRST 6, XJEN K

JRST 7, XPCW K

JRST 10, No
JRST 11, No
JRST 12, No
JRST 13, No
JRST 14, SFM Yes
JRST 15, XJRST Yes
JRST 16, No

JRST 17, No

SOFTWARE ENVIRONMENT Page 3-46

3.3.3 Cache hardware and control

The KS10 cache used the top 512 locations in the workspace. It was
virtually addressed, one-way associative, and had a one-word block
size. Because it was virtually addressed, the microcode swept the
cache whenever an event caused a significant change in the paging
structure (such as WREBR, WRUBR, and CLRPT).

The KD10 cache has been increased in size to 2K. It uses the top 2K
locations of the LK workspace. Because the cache is larger than the
"size of a page (512 words), it has been changed to a physically
addressed cache addressed by translated bits 25-26 of the virtual
address and the untranslated bits 27-35. It continues to be one-way
associative, and has a one-word block size.

Each entry in the cache directory contains a parity bit, a valid bit,
and bits 14-24 of the physical memory address corresponding to the
word in the data cache.

Although a physically addressed cache need not be swept on a context
switch, the KD10 cache is swept by the microcode on a WREBR or a WRUBR
that changes the UPT (but not on a CLRPT). The reason for this is
that the 1/0 adapters don't invalidate the cache on memory writes (and
probably can't, given the structure of the machine). As result, the
cache sweeps are necessary to insure that the cache doesn't contain
stale data after an 1/0 write.

SOFTWARE ENVIRONMENT Page 3-L47

3.3.4 Paging hardware and data structures

This section describes the KD10 paging hardware, microcode, and data
structures.

3.3.4.1 Paging hardware

The KD10 translation buffer is a 1K, one-way associative, one-word
block size paging cache. The translation buffer is addressed by
VMA<17>.XOR.VMA USER and VMA<18:26>. The XOR function on bit 17
separates equivalent user and exec entries by half the TB as on the
KL10.

Each entry in the translation buffer contains a parity bit, a valid
bit, a writable bit, a cachable bit, a user bit, a CST update needed
bit, bits 6-16 of the virtual address mapped by the entry (TB VMA),
and bits 14-26 of the physical memory address corresponding to the
mapping (TB PMA) .

An entry in the translation buffer maps a virtual address into a
physical address if all of the following conditions are met:

1. The valid bit is on.
2. The parity is good.
3. The CST update needed bit is off.

L, If the references is a write or write-test, the writable bit
is on.

5. The state of the user bit is the same as the user bit in the
request.

6. TB VMA<6:16> matches bits 6-16 of the request VMA.

If these conditions are true, the physical memory address
corresponding to the requested VMA is TB PMA<1L:26> concatenated with
the untransliated VMA bits 27-35.

3.3.L.2 Caching of paging information other than the TB

In an attempt to make the virtual-to-physical translation process
faster in the case where there is a miss in the translation buffer,
the KD10 microcode maintains a cache in the workspace of recent
transactions.

All caching of paging information impiies that the program must tell
the hardware and the microcode when the information is changed. In
previous machines, this meant that the program did a CLRPT to clear a
single entry, and a WREBR or WRUBR to clear the entire paging cache.

SOFTWARE ENVIRONMENT | Page 3-48

The same concept holds for the KD10, except that the microcode
transaction cache must be cleared in addition to the appropriate
translation buffer entries. This process should be transparent to the
program since the microcode does the appropriate information clearing
at the appropriate time.

There is one exception to the '"do the right thing and the right time"
rule which the monitor must be aware of. The KD10 microcode maintains
a cache of the exec and user super section pointers from the EPT and
UPT in internal store. This cache is not cleared when a CLRPT is
done; it is only cleared as the result of a WREBR or WRUBR. As a
result, the monitor must issue one of these two instructions if any of
the super section pointers are changed.

SOFTWARE ENVIRONMENT Page 3-49

3.3.4.3 Pager data structure

The KL10's implementation of extended sections was to allow a maximum
of 32 section pointers to be placed in EPT/UPT locations 540-577. A
single page full of section pointers can only reference 512 sections.
8 pages of section pointers will be required to address 4096 sections.
Since we are going to create some new data items and structure, let us
define some terms:

1. A page containing section pointers will be called a 'Section
Table" or ST. The pointer types found herein are identical
to those already found in EPT/UPT locs 540-577 on a KL10.

2. A page containing map pointers will be called a page map.

3. VMA<6:8> will be called the "Super Section Number" and will
be used to determine which of the 8 Section Tables to look.
in.

4. EPT/UPT locations 520-527 will be a "Super Section Table" or
SST, and will be indexed by VMA<6:8>.

5. The Super Section Table will contain new pointer types called‘
""Super Section Pointers' defined below.

3.3.4.3.1 Pointers

The microcode evaluates three kinds of pointers: super section
pointers, section pointers, and map pointers. These are used in super
section tables, section tables, and page maps, respectively. There
are 5 types of pointers distinguished by a type code in bits 0-2 of
the pointer; of these, three are access pointers that allow access to
the given super section, section, or page and are identical in the
format of the left 9 bits. This format is as follows:

!
IType! 1wl ICIK! |
!

.0 2345678

Bits 3, 5, and 8 are ignored by the microcode and may be used by the
software.

Every access pointer of this type must have "use' bits for the super
section, section, or page it represents. The W and C bits indicate
whether the super section, section, -or page is writable or cachable.
The K bit is reserved for future expansion, but is not currently used
by the KD10 hardware.

~Throughout the evaluation procedure the microcode logically ANDs these
bits from one pointer to the next, so the final result requires that
the given characteristics be specified at every step. In other words,

%

SOFTWARE ENVIRONMENT Page 3-50

if W is 1 in the final pointer for the mapping, the page is writable
provided the super section and the section were also specified as
writable by the original super section and section pointers, and
"writable" has been specified by every other pointer encountered along
the way.

Note that the W bit is also ANDed with the W bit in the CST entry for
the final data page to determine the state of the translation buffer W
state bit. This final operation is not done if the CST base address
is zero.

3.3.4.3.1.1 Super Section Pointers

Entries in the Super Section Table in EPT/UPT locations 520-527 are of
the following five types. All other types are reserved and will cause
a page fail if the microcode encounters them on a refill.

No access

! !
101! Available to software !
| !
023 35

The super section is inaccessible.

Immediate
! !
1 ! IW! ICIK!Rsvd !Storage! Page number !
! rr1r1 1 IMedium ! of section table I
! !
02345678 1112 17 18 35

If bits 12-17 are zero, the section table js in the page specified by
bits 18-35. Otherwise, the page is not in memory .

Shared
! !

! 2 1 IW! ICIK! Reserved ! SPT index !
f !

02345678 17 18 35

The page address of the section table is in the SPT at the offset
specified by bits 18-35

SOFTWARE ENVIRONMENT Page 3-51

Indirect

3 ! twl ICIK! ISuper Section !SPT index containing adr of!
!

!

!

t ! 171111 Table Index lanother super section table!
! !

.0 23456789 17 18 35

In the SPT offset specified by bits 18-35 is the page address of a
secondary super section table. The next super section pointer to be
evaluated is in that table at the offset specified by bits 9-17.

KL compatible

T4 Available to software !
! !

'0 23 35

This type of pointer may ONLY appear in EPT/UPT offset 520 and
indicates that KL compatible paging is to be used. |If VMA<6:12> is
zero, use VMA<13:17> as an index into the KL compatible section table
starting at EPT/UPT offset 540 and perform the pointer evaluation
exactly as a KL10 would. |If VMA<6:12> is non-zero or if this type of
pointer appears in a super section table entry other than that at
EPT/UPT offset 520, a page fail trap will occur. See the section on
page fail conditions for the page fail codes. '

3.3.4.3.1.2 Section Pointers

Entries in a section table are of the following four types. All other
types are reserved and will cause a page fail if the microcode
encounters them on a refill,

No access

!
1ol Available to software !
!

023 - 35

The section is inaccessible.

Immediate

!

I 11 1wl ICIK!Rsvd !Storage! Page number
! LI T T A | !Medium ! of ‘page map
!

- v tmts v

02345678 1112 17 18 35

SOFTWARE ENVIRONMENT Page 3-52

If bits 12-17 are zero, the page map is in the page specified by bits
18-35. Otherwise, the page is not in memory.

Shared

! : !
P 2 1 IWl ICIK! Reserved ! SPT index !
! ; !
02345678 17 18 35

The page address of the page map is in the SPT at the offset specified
by bits 18-35

Indirect
! : !
P 31w IciKY Section I SPT index containing addr !
! P11 Y1 1! Table Index ! of another section table !
! I
023456789 _ 17 18 35

In the SPT offset specified by bits 18-35 is the page address of a
secondary section table. The next section pointer to be evaluated is
in that table at the offset specified by bits 9-17.

3.3.4.3.1.3 Map pointers

Entries in a page map are of these four types. All other types are
reserved and will cause a page fail if the microcode encounters them
on a refill.

No access

!t 0! Available to software !

02 3 35

The page is inaccessible.

Immediate
! !
! 11 IWl ICIKIRsvd !Storage! Page number !
! Prrrr Medium ! for mapping !
1 _ !
023L5678 1112 17 18 T 35

If bits 12-17 are zero, the physical page specified 'by bits 18-35
corresponds to the referenced virtual page. Otherwise, the page is

SOFTWARE ENVIRONMENT. Page 3-53
not in memory.

Shared

! !
! 2 1 Wl ICIK! Reserved ! SPT index !
| {

02345678 17 18 35

The page address for the mapping for the referenced virtual page is in
the SPT at the offset specified by bits 18-35.

Indirect

Wl ICIK! ! Page ! SPT index containing addr

!
131

! Pyt Map Index ! of another page map
1

023456789 17 18 - 35

In the SPT offset specified by bits 18-35 is the page address of a
secondary page map. The next map pointer to be evaluated is in that
map at the offset specified by bits 9-17.

SOFTWARE ENVIRONMENT Page 3-54

3.3.#)3.2 Page address words

The translation buffer refill process causes the microcode to follow
pointers in memory to finally determine the physical page number of
the data page that should be mapped by the virtual page that caused
the page fault. In order to do this, the microcode must evaluate 3
different kinds of pointer levels, super section, section, and page
pointers. At each level, the microcode must encounter a '"page address
word" that gives the page number of the page for the next level. For
the page pointer evaluation, the page address word actually gives the
page number of the final data page. This page address word has the
following format:

! !
! Storage ! Page number !
! medium ! of next page !
! !
12 17 18 35

If bits 12-17 are zero, the storage medium is memory, i.e., bits 18-35
supply the number of a page that is in memory. If bits 12-17 are
nonzero, the page exists but is stored on some other medium and the
microcode traps to the monitor to bring the page into memory. The
page address word may be extracted from bits 12-35 of an immediate
pointer, or from bits 12-35 of the SPT for share or indirect pointers.
For indirect pointers, the microcode will actually encounter more than
one page address word.

3.3.4.3.3 Conversion of Virtual to Physical Addresses
An address is converted to a physical page number as follows:

VMA<6:8> is used to index into the Super Section Table. One of the 5
pointer types (Super Section Pointers) can occur here: No Access,
immediate, shared, indirect, or KL compatible. Immediate, shared, or
indirect pointers yield the physical page number of a Section Table
page. VMA<9:17> is used to index into the Section Table to obtain a
Section Pointer. Address translation then proceeds as on the KL10
after the section pointer fetch. (See DECsystem10/20 Processor
Reference Manual, AA-H391A-TK for a complete description). The VMA
can be thought of as follows: .

0 5689 17 35
! !

! 0 1SST! ST ! page no. ! word no. !
! !

SOFTWARE ENVIRONMENT Page 3-55

3.3.4.3.4 Page refill
3.3.4.3.4.1 CST updates

The microcode performs an operation called a "CST update! at several
points during the processing of a page fault detected by the
translation buffer. The operations performed by a CST update are as
follows:

1. If the CST base address is zero, skip the rest of the steps.

2. Read the CST entry for the physical page in question from the
word addressed by the sum of the CST base register and the
physical page number.

3. |If the age in the entry (bits 0-5) is =zero, start an
age-too-small page fail trap to the monitor and skip the rest
of the steps.

L. AND the entry with the contents of the CST mask register (set
by the WRCSTM instruction).

5. OR the masked entry with the contents of the process use
register (set by the WRPUR instruction).

6. Set the modified (M) bit in the entry, if necessary.
7. MWrite the entry back into the CST in memory, if necessary.
The cases under which a CST update is performed are as follows:

1. A page fault caused by a write reference to a page that is
writable but not yet modified. This case sets the modified
bit in the entry and writes it back into the CST.

2. A page fault caused by the CST-update-needed bit set in the
translation buffer entry for the referenced page. This case
writes the entry back into the CST.

3. A pointer trace evaluates the address of a new physical page.
This case performs only steps 1-3 as described above for the
intermediate pages in the pointer trace. For the final data
page that is evaluated by the pointer trace, the full update
is performed and the updated entry is written back into the
CST.

3.3.4.3.4.2 CST entry format

The CST is a table indexed by physical page number and checked
whenever a new memory page is referenced by the microcode. In
addition, it is updated for the final data page obtained in a page
fail pointer trace and for writable-but-not-yet-modified and

SOFTWARE ENVIRONMENT Page 3-56

CST-update—needed page fails. The CST format is as follows:

! !
| State code ! Available to software IWiM!
! !
0 89 33
: L 5

The monitor keeps a state code in bits 0-8 of the entry; within the
code, bits 0-5 represent the page age, which must be non-zero for the
page to be usable. A zero page age results in an age-too-small page
fail trap to the monitor. The "W" bit is the master write-enable bit
for the physical page and is ANDed with the "W' bijts in the page
pointers when a data page address is written into the translation
buffer. The "M" bit indicates that the page has been modified since
being brought into memory and is set by the microcode on a
writable-but-not-yet-modified page fail trap.

3.3.4.3.4.3 CST mask register format

The CST mask register is ANDed with the CST entry during the CST
update process. It should contain a one in every bit position that
must be preserved during the update procedure and a zero in every bit
position that must be cleared during the update. Therefore, the CST
mask register should always contain ones in bits 34 and 35 (the W and
M bits) and zeros in bits 0-5 (the page age).

3.3.4.3.4.4 Process Use Register format

The Process Use Register is ORed with the masked CST entry during the
CST update process. It should contain a zero in every bit position
that must be preserved during the update procedure and a one in every
bit position that should be set. Therefore, the Process Use Register
should always contain zeros in bits 34 and 35 (the W and M bits) and
the new page age in bits 0-5.

3.3.4.3.L.5 Translation buffer state bits

A refill sets the translation buffer state bits as a function of the
logical AND of all the pointer use bits that it evaluated in the
pointer chase. The relationship is as follows:

State bit Set if the following condition is met

SOFTWARE ENVIRONMENT Page 3-57

Valid Alwéys set to a 1.

Writable 1 if the logical AND of the W pointer use bits of all
pointers evaluated was a 1 and the page has been modified
according to the CST entry for the page

Cachable 1 if the logical AND of the C pointer use bits of all
pointers evaluated was a 1.

CST update Aiways set to a 0

3.3.4.3.4.6 Write references

When a virtual write reference is made, the result is a function of
the translation buffer entry corresponding to the virtual address
specified by the microcode. Write references are particularly
interesting because they can succeed or fail based on the exact state
of the page in question. A page can be in one of the following three
states:

1. Not writable. In this case, a write-failure page fail trap
will be given to the monitor.

2. Writable, but not yet modified. In this case, the microcode
will wupdate the CST entry for the page, mark the page as
modified, and restart the reference.

3. Writable and modified. In this case the write will succeed.

Since the translation buffer has only one bit (the writable bit), the
microcode sets the bit if and only if the page is both writable and
modified. In the case where it is writable, but not yet modified,
state information external to the translation buffer distinguishes
this state from the not-writable state.

SOFTWARE ENVIRONMENT Page 3-58

3.3.4.3.5 Page fail conditions and formats

A page failure occurs when the pager is wunable to make a desired
memory reference, the microcode detects an illegal condition while
executing an instruction (e.g., incorrectly formated indirect word,
illegal one-word-global byte pointer, etc.), or the hardware detects a
failure while processing a memory request. When such a condition
occurs, the microcode stores information about the page fail in UPT
locations L51-455, stores the current flag-PC double word in UPT
locations L456-457 and loads the new flags, CAB, and PC from the new
flag-PC double word in UPT locations 460-461. The format of each of
these words is described below.

UPT location 451 contains the page fail word that describes the
condition that caused the page fail. The format is as follows:

! !

L51: YUIO! I EMIMIWIOICIPIPIIIWIVIBIRSVd !Lev! Page fail code !
ISIO!FIRITIRIO!IIIHIRIO!IC!ICIC! ! ! : !

! !
0123456789111 11 1122 3
01234 7801 5

Bits 0-13 come from the VMA flags register and contain information
about the reference that caused the page fail. The definijtion of the
bits in the page fail word is as follows:

0 User reference. This bit is returned as a 1 if the
reference was to user space. |If the reference was to exec
space, this bit is returned as a 0.

2 VMA FETCH bit from VMA flags. See the prints.

3 MEM READ bit from VMA flags. See the prints.

4 MEM WR-TEST from VﬁA flags. See the prints.

5 Write reference. |If this bit is a 1, the page fail was

caused by a reference that write-failed because of the
state of the translation buffer writable and modified
state bits. Such a reference may either be a write or a
write test.

7 MEM CACHE INH from VMA flags. See the prints.
8 Physical reference. If this bit is a 1, the page fail was
caused by a physical reference. |If this bit is a 0 (the

normal case), the reference was a virtual reference.

9 VMA PREVIOUS VMA flag bit. See the prints.

SOFTWARE ENVIRONMENT Page 3-59

10
11
12
13
14-17

18-20

21-35

VMA 1/0 VMA flag bit. See the prints.

WRU CYCLE VMA flag bit. See the prints.
VECTOR CYCLE VMA flag bit. See the prints.
I/0 BYTE CYCLE VMA flag bit. See the prints.

Reserved

This field gives the level at which this page fail was
detected. The level is primarily used to tell the monitor
where a translation buffer refill pointer trace stopped
and is used in conjunction with the additional data words
described below. This field can contain one of four
values as follows:

0 This page fault was not the result of a pointer
trace, or the page fail condition was detected
before the first pointer was fetched.

1 This page fault was detected while processing a
super section pointer.

2 This page fault was detected while processing a
section pointer.

3 This page fault was detected while processing a page
pointer.
NOTE
Due to time-to-market considerations, the

microcode for the FCS machine may not store the
level field in the page fail word.

This field gives a code that describes the cause of the
page fail. The monitor should never have to look at
anything other than bits 0 (user), 18-20 (level), and this
code to determine the exact cause of the page fail. The
rest of the bits in this word are returned only as
additional information to be used to debug problems. Each
possible page fail code is described below.

SOFTWARE ENVIRONMENT ; Page 3-60

UPT location 452 contains the reference address (if "any) for the
request that page failed. This address is the virtual memory address
for virtual requests and the physical memory address for physical
requests. It is only valid for those page fail conditions that
resulted from a virtual reference. The table at the end of this
section describes under which page fail conditions it is valid.

! !

L52: 1 0000 ! Reference address !
! !

0 56 ' 35

NOTE

Due to time-to-market considerations,
the microcode for the FCS machine may
not store the information indicated. for
words L453-455,

UPT location 453 contains the physical memory address (if any) for the
request that page failed. It is only valid for those page fail
conditions that have a valid PMA. The table at the end of this
section describes under which page fail conditions it is valid.

1 !

L53: | Rsvd ! ’ Page fail PMA !
! 1

0 89 35

UPT locations L5k and 455 contain additional data that is different
for each type of page fail. The contents of these words are given for

each page fail at the end of this section. The format of these words
is as follows:

45k 1 Additional data word 1 !

k55: 1 Additional data word 2 1

SOFTWARE ENVIRONMENT Page 3-61
UPT locations L56-457 contain the flags, CAB, PAB, PCS, and PC at the
time of the page fail in the following format:
0 _ 12 13 18 21 24 35
Ls6: | Flags ! 000 ICAB!PAB ! PCS !
o e e e +
4L57: | 0000 ! PC !
0 56 35
UPT locations L60-461 are setup by the monitor and contain the flags,
CAB, PAB, and new PC to be loaded when a page fail occurs. The words

are in the following format:

0 12 18 21 24 35
L60: i New flags ! Rsvd !CAB!PAB! Rsvd i
W6 1: J{"é;;;"? """""""" Page fail new PC }’

o 56 35

3.3.4.3.5.1 Page fail codes and additional data

This section defines the page fail codes that may appear in bits 21-35
_ of the page fail word and the additional data words returned for each

represent

code. For each code below, "RAD', "PMA", "AD1", and "AD2"

the data returned in words 452-L4L55 of the UPT.

"~ CAUTION

The page fail codes described below are
generated by the microcode and can be
easily changed. These page fail codes
are a first-pass attempt at assigning
values. They may very well change as we
add or delete codes. It is strongly
suggested that you not make assumptions
about the numeric value of any
particular code.

The codes that may appear in bits 21-35 of the page fail word are as
follows. Note that those code which represent a potential hardware
error (memory error, NXM, etc.) have bit 21 on (i.e., they have the

form bxxxx) .

SOFTWARE ENVIRONMENT Page 3-62
1 Write failure - A write reference was attempted to a
write-protected page (W bit off in the translation buffer).

RAD Reference address that caused the page fail.

PMA Physical address corresponding to the reference address.
AD1 Undefined.

AD2 Undefined

2 I1legal age - An Illegal CST age was detected for a page during
the processing of one of the following page fails:

1. CST update needed.

2. Write reference to a writable but not yet modified page.

RAD Reference address that caused thevpage fail.

PMA Physical address corresponding to the reference address
AD1 Undefined.

AD2 Undefined.

3 Address break - An address break occurred.

RAD Reference address that caused the page fail.

PMA Undefined.

AD1 Undefined.

AD2 Undefined.

er with type 5, 6, or 7

4 ITlegal super section pointer 0 n
1

~ A
was found in super section table of

Ot

.
I
o
[S3e) C

f
RAD Reference address that caused the page fail.
PMA Undefined.

AD1 Zero

AD2 The illegal super section pointer.

5 Section greater than 37 - In KL compatible mode, a virtual
reference was made to a section greater than 37.

RAD Reference address that caused the page fail.

PMA Undefined.

SOFTWARE ENVIRONMENT Page 3-63

AD1 -1,,offset in EPT/UPT of super section pointer.
AD2 Super section pointer.

6 I11egal pointer - A pointer with type &, 5, 6, or 7 was found in
the super section table, section table, or page table.

RAD Reference address that caused the page fail.
PMA Undefined.

AD1 Source of last word processed (see below).
AD2 The illegal pointer.

7 No access pointer - A no-access pointer was discovered during a
pointer trace.

RAD Reference address that caused the page fail.
PMA Undefined.

AD1 Source of last word processed (see belowj.
AD2 The no-access pointer

10 Page not in core - A page-address word was discovered whose
storage medium field (bits 12-17) was non-zero.

RAD Reference address that caused the page fail.
PMA Undefined. |

AD1 Source of last word processed (see below).
AD2 Last pointer processed.

H I1tegal age - An lllegal CST age was detected for a page during
a pointer ‘trace.

RAD Reference address thaticaused the page fail.
PMA Undefined.

