_87-

DEC-10-OMPBA-A-D

decsystennio
BEGINNER'S GUIDE TO
MULTIPROGRAM BATCH

digital equipment corporation - maynard. massachusetts

BEGINNER'S BATCH

88

Copyright © 1972 by Digital Equipment Corporation

The material in this manual is for informa-
tional purposes and is subject to change
without notice.

~

The following are trademarks of Digital Equipment
Corporation, Maynard, Massachusetts:

DEC PDP
FLIP CHIP FOCAL
DIGITAL COMPUTER LAB

1st Edition May 1972

-89 - BEGINNER'S BATCH

FOREWORD

The Beginner's Guide to Multiprogram Batch has been written for the inexperienced or casual user
who has little knowledge of programming techniques and who requires only a ru‘dimenfqry knowledge
of Batch operations, i

HOW TO USE THIS MANUAL

For those users whose mode of input is cards, the following chapters or sections of chapters should

be read. \\ '
Chapter 1 Introduction
Chopter 2 Entering a Job to Batch from Cards
Chapter 4 Interpreting Your Printed Output

Chapter 5, Section 5.2 Using Cards to Enter Jobs

, ‘
According to the language in which his program is written, the user should pay particular attention
to the following sections.

FORTRAN - Section 2.2.3 Card Deck to Run FORTRAN Programs
ALGOL = Section 2.2.1 Card Deck to Run ALGOL Programs
COBOL = Section 2.2,2 Card Deck to Run COBOL Programs
“MACRO = Section 2,2.4 Card Deck to Run MACRO Programs

BASIC - Section 2.3.1 Card Decks for Programs That Do Not Have Special
Control Cards

For users who input their jobs through interactive terminals, the following chapters or sections of
chapters are recommended.

Chapter 1 Introduction

Chapter 3 Entering a Job to Batch from a Terminal

Chapter'd Interpreting Your Printed Output

Chapter 5, Section 5.1 Using the Terminal to Enter Jobs

BEGINNER'S BATCH -90 -

REFERENCES

Not all of the commands and cards for Batch are described in this manual. Those users who wish

to know more about Multiprogram Batch can refer to Chapter 3 in the DECsystem-10 Operating

System Commands manual. Also in that manual, the SUBMIT command is described in Chapter 2.

An elementary description of the basic monitor commands can be found in the document Getting

Started with Timesharing. The DECsystem-10 Operating System Commands manual contains the

descriptions of all the monitor commands available to the user.

Error messages from the system programs supplied by DEC that are invoked by the user's job are
explained in the applicable manuals. For example, if a user's FORTRAN program fails to compile
successfully, the error messages he receives from the FORTRAN compiler can be found in

Chapter 11 of the FORTRAN IV Programmer's Reference Manual in the DECsystem=10_Mathematical

Languages Handbook.

-9 - ; BEGINNER'S BATCH

CONVENTIONS USED IN THIS MANUAL -

The following is a list of symbols and conventions used in this manual.

dd-mmm-=yy hhmm A set of numbers or numbers and a word
that indicates the date and time, e.g.,
15-5-72 1415 or 15-MAY~72 1415
means 2:15 PM on May 15, 1972,

filename. ext The name and extension that can be put
on afile. The name can be 1 to 6
characters in length and the extension
can be 1 to 4 characters in length. The
first character of the extension must always
be a period. The extension is optional.
Refer to the glossary for definitions of file-
name and filename extension.

hh:mm:ss A set of numbers representing time in the
form hours:minutes:seconds. Leading
zeros can be omitted, but colons must be
present between two numbers, For
example, 5:35:20 mieans five hours, 35
" minutes, and 20 seconds.

jobname) The name that is assigned to a job. It
can contain up to 6 characters. Refer
to the glossary for the definition of o job.

{proj, prog] : The user number assigned to each user,
commonly called a project=-programmer
number, It must be enclosed in square
brackets. The two numbers that make up
the project-programmer number must be
separated by a comma or a slash. Refer
to the glossary for the definition of o
project=programmer number.

n A number that specifies either a required
" number or an amount of things such as
cards or line-printer pages. This number
can contain as many digits as are nec-
essary to specify the amount required,
e.g., 5, 25, 125, etc,

t A number representing an amount of time
usually in minutes. This number can
contain as many digits as are necessary
to specify the amount of time required,
e.g., 5, 25, 125, etc.

BEGINNER'S BATCH

Term

ALGOL

Alphanumeric

ASCII Code

- Assemble

Assembler

Assembly Language

Assembly Listing

BASIC

Batch processing

Card

..92._

GLOSSARY

Definition

ALGOrithmic Language. A scientific oriented
language that contains @ complete syntax for
describing computational algorithms.

The characters which include the letter of the
alphabet (A through Z), the numerals (0 through 9),
and letters of the other special symbols such

as =, /r *l $/ 'l(l)l +.

American Standard Code for Information Inter-
change. A 7-bit code in which information is
recorded.

To prepare a machine-language program from a
symbolic=language program by substituting
absolute operation codes for symbolic operation
codes and absolute or relocatable addresses for
symbolic addresses.

A program which accepts symbolic code and
translates it into machine instruction, item by
item. The assembler on the DECsystem=10 is
called the MACRO assembler.

The machine-oriented symbolic programming
language belonging to an assembly system.
The assembly language for the DEC~system=10
is MACRO.

A printed list which is the byproduct of an
assembly run. It lists in logical=instruction
sequence all details of a routine showing the
coded and symbolic notation next to the actual
assigned notations established by the assembly
procedure.

Beginner's All-purpose Symbolic Instruction Code.
A time-sharing computer programming language
that is used for direct communication between
teletype units and remotely located computer
centers. The language is similar to FORTRAN i
and was developed by Dartmouth College.

The technique of executing a set of computer
programs in an unattended mode.

A punch card with 80 vertical columns represenfing
80 characters. Each column is divided into two
sections one with character positions labeled zero
through nine, and the other labeled eleven (11)
and twelve (12). The 11 and 12 positions are

also referred to as the X and Y zone punches, re=
spectively.

vi

-93- BEGINNER'S BATCH

GLOSSARY (Cont)

Term Definition

Card Column One of the vertical lines of punching positions
on a punched card, - - - ‘

Card Field A fixed number of consecutive card columns
assigned to a unit of information.

Card Row One of the horizontal lines of punching
positions on a punched card,

Central processing unit (CPU) The portion of the computer that contains the
: arithmetic, logical, control circuits, and 1/O
interface of the basic system.

Central Site The location of the central computer. Used in
' conjunction with remote communications to mean
the location of the DECsystem=10 central processor.

Character One symbol of a set of elementary symbols such as
those corresponding to the keys on a typewriter.
The symbols usually include the decimal digits
0 through 9, the letters A through Z, punctutation
marks, operation symbols, and any other special
symbols which a computer may read, store, or write.

COBOL COmmon Business Oriented Language. An auto-
matic programming language used in programming
data processing applications.

Command - ‘ The part of an instruction that causes the computer
to execute a specified operation.

Compile : To produce a machine or intermediate language
routine from a routine written in a high level
source language.

Compiler A programming system which translates a high level
source language into a fanguage suitable for a
particular machine. A compiler is a translator that
converts a source language program into inter-
~mediate or machine language. Some compilers used
on the DECsystem=10 are: ALGOL, BASIC,
COBOL, FORTRAN,

"Computer A device with self-contained memory capable of
accepting information, processing the information,
and outputting results,

Computer Operator A person who manipulates the controls of a computer
. and performs all operational functions that are re-
quired in a computing system, such as, loading a
tape transport, placing cards in the input hopper,
removing printouts from the printer rack, and so forth.

Continuation Card A punched card which contains information that
' was started on a previous punched card.

the processing of his job.

Control File The file made by the user that directs Batch in

vii

BEGINNER'S BATCH

Term

Core Storage

CPU

Cross Reference Listing

Data

Debug

Disk

Dump

Execute

Extension

File

Filename

Filename extension

FORTRAN

Job

-94 -

GLOSSARY (Cont)

Definition

A storage device normally used for main memory
in o computer.

See central processing unit.

A printed listing that identifies all references of
an assembled program to a specific label. This
listing is provided immediately after a source
program hos been assembled.

A general term used fo denote any or all facts,
numbers, letters, and symbols, or facts that
refer to or describe an object, idea, condition,
situgtion, or other factors, It represents basic
elements of information which can be processed
or produced by a computer,

To locate and correct any mistakes in a
computer program.

A form of mass storage device in which informa-
tion is stored in named files.

A listing of all variables and their values, or a
listing of the values of all locations in core.

To interpret an instruction and perform the
indicated operation(s).

See filename extension.

An ordered collection of 36-bit words comprising
computer instructions and/or data. A file can be
of any length, limited only by the available space
on the device and the user's maximum space allof-
ment on that device.

A name of one to six alphanumeric characters
chosen by the user to identify a file.

One to four alphanumeric characters usually
chosen to describe the class of information

in a file. The first character of the extension
must always be a period.

FORmula TRANslator. A procedure oriented
programming language that was designed for
solving scientific type problems. The language is
widely used in many areas of engineering, ‘mathe-
matics, physics, chemistry, biology, psychology,
industry, military, and business.

The entire sequence of steps, from beginning to
end, that the user initiates from his interactive
terminal or card deck or that the operator
initiates from his operator's console.

viii

Term

Jobstep
K
Label

Log File

Monitor

Monitor Command

Mounting a device

Multiprogramming
Object Program
Password

Peripheral devices

Project-programmer number

Program

Programming

- 95 - - BEGINNER'S BATCH

GLOSSARY (Cont)

‘ Definition
A serial or parallel sequence of procésses invoked
by a user to perform an operation.

A symbol used to represent a thousand; for
example, 32K is equivalent to 32,000.

A symbolic name used to identify a statement
in the control file.

A file into which Batch writes a record of a user's
entire job. This file is printed as the final step in
Batch's processing of a job.

The collection of programs which schedules and
controls the operation of user and system programs.

An instruction to the monitor to perform an operation.

To request assignment of an /O device via
the operator. :

A technique that allows scheduling in such a way
that more than one job is in an executable state
at any one time.

The program which is the output of compilation or
assembly. Often the object program is a machine
language program ready for execution.

The word assigned to a user that, along with his user
number (project-programmer number), identifies him

uniquely to the system.

Any unit of equipment, distinct from the central
processing unit, which can provide the system
with outside communication. :

Two numbers separated by a comma, which, when
considered as a unit, identify the user and his file
storage area.

The complete plan for the solution of a problem,
more specifically the complete sequence of machine
instructions and routines necessary to solve

a problem.

The science of translating a problem from its

" physical environment to a language that a com-

puter can understand and obey. The process of
planning the procedure for sorving a problem,

This may involve among other things the analysis
of the problem, preparation of o flowchart, coding
of the problem, establishing input -output formats,
establishing testing and checkout procedures,

“allocation of storage, preparation of documenta-

tion, and supervision of the running of the program
on a computer.,..

BEGINNER'S BATCH

Term

Queve

Software

Source Deck

Source Language

Source Program

Terminal

_96-

GLOSSARY (Cont)

Definition

A list of jobs to be scheduled or run according
to system, operator, or user—assigned priorities.
For example, the Batch input queve.

The totality of programs and routines used to
expend the capabilities of computers, such as
compilers, assemblers, operational programs,
service routines, utility routines, and
subroutines.

A card deck comprising a computer program,
in symbolic language.

The original form in which a program is pre=
pared prior to processing by the computer.

A computer program written in a language
designed for ease of expression of a class of
problems or procedures, by humans. A trans-
lator (assembler, compiler, or interpreter) is
used to perform the mechanics of translating
the source program into a machine language
program that can be run on a computer.

A keyboard unit that is often used to enter
information into a computer and to accept
output from a computer. It is often used as

a time=sharing terminal on a remotely located
computer center.

CHAPTER 1
1.1
1.2
1.2.1
1.2.2
1.2.3
1.2.4
1.3

CHAPTER 2
2.1
2.2
2.2.1
2.2.2
2.2.3
2.2.4
2.3
2.3.1
2.4
2.4.1
2.4.2
2.4.3
2.4.4
2.4.5
2.4.6
2.4.7
2.4.8
2.4.9
2.4.10
2.4.11
2.4.12
2.4.13
2.5

CHAPTER 3.
3.1

3.1.1

3.2

3.2.1
3.2.2

- 97-
CONTENTS

INTRODUCTION

What is Multiprogram Batch
How to Use Batch

Setting Up Your Job
Running Your Job
Receiving Your Output
Recovering from Errors

Summary

ENTERING A JOB TO BATCH FROM CARDS
Format of the Cards in Your Deck

Setting up Your Card Deck

Card Deck to Run ALGOL Programs

Card Deck to Run COBOL Programs

Card Deck to Run FORTRAN Programs

Card Deck to Run. MACRO Programs -
Putting Commands into the Control File from Cards
Card Decks for Programs that do not have Special Control Cards
Control Cards for Batch (in Alphabetical Order)
The $ALGOL Card

The $COBOL Card

The $DATA Card

The $DECK Card

The End-of-File Card

The $EOD Card

The $ERROR Card

The $FORTRAN Cord

The $JOB Card

The $MACRO Card

The $NOERROR Card

The $PASSWORD Card

The $SEQUENCE Card

Specifying Error Recovery in the Control File

ENTERING A JOB TO BATCH FROM A TERMINAL
Creating the Control File

Format of Lines in the Control File

Submitting the Job to Batch

Queue Operation Switches

General Switches

.
Xi

BEGINNER'S BATCH

Page

99
99
99
100
100
100
100

103
104
105
106
106
107
108
109
1m

113
115
119
121
121
122
123
125
127
129
130
131
131

137
138
139
140
141

BEGINNER'S BATCH - 98 -

3.2.3
3.2.4
3.3

3.3.1
3.3.2
3.3.3
3.3.4
3.3.5
3.4

CHAPTER 4
4.1

4.2

4.3

4.4

4.4.1
4.4.2
4.4.3

CHAPTER 5
5.1
5.2

CONTENTS (Cont)

File-Control Switches

Examples of Submitting Jobs

Batch Commands (in Alphabetic Order)

The .BACKTO Command

The .ERROR Command

The .GOTO Command

The .IF Command

The .NOERROR Command

Specifying Error Recovery in the Control File

INTERPRETING YOUR PRINTED QUTPUT
Output from Your Job

Batch Output

Other Printed Output

Sample Batch Qutput

Sample Output from a Job on Cards

Sample Output from a Job from a Terminal

Sample Dump

PERFORMING COMMON TASKS WITH BATCH

Using the Terminal to Enter Jobs
Using Cards to Enter Jobs

xii

Page
143
144
146
146
146
147
148
149
150

153
153
154
154
154
157
160

169
169
176

-99 - : BEGINNER'S BATCH

CHAPTER 1
INTRODUCTION

1.1 WHAT IS MULTIPROGRAM BATCH

Multiprogram Batch is a group of progror;ls that allow you to submit a job to the DECsystem=10 on a
leave=it basis, That is, you give the job to an operator (if on cards) or submit it directly to the com~-
puter (if from a timesharing terminal) so that you can do something else while your job is running, A
job is any combination of programs, their associated data, and commands necessary to control the

programs.

Some of the jobs that are commonly processed under Batch are those that:
Are frequently run for production,
Are large and long running,

Require large amounts of data, or

AW N =

Need no actions by you when they are running.

1.2 HOW TO USE BATCH

Batch allows you to submit your job to the computer through either an operator or a timesharing
terminal,~and receive your output from the operator when the job has finished. Output is never re-
turned at a timesharing terminal even if your job is entered from one; instead, it is sent to a peripheral
device (normally the line printer) at the computer site and returned to you in the manner designated

by the installation manager.

1.2.1 Setting Up Your Job

You must make up a control file to use Batch. A control file is a list of commands for the monitor,
system programs, or Batch itself that tells Batch what steps to follow to process your job and the order
in which to process them. When you enter your job on cards, you can take advantage of the special
control cards that cause Batch to insert commands into the control file for you. When you enter your .
job from a timesharing terminal, you must put all the commands for your job into the control file
yourself. The steps that you must take to create a control file from cards are described in Chupfer 2.

Creating a control file from a timesharing terminal is described in Chapter 3.

1-1

BEGINNER'S BATCH -100 -

1.2.2 Running Your Job

After you submit the job, it waits in a queue with other jobs until Batch schedules it fo run under
guidelines established by the installation manager. Some factors that affect how long your job waits
in the queue are its size, the amount of core it needs, the amount of time that it will take to run if,
and whether or not you have specified a certain deadline when you want it run. When the job is
started, Batch reads the control file and performs the actions necessary to run the job. For example,
Batch passes monitor commands to the monitor which performs the actions called for and passes com=

mands to system programs so that their processing can be performed.

As each step in the control file is performed, Batch records it in a log file. For example, if a
monitor command such as COMPILE is processed, Batch passes it to the monitor and writes it in the
log file. The monitor response is also written in the log file. Any response from your job that would

be written on the terminal during timesharing is written in the log file by Batch.

1.2.3 Receiving Your Output

When the job is completed successfully and output has been sent to all devices, Batch terminates the
log file and has it printed. The output from your job and the log file are then returned to you. Out-
put from your job can be in the form of line-printer listings, punched cards, punched paper tape,
plots, DECtape, or magnetic tape. If the output is to a DECtape or magnetic tape, you must include
commands in your job to mount these tapes so that your output can be written on them, This is also
true if you have input to any of the programs in your job written on tape. If your output is to cords,
paper tape, the plotter, or the line printer, you must specify to Batch the approximate amount of
cards, paper tape, plotter time, or pages that you require. These restrictions are to help Batch
restrain runaway programs. An example of using the MOUNT command in the control file to request
mounting of tapes is shown in Chapter 5. The way that you specify the amounts of paper, cards, etc.
is described in Chapter 2, *'The $JOB Card'' and in Chapter 3, ''Submitting Your Jab.""

1.2.4 Recovering from Errors

If an error occurs in your job, either from an error in your program or from an erroneous command in
the control file, Batch writes the error message in the log file and usually terminates the job. In addi-
tion, if the error occurred in your program, Batch causes a dump to be taken of your area of core.

You can, however, put commands in the control file so that Batch can help you recover from errors

in your job and continue running. Error recovery from a card job is described in Chapter 2; from a

job entered from a terminal, in Chapter 3. Dumps, along with other printed output from a Batch job,
are described in Chapter 4.

1.3 SUMMARY

In summary, the steps that you must perform to enter a job to the computer through Batch are as

follows:

- 101 - ‘ BEGINNER'S BATCH

1. Create a control file either from cards (refer to Chapter 2) or from a
terminal (refer to Chapter 3). .

2. Submit the job to Batch, either to the operofc:r for a card job (Chapter 2)
or directly to Batch for a terminal (Chapter 3).

3. Pick up your output and interpret it (refer to Chapter 4),

Some sample jobs that are run through Batch from cards ond from a terminal are shown in Chapter 5.

BEGINNER'S BATCH -102 -

©-103 = BEGINNER'S BATCH

| CHAPTER 2
ENTERING A JOB TO BATCH FROM CARDS

Batch runs your job by reading a control file that contains commands to the monitor, system pro-
grams, or Batch itself. You have to make up the control file, but Batch provides you with special
control cards to help you make up control files for simple jobs. These control cards make it easy for
you to submit your programs to the computer and to create your control file to run these programs.
Most of these control cards cause Batch to insert commands into the control file and/or copy pro-

grams and data into disk files. Some are used to show the beginning of your job and to identify it;

and one is used to indicate the end of it. Batch control cards are also available to help you recover
from errors that may occur while you job is running. The following is a list of the control cards which

are described in greater detail in Section 2.4.

$SEQUENCE . Section 2.4.12
$JOB Section 2.4.9
$PASSWORD T Section 2.4.12
$ALGOL ; Section 2.4.1
$COBOL Section 2.4.2
$FORTRAN © Section 2.4.5
$MACRO Section 2.4, 10
$DECK Section 2.4.4
$DATA Section 2.4.3
$EOD Section 2.4.6
$ERROR : Section 2.4.7
$NOERROR Section 2.4.11
end-of-file Section 2.4,5

2.1 FORMAT OF THE CARDS IN YOUR DECK

The card decks that you input to Batch can contain any combination of Batch control cards; com-
mands to the monitor, system programs, and Batch itself; programs and data that will be copied into

separate disk files; and data that will be copied into the control file for your program to read.

The Batch control cards must contgin a dollar sign ($) in column 1 and a command that starts in
column 2. The command must be followed by at least one space, which can then be followed by the
other information on the card. The end-of-file is the only exception to this format; it is identified
by special punches-in columns 1 and 80. Refer to-the individual description of each card for any

special format requirements.

BEGINNER'S BATCH =104 -

If you include a card with a monitor command, you must place a period in column 1 and follow it
immediately with the command. Any information that follows the command is in the format that is

shown for the command in the DECsystem=10 Operating System Commands manual.

To include a command to a system program on a card, you must punch an asterisk (*) in column 1 and
punch the command string immediately following the asterisk. Refer to the manual for the system

program that you wish to use.

Batch commands are punched like monitor commands; that is, a period is punched in column 1 ond

the command immediately follows the period.

The card format for your program depends on the language in which you have written the program;
refer to the reference manual for the programming language that you are using for the format of each
line of your program. The same is true for your data. The format that is required for the data by the

programming language that you are using is described in the language reference manual.

If you want to include data for your program in the control file, you punch it as you would data that
is read from a separate file. The only restriction on data in the control file is that alphabetic data
that is preceded by a dollar sign ($) must be preceded by an additional dollar sign so that Batch will

not interpret such data as its own control commands.

If you put any special characters other than those described above in the first column of a card, you
may get unexpected results because Batch interprets other special characters in special ways. If you

want to know about other special characters, refer to the DECsystem=10 Operation System Commands

manual, Chapter 3.

If you have more information than will fit on one card, you can continue on the nexi card by placing
a hyphen (-) as the last nonspace character on the card to be continued and the rest of the informa-

tion on the next card.

Comments can also be included either as separate cards or on cards containing other information,

To include a comment on a separate card, you must punch a semicolon (;) in column 1 and follow it
immediately with the comment. To add a comment to a card, you must precede the comment with a
semicolon (;) after all the information that you need has been put on the card. Comments that are on
separate cards will normally be copied by Batch into your control file and later copied into your

log file.

2,2 SETTING UP YOUR CARD DECK

Since the most common tasks performed in a job are compilation and execution of one or more pro-
grams, simple control cards are available that will cause Batch to insert commands into the control
file for these tasks. However, a Batch job can do anything a timesharing job can do and if you wish

to perform more complicated tasks, you will have to include monitor commands in your deck to direct

- 105 - BEGINNER'S BATCH

Batch to execute your tasks. The way in which you include monitor commands and also commands to

other system programs is described in Section 2.3.

The control cards that you can use to compile and execute programs written in ALGOL, COBOL,
FORTRAN, and MACRO are shown in sections 2.2,1, 2.2.2, 2,2.3, and 2.2.4. Certain control
cards are always required in a Batch job. Others are required only of some installations. The
$JOB card and the end~of-file card are always required. The $SEQUENCE and $PASSWORD

cards may be required, depending on the installation.

If the $SEQUENCE card is reqUired, it must be the first card in the deck, The $JOB card must
always be either the second card in the deck:if the $SEQUENCE card is required, or the first card
in the deck if the $SEQUENCE card is not required. If it is required, the $PASSWORD card must
immediately follow the $JOB card. It will be assumed in this manual that the $SEQUENCE and
the $PASSWORD cards are required. The end-of-file card must be the last card in the deck to in-
dicate to Batch that it has read the end of your job. This end-of~file card is only used to end your

entire job, not to end individual files in your job.

The cards that come between the first and last cards constitute. your job. Setting up decks for speci-

fic languages is shown in the sections that follow,

2.2.1 Card Deck'to Run ALGOL Programs

To run ALGOL programs, you use the $ALGOL and $DATA cards. You put a $ALGOL card in front
of your ALGOL program to-make Batch copy your program into a disk file and insert a COMPILE
command into your control file. The $ALGOL card is described in detail in Section 2.4.1.

You put a $DATA card in front of the data that goes with the program to make Batch copy your data
into another disk file and insert an EXECUTE command into your control file. The $DATA card is
described in Section 2.4,3.

Thus, to compile and execute an ALGOL program, your card deck would appear.as follows.

SALGOL -
$PASSWORD

$SEQUENCE

10-09I5

2-3

BEGINNER'S BATCH - 106 -

Refer to the description of each card for the information that goes on it. The way that you tetl your

program how to find its data is described in Section 2.4.3.1.

2.2.2 Card Deck to Run COBOL Programs

To run COBOL programs, you can use the $COBOL card and the $DATA card. You put a $COBOL
card in front of your COBOL program to make Batch copy your program into a disk file and insert o
COMPILE command into your control file. The $COBOL card is described in detail in Section
2.4.2,

You put a $DATA card in front of the data that goes with your program to make Batch copy your
data into another disk file and insert an EXECUTE command into your control file. The $DATA

card is described in Section 2.4.3.

Thus, to compile and execute one COBOL program, your card deck would appear as follows.

t END OF FILE

$coBoL
$PASSWORD
$J40B

$SEQUENCE

10-0916

Refer to the description of each card for the information that goes on it. The way that you tell your

program how to find its data is described in Section 2.4.3.1

2.2.3 Card Deck to Run FORTRAN Programs

To run FORTRAN programs, you can use the $FORTRAN and $DATA cards. You put a $FORTRAN
card in front of your FORTRAN program to make Batch copy your program into a disk file and insert
a COMPILE command into your control file. The $FORTRAN card is described in detail in

Section 2.4.8, :

- =107 - BEGINNER'S BATCH

You put a $DATA card in front of the data that goes with your program to make Batch copy your data
into another disk file and insert an EXECUTE command- into your control file. The $DATA card is
described in Section 2.4, 3, ’

Thus, to compile and execute one FORTRAN program, your card deck would appear as follows.

FORTRAN PROGRAM

$FORTRAN

$PASSWORD

408

$SEQUENCE

10-0917

Refer to the description of each.card for the information that goes on it. The way that you tell your

program how to find its data is described in Section 2.4.3.1.

2.2.4 Card Deck to Run MACRO Programs

To run MACRO programs, you can use the $MACRO and $DATA cards. You put a $MACRO card
in front of your MACRO program to make Batch copy your program into a disk file and insert a
COMPILE command into your control file. The $MACRO card is described in detail in

Section 2.4,10,)

You put a §DATA card in front of the data that goes with your program to make Batch copy your data
into another disk file and insert an EXECUTE command into your control file. The $DATA card is
described in Section 2.4.3. Thus, to assemble and execute one MACRO program, your card deck

would appear as follows,

BEGINNER'S BATCH - 108 -

'END - OF - FILE

DATA FOR PROGRAM

MACRO PROGRAM

$MACRO

$PASSWORD

$SEQUENCE

10-0918

Refer to the description of each card for the information that goes on it.

2.3 PUTTING COMMANDS INTO THE CONTROL FILE FROM CARDS

Batch puts commands into the control file for you when you use certain control cards. However,
only a small number of kinds of commands can be put in the control file in this way. If you wish

to perform operations in_addition to compilation and execution, you must include commands in your
card deck so that Batch will copy them into your control file. Where you put these commands in
your card deck determines their positions in the control file. Batch reads your card deck in se-
quential order, copying commands into the control file as they, or the special control cards, are
read. However, Batch, when it reads a control card that tells it to copy a program or data into a
disk file, copies every card that follows such a control card until it meets another control card. To
ensure that your commands are not copied into a file with programs or data, ycu must place a special
control card, the $EOD card, at the end of a program deck if you wish to follow the program with
a command. For example, if you have a FORTRAN program that creates its own data and does not

need to use a $DATA card, you could include the following cards in your deck.

- 109 - BEGINNER'S BATCH

;END-OF-FiLE

*EXECUTE

{command to load and execute the program)
(to tell Batch to stop copying into the program file)

$EOD

Y =
P FORTRAN PROGRAM

SFORTRAN

$PASSWORD

$uoB

$SEQUENCE

10-0919

The only commands that you cannot use in o Batch job are CSTART, CCONT, ATTACH, DETACH,
and SEND, Batch will ignore these commands when it reads them in the control file. Also, you
cannot use the LOGIN command in your Batch job because you will get an error that will terminate
your job. Batch logs your job in according to your $JOB and $PASSWORD cards.

2.3.1 Card Decks for Programs That Do Not Have Specia! Control Cards

By comblnmg monitor commands with control cards such as $DECK and $EOD, in addition to the re-
quired control cards, you can process any program that does not have special control cards for it.
You put a $DECK card in front of q program, data, or any other group of cards to make Batch copy
the cards that follow the $DECK card into a disk file. However, Batch does not put a command into
the control file when it reads a $DECK card. The $DECK card is described in detail in

Section 2.4.4.

For example, a BASIC program does not have « specific control card. To run a BASIC program under
Batch from cards, you can combine the $DECK card and the $EOD card with monitor commands. You
also use a $DECK card to copy the data for a BASIC program because the $DATA card puts an
EXECUTE command into the control file and BASIC does not use the EXECUTE command to run.

The following example shows a card deck that enters a BASIC program for running under Batch,

BEGINNER'S BATCH

- 110 -

:END-OF-F\LE

*BYE

*RUN

*0LD
*R BASIC

DATA FOR PROGRAM

SDECK (FOR DATA)

BASIC PROGRAM

$DECK (FOR PROGRAM)

5PASSWORD

$908

$SEQUENCE

o 0920

The BASIC program contains statements that read data from a disk file. You answer OLD to the

BASIC question

NEW OR OLD --

because the file is on disk and can be retrieved by BASIC.

If your BASIC program reads data that is to be input by you during the running of the program, you

enter the data in the control file so that it will be passed to your program by Baftch. This is shown

in the following example.

1END-OF -FILE
*BYE
3,5,-9,1.8
5,1,3,4,-7
1,2,4,2,~7

#*RUN
*0LD
.R BASIC

$DECK (FOR PROGRAM) m
$PASSWORD
$408
$SEQUENCE

-

(data for the program)

-111 -) BEGINNER'S BATCH

You can use the same technique to enter programs written in any language that does not have a
specific control card, provided that your installation supports the language. Also, you can run sys-

tem programs under Batch using the same technique.

2.4 CONTROL CARDS FOR BATCH (IN ALPHABETICAL ORDER)

The special control cards for Batch are described below in detail. Only the control cards that are

pertinent to this manual are discussed. Refer to DECsystem=-10 Operqtingjysfem Command

(DEC~10-MRDC-D) for the remaining cards. The same is true for some of the switches that can be
included on each card. If a switch is not described in this manual, it can be found in the

DECsystem-10 Operating System Commands manual .

2.4.1 The $ALGOL Card

You put a $ALGOL card in front of your ALGOL program to make Batch copy your ALGOL program
into a disk file and insert a COMPILE command info-your control file, Thus, when Batch runs your
job, your ALGOL program will be compiled. You can put some optional information on the
$ALGOL card to tell Batch more about your program or the cards:that your program is punched on.

The SALGOL card has the form:

$ALGOL filename.ext/switches (switches)

10-0902

filename.ext specifies the optional filename and extension
that you can tell Batch to put on the file that
it creates for your program. If you omit the
filename and extension, Batch will create
a unique name for your file and add the ex-
tension .ALG to it.-

/switches are switches to Batch to tell it how to read
your program and whether or not to request
a compilation listing when the program is
compiled. The switches can be put on the
card in any order and are described below.

(switches) are switches that Batch passes to the ALGOL
compiler when it puts the COMPILE command
in the control file. These switches must be
enclosed in parentheses, must not be preceded
by slashes, and may or may not be separated .
by commas. The switches for the ALGOL com-
piler are described in Section 18.1 in Chapter

18 of the DECsystem=-10 ALGOL Programmer's
Reference Manual QGEC-TU-RKZB-&.

2-9

BEGINNER'S BATCH -112 -

/WIDTH:n Switch

Normally, Batch reads up to 80 columns on every card of the ALGOL program. You can make Batch
stop reading at a specific column by means of the /WIDTH switch, in which you indicate the number
of a column at which to stop. Thus, if you have no useful information in the last 10 columns of each

card of your program, you can tell Batch to read only up to column 70 by specifying

/WIDTH:70
on the $ALGOL card.

/NOLIST Switch

Normally, the $ALGOL card tells Batch to ask the compiler to generate a compilation listing of
your ALGOL program. The listing is then printed as part of your job's output. If you don't want this
listing, you can include the /NOLIST switch on the ALGOL card to stop generation of the listing.

/SUPPRESS:OFF Switch

When Batch reads the cards of your ALGOL program, it normally does not copy any trailing spaces
into the disk file to save space on the disk. If you want Batch to copy everything on the cards up to
column 80 or any column that you may specify in the /WIDTH switch, you must include the
/SUPPRESS:OFF switch on the $ALGOL card.