AD1 Source of last word processed (see below).
AD2 Last pointer processed

12 Must-be-zero bits non-zero - The microcode discovered bits that
were declared '"must be zero' to be non-zero.

RAD Address of word containing the MBZ bits.

PMA Undefined.

SOFTWARE ENVIRONMENT " Page 3-6k

AD1 Undefined.
AD2 Undefined.

13 Il1legal indirect - An extended effective address calculation has
encountered an indirect word with 11 (binary) in bits 0 and 1.

RAD Address of word containing the illegal indirect.
PMA Undefined.

AD1 The illegal indirect word.

AD2 Undefined.

14 I1legal physical effective address word - A physical effective
address word was discovered with a 1 in bit 0 or 1.

RAD Address of illegal physical effective address word.
PMA Undefined.

AD1 The illegal physical effective address word.

AD2 Undefined.

15 Il11egal one-word-global byte pointer - A one-word-global byte
pointer was discovered with a code of 77 (octal)

RAD Address of the illegal one-word-global byte pointer.
PMA Undefined.

AD1 Undefined.

AD2 The illegal one-word-global byte pointer.

L0001 Uncorrectable memory error. In a processor reference to memory,
the controller has read an incorrect word from storage and was

unable to correct it. The processor has saved the word in AC O

and AC 1, block 7, and has set the Bad Memory Flag (RDAPR bit
28) .

RAD Address of the word that caused the error.
PMA Undefined.
AD! Undefined.
AD2 Undefined.
L0002 NXM. The processor has called for a storage reference over the

bus but the memory controlier did not respond. " This error also
sets the No Memory Flag (RDAPR bit 27).

‘SOFTWARE ENVIRONMENT Page 3-65

RAD Address of the word that caused the NXM.
PMA Undefined.
AD1 Undefined.
AD2 Undefined.

L0003 Nonexistent 1/0 register. The processor gave an |/0 address to
which there was no response.

RAD /0 address.
PMA Undefined.
AD1 Undefined.

AD2 Undefined.

3.3.4.3.5.1.1 Additional data words for a pointer trace -

NOTE

Due to time-to-market considerations,
this information may not be stored by
the microcode in the FCS machine. If it
is not stored, the contents of the words
are undefined.

When the microcode detects a page fail condition during a pointer
trace, it stores the source of the last word processed in additional
data word 1 (454) and the last pointer fetched in additional data word
2 (k55). Additional data word 2 is simply the last pointer processed
by the microcode and may be a super section, section, or page pointer.
Additional data word 1 specifies the source of the last word processed
and may have one of the following forms:

0,,0 If the page fail code is "illegal super section 0
pointer", this word indicates that the pointer trace
failed immediately after initialization. |If the page

fail code is anything else, it is really the following
case.
0,,offset The last word examined was fetched from SPT+offset.
-1,,o0ffset The last word examined was fetched from UPT+offset or

EPT+offset. The wuser reference bit in the page fail
word determines which.

page, ,of fset The last word examined was fetched from physical page
. "page'", offset "offset'.

SOFTWARE ENVIRONMENT Page 3-66

3.3.5 Process context variables

3.3.5.1 Introduction

In order to take advantage of the full 4096 section virtual address
space implemented by the KD10 processor, the flag-PC doublie word

format has been changed to allow for a larger section number. In
addition, the PAB and CAB fields have been added.

3.3.5.1.1 New flag-PC double word

The format of the double word is as follows:

11 1122 22 3
0 o 23 7801 34 5
! Flags ! MBZ ICABIPAB ! PCS !
e e e e !
I Rsvd ! PC !
0 56 3
: 5
Where:
Fiags PC flags. The operation is identical to the PC flags on
the KS10 with the exception that the Address Failure
Inhibit flag occupies bit 8 as on the KL10.
MBZ . Must be zero
CAB Current AC Block Number (0-7)
PAB Previous Context AC Block Number (0-7)
PCS Previous Context Section Number
PC PC of the program

1. In kernel mode (XPCW/SFM), or when stored on a page fail or
MUUO, all of the above fields will be stored as defined. In
kernel mode, XJRSTF and XJEN will restore all fields.

2. In usér mode, PCS, PAB, and CAB will always be stored as 0.
An XJRSTF in user mode will treat these fields as it does the
user mode and user 1/0 flag now (i.e. ignore them) .

SOFTWARE ENVIRONMENT Page 3-67

3.3.5.1.2 Context changing

Returning to a previous context may be done with an XJRSTF or XJEN'
instruction which restores the context variables stored in the
previously saved PC double word.

Entering a new context will be done as follows: All of the "previous"
context variables in the old PC flag word will be set to their
corresponding values in the ‘'current! context. If the "“ecurrent"
context is not user-mode, then set the 'previous'" context from the new
PC flag word. The following operations are defined as entering a new
context:

1. Monitor call (MUUO) .

2. Page fail trap.

3. Priority interrupt initiation.

L. 1/0 page fail trap.
Each of these operations will store a PC double-word containing the
""eurrent'" context variables and then load a new PC double-word to set
new values for those variables not set automatically.
The following chart summarizes what variables are saved, and what new

values are set. It includes for comparison what is currently
implemented on the KL10 processor.

Key:

Store Save in appropriate block (old)

Load Set from appropriate block (new)

Set Set "previous'" to old 'current"

* In process context word

%% Ucode sets PCS; XPCW stores flags, PC, PCS, and loads

flags and PC

SOFTWARE ENVIRONMENT Page 3-68

o e e e o +
! ! Flags ! PC ! CAB ! PAB ! PCS/PCU !
e e e e e e e e +
! ! ! Store ! Store ! No ! No ! Store !
! R TS +
! ! ! Load ! Load ! No ! No ! No !
R o +
! ! ! Store ! Store ! Store ! Store ! Store !
! b KD o e e e e e +
! ! ! Load ! Load ! Load ! No !' No !
e e e e +
! ! ! Store ! Store ! No ! No !' Store !
! b KL oo e e e e e e e o +
! ! %% | Load ! Load ! No ! No ! Set(pcs) !
binter= oo oo e +
! rupt ! ! Store ! Store ! Store ! Store ! Store !
! b KD = m e e e e e +
! ! ! Load ! Load ! Load ! No ! No !
e e e +
! ! ! Store ! Store ! * Store ! * Store ! Store !
! R e I +
! ! ! Clear ! Load ! No ! No I Set (PCS) !
L e +
! ! ! Store ! Store ! Store ! Store ! Store !
! L KD e e e e e e e +
! ! ! Load ! Load ! Load ! Load ! Set !
o e e e e e +
! ! ! Store ! Store ! No ! No ! Store !
1 L KL o m e e e e e e +
! ! ! Clear ! Load ! No ! No ! Set(PCS) !
! Page e +
!' Fail ! ! Store ! Store ! Store ! Store ! Store !
! L KD m e e e e e e +
! ! ! Load ! Load ! Load i Load ! Set !
e e e e e e e +
! ! ! Store ! Store ! No ! No ! No !
| I R R e L +
! ! ! No ! Load ! No ! No ! No !
b LUUO = e e e e e e +
] | ! Store | Store ! No ! No ! No !
! b KD o e e e e e e e e +
! ! !' No ! Load ! No ! No ! No !
o e e e -+
! ! ' No ! No ! No ! No ! No !
! b KL e e e e e e e +
! ! ! Load ! Load ! No ! No ! Load !
b XIRSTF oo o o e e e e el +
! ! ! No ' No ! No ! No ! No !
bOXJEN b KD fmmm e e e e e e e e e +
! ! ! Load ! Load ! Load ! Load ! Load !

SOFTWARE ENVIRONMENT Page 3-69

3.3.6 Trap handling

Trap handling has been changed considerably from the KL10 in that
traps on the KD10 are processed via a trap function word rather than
the execution of an instruction. The trap function word indicates how
the trap is to be processed and provides the address of a
function-specific block to be used as part of the processing.

3.3.6.1 Trap Function Word

EPT/UPT locations L21-423 contain a trap function word that determines
the action of the processor when it detects an arithmetic overflow,
stack overflow, or trap 3 condition.

The format of each word is as follows:

The format of this word is as follows:

0-1 Function code. This field is interpreted as follows:
00 Do nothing on trap condition (ignore)
01 Execute MUUO (take new PC from function

specific argument)

10 Transfer control to exec/user depending on the
mode in which the trap occurred. This
function uses a LUUO-like block as described
in the function specific argument below.

11 Reserved.
2-5 Available to software
6-35 Function specific argument. This field is used in a

manner specific to the function performed as follows:
0 Ignored for this function.
1 New PC for the MUUO.

This function stores only the program flags,
CAB, PAB, PCS and the PC in UPT locations
L2L-425, The opcode, AC, and effective
address of the instruction are NOT stored in
UPT locations L426-427. The new program flags,
CAB, and PAB are loaded from UPT location 430
as in a normal MUUO.

SOFTWARE ENVIRONMENT

3

Page 3-70

Virtual address in the current context
(exec/user) of a L word LUUO-1ike block.

This function stores only the program flags
and the PC in words 0-1 of the block. The
opcode, AC, and effective address of the
instruction are NOT stored in words 0 and 2 of
the block. The new PC is then taken from the
fourth word of the block.

Reserved.

The format of the LUUO-1ike block used in function 2 is as follows:

0] 56 12 13 35
! !
0] ! Flags ! 000 !
e e e e e !
1 I 000 ! PC !
e e e e e 1
2 ! 000 !
e e e e e e I
3 ! Rsvd ! New PC !
! !
0 56 35
Notes

1. The trap 1 and trap 2 flags are
never stored in the MUUO (function
code 1) or LUUO-1ike (function code

2)
It

blocks when a trap is processed.
is the responsibility of the

program to determine which trap
condition occurred by supplying
different new PCs for each possible
condition.

2. An instruction that causes a trap

and

also jumps (e.g., AOJA) stores

the PC of the destination of the
jump, not PC+1 of the jump
instruction.

SOFTWARE ENVIRONMENT Page 3-71

3.3.6.2 Trap enable

WREBR bits 7 and 8 affect how the processor handles traps, LUUOs,
MUUOs, and page fails. If the monitor enables full processing of
these conditions (by setting WREBR argument bits 7 and 8), the
microcode will process these conditions as described above. |If the
monitor disables full processing of these conditions (the default
power-up state of the machine), the microcode will process them
differently as described below:

1. Traps. The microcode will treat trap 1, 2, and 3 conditions
as if the trap function word had specifiedA”ignore trap".

2. LUUOs. LUUOs executed in section zero (or in the low 256K
with paging off) will be treated exactly as they are now,
i.e., they will store the LUUO in location L0 and execute the
instruction in location ki1, Note that LINK stores a HALT
instruction in location 41 when it loads programs.

LUUOs executed in non-zero sections will halt the machine.

3. MUUOs. MUUOs will halt the machine.

L, Page fails. Page fails that must be processed by the monitor

will halt the machine. Page fails that can be resolved
entirely by the EBOX microcode will continue to be processed
normally.

This special handling will causé the machine to halt when a condition

for which the program is unprepared occurs instead of doing something
unexpected. As a result, conditions for which the monitor s
unprepared to handle will be detected early as the result of the
condition instead of as a by-product of the condition.

SOFTWARE ENVIRONMENT Page 3-72

3.3.7 MUUO handling

MUUO handling on the KD10 is radically different from that on the
KS10, but identical to that on the KC10. Instead of the previous
format of UPT locations 42L4-427, the following format is used to store
the program flags, CAB, PAB, PCS, PC, Opcode, AC, and effective
address of the MUUO:

0 12 13 18 21 24 35
T +

424, ! Flags ! 000 [ICAB!PAB ! PCS !
Ao e e e . +

0 56 35

A e e e T +

425: ! 0000 ! PC !
o e e +

0 17 18 26 27 31 35

Ao e e LT +

L26: ! 0000 ! Opcode 1AC! o000 !
o +

0 56 35
i +

427 ! 0000 ! E !

SOFTWARE ENVIRONMENT Page 3-73

The new current and previous AC blocks, and the new program flags are
loaded from the word at UPT location 430. The new PC is taken from
one of the words of the dispatch vector beginning at UPT location 432,
based on the MUUO opcode and whether the MUUDO was executed in user or
executive mode. The dispatch vector consists of pairs of words, one
for user and one for exec, and contains 5 separate MUUO dispatches
plus words reserved for future expansion. The dispatches are as
follows: '

Offset Use
432-433 Opcode 0 and all unassigned opcodes less than 700.
L434-435 Unassigned opcodes in the range 700-777 plus any

.instruction that is executed in user mode without user 1/0
enabled that requires user 1/0. This includes all
internal and external 1/0 instructions, MAP, JRSTF
executed in a non-zero section, JRST 3, HALT, XJEN, XPCW,
JRST 10, JRST 11, JEN executed in a non-zero section or in
user mode, JRST 13, JRST 16, and JRST 17,.

436-437 Undefined EXTEND opcodes
LLo-L4i JSYS (opcode 104)
Li2-443 A1l other MUUO opcodes

The format of these words is as follows:

(o] 12 18 21 24 35
bt i +

430: ! New flags I Rsvd !CAB!PAB! Rsvd t
il ettt +

0 56 35
it +

L32: !' Rsvd ! Exec undefined opcode new PC !
e e L L L E LT !

433: ! Rsvd ! User undefined opcode new PC !
e ettt +

0 56 35

o o e e e e e ——————— +

L3k. I Rsvd ! Exec undefined 1/0 opcode new PC !
| o e e e e e i e i i !

435 ! Rsvd ! User undefined |/0 opcode new PC !

SOFTWARE ENVIRONMENT Page 3-7h4

0 56 35
o e e T +

436: ! Rsvd ! Exec undefined EXTEND opcode new PC !
o e 1

L37: ! Rsvd ! User undeflned EXTEND opcode new PC !
e +

0 56 35
e e e e e e T +

INTOR ' Rsvd ! Exec JSYS new PC !
b e e L !

L1 I Rsvd ! User JSYS new PC !
o e e e e e +

0 56 35
e e e e e e e T +

L2, ! Rsvd ! Exec MUUO new PC !
o e e !

L43; ! Rsvd ! User MUUO new PC !

SOFTWARE ENVIRONMENT | Page 3-75

3.3.8 LUUO handling

If the program is running in section 0, store the opcode, AC, and the
effective address in bits 0-8, 9-12, and 18-35 respectively of
location L40; clear bits 13-17. Then execute the instruction
contained in location 41. An LUUO executed in user mode uses virtual
locations 40 and 41 in the wuser program. An LUUO executed in
executive mode uses locations 4O and 41 in executive virtual address
space. This action is identical to the KL10 implementation.

If the program is running in a nonzero section, use bits 6-35 of UPT
location 420 if the program is running in user mode, or EPT location
L20 if the program is running in exec mode, as the address of a block
of four words. In the first three locations of the block, store the
program flags, opcode, AC, effective address, and PC of the LUUO.
Then take the next instruction from the location specified by bits
6-35 of the fourth word of the block. In user mode, this action is
identical to the KL10 implementation. In executive mode, this action
is different from what is currently documented, but identical to what
the KL10 actually implements.

The format of the block is as follows:

0] 12 13 17 18 26 27 31 35
! !
0 ! Flags ! o000 ! Opcode TAC ! 000 !
f o e e e e 1
1 ! 000 ! PC :
| e e e rmmmm e —— e e . — e !
2 ! 000 ! E !
d e e !
3 ! Rsvd ! New PC !

SOFTWARE ENVIRONMENT . Page 3-76

3.3.9 Interrupt handling

Interrupt handling on the KD10 is quite similar to interrupt handling
on the KS10. The difference is that the processor doesn't execute an
instruction to start an interrupt. Rather, it fetches an interrupt
vector (from the same location that the KS10 would have executed) and
uses that to start the interrupt.

If the interrupt was requested by an adapter, the microcode fetches a
tabie address from EPT+100+adapter number, i.e., EPT+100 for adapter
0, EPT+101 for adapter 1, etc. The vector address returned by the
device is divided by 4 and added to the table address to obtain the
address of an interrupt vector word described below.

If the interrupt was generated by the processor (Pl software request,
APR condition, timer done, etc.), the microcode fetches the interrupt
vector word from EPT+40+2n, where n is the level on which the internal
device is requesting an interrupt. Therefore, a device requesting an
interrupt on Pl 1 would fetch the interrupt vector word from EPT+L42, a
device requesting an interrupt on level 2 would fetch the interrupt
vector word from EPT+4k, etc. :

An interrupt vector is a 30-bit Exec Virtual Address pointing to a
L-word block that is similiar to a XPCW control block. Return from an
interrupt should be made by an XJEN instruction that addresses the
same block. The saving and restoring of the "]previous' context is
described in the section on process context variables. The new
context will be set up from the XPCW control block. The action of an
interrupt cycle will be as if an actual XPCW was executed with its EA
taken from the appropriate location in the 1/0 page.

An interrupt vector has the following format:

where bits 6-35 specify the exec virtual address of the XPCW block.

SOFTWARE ENVIRONMENT Page 3-77

3.3.10 Summary of EPT and UPT formats
The following diagrams summarize the format of the EPT and UPT used on

the KDI10. The format 1is identical to those used on the KC10. A1l
areas that differ from the KL10 are marked with an asterisk.

Executive process table configuration

! 1

0 ! I %
/ Reserved /
'y ! !
e e e ————— !
42 ! Pl 1 internal processor interrupt vector !
| e e e —— e —— e !
43 ! Reserved !
| o e e e e e e e !
Ly ! Pl 2 internal processor interrupt vector !
e e e !
L5 ! Reserved !
et et ettt Tt !
L6 ! Pl 3 internal processor interrupt vector !
Rt ittt !
L7 ! Reserved !
gy U |
50 ! Pl 4 internal processor interrupt vector !
R et i !
51 ! Reserved !
e ettt e e L !
52 ! Pi 5 internal processor interrupt vector !
e !
53 ! Reserved !
e e e !
54 ! Pl 6 internal processor interrupt vector H
e ettt ettt D !
55 ! Reserved !
| e e !
56 ! Pl 7 internal processor interrupt vector H
R it e ettt !

57 ! ‘ -
/ Reserved /
77 ! !
e e e —————— !

100] Base address of adapter O interrupt vector table 1 x
o e e e e !

101 ! Base address of adapter 1 interrupt vector table %
R it T T e H

102 ! Base address of adapter 2 interrupt vector table P %
e ——————————————————— !

103 ! Base address of adapter 3 interrupt vector table I %
' e T e T !

104 ! I %

/ Reserved /

SOFTWARE ENVIRONMENT Page 3-78

/ /
417 ! !

o e L !
L20 ! Address of exec LUUO block !

e e e e !
421 ! Executive arithmetic overflow trap function word I %

e e e e 1
422 ! Executive stack overflow trap function word I %

e e e 1
423 ! Executive trap 3 trap function word (IS

o e |
Lk ! I %

/ Reserved /
517 - ! !

e e e L !
520 ! - Executive super section 0 pointer I %

/ /
527 ! Executive super section 7 pointer !

o L !
530 ! !

/ Reserved /
537 ! !

o e e e !
540 | Executive section 0 pointer (KL compatible paging) !

/ /

/ /
577 ! Executive section 37 pointer (KL compatible paging) !

Tl !
600 ! !

1 !

/ Reserved /

/ /

! !
7771 ! !

! !

These locations are described in more detail on the following page.

SOFTWARE ENVIRONMENT : Page 3-79

42-56

100-103

- 420

L21-423

520-527

540-577

Internal interrupt vectors. The even locations in this
range contain the interrupt vector words for each Pl level.
These locations are used for any internal processor
interrupt. conditions. for more information on the function
of these words, see the section on interrupt handling.

I/0 adapter interrupt table pointers. These locations
contain the base address of a table of interrupt vector
words for each adapter. For more information on the
function of these words, see the section on interrupt
handling.

Address of exec LUUO block. Exec LUUOs executed with PC
section non-zero are processed through the four-word LUUO
block whose 30-bit virtual address is contained in this
word. For more information on the format of the four-word
block, see the section on LUUO handling.

Exec trap function words for trap 1, 2, and 3. These
function words are interpreted to process exec trap i
(arithmetic overflow), trap 2 (pushdown list overflow), and
trap 3 exceptions. For more information on the format of a
trap function word, see the section on trap handling.

Exec super section pointers. These words contain the super
section pointers for exec super sections 0-7. For more
information on the format of a super section pointer, see
the section on Paging.

Exec section pointers. These words contain the section
pointers for exec sections 0-37 when the processor is
running with KL compatible paging enabled. For more
information on the format of a section pointer, see the
section on Paging.

SOFTWARE ENVIRONMENT Page 3-80

User pfocess table configuration

I %

1 1
0 ! 1
{ ‘ !
/ ‘ Reserved /
/ /
! !
L7 1 !
b e e e e e e !
420 ! Address of user LUUO block !
e e e 1
421 ! User arithmetic overflow trap function word 1 %
e e e e !
L22 ! User stack overfiow trap function word 1 %
o e e !
423 ! User trap 3 trap function word b o%
e e !
L2y) MUUO flags, CAB, PAB, and PCS I %
o !
425 ! MUUO old PC P
e !
426 1 MUUO opcode and AC 1%
b e L !
L27 1 MUUO effective address box
o e e !
430 ! MUUO new flags and CAB ! %
e e e e !
431 ! Reserved . IS
e e e e |
432 1 ‘Exec undefined opcode new PC I %
e T !
433 1t ~ User undefined opcode new PC P %
e e e L !
L34 ! Exec undefined 1/0 opcode new PC I %
e e !
L35 1 User undefined 1/0 opcode new PC b
ittt !
436 ! Exec undefined EXTEND opcode new PC ! %
o o !
k37 ! User undefined EXTEND opcode new PC I %
et !
Lyo ! Exec JSYS new PC P %
e e !
L ! User JSYS new PC I %
e e !
LL2 ! Exec MUUO new PC ! %
e L !
LL3 User MUUO new PC (S
o o !
LLy ‘ ! %
/ Reserved /

kso | 1

SOFTWARE ENVIRONMENT Page 3-81

451 ! Page fail code ! %
e —————————————— - !

452 ! Page fail VMA %
it L !

k53 1 Page fail PMA | %
e ——————————— - !

L5y 1 Page fail additional data word 1 1%
D et e s !

L55 ! Page fail additional data word 2 1 %
D D e e L B !

456 ! Page fail old PC 1%
457 ! double word !
S e e !

Leo ! : Page fail new PC 1%
461 ! double word !
f e e e !
he2 | !
/ Reserved /
503 !]
| e e ———————————————— e e]

504 ! User runtime meter ! %
505 | (1 microsecond timer) 1!
lemmeeee R e e E LT !
506 ! |
/ Reserved /
517 ! !
| e e ———————— !

520 ! User super section O pointer ! %
/ , /
527 ! User super section 7 pointer !
D e B RS !
530 ! |
/ Reserved /
537 ! !
e e e L P e !
540 ! User section O pointer (KL compatible paging) !
/ /
/ /
577 ! User section 37 pointer (KL compatible paging) !
T ittt !
600 ! 1
! !
/ _Reserved /
/ /
! !
777 ! !
! !

These locations are described in more detail on the following page.

SOFTWARE ENVIRONMENT Page 3-82

420

421-423

b24-kk3

L51-L61

50L4-505

520-527

5L40-577

Address of user LUUO block. User LUUOs executed with PC
section non-zero are processed through the four word LUUO
block whose 30-bit virtual address is contained in this
word. For more information on the format of the four word
block, see the section on LUUO handling.