Examples
The simplest form of the $ALGOL card is shown in the following example.
$ALGOL

This card causes Batch to copy your program into a file to which Batch gives a unique name and the
extension .ALG. The cards in the program are read up to column 80 with trailing spaces suppressed.
A listing file is produced when the program is compiled. This listing is written as part of the job's

output. No compiler switches are passed to ALGOL,

The following is an example of a $ALGOL card with switches.
$ALGOL MYPROG.ALG /WIDTH:72 /NOLIST (1000D, N, Q)
With this card, your ALGOL program is copied into a file named MYPROG.ALG and a COMPILE

command is entered into the control file. The cards in the program are read up to column 72 and
trailing spaces up to column 72 are not copied into the file. When the program is compiled, no
listing is produced, and the compiler reads and acts upon the switches 1000D, N, and Q given to
it by Batch.

- 113 - BEGINNER'S BATCH

2.4.2 The $COBOL Card
You place the $COBOL card in front of your COBOL program to make Batch copy your COBOL

program into a disk file and insert @ COMPILE command into your control file. Thus, when Batch
runs your job, your COBOL program will be compiled. You can put some optional information on
the $COBOL card to tell Batch more about your program.or the cards that your program is punched

on.

The $COBOL card has the form:

$COBOL filename .ext/switches(switches)

10-0903

filename.ext specifies the optional filename. and extension
- that you can tell Batch to put on the file that
it creates for your program. If you omit the
filename and extension, Batch will create
a unique name for your file and add the ex-
tension .CBL to it.

/switches ‘ are switches to Batch to tell it how to read
our program. The switches are described
elow,

~ (switches) are switches that Batch passes to the COBOL

compiler when it puts the COMPILE command
in the control file. These switches must be
enclosed in parentheses, must not be preceded
by slashes, and may or may not be separated
by commas. The switches for the COBOL
compiler are described in Table D=3 in
Appendix D of the DECsystem-10 COBOL
Programmer's Reference Manual
(DEC-10-KCIC-D).

/WIDTH:n Switch
Normally, Batch reads up to 80 columns on every card of the COBOL program. You can make Batch
stop reading at a specific column by means of the /WIDTH switch; in which you indicate the number
of a column-at which to stop. Thus, if you have no useful information in the last 10 columns of each

card of your program, you can tell Batch to read only up to column 70 by specifying

/WIDTH:70

on the $COBOL card.

BEGINNER'S BATCH =114 -

/SUPPRESS:OFF Switch

When Batch reads the cards of your COBOL program, it normally does not copy any trailing spaces
into the disk file to save space on the disk. If you want Batch to copy everything on the card up to
column 80 or any column that you may specify in the /WIDTH switch, you must include the
/SUPPRESS:OFF switch on the $COBOL card.

/CREF Switch

If you want a cross—reference listing of your COBOL program, you can include the /CREF switch on
the $COBOL card to tell Batch to ask the COBOL compiler to produce a cross-reference listing
when it compiles your program. This listing is printed as part of your job's output. You do not have

to include a command to run the CREF program to get this listing, Batch will do it for you.

/SEQUENCE Switch

The COBOL compiler assumes that your COBOL program is in standard DECsystem-10 format. The
/SEQUENCE switch, which Batch passes to the compiler, makes the compiler recognize that your
program is in conventional (i.e., industry-wide) format. A program in conventional format has
sequence numbers in columns 1 through 6 and comments that begin in column 73. When the
/SEQUENCE switch is specified, the width of the card is assumed to be 72, not 80 columns, The

following example shows programs in conventional and standard formats.

IF YOUR PROGRAM LOOKS LIKE: YOU SHOULD:
1 8 73
000010 IDENTIFICATION DIVISION..... MYPROG Include the /SEQUENCE
000020 PROGRAM-ID. MYPROG........ MYPROG switch because your program
000030 AUTHCR. ABB.......ovvvuernnn. MYPROG is in conventional format.
IF YOUR PROGRAM LOOKS LIKE:" YOU SHOULD:
1
IDENTIFICATION DIVISION...... Omit the /SEQUENCE
PROGRAM-ID. MYPROG..... e switch because your program
AUTHOR, ABB......vvvvvevnenen- is in DECsystem-10 standard format.
Examples

The simplest form of the $COBOL card is:

$COBOL

This card tells Batch to copy your program info a file and assign a unique name and the extension
.CBL. All 80 columns of the cards are read, trailing spaces ore not copied, and the compiler is
told that the program is in standard format. No switches are passed to the compiler, and a listing

file is produced when the job is run. The listing is printed as part of the job's output.

=115 - BEGINNER'S BATCH

The following is an example of a $COBOL card with swifchesl.
$COBOL MYPROG.CBL /SEQUENCE (N, P)

With this card, your COBOL program is copied into a disk file named MYPROG.CBL and a
COMPILE command is inserted into the control file. The cards are read only up to column 72 and
trailing spaces up to column 72 are not copied into your file. Batch passes the N and P switches to
the compiler, and tells the compiler to accept the program in conventional format, A listing file is

produced when the program is compiled. This listing is printed as part-of the job's output.

2.4.3 The $DATA Card

You put a $DATA card in front of the data for your program to make Batch copy it into a disk file
and to insert an EXECUTE command into your control file. Within the EXECUTE command, Batch
requests a loader map for you. When your job is run, any programs that were entered with $ALGOL,
$FORTRAN, or $MACRO cards that came before the: $DATA card are executed. Every time that
Batch reads one of the $language cards, it adds it to a list that it. keeps. When it then reads a
$DATA card, each program in Batch's list is put into the EXECUTE commoand string that the $DATA
card puts into the control file. After the $DATA card is read by Batch and the EXECUTE command
is put into the control file with the names of the programs that preceded the $DATA card, Batch
clears its list so that it can start a new list for programs entered later. If you have more than one set
of data for a program or programs, you can precede each set with a $DATA card to put two EXECUTE
commands into the control file to run your program or programs twice. An EXECUTE command follow=
ing another EXECUTE command in the control file without intervening $language cards causes the

programs executed by the first EXECUTE command to be loaded and executed again.

If your data is included in the program so that you do not have cards with data on them, you can still
use the $DATA card to insert an EXECUTE command into the control file.

The form of the $DATA card is:

SDATA filename. ext /switches

10-0204

filename.ext specifies the optional filename and extension
that you can tell Batch to put on the file
that it creates for your data. If you omit the
filename and extension, Batch will create
a unique name for your file and add the
extension .CDR fto it.

BEGINNER'S BATCH - 116 -

/switches are switches to Batch to tell it how to read
the cards of your data. The switches are
described below.

/WIDTH:n Switch

Normally, Batch reads up to 80 columns on every card of your data. You can make Batch stop
reading at a specific column by means of the /WIDTH switch, in which you indicate the number of
a column at which to stop. Thus, if you have information in the last 10 columns of each card of your

data, you can tell Batch to read only up to column 70 by specifying
/WIDTH:70
on the $DATA card.

/SUPPRESS:OFF Switch

When Batch reads the cards of your data, it normally does not copy any trailing spaces into the disk
file to save space on the disk. If you want Batch to copy everything on the cards up to column 80
or any column that you specify in the /WIDTH switch, you must include the /SUPPRESS:OFF switch
on the $DATA card.

Examples

The simplest form of the $DATA card is:
$DATA

This card causes Batch to copy your data into a file and to assign a unique name and the extension

.CDR to it. All 80 columns of the cards are read and trailing spaces are not copied into the file.

The following example shows o $DATA card with switches.
$DATA MYDAT.DAT /WIDTH:72 SUPPRESS:OFF
The dota that follows this card is copied into a file named MYDAT.DAT and an EXECUTE command

is inserted into the control file. When Batch reads the cards of the data, it reads only up to column

72 and copies trailing spaces into the data file.

2.4.3.1 Naming Data Files on the $DATA Card - If you want to name your data file on the $DATA
card rather than letting Batch name it for you, you must, in your program, assign that file to disk as

shown in the following examples.

-7 - o BEGINNER'S BATCH

COBOL Example

ENVIRONMENT DIVISION.
INPUT-OUTPUT SECTION.
SELECT SALES, ASSIGN TO DSK.

.

DATA DIVISION.
FILE SECTION.
FD SALES, VALUE OF IDENTIFICATION IS "'SALES CDS'".

The $DATA card would then appear as follows.
$DATA SALES.CDS

FORTRAN Examples

You can assign your data to disk in several ways when you use FORTRAN. You can read from unit 1,
which is the disk, in your program and use the name FORO1.DAT as the filename on your $DATA
card, as shown in the following statements.

READ (1,), list

$DATA FORO1.DAT

You can also tell FORTRAN to read from logical unit 2, which is normally the card reader, and
assign unit 2 or the card reader (CDR) to disk (DSK). You use the name FOR02.DAT on the $DATA

card in this case.

READ (2,f), list

.ASSIGN DSK CDR (in the control file)
$DATA FOR02.DAT

You can also use a specific disk device such as DSKO as the unit from which you will read. In the
control file, you would then assign DSKO to DSK. The unit number of DSKO is 20 and thus the name
on the $DATA card would be FOR20, DAT.

BEGINNER'S BATCH -118 -

READ (20, f), list

.ASSIGN DSK DSKO (in the control file)
$DATA FOR20.DAT

ALGOL Example

To read your data from the disk in an ALGOL program, you would use the following statements. You
can assign your data to any channel (signified by ¢) and you can give your data file any name as long

as the name that you use in your program is the same as that put on the $DATA card.

INPUT (c, ""DSK")
SELECT INPUT (c)
OPENFILE (c, '*MYDAT.DAT'")

$DATA MYDAT.DAT

This is to ensure that your program finds your data in the disk file under the name that you have

assigned to it.

If you let Batch assign a name to your data file, you will not know the name that your data file will
have and should therefore assign your data file, without a name, to the card reader. Batch will tell
the monitor in this case to look for your data in a disk file when your program wants to read it. The *®

following examples illustrate how to do this.

COBOL Example

ENVIRONMENT DIVISION,
INPUT-OUTPUT SECTION.
SELECT SALES, ASSIGN TO CDR.

DATA DIVISION,
FILE SECTION,
FD SALES, LABEL RECORDS ARE OMITTED.

- 119 -) BEGINNER'S BATCH

FORTRAN Example

To read your data from the card reader, you use the unit number 2 or no unit number, as shown below.

READ (2,f), list

$DATA
READ f, Jist

$DATA
ALGOL Example

In an ALGOL program, you would assign the desired channel (signified by ¢) to the card reader,
select the desired channel, but you would not explicitly open the named file on the channel because

the file does not have a name that is known fo you.

INPUT (c, ""CDR")
SELECT INPUT (c)

$DATA

The $DATA card cannot be used for data for programs written in languages other than ALGOL,
COBOL, FORTRAN, and MACRO. It can, however, be used for programs that are in relocatable
binary form. Thus, data for BASIC programs cannot be copied by means of the $DATA card; you
should instead use the $DECK card, described below.)

2.4.4 The $DECK Card

You can put the $DECK card in front of any program, data, or other set of information to make Batch
copy the program, data, or information into a disk file. Batch does not insert a command into the
control file when it reads the $DECK card. You must include commands in your card deck that Batch

will copy into the control file to process the file created by Batch because of the $DECK card.

BEGINNER'S BATCH =120 -

The form of the $DECK card is:

SDECK filename.ext/switches

10 -0905

filename . ext specifies the optional filename and extension
that you can tell Batch to put on the file
that it creates for your program or data.
If you omit the filename and extension, Batch
will create a unique name for your file.

/switches are switches to Batch to fell it how to read
the cards in your deck. The switches are
described below.

/WIDTH:n Switch

Normally, Batch reads up to 80 columns on every card in your deck. You can make Batch stop
reading at a specific column by means of the /WIDTH switch, in which you indicate the number of
a column at which to stop. Thus, if you have information in the last 10 columns of each card in your

deck, you can tell Batch to read only up to column 70 by specifying
/WIDTH:70

on the” $DECK card.

/SUPPRESS:OFF Switch

When Batch reads the cards in your deck, it normally does not copy any trailing spaces into the disk
file fo save space on the disk. If you want Bafch to copy everything on the cards up to column 80 or
any column that you specify in the /WIDTH switch, you must include the /SUPPRESS:OFF switch on
the $DECK card.

Examples

The simplest form of the $DECK card is:
$DECK

This card causes Batch to copy your deck into a disk file and to assign a unique name to it. All 80

columns of the cards are read and trailing spaces are not copies into the file.

=121 - . BEGINNER'S BATCH

The following shows an example of a $DECK card.,
$DECK MYDECK.CDS /WIDTH:50 /SUPPRE.SS:OFF

The deck that follows this card is copied into a disk file named MYDECK.CDS. When Batch reads
the cards in the deck, it reads up to column 50 and copies trailing spaces into the file.

2.4.5 The End-of-File Card

You must put the end-of-file card af the end of the deck containing your complete job to tell Batch
that it has reached the end of your job. Unlike the other Batch control cards, the end-of~file card
does not have a dollar sign ($) and a command on it. It contains special punchyes that are recognized

by Batch as the end-of-file, These punches must be in rows 6,7,8, and 9 of column 1. So that the end-
of~file card can be recognized in any orientation (e.g., upside down), you should punch rows 12,
11,0,1,6,7,8, and 9 and leave rows 2,3,4, and 5 blank in both columns 1 and 80. If you omit the
end-of-file card, an error message will be issued unless the installation makes the operator put the

card on any deck that does not have one ., However, your job will still be scheduled. The form of

the end-of-file card is shown below. :

10-0906

2.4,6 The $EOD Card

You put a $EOD card at the end of the cards being copied into a file due to a $DECK, $DATA,

or $ianguoge card. This card tells Batch to stop copying cards into the file. If another Batch control
card follows the cards being copied, you don't need the $EOD card because Batch stops copying
cards into a file when it reads a Batch control card. The only time that the $EOD card is necessary
is when you wish to follow the cards being copied into a file by a card other than a control card,
e.g;, a card containing a command. Refer to Section 2.3 for a description of inc luding commands

in your deck.

BEGINNER'S BATCH . -122 -

The $EOD card has the form:

$EOD

10-0907

An example of using the $EOD card is shown below where the user wishes to load the COBOL de-
bugging program COBDDT with his programn.

$COBOL MYPROG.CBL

$EOD
LOAD %5 MYPROG.CBL, SYS:COBDDT -
.START MYPROG

If the $EOD card had not been included in the above example, the .LOAD and .START commands
would have been copied info the file with the COBOL program, rather than being copied into the

control file.

2.4.7 The $ERROR Card

You can use the $ERROR card and the $NOERROR card (described later in this chapter) to specify
error recovery in the control file. When Batch reads the $ERROR card, it inserts a special Batch
command into the control file, the .IF (ERROR) command. This command will later tell Batch what
to do when an error occurs when your job is being processed. How to perform error recovery is

described in Section 2.5.

The $ERROR card has the form:

$ERROR statement

10- 0908

statement is a command to the monitor, to a sysfem
program or a special Botch command such

as .GOTO or .BACKTO.,

Batch enters an . IF (ERROR) command info the control file when it reads the $ERROR card, and in-
cludes the statement from the $ERROR card in the .IF (ERROR) command in the form:

.IF (ERROR) statement

2-20

-123 - BEGINNER'S BATCH

The Batch commands ,GOTO and .BACKTO have the forms:

.GOTO statement label
.BACKTO statement label

statement label : is the label of a line in the control file.
The label can contain from 1 to 6 alpha-
betic characters and must be followed by
a double colon (::} when it is labelling
a line. :

The .GOTO command tells Batch to search forward in the control file on disk until it finds the line
containing the label. The .BACKTO command tells Batch to search back in the control file on disk
to find the line containing the label. You must supply the labelled line and any related lines for
which Batch will search. Include these lines in your card deck where you want them to be copied
into the control file. If Batch cannot find a labelled line that is searching for as a result of a
.GOTO or a .BACKTO statement, it terminates your job,

2.4.8 The $FORTRAN Card
You place the $FORTRAN card in front of your FORTRAN program to make Batch copy your pro-

gram into a disk file and insert a COMPILE command into your control file. Thus, when Batch runs
your job, your FORTRAN program will be compiled. You can put some optional information on the

$FORTRAN card fo tell Batch more about your program or the cards that your program is punched on.

The $FORTRAN card has the form:

$FORTRAN filename.ext/switches (switches)

. 10-0909

filename. ext . specifies the optional filename and extension
fﬁaf you can tell Batch to put on the file that
it creates for your program. If you omit the
filename and extension, Batch will create a
unique name for your file and add the
extension .F4 to if.

/switches “are switches to Batch to tell it how to read
: our program. The switches are described
elow.

2~21

BEGINNER'S BATCH -124 -

(switches) are switches that Batch passes to the FORTRAN
compiler when it puts the COMPILE command
in the control file, These switches must be
enclosed in parentheses, must not be preceded
by slashes, and may or may not be separated
by commas. The switches for the FORTRAN
compiler are described in Table 11-1 in
Chapter 11 of the DECsystem-10 FORTRAN IV
Programmer's Reference Manual

(DEC-10-AFDO-D).

/WIDTH:n Switch

Normally, Batch reads up to 72 columns on every card of the FORTRAN program. You can make
Batch stop reading at a specific column by means of the /WIDTH switch, in which you include the
number of the column at which to stop. The FORTRAN compiler only reads FORTRAN statements
up to column 72, even if you tell Batch fo read up to column 80. But, if you wish to have MPB

read only up to column 60, you can specify
/WIDTH:60
on the $FORTRAN card.

/SUPPRESS:OFF Switch

When Batch reads the cards of your FORTRAN program, it normally does not copy any trailing
spaces into the disk file to save space on the disk. If you want Batch to copy everything on the
card up to calumn 72 or any column that you specify in the /WIDTH switch, you must include the
/SUPPRESS:OFF switch on the $FORTRAN card.

/CREF Switch

If you want o cross-reference listing of your FORTRAN program, you can include the /CREF switch
on the $FORTRAN card to tell Batch to ask the FORTRAN compiler to produce a cross-reference
listing when it compiles your program. This listing is printed as part of your job's output. You do not

have to include a command to run the CREF program to get this listing, Batch will do it for you.
/NOLIST Switch

Normally, the $FORTRAN card tells Batch to ask the compiler to generate a compilation listing of
your FORTRAN program. The listing is then printed as part of your job's output. If you don't want
this listing, you can include the /NOLIST switch on the $FORTRAN card to stop generation of

the listing.

Examples

The simplest form of the $FORTRAN coard is:
$FORTRAN

2-22

-125 - BEGINNER'S BATCH

This card tells Batch to copy your program into a disk file and assign a unique name and the extension
.F4. The first 72 columns of the cards are read, trailing spaces are not copied, and a listing file is
produced when the job is run. No switches are passed to the compiler. The listing is printed as part

- of the job's output.

The following is an example of a $FORTRAN card with switches.
$FORTRAN MYPROG.F4 /CREF /NOLIST/SUPPRESS:OFF (I, M)

With this card, your FORTRAN program is copied into a disk file named MYPROG .F4 and a
COMPILE command is inserted into the control file. The cards are read only up to column 72 and
trailing spaces up to column 72 are copied into your file. A cross-reference listing of your program
will be generated, but a compilation listing will not.” Batch passes the | and M switches to the
compiler.

2.4.9 The $JOB Coard

You must include the $JOB card as the first card in your deck or as the second card following the
$SEQUENCE card, which is described later in this chapter. The $JOB card tells Batch whose job
that it is processing and, optionally, the name of the job, and any constraints that you want to place
on the job. When Batch reads the $JOB card and the $PASSWORD card, if it is required, it cre-
ates the control file and begins the log file for your job. Batch then places commands into the
control file that are taken from the cards that follow the $JOB card.

The $JOB card has the form:

$J0B name [proi. prog] /switches

10-0910

name is the optional name that you can give to
: the job. If you omit the name, Batch will

create a unique name for your job. The name
of the job is that which Batch gives to
your control file and log file, -To the job
name, Batch adds the extension .CTL
for the control file. It adds the extension
-.LOG to the name for the log file.

[proi, prog] is your project-programmer number, i.e.,
the number that you were assigned by the
installation to allow you to gain access to
the DECsystem=10. Normally, the project-
programmer number is two numbers sep-
arated by a comma and enclosed in square
brackets.

2-23

BEGINNER'S BATCH -126 -

/switches are switches to Batch to tell it the constraints
that you have placed on your job. They
are described below.

/AFTER:dd-mmm-yy hhmm Switch

If you don't want Batch to run your job until after a certain time on a certain day, you can include
the /AFTER switch on your $JOB card. The date and time are specified in the form dd-mmm-yy hhmm
(e.g., 20-MAY=72 0215). If this switch is not included, Batch runs your job af the time that it -
would normally schedule such a job, based on its size, the amounts of core and time required, and

other parameters.
/AFTER:+t Switch

If you don't want Batch to run your job until after a certain number of minutes have elapsed since
the job was entered, include this form of the /AFTER switch on the $JOB card. The number of
minutes that the job must wait after it has been entered is specified in the form +t (e.g., +15). If

this switch is not included, Batch will schedule the job as it normally does.

NOTE

If any of the programs in your job have output to slow-
speed devices such as the card punch, the paper-tape
punch, the line printer, and the plotter, do not include
an ASSIGN command in your job. Batch will take care
of this output for you as long as you specify the switches
for these devices, which are described below.

/CARDS:nK Switch

If any prograr in your job has punched card output, you must include the /CARDS switch on the
$JOB card to specify the approximate number of cards that your job will punch. Up to a maximum
of 10,000 cards can be specified in the form nK or n (e.g., 5K or 5 specifies 5,000 cards). If you
do not specify the /CARDS switch, no cards will be punched, even if you want them. If you do not
specify enough cards, the remaining output over the number of cards specified will be lost without

notification to you.
/CORE:nK Switch

You can specify the amount of core in which the programs in your job will run by means of the
/CORE switch. You specify the amount of core in the form n or nK (e.g., 25 or 25K). You should
try to estimate as closely as possible the amount of core that your job will need. If you don't specify
enough, your job can't run. If you don't specify the amount of core that your job will need, Batch

will assume 25K or an amount set by the installation.
/FEET:n Switch

If any program in your job has punched paper—tape output, you must include the /FEET switch on the
$JOB card to specify the approximate number of feet of paper tape that your job will punch. You

2-24

=127 - BEGINNER'S BATCH

specify the number of feet in the form n (e.g., 50). If you do not specify the /FEET switch, no paper
tape will be punched, even if you want it. If you do not specify enough paper tape, the output that
remains over the number of feet that you specify will be lost and the message ?0UTPUT FOR MS
LIMIT EXCEEDED will be punched in block letters in the tape.

/PAGES:n Switch

Normally, Batch allows your job to print up to 100 pages. Included in this number are the log file
and any compilation listings that you may request. If you need more than 100 pages for your job,
you must include the /PAGES switch on the $JOB card to indicate the approximate number of pages
that your job will print. If your output exceeds either the maximum that Batch allows or the number
that you specified in the /PAGES switch, the excess c;ufpuf will not be printed and the message
POUTPUT FORMS LIMIT EXCEEDED will be written in the log file. However, even if you exceed
the maximum, the first 10 pages of the log file will be printed,

/TlME:hh:mm:ss Switch

Normally, Batch allows your job to use up to 5 minutes of central processor time. Central processor
(CPU) time is the amount of time that your job runs in core, not the amount of time that it takes
Batch to process your job. If you need more than 5 minutes of CPU time, you must include the
/TIME switch on the $JOB card to indicate the approximate amount of time that you will need. If
you don't specify enough time, Batch will terminate your job when the time is up. However, if you
specify a large amount of time, Batch may hold your job in the queue until it can schedule a large

amount of time for it.

The value in the /TIME switch is given in the form hh:mm:ss (hours:minutes:seconds). However, if you
specify only one number, Batch assumes that you mean seconds. Two numbers separated by a colon
(:) is assumed to mean minutes and seconds. Only when you specify all three numbers, separated by

colons, does Batch assume that you mean hours, minutes, and seconds. For example:

/TIME:25 means 25 seconds
/TIME:1:25 means 1 minute and 25 seconds
/TIME:1:25:00 means 1 hour and 25 minutes

/TPLOT:t Switch

If you have any programs in your job that do output to the plotter, you must include the /TPLOT
switch on the $JOB card so that your output will be plotted. If the /TPLOT switch is not included,
no output will be plotted. If enough minutes (specified in the form t) are not specified, any plotter

output left after the time has expired will be lost without notification to you.
2.4.10 The $MACRO Card

You pioce a $MACRO card in front of your MACRO program to make Batch copy your program into
a disk file and insert a COMPILE command into your control file. Thus, when Batch runs your job,

2-25

BEGINNER'S BATCH ~-128 -

your MACRO program will be assembled. You can put some optional information on the $MACRO

card to tell Batch more about your program or the cards that your program is punched on.

The $MACRO card has the form:

$MACRO filename.ext/switches(switches)

10-091

filename . ext specifies the optional filename and ex-
tension that you can tell Batch to put
on the file that it creates for your pro-
gram. If you omit the filename and
extension, Batch will create a unique
name for your file and add the extension
.MAC to it

/switches are switches to Batch fo tell it how to
read your program and the kind of
listings that you want. The switches
are described below.

(switches) are switches that Batch passes to the
MACRO assembler when it puts the
COMPILE command in the control file.
The switches must be enclosed in paren=
theses, must not be preceded by slashes,
and may or may not be separated by
commas. The switches for the MACRO
assembler are described in Table H=1
in Appendix H of the DECsystem-10
MACRO-10 Assembler Programmer's
Reference Manual (DEC-10-AMZB-D).

/WIDTH:n Switch

Normally, Batch reads up to 80 columns on every card of your MACRO program. You can make
Batch stop reading at a specific column by means of the /WIDTH switch, in which you include the
number of the column at which to stop. Thus, if you wish to have Batch read only up to column 70,
you can specify

/WIDTH:70
on the $MACRO card.

/SUPPRESS:OFF Switch

When Batch reads the cards of your MACRO program, it normally does not copy any trailing spaces
into the disk file to save space on the disk. If you want Batch to copy everything on the cards up fo
column 80 or any column that you specify in the /WIDTH switch, you must include the /SUPPRESS:OFF
switch on the $MACRO card.

2-26

-129 - o BEGINNER'S BATCH

/CREF Switch

If you want a cross reference listing of your MACRO program, you can include the /CREF switch on
the $MACRO card to tell Batch to ask the MACRO assembler to produce a cross-reference listing
when it assembles your program. This listing is printed as part of your job's output. You do not have

to include a command to run the CREF program to get this listing, Batch will do it for you.
/NOLIST Switch

Normally, the $MACRO card tells Batch to ask the assembler to generate an assembly listing of your
MACRO program. The listing is then printed as part of your job's output. If you don't want this
listing, you can include the /NOLIST switch on the $MACRO card to stop generation of the listing.

Examples

The simplest form of the $MACRO card is:
$MACRO

This card tells Batch to copy your program into a disk file and assign a unique name and the extension
-MAC to it. All 80 columns of the cards are read, trailing spaces are not copied, and a listing file
is produced when the job is run. The listing is printed as part of the job's output. No switches are

passed to the assembler.

The following is an example of a $MACRO card with switches. _
$MACRO MYPRCG.MAC /SUPPRESS:OFF /WIDTH:72 (P,Q,X)

With this card, your MACRO program is copied into a disk file named MYPROG . MAC and a
COMPILE command is inserted into the control file. The cards are read only up to column 72 and
trailing spaces are copied into your file., An assembly listing is generated, and Batch passes the P, Q,

and X switches to the assembler.

2.4.11 The $NOERROR Card
You can use the $NOERROR card and the $ERROR card (described in Section 2.3.7) to specify

error recovery in the control file.

When Batch reads the $NOERROR card, it inserts a special Batch command into the control file,
the . IF (NOERROR) command. This command tells Batch what to do when an error occurs when your

job is being processed. How to perform error recovery is described in Section 2.5.

2-27

BEGINNER'S BATCH - 130 -

The $NOERROR card has the form:

$NOERROR statement

10-0912

statement is @ command to the monitor or a special Batch

command such as .GOTO or .BACKTO.

Batch enters an . IF (NOERROR) command_ into the control file when it reads the $NOERROR card,
and includes the statement from the $NOERROR card in the . IF (NOERROR) command in the form:

.IF (NOERROR) statement
The Batch commands .GOTO and .BACKTO have the forms:

.GOTO statement labe!
.BACKTO statement label

statement labe! is the label of a line in the control file.
The label can contain from 1 to é alphabetic
characters and must be followed by a double
colon (::) when it is labelling a line,

The .GOTO command tells Batch to search forward in the control file until it finds the line con-
taining the label. The .BACKTO command tells Batch to search back in the control file to find the
line containing the label. You must supply the labelled line and any related lines for which Batch
will search. Include these lines in your card deck where you want them to be copied into the control
file. If Batch cannot find a labelled line that is searching for as a result of a .GOTO or a

.BACKTO statement, it terminates your job.

2.4.12 The $PASSWORD Card

You put the password that has been assigned to you on the $PASSWORD card to tell Batch that you

are an authorized user of the system.

In conjunction with the $JOB card, the $PASSWORD card identifies you to Batch and tells Batch to
create the control file and log file for your job. If you put a password on the $PASSWORD card that
does not match the password stored in the system for you, Batch will not create any files and will
terminate your job. Some installations may not require the $PASSWORD card; if it is required at

your installation, you must put it immediately ofter the $JOB card.

2-28

- 131 - BEGINNER'S BATCH

The $PASSWORD card has the form:

"SPASSWORD password

10-0913

password is a 1 to 6 character password that is
stored in the system to identify you,

2.4.13 The $SEQUENCE Card

You use the $SEQUENCE card to specify a unique sequence number for your job. This card may or
may not be required by the installation or may be supplied by the personnel ot the installation. If

the card is required, you must include it as the Ffirst card in the deck containing your job.

The form of the $SEQUENCE card is:

/" $SEQUENCE n

10-090!

n 4 is the unique sequence number assigned
to your job, .

2.5 SPECIFYING ERROR RECOVERY IN THE CONTROL FILE

Normolly, when an error occurs in your job, Batch terminates the job and, if the error occurred when
one of your programs was running, causes a dump of your core area. The dump is printed with your
output and log file. You can specify recovery from errors in the control file by means of the $ERROR
and $NOERROR cards, described in Sections 2.4.7 and 2.4.11. You must include one of these cards
at the point in the control file that dn error may occur. When an errof occurs, Batch examines the
next monitor-level liné (i.e., not a line that contains data or a command string to a system program)
to find an . IF (ERROR) statement to tell it what to do about the error. If an error does not occur and
an .IF (ERROR) statement is present, the .IF (ERROR) statement is not executed. Thus, if you have
a program that you are not sure is error-free, you can include a $ERROR or $NOERROR card to tell

Batch what to do if an error occurs, as shown in the following example.

2-29

BEGINNER'S BATCH -132 -

| END-OF-FILE

PREMAINDER OF JOB
4NOERROR)

// FORTRAN PROGRAM
SFORTRAN
$PASSWORD
$J08

$SEQUENCE

10- 0914

The above cards would cause Batch to make the following entries in the control file.

.COMPILE ...
.IF (ERROR) statement

On either the $ERROR or $NOERROR card, you must include a statement that tells Batch what to
do. You can use any monitor command, a command to a program, or one of the special Batch com-
mands. The .GOTO and .BACKTO commands are two Batch commdnds for this purpose. Refer to
Section 2.4.7 for descriptions of these commands. Be sure, if you use .GOTO or .BACKTO on
your $ERROR or $NOERROR card, that you supply a line for the control file that has the label that
you specified in the .GOTO or .BACKTO commands.

Two sample jobs are shown below. The first shows using $ERROR and the .GOTO command to
specify error recovery. The second example shows the use of the $NOERROR card and the
.GOTO command,

If you have a program that you are not sure will compile without errors, you can include another
version of the same program in your job (that hopefully will compile) and tell Batch to compile the

second program if the first has an error. The cards to enter this job are shown below,

2-30

- 133 - ‘ BEGINNER'S BATCH

A

/a:: ;CONTINUE

*EXECUTE PROG2.F4

$EOD

£

¥_FORTRAN SOURCE PROGRAM

$FORTRAN PROG2.F4

Al ;CONTINUE
*GOTO B

$DATA FORO1. DAT ‘

\
$ERROR .GOTO A ! {h

$FORTRAN MYPROG.F4

$PASSWORD ABCD

$J0B [27.741] “J‘

$SEQUENCE 101

. . 10~0922
These cards set up the following control file for you.