User trap function words for trap 1, 2, and 3. These
function words are interpreted to process user trap 1
(arithmetic overflow), trap 2 (pushdown 1ist overflow), and
trap 3 exceptions. For more information on the format of a
trap function word, see the section on trap handling.

MUUO processing locations. These locations are used to
process wuser and exec MUUOs. For the format of each word,
see the section on UUO handling.

Page fail processing locations. These locations are used to
process user and exec page fails. For the format of each
word, see the section on paging.

User runtime meter. These locations contain the current
value of the user runtime meter counter for this process.
The wuser runtime meter is a one microsecond counter
maintained by the hardware and microcode. For more
information on the formag of these words, see the KSI10
section of the Processor Reference Manual.

User super section pointers. These words contain the super
section pointers for wuser super sections 0-7. For more
information on the format of a super section pointer, see
the section on Paging.

User section pointers. These words contain the section
pointers for wuser sections 0-37 when the processor is
running with KL compatible paging enabled. For more
information on the format of a section pointer, see the
section on Paging.

SOFTWARE ENVIRONMENT Page 3-83

3.3.11 Halt status

As in the KS10, the KD10 processor stores a halt status block when it
halts. In addition, it stores the halt code in physical memory
location 0 and the PC in physical memory location 1.

At machine power up, the microcode supplies a default address of
376000 for the start of the halt status block. The program can change
this address with the WRHSB instruction. Note that no halt status
will be stored if bit O of the WRHSB argument is a 1.

The contents of the halt status block are identical to that for the
KS10, with one exception. Because VMA and VMA flags will no longer
fit in a single word, the KDI0 stores the VMA flags in an additional
word. The format of the block is:

00+ % | MAG |
st T |
o1 T |
o3:1 P — ;
w1 T |
st T |
R B S |
oot e T ;
ot e T !
ner i |
2 ooemoeneneneenen e ;
T 5
e 1T
s
o o |
g oot |
20 % VMA ;
e | T o

Where offset 20 (VMA) contains the local/global flag in bit 0 and the

SOFTWARE ENVIRONMENT) Page 3-84

VMA in bits 6-35.

Offset 21 (PC/VMA flags) contains the PC flags in.bits 0-17, Pl NEW
04, 02, and 01 in bits 19-21, and the VMA flags in bits 22-35.

CHAPTER 4

EXTENDED ADDRESSING

This chapter provides a description of extended addressing as defined
by the PDP-10 architecture. This material really belongs in the
Processor Reference Manual, and every attempt will be made to get it
included in the next release of the manual. Note that certain
implementations of the PDP-10 architecture don't always conform to the
descriptions given in the memo. These are descriptions of what SHOULD
be implemented, not necessarily what IS implemented. However, all
future PDP-10 processors should conform to these descriptions. '

In order to make it easier for the reader, |'ve also added a lot of
background, definitions, and descriptions of extended addressing that
are found in other references. This additional discussion should make
the overall structure of extended addressing more clear.

In order to avoid swamping the reader with too much detail at any
point, i sometimes intentionally ignore or understate certain
important aspects of the examples that | wuse. These items are
generally covered later in the memo. | also occasionally forward

reference topics. Because of this organization, it may be best to
make a quick first pass through the memo to pick out the highlights
and then go back and make a more detailed pass.

This memo assumes that the reader has at least a basic knowledge of
the PDP-10 instruction set, the notation used to describe
instructions, and the format of an instruction word. Readers who do
not have this knowledge are referred to sections 1.4 through 1.6 of
the Processor Reference Manual and to the Macro Assembler Reference
Manual.

EXTENDED ADDRESSING Page 4-2

L.1 Reference materials

The primary source of information about the instruction set is the
Processor Reference Manual. Unfortunately, there are some
inaccuracies and some omissions in the sections related to extended
addressing. The "Extended Effective Address Calculation" flow chart
on page 1-30 of the PRM is the best "description" of the effective
address calculation algorithms and it is attached to this memo for the
convenience of the reader.

The KL10 Engineering Functional Spec contains several chapters related
to this topic and has some interesting insights. Especially
interesting are chapters 2.2, "User Interface to Extended Addressing",
and 2.3, "Monitor Calling (MUUO, PXCT)". Along with these chapters is
a hand-drawn flow chart by Tom Hastings entitled '"Flow for Extended
Addressing'" that clears up several questions about EA-calc algorithms,
especially in the area of PXCT. A copy of this flow chart is
attached.

01ld memos describing the design of extended addressing and the
implementation of extended addressing in TOPS-20 are also somewhat
helpful.

Finally, the KL10 microcode contains a few helpful comments about
exception conditions in that implementation of extended addressing.
It is in no sense "light reading'', however.

EXTENDED ADDRESSING Page 4-3

L.2 Historical summary of extended addressing

PDP-10 processors prior to the model B KL!10 implemented a virtual
address space ‘of 256K words. As programs and the operating systems
grew, it became apparent that a virtual address space that was limited
to 256K was insufficient for future expansion. Sometime in late 1973,
an Extended Addressing Design Group was formed to evaluate proposals
for increasing the virtual address space of the PDP~-10. By early
1975, this group had agreed upon one proposal, and this proposal was
documented in chapter 2.2 of the KL10 Engineering Functional Spec.

This proposal increased the size of the virtual address space from
256K words to 1 billion words by expanding the size of a virtual
address from 18 bits to 30 bits. The virtual address space s
logically divided into 4096 sections of 256K words each. The program
may use these sections as separate logical entities or treat them as
one large contiguous address space. Instructions, however, must
explicitly transfer control between sections; they may not '"fall"
into the next section.

The increase in the size of the virtual address space was accompanied
by an increase in the size of PC, from 18 to 30 bits. This increase
allowed a program to execute in any of the extended sections. The
contents of bits 6-17 of PC were termed the 'PC section'.

Iin order to allow an instruction to specify a full 30-bit virtual
address, the rules for indexing and indirection were modified when PC
section was non-zero. In addition, new instructions were defined to
allow a program to jump to other sections.

To insure compatibility with programs written for non-extended
processors, section zero is treated exactly as it is on non-extended
processors. This means that if a program is executing in section
zero, nearly all instructions behave exactly as they would if the
program were executed on a non-extended machine. Programs running in
section =zero cannot reference data in any other section (with one
exception) and entry into another section is possible only with a few
instructions (e.g., XJRSTF, XJRST, etc.).

The first processor to implement extended addressing was the model B
KL10. Due to hardware restrictions, this processor implemented only
32 of the 4096 sections of virtual address space. References to
virtual sections above the implemented range cause a page fail trap to
the monitor. The KC10 implements the full 30-bit virtual address
space.

EXTENDED ADDRESSING Page L-4

L.3 Definition of terms

Before we start looking at extended addressing, let's define some
terms:

0o A virtual address is a 30-bit address used to reference a
word in an address space. Although the address space can be
considered to be one large, contiguous space, it is probably
easier to consider it to be broken into sections of 256K
words each. Bits 6-17 of the virtual address then specify
the section number and bits 18-35 specify the word within the
section. A virtual address looks like:

Virtual address format
PC has the same format as a virtual address.

© An address word is a word containing |, X, and Y fields (see
the PRM for definitions for these fields) in either IFIW or
EFIW (see below) format. An effective address calculation
takes such a word as input. Thus, instructions, indirect
words, and byte pointers are all examples of address words.

o A local address is an 18-bit in-section address that, when
combined with a default section number, specifies a full
30-bit address. The section number is supplied by something
other than the address word or index register.

o A global address is a 30-bit address that supplies its own
section number. Therefore, no default section need be
applied.

© A local index is an 18-bit displacement or address obtained
from an index register used in an effective address
calculation in section zero, or from an index register used
in a non-zero section that has bit 0=1 or bits 6-17 equal
zero. In a non-zero section, an index register containing a
local index has one of the following formats:

Local index format (bits 6-17 = 0)

EXTENDED ADDRESSING Page 4-5

o A global index is a 30-bit displacement or address obtained
from an index register used in an effective address
calculation in a non-zero section, that has bit 0=0 and bits
6-17 non-zero. An index register containing a global index
looks like:

Global index format

o An instruction format indirect word (IFIW) is any indirect
word in section 2zero, or an indirect word in a non-zero
section that has bit 0=1 and bit 1=0 (instructions being
executed are always interpreted in IFIW format). In this
format, bit 13 is the indirect bit, bits 14-17 are the index
register address, and bits 18-35 are the local memory
address. An IFIW in a non-zero section looks like:

012 12 13 14 17 18 35

IFIW format

o An extended format indirect word (EFIW) is any indirect word
in a non-zero section that has bit 0=0. In this format, bit
1 is the indirect bit, bits 2-5 are the index register
address, and bits 6-35 are the global memory address. An
EFIW looks like:

EFIW format

o An illegal indirect word is any indirect word in 'a non-zero
section that has both bits O and 1 set to a 1. This type of .
indirect word is reserved for use by future hardware. If an
EA-calc encounters this type of indirect word in a non-zero
section, it will generate a page fail. The monitor cannot
perform any user service as a result of this trap, including
trapping to the wuser, since this would cause possible
compatibility problems with future machines. An illegal
indirect word looks like: :

I1legal indirect word format

EXTENDED ADDRESSING Page 4-6

© A one-word local byte pointer is any byte pointer whose P
field is less than or equal to 36 and that has bit 12=0. In
this type of byte pointer, bits 13-35 have the same format as
an [FIW, and bits 0-11 specify the size and position of the
byte. A one-word local byte pointer looks like:

0 56 11 12 14 17 18 35

One-word local byte pointer format

© A one-word global byte pointer is any byte pointer whose P
field is greater than 36. In this type of byte pointer, bits
0-5 are an encoded representation of the size and position of
the byte and bits 6-35 supply a full 30-bit address of the
word containing the byte. A one-word global byte pointer
looks like:

One-word global byte pointer format

o A two-word global byte pointer is any byte pointer in a
non-zero section whose P field is less than or equal to 36
and which has bit 12=1. As its name implies, this type of
byte pointer consists of two words where bits 0-11 of the
first word give the size and position of the byte and bit 12
must be a 1. The second word is either an IFIW or an EFIW
and, when EA-calc'ed, supplies the address of the word
containing the byte. A two-word global byte pointer looks

like:
0] 56 11 12 17 18 35
I T |
T T e e e T |

Two-word global byte pointer format

© A local stack pointer is any stack pointer in section zero,
or a stack pointer in a non-zero section that has bit 0=1 or
bits 6-17 equal zero before incrementing or decrementing
(exactly 1like a local index). Incrementing or decrementing
such a stack pointer will - operate on both halves of the
pointer independently, suppressing carries out of bit 18.

EXTENDED ADDRESSING ~ Page 4-7

o A global stack pointer is a stack pointer in a non-zero
section that has bit 0=0 and bits 6-17 non-zero before
incrementing (exactly like a global index). Incrementing or
decrementing such a stack pointer will treat the entire word
as a 30-bit quantity.

EXTENDED ADDRESSING Page 4-8

L.L Effective Address Calculations

No discussion of extended addressing is complete without talking about
EA-calc's. An effective address calculation is performed on every
instruction before it is executed. In addition, some instructions
perform additional EA-calc's during the processing of the instruction
(e.g. byte instruction EA-calc of the byte pointer).

L.4.1 Description of the EA-calc algorithm

The basic operation of an EA-calc is to process a so-called address
word by adding the Y field of the word to the contents of the optional
index register to compute a modified address. |f the indirect bit is
set in the address word, another word is fetched from the memory
location addressed by the computed address and the entire process
repeats wuntil a word is found with the indirect bit not set. Sound
simple? Well, let's look at the operation in a bit more detail.

The address word can be of two different formats, IFIW or EFIW (an
instruction is treated as an IFIW when it is EA-calc'ed). In
addition, an index can be of two different formats, local or global.
Note that in section zero, all address words are [IFIWs and all indices
are local by definition. The complexity involved in the EA-calc
algorithm is the result of these muitiple formats.

Since the indirect bit simply causes another address word to be
fetched and the EA-calc process to be repeated, we can fully
characterize an EA-calc by looking at the combinations of IFIW, EFIW,
and indices in local and global format. Let's look at these
combinations one at a time.

L.L.1.1 No indexing

If no index register is specified in the address word, the EA-calc is
strictly a function of the Y field in the address word. For an IFIW,
the result is a local address. For example, both

1,,100/ MOVE 1,200
and

1,,100/ MOVE 1,@150
1,,150/ 400000, ,200

compute a local effective address of 200. In the first case, the only
address word is the instruction ‘itself, which is treated as an
implicit IFIW. In the second case, there are two address words, the
instruction and the indirect word, and the indirect word is in the
IFIW format.

For an EFIW, the result is a full 30-bit global address. For example,

EXTENDED ADDRESSING Page L4-9

1,,100/ MOVE 1,@L1,,200]

computes a global effective address of 1,,200 because the indirect
word has a global format.

L. k.1.2 IFIW with local index

If the address word is an IFIW and the index is local, the result is a
local address. The 18-bit address is computed by adding the Y field
to the right half of the contents of the index register. For example:

],,]00/ MOVE]9[-]9,101
1,,101/ MOVE 2,@[400001,,200]

The indirect word has an IFIW format, so bits 14-17 specify the index
register address. Since the contents of the index register are
negative, it is a local index and the EA-calc is performed by adding
the Y field (200) to the right half of the index register (10) to
produce a local effective address of 210.

L.L.1.3 IFIW with global index

If the address word is an IFIW and the index is global, the result is
a 30-bit global address. The address is computed by adding bits 6-35
of the contents of the index register to the value of the Y field,
that has been sign-extended from bit 18 into bits 6-17. For example:

1,,100/ MOVE 1,[2,,10]
1,,101/ MOVE 2,-2(1)

The second instruction word has an implicit IFIW format, so bits 14-17
specify the index register address. Since the left half of the index
register is positive non-zero, it is a global index and the EA-calc is
computed by adding the Y field, after sign-extending it from bit 18
into bits 6-17 (7777,,-2), to bits 6-35 of the contents of the index
register (2,,10), producing a global effective address of 2,,6.

Note that the sign extension allows Y to be used as a positive or
negative constant offset to the global address in an index register.
This offset is limited to +/- 128K.

L.L.1.4 EFIW with global index

If the address word is an EFIW, the index is always assumed to have
the global format and the result is a 30-bit global address. The
address is computed by adding bits 6~-35 of the contents of the index
register to bits 6-35 of the Y field. For example:

EXTENDED ADDRESSING - Page L-10

1,,100/ MOVE 1,[2,,10]
1,,101/ MOVE 2,@[010002,,200]

The indirect word has an EFIW format, so bits 2-5 specify the index
register address. The index is always global, so the EA-calc is
computed by adding the Y field (2,,200) to bits 6-35 of the contents
of the index register (2,,10) to produce a global effective address of
4,,210.

L.4,1.5 References to section zero

Note that the only way to reference section zero from a non-zero
section is via an EFIW format indirect word with bits 6~17 equal zero.
Indexing alone cannot be used to reference section zero, because an
index with bits 6-17 equal zero is treated as a local address to the
section from which the last address word was fetched.

L.4.1.6 Summary of EA-calc rules

The preceding sections can be summarized by the table that follows.
This table gives the computation done for all combinations of address
words and index registers formats plus an indication as to whether the
result is local or global. '

Address
Word Type
IFIW ‘ EFIwW
| Y[18:35] [l Y[6:35]
None | | :
| Local || Global |
I ndex | Y[18:351+(XR) [18:351 || Not Defined |
Reg Local | || (Actually the case
Type || Local || below)
| Y[181%7777,,Y[18:351+ || Y[6:351+ (XR) [6:35] |
Global || (XR) [6:35] [
|| Global || Global |

L.4.2 Results of an EA-calc

When the microcode performs an EA-calc, it is simply following the
rules described above and shown graphically in the EA-calc flow chart
from the PRM. The result of this EA-calc is a 30-bit address and a

EXTENDED ADDRESSING Page L-11

1-bit flag that indicates the address is local or giobal. These two
pieces of information must be considered together whenever the results
of the EA-calc are used; it is seldom, if ever, correct to consider
the address without also considering the local/global bit.

Every EA-calc carries a default section along during the calculation
of the effective address. The initial default section for an EA-calc
of an instruction is PC section. More generally, the default section
is initially -that from which the first address word was fetched. This
default section is changed from the initial value if the EA-calc
follows a global address into another section. |In fact, the default
section is always the section from which the last address word was
fetched.

If a local address is calculated using the rules given above, the
default section is applied to complete the 30-bit address. If a
global address is calculated, the default section is not used.

The last iteration of the EA-calc (the computation done on the last
address word that doesn't have the indirect bit set) determines
whether or not the result of the EA-calc is local or global. If the
result of the last iteration is a local address, the result of the
EA-calc is local. Similarly, if the result of the last iteration is
global, so is the entire EA-calc. The transitions of the local/gliobal
flag are indicated on the PRM flow chart by notations such as 'E
Global'.

The significant thing to remember is that a local EA-calc still
results in a 30-bit address, even though 12 bits (the section number)
were not explicitly supplied to the EA-calc routines as part of an
address word or an index register.

o An effective address calculation always computes 31 bits of
- information: a 30-bit address, and a 1-bit local/global
flag.

L.k.3 Simple EA-calc examples

In the examples above, we ignored the fact that EA-calc's always
produce a 30-bit address when we said that the result was a local
address n. [n the following examples, we emphasize that a full 30-bit
address is produced. Consider the following instruction:

0,,200/ MOVE 1,100

The EA-calc for this instruction results in a local EA. Therefore,
the EA-calc computes the 30-bit address as 0,,100 and the 1-bit
local/global flag as local. Since the EA is local, we know that the
section number was defaulted from something, in this case, the PC
section. We say that the effective address is 0,,100 LOCAL (this
notation is used throughout the rest of this discussion to specify all
31 bits of information).

EXTENDED ADDRESSING Page L4-12

Let's consider a slightly more complex example:

1,,200/ MOVE 1,@300

1,,300/400000,,100
As in the previous example, the effective address calculation computes
a local address of 100. Since the address word was fetched from
section 1, the result of the EA-calc is 1,,100 LOCAL.
Let's look at a global EA-calc:

1,,100/ MOVE 1,@[2,,200]

In this case, the effective address calculation produces a global
address of 2,,200 GLOBAL and no default section need be applied.

EXTENDED ADDRESSING Page 4-13

4.5 Use of the local/global flag

There are two uses for the local/global flag. First, it is used to
determine if the address is actually an AC. If the address is local,
and bits 18-35 are in the range 0 to 17, inclusive, the address
references an AC, independent of bits 6-17. This means that a program
can reference the ACs while running in any section, as long as the
reference is local.

Second, the local/giobal flag determines how to increment or decrement
the address. |If the address is local, incrementing or decrementing it
suppresses carries from bit 17 to bit 18 and vice versa. That is, the
address always wraps around in the current section if the right half
is incremented past 2218-1 or decremented past 0. A global address is
handied as a full 30-bit quantity and overflow or underflow of the
right half can affect the left half section number.

4.5.1 AC references

Let's look at several examples that make use of the local/global flag.
First, let's compare what happens to AC references for local and
global effective addresses.

2,,100/ MOVE 1,@[400000,,5]

The EA-calc for this instruction yields 2,,5 LOCAL, where the section
number was defaulted to 2. Is this memory location 2,,5 or AC 57
Because the EA-calc is local, the rule says that it is an AC reference
and not a memory reference. On the other hand, the EA-calc for

2,,100/ MOVE 1,@[2,,5]

results in an EA of 2,,5 GLOBAL. Sincé the EA is global, this is a
memory reference and not an AC reference.

o EA-calc's which yield local addresses, where bits 18-35 of EA
are in the range 0-17, inclusive, always refer to the ACs
independent of the section number.

Finally, there is the concept of ‘''global AC address'. This. concept
allows a program running in . any non-zero section to make a global
reference to the ACs by computing a global address in the first 16
(decimal) locations of section 1. Consider the following example:

2,,100/ MOVE 1,@[1,,5]

The EA-calc yields 1,,5 GLOBAL and because of the ''global AC address'
rule, the reference is to AC 5 instead of memory location 1,,5.

o An EA-calc which yields a global address to locations 0-17,
inclusive, of section 1, refers to the ACs and not to memory.
Such an address is called a global AC address.

EXTENDED ADDRESSING Page 4-14

L.5.2 Incrementing EA

Another use for the local/global flag computed as the result of an
EA-calc is to determine how to increment the effective address. Let's
look at two examples using DMOVE, one computing a local EA and one
computing a global EA.

2,,100/ DMOVE 1,@[400000,,777777]

The EA-calc for this instruction results in an effective address of
2,,777777 LOCAL. The DMOVE instruction fetches two contiguous words
from E and E+1, but what is E+1 in this case? Since the EA-calc
resulted in a local address, incrementing E is done section-local,
resulting in 2,,0 LOCAL for E+1. But this is a local reference to the
ACs, so the two references for E and E+1 go to 2,,777777 (memory) and
2,,0 (AC). Note that the state of the local/global flag is maintained
during the incrementing of EA.

© Incrementing or decrementing a local address is always done
- relative to the original section, i.e., the addresses Y'wrap
around" in section.

) Incrementing a local address whose in-section part is 777777
causes the address to wrap around into the ACs.

Let's look at the corresponding global case:
2,,100/ DMOVE 1,@[2,,7777771

In this case, the EA-calc yields 2,,777777 GLOBAL. Because this is a
global address, incrementing E to get the second word results in a
reference to 3,,0 GLOBAL. Since this isn't a local address, the
reference is made to memory location 3,,0 and not to AC O,

o Incrementing or decrementing a global address affects the
entire address; i.e., section boundaries are ignored.

o The process of incrementing or decrementing an address,
whether the address is local or global, preserves the state
of the local/global flag.

EXTENDED ADDRESSING Page L-15

L.,6 Multi-section EA-calc's

So far we have considered only EA-calc's that remain in one section.
If the program is running in a non-zero section, a global quantity
encountered during the EA-calc (from either an index register or
indirect word) can cause the EA-calc to '"change sections'. An example
will make this more clear:

3,,100/ MOVE 1,@[200002,,100]
235100/ 3,’200

The EA-calc for this instruction computes a global address of 2,,100
from the indirect word in the literal. Since the indirect bit is set
in this word (bit 1 is the indirect bit in an EFIW), the EA-calc
routine fetches the word at 2,,100 and continues the EA-calc. The
final result of the EA-calc yields 3,,200 GLOBAL. This isn't a very
interesting example, because it doesn't demonstrate the significance
of the section change, so let's look at a slightly different example:

3,,100/ MOVE 1 @[200002,,1001
2,,100/ 400000, ,200

In this example, the first part of the EA-calc remains the same and
the routine fetches the word at 2,,100. In this case, however, the
result of the EA-calc yields a local address instead of a global one.
But what section is the address local to? The rule says that a local
address is always local to the section from which the address word was
fetched. Since the EA-calc changed from section 3 to section 2 when
the last address word was fetched, the EA-calc is relative to section
2 and the EA-calc yields 2,,200 LOCAL.

o The default section for a local address is always that from
which the address word was fetched.