.COMPILE /COMPILE MYPROG.F4 /LIST
.IF (ERROR) .GOTO A

-EXECUTE MYPROG . REL /MAP:MAP,LST
.GOTO B

A:: ;CONTINUE -

.COMPILE /COMPILE PROG2.F4 /LIST
.EXECUTE PROG2.F4

B:: ;CONTINUE

The $FORTRAN card told Batch to copy the program MYPROG ., F4 into a disk file‘and to insert a

~ COMPILE command into the control file. The $ERROR card told Batch to insert . IF (ERROR)
.GOTO A into the control file. The data was copied info a disk file and an EXECUTE command
was put into the control file because of the $DATA card. The $EOD card told Batch to stop copying
cards into the data file, so Batch put the next two lines into the control file. The second
$FORTRAN card told Batch to copy the program PROG2.F4 into a disk file and put a COMPILE
command into the control file. Another $EOD card told Batch to stop copying into the program file,
so Batch put the next two lines into the control file. An EXECUTE command was used instead of a

2-31

BEGINNER'S BATCH - 134 -

$DATA card because the data was already in a file on disk, although the $DATA card does not have
to have data with it to put an EXECUTE command in the control file.

When the job is started, Batch reads the control file and passes commands to the monitor. If an error
occurs in the compilation of the first program, Batch finds the . IF statement and executes the .GOTO
command contained in it. The command tells Batch to look for the line labelled A, which contains

o comment, so Batch goes on to the next line. The second program is compiled and then executed
with the data. The next line is a comment, so Batch continues to the end of the control file. If an
error does not occur in the first program, Bafch skips the .IF statement, executes the program with

the data, skips the unnecessary error procedures, and continues to the end of the control file.

A variation of the above procedure is shown below using the $NOERROR card and the .GOTO
command. The difference is that Batch skips the .IF statement if an error occurs, and performs it

if an error does not occur.

B.1; CONTINUE

/ EXECUTE MYPROG.F4

/A‘.: < CONTINUE
/'-com 8

/‘EXECUTE PROG2.F4

DATA FOR FORTRAN PROGRAM

« $FORTRAN MYPROG. F4

$PASSWORD ABCD

$yo8 [27.744]

$SEQUENCE 101

10-0923

2-32

=135 - BEGINNER'S BATCH

Batch reads the cards and puts the following commands into the control file.,

.COMPILE /COMPILE MYPROG.F4 /LIST
.IF (NOERROR) .GOTO A

.COMPILE /COMPILE PROG2.F4 /LIST
.EXECUTE PROG2.F4

.GOTO B

A:: ;CONTINUE

.EXECUTE MYPROG.F4

B:: ;CONTINUE

~ The $FORTRAN card tells Batch to copy the FORTRAN program into a file named MYPROG .F4,
and to insert a COMPILE command into the control file., The $ERROR card tells Batch to insert an

- IF command into the control file. The second $FORTRAN card tells Batch to copy the second pro-
gram into a disk file named PROG2.F4 and to insert another COMPILE command into the control
file. Instead of a $DATA card, a $DECK card is used to tell Batch to copy the data into a disk file
named FORO1.DAT. The $DATA card is not used here because it would have the names of both
programs in its list for the EXECUTE command generation, which would cause an error when the job

is run. To tell Batch to stop copying cards into the data file, the $EOD card comes next. Thus,
Batch copies the next five lines into the control file.

When the job is run, Batch passes the COMPILE command to the monitor to compile the first pro~
grurﬁ. If an error does not occur, the . IF command is read and the .GOTO command is executed.’
Batch skips to the line labelled A, which is a comment, and continues reading the control file. The
program MYPROG .F4 is executed with the data and the end of the job is reached. If an error
occurs, Batch skips the .IF statement and continues reading the control file. PROG2.F4 is compiled
and then executed with the data. Batch is then told to go to the line labelled B, which is a comment
line. The end of the job follows. '

The examples shown above illustrate only two ways that you can specify error recovery in the control
file. You can also use the .BACKTO command or any monitor command that you choose to help you

recover from errors in your job.

You do not have to attempt to recover from errors while your job is ruhning: You can correct your

errors according to the error messages in the log file when your job is returned to you, and then run

your job again. Batch will also print a dump of your core area if an error occurs while your job is

running and you have not specified error recovery. If you can read dumps, this can also aid you to
correct your errors. The log file and dumps are described in Chapter 4.

2-33

BEGINNER'S BATCH =136 -

=137 - BEGINNER'S BATCH-

CHAPTER 3
ENTERING A JOB TO BATCH FROM A TERMINAL

When you enter a job to Batch from a timesharing terminal, you must create a control file that Batch
can use to run your job. The control file contains all the commands that you would use to run your
job if you were running under timesharing. For example, if you wanted to compile and execute a

program called MYPROG.CBL, the typeout would appear as follows.

égggplLE M:(nggG-CBL (Your request)

. H YP

EXITL " 6 The system's reply
+EXECYTE MYPROG.CBL (Your request)
LOADING

LOADER 1K CORE '
EXECUTION The system's reply
EXIT

The control file to tell Batch to run the same job appears as the following.

«COMPILE MYPROG.CBL
+EXECUTE MYPROG.CBL

1

When the job is run, the commands are passed to the monitor to be executed. The commands and
their replies from the monitor are written in the log file so that the entire dialog shown above appears
in the log file.

To create a control file and submit it to Batch from a terminal, you must perform the following steps.
1. LOGIN to the system as a timesharing user.
2, Write a control file using an editor such as TECO or LINED.,
3. When you finish the control file, close and save it on disk.
4. Submit the job to Batch using the monitor command SUBMIT or QUEUE INP:.

You can then wait for your output to be returned at the designated place.

3.1 CREATING THE CONTROL FILE -

After you have logged into the system as you normally would to start a timesharing job, you must run

an editor so that you can create your control file,

The control file can contain monitor commands, system program commands, data that would normally

be entered from a terminal, and special Batch commands. The Batch commands are described in

3-1

BEGINNER'S BATCH - 138 -

-

Section 3.3. What you write in the control file depends on what you wish your job to accomplish.
An example of a job that you can enter to Batch from a terminal is as follows.

. Compile a program that is on disk,

. Load and execute the program with data from another disk file.

. Print the output on the line printer.

Write the output into a disk file also.

Compile o second program.

o

Load and execute the second program with the data output from
the first program.

7. Print the output from the second program.

The control file that you would write for the above job is as follows.

.COMPILE MYPROG+F4/COMPILE
+EXEGUTE MYPROG.F4
COMPILE PROG2,F4/COMPILE
JEXEGUTE PROG2,t4

You include statements in your programs to read the data from the disk files and write the output to
the printer and the disk. The output to the line printer is written with your log file as part of the
total output of your job.

If an error occurs in your job, Batch will not continue, but will terminate the job and, if the error
occurs while one of your programs is running, cause a dump to be taken of your core area. The dump
is then printed with your job's output. To avoid having your job terminated because an error occurs,
you can specify error recovery in the control file using the special Batch commands. Error recovery
is described in Secticn 3.4.

#

Any monitor command that you can use in a timesharing job can be used in a Batch iob with the fol-
lowing exceptions. The ATTACH, DETACH, CCONT, CSTART, and SEND commands have no
meaning in a Batch job. If you include one of these commands in your job, Batch will write the
command and an error label BAERR into your log file, will not process the command, and will then
continue the job from that point. Do not include a LOGIN-command in your control file because
Batch |og§ the job for you. If you put in a LOGIN command, your job will be terminated.

3.1.1 Format of Lines in the Control File

Since you can put monitor, system program, and Batch commands, as well as data into the control file,
you have to tell Batch what kind of line it is reading. The format of each of these lines is described
below. Each line normally begins in column 1, but Batch always starts reading at the first nontab

or nonblank character, regardless of the column in which it appears.

To include a monitor or Batch command, you must put a period (.) in the first column and follow it

immediately with the command. Any information that follows a monitor command-is in the format

3-2

- 139 - . BEGINNER'S BATCH

shown for the command in Chapter 3 of the DECsystem-10 Operating System Commands manual . Any
information that follows a Batch command is in the format shown in Section 3.3 in this chapter.

If you include a command string to a system program, you must place an asterisk (*) in column 1 and
follow it immediately with the command string. For the format of command strings, refer to the man-
ual for the specific system program that you wish to use.

If you want to include a command to a system program that does not accept carriage return as the end
of the line (e.g., TECO and DDT), you must substitute an equal sign (=) for the asterisk so that Batch
will suppress the carriage return at the end of the line,

To include data for your program in the control file, write it as you would data that is read from a
separate file. The only restriction on data in the control file is that alphabetic data that is preceded
by a dollar sign ($) must be preceded by an additional dollar sign so that Batch will not mistake it
for a comment.

If you put any special characters other than those described above in the first column of the line, you
may get unexpected results because Batch interprets other special characters in special ways. If you
want to know about other speéial characters, refer to Chapter 3 of the DECsystem~10 Operating

System Commands manual.

If you have more information than will fit on one line, you can continue on the next line by placing
a hyphen (=) as the last nonspace character on the line to be continued and the rest of the informa-

tion on the next line.

Comments can also be included either as separate lines in the control file or on lines containing
other information. To include a comment on a separate line, you must put a semicolon(;) in column 1
and follow it immediately with the comment. To add a comment to o'l ine, you must precede the

comment with a semicolon (;) after all the information that you need has been put on the line.

3.2 SUBMITTING THE JOB TO BATCH

After you have created the control Fi)le and saved it on disk, you must enter it into the Batch queue

so that it can be run. All programs and data that are to be processed when the job is run must be
made up in advance or be generated during the running of the job. You can have them on any medium
but, if they are on devices other than disk, you must include commands in your control file to have
the operator mount the devices on which your programs and data reside. It is recommended that your
programs and as much of your data as is possible reside on disk. An example of including MOUNT
commands in the control file to mount tapes is shown in Chapter 5.

You enter your job into Batch's queue by means of the SUBMIT or QUEUE INP;: monitor command.
These commands have the forms:

SUBMIT jobname = control filename ., ext, log filename.ext /switches
QUEUE INP:jobname = control filename.ext, log filename.ext / switches

BEGINNER'S BATCH - 140 -

jobname is the name that you give to your job.
If this name is omitted, Batch uses the
name of the control file.

control filename.ext is the name that you have given to the
control file that you created: You can
add an extension, but if you don't, Batch
will assume an extension of .CTL,

log filename . ext is the name that Batch will give the log
file when it is created. You can add an
extension, but if you don't, Batch will
assume an extension of ,LOG.

You must specify the name of the control file. If the name of the log file is omitted, ‘its name will
be taken from the name of the control file.
/switches are switches to Batch to tell it how to
process your job and what your output
will look like. Most switches can
appear anywhere in the command string;
however, a few must be placed after the

files to which they pertain. The various
kinds of switches are described below.

Three kinds of switches are available to you to use in the SUBMIT and QUEUE INP: commands. The
switches are: queue operation, general, and file control. Each category of switch and the switches

in each category are described in the following sections. .

3.2.1 Queue Operation Switches

Queve operation switches describe the actions that you want Batch to perform with your job. Only
one of this type of switch can be placed in the command string, and it can appear anywhere in the

command string.
/CREATE Switch

With the /CREATE switch, you tell Batch that you are entering a job into its queve. The job will
then wait in the queue until Batch is ready to process it. If you omit a queue operation switch from
the SUBMIT command string, Batch will assume the /CREATE switch, i.e., it will assume that you

are entering a job. An example of this switch follows.

SUBMIT MYJOB = MYFILE,CTLs MYLOG.LOG (CREATE

/KILL Switch

You put the /KILL switch in a SUBMIT command to tell Batch that you want to delete a job that you
previously entered into its queve. For example, if you submit a job and discover that you left a
command out of the control file, you could delete the queue entry by issuing another SUBMIT com-
mand for that job with a /KILL switch in it. After you have corrected the control file, you could

resubmit the job to Batch. However, if Batch has already started to run your job, it will ignore

3-4

=141 - . BEGINNER'S BATCH

your request to delete the job and issue the message %QUEUE REQUEST INP:jobname [proi, progl
INTERLOCKED IN QUEUE MANAGER. When you use the /KILL switch, you must specify the job
name in the SUBMIT command or you will kill all the jobs that you may have in the Batch input queve.

/MODIFY Switch

If you want to change any switch value that you have previously entered in a SUBMIT command,

you can include the /MODIFY in a new SUBMIT command fo tell Batch which switch value that you
want to change. You can change any switch value that can be entered in a SUBMIT command. The
switch value that you want changed is written immediately after the /MODIFY switch, For example,
to change the number of pages in a /PAGE switch (described below), you could issue the following

command;

SUBMIT MYJODB = /MODIFY/PAGE 50

The value specified in the /PAGE switch that follows the /MODIFY switch replaces the previous
valve. If Batch hes already started the job in which you wish to change a switch, the /MODIFY
switch will be ignored, and Batch will issue the message %QUEUE REQUEST INP:jobname [proi, progl
INTERLOCKED IN QUEUE MANAGER.

3.2.2 General Switches

You use the general switches to define limits for your job. Such limits as core, pages of output, and
the time that your job will run can be specified as general switches. Each general switch can be
specified only once in a SUBMIT command, although each can be modified in subsequent SUBMIT
commands by means of the /MODIFY switch. You can put a general switch anywhere in the com-
mand string because it affects the entire job, not just one file in the job.

/AFTER:t Switch

If you don't want Batch to run your job until after a certain time or until after a certain number of
minutes have elapsed since the job was entered, you can include the /AFTER switch in the SUBMIT
command string. The time is specified in the form hhmm (e.g. ¢ 1215) and the number of minutes
that the job must wait is specified in the form +t (e.g., +15). If you omit the switch, or the colon
and the value in the switch, Batch will schedule your job as it normally would.

NOTE

If any of the programs in your job have output to slow-
speed devices such as the card punch, the paper=tape
punch, the line printer, and the plotter, do not include
an ASSIGN command in your job. Batch will take care
of this.output for you as long as you specify the switches
for these devices, which are described below.

BEGINNER'S BATCH - 142 -

/CARDS:n Switch

If any program in your job has punched card output, you must include the /CARDS switch in the
SUBMIT command to specify the approximate number of cards that your job will punch. The number
of cards is specified in the form n (e.g.; 1000). If you do not specify the /CARDS switch, no cards
will be punched, even if you want them. If you specify the switch without the colon and a value,
up to 2000 cards can be punched by your job. If you do not specify enough cards, the output that

remains after the limit is reached will be lost without notification fo you.
/CORE:n Switch

You can specify the maximum amount of core in whicf; the programs in your job will run by means

of the /CORE switch. You specify the amount of core in the form n (e.g., 25) which indicates
decimal thousands. You should try to estimate as closely as possible the amount of core that your

job will need. If you don't specify enough, you job can't run to completion. If you omit the switch,
Batch will assume 25K of core or an amount set by the installation. If you specify the switch without

the colon and a value, Batch will assume 40K of core or an amount set by the installation.
/FEET:n Switch

If any program in your job has punched-paper-tape output, you must include the /FEET switch in the
SUBMIT command to specify the approximate number of feet of paper tape that your job will punch.
You specify the number of feet in the form n (e.g., 50). If you do not specify the /FEET switch,

no paper tape will be punched, even if you want it. If you specify the /FEEY switch without the
colon and a value, Batch will assume the numben of feet equal to 10 times the number of disk blocks
that your paper tape output would occupy plus 20, If you do.not specify enough paper tape, the
output that remains ofter the limit is exceeded will be lost and the message 20UTPUT FORMS LIMIT
EXCEEDED will be punched into the tape in block letters.

- /PAGE:n Switch

Normally, Batch allows your job to print up to 200 pages. Included in this number are the log file
and any listings that you may request. If you need more than 200 pages for your job, you must in=
clude the /PAGES switch in the SUBMIT command to indicate the approximate number of pages that
your job will print. If you include the switch without the colon and a value, Batch will assume that
you will print up to 2000 pages. [f your output exceeds either the maximum that Batch allows or the
number that you specified in the /PAGE switch, the excess output will be lost and the message
20UTPUT FORMS LIMIT EXCEEDED will be printed. However, even if you exceed the maximum,
the first 10 pages of the log file will be printed.

/TIME: hh:mm:ss Switch

Normally, Batch allows your job to use up to 5 minutes of central processor time. Central processor

(CPU) time is the amount of time that your job runs in core, not the amount of time that it takes

~ 143 - BEGINNER'S BATCH

Batch to process your job. If you need more than 5 minutes of CPU time, you must include the
/TIME switch in the SUBMIT command to indicate the approximate amount of time that you will need.
If you specify the switch without the colon and a value, Batch will assume that you need 1 hour of
CPU time. If you don't specify enough time, Batch will terminate your job when the time is up.

The value in the /TIME switch is given in the form hh:mm:ss’(hours:minutes:seconds). However, if
you specify only one number, Batch assumes that you mean seconds. Two numbers separated by a
colon is assumed to mean minutes and seconds. Only when you specify all three numbers, separated

by colons, does Batch assume that you mean hours, minutes, and seconds. For example:

/TIME:25 means 25 seconds
/TIME:1:25 means 1 minute and 25 seconds
/TIME:1:25:00 : means 1 hour and 25 minutes.

/TPLOT:t Switch

If you have any programs in your job that do output to the plotter, you must include the /TPLOT
switch in the SUBMIT command so that your output will be plotted. 'If the /TPLOT switch is not
included, no output will be plotted. If you specify the switch without the number of minutes
(specified in the form t), Batch will allow output equal to 10 minutes of plotter time. If enough
minutes are not specified, any plotter output left after the time has expired will be lost without

notification to you.

3.2.3 File=Control Switches

File-control switches allow you to specify parameters for individual files in the SUBMIT command.
The control file can receive a special parameter, while the log file does not, and vice versa. If
you place a file=control switch before the two filenames in the SUBMIT command, the switch applies
to both files in the request. If you place the switch after one of the files in the command, it refers

to only that file.
/DISPOSE Switch

The /DISPOSE switch can have one of three values:

/DISPOSE:DELETE
/DISPOSE: PRESERVE
/DISPOSE:RENAME

/DISPOSE:DELETE allows you to specify that either the control file or the log file (or both) should
be deleted after the job is run. The log file is deleted from your disk area only after it has been

printed.

/DISPOSE:PRESERVE allows you to specify that one or both of your files should be left in your disk '
area after the job is finished and all output printed.

BEGINNER'S BATCH - 144 -

/DISPOSE:RENAME tells Batch that you want the specified file to be taken from your disk area
immediately and put in Batch's disk area. In the case of the log file, /DISPOSE:RENAME only works
for a log file that already exists on your disk area. Do not use /DISPOSE:RENAME for a log file

that does not yet exist. After the job has been run and the output has been printed, the file that

was renamed is deleted from Batch's disk area.

If you omit the /DISPOSE switch, Batch assumes /DISPOSE:PRESERVE. That is, both the control
file and the log file are saved in your disk area. If you plan to use the control file again, then it is
best to omit the /DISPOSE switch for the control file. If you don't want to keep the control file
because you don't have enough room in your disk area, specify either /DISPOSE:DELETE or
/DISPOSE:RENAME, /DISPOSE:DELETE will cause the control file to stay in your disk area until
after the job is finished and then be deleted. /DISPOSE:RENAME will cause Batch to immediately
move your control file to its own disk area where it will stay until the job is finished, at which time
it will be deleted. You should use /DISPOSE:RENAME when you will be over your logged-out

quota if the control file remains in your disk area when you log off the system.

Unless you have some use for the copy of the log file that will remain in your disk area even after it
has been printed, use the /DISPOSE:DELETE switch to have the log file deleted after it is printed.

If you do not delete the log file and you run the job again using the same log filename, your new log
file will be appended to the old log file and they will both be printed as part of the new job.

The switches, and the assumptions made if they or their values are omitted, are all subject to change
by each installation, Check with the installation where you run your jobs to find out what differences
exist between the values described here and those at the installation. Additional switches are avail-
able for use with the SUBMIT command. For information about these switches, refer to the SUBMIT
command in Chapter 2 of the DECsystem~10 Operating System Commands manual (DEC-10-MRDC-D).
You can obtain further information about Batch in Chapter 3 of the aforementioned manual.

3.2.4 Examples of Submiiting Jobs

" The following are sample jobs that are entered to Batch by means of the SUBMIT command. The jobs
are shown in the following order,

1. Creating the control file.

2. Submitting the job to Batch using the SUBMIT command.

+COMPILE MYPROG.F4 /LIST/COMPILE
«EXECUTE MYPROG:F4

After the control file to compile and execute the FORTRAN program has been written and saved,
you must submit the job to Batch.

SUBMIT MYFILE

=145 - BEGINNER'S BATCH

When Batch reads this SUBMIT command, it assumes the following:

1.

A e

:OOO\SO*.UI

10.
11.

The control filename and extension are MYFILE.CTL.
The name of the job is MYFILE.
The log file will be named MYFILE.LOG.

Both the control file and the log file will be saved in your disk area
(/DISPOSE: PRESERVE),

An entry is being created in Batch's queue (/CREATE),

No cards will be punched by the job (/CARDS:0).

The maximum amount of core to be used to run the job is 25K (/CORE:25),
No paper tape will be punched (/FEET:0).

200 is the maximum number of pages to be printed (/PAGE:200),

The maximum amount of CPU time is 5 minutes (/TIME:5:00).

No plotter time will be used (/TPLOT:0).

The next example shows the control file that was created at the beginning of this chapter being
submitted to Batch.

«COMPILLE MYPROG.F4/CcOMPLE
EXECUTE MYFILE.F4 ,
+COMPILE PROG2,F4/CoMPILE
+EXECUTE PRQG2,F4

After you have saved the control file, you must submit the job to Batch.

-

SUBMIT = MYFII_E:MYFILE«LOG/DISPOSE1DELETE/TIME32@!EJ,/CM?DS:SVM

When Batch reads this request, it assumes the following:

1.

P® NSO AN

— —
_— O
.

12,

The name of the job is MYFILE, -

The name of the control file is MYFILE.CTL.

The log file will be named MYFILE.LOG.

An entry is being created in Batch's queue (/CREATE).

The log file will be deleted after it is printed (/DISPOSE:DELETE).
The control file will be saved in your disk area (/DISPOSE:PRESERVE),
A maximum of 500 cards can be punched by the job (/CARDS:500).
The maximum amount of core that can be used is 25K (CORE:25),
No paper tape will be punched by the job (/FEET:0).

20 is the maximum number of pages that can be printed (/PAGE:20).
The maximum amount of CPU time that the job can use is 20 minutes

" (/TIME:20:00).

No plotter time will be used (/TPLOT:0).

If you made an error in the SUBMIT command when you submitted either of these jobs, Batch will

type an error message on your terminal to explain your error so that you can correct it.

BEGINNER'S BATCH - 146 -

3.3 BATCH COMMANDS (IN ALPHABETICAL ORDER),

You can write certain special Batch commands in the control file to tell Batch how to process your
control file. Each of these commands must be preceded by a period so that Batch will recognize it.

The commands are described in detail in the following sections.

3.3.1 The .BACKTO Command

You can use the .BACKTO command to direct Batch to search back in the control file for a line with
a specified label. The .BACKTO command has the form:

.BACKTO label

label is @ 1- to 6-character alphanumeric label
for a statement. It must be followed by a
double colon (::) when it labels a state-
ment to show that it is label.

Normally, Batch reads the control file line-by-line and passes the commands and data to the monitor
and your program. When you put a _BACKTO command into the control file, you tell Batch to -
interrupt the normal reading sequence and fo search back in the control file to find a line containing
the label specified in the .BACKTO command. When it reaches the labelled line, Batch executes
the line and continues from that point (unless the line contains another .BACKTO command or a
_GOTO command, described below).

If Batch cannot find the labelled line, it terminates your job. An example of the .BACKTO com-

mand is as follows.

ABCi: ,DIRECT

+BACKTO ABC

3,3.2 The .ERROR Command

With the .ERROR command, you can specify to Batch the character that you wish to be recognized
as the beginning of an error message. Normally, when Batch reads a message that begins with a
question mark (?), it assumes a fatal error has occurred and terminates the job, unless you have
specified error recovery (refer.to Section 3.4). If you wish Batch to recognize another character
as the beginning of a fatal error message, you must specify the character in the .ERROR command.

This command has the form:
.ER_ROR churacfer

character is a single ASCII character that is
recognized in the DECsystem-10.

- 147 - BEGINNER'S BATCH

If you do not specify a character in the .ERROR command, Batch uses the standard error character,
the question mark. When a line that is preceded by the character that you specify in the .ERROR
command is passed to Batch from the monitor, a system program or is issued by Batch itself, Batch
treats the line as a fatal error and terminates the iob, exactly as it would if the line were preceded
by a question mark. Any messages preceded by other characters will not be recognized by Batch as
errors. The only exception is the 2TIME LIMIT EXCEEDED message. No matter what character you

specify as the beginning of an error, Batch will recognize this message and terminate your job.

If you do not include the .ERROR command in your control-file, Batch will recognize the question
mark as the beginning character of a fatal error message, unless you include the . NOERROR com-
_ mand in your control file to cause Batch to ignore fatal errors (refer to Section 3.3.5).

An example of the .ERROR command follows.

+ERRNR

% = 30 e e

+ERRNR

In this example, you specify in the middle of the control file that you want Batch to recognize the
percent sign (%) as the beginning character of a fatal error from that point in the control file,
Further on in the control file, you tell Batch to go back to recognizing the question mark as the

beginning of a fatal error message.

3.3.3 The .GOTO Command

You can include the .GOTO command in your control file to direct Batch to skip over lines in the

control file to find a specific line. The .GOTO command has the form:
.GOTO label

. label ' is a 1= to é-character alphanumeric
label for a statement. It must be
followed by a double colon (::) when it
labels a statement to show that it is
a label.

When Batch encounters a . GOTO command in the control file, it searches forward in the control
file to find the label specified in the .GOTO command. Batch then resumes processing of the
control file at the line with the specified label. If Batch cannot find the labelled line, it termi-

nates your job,

If you do not include a .GOTO command in the control file, Batch reads the control file sequentially
from the first statement to the last, unless you include a .BACKTO statement (refer to Section 3.3.1),

BEGINNER'S BATCH - 148 -

An example of the .GOTO command follows.

-Vl
«GOTa ABC

ABC:t ,DIRECT

You can use the .GOTO command as the statement in an .IF command (refer to Section 3.3.4) to

aid you in error processing. For example:

JIF (ERROR) ,G0!0 ABC

ABC3s ,TYPE MYPROG

3.3.4 The .IF Command

You can include the .IF command in your control file to specify an error recovery procedure to Batch

or to specify normal processing if an error does not occur. The . IF statement has the forms:

.IF (ERROR) statement
.IF (NOERROR) statement

statement is @ command to the monitor, fo a pro=
gram, or to Batch.

The . IF command can be used in two ways as shown in its two forms. You can include the

.IF (ERROR) command in your control file at the place where you may have an error. The

.IF (ERROR) command must be the next monitor=level line (as opposed to a line in your program

or a line of data) in your control file after an error occurs so that Batch will not terminate your job.
In the .IF (ERROR) command, you direct Batch to either go back or forward in your control file

to find a line that will perform some task for you, or direct Batch to perform a task for you af that

point in your control file, or to direct the monitor or any other program to perform some task for you.

You can use the .IF (NOERROR) command also to direct Batch or the monitor to perform tasks for

you when an error does not occur af the point in your control file where you place the .IF (NOERROR)
command. Thus, if you expect that an error will oceur in your program, you can include an

.IF (NOERROR) command to direct Batch in case the error does not occur, and then put the error
processing lines immediately following the command. Refer o Section 3.4 for an example of using

.IF (NOERROR) and .IF (ERROR).

If an error oceurs and Batch does not find an . IF command as the next monitor=level line in the

control file, Batch writes an error message in the log file and terminates the job. If one of your

3-12

- 149 - ~ BEGINNER'S BATCH

programs is running when an error occurs and there is no . IF command, Batch causes dump to be

taken and terminates your job.

3.3.5 The .NOERROR Command

You can use the . NOERROR command to tell Batth to ignore all error messages issued by the
monitor, system programs, and Batch itself. "The only exception is the message PTIME LIMIT
EXCEEDED. Batch will always recognize this as an error message and terminate your job. The
-NOERROR command has the form:

.NOERROR

When Batch reads the . NOERROR command, it ignores any error messages that would normally
cause it to terminate your job. However, Batch still writes the error message in the log file so that

you can examine your errors when your output is returned.

You can use . NOERROR commands in conjunction with .ERROR commands in the control file to
control error reporﬁng. For example, if you wish to ignore errors at the beginning and end but not
in the middle of the control file, place .ERROR and . NOERROR commands at the appropriate
places in the control file. In addition, you can also specify which messages must be treated as

fatal errors.

t
2

L]
«NOERROR

1]

'

'
+ERROR %

'

]

L}
ERKOR

o- . =

+NOERD

The first command tells Batch to ignore all errors in your job. The second command tells Batch to
recognize as errors any message that starts with a percent sign (%). You change the error reporting
with the next command to tell Batch to go back to recognizing messages that begin with a question
mark as fatal. The second -NOERROR command tells Batch to ignore all error messages again. If
the ?TIME LIMIT EXCEEDED message is issued at any time, Batch will print the message and

terminate the job.

BEGINNER'S BATCH - 150 -

3.4 SPECIFYING ERROR RECOVERY IN THE CONTROL FILE

If you don't specify error recovery when an error occurs in your job, Batch terminates the job and,
if the error occurs when one of your programs is running, causes a dump of your core area. You can
specify error recovery in the control file by means of the Batch commands, especially the .IF com-
mand. You must include the .IF command at the point between programs in the control file that an
error may occur. When an error occurs, Batch examines the next monitor-leve! line (i.e., not a
line that contains data or a command string to a system program) to find an .IF command to tell it
what to do with the error. If an error does not occur and an .IF (ERROR) command is present, the
.IF (ERROR) command is not executed. Similarly, if an error does not occur ond you have included
an .IF (NOERROR) command, the .IF command is processed. Thus, if you have a program that you are
not sure is error—free, you can include an .IF command to tell Batch what to do if an error occurs, as
shown in the following example.

iCOMPILE MYPROGHFA4

LIF (ERROR) STATEMENT

L]

In either the .IF (ERROR) or the .IF (NOERROR) command, you must include a statement that tells
Batch what to do. You can use any monitor command or one of the Batch commands. The .GOTO
and .BACKTO commands are commonly used for this purpose. Refer to Sections 3.3.1 and 3.3.3 for
descriptions of these commands. Be sure, if you use .GOTO or .BACKTO in the .IF command, that
you supply a line in the control file that has the label that you specified in the .GOTO or .BACKTO

command.,

Two sample jobs are shown below. The first shows the .IF (ERROR) command and the .GOTO com~-
mand to specify error recovery. The second example shows the use of the .IF (NOERROR) and
.GOTO commands.

If you have a program that you are nof sure will compile without errors, you can include another
version of the same program in your job (that hopefully will compile) and tell Batch to compile the
second program if the first has an error. You write the control file as follows.

JCOMP[LE /CCAPILE MYPROG,F4 /L1ST

+JF (ERRORI ,GOIO A

WEXESUTE MYPROGF

«GOTN B .

At JCONTINUE

LCOMPILE /GCOMPILE PROGZ,F4 /_1ST

JEXERUTE PROG2,r4

31O CONT IR

When the job is run, Batch reads the control file and passes commands to the monitor. If an error
occurs in the compilation of the first program, Batch finds the .IF (ERROR) command and executes
the .GOTO command contained in it. The command tells Batch to look for the line labelled A,

which contains a comment, so Batch continues to the end of the control file. If an error does not

3-14

=151 - : BEGINNER'S BATCH

occur in the first program, Batch skips the | IF (ERROR) command, executes the program with its
data, skips the unnecessary error procedures, and continues to the end of the control file.

A variation of the above procedure is shown below using the .IF (NOERROR) command dnd the
.GOTO command. The difference is that Batch skips the .IF (NOERROR) command if an error
occurs, and performs it if.an error does not occur. The following is the control file that you would
create,

+COMRILE /COMPILE MYPROG,F4 ,_IST
«IF (NOERROR) ,GoTo &

+COMPILE /COMPILE PROG2,F4 /_187
WEXECUTE PROG2,74

«GOTo B

Al JCONTINUE

+EXECUTE MYPROG.F4¢

Bt{ JCONTINUE -

When the job is run, Batch passes the COMPILE command to the monitor to compile the first pro-
gram. If an error does not occur, the . IF (NOERROR) command and the .GOTO command are
executed. Batch skips to the line labelled A, which is a comment, and continues reading the
control file. The program MYPROG.F4 is executed with its data and the end of the job is reached.
If an error occurs, Batch skips the . IF kNOER ROR) command and continues reading the control
file. PROG2.F4 is compiled and then executed with the same data that the first program would
have used. Batch is then told to go to the line labelled B, which is a comment line. The end of
the job follows.

\

The examples shown.above illustrate only two ways that you can specify error recovery in the control
file. You can also use the other Batch commands, or any monitor command that you choose to help
you recover from errors in your job.