Now that we've seen what happens to EA-calc's that cross section
boundaries, let's see what happens if the EA-calc enters section zero:

3,,077/ MOVEI 3,1
3,,100/ MOVE 1,@[200000,,100]
0,,100/ 3,,200

As with the example above, the EA-calc for this instruction fetches
the word at 0,,100 and continues. But since the EA-calc entered
section zero, this word is treated as an |IFIW instead of an EFIW.
Therefore, the 3 in the left half of 0,,100 is interpreted as the
index register field instead of a global section number. Since AC 3
contains a 1, the EA-calc yields 0,,201. In addition, the last
address word was fetched from section zero, so the result is a local
address.

EXTENDED ADDRESSING ‘ Page L-16

© An effective address calculation which "falls" into section
zero always results in an effective address that is local (to
section zero). Furthermore, the effective address

calculation can never ‘'get out" of section 2ero once it
enters it because all addresses in section zero are treated
as local. Further operations obey section zero rules.

EXTENDED ADDRESSING Page L-17

L.7 Special case instructions

Other than modifications to the EA-calc algorithms when the PC is in a
non-zero section, most instructions are unaffected by the addition of
extended addressing. However, there are a few classes of instructions
that behave differently on an extended machine from the way they would
on a non-extended machine. This section describes the behavior of
each class of instruction that has this characteristic.

Examples in this section sometimes use the POINT pseudo-op to describe
a byte pointer. For those readers who do not know ‘what this pseudo-op
generates, a description can be found in the Macro manual.

L.7.1 Byte instructions

The effective address calculation for a byte instruction addresses the
byte pointer word(s). The instruction then does another EA-calc on
the byte pointer after determining which one of the three possible
byte pointer formats was supplied.

L.7.1.1 Byte pointer interpretation

The algorithm for determining the type of the byte pointer is as
follows:

mmm e +
| P field > 36? | ----> One-word global
Frmmm e + Yes
|No
I
\
e —— e +
+<---- | Section 07 |
Yes +-------momemee +
|No
l
A
o +
| Bit 12=1? | ----> Two-word global
e et b L Lt + Yes
|No
I |
\ v
Fommmmm e e bbbl > One-word local

Byte pointer decode algorithm

The "Section 07" test in the flow chart is based on where the first
word of the two-word global byte pointer was fetched from and not on
PC section. This is an important distinction if the byte instruction
and the byte pointer are not in the same section.

EXTENDED ADDRESSING . Page 4-18

o For byte instructions, the test for the possibility of a
two-word global byte pointer is done based on the section
from which the first word of the byte pointer was fetched.
That is, if the section from which the first word of the byte
pointer was fetched is non-zero, the byte pointer may be
global.

L.7.1.2 Byte pointer EA-calc

The default section for the byte pointer EA-calc is initially that
from which the byte pointer was fetched. Once again, this may be
different from PC section if the instruction and byte pointer are in
different sections. |If we realize that the byte pointer is really an
address word, this is an extension of the rule that says local
addresses are local to the section from which the address word was
fetched. For example: ‘

3,,100/ LDB 1,@[2,,100]
2,,100/ POINT 6,200,0

In this example, the byte instruction is fetched from section 3. The
EA-calc for the instruction follows an EFIW into section 2 and the
byte pointer is fetched. The byte pointer is in one-word local
format, so the EA-calc of the byte pointer results in a local address.
But is the address local to section 3 (section containing the byte
instruction) or 2 (section containing the byte pointer)? The rule
says that byte pointer EA-calc's start off local to the section from
which the byte pointer was fetched, so the EA-calc is local to section
2. The result of the EA-calc is therefore 2,,200 LOCAL.

Note that, while the initial default section may be that containing
the byte pointer, the default section may change if the EA-calc
encounters a global quantity. For example:

3,,100/ LDB 1,@[2,,100] :
2,,100/ POINT 6,@[200004,,100],0
4,,100/ 400000, ,200

As in the previous example, the byte pointer is fetched from section
2. The byte pointer has the indirect bit set, so the byte pointer
EA-calc follows the EFIW in the literal (which also has the indirect
bit set) into section 4, where the final address word is fetched from
location 4,,100. This final address word is an IFIW, so the result of
the EA-calc is a local address. Even though the byte pointer EA-calc
started in section 2, the result of the EA-calc is local to section 4,
because that's where the last address word was fetched from. The byte
pointer EA-calc results in an effective address of k,,200 LOCAL.

EXTENDED ADDRESSING Page 4-19

o For byte instructions, the initial default section for the
byte pointer EA-calc is the section from which the byte
pointer was fetched, which may not be the same section as
that containing the byte instruction. Further, if the
EA-calc results in a local address, the address is local to
the section from which the last address word in the effective
address calculation was fetched.

4,7.2 EXTEND instructions

Like the byte instructions, certain EXTEND instructions perform
another EA-calc for the byte pointer (MOVSxx, CMPSxx, CVTBDx, CVTDBx,
and EDIT). The AC field of the EXTEND instruction addresses a block
of ACs, that contain the byte pointers. In addition, some EXTEND
instructions perform an EA-calc on the extended opcode word, which is
interpreted in IFIW format. The extended opcode word is addressed by
the effective address of the EXTEND instruction.

4.7.2.1 Byte pointer interpretation

The algorithm for determining the byte pointer format is the same as
that described for byte instructions with one exception. For EXTEND
instructions, the '"Section 07" test in the flow chart is based on PC
section.

o For EXTEND instructions, the test for the possibility of a
two-word global byte pointer is done based on PC section.
That is, if PC section is non-zero, the byte pointers may be
global.

k,7.2.2 Byte pointer EA-calc

The default section for the byte pointer EA-calc is initially PC
section even if other parts of the EXTEND instruction are in other
sections. For example: :

EXTENDED ADDRESSING Page L-20

3,,100/ MOVEI 1,5 ;Source length

3,,101/ MOVE 2,[POINT 7,200] ;Source byte pointer
3,,102/ MOVEI 4,5 ;Destination length
3,,103/ MOVE 5,[POINT 7,300] ;Destination byte pointer
3,,104/ SETZB 3,6 ;Clear 2nd word of BPs
3,,105/ EXTEND 1,@[2,,100]

2,,100/ MOVSLJ sExtended opcode is MOVSLJ
2,,101/ 0 sFill character is O

In this example, the EXTEND instruction is in section 3 and the
EA-calc of the instruction follows an EFIW into section 2. The
EA-calc's for the one-word local byte pointers in ACs 2 and 5 generate
local addresses of 200 and 300 respectively. But are they local to
section 3 (PC section) or to section 2 (section containing the
extended opcode)? Because the byte pointers are fetched from the ACs,
which are implicitly in PC section, the EA-calc is relative to PC
section. Once again, this is a conceptual extension to the rule that
local addresses are local to the section from which the address word
(in this case, the byte pointer) was fetched.

As with byte instructions, the default section of the EA-calc may
change if the EA-calc encounters a global quantity. An example of
this for the EXTEND instruction would be analogous to that for byte
instructions given above.

o For EXTEND instructions, the initial default section for the
byte pointer EA-calc is PC section.

One interesting aspect of this rule is demonstrated by the following
example:

3,,100/ MOVEI 1,5 ;Source length

3,,101/ MOVE 2, [POINT 7,200] ;Source byte pointer
3,,102/ MOVE!I 4,5 ;Destination length
3,,103/ MOVE 5,[POINT 7,300] ;Destination byte pointer
3,,104/ SETZB 3,6 ;Clear 2nd word of BPs
3,,105/ EXTEND 1,@[0,,100]

0,,100/ MOVSLJ ;Extended opcode is MOVSLJ
0,,101/ 0 ;Fill character is O

In this example, the EXTEND instruction is in a non-zero section (3)
and the extended opcode is in section zero. Even though part of the
processing of the instruction fell into section zero, the EA-cale of
the byte pointers is still done relative to PC section. Hence, the
result is the same as in the previous example.

EXTENDED ADDRESSING Page 4-21

4.7.2.3 Extended opcode EA-calc

Some EXTEND instructions also perform an EA-calc on the extended
opcode word. In this case, the default section for the EA-calc is
initially the section from which the extended opcode word was fetched.
For example:

3,,100/ MOVE! 1,5 ;Source length

3,,101/ MOVE 2,[POINT 7,200] ;Source byte pointer
3,,102/ MOVE! 4,5 ;Destination length
3,,103/ MOVE 5,[POINT 7,300] ;Destination byte pointer
3,,104/ SETZB 3,6 ;Clear 2nd word of BPs
3,,105/ EXTEND 1,@[2,,100]

2,,100/ MOVST 200 sExtended opcode is MOVST
2,,101/ O sFill character is O

As in the last example, the EXTEND instruction EA-calc follows an EFIW
into section 2 to fetch the extended opcode word from location 2,,100.
in this example, the extended opcode turns out to be a MOVST which
addresses a translation table with the result of the EA-calc of the
word. This EA-calc results in a local address which is local to the
section from which the address word was fetched. Therefore, the table
is read from locations starting at 2,,200 LOCAL.

o The initial default section for the EA-calc of the extended
opcode word under an EXTEND instruction is that from which
the extended opcode word was fetched.

L,7.2.4 EDIT pattern and mark addresses

In addition to byte pointer type determination, the EDIT instruction
under EXTEND interprets the pattern string and mark addresses
differently based on PC section. If PC section is 2zero, both
addresses are limited to 18-bit addresses in section zero and the
result of setting bits 6-17 non-zero is undefined. Conversely, if PC
section is non-zero, both addresses are treated as full 30-bit global
addresses and no default sections are applied. An example of this is
too complex to be given here and will be left as an exercise to the
reader.

L.,7.3 JSP and JSR

In a non-extended machine, these two instructions store the flags and
an 18 bit PC before jumping to the effective address. This is also
true if the instructions are executed in section zero of an extended
machine. Because this format is insufficient to store a full 30-bit
address, the operation of the instructions is modified when the PC is
in a non-zero section. Instead of storing the flags and PC, these
instructions store the full 30-bit PC (actually PC+1), omitting the

EXTENDED ADDRESSING ~ Page 4-22

flégs. For exampie:
2,,100/ JSP 1,200

stores 2,,101 in AC 1 before jumping to location 2,,200. Similarly,
2,,100/ JSR 200

stores 2,,101 in 2,,200 before jumping to location 2,,201. Note that
for JSR, the PC is stored in the word addressed by the effective
address even if that address is in another section, e.g.,

2,,100/ JSR @[3,,200]

In this case, the EA-calc for the JSR results in an effective address
of 3,,200 GLOBAL. Therefore, 2,,101 (PC+1) is stored in 3,,200 (EA)
before jumping to 3,,201 (EA+1).

An interesting aspect of this is demonstrated by the following
example:)

2,,100/ Jsp 1,@[0,,100]

Because the PC is in a non-zero section, the instruction stores 2,,101
in. AC 1 and then jumps to location 0,,100. But an attempt to return
to the caller in section 2 via the usual JRST (1) instruction would .
fail, because the EA-calc of the return instruction, done in section
zero, would fail to produce a 30-bit global address. As a result, it
is difficult to write a subroutine in section zero that can be called
via JSP or JSR from an arbitrary section.

A final example illustrates the difference between a local and global
EA for JSR:

2,,200/ JSR 777777

The EA-calc for this case results in a value of 2,,777777 LOCAL.
Therefore, 2,,201 (PC+1) is stored in 2,,777777 (EA) and the
destination of the jump is 2,,0 (EA+1 local). This is consistent with
the rule that local addresses always wrap around in section when
incremented.

The global analon is as follows:

2,,200/ JSR @[2,,777777]

In this case, the result of the EA-calc is 2,,777777 GLOBAL so the
instruction stores 2,,201 (PC+1) into location 2,,777777 (EA) as in
the last example. The difference is in the destination of the Jump.
Because the effective address is global, incrementing it produces 3,,0
GLOBAL (EA+1 global) as the destination of the jump. See the section
on instruction fetches below for additional information on these two
cases.

EXTENDED ADDRESSING Page 4-23

o |If PC is in a non-zero section, the JSP and JSR instructions
store a full 30-bit PC in the appropriate place instead of
storing flags and PC. This is true even if the destination
of the jump is in section zero.

L.7.4 Stack instructions

In a non-extended machine (and an extended machine in section zero),
the stack pointer typically contains a negative control count in the
left half and an 18-bit address in the right half. Such a stack
pointer is called a local stack pointer. Because this format is
insufficient to hold a full 30-bit stack address, an additional format
for stack pointers is allowable when the PC is in a non-zero section.
in this format (called a global stack pointer), the stack pointer is
positive, bits 6-17 are non-zero, and bits 6-35 of the word are
interpreted as the global address of the stack.

If the stack pointer is in local format, the stack address is local to
PC section. For example:

2,,100/ MOVE 17,[-100,,200]
2,,101/ PUSH 17,300

Because the left half of the stack pointer is negative, it is in local
format. Therefore, the stack address is 2,,200 LOCAL, because the
stack is local to PC section.

o Local stack pointers are always local to PC section.

o The test for the possibility of a global stack pointer is
done based on PC section. That is, if PC section is
non-zero, the stack pointer may be global.

Note that a PUSH-type stack operation done on a local stack pointer
that has overflowed (i.e., the left half of the pointer has gone to
zero) changes the stack pointer to global format.

The type of stack pointer also determines how the stack address is
incremented or decremented. For example, consider the following:

2,,100/ MOVE 17,[-100,,777777]
2,,101/ PUSH 17,200

The stack pointer in this example is local, so the stack address is
2,,777777 LOCAL. When the PUSH instruction increments the pointer, it
does so section-local, resulting in an incremented stack address of
2,,0 LOCAL (which actually references AC 0). The stack pointer would
then look like -77,,0.

Let's look at the same example with a global stack pointer:

EXTENDED ADDRESSING Page L-24

2,,100/ MOVE 17,[2,,777777]
2,,101/ PUSH 17,200

With a global stack pointer, the increment is done globally, resulting
in an incremented stack address of 3,,0 GLOBAL (which is memory
location O in section 3). The stack pointer would then 1look Ijke
3,,0.

© Incrementing or decrementing a local stack pointer wraps
around in section. Conversely, the same operation on a
global stack pointer may cross section boundaries.

In addition to the requirement for a global stack pointer to specify a
full 30-bit stack address, the operation of the PUSHJ and POPJ
instructions is modified when the PC is in a non-zero section. Like
JSP and JSR, PUSHJ stores a full 30-bit PC (again, actually PC+1) on
the stack, omitting the flags. Similarly, POPJ restores a full 30-bit
PC from the stack instead of an 18-bit PC local to PC section. Let's
look at some examples:

2,,100/ MOVE 17,[-100,,200]
2,,101/ PUSHJ 17,400

Because PC section is non-zero, the PUSHJ stores 2,,102 on the stack
at location 2,,201, which was addressed by a local stack pointer, and
then jumps to location 2,,400. An updated stack pointer of -77,,201
is stored back into AC 17. Similarly:

2,,400/ MOVE 17,[-77,,201]
2,,L401/ PoOPJ 17,

restores the full 30-bit PC from stack location 2,,201 (addressed by
the local stack pointer) and then stores an updated stack pointer of
-100,,200 back into AC 17.

This behavior has some interesting aspects, as the next example
demonstrates:

2,,100/ MOVE 17,[2,,200]
2,,101/ PUSHJ @[o,,300]

Because PC is in a non-zero section, the PUSHJ instruction stores a
full 30-bit PC (2,,102) on the stack at location 2,,20] (addressed by
the gliobal stack pointer). The Jump is then made into section zero.
But an attempt to return to the caller with a POPJ instruction will
result in bedlam. In the first place, the global stack pointer will
be interpreted as a local one in section zero. In addition, POPJ will
assume that the stack word contains flags and PC and restore an 18-bit
PC, local to section zero.

As this example demonstrates, it isn't very practical to call
subroutines in section zero, from a non-zero section, using the normal
call/return conventions.

EXTENDED ADDRESSING Page 4-25

o If PC is in a non-zero section, the PUSHJ instruction stores
a full 30 bit PC on the stack. This is true even if the
destination of the jump is in section zero and regardless of
the format of the stack pointer.

o If PC is in a non-zero section, the POPJ instruction always
restores a full 30-bit PC from the stack.

L.7.5 JSA and JRA

These instructions use a format that is incompatible with extended
addressing. Because they are also considered an obsolete method for
subroutine call/return, no attempt has been made to find an alternate
format for these instructions when executed in a non-zero section.

For compatibility with section zero programs, these two instructions
continue to work in non-zero sections. However, their use s
restricted to intra-section operation, and all inter-section use is
undefined.

In the case of JSA, the effective address is calculated in the normal
manner. However, if the EA-calc results in an address outside of PC
section, the action of the instruction is undefined. For example, the
results of:

2,,100/ JSA 1,@[3,,200]

are undefined because the effective address is in section 3 and PC
section is section 2. Note that a JSA which computes a global
effective address which addresses the last word of PC section is also
undefined. Let's look at an example of why this is true:

2,,100/ JSA 1,e@[2,,777777]

In this case, the microcode would store the contents of AC into
2,,777777 and attempt to jump to E+1. But because EA is global, the
computation of E+1 would result in 3,,0 GLOBAL which is outside of PC
section.

The normal usage of JRA is of the form JRA AC, (AC) and the operation
of the instruction is defined to take this into account. After the
normal effective address calculation 1is performed, PC section is
appended to the in-section addresses in AC to form the address of
where the old contents of AC were stored and the new PC address. This
forces all references to be in PC section. For example,

EXTENDED ADDRESSING ’ Page L-26

2,,201/ MOVE 1,[200,,101]
2,,202/ JRA 1, (1)

restores AC from location 2,,200 (PC section plus contents of AC left)
and then jumps to 2,,101 (EA in PC section).

These definitions for JSA and JRA are consistent with the operation of
the instructions in section zero.

© The use of JSA and JRA in a non-zero section is restricted to
the case where the EA-calc results in an address in PC
section. All inter-section usage is undefined.

L.7.6 LUUOs

In a non-extended machine, LUUOs trap via a pair of locations (4O and
L1) in exec or user virtual memory. Because this scheme is
insufficient to support extended addressing, the operation of LUUOs is
modified if the PC is in a non-zero section. In this circumstance,
the LUUO is processed through a four-word block which is addressed by
a word in the exec or wuser process tables. See the PRM for more
details.

o If PC is in a non-zero section, LUUOs trap through a
four-word block addressed by a location in the EPT (exec
LUUO) or UPT (user LUUO).

L.7.7 BLT

The format used for source and destination addresses by BLT is
insufficient to represent two 30-bit addresses. As a result, the XBLT
instruction was added to the instruction set to allow block transfers
from one arbitrary 30-bit address to another. Despite this, BLT is
still useful for intra-section block transfers, and the operation of
the instruction has been changed slightly.

The initial source address is constructed by taking the 18-bit address
in the left half of the AC and appending it to the section number and
local/global flag from the effective address. Similarly, the initial
destination address is constructed from the 18-bit address in the
right half of the AC and the section number and local/global flag from
the effective address. This means that transfers are always to and
from the same section as that specified by the effective address,
which need not necessarily be the same as PC section. Source and
destination addresses are then incremented, section-local (even if EA
is global) until the destination address is equal to EA. For example:

EXTENDED ADDRESSING Page 4-27

2,,100/ MOVE 1,[200,,300]
2,,101/ BLT 1,@[3,,302]

in this example, the EA-calc for the BLT results in 3,,302 GLOBAL.
Using the rules above, the initial source and destination addresses
would be 3,,200 GLOBAL and 3,,300 GLOBAL. Therefore, the following
transfer would take place:

3,,200 => 3,,300
3,,201 => 3,,301
3,,202 => 3,,302

Let's look at an example that demonstrates the significance of
incrementing the addresses section-local:

2,,100/ MOVE 1,[777776,,300]
2,,101/ BLT 1,@[3,,302]

As in the previous example, EA is 3,,302 GLOBAL and the initial
destination address is 3,,300 GLOBAL. In this case, the initial
source address is 3,,777776 GLOBAL and the following .transfer takes
place:

39’777776 = 3,,300
3,,777777 => 3,,301
3,50 => 3,,302

Note that the source address was incremented section-local even though
it was a global address.

It is important to note that the local/global flag must be included in
constructing the initial source and destination addresses even though
the addresses are always incremented section-local. This is because
the check for an AC reference is done by including this flag. Let's
look at two examples, one whose EA is Jlocal and one whose EA s
global:

2,,100/ MOVE 17,[1,,200]
2,,101/ BLT 17,201

In this case, the result of the EA-calc for the BLT is 2,,201 LOCAL.
Therefore, the initial source and destination addresses are 2,,1 LOCAL
and 2,,200 LOCAL, respectively. Because the source is a local address
whose in-section part is in the range 0-17, it references AC 1. Now
let's look at the global case:

2,,100/ MOVE 17,[1,,200]
2,,101/ BLT 17,e[2,,201]

In. this case, the result of the EA-calc for the BLT is 2,,201 GLOBAL.
Therefore, the initial source and destination addresses are 2,,1
GLOBAL and 2,,200 GLOBAL, respectively. In this case, the source
address references memory location 2,,1 instead of the ACs because the
effective address is global. In both cases, however, the addresses

EXTENDED ADDRESSING Page 4-28

are incremented section-local.

© The initial source and destination addresses for BLT are
constructed by appending the appropriate half of the AC to
the section number and local/global flag from the effective
address. Incrementing of source and destination addresses is
always done section-local independent of the state of the
local/global flag. However, the determination of AC
reference is done via the normal rules by including the
local/global flag.

4.7.8 XBLT

The XBLT instruction is the one exception to the rule that a section
zero program cannot reference data in non-zero sections. In this one
case, the contents of AC+1 (source pointer) and AC+2 (destination
pointer) are always treated as 30-bit global addresses, even if the PC
is in section zero. This means that a program running in section zero
can allocate a non-zero section and XBLT code or data into it without
having to jump into a non-zero section to do it.

© The source and destination addresses for XBLT are always
interpreted as full 30-bit global addresses, even if the PC
is in section zero.

This means that the final addresses left in AC+2 and AC+3 at the end
of the XBLT may be inaccessible by other instructions in section zero.
For example:

0,,100/ MOVEI 1,777777 sWord count
0,,101/ MOVEI 2,20 sSource address
0,,102/ MOVE 3,[2,,100] sDestination address

0,,103/ EXTEND 1, [XBLT]

In this example, the transfer is from 0,,20 to 2,,100, and the number
of words transferred is 256K-1. The final source and destination
addresses left in ACs 2 and 3 are 1,,17 and 3,,77 respectively.

o For XBLT, the final values stored in AC+2 and AC+3 for source
and destination addresses are computed by adding the initial
word count to the initial source and destination addresses.
This computation is the same in all sections, including
section zero.

EXTENDED ADDRESSING Page 4-29

L.7.9 JRSTF

If the PC is in a non-zero section, JRSTF traps as an MUUO. This is
because JRSTF is usually used with an indirect word or index register
with PC flags in the left half. 1|t is quite likely that these flags
would be mistaken for a global section number.

o If PC is in a non-zero section, JRSTF traps as an MUUO.
XJRSTF should be used in a non-zero section.

L.7.10 XMOVE! and XHLLI

Unlike other immediate instructions that use only 18 bits of the
effective address, these two instructions operate on all 30 bits of
EA. XMOVE! returns the full 30-bit effective address in AC. XHLLI
stores the section number of the effective address in the left half of
AC, leaving the right half unchanged.