You do not have to attempt to recover from errors while your job is running, You can correct your
errors according to the error messages in the log file when your job is returned to you, and then run
your job again. Batch will also print a dump of your core area if an error occurs while your job is
running and you have not specified error recovery. If you can read dumps, this can also aid you to
correct your. errors. The log file and dumps are described in Chapter 4.

J

BEGINNER'S BATCH - 152 -

-

-153 - BEGINNER'S BATCH

’

CHAPTER 4
INTERPRETING YOUR PRINTED OUTPUT

You can receive three kinds of printed output from your Batch job:
1. Output that you request, i.e.’ the results of your job.
2. Output from Batch, i.e., the log file,

Output that is the result of actions by your job or by Batch, the monitor,
or system programs. Examples of this output are compilation listings,
cross-reference listings, error messages, and core dumps requested by Batch.

4.1 OUTPUT FROM YOUR JOB

Although this chapter deals mainly with printed output, you can have output to any device that the
installation supports, as long as the installation allows you to use these devices. If your output is
directed to the line printer, it will be printed separate from the log file. The printed output from
each program will be preceded by two pages containing your name and project-programmer number
and other pertinent information. Following these pages are two header pages containing the name
of your output file in block letters. The output follows these header pages. A trailer page follows
your output. This page contains the same information that is on the first two pages. The header
and trailer pages also include three rows of numbers (read vertically from 001 to 132).

If your output is that which would normally be sent to the terminal, it will be printed in the log file,
In the sample output shown in Section 4.4, the output from the program is included in the log file
because it is directed to the terminal rather than the line printer.

4.2 BATCH OUTPUT

The output from Batch consists of a log file that contains all the statements in the control file, com-
mands sent to the monitor from Batch for you, and the replies to the commands from the monitor and
system programs like the compilers. Any error message sent from the monitor or a system program, or

from Batch itself, is-also written in the log file. Refer to the DECsystem-10 Operating System

Commands manual (DEC-10-MRDC-D) for a list of the error messages from the monitor, The messages

from each system program are listed in the applicable manuals.

You can ignore, most of the information in the log file because it is system information and need not
‘concern you. If you wish, you can keep it for reference by system programmers if unexpected results

occur in your job. -

4-1

BEGINNER'S BATCH - 154 -

4.3 OTHER PRINTED OUTPUT

Other output that you can get as a result of your job includes compiler and cross-reference listings,
loader maps for programs that were successfully loaded, and dumps that you can request or that Batch

gives to you when an error occurs in your program.

The compiler and cross-reference listings are those listings generated by the compiler if you request
them. When you enter your job from cards, Batch requests compilation listings for you unless you
specify otherwise. Cross-reference listings are generated for you only if you specifically ask Batch
for them. When you enter your job from a terminal, you must request the listings in the COMPILE
command. Also, if you request a cross-reference listing, you must run the CREF program (by means

of the CREF command) to get your listing printed.

If you enter your job from cards and include a $DATA card to request execution of a program, Batch
requests a loader map for you. This map shows the locations in memory into which your program was
placed. If you enter your job from a terminal, you must request a loader map in the EXECUTE com~-
mand if you wish to have one. If you wish to know the locations into which your program was loaded,
the loader map can be of use to you. Otherwise, you con ignore it. A loader map is shown in the

sample output in Section 4.4, however, it is not interpreted in this manual.

If a fatal error occurs in a program in your job and you have not included an error recovery command
to Batch, Batch will not try to recover from the error for you. Instead, it will write the error
message in the control file, requesf dump of your memory area, and terminate your job. The dump is
then printed with your output. If you can read dumps, the dump that Batch requests for you may be
helpful in finding your errors. Otherwise, you can ignore the dump and use the error messages to
locate the errors in your program. A sample dump is shown in Section 4.4, but it is not interpreted.

It is shown so that you can recognize it if you ever receive one.

4.4 SAMPLE BATCH OUTPUT

Two sample jobs and their output are shown in the following sections. The first shows a job entered
from cards, the second shows a job entered from a terminal. The log file is somewhat different for

the two types of jobs. Following the sample jobs is a sample dump.
4.4,1 Sample Output from a Job on Cards

This example shows a job in which a small COBOL program is compiled and executed. The card

deck is as follows.

4-2

- 155 - BEGINNER'S BATCH

END - o <FiLE

$DATA

4/ COBOL SOURCE PROGRAM

$COBOL MYPROG.CBL

$PASSWORD ABCD

" 5408 MYJOB [10,1164]

$SEQUENCE 10

10-0924

The COBOL program is as follows.

IDENTIFICATION DIVISION.

PROGRAM-ID. MYPROG, _

ENVIRONMENT DIVISION. g

DATA DIVISION.

PROCEDURE DIVISION,

START, :

DISPLAY "'THIS IS TO SHOW SAMPLE OUTPUT FROM MPB: ',
DISPLAY "'THESE TWO LINES ARE OUTPUT FROM THE PROGRAM. ",
STOP RUN.

When the job is run, the program is compiled and a compilation listing is produced. The listing is
shown below. Note that the compiler put sequence numbers on the program even though they were
not in the original program.

PROGRAM MYPROG, . cOBOL 3(43) 21~MAR=72 1@:42

2oel IDENTIFICATION DIVISION,

goe2 PROGRAM=ID. MYFROG,

2003 ENVIRONMENT DJVISION,

2004 DATA DIVISIgN,

pees PROCEDURE DJVISION,

2006 START, _

2007 QISPLAY “THIS IS TO SHOW SAMPLE OUTPUT FROM MPB, ",

2pgoe DISPLAY "THESE TWOQ LINES ARE QUTPUT FROM THE PROGRAM.",
2p0¢ STOP RYN,

NO ERRORS DETECTED

After the program is compiled, it is loaded and executed. Since Batch requests a loader map when it
puts the EXECUTE command in the control file, the loader map is the next thing printed from your job.
It is shown below. Note that each of these print-outs are preceded by headers, which are not shown

in these examples.

PP1246]S THE LUW SEGMENT BREAK

MAP STORAGE MAP

STARTING ADDRESS 221200 PROG COBOL

.COMM, 202140 081040

MYPROG, @Bl2gK 221183
START, p01209
ALTER, poERL43
MONEY, p@0147
-TRAE3, ¢e0154

TRACED 091243 229g@3
BTRAC, 01244
TRPOP. pR1244

COBQL 41K CORE, 345 JORDS FREE
LOADER USED 2+4K CORE

FILES,
OVRFN,
MEMRY,
%NM,

PYFLG,

10142 21=MAR-72

FILE MYPRQG

AR0140
000144
200152
200155

201245

USES,
POINT,
TRACL.
XDT.

TRACE.,

0p0141
290145
geey52
PeB4156

004243

SEGWD.
COMMA .
TRACZ2.
%PR.

TRPD,

0p2192
Bp2de
22123
89157

2g1244

HOLvVE S:43INNIO3I8

- 961 -

=157 - BEGINNER'S BATCH

Following loading, the program is executed. The program in this example does not have output to the
line printer, instead its output is written to a terminal. Because this is a Batch job, the terminal
output is written in the log file. The log file is printed next because the end of the job is reached.
The log file contains all the dialog between your job and the monitor and system programs, and some
commands that Batch sent to the mBnitor for you. An annotated log file is shown on the following
pages. Note that each line in the log file is preceded by the time of day when the line was written.
Following the time is a word that describes what kind of information is on each line. You do not need

to know what each of these words means because much of the information is system information.

18144143
10141143
10141144

18141192
1214118

10142423
igr42121
1142121

. 1142103

10142121
114208
1g142108
1g142128
16142108
10142108

18142128
12142110
10142132
10442132
19142132

DATE
CARD
STSUM

BVERS
BCATE

BASUM

MONTR
IONTR
USER
USER
USER
MONTR
MONTR
MONTR
MONTR
MONTR
MONTR
MONTR

MONTR
USER

MONTR
MONTR
MONTR

21=MAR=72 554ALE DUAL CPU
$J0B MYJOB (1¢,1164]

CDRSTK VER 12(17) DSK

END OF FILE AFTER 45 CARDS, @4 FILES, @3 BLKS

BATEON 7(35) [NP! SUBJOB B1 OF @6

21-MAR=72

MYJoBC12,4164) FOR e=[19,1164] LOG FILE IN [18,1164]
REQUEST CREAYED AT 1@:41:i88 21-MAR-72

UNIQUET 2 RESTART} 4
JLOGIN 18/1164

JOB 24 584A1E BUAL CPU TTY182

OTHER JOBS SAME PPN
1941 21=MAR=72 TUE

.SET TIME 302,
+SET SPOOL ALL

SSEQUENCE 1@

$J08 MYJ0OB (ig,1164]

$CORNL MYRRQS5,CBL

+COMP /COMPI._g MYPRQG,CBL/LIST
COBQLY MYPROS

EXIT

sCREATED BY CDRSTK

J\

This is system information that Batch
enters. |t need not concern you.

Batch logs your job into the system.
The information that follows it is the
system response.

These are commands that Batch
entered for you.

These are the cards that you entered.

This is the command entered by
Batch for you.

The answer to the COMPILE command
from the monitor.

Ho1vd S ¥INNIO3Ig

- 861 -

Ly

19142132
10142432
12142132
12142189
101434122
19143100
1214308
10143500
10143100
1143500
12143120
10143129
1pisy 02
12143102

10143180
ig14321
10143321
10143124
10143321
19143123
12143121

18143321

10143122
12143125
1014330
10143143
12143145
10143145
10143145

1014354
1144129
12145120
121453521
10146125

MONTR
MONTR
MONTR
USER
USER
USER
USER
USER
USER
USER
MONTR
MONTR
MONTR
MONTR

MONTR .

USER
USER
USER
USER
USER
MONTR
MONTR
MONTR
K= QUE
KJ0B
LGOUT
LGoUT
LGoUT
LeoUT

LPMSG
LPMSG
LPMSG
LPMSG
LPMSG

THESE TWO LINES ARE OUTPUT FROM THE PROGRAM;

SDATA ’ } Your $DATA card.

+SET GDR GQAA,CcDR ‘ sCREATED BY CDRSTK

. .EXEGG/MAPMp.P.LPT /REL. MYPROG.REL ;CREATED BY CDRSTK} Commands entered by Batch for you.
LOADING . .

001246 IS THE LOW SEGMENT BREAK

Monitor response to the EXECUTE
CoBpL 1k CoRg : command,
EXECUTION

THIS IS TO SyoW SAMPLE OUTPUT FROM MPB. This is the output from your program.

EXIT Monitor indicates that execution of
your program has ended.
XFInt Command entered by Batch.

»DEL MYPRUG-REL»UAA.CDR,MYPROG.CBL
FILES DELETEN:

MYPRQGREL

QAA,CDR

MYPROG.CBL

23 BLOCKS FRegDd

Response to the DELETE Command.

e —— A

«KJOB QSKBIHYJOB-LOGtiﬁa1164J=/N/E34/B/VS=1B/VL12ﬂ0/VD|D . , . ..
TOTAL OF 7 BLOCKS IN LPT REQUEST This is the LOGOUT dialog, giving
OTHER JOBS SAME PPN system information.

JOB 24: USER [10,1164) LOGGED OFF TTY1@2 1BA3 21*MAR=/2

SAVED ALL 4 FILES (25, DISK BLOCKS)

ANOTHER JOB STILL LOGGED IN UNDER [18,1164)

RUNTIME B MIN, 283,97 SEC

LPTSPL VERSION 4(125) RUNNING ON LPT3 1

JOB MYJOB FI_F DSKBL:MYPROG,LSTC[1p,1164] FOR [12,1164] sTARTED | This is more system information.

DSKBLiMYPROG, STL1P,1164] DONE
JOB MYJOB FI_EF DSKB1:MAP.LPTL1P,11647 FOR [12,1164) STARTED
DSKB1IMAP, PTr102,1464] DONE :

- 651 -

HO1lve SWINNI©IE

BEGINNER'S BATCH - 160 -

4.4.2 Sample Output from a Job from a Terminal

This example shows the same job described above as it would be entered from a terminal. You would

first create the program as a file on disk.

IDENTIFICATION DIVISION,

PROGRAM=1D, MYPROG.

ENVIRQNMENT DIVISION,

DATA DIVISION.

PROCFQURE DIVISION,

START, :

DISPLAY "THIS IS TO SHOW SAMPLE OUTPUT FROM MPB.",
DISPLAY "THESE TWQ LINES ARE QUTPUT FROM THE PROGRAM,".
STOR RUN,

Then you would make up a control file to compile and execute the COBOL program.

+COMPILE MYPROGCBL
JEXESUTE MYPROG

You must then submit the job to Batch using the SUBMIT command.

SUBMIT MYJOB

When the job is run, the program is compiled and a listing is produced, even though you did not re-
quest it. This is because the COBOL compiler always produces a listing. Note that the compiler

adds sequence numbers to the listing, even through you did not include these numbers on the program.

PRODGRAM MYPRDOG. CoBOL 3(43) 22~MAR=72 151149

oen1 IDENTIFICATION DIVISIQN.

gee2 PROGRAM=1D. MYPROG,

2003 ENVIRONMENT DIVIS]ON,

2004 DATA DIVISIQN,

2025 PROCEDURE DIVISION,

o0 START,

2207 DISPLAY "TH[S IS TO SWOW SAMPLE OUTPUT FROM MPB.",

ogns DISPLAY "THESE TWO LINES ARE OUTPUT FROM THE PROGRAM.".
0eR9 STOP RUN,

NO ERRORS DETECIED

Because you did not request it specifically in the EXECUTE command, you will not get a loader map
of your program. The log file is printed next as the last of your output. The output from the program
is written in the log file because it is output to the terminal and the log file simulates a terminal
dialog. The log file also contains some commands that Batch sent to the monitor for you and some
additional system information. An annotated log file is shown on the following page. Note that
each line in the log file is preceded by the time of day when the line was written. Following the
time is a word that describes what kind of information is on each line. You do not have to know

what each of these words means because much of the information is system information.

4-8

15629:06
1519126
151091026

1510926
1510906
15109127
15189127
15199:27
15199351
15112126
15t1e126
15112126
15110126
15812:27
15112:07

15112107
15113:31
153111148
15314118
151141148
151314132
1511130
15111130
15111130
15111130
15114130
15111130
15311:30
15114:30
15111130
1511430
15511358
15115:35
15115136
15118136
15115144
15:116;:06
15817105

BVERS
BUATE
BASUM

MONTR
MONTR
USER
USER
USER
USER
MONTR
MONTR
MONTR
MONTR
MONTR
MONTR

MONTR
USER
MONTR

MONTR

USER -
USER

USER

USER

USER

USER

MONTR
MONTR
MONTR
MONTR
MONTR
K=QUE
LGOUT
LGoUT
LGOUT
LPMSG
LPMSG
LPMSG

~

BATCON 7(36)
22-MAR=72
MPBL10+1164] FOR ®SMITH
REQUEST CREATED AT
UNIQUE®™ 2 RESTARTI g

IMP: S{UBJOB 21 OF @6
1527132 22-MAR-72

LOGIN 18,1144

JOB 35 554A1F DUAL CPU TTY1D2
OTHER JOBS SAME PPN

Batch logs your job into the system.
The information that follows is the
system response.

1509 22=MpARm72

This is sytem information that Batch
#(10,1164] LOG FILE IN [1P,$164] fenters. It need not concern you.
WED

LSET TIME 303
; } These are commands that Batch enters

+SET SPOOL AL for you.

++COMPILE MYPRDG.CBL
COBOLt MYRROS,

EXIT

MONTR

!.EXECUTE MY’ROG.CBL
LOADING

This is the command from your control
, file and the response.

v This is another command from your
ontrol file and its response.

COBoL 1k CoRg '

EXECUTION

THIS IS TO Sd40W SAMPLE OQUTPUT FROM MPB. 'This is the output from your program.

THESE TWO LINES ARE OUTPUT FROM THE PROGRAM,

EXIT }This indicates that execution has ended.

+KJOB USKBEIupB.LOGL1@,116415/W/214/8/VR:10/VS1425/y/L1208/VD}
TOTAL OF 4 B_pCKS IN LPT REQUEST

JOB 35+ USER [10,1264) LOGGED OFF TTY1p2
SAVED ALL 1@ FILES (125, DISK BLOCKS)
RUNTIME @ MIN, 04,08 SEC

LPTSPL VERSIIN 4(123) RUNNING ON LPT3
JOB MPB FIE DSKBLIMYPROG.LSTC12,1164]1 FOR [10,1164]STARTED
DSKBLIMYPROG, 5TC12,11647 DONE

\This is the LOGOUT dialog, which

1515 22-MAR=/2 gives system information.