One important implication of these two instructions 1is that they
convert a local reference to an AC in any non-zero section into the
global form. For example:

2,,100/ XMOVE! 1,6

The EA-calc of the XMOVEl results in 2,,6 LOCAL, which is a local
reference to AC 6. This result is then converted to the global AC
address of 1,,6 before being loaded into AC 1.

This conversion is not done if the AC reference is 1local to section
zero. For example:

2,,100/ XMOVE! 1,@[200000,,6]

in this example, the EA-calc follows an indirect EFIW into section
zero. The result of the EA-calc is therefore 0,,6 LOCAL, which is a
local reference to AC 6. Because the effective address is in section
zero, it is not converted to the global form and 0,,6 is stored in AC
1.

o If the effective address of an XMOVE|l or XHLLI is a local
reference to an AC in a non-zero section, the AC address is
converted to a global AC address before being loaded into AC.

L.7.11 XCT

With the exception of the modification of the EA-calc rules in a
non-zero section, the XCT instruction operates in the same manner as
on a non-extended machine. The operation of the instruction being
executed, however, may be affected. This section describes these

EXTENDED ADDRESSING Page L4-30

cases and gives examples to demonstrate them.

L.7.11.1 Default section for EA-calc

If an instruction is executed by an XCT, the initial default section
for the EA-calc of that instruction is the section from which the
instruction was fetched. This may be different from PC section if the
XCT and the executed instruction are in different sections. For
example:

3,,100/ XCT @[2,,100]
2,,100/ MOVE 1,200

In this example, the XCT instruction is in section 3 and the executed
instruction is in section 2. The Ea-calc for the MOVE yields a local
address, which is local to the section from which the MOVE was
fetched. Therefore, the result of the EA-calc is 2,,200 LOCAL. This
rule allows one to XCT an instruction in another section and have
local references generated by the executed instruction be Jocal to the
section containing the instruction.

o The initial default section for the EA-calc of an instruction
executed by XCT is that from which the instruction was
fetched.

L.7.11.2 Relationship with skip and jump instructions

When a skip instruction is XCTed, the skip is always relative to PC
section, i.e., the section containing the XCT (first XCT if there is a
chain of XCTs). This is true even if the skip instruction is in
another section. For example:

3,,100/ XCcT e[2,,300]
2,,300/ SKIPA 1,200

In this example, an XCT in section 3 executes a skip instruction in
section 2. Because this instruction always skips, the next
instruction is taken from location 3,,102 (PC+2), not 2,,302
(instruction+2) . However, the EA-calc of the SKIPA instruction
results in 2,,200 LOCAL, so the contents of location 200 in section 2
are stored in AC.

EXTENDED ADDRESSING | Page L-31

o |If an XCT executes a skip instruction, the skip is always
retative to PC section, even if the skip instruction is in
another section.

The following example demonstrates the effect of XCTing a jump
instruction:

3,,100/ XCT @[2,,100]
2,,100/ JRST 200

In this example, an XCT in section 3 executes a _jump instruction in
section 2. The EA-calc for the JRST results in an address local to
section 2, so the next instruction is taken from 2,,200, not 3,,200.

o |If an XCT executes a jump instruction that jumps, the next
instruction is fetched from the effective address of the
jump. This is true even if the XCT and the jump are in
different sections and the EA-calc of the jump results in a
local address whose section is different from PC section.

L.7.11.3 PC storing instructions

When an XCT executes an instruction that stores PC as part of the
operation of the instruction (e.g., PUSHJ, JSP, etc.), the value
stored is relative to PC section (i.e., the XCT) and not the section
of the executed instruction. For example:

3,,100/ XcT @[2,,200]
2,,200/ JSP 1,300

In this example, an XCT in section 3 executes a JSP in section 2. The
next instruction is fetched from location 2,,300 because the EA-calc
of the JSP is local to section 2. However, the PC stored in AC 1 s
3,,101 (XCT+1), not 2,,201 (JSP+1).

o If an XCT executes an instruction that stores PC as part of
its execution, the value stored is relative to the XCT and
not the executed instruction.

4,7.11.4 Local stack references

When an XCT executes a stack instruction that uses a local stack
pointer, the stack pointer is local to PC section and not to that
containing the stack instruction. For example:

EXTENDED ADDRESSING ' , Page L-32

3,,077/ MOVE 17,[-100,,300]
3,,100/ XCT @[2,,200]

2,,200/ PUSH 17,400

In this example, an XCT in section 3 executes a PUSH in section 2.
Since the EA-calc for the PUSH results in a local address, the datum
to be pushed is in the same section as the PUSH instruction (at
location 2,,L400). However, the stack pointer is local to PC section,
not the section containing the PUSH. Therefore, the datum is stored
on the stack at location 3,,301.

© If an XCT executes a stack instruction whose stack pointer is
local, the stack is local to PC section, not the section
containing the stack instruction.

L.7.11.5 Generalizations for XCT

The examples above cover specific relationships between XCT and the
executed instruction. There are really two generalizations (one of
which was given above) that can be made about XCT, as follows:

1. The initial default section for the EA-calc of an XCTed
instruction is that from which the instruction was fetched,
and not the section from which the XCT was fetched.

2. Any test of PC section for determining whether section =zero
rules or non-zero section rules apply is done based on the
section from which the XCT instruction was fetched (the first
one if there is a chain of XCTs). That is, PC section
doesn't change because an XCT executes an instruction in
another section.

EXTENDED ADDRESSING Page L-33

4.8 Summary of default sections for EA-calc

After covering all the special case instructions, it is worthwhile to
summarize the rules regarding the initial default section number for
EA-calc's. The initial default section for any EA-calc is that from
which the address word was fetched. This is true for the simple cases
as well as the more complex cases. The following table gives the
initial default section for the various kinds of EA-calc:

EA-calc class Initial default section

Instruction PC section

XCTed instruction Section containing the executed instruction
Byte instruction Section containing the byte pointer

byte pointer

EXTEND instruction PC section
byte pointer

EXTEND instruction Section containing the opcode word
opcode word

Local stack PC section
pointer

EXTENDED ADDRESSING Page L4-3k

L.9 Section zero vs. non-zero section rules

As the previous discussion of special case instructions indicates,
some instructions do different things based on a test for section
zero. However, this test isn't always on PC section. We have
intentionally left out examples that demonstrate some of the boundary
conditions that make extended addressing hard to document to avoid
confusing the reader before the simple cases are understood. This
section includes examples of these boundary conditions, and summarizes
the rules for testing to see if section zero rules apply.

The first example illustrates the test for the possibility of a global
byte pointer:

3,,100/ LDB 1,@[o0,,200]
0,,200/ 000640, ,300
0,,201/ 400000, ,L400

In this example, the byte instruction is in section 3 and the byte
pointer is in section 0. Note that bit 12 is set in the byte pointer
which, if global byte pointers are allowed, would indicate a two-word
global byte pointer. |Is this byte pointer interpreted as a one-word
local or two a word global byte pointer? The rule given in a previous
section says that the test is made based on the section from which the
byte pointer was fetched. Therefore, bit 12 is ignored, the byte
pointer is interpreted in one-word local format, and the byte is
fetched from the word at location 0,,300.

Let's look at a similar case involving both XCT and EXTEND:

3,,100/ MOVEI 1,5 ;Source length

3,,101/ MOVE 2,[4L0740,,500] ;Source b.p. (Ist wd)
3,,102/ MOVE 3,[5,,100] sSource b.p. (2nd wd)
3,,103/ MOVEI 4,5 ;Destination length

3,,104/ MOVE 5,[440740,,300] ;Destination b.p. (Ist wd)
3,,105/ MOVE 6,[5,,200] ;Destination b.p. (2nd wd)
3,,106/ xcT @[o0,,100] ;Execute EXTEND in section 0

0,,100/ EXTEND 1,200

0,,200/ MOVSLJ : ;Extended opcode is MOVSLJ
0,,201/ 0 ;Fill character is O

In this example, the XCT is in section 3 and the entire EXTEND
instruction is in section zero. Both the source and destination byte
pointers have bit 12 set, which means they may be interpreted as
two-word global pointers. But are they? The rule given in a previous
section says that the test is made based on PC section, which s
non-zero. Therefore, the byte pointers are two-word global and the
string is moved from 5,,100 to 5,,200. |If this seems like an anomaly,
remember that the test is based on PC section because the byte
pointers are fetched from the ACs. References to ACs addressed by the
AC field of the instruction are always made in PC section.

A final example combines an XCT with a JSR:

EXTENDED ADDRESSING Page 4-35

3,,100/ XxcT elo,,200]
0,,200/ JSR 300

In this example, the XCT is in section 3 and the JSR is in section
zero. The EA-calc of the JSR is 1local to section zero, so the
destination of the jump is 0,,301. But what is stored in 0,,300? The
rule given in a previous section says that the test is based on PC
section. Therefore, we store a full 30-bit PC (3,,101) into location
0,,300.

o The test for section zero rules vs. non-zero section rules
is done based on PC section for all cases except byte
instructions. This is true even if the instruction is an XCT
which executes an instruction in another section (including
section zero).

o The test for section zero rules vs. non-zero section rules
for a byte instruction is done based on the section from
which the byte pointer was fetched.

It is important to realize that PC section may be different from that
containing the instruction being executed if an XCT (or chain of XCTs)
is involved. PC section is always that from which the original
instruction (the XCT if that instruction is involved) was fetched.
This is a subtle distinction, but it is important in testing for
section zero rules. :

EXTENDED ADDRESSING Page L-36

L.10 Special consideration for ACs

On the PDP-10, the ACs are both general purpose registers and also
part of the virtual address space of every program. This dual use is
convenient but also confusing when one is attempting to understand the
rules of extended addressing. This section describes some of the

aspects of the relationship between extended addressing and the use of
the ACs.

L.10.1 AC references
An AC can be referenced in one of four ways as follows:

1. As a general purpose register through the AC field of an
instruction,

2. As an index register through the index register field of an
instruction or indirect word.

3. As a local memory reference to the first 16 (decimal)
locations of any section.

k. As a global memory reference to the first 16 (decimal)
locations of section 1.

In this discussion, we are concerned with the last two uses.

The rules for extended addressing say that memory references in
section 2zero are always local. Therefore, a section zero memory
reference can reference the ACs only if it is to the first 16
(decimal) locations in section zero. On the other hand, a memory
reference in a non-zero section can reference the ACs in two different
ways. If the memory reference is local, the ACs appear in the virtual
address space of every section as the first 16 locations. For
example, both

2,,100/ MOVE 1,2

and
5,,100/ MOVE 1,2

reference AC 2 even though the addresses are local to different
sections.

In addition, the ACs may be referenced in a section-independent way
via a reference to global address 1,,n, where n is in the range 0-17,
inclusive. This means that an AC address can be passed between two
routines running in a non-zero section, even if the routines are in
different sections. For example:

EXTENDED ADDRESSING Page L-37

5,,100/ MOVE 16,[1,,6] ;Get global AC address for AC
5,,101/ PUSHJ 17,@[3,,200] ; 6 and call routine

3,,200/ MOVE 1, (16) ;Use global XR to fetch data

In this example, the calling routine in section 5 places the global AC
address for AC 6 into AC 16 and calls a routine in section 3. Because
1,,6 is a global AC address, the called routine interprets the index
in global format and the data is fetched from AC 6.

Note that an address of the form 1,,n, where n is in the range 0-17,
will always reference the ACs, whether the address is local or global.
If the address is local, the reference is a local reference to the ACs
in section 1. |If the address is global, it is a global AC reference
to the ACs.

o An address of the form 1,,n, where n is in the range 0-17,
inclusive, refers to the ACs whether it is a local or global
address. Therefore, such an address can be used to refer to
the ACs even if the state of the local/global bit is not
known. :

4L,10.2 Instruction fetches

A1l instruction fetches are made as local references, even though the
PC is a full 30-bit address. Therefore, an instruction is fetched
from the ACs whenever bits 18-35 of PC are in the range 0-17,
inclusive, independent of the section number. Consider the following
example:

1,,100/ XJRST [3,,2]

This instruction sets the PC to 3,,2. However, the next instruction
fetch will come from AC 2 because it is made as a local reference.

This behavior can have some implications for instructions that also
store information before changing PC. Consider the following example:

1,,100/ JSR @[3,,2]

The JSR stores the current PC into memory location 3,,2 and then
changes the PC to 3,,3. The next instruction is then fetched from AC
3 because of the local reference, but the old PC is in memory and must
be fetched with a global reference.

o Instruction fetches from C(PC) are always made as local
references even if PC was previously set to a global address.
This means that instruction fetches from the first 16
(decimal) locations of any section cause the instruction to
be fetched from the ACs.

EXTENDED ADDRESSING Page L4-38

L.10.3 Storing PC

If an instruction that stores PC as part of its execution is fetched
from the ACs, the PC is stored as a full 30-bit address if PC is in a
non-zero section. For example:

3,,100/ MOVE &, [JSP 2,200]
3,,101/ JRST &

In this example, the MOVE instruction stores a JSP into AC 4, and the
JRST instruction computes a local effective address that references
the ACs. PC is set to 3,,L4, but the next instruction is fetched from
AC L because instruction fetches are always made as local references.
Therefore, the next instruction to be executed is the JSP. Because PC
section is non-zero (it is still 3), the JSP must store a full 30-bit
PC into AC 2. The important thing to realize is that PC is 3,,4 and
is not 0,,4 (a section zero AC address) or 1,,4 (a global AC address).
Therefore the JSP stores 3,,5 (remember, it stores PC+1) into AC 2 and
jumps to 3,,200.

o |If an instruction that is fetched from AC stores PC as part
of its execution, the PC stored is a full 30-bit address
including PC section, if PC section is non-zero.

L.10.4 Storing EA for LUUO, MUUO and page fails

When an LUUO or MUUO is executed or an instruction page fails, the
microcode stores some information about the exception in a block
addressed by a word fetched from the UPT or EPT. The information
stored includes the effective address (or reference address in the
case of page fail) for the instruction that caused the exception. I f
the resulting effective address is a local reference to an AC in a
non-zero section, the microcode converts this address to a global AC
reference before storing it in the block. This is the same rule used
for XMOVEI and XHLLI.

o If the effective address of an LUU0O or MUUO, or an
instruction that causes a page fail results in a local
reference to the ACs in a non-zero section, the microcode
converts the local AC reference to a global AC address before
storing the result.

L.10.5 An example

Consider the following example that brings together all of these
rules: ‘

EXTENDED ADDRESSING . Page 4-39

3,,100/ MOVE 6,[001000,,10]
3,,101/ JRST 6

In this example, the MOVE stores an LUUO (opcode 001) into AC 6 and
the JRST sets PC to 3,,6. The following list indicates the
significant actions that are performed to process the LUUO:

1. The EA-calc for the LUUO is performed and the result is 3,,10
LOCAL.

2. Because PC section is non-zero, the LUU0O must be processed
through a four-word block addressed by a location in the UPT.

3. PC+1 must be stored as a full 30-bit address, including
section number. The value stored is 3,,7.

L. Because the EA-calc of the LUUO resulted in a local reference
to AC 10, it must be converted to a global AC address before
it is stored in the block. The wvalue stored is therefore
1,,10.

EXTENDED ADDRESSING | Page L-40

L.11 PXCT

When the monitor is invoked by an MUUO, page fail, etc., the address
space of the process that caused the invocation is potentially
different from that of the monitor. In order to provide a
communications mechanism between the monitor and the so-called
"previous context", the PXCT (for Previous context XCT) instruction
was defined. Although PXCT is normally considered as a separate topic
from extended addressing, there are interactions between the two that
make it desirable to talk about them together.

Because PXCT is legal only in exec mode, there is no need to define a
new opcode for the instruction. Rather, the normal XCT opcode is
used, and a non-zero AC field distinguishes a PXCT from a normal XCT.
The opcode name PXCT is simply a notational convenience to emphasize
that the executed instruction is making previous context references.

L.11.1 Previous context

For the purposes of this discussion, ""previous context'" is defined by
three processor state variables: Previous Context Section (PCS),
Previous Context User (PCU), and Previous AC Block (PAB). PCS is a
12-bit state register (5 on the KL10) that gives the value of PC
section in the previous context at the time of the event that invoked
the monitor. PCU is a 1-bit register that indicates that the previous
context was user mode (as opposed to exec mode). PAB is a 3-bit
register that gives the AC block number used by the previous context
(there are typically multiple AC blocks implemented by a machine, 8 in
both KL10 and KC10. The so-called ''eurrent ac block" js addressed by
another 3-bit state register called Current AC Block, or CAB).
Therefore, the previous context includes both the address space and
ACs that were in use at the time of the event that invoked the
moni tor.

When a context change occurs as the result of an MUUO, page fail,
interrupt, etc., the previous context state variables are set
according to a set of rules that are defined for each type of context
change. The specific rules aren't important for the purpose of this
discussion and the reader is referred to other sources for more
information. The important point is that the state variable are set
as the result of the context change.

In addition to being set on a context change, the monitor may also set
the state variables explicitly when it desires to make an asynchronous
reference to previous context.

These previous context state registers then direct references to the
previous context as described below. Note that the previous context
need not always be user mode. It is exec mode in cases where the
monitor makes a request of itself, such as the executioh of an MUUO by
the monitor. o

EXTENDED ADDRESSING Page L-L41

L.11.2 Use of the previous context state variables

The state registers PCS, PCU, ‘and PAB hold information necessary to
make a previous context memory or AC (as memory or index register)
reference. This section describes the use for each register.

PCS is a 12-bit state variable that gives the value of PC section in

the previous context. It is used in the PXCT EA-calc algorithm as
described below to provide a default section number for a local
EA-calc. It is also used as the basis for the test for section zero

in some instructions that behave differently in non-zero sections as
described below. (For most instructions, the effect is as if the
instruction were executed in previous context.)

PCU is a 1-bit state variable that indicates that the previous context
was user mode. PCU is used to select the address space for a previous
context memory reference. That is, if the reference 1is to previous
context and PCU is set, the reference is made to the user address
space as mapped through the UPT. Conversely, if the reference is to
previous context and PCU is not set, the reference is to the exec
address space as mapped through the EPT. :

PAB is a 3-bit state variable that gives the AC block number for the
previous AC block. If an index register or AC is referenced in
previous context, PAB gives the number of the AC block containing the
data.

4L.,11.3 References to previous context

The PXCT mechanism allows the monitor to execute an instruction such
that certain references of the executed instruction are made to the
previous context. Conceptually, these references are made as if the
PXCTed instruction were being executed in the previous context.

It is important to understand exactly which operations are modified by
PXCT. The instruction fetch and EA-calc of the PXCT instruction and
the fetch of the executed instruction are always done 1in current
context. In addition, all AC references (as the result of bits 9-12
of the executed instruction) are made to the current context ACs. The
only difference between an instruction executed under PXCT and one
that is not is the way certain memory and index register references
are made. In particular, the EA-calc of the executed instruction may
reference indirect words and index registers in_ previous context.
Also, memory and AC references made as the result of the EA-calc may
be to previous context. Exactly which references are made in previous
context is determined by the type of instruction that is being
executed and by the bits set in the AC field of the PXCT instruction.

EXTENDED ADDRESSING ' Page L-42

L.11.4 Applicable instructions

Not all instructions may be executed via PXCT. The use of PXCT is
limited to instructions that are useful to the monitor, and no attempt
is made to trap those cases that aren't applicable. The instructions
that may be executed are as follows: ‘

MOVE class instructions

Halfword class instructions

EXCH

XMOVEI, XHLLI

BLT (with restrictions), XBLT
Arithmetic (integer and floating point) instructions
Boolean instructions

DMOVE class instructions

CAl and CAM class instructions

SKIP, A0S, and SOS class instructions
Logical test instructions

PUSH and POP (with restrictions)

Byte class instructions

MOVSLJ (with restrictions)

MAP

A1l other instructions are inapplicable, and the results of executing
an inapplicable instruction are undefined. Note that this list
explicitly excludes all instructions that Jump.

L.11.5 Interpretation of the AC field bits

The four bits of the AC field of the PXCT instruction determine which
memory references of the executed instruction are made to previous
context. For most PXCTed instructions, the AC field bits are
logically grouped into two pairs (9-10 and 11-12) to control how
EA-calc and data references are performed. Within each pair, the
first bit (the generic "E control bit") causes index register and
address word references to come from previous context during an
EA-calc. = The second bit (the generic "D control bit") causes data
fetches as the result of instruction execution to come from previous
context. When considered as a whole, bits 9-12 of the AC field are
named "EI1'", "DI1", “E2", and "D2" but the generic names ("E" and ''D")
may be used when it is clear which bits control the reference in
question.

Not all executed instructions use both pairs of bits. In fact, the
great majority of applicable instructions use only bits 9 and 10; bit
9 for the EA-calc of the PXCTed instruction and bit 10 for the data
reference made as the result of that EA-calc. A notable example of
the use of bits 11 and 12 to control previous context references is
the "byte instructions. In this case, bit 11 controls the EA-calc of
the byte pointer and bit 12 controls the data reference to the word
containing the byte. Some instructions use other combinations of
bits, e.g., BLT, EXTEND (MOVSLJ and XBLT), and stack instructions.

EXTENDED ADDRESSING Page L-43

The previous context memory references controlled by each AC field bit
may be summarized by the following table:

Bit References made in previous context if bit is 1

9 (E1) Effective address calculation of instruction (index
registers, indirect words).

10 (D1) Memory operands specified by EA, whether fetch or store (e.g,
PUSH source, POP or BLT destination); byte pointer.

11 (E2) Effective address calculation of byte pointer; source in
EXTEND (e.g., XBLT or MOVSLJ source); effective address
calculation of source byte pointer in EXTEND (MOVSLJ).

12 (D2) Byte data; source in BLT; destination in EXTEND (e.g., XBLT
or MOVSLJ destination); effective address calculation of
destination byte pointer in EXTEND (MOVSLJ).

There are obviously a limited number of valid combinations of AC field
bits for those instructions that may be PXCTed. The following table
gives the legal combinations. The "AC" column gives the AC field
value for the equivalent bits, e.g., the AC column would contain a &
for a 0 1 00 bit string.

: E1 D1 E2 D2
Instructions AC 9 10 11 12 References

General L, 0 1.0 O Data
ik 11 0 O E, data

PUSH, POP L, 0 1 0o O Data
% 1 1 0 O E, data

Immediate 10 1 - 0 O E (ho data reference)
BLT 5 01 0 1 Source data, destination data

15 1 1 0 1 E, source data, destination data
XBLT 2 0 0 1 © Source data

1 0 0 0 1 Destination data

3 0 0 1 1 Source data, destination data
Byte 1 0 0 0 1 Byte data

3.0 0 1 1 Pointer E, byte data

7 0 1 1 1 Pointer, pointer E, byte data

17 1.1 1 1 E, pointer, pointer E, byte data

EXTENDED ADDRESSING Page L-L4k

MOVSLJ 1.0 0 0 1 Destination pointer E,
_ destination data
2 0 0. 1 0 Source pointer E, source data
3 0 0 1 1 Source pointer E, destination
pointer E, source data,

destination data

Note that BLT, PUSH, POP, and MOVSLJ have restrictions on what memory
references can be PXCTed. For BLT, all references, optionally
including the EA-calc, must be done in previous context. The results
of PXCTing a BLT where source but not destination or destination but
not source is in previous context are undefined. The LDPAC and STPAC
instructions should be used to transfer the previous ACs to and from
current context. |In all other cases, XBLT must be used to transfer
data between current and previous context.

For PUSH and POP, the stack must always be in current context. This
means that previous context references for PUSH and POP are limited to
the EA-calc and data reference made to the location addressed by the
EA-calc. PUSH and POP therefore reduce to the '"general" case.

For MOVSLJ, if source or destination data is in previous context, the
source or destination byte pointer EA-calc must be done in previous
context also. |If the monitor wishes to force a current context
EA-calc for a previous context data reference, it can compute the
effective address of the byte word and use a one- or two-word global
byte pointer. The microcode will still do the EA-calc in previous
context, but no previous context defaults will be applied.

L.11.6 Modifications to the EA-calc algorithm

The appropriate "E" and "D'" control bits from the AC field of the PXCT
instruction are used to modify an EA-calc done on the executed
instruction or a subsequent EA-calc done by the instruction (e.g.,
byte pointer). This modification involves pre- and post-processing
the normal effective address calculation algorithms to conditionally
include PCS at two points.

If the appropriate "E" control bit is set, the initial default section
for the EA-calc is set to PCS. Since the "E'" control bit also
controls previous context indirect word and index register references,
this means that the entire EA-calc is done in previous context. I f
the "E" control bit is not set, the initial default section for the
EA-calc is that from which the address word was fetched, and the
EA-calc is done in current context.

When the normal EA-calc is completed, the resulting value is
post-processed. If the result of the EA-calc was a local address AND
the "E" control bit was not set AND the "D" control bit was. set, the
section number of the EA-calc is ~replaced by PCS. Note that the
local/global flag remains local if this is done. :

The application of PCS at the end of the EA-calc may seem to make no

EXTENDED ADDRESSING Page L-45

sense at first glance, so let's take a closer look at it. Remember
that the purpose of PXCT is to allow the monitor to reference data in
the previous context as if the user had supplied it. |f the user
supplies a local address in, for example, a JSYS argument, the monitor
should make the data reference local to the section in which the user
was running. By applying PCS at the end of the EA~calc as indicated
above, the microcode automatically makes the reference to the correct
section.

This algorithm may be described by the following flow chart:

EXTENDED ADDRESSING Page L-46

e e LT +
| Set initial |
| default section |
Pl +
l
\
e +
| "“E" control |No
| bit set? [-===>-
e R LT +
|Yes
e +

| Initial default |
| section := PCS |

<
—_——— <t

Fom e +
| <m==mmmm e +
v
et L +
| Perform normal |
| EA-calc |
Fom e +
l
\
e +
| "D" control |
bit set? |
AND |
| "E" control |No
bit not set? |---->-+
AND | |
[EA-calc resulted | |
ina | |
Local address? | v
i + +---> Final EA
|Yes |
\ A
o + |
| EAL6:17] := PCS | |
Fre e ———— + |
l l
v A
e e e BT +

PXCT EA-calec algorithm

EXTENDED ADDRESSING Page 4-47

Assume that PCS is 1 and consider the following example:
2,,100/ PXCT 4, [MOVE 1,100]

MOVE is one of the '"general' class of opcodes, so bits 9 and 10 of the
PXCT AC field control the previous context references. In this
example, bit 9 (The "E1' bit) is off and bit 10 (the "D1" bit) is on.
Therefore, the EA-calc is done in current context with a result of
2,,100 LOCAL. Because the "DI" bit is on, the "EI" bit is off, and
the result of the EA-calc is local, the PXCT EA-calc algorithm applies
PCS to bits 6-17 of the EA-calc. The final effective address is
therefore 1,,100 LOCAL and the data reference is made to that location
in previous context. .

Let's look at another example. Assume that PCS is 2 and that the
following locations exist in previous context:

2,,200/ 200003,, 300
3,,300/ 400000, ,L400

In current context, the following instruction is executed:
1,,100/ PXCT 14, [MOVE 1,@200]

in this example, both the "E1'" and "D1" bits are on in the PXCT AC
field. Therefore, the EA-calc is done in previous context and the
initial default section for the EA-calc is set to 2 (PCS). Location
2,,200 in previous context contains an indirect EFIW that the EA-calc
follows into section 3. The final address word fetched from previous
context location 3,,300 is in |IFIW format, so the result of the
EA-calc is local to the section from which the address word was
fetched. The result of the EA-calc is 3,,400 LOCAL. Because the "DI1"
bit is also set, the MOVE fetches data from previous context location
3,,400.

A final example demonstrates the result of an EA-calc that references
an AC. Assume that PCS is 3.

2,,100/ PXCT 4,[MOVE 1,2]

As with the first example, the EA-calc is done in current context and
PCS is applied to bits 6-17 of the result to produce an effective
address of 3,,2 LOCAL. Just as in the non-PXCT case, this is a local
reference to AC 2. Because the '"D1" bit is set, the reference is made
to previous context AC 2 in the AC block specified by PAB.

EXTENDED ADDRESSING Page 4-48

o The EA-calc of a PXCTed instruction may be pre- or
post-processed as directed by the AC field control bits of
the PXCT instruction. Except for this additional processing,
the EA-calc algorithms and results are exactly the same as
for the non-PXCT case. This includes the uses for “the
local/global flag.

L.11.7 Section zero vs. non-zero section rules

Of the instructions that may be PXCTed, there are three types (stack,
byte, and MOVSLJ) that operate differently in non-zero sections and
section zero. When one of these instructions js PXCTed, the test for
zero/non-zero rules may not be the same as the test when there is no
PXCT involved. The interaction of PXCT with each of the instruction
types is covered separately below. '

L.11.7.1 Stack instructions

When no PXCT is involved, the test for the possibility of a global
stack pointer is done based on PC section. When a PUSH or POP
instruction is PXCTed, the previous context references are limited to
the EA-calc and the datum addressed by the EA-calc, and the stack
reference is always made in current context. Because the stack is in
current context, the interpretation of the stack pointer type is made
based on the current context PC section and is not dependent on PCS.
For example, assume that PCS is O.

2,,100/ MOVE 1,[3,,1000]
2,,101/ PXCT 4, [PUSH 1,200]

In this example, PC section is non-zero and the stack pointer in AC 1
has a global format. The test to determine whether the stack pointer
is allowed to be global is still made based on PC section (even though
there is a PXCT involved), and not on PCS. Therefore, the stack
pointer is indeed global and previous context location 0,,200 is
pushed onto the stack in current context location 3,,1001.

o When a stack instruction (PUSH, POP) is PXCTed, the test for
the possibility of a global stack pointer is done based on PC
section.

o When a stack instruction is PXCTed, local stack pointers are
always local to PC section.

EXTENDED ADDRESSING ’ | Page 4-kL9

L,11.7.2 Byte instructions

Normally, the byte instruction test for the possibility of global byte
pointers is done based on the section from which the byte pointer was
fetched. When a byte instruction is PXCTed, this rule continues to
apply, with extensions to include the possibility that the byte
pointer may be fetched from previous context. This is best explained
with several examples.

Assume that PCS is O and that the following 1locations exist in
previous context:

0,,100/ hOOOOO,,ZOd
0,,200/ 12

In current context, the following instruction is executed:
2,,300/ PXCT 3,[LDB 1,400]

2,,L400/ 000640, ,0
2,,401/ L00020,,100

For PXCT of byte instructions, bits 9 (E1) and 10 (B1) direct the
EA-calc of the byte instruction and the fetch of the byte pointer.
Bits 11 (E2) and 12 (D2) direct the EA-calc of the byte pointer and
the fetch of the word containing the byte. 1In this example, the "DI"
bit is off, so the byte pointer is fetched from current context
location 2,,400. Bit 12 is on in the byte pointer, and a test must be
made to see if it may be global. The byte pointer is global because
it was fetched from current context section 2, and the fact that PCS
is zero is not considered.

The "E2" bit and the "D2" bit of the PXCT AC field are both on, so the
byte pointer EA-calc is done in previous context. The second word of
the two-word global byte pointer has the indirect bit set, and the
next address word is fetched from previous context location 0,,100.
The final result of the EA-calc is 0,,200 LOCAL in previous context
and bits 30-35 of that word are extracted and placed in current
context AC 1.

Let's look at a similar example in which the byte pointer is also
fetched from previous context. Once again assume that PCS is O and
the previous context contains the following locations:

0,,L400/ 000640, ,100
0,,401/ L00000,,200

0,,100/ 10
0,,200/ 20

In current context, the following instruction is executed:

2,,300/ PXCT 7,[LDB 1,400]

EXTENDED ADDRESSING Page L-50

In this case, the "D1" bit of the PXCT AC field is set, so the byte
pointer is fetched from previous context location 0,,400. As in the
last example, bit 12 is set in the byte pointer. But because the byte
pointer was fetched from previous context section 0, bit 12 is ignored
and the byte pointer is interpreted in one-word local format. The
EA-calc is done in previous context and results in an effective
address of 0,,100 LOCAL. The byte is then fetched from bits 30-35 of
previous context location 100.

o When a byte instruction is PXCTed, the test for the
possibility of a global byte pointer is done based on the
section from which the byte pointer was fetched. This is
true independent of whether the byte pointer is fetched from
current or previous context.

This interpretation, while correct architecturally, causes some
problems for TOPS-20 as it is implemented today because TOPS-20 copies
byte pointers from the previous context into current context.
Ideally, when a JSYS does a byte instruction on behalf of the user,
the byte pointer would be interpreted exactly as if the user had
executed the byte instruction. Thus, if the byte pointer were fetched
from section O, it would be interpreted as a local pointer; if it
were fetched from any other section, it would be interpreted as
possibly being global. This can be accomplished by using PXCT 7, as
indicated in the example above.

Because TOPS-20 copies the byte pointer from the previous context into
current context, one that 1looks like a global byte pointer will be
interpreted as a global byte pointer even if it is fetched from
previous context section zero. This is because the monitor typically
runs in a non-zero section and the PXCTed byte instruction fetches the
byte pointer from current context. Hence the test for the possibility
of a global byte pointer is made based on current context section
rather than previous context section.

4.11.7.3 EXTENDed MOVSLJ instruction

If no PXCT is involved, the MOVSLJ test for the possibility of a
global byte pointer is made based on PC section. If a PXCT is
invoived, the test is more complex because it is based on PC section
if the PXCT control bit for the byte pointer is off and on PCS if the
PXCT control bit is on. For example, assume that PCS is zero and that
previous context contains the following locations:

0,,200/ ASCI | |ABCDE |

0,,300/ ASCII|FGHIJ]

EXTENDED ADDRESSING Page L-51

In current context, the following'instruction sequence is executed:

3,,100/ MOVEI 1,5 ;Source length
3,,101/ DMOVE 2, [4LO740,,200 ;Source BP (word 1)

, 400000, , 300] ;Source BP (word 2)
3,,102/ MOVE! 4,5 ;Destination length
3,,103/ DMOVE 5, [440740,,400 sDestination BP (word 1)

400000, ,500] sDestination BP (word 2)
3,,104/ PXCT 2, [EXTEND 1,600] ;PXCT the MOVSLJ

3,,600/ MOVSLJ ;Extended opcode is MOVSLJ
3,,601/ 0 sFill character is O

In this exampie, the "E2" bit is set in the PXCT AC field, which
indicates that the source EA-calc and string reference are to be made
to previous context. Conversely, the "D2" bit is off, which indicates
that the destination EA-calc and string references are to be made to
current context.

Because the source-in-previous control bit is set in the PXCT AC
field, the test for the possibility of a global source byte pointer is
made based on PCS. In this case, PCS is zero, so bit 12 is ignored in
the byte pointer and it is interpreted in one-word local format. The
byte pointer EA-calc results in 0,,200 LOCAL in previous context.

On the other hand, the destination-in-previous control bit is not set,
so the test for the possibility of a global destination byte pointer
is made based on PC section. Since PC section is non-zero and bit 12
is set, the byte pointer is interpreted in two-word global format, and
the byte pointer EA-calc results in 3,,500 LOCAL in current context.

The result is to transfer the string '"ABCDE" from previous context
location 0,,200 to current context location 3,,500.

o When a MOVSLJ instruction is PXCTed, the test for the
possibility of a global byte pointer is done based on PC
section if the appropriate PXCT control bit is off. If the
bit is on, the test is done based on PCS.

CHAPTER 5

MICROCODE CHANGES

This chapter discusses the changes that must be made to the KS10
microcode in order to convert it to the KD10 microcode.

5.1 Microcode assemblers

Because the existing KS10 microcode is assembled using the unsupported
microassembier MICRO, the first step should probably be to convert it
to use MICRO2, the corporate microassembler. Fortunately, the
statement syntax 1is identical and the changes should, for the most
part, be isolated to the field/value definitions. The largest
potential problem is the field defaulting mechanism which is quite
different between MICRO and MICRO2.

5.2 New functionality

This section describes the additions to the microcode to support new
functionality.

5.2.1 Extended addressing effective address calculation

Because an EA-calc is performed on every instruction, changes in this
area are critical to the performance of the machine. The first
general step is to use HR as a full 30-bit effective address rather
than using the left half for the instruction. To do this introduces
some problems. Some instructions assume that the opcode and AC field
of the instruction are in HR bits 0-15 (e.g., MUUO). To store them in
some other reg file location would slow down the EA-calc for every
instruction; not just those that need it. The best solution appears
to be to allow the IR and AC registers to be read back into the data
path so that these fields need not be stored in the register file.

The next step is to augment the 30-bit EA with a 1-bit local/global
flag. There are two changes required here. First, the microcode must
be able to force bit 0 of AD to either zero or one (if bits 1-5 are

MICROCODE CHANGES ‘ Page 5-2

also affected, that's fine). In addition, the microcode must be able
to control the write enable for bits 6-17 of the register file similar
to what the HOLD LEFT and HOLD RIGHT macros do now. Armed with these
changes, the modifications to the EA-calc can now be described.

Any effective address calculation starts out in some default section.
For an instruction EA-calc, that section is PC section. For a byte
EA-calc, it is the section from which the byte pointer was fetched
(which should already be in the left half of HR). To initialize an
instruction EA-calc with PC section, an additional microinstruction
must be added at XCTGO (to be followed by the one there now). This
microinstruction copies PC to HR. Since this microinstruction is
overlapped with the memory cycle, it may be free.

The normal EA MODE DISP is done at INCPC to the table starting at
EACALC. For the non-indexed cases, the microcode should do the
appropriate manipulation of HR, but force the local flag on and block
stores to the section number field. For indexed references, the
action is a bit harder since there are two possible formats of index
register. The best bet seems to be adding a new dispatch that allows
the microcode to check the sign of Y (that's bit 18 of HR) and the
format of the index register (that's bits 0 and 6-17 of the XR) at one
time. The indexed cases would then call a routine using that dispatch
which would sign-extend Y as appropriate and then add the contents of
XR. The local/global flag and the section number in HR should be
manipulated appropriately.

The rest of the changes necessary for EA-calc appear if control
reaches FETIND to fetch an indirect word. Since the indirect word can
be either an IFIW or an EFIW, an additional code must be added (note
than an analogous change must be made for byte and EXTEND EA-calc).
The indirect word cannot be written directly into HR because it may
have one of two different formats.

The decoding of the indirect word is a two step processes. The first
step uses a new dispatch to check whether it is an IFIW, an EFIW, or
an illegal indirect word with one dispatch (see the section on
hardware changes for details). For the case where the indirect word
is an IFIW, the right half is loaded into HR and the XR and indirect
fields are loaded into the hardware registers. For the case where the
indirect word is illegal, a page fail trap is started. For the case
where the indirect word is an EFIW, bits 1-5 are shifted to bits 13-17
and loaded into the XR and indirect bit registers. The normal XR and
indirect dispatch can then be used to separate out the four cases.

The result is that HR contains the full 30-bit effective address in
bits 6-35. Bit 0 contains the local/global flag and bits 1-5 contain
junk. Note that bits 6-17 always contain the correct section number
even if it is defaulted. This is important because many instructions

depend on the fact that the section number of EA is correct.

As with HR, PC is extended to a full 30-bits. Since the hardware will

ignore bits 1-5, we don't care what if they are junk. These bits must
be cleared before the microcode stores PC into memory for things 1like

MUUO, etc. This restriction also applies to storing EA.

MICROCODE CHANGES Page 5-3

Note that all stores into PC should be changed to force on the local
bit. This will cause all PC references to be done section-local. . In
addition, -all updates of PC to +1 should inhibit carry between the
halves.)

5.2.1.1 PXCT and the effective address calculation

As noted in the chapter on extended addressing, the normal EA-calc may
be pre- or post-processed when PXCT is involved. For an instruction
EA-calc, the pre-processing should be done in the XCT code itself
since that code _jumps into the middle of EA-calc in any event. The
post-processing must be done in the instruction EA-calc code. To
avoid wasting another cycle to check for this case, the need for PXCT
post-processing should be built into the EA MODE DISP (see section on
hardware changes for details).

For byte and EXTEND EA-calc, the pre-processing (initializing EA
section with PCS) must be done in-line. With the appropriate dispatch
on previous EA-calc, this can be done at entry to the byte and EXTEND
EA-calc subroutines.

5.2.2 G-floating instructions

The addition of the four G-floating instructions (GFAD, GFSB, GFMP,
and GFDV) and the G-floating conversion instructions under EXTEND
should be viewed as somewhat high risk. In order to add these
instructions, the entire SCAD path, including SC, FE, the SCAD input
muxes, and the SCAD ALU would have to be widened from 10 to 13 bits to
accommodate the larger exponent. While this in itself isn't
difficult, there are certain microcode changes that make it risky.

Besides floating point operations, the SCAD path is also used for byte
manipulation and counting. The existing hardware and microcode
doesn't right-justify the P and the S fields from the byte pointer in
FE and SC because the merge back into the pointer is done with the
. BYTE1 select through-DBM. As a result, there are numerous places in
the microcode that add 2, 4, or 8 to FE and SC when the logical intent
is to add 1. As a result, making the SCAD path three bits wider would
force a careful 1look at the microcode to find all uses of the SCAD
path to make sure that the constants were correct. Also be wary of
breaking the EXP merge for D-floating if the only available merge is.
12 bits.

It might be better to ignore G-floating for the FCS machine. and take
the time to look at it more closely and upgrade in the field. |If this
is impossible, there should be a concentrated effort to simulate all
uses of the SCAD path to make sure the microcode was changed in all
the necessary places.

In any event, the actual addition of G-floating should be a nearly
one-for-one copy from D floating with the exception that the exponent

MICROCODE CHANGES Page 5-4

is three bits wider and the mantissa is three bits narrower. Note
that the KC10 data path is very similar .to the changes necessary for
the KD10, so the KC10 microcode may be of help in determining
algorithms.)

5.2.3 Unbiased rounding

The change from biased rounding to unbiased rounding is being done
because unbiased rounding produces more accurate answers. However,
this change should not cause a slip in the FCS date since it can be
installed in a future microcode release. The techniques for doing
unbiased rounding were worked out and installed with conditional
assembly in the KC10 microcode, so that might be a good place to start
in trying to define algorithms.

5.2.4 PUSHM, POPM, and PUSH|

These instructions were added to the instruction set to improve the
performance of certain very common instruction sequences (saving and
restoring AC during subroutine calls and passing arguments to
subroutines) . The implementation is fairly straight forward from the
functional description of the instruction. The one tricky point is
determining the format of the stack pointer and how to update it, but
this is identical to that described for the other stack instructions
below.

Note that the addition of these instructions for the FCS machine would
be nice, but they should not delay the FCS date.

5.3 Changes to existing instructions

This section describes the changes that must be made to instructions
currently implemented by the KS10 microcode.

5.3.1 Double word instructions

For any instruction which references two consecutive memory locations,
there is a potential problem in computing the correct address for the
second word. See the section on address computations for a
description of the problem and a suggested solution.

MICROCODE CHANGES Page 5-5

5.3.2 LUUO

The changes to LUUO processing are limited to the addition of the case
where the LUUO is performed in a non-zero section. The section zero
processing is identical to the existing KS10 code. A check for PC
section non-zero should be inserted at LUUO1 and jump to a new section
of code if it is indeed non-zero.

The new code should check for user or exec mode and fetch the LUUO
block pointer from UPT or EPT location 420. This pointer is the
VIRTUAL address in the current address space of the first word of the
four-word LUUO block as described in the section on LUUO handling.

The microcode should store the indicated information into the first
three words of the LUUO block and then start the processor at the
location specified by the fourth word of the block. Note that the
processor flags and mode remain unchanged; only the PC is changed.
Also note that if the effective address is a local reference to an AC
that it must be converted to the corresponding global AC address
before it is stored.

Note that trap enable (from WREBR) must be checked before a non-zero
section LUUO is processed. If trap enable is off, the microcode
should halt the machine instead of processing the LUUO as indicated.

5.3.3 MUUOs

The MUUO processing routine must be rewritten to conform to the new
MUUO block format. |t stores PC flags, CAB, PAB, PCS, PC, the opcode
and AC fields of the MUUO instruction, and the effective address into
the four-word block starting at UPT+h42L. Note that if the effective
address is a local reference to an AC that it must be converted to the
. corresponding global AC address before it is stored. CAB, PAB, and
PCS are kept in a location in the workspace. Also see the section
above concerning the problems of obtaining the opcode and AC.

The largest problem with MUUO processing is determining where to fetch
the new PC word from. Unlike the current KS10 microcode, the new PC
word is a function of the kind of MUUO executed and the mode of the
processor rather than whether a trap occurred or not. This means that
there should be multiple entry points into the MUUO handler, one for
each kind of MUUO. This was the scheme in the KC10 microcode which
had an identical MUUO block format.

The new PC flags, and CAB and PAB are loaded from the word at UPT+L430
and the new PC is taken from the appropriate word starting at UPT+L432.
Note that PCS is set from the value of PC section before 1loading the
new PC.

Note that trap enable (from WREBR) must be checked before the MUUO is
processed. If trap enable is off, the microcode should halt the
machine instead of processing the MUUO as indicated.

MICROCODE CHANGES Page 5-6

5.3.4L Byte instructions .

The changes to the byte instructions require major work on the
microcode. The possibility of one- or two-word global byte pointers
must be checked for, and the byte pointer EA-calc must be considered.
Note that the check for two-word global byte pointers and the legality
of extended byte pointer EA-calc is based on the section from which
the byte pointer was fetched and not on PC section.

A major problem is converting one-word global byte pointers to the
equivalent P and S format and back again. The KL10 used a translation
table in the EPT to perform this transformation with a resulting
performance problem. Since there is sufficient microcode space in the
KD10, the translations can probably be done with microcode dispatches
similar to that used by the KC10 microcode. Note that both the KL10
and the KC10 microcodes are a good source for algorithms for
performing these instructions.

Note that the microcode must check for previous context references
during the byte EA-calc and supply PCS if necessary as the section
number of the byte EA. This point is discussed in more detail in the
section on instruction EA-calc.

The byte instructions are critical to the performance of the machine.
In addition, the one-word pointer formats are the most important and
the code should be optimized for those formats. Additional microcode
dispatches may be considered to improve the performance of these
instructions.

5.3.5 Stack instructions

In all stack instructions, a check must be added for the type of stack
pointer. If PC section is non-zero, the microcode must check to see
if bit 0 is 0 and bits 6-17 are non-zero. If this is true, the stack
pointer is global and the pointer should be incremented or decremented
in 30 bits instead of as two 18-bit quantities.

In addition, PUSHJ and POPJ must change to check .for PC section
non-zero and manipulate the full 30-bit PC instead of PC flags and the
in-section part of PC.

The KC10 microcode performed these instructions with 1ittle hardware
assistance. It may be worth looking at that code.

5.3.6 JSR and JSP

The primary change necessary in these instructions is determining
whether to store PC flags,,PC or a full 30-bit PC. This requires that
the microcode check the current PC section and store PC flags,,PC if
it is zero and a 30-bit PC (clearing bits 0-5) if it is not.

MICROCODE CHANGES Page 5-7

5.3.7 JSA and JRA

For JSA, the microcode must store AC into location E and the
in-section part of E and PC into AC. Thus, it ignores the section
number of E and PC. It then jumps to E+1, which must be calculated
based on the local/global flag.

For JRA, the microcode must append the current PC section to the two
halves of the AC to form the 30-bit addresses of the location in which
AC was stored and the new PC. As a result, the section number of the
EA-calc is ignored.

5.3.8 BLT

The largest change for BLT involves constructing the 30-bit source and
destination addresses, and incrementing them properly. The source and
destination addresses must be constructed by appending the section
number and local/global flag from EA to the halves of the AC. It is
important that the local/global flag by copied because this plays a
part in the determination of a local AC reference.

Independent of the state of the local/global flags, the source and
destination addresses must be incremented section-local. That is, the
microcode must always suppress carries between bit 18 and bit 17 when
the addresses are incremented.

5.3.9 XBLT

Because the definition of XBLT at the time the KS10 microcode was
written made it illegal in section zero, the KS10 microcode has no
support for it. The main transfer loop for XBLT is fundamentally that
of BLT with the exception that the addresses are always incremented or
decremented as full 30-bit quantities. There is also the backward BLT
case if the count is negative. Finally, there is the question of
cleanup and storing the correct values into the ACs at the end of the
instruction which is different from the normal BLT code.

5.3.10 JRST

The changes to JRST include the addition of the new JRST decodes and
the code necessary to handie certain new functionality.

In JRSTF (JRST 2,), the microcode must check for PC section zero. I f
the PC section 1is non-zero, the instruction traps as an MUUO.
Otherwise, it does what it does now.

In XJRSTF (JRST 5,), the microcode must check for exec mode and load
CAB, PAB, and PCS from bits 18-35 of the first word of the argument
block. In both modes, the second word contains a full 30-bit PC

MICROCODE CHANGES : Page 5-8

rather than an 18 bit PC. The same thing applies to the XJRSTF part
of XJEN (JRST 6,).

In XPCW (JRST 7,), the microcode must store CAB, PAB, and PCS into
bits 18-35 of the first word of the block and the full 30-bit PC into
the second word. The loading of new values into these registers s
the same as for XJRSTF above.

JRST 10, is now illegal and should be removed from the JRST decode
table and replaced by an MUUO.

JEN (JRST 12,) is now illegal and should be removed from the JRST
decode table and replaced by an MUUO.

SFM is now legal in all modes and in all sections, so the check for
kernal mode should be removed. However, another check for kernal mode
should be added and SFM should store CAB, PAB, and PCS into bits 18-35
of the word stored if the instruction is executed in kernal mode. In
user mode, these bits should be set to zero.

The XJRST instruction (JRST 15,) has been added to the instruction set
to set PC to the contents of the word at E without changing any flags.

5.3.11 XMOVE| and XHLLI

The SETMI and HLLI instructions must be converted to full XMOVEI| and
XHLLI functionality. This means that they store the full 30-bit
effective address (or just section number for XHLLI) into AC. Since
the only time that EA can have a non-zero section is if the
instruction was executed in a non-zero section, there is no test
necessary for section =zero (i.e., EA always contains 0,,E if the
instruction is executed in section 0).

There is one additional test required to convert local AC references
to the equivalent global AC address. If the local/global flag
indicates a local reference (i.e., bit 0 is on), and bits 6-16 and
18-31 are all zero, the address is a local reference to an AC. To
convert to the equivalent global AC address, the microcode must simply
insert a 1 into bits 6-17. Note that a section zero reference to an
AC is never converted to the global AC form.

5.3.12 EXTEND string instructions

Most of the points mentioned for byte instructionsvapply here as well.
However, the check for two-word global pointers and the legality of
extended byte EA-calc is based on PC section.

The KL10 converted all one-word global pointers to two-word global
when it stored them back in the ACs of the string instruction. This
caused nothing but problems architecturally and should not be done
here. This problem was solved in the KC10 microcode and that should

MICROCODE CHANGES Page 5-9

be used an example.

The PXCT relationship with string instructions is different from byte
instructions. As a result, the need to add PCS at the appropriate
point of the EA-calc is done based on different PXCT bits.

In addition to these points, the EDIT microcode must be changed to
check for PC section zero and ignore bits 6-17 of the pattern string
address and the mark address in that case. |[f PC section is non-zero,
these bits are used.

5.3.13 The privileged instructions.

This section discusses the changes necessary to convert the existing
KS10 privileged instructions.

5.3.13.1 APRID

The only change necessary for this instruction is to adjust the field
widths as appropriate.

5.3.13.2 'WRAPR

Bit 18 has been added as a P! enable bit for WRAPR. The microcode
must check bit 18 before loading a new APR PIA from bits 33-35

5.3.13.3 SETCU

This instruction may be difficult to implement without some amount of
hardware help. The idea is to set the CST update needed bit in the
translation buffer without altering the state of any other bits.
Conceptually, the microcode would read each entry in the TB, set the
bit, and write it back. The fact that the microcode can't read a TB
entry back into the data path causes some problems with ‘this
algorithm.

The solution may be to take advantage of one of the performance gains
mentioned in the description of the page fail algorithms below. In
that scheme, 1K in the workspace is dedicated to a copy of the bits in
the translation buffer. Therefore, the microcode simply reads the
appropriate location in the workspace, sets the CST update bit, and
writes that entry back into the TB. If this scheme isn't used, there
could be a problem implementing SETCU.

MICROCODE CHANGES Page 5-10

5.3.13.4 RDUBR and WRUBR

Because of the additional information required, the WRUBR instruction
now has three words of argument. The first word contains control bits
which the microcode uses to determine what to do. The changes to
WRUBR are straight forward based on the functional description and are
similar to the existing KS10 instruction flow. If the '"load AC
blocks" bit is on, the microcode must load the values into the
hardware from bits 18-23 of E+1. |If the "load PCS" bit is on, the
microcode should replace the current value in the workspace. Since
PCS is manipulated totally by the microcode, there appears to be no
reason to add a hardware register to hold the value. If the "load
UBR" bit is on, the microcode does what the KS10 microcode does. In
addition to clearing the translation buffer and data cache, it must
clear and reinitialize the cache of paging information in the EBOX. A
major change is the manipulation of the address break information if
the '"load address break" bit is on. Since this hardware doesn't exist
on the KS10, the exact microcode action is subject to the addition of
the required hardware.

For RDUBR, the microcode must reconstruct the information passed to it
in the last WRUBR, setting the specified control bits to the correct
state. The UPT address is contained in the register file and must be
converted back to a page number. CAB, PAB, and PCS are stored in the
workspace, as are the current address break conditions.

5.3.13.5 RDEBR and WREBR

The WREBR instruction must change from an immediate instruction to an
instruction which reads its argument from location E. The instruction
flow is similar to that for the KS10 WREBR except there are separate
trap enable and pager enable bits, and the trap enable bits has a load
bit. The result is that the microcode must do more checking before
setting bits 22 and 23 in the APR enables.

Since there is no longer room in the register file location EBR to
store pager enable and trap enable, the RDEBR instruction will have to
be changed to extract the state of those bits from workspace location
APR. :

5.3.13.6 CLRPT

for CLRPT, the microcode should load the entire 30-bit effective
address into VMA and clear the appropriate page table entry. Because
the cache is physically addressed, it is no longer to sweep the cache,
so that code may be removed from CLRPT. Finally, the internal cache
of paging information must be cleared from the workspace.

MICROCODE CHANGES Page 5-11

5.3.13.7 PMOVE and PMOVEM

The hardest part of these instructions is doing the physical EA-calc
computation on the argument. This computation should be fairly
straight forward from the functional description. After that, the
_physical memory reference is done as any other physical memory
reference would be.

5.3.13.8 LDPAC and STPAC

The LDPAC and STPAC instructions are primarily a core BLT-like
transfer loop for the number of words-1 specified by the AC number in
the instruction. The KC10 microcode implemented these instructions
and used a single transfer loop for both with checks in the loop to
see if the memory reference was a load or store. One of the two
references in each pass through the loop is to current context memory
(i.e., normal memory read or store) and the other is to a previous
context AC. Note that this instruction does not have to be
interruptable.

5.3.13.9 MAP

The changes required for MAP fall out from the microcode changes to
the page fail handler. Since the valid, modified, writable, and
cachable bits are in the same position as on the KS10, this all stays
the same.

If there is no valid mapping, the page fail handler returns the page
fail word to MAP, and MAP should clear the left half of the word. |If
there is a valid mapping, the KS10 code at PF130 cleans things up for
MAP. Note that the AND of #/3 at PF130 must be changed to #/17 to
account for the larger physical address.

There is one optimization possible if 1K of the workspace is allocated
for a readable copy of the translation buffer (see the section below).
In this case, the MAP instruction should see if there is a valid
translation in the translation buffer before going off to do the
pointer trace. This could be a performance improvement.

5.4 Other functional changes

This section describes other functional changes.

MICROCODE CHANGES . _ Page 5-12

5.4.1 Processing page fails

This section discusses the changes that must be made in the page fail
handling microcode.

5.4.1.1 Classifying page fails

Page fail processing on the KDI10 is a bit different from the existing
KS10 code. The modifications to the translation buffer and page fail
logic described in the chapter on CPU hardware changes -result in 5
major classes of page fail conditions. Each condition is covered
separately below.

5.4.1.1.1 Interrupt, NXM, or memory error

These conditions take precedence over other conditions and are handled
exactly the way the KS10 microcode handles them. .

5.4.1.1.2 Invalid translation

An invalid translation fault forces the microcode to do a pointer
trace in an attempt to find a wvalid translation for the virtual
address. The pointer trace logic is quite similar to the existing
KS10 microcode with the exception that it should keep more information
about the source of the 1last pointer fetched to store in the
additional data words if the page fault is given to the monitor. Note
that this change should not be made if it will delay FCS.

Note that the translation buffer entry is written from different data
path bits than on the KS10 in order to keep the microcode from having
to juggle bits around. A translation buffer entry written as the
result of a pointer trace should always clear the CST update needed
bit in the entry since the pointer trace performed a CST update along
the way.

5.4.1.1.3 Address break

An address break fault causes a page fail trap to the monitor.
Therefore, processing this condition consists of jumping to the page
fail trap microcode.

MICROCODE CHANGES Page 5-13

5.4.1.1.4 Write violation

A write violation fault can occur for one of two reasons. The page
can be marked as not writable in which case the microcode should start
a page fail trap to the monitor.

It can also be writable but not yet modified. When the microcode
originally wrote the TB entry for the page, it turned the writable bit
in the TB off if the page was writable, but not yet modified
(according to the M bit in the CST entry for the page). This page
fault is necessary so that the microcode can perform a CST update on
the page and set the M bit in the CST entry. When the CST update is
completed, the microcode should rewrite the TB entry with the writable
bit on. Because a CST entry has just be performed, the microcode
should also clear the CST update needed bit.

Note that in order to determine whether the page is not writable or
writable but not yet modified, the microcode must keep the writable
and modified bits for each entry. See the discussion below for more
information.

5.4.1.1.5 CST update needed

A CST update needed fault is generated when the CST update needed bit
is found set in a TB entry. The microcode processing consists of
doing a CST update on the physical page corresponding to that entry
and then rewriting the entry with the CST update needed bit turned
off. See below for a description of the problems in obtaining the
physical page number.

5.L.1.2 Reading a translation buffer entry

The KS10 microcode performed a pointer trace on just about every type
of page fail. This was primarily because it couldn't read the
transiation buffer entry that caused the page fail, nor could it
obtain the PMA even if there were a valid transiation in the TB.

To get around this problem in the KD10, we suggest using 1K of the
workspace to store a copy of the translation buffer entry that is
contained in the TB RAMs. Doing so means that the microcode can read
a TB entry (from the workspace), manipulate one or more bits, and
write the entry back into the translation buffer (both the RAMs and
the workspace). This function is useful in processing both a write
violation and a CST update needed fault.

In addition, keeping the entry around means that the microcode can
construct the PMA if there was a valid translation. This is necessary
in order to find the correct CST entry for a page.

Using the workspace in this manner means that the microcode need not
always do a pointer trace on a page fail that was the result of

MICROCODE CHANGES : Page 5-14

something other than an invalid transiation. This could have a
significant performance advantage. Note that this requires that the
workspace locations be written at the same time as the TB RAMs,
including during TB sweeps.

5.4.1.3 Trap enable

If any page fail is given to the monitor for processing, the microcode
must check the state of trap enable. If trap enable is off, the
microcode should halt the machine rather than start the page fail in
the normal manner.

5.4.2 Processing traps

Trap processing on the KD10 is more complex than simply executing an
instruction as on the KS10. Instead of executing the instruction
stored in EPT/UPT locations 421-423, the KD10 treats this word as a
function code and a function specific argument as described in the
chapter on trap handling. ’

If the trap function is a no-op, the microcode simply clears the trap
flags and jumps back to the next-instruction logic.

If the trap function is an MUUO, the MUUO new PC is taken from the
function specific argument rather than from the MUUO block in the UPT.
The new flags are still taken from UPT location 430.

If the trap function is an LUUO, the function-specific argument
contains the virtual address of the 4-word LUUO block in the current
processor mode. Other than clearing the trap flags, the PC flags are
unchanged.

The latter two functions can most likely simply jump into the MUUO and
LUUO code after proper setup. The one problem that may exist is the
interaction between the trap processing and a page fail or interrupt
detected during that processing. |If an interrupt or page fail trap
goes to the monitor during the processing of a trap function, the trap
bits must be stored correctly in the interrupt XPCW or page fail block
so that the trap processing gets restarted after the interrupt or page
fail is processed. The KS10 hardware and microcode seem to use TRAP
CYCLE for detecting this case, but it may have to change since the
KD10 doesn't XCT an instruction any more. This needs to be looked at
in more detail.

5.4.3 Processing interrupts

Interrupt handling on the KDI10 is quite similar to that on the KS10.
The difference is that there is no instruction XCTed by the processor
on the KD10 as there was on the KS10. Instead, the word that formerly

M1CROCORE CHANGES ‘ Page 5-15

contained an instruction contains a 30-bit exec mode virtual address
of an XPCW block. The microcode then simulates an XPCW instruction
using this address as the effective address of the simulated XPCW.

Since the KS10 only allowed XPCW and JSR as interrupt instructions,
the changes mostly involve removing code. The code starting at Pi50
which checks for an XPCW or a JSR can be removed, as can the code at
PIJSR. The microcode simply stores the 30-bit address of the XPCW
block into AR and then jumps to PIXPCW as it does now.

5.4L.4 Changes for a VMA and VMA flags

Since the VMA address has been expanded from bits 14-35 to 6-35 plus
the local/global flag, the way the microcode operates on the VMA and
VMA flags must change. |In particular, the hardware will allow the VMA
address and VMA flags to be loaded separately. In addition, the VMA
and VMA flags are now read back into the data path separately, rather
than together as in the KS10.

In most instances, the VMA flags are set from microcode # field bits
when VMA is loaded. In this case, the function of loading VMA and the
VMA flags remains unchanged with the exception that the microcode must
assert the additional enable to get the VMA flags loaded. There is
one change, however. Since the local/global flag is carried around in
bit 0 of the data path, the hardware loads the VMA local/global flag
from that bit when the VMA address bits are loaded. As a result, the
microcode must insure that bit O is in the correct state to represent
the local/global characteristics of the VMA being loaded.

In the case where the VMA flags are loaded from the data path rather
than from the microword # field (DP FUNC asserted in the microcode),
things change a bit. Because there are insufficient bits to hold the
VMA address, the local/global flag, and the other VMA flags in one
36-bit word, the microcode must perform separate operations to load
VMA flags and VMA address. This type of operation is done rarely in
the microcode (interrupt, IORD, I0WR, and page fail) and the impact of
doing this should be nil. Typically, the microcode would load the VMA
flags first, followed by the VMA address and local/global flag using
the independent enables provided by the hardware.

An analogous situation exists for reading VMA and VMA flags. The
local/global flag and the VMA address bits are now available via DBM
mixer bits O, and 6-35. The VMA flags are available via DBUS bits
22-35. To get both the VMA and VMA flags, the microcode must read
them independently and store them independently. Once again, this is
done rarely (and most of those cases only want one or the other). It
would appear that page fail is the only processing routine which needs
to read and save both VMA and the VMA flags.

MICROCODE CHANGES Page 5-16

5;h.5 Getting address'computations correct

As indicated in the chapter on extended addressing, the carry between
bit 18 and bit 17 (i.e., into the section bits) during an address
computation is a function of the local/global flag associated with the
address. That's one of the reasons that the local/global flag is
necessary in the register file. To get these address computations
correct, the microcode needs to enable conditional carry control based
on the local/global flag whenever address computations are done. The
exact. implementation of this is unclear, but there should really be
some hardware support for this function so that the microcode isn't
always checking bit O to see if a full carry should be done or not.
See the chapter on required hardware changes for some suggestions
about the hardware support required. ’

5.4.6 Storing PC and EA

Because both PC and EA use bit 0 as the local/global flag, and both
may contain junk in bits 1-5, bits 0-5 must be cleared before PC and
EA are stored into memory for things like MUUO, stack instructions,
etc. If PC or EA are being stored in 18 bits, there's no problem,
since the microcode can simply do half-word manipulations.

Also note that an EA that is a local reference to an AC must be
converted to the equivalent global AC address before being stored for
XMOVEl, XHLLI, MUUO, non-zero section LUUO, and page fail.

CHAPTER 6

CPU HARDWARE CHANGES

This section discusses the changes that must be made to the CPU
hardware to upgrade it from the KS10 design to the KDIO design.

6.1 Changes necessary for EA-calc

The following changes are necessary to support the "new EA-calc
microcode algorithms:

1. Because EA has been expanded into the left half of HR, there
is no longer room to store the opcode and AC field of the
instruction. Because certain instructions require this
information, the opcode and AC hardware registers must be
able to be read back into the data path. At present, it's
not clear what the best way to do this is.

2. The microcode must have the ability to force set/clear bit 0
of AD. Note that this is the output of the ALU and not the
output of the 2901s which makes it harder to do. We may have
to dink the function and the D inputs to the 2901 to get the
desired affect. Also note that any bits to the left of bit 6
are fair game and can be treated as indeterminate in the
operation. Therefore, if those bits are modified along with
bit 0, that's fine.

3. The microcode must have the ability to block the write enable
to bits 6-17 of the 2901 register file. This is analogous to
the HOLD LEFT and HOLD RIGHT macros, but must be independent
of both..

L., The microcode must have the ability to control the AD carry
from bit 18 to bit 17 based on the state of bit 0. This is
probably some modification to the existing SPEC decode.
Where the bit O contrel comes from is undefined at this
point.

5. The microcode needs a new dispatch that will allow it to
check the sign bit of the Y field (bit 18) and the format of
the index register in one dispatch. Since the Y field is in

CPU HARDWARE CHANGES Page 6-2

the register file, DP<18> seems to be the logical candidate
for that dispatch bit. The other dispatch bit comes from the
output of the RAM file (or DBUS) and computes the function
(RAM<0>==].0R.RAM<6:17>==0).

6. The microcode needs a new dispatch to check for IFIW and
illegal indirect in one dispatch. The two bits involved are
as follows:

IFIW := (VMA<6:17>==0 .OR. (DBUS<O>==] .AND. DBUS<0>==1))
ILLIW := (DBUS<O>==1 ,AND. DBUS<1>==1)

The combinations of these bits yield the following table:

IFIW ILLIW Result

0 (0] EFIW

0] 1 I1legal indirect
1 0 IFIW

1 1 IFIW

7. The microcode needs a new dispatch to determine if an EA-calc
must be pre-processed for PXCT. This dispatch would allow
the microcode to check for the case that PXCT is enabled and
bit 9 or 11 is on. Note that the microcode must be able to
select which bit because one is used for normal instruction
EA-calc and the other is used for byte EA-calc. This should
probably be a SKIP condition to make is most useful for entry
into the byte EA-calc subroutines.

8. The microcode needs a new dispatch to determine if an EA-calc
must be post-processed for PXCT. Because this check is at
the end of every EA-calc, the best bet appears to wuse (the
currently unused) bit 11 of the EA MODE DISP dispatch. To
limit the number of microcode locations used, the bit should
compute the function:

(-JRST .AND. -INDIRECT .AND. -E BIT .AND. D BIT .AND.
PXCT ENABLED) .

where "E BIT" and "D BIT" are bits 9 and 10 or 11 and 12 of
the PXCT AC register. Which pair of bits is used must be
selected by the microcode since one is used for instruction
EA-calc and the other is used for byte EA-calc. '

6.2 Dispatches for stack instructions

In order to make the check for the type of stack pointer fast, the
microcode could use a single dispatch that let it check PC section
non-zero and the format of the stack pointer with a single dispatch.
Because PC is contained in the register file, the easiest thing to do

CPU HARDWARE CHANGES Page 6-3

may be to take advantage of the dispatch being added to check for the
format of XR (see point 5 under Changes necessary for EA-calc above)
and add AD left.NE.O as another bit in that dispatch. This lets the
microcode read PC from the register file and mask the section bits at
the same time it reads AC from the AC blocks. The dispatch is then to
1-of-L locations.

6.3 Hardware support for G-floating

The addition of G-floating instructions requires that the SCAD path be
widened from 10 to 13 bits. See the comments in the chapter on
microcode changes for a discussion of the risk involved in making this
change.

The actual addition of hardware is fairly straight forward. Three
additional bits should be added to the right of bit 9 (making them 10,
11, and 12) for the FE and SC registers, the SCADA and SCADB input
mixers, and the SCAD ALU. At first glance, it would appear that the
inputs to the new SCADA and SCADB mixers would be analogous to the bit
9 of the existing mixers.

6.4 Workspace

The KS10 workspace is implemented with 1Kx1 RAMs addressed by 10 bits
selected from the RAMFILE ADR mixer. To allow room for a bigger cache
and more scratchpad area, the KD10 workspace uses 4Kxh RAMs. Because
the RAM is four times larger, two additional bits are needed for the
address, so two additional address mixers are required.

The current RAM address bits are RAMFILE ADR 00 through RAMFILE ADR
09. Let us call the two additional bits RAMFILE ADR -2 and RAMFILE
ADR -1. The changes to the RAM file addresses are 1limited to the
addition of the two new bits, plus changes to RAMFILE ADR 00 for one
case. The selects and enable for both new bits is identical to that
for RAMFILE ADR 00. For each select, the inputs to the three mixers
in question should be:

Select RAMFILE ADR -2 RAMFILE ADR -1 RAMFILE ADR 00

0 +3V TB PMA 25 TB PMA 26 (changed)
1 GND GND GND

2 VMA 2L VMA 25 VMA 26

3 DBM 24 DBM 25 DBM 26

L GND : GND GND

5 GND GND GND

6 VMA 24 VMA 25 VMA 26

7 DBM 24 DBM 25 DBM 26

Where TB PMA 25 and TB PMA 26 are PMA bits 25 and 26 after translation
through the TB. '

CPU HARDWARE CHANGES : ‘ ‘Page 6-4

6.5 Extension of VMA

Since the virtual address has been extended to 30 bits, the size of
the address portion of VMA must be expanded from bits 14-35 to 6-35.
This requires another two D flops on DPML. There are other
implications of making this change, however.

At present, the microcode can load VMA and VMA flags at one time and
read both into the data path through select 5 of the DBM mixer.
Because 8 additional bits have been added to the address portion of
VMA, it is no longer possible to operate on both VMA and VMA flags at
one time. This is normally not a problem for loading the VMA flags
(see the section on microcode changes for details). However, the
ability to read and write both VMA and VMA flags is still required.

To retain the existing functionality, there are several additional
changes that must be made, as follows:

1. The microcode must have independent control over VMA and VMA
flags. At present, there is a single control (VMA EN) which
causes both to be loaded. This could be done by using
another microword bit to enable loading the VMA flags.

2. The local/global flag carried in bit 0 of the data path
should be latched along with the VMA address bits from bit 0
of the data path. This will be used as part of the
determination of an AC reference.

3. The VMA address bits should be read into data path bits 6-35
via select 5 of the DBM mixer. The local/global flag should
be read into bit 0 via the same mixer. Bits 1-5 of the mixer
should be tied low so that those bits appear as zeros.

L, The VMA flags should be read into data path bits 22-35 of the
DBUS mixer on DPEL, replacing the VMA bits. The VMA flags
and the appropriate bit connections are:

Bit VMA flag signal

22 VMA USER

23 NC

24 VMA FETCH

25 MEM READ

26 MEM WR-TEST
27 MEM WRITE

28 NC

29 MEM CACHE INH
30 VMA PHYSICAL
31 VMA PREVIOUS
32 VMA 1/0

33 VMA WRU CYCLE
34 VECTOR CYCLE
35 1/0 BYTE CYCLE

CPU HARDWARE CHANGES , Page 6-5

5. When the VMA flags are loaded from the data path (as opposed
to from # bits; see DPM4), the input bits should be changed
to correspond to the bit assignments above. This makes it
easier and faster for the microcode to save and restore the
VMA flags.

There is one additional change to the VMA logic. Because the AC REF
rules change with extended addressing, there is more logic involved in
the determination of AC REF (see DPML). Besides the existing logic,
an address references an AC instead of memory if bits 6-16 are zero or
if the local flag is on (this assumes that the check for VMA 18-31
equal zero remains).

6.6 Pl changes

The current KS10 design allows a software interrupt to be started even
if the level is off. The KD10 should be changed to start the software
interrupt only if the level 1is on. This change can be made by
reversing the order of the AND and OR gates whose inputs are
Pl ACTIVE n L and Pl SOFT REQ n L on DPEB.

6.7 Translation buffer

The KS10 translation buffer used pairs of chip-selected 256xk RAMs to
construct a 512 word translation buffer. In order to improve the hit
rate in the translation buffer, the KD10 uses 1Kx4 RAMs which double
the size of the translation buffer. As with the KS10, the TB is
one-way associative and has a one-word block size.

The increased size of the data cache requires PMA bits 25 and 26 for
the address and these bits have to be translated through the TB before
the cache can use them. The use of 1Kx4 RAMs for bits 25 and 26 may
not work because these bits may have to be translated quickly in order
to supply the cache address early. |If this is so, we may have to
continue to use 256xks for these two bits. The following discussion
assumes that 1Kxks are used throughout but the changes to use 256xis
for two bits should be straight forward.

The contents of the translation buffer RAMs is considerably different
from the KS10 since the virtual address space is larger than the size
of the TB. In addition, the data cache uses physical addresses, so
the translation buffer must hold the translated PMA. The bits in the
translation buffer are as follows:

CPU HARDWARE CHANGES Page 6-6

Signal No. Bits Use
PAGE VALID 1 Indicates entry is valid
PAGE WRITEABLE 1 Indicates page is writable
PAGE CACHEABLE 1 Indicates page is cachable
PAGE USER 1 Indicates entry is for user space
PAGE PARITY 1 Parity bit for entry
PAGE CST UPDATE 1 Indicates CST update is needed
PAGE VMA 6:16 1 Rest of VMA for this entry
PAGE PMA 1L:26 13 PMA page bits for this entry
Total 30 = 8 1Kxk RAMs

The translation buffer is addressed by VMA bits 17:26 with bit 17
XORed with VMA USER to offset equivalent exec and user entries by half
the translation buffer.

The check for a page fail is quite similar to the existing KS10 1logic
with a few changes to the priority encoder (E409) on DPM6 and the
addition of several comparitors. Three compar itors should be added to
compare PAGE VMA<6:16> with VMA<6:16> and PAGE USER with VMA USER.
The cascaded result of these three comparitors replaces the XOR gate
PAGE FAIL 5 EN on DPM6. These comparitors compare the rest of the
virtual address of the entry in the TB with the requested address plus
the requested address space with that stored in the entry.

The inputs to the priority encoder should then be arranged as follows:

Input Signal
3 - PAGE VALID
L - comparitor match (from above)
5 Address break
6 PAGE FAIL 6 EN (existing write-test check)
7 PAGE CST UPDATE (new bit in TB)

The inputs have to change around from what they are in the KS10 design
because there are two new conditions (address break and CST update
needed) which can cause a page fail. Inputs 3 and 4 check for a valid
match, i.e., the entry is wvalid, the .upper VMA bits match the
requested VMA, and the address space is correct. Conditions 5-7 all
require that the entry be valid in order for them to be valid. Input
5 comes from the address break logic described elsewhere. input 6
comes from the existing write-test check, and input 7 comes from new
CST update bit in the TB.

The data inputs to the TB RAMs should also be moved around to make s
easier and faster to reload a TB entry. The data inputs should be as
follows: i

CPU HARDWARE CHANGES o Page 6-7

RAM signal Data input comes from
PAGE VALID DP 2

PAGE WRITEABLE DP L

PAGE CACHEABLE DP 6

PAGE USER VMA USER

PAGE PARITY Parity generator

PAGE CST UPDATE DP 3

PAGE VMA 6:16 VMA 6:16

PAGE PMA 1h4:26 DP 23:35

The inputs to PAGE WRITEABLE and PAGE CACHEABLE should be changed so
that the microcode can load the result of the AND of the W and C bits
from the pointer trace (which happen to be bits 4 and 6) directly into
the TB.

6.8 Cache

The KS10 data cache occupied the top 512 locations of the workspace.
The cache directory was constructed from pairs of chip-selected
256xks. The cache was also virtually addressed.

The KD10 cache has been expanded to 2K and occupies the top 2K
locations in the LK workspace. Like the KS10 cache, it is one-way
associative, and has a one-word block size. The addressing of the
data cache (in the workspace) is described in the section on the
workspace above.

The cache directory is constructed of pairs of chip-selected 1Kxhs.
Although it could be constructed of 4Kxks which only use half the RAM,
there is a performance advantage in using the 1Kxks. Not only are the
1Kxhks faster than the 4Kxks, it also takes half the time to sweep the
cache with 1Kxks because both RAMs in the pair can be enabled during
the sweep. This scheme is used in the KS10 design to speed up cache
sweeps. Making cache sweep fast is important because the cache is
swept on every WREBR and WRUBR that changes the UPT to insure that
there is no stale data in the cache after an |1/0 write.

The cache directory is addressed by TB PMA<25:26> and VMA<27:35>. It
contains CACHE PMA<1L:24>, 1 wvalid bit, and | parity bit. The data
input lines to the directory come from TB PMA<1h:2L>,

The cache directory comparitors compare CACHE PMA<14:2L4> with
TB PMA<1L:24> as part of the check for a cache hit. The rest of the
cache hit logic is similar to that of the KS10.

6.9 Microcode dispatches

There is a distinct lack of available dispatches in the KSI10
microcode. Since so much new functionality is being added, it might
be a good idea to add another bit of enable to the DISP field to aliow

CPU HARDWARE CHANGES : Page 6-8

an additional 8 dispatches.

6.10 Miscellaneous

To make it easier for the microprogrammer, the inputs to the CURRENT
BLOCK and PREVIOUS BLOCK registers on DPE5 should be changed from
DP<6:11> to either DP<0:5> or DP<18:23>, whichever is easier for the
microcode. This change is due to the change in format between the
KS10 WRUBR and that on the KD10.

The trap enable bit on DPEB should be loaded from DP<8> instead of
DP<22> due to the change in the format of WREBR.

The address break logic needs to be added if it will fit. The style
of address break is similar to that on the KL10. That is, there is
one virtual break address and the ability to break on exec/user
reference for a read, write, or instruction fetch. The address and
qualifier compare can be driven directly from VMA. There also needs
to be a way for the microcode to load the address, qualifiers, and the
enable into the hardware from the data path. Since the microcode
would probably keep the last setting of address break in the
workspace, there is not need for the address break registers to be
read back into the data path. Note that, in addition to the
comparitors, the inhibit address failure PC flag must be added and
cleared at the right time. Copying the KL10 implementation might be a
good idea since the KC10 was radically different.

CHAPTER 7

MEMORY CONTROLLER AND MEMORY ARRAY CHANGES

This chapter discusses the hardware changes necessary to the KS10
memory controlier and memory array modules.

7.1 Memory controller

Because the KD10 bus contains 22 bits of address lines, support for a
full 4 MWords of physical memory (which happens to require 22 bits) is
easier than it might be. The main changes seem to be the inclusion of
two additional row/column bits on MMC3 and the appropriate changes to
the address match logic on MMCS8.

At present, the address match logic is designed with the knowledge
that the KS10 would support only 512K of memory and the '"MOS BOARD IN"
mixer and the XOR gates comparing bits 14-16 of the address will have
to change to reflect the larger size of the array boards.

7.2 Memory array modules

The KD10 memory array modules use 256K MOS RAM chips to supply 1 MWord
by 44 bits per module. To convert the KS10 array boards (which use
16K RAMs), the main change seems to be the addition of n copies of two
additional bits worth of MOS drivers (see MMA2).

CHAPTER 8

1/0 ADAPTER HARDWARE CHANGES

This chapter discusses the changes to the [/0 adapter hardware to
support the KD10 /0 structure.

8.1 Changes to the KS10 UBA

There are two obvious changes required to the KS10 UBA. The first
requires adding two additional bits to the UBA paging RAM to support
the full 22-bits of physical addressing. The two additional bits go
into the mixer on UBAS.

In addition to this, there is a much larger change required to support
the UDA5O. At present, the UBA supports PDP-11 byte and word
transfers, and Massbus transfers by using the two parity lines and the
16 data lines to provide a path for the 18 bits of data. The UDA50
only supports 16-bit PDP-11 word transfers and the chance of getting
this changed to use the parity bits for 18 bit transfers seems low.

As a result, the UBA must be changed to do some rudimentary data
packing and unpacking to convert 36-bit memory words to and from
16-bit PDP-11 words on the Unibus. In order to add this kind of
logic, something else will probably have to be removed. As a result,
we'll probably need two kinds of UBAs; one for the UDA50 and one for
other Unibus devices.

In order to perform the required data packing, the UBA needs a 72-bit
assembly register on the memory side into which it can pack or unpack
9 8-bit PDP-11 bytes. The data packing used is commonly called high
density mode, which can be described pictorially as follows:

0 78 15 16 23 24 31 32 35
: Byte 1 ! Byte 2 ! Byte 3 | Byte 4 IByte 5:
lByte 51 yee 6 1 Byie 7 1 Byre 8 1 Byeed
!0 34 11 12 19 20 27 28 35!

Note that byte 5 is split across the two words. Because these two

/0 ADAPTER HARDWARE CHANGES Page 8-2

words contain an odd number of bytes, it may need a holding register
on the Unibus side also. :

8.2 Changes to the UDA50

At present, the UDA50 supports only 512 byte sectors. A PDP-10 disk
‘sector contains 128 36-bit words, or 576 bytes. The HSC50 supports
both 512-byte and 576-byte sectors and for performance and convenience
reasons, it would be nice if the UDA50 did the same thing.

A brief conversation with one of the UDA50 engineers in Colorado led
us to believe that the change required to support 576-byte sectors was
a simple change to the UDA50 microcode. This should be pursued to
determine what the cost of the change would be.

The alternative is to store one PDP-10 disk sector on two 512-byte
sectors on the RA60/RAB1. This will cost in both performance and in
disk capacity of the disks and will also make the disks unreadable on
a non-KD10 TOPS~20 machine.

CHAPTER 9

CONSOLE HARDWARE AND MICROCODE CHANGES

This chapter discusses the console hardware and microcode changes that
are necessary to upgrade the KS10 design to the KDiO design.

9.1 Console hardware changes

The obvious console hardware changes fall into three categories;
there may be others. :

In order to get the KD10 started the first time, we probably need some
sort of boot device. The cheapest seems to be the TU58 (used on the
HSC50, etc.). |If it turns out that we do indeed need a boot device,
the console hardware must be changed to provide some sort of interface
to that device.

The ability to obtain a performance of 0.3 to 0.5 times a KL10
requires that the KS10 clocks be increased in frequency. Our very
preliminary investigations indicate that it might be possible to
double the speed of the clocks from 150 ns to 75 ns. To do this, the
clock logic on the console module must be changed. This might be as
simple as replacing the crystal oscillator.

One performance optimization that was suggested for the KS10 was
increasing the resolution of the microcode T field. With the KS10's
150 ns cycle time, each additional number in the microcode T field
increased the microcycle time by 150 ns. In some cases, this was
considerably in excess of what was really required. It was suggested
that each additional value in the T field extend the microcycle time
by half the cycle time. Therefore, with the proposed KD10 cycle time
of 75 ns, each T field value would increase the microcycie time by
37.5 ns. To do this will require changes to the T field logic on CSL5
as well as increasing the size of the microcode T field by 1 bit.

CONSOLE HARDWARE AND MICROCODE CHANGES Page 9-2

9.2 Console microcode changes

We haven't looked closely at the changes required to the console
microcode. As a result, there are bound to be more changes than are
listed here. A close examination of the console microcode will be
necessary to determine what additional changes are necessary.

There are two areas that obviously require change. The first is the
need to add code to support the boot device. |[|f we use a TU58 as the
boot device, a driver will have to be written to allow the console to
read and write the TU58. The same is true of any other boot device.

In addition to this, the console microcode must be changed to add
RA60/RA81 disk support. To do this, the console microcode must have
the code necessary to position and transfer to an RA60/RA81 through a
UBA and a UDA50 disk controller. This may be non-trivial both in
complexity and the amount of code involved. |f additional code space
is needed, the tape driver support may have to be removed.

CHAPTER 10

SOFTWARE CHANGES

This chapter discusses the monitor and diagnostic software changes
that are required to support the KD10 design. The KD10 design is very
similar to the KC10 design, at least from a functional view point. As
such, the recommended approach is to start with the KC10 monitor and
diagnostic work and upgrade that to minimize the amount of work
necessary for FCS.

I't should be noted that this list of changes is the result of our
talking to various people.in the software groups and not the result of
exhaustive investigations by these groups. A more detailed
investigation needs to be done in order to insure that this list is
complete.

10.1 Monitor software changes

The changes described in this section assume that the existing KC10
monitor code 1is used as a starting point for all processor-related
code. Because |/0 is much different from the KC10 design, it is also
assumed that the old KS10 /0 code is used as a starting point for
I/0-related code.

The first step is to make the changes to the existing code to reflect
the fact that the KD10 processor-related design isn't quite the same
as the KC10 design. The changes related to the processor are as
follows:

1. Update parameter files for new opcode and bit definitions.

2. APRID stores one word at locatioh E instead of two words at
locations E and E+1.

3. The SWPUA and SWPIA instructions have been removed and should
not be used.

L. The APR flags defined by WRAPR/RDAPR are different from the
KC10 and the monitor code should change accordingly. Note
that most of these changes are in the error handling code.

SOFTWARE CHANGES Page 10-2

5. The SETCU instruction has been added but the monitor
shouldn't be changed to use this if it will delay FCS.

6. The format of WRUBR/RDUBR has changed and replaces the KCI10
WRCTX/RDCTX.

7. The interval timer and timebase instructions are
significantly different. Since they are identical to the
KS10, that code could be lifted from release k4. Note that
there is no user runtime meter with which to do accounting.

8. The halt status block address must be setup with WRHSB during
monitor initialization.

9. There is no WRIOP instruction. The console communication
must be done via physical page O because that's where the
8080 1ooks.

10. The format of MAP has changed in that the valid bit has moved
from bit 3 to bit 2. In addition, the number of bits of
physical address has changed.

11. The page fail word format is very different. |f the monitor
page fail handler was looking at any bits other than the user
bit, the level field, and the code field, there may not be
equivalent bits in the KD10 page fail word. Also, the FCS
machine probably won't store the additional data words in the
page fail block. The monitor shouldn't depend on these words
for FCS.

12. Interrupts are handled with interrupt vector words as on the
KC10, but there is no 1/0 page in which the words are stored.
Rather, the words are either stored in the EPT or in tables
pointed to by the EPT.

Note that BOOT and DDT must also be changed as appropriate.

The largest changes to the monitor involve the 1/0-related code.
Because the 1/0 structure is very similar to that on the KS10, it
bears little resemblance to the KC10 structure. Ideally, the monitor
code would start with the KS10 code. The problem is that KS10 support
was removed from TOPS-10 in release 5. As a result, it may be
difficult to merge the KS10 code back into the new monitor in any
mechanical way.

In any event, the |/0O-related changes are as follows:

. A new disk driver must be written for support of the
RA60/RA81 disks through the UDA50 controller. The UDA50
talks a subset of MSCP, but does no transfer optimizations.
As a result, the code requires pieces from the old PHYSIO
code (which did its own seek and transfer optimizations) and
the new PHYKLP code which talks MSCP, but lets the HSC do all
the optimizations.

SOFTWARE CHANGES Page 10-3

2. A KS10-like terminal line driver must be written to handle
terminals and the KLINIK 1lines. This may differ from the
KS10 driver because the current plan is to use DMZ32 and
DMF32 line interfaces which may use different protocols than
the KS10 DZ11s.

3. Some sort of DECnet driver must be implemented. This could
be a serious problem because the KS10 DECnet code was all
phase |l and upgrading the existing phase |!| code to support
the KS10 could be a major undertaking. The ultimate solution
is obviously phase 1|Il over the NI, but that won't be
supported in TOPS-20 wuntil release 6.1. As a short-term
expedient to getting the system out the door, we may have to
live with phase Il support until 6.1 is ready. Note that
such a decision means that a KD10 wouldn't be able to talk
directly to a VAX (since the VAX phase IV won't talk to phase
).

L, A new line printer driver similar to that on the KS10 will be
required to drive line printers through the DMF32.

5. |If tapes are supported on the KD10, a new tape driver may be
required.

10.2 Diagnostic software changes

Because the KD10 hardware design 1is similar to the KS10 and the
architectural design is similar to that of the KC10, a large number of
diagnostics can ke converted from the KS10 and KC10 efforts.

The KD10 architectural design is very similar to that of the KC10 from
a functional viewpoint. As such, it seems most profitable to convert
the KC10 functional diagnostics (DCKAA-DCKAO, DCKBA, etc.) to be
compatible with the KD10 design. The first step in this process is to
convert the KC10 diagnostic monitor and functional diagnostics to take
into account the differences between the KC10 and KD10 designs (a
process similar to the monitor software effort). Beyond that, the
~KC10 diagnostic monitor must be converted to the KD10-style 1/0
scheme, which can probably be lifted from the KS10 diagnostic monitor.

In addition to this, some KC10 functional were never completed (the
extended addressing and PXCT test, for example). These tests will
have to be completed to provide a compiete test set.

The hardware diagnostics can probably be converted from the existing
KS10 hardware diagnostics since the basic structure of the KD10 and
KS10 is similar. Additional tests will probably have to be written to
test the new hardware functionality.

Since there is a reasonable chance that the microword format will
change, at least slightly, it will probably be necessary to make
changes to the microcode conversion and checking utilities that

SOFTWARE CHANGES Page 10-4

currently exist for the KS10 microcode.

Finally, additional peripheral diagnostics will probably have to be
developed. Since the KD10 uses Unibus 1/0 for everything but disks,
the existing diagnostics may be adequate. They are certainly not
adequate for diagnosing the disk subsystem. A diagnostic for the
UDA50/RA60/RA81 will have to be developed. This includes a disk
formatter.

CHAPTER 11

ADDITIONAL 'INVESTIGATIONS

This chapter discusses additional investigations that are required.
It also makes recommendations for possible future performance
enhancements.

11.1 Possible performance enhancements
11.1.1 Cache sweeps

The existing design causes the translation buffer and cache to be
swept on WREBR and WRUBR that changes the UPT and it is quite costly
in time to perform the sweep. Although the cache is physically
addressed, it must be swept because the |/0 adapters don't invalidate
words in the cache on writes to memory. Since the monitor appears to
do a WRUBR before it makes the 1/0 data available to the user, a cache
sweep on WRUBR keeps the data consistent.

Because of the structure of the machine, it appears to be nearly
impossible to cause the |/0 adapters to invalidate the cache on writes
to memory. There appear to be two possibilities for improving the
performance of cache sweep. The cache directory RAMs could be
implemented using a RAM part that has a single master reset line. In
this way, the entire cache directory could be cleared in one cycle.
The second possibility is to put explicit cache sweep instructions
back into the instruction set and to remove the cache sweep from the
WRUBR. It would then be up to the monitor to do a cache sweep when
appropriate. There is only an advantage in doing this if multiple
WRUBRs are being done between an |/0 adapter write and the time the
data is given to the wuser. If this is true, the monitor couild,
through software means, perform exactly one cache sweep. This
obviously has the potential for causing software bugs, and this must
be part of the evaluation.

ADDITIONAL INVESTIGATIONS , Page 11-2

11.1.2 Cache and TB organizations

The current design uses a one-way associative, one-word block size
cache and TB. Some performance gain could result from increasing the
associativity and/or the block size of each. This would probably
require that the data cache be removed from the workspace. If the
translation buffer is made larger or the associativity increased, the
addition of the '"Keep me" bit might also help. The K bit has been
reserved as bit 7 of paging pointers for this purpose.

11.1.3 Barrel shifter

At present, the design uses a 1-bit shifter. This appears to cause
performance problems for shift instructions, byte instruction, string
instructions, and possibly floating point instructions. One
possibility for improving this situation is to build a custom CMOS
shifter that would provide a 72-bit in, 36 bit out shifter. The
inputs to the chip would come from DP and the outputs would be
connected to some (unspecified) input mixer. The chip might ook
like:
To data path

B el T +
! e e L !
! 10utput latch!
! R ettt !
! !
! |
! [——————— /
! / 72-bit in /
! / 36-bit out /===Shift count
! / shifter /
: fmmmmmmmmmmee /
! ! !
! -———— Fom———
! ! 1
I e e
! Sel-o! Mux latch ! I Mux latch lo-Sel
! Ena-o-----===-=-mme e o-Ena
! ! ! !]
- e + !
! |
e +

From DP

The input mux latch selects and enables can be individually selected
by the microcode. The internal feedback paths provide the
output-into-input function that is common in byte instructions.