} This is more system information.

- 19l -

HO1v4a S:43INNIO38

BEGINNER'S BATCH - 162 -

4.4.3 Sample Dump

Shown on the following pages is the log file containing an error message and the dump that Batch
requested as a result of the message. The error resulted from use of a logical name in a program

without assigning the logical name to a physical device af run time.

The dump lists the assembly language equivalent of your program, and the location in memory in
octal, decimal, ASCII code, and SIXBIT code. (SIXBIT code is a compressed form of ASCII used
in COBOL and some system programs.) Only the first three pages of the dump are shown.

LI~y

14128142
1412942
14128142

14§2%:142
14125142
14125145
14123145
14129145
14125146
14125146
141258344
1412%148
1412%346
14128146
14128147
1412%147
14128147

BVERS
BDATE
BASYUM

MONTR
MONTR
USFR

USER

USER

MONTR
MONTR
MONTR
MONTR
MONTR
MONTR
MONTR
MONTR
MONTR

BATCON 7(36) [MP: SUBJOB 21 QF @26

22~MAR=72

INJOBL12,11647 FOR #GORFINKLE

#[10,11643 LOG FILE N

REQUEST CREATED AT 14:24135 22-MAR-72

UNIgQUE? 2 RESTARTI ¢
+LOGIN 10,1164

JOB 32 554ALF DYAL CPU TTY102

OTHER JOBS SAME PPN
1425 22-HAR-72

+SET TIME 327

+SET SPOQL ALL

s 1COMPILE EXAMPLE,CBL
ExXIT

WED

- €91 -

HO1v4a S«HINNIO3g

AR 4

14125147
14125:50
14125255
14:25:55
14:25355
143253565
14:125:15%
14:25:55
143253155
14:25:55
143125155
14:25:55
14:25:59%
14325355
14325155

14:25:56
14325156
14:25:56
14325256
14:26:04
14326104
14:26:15
14326315
14:26:15
14:26:15
14:26:17
14:26:21

14526231
14:26:32
14:126:32
14:26:32
14:26:4¢
14:273%04
14:29%24

MONTR
USER
USEK
USER
USER
USEkK
USER
USER
USER
USER
USER
MONTK
MONTR
MONTR
MONTR

MONTK
MONTK
MUNTR
MONTR
USER

USEFR

MONTR
MUNTR
MONTR
MONTR
KmQUE
KJOE

LGOLT
LGOLT
LGOULT
LGOUT
LPMSG
LPMSG
LPMSG

LJEXECUTE EXAMPLE . CBL

LOADING

coBoL 1k CORE

EXECUTICN

INIT TOGK THE ERROR KETURN This is the error
DEVICE MAGY IS NOT 4 UEVICE OR IS NOT AVAILABLE TO THIS JOB message that caused
IMIT TOOK THE ERROR RETURN Batch to request the
pDeEvVICE MAG2 IS NOT A DEVICE QR 1S NOT AVAILABE TO THIS JOB dump.

2LAST CoB9L UUO CALLED FROM USER LOCATION 42p1155 J

EXIT

»

LCLOSE

LDUMP

¢ SYMBOLS EXTRACTED
EXIT

JKJoB DSKﬂlilNJUB.LOGEIQ,llﬁd]=/w/Z:4/B/VR:1ﬂ/vs;a22/VL;ggg/vg;p
TOTAL OF 38 BLOCKS IN LPT REQUEST
OTHER JOBS SAME PPN

JoB 32, USER [18,1164] LOGGED OFF TTY1d2 1426 22=MAR=72
SAVED ALL & FILES (led. DISK BLOCKS)

ANOTHER JOB STILL LOGGED IN UNDER {16,116}

RUNTIME @ MIN, 10,79 SEC _

LPTSPL VERSION 4(125) RUNNING ON LPT3

Jos InNJoB FILE DSKRAINIBDAE[17,1164) FOR [lﬁ,ilbdlSTARTED
DSKBAtBIZVAE[1u,1164) LONE

HOLvE S d3INNIO3d

- 9l -

=165 - BEGINNER'S BATCH

QUICK DUMP VERSION %3(24) (FILE SYS:GUIKDM,CCL)]
MONITOR INFORMATION

MONITOR NAME 554A1F DUAL CPU BUILT ON 93m=21e72
SYSTEM SERIAL NUMBER IS 160
MONITOR VERSION IS 00@P00,050400

JOB INFORMATION

DUMP TAKEN 3»22=72 AT 14325

DAEMON VERSION 6(21)=0

JOB NUMBER 3¢

TTY102 PPN ([10,1164) CHARGE NUMBER @
RUN TIME =@ MIN, 50 SECONDS

TOTAL KCS =6

TOTAL OF 128 DISK READS, 10 DISK WRITES
PRIV, BITS © ‘

THERE ARE @ REAL TIME DEVICES IN USE
CURRENT HPU IS @ LAST HPG COMMAND WAS @
HISEG NAME DSKB3LIBOL .SHR

HISEG DIRECTORY (1,4)

USER NAME IS GORFINKLE

USER CORE LINIT IS 261632 WORDS

USER TIME LINMIT IS 299 SECONDS

PROGRAM NAME 1S COBOL

BEGINNER'S BATCH

CORE INFORMATION

- 166 -

PC = 700000,057777 OPC = 000000,000000
LAST UUO AT 440004,000006

SYMBOLIC LOCATIONS

PC = BLKI 57777

OFC = 7

LAST UUQ AT ANDCB 6(4)

ACS IN OCTAL:

n/ 212%¢0,000202 000030e,000000 522202,715530

3/ 554147 ,220000 20000p,0002002 PeeP00,080022

6/ PeERe?,20¢¢00 286022,00136% eepsee,r01777

11/ pQoe2,00a204 777777 ,000000 00P00P, 001425

14/ 310000,201412 Pa4301,001424 pOAGREC,200020

17/ 7776¢1,005463

ACS IN DECIMAL:

0/ 11576279086) -23319569576 =19837149184 2 2)
7/ 17184588529 1923 132 =262144 788 26843546378
15/ 537133844 @ »33291469

SELECTED CORE AREAS DUMPED AS INSTRUCTION,OCTAL,DECIMAL,SIXBIT,ASCII

Si-v

ARCUND C(AC1?)

1443/ DPB
1444/ vuode2
1445/ vuoesz2

1446/ JRST
1447/ PUSHJ
1450/ 7

1451/ uudgel

1452/ uuooel
1453/ PUSHJ
1454/ Uuoeel
1455/ CATL
1456, CATL
1457/ A0S
1460/ POPJ
1461/ z
1462/ b4
1463/ uuoase
1464/ CAM
1465/ CaM
1466/ CAM
1467/ [4
1470/ 4
1471/ Z
1472/ z
1473/ Z
1474/ 4
1475/ Z
1476/ z
1477/ z
i5ees . 2
1521/ 2
15e2/ Z
1523/ z

[HOPEFULLY A PUSH DOWN LIST)

5,814
3,728

795
15,815
17
1,728
1,661
15,0113
5,753(14)
8,699
8,766
(15)
15,

131191
131497
1315585
132709

137240,001456
202140,021330
212000,000200
254000,001433
260740,001457
020000,000021
201040,001330
201040,001225
260760,000161
221256,001361
321400,801273
301400,001376
350017,000000
263740,000000
020000, 0000200
200000, 0200200
210000,400167
310000,400651
310000,400743
310000,4083145
2e0000,700022
220000,000000
000000, 000200
200000,000000
200000,200002
000000,p00020
200200,000000
200000,000000
@20000,002000
000022 ,200000
200002, 2000200

'+ ¢oQeoe,n00000

2020eQ0,002028

12792628014
293602008
1342177280
23085450011
23748150063
17
142607064
142606997
23752343665
179831537
25971131067
25971131134
31142445056
24150802432
)

2
1073873015
26843677097
26843677155
26843678309

NP

W OO -

8

v ?

*8
*5
i1Q
0
«|

LY
LY
e'c
#SE

LVIEAVE]

et I D X T

N 4~

- 91 -

HO1lvg S1UINNIO38

BEGINNER'S BATCH - 168 -

- 169 - BEGINNER'S BATCH

CHAPTER 5
PERFORMING COMMON TASKS WITH BATCH

This chapter shows some sample jobs that are run from a terminal and from cards. Section 5.1
itlustrates entering jobs from a terminal. Section 5.2 shows entering jobs from cards. The examples
are the same in both cases, the difference is only in the way that they are entered.

- 5.1 USING THE TERMINAL TO ENTER JOBS
ALGOL Example

The first job is a simple ALGOL program that writes output to the terminal. Since the job is being
entered through Batch, the output is written in the log file instead of on the terminal.

BEGIN /
REAL X7 INTEGER I}
X ts 13
FOR I $®» § UNTIL 1200 DO X gm» X+If
PRINT(X)?
END

The control file for the program is as follows.
«COMPILE MYPROG<ALG/LIST
+EXECUTE MYPROG «ALG

SUBMIT MYFILE

When Batch starts. the job, the statements in the control file call the ALGOL compiler to compile the
program. Batch then calls the loader fo load the program-for execution. A listing of the program
will be printed with the log file, as shown below.

DECSYSTEM 18 ALGOL=60, V. 2A(145)3
13=APR=72 15325357

0eeue3 B 1 BEGIN
START OF BLOCK 1

200206 » 2 REAL XJ INTEGER Iy

020006 3 X 181}

000016 4 FOR I s3] UNTIL 1022 DO X tmXel}
000023 5 PRINT(X) ¢

000026 El 6 END

-~

END BLOCK 1, CONT @
@ ERRORS

15325350 BVERS BATCON 7(52) INFi SUBJUB @1 OF 086

15:25:5p BDATE (3=APR=72 .

§15125:50 BASUM MYFILE[1@,1461) FOR #SMITH «[1@,1461] LOG FILE IN ([18,1461]
REQUEST CREATED AT 15124339 13=APR=72
UNIQUES 2 RESTART: 8

15825150 MONTR

15825:58 MONTR ,LOGIN 10/1464

15325351 USER JOB 20 55425E DUAL CPU TTYli@
15325151 USER QTHER JOBS SAME PPN
15:25391 USER 1525 13=APR=72 THUR

15825:52 MONTR

153253152 MONTR SET TIME Jae

15325152 MONTR

15825152 MONTR ,SET SPOOL ALL

15:25:53 MONTR

15325:53 MONTR

15325153 MONTR ,,COMPILE MYPROG,ALG/LIST

153125256 USER ALGOLs MYPROG

15125357 MONTR

15325:87 MONTR EXIT

15125158 MONTR

15125158 MONTR ,,EXECUTE MYPROG,ALG

15:25:58 USER LOADING

15126:06 USER

15:26:06 USER MYPROG 1K CORE

15:26:86 USER’ EXECUTION

151263087 USER 5.,720501P8&% 5

158126387 USER

15326:87 USER END OF EXECUTION = 1K CORE

15826:087 USER

15326287 USER EXECUTION TIME: 2,08 SECS,

153268@87 USER

15826307 USER ELAPSED TIMES 2.15 SECs,

15326:87 MONTR

15326207 MONTR

15326197 MONTR ,KJOB DSKBOIMYFILE,LUG[10,1461)®/w/Z34/B/VRiin/vS1384/VLi200/VDIP
15:26:08 K=QUE TOTAL OF 3 BLOCKS IN LPT REQUEST

15326112 KJOB . OQTHER JOBS SAME PPN

15826115 LGOUT JoB 2m, USER [1@,1461] LOGGED OFF TTY110 1526 13=AFR=72
15326315 LGOUT SAVED ALL 42 FILES (65v, DISK BLOCKS)
15:26:45 LGOUT ANOTHER JOB STILL LOGGED IN UNDER (18,1461)
15326115 LGOUT RUNTIME © MIN, 03,25 SEC

15326321 LPMSG LPTSPL VERSION 4A(141) RUNNING ON LPT2
15:26142 LPMSG JOB MYFILE FILE DSKBUIMYPROG,LST[12,1461) FOR (10,1461 STARTED

(EsNnTeax 1 DMEM nswnﬂuyvnanrz 1eTI1a._14ne1 NPANE
AVEGT VYW R TIew WONUWIN L NwUgpaV! sbdW]feTvis LA ALl

HOLlva S:43INNID34

-0/l -

=171 - BEGINNER'S BATCH

BASIC Example

The next sample shows how to enter @ BASIC program to Batch. You must make up the file and save
it on disk. Then make up a control file that simulates the dialog with the BASIC system. The pro-
gram is shown below.

5 INPYUT D
12 IF D = 2 THEN 1to

20 PRINT "X VALUE","SINE","RESOLUTION®
30 FOR X=@ T0 3 STEP D

40 IF SIN(X)<®M THEN 8@

5@ LETX2sX

60 LET MeSIN(X)
80 NEXT X

se PRINT X@, M,D
iep GO TO 5

118 END

The program requests data from the user when it is running. You include the data in the control file.
The final data item must be 2 to conclude the program. The control file follows.

«R BASIC

«0LD
*DSKIMYBAS,.BAS
*RUN

ol

W01

203

2

*BYE

The output from the program will be printed in the control file because it would normally be printed
on the terminal, The command to submit the job to Batch is. as follows.

SUBMIT = BAS,CTL

15841337 BVERS BATCON 7(52) INP: SUBJOB @2 OF 06

13341137 BDATE 13=APR=72

15341337 BASUM BAS([10,1461) FOR #SMITH #[13,1461] LOG FILE IN (10,1461)
REQUEST CREATED AT 15140123 {3=APR=72
UNIGUE? 2 RESTART: 2 '

15341:37 MONTR

15341337 MONTR ,LOGIN 18/146%

15341:39 USER- JOB 15 55425E DUAL CPU TTY!115
153141340 USER OTHER JOBS SAME PPN
16341140 USER 13414 13=APR=72 THUR

15141341 MONTR -
15141544 MONTR _SET TIME 302
15741141 MONTR

18141341 MONTR . ,SET SPOOL ALL
15341341 MONTR .
15341143 MONTR

15141241 MONTR - ,,R BASIC
15341341 USER

15841342 USER

153144142 USER NEW OR OLO==w0QLD

BEGINNER'S BATCH -172 -

15841142
15141343
153141343
15341343
15341147
15841147
15341147
15344347
15141247
15341:47
153411347
153141247
15141247
15244347
15141146
15341:48
15341348
152411348
15241149
15141149
15341349
158411349
15341249
15341250
15341130
153443590
15141152
15141182
15341130

USER
USER
USER
USER
USER
USER
USER
USER
USER
USER
USER
USER
USER
USER
USER
USER
USER
USER
USER
USER
USER
USER
USER
USER
USER
USER
USER
USER
MONTR

OLD FILE NAME==¢DSKSMYBAS

READY

*RUN

MYBAS 18341 13=APR=72
2.1

Y% VALUE SINE RESOLUTION
3. P.14112 2,1
7.21 :

X VALUE SINE RESOLUTION
J. 2.141121 .01
7.001

X VALUE SINE RESOLUTION
2.99999 B,14113 0,001
12

TIMES 1.50 SECS.

READY ’

«BYE

JoB 15, USER [1D,1461] LOGGED OFF TTYi1S 1541 13=APR=72
SAVED ALL 33 FILES (®00, D1SK BLOCKS)

ANOTHER JOB STILL LOGGED IN UNDER {10,1461)

RUNTIME @ MIN, 83,85 SEC

FORTRAN Example

The third example shows a FORTRAN program that prints output on the line printer. In the control

file, you want to tell Batch to delete your relocatable binary file if an error occurs when your pro=

gram is executed.

Otherwise, you want Batch to save your relocatable binary file as it normally

would. The program is shown below.

c

10
185

THIS PROGRAM CALCULATES PRIME NUMBERS FROM 11 TO 50,
DO 12 I mii,50,2 .
Jul

JuJ+2

As)

Asl/A

Lal/d

BaAwi

IF (B) 5,19,5%

IF (J.LT,SGRT(FLOAT(I))) GO TO 4

PRINT 105,1

CONTINUE

FORMAT (I4, ' 18 PRIME,')

END

=173 - BEGINNER'S BATCH

The control file to compile and execute this program, deleting the relocatable binary file if there is
an execution etror, is as follows.

«COMPILE MYPROG,F4
+EXECUTE MYPROG,F4
»IF, (NOERROR) ,GOTQO END
«DELETE MYPROG,REL
END:: JEND OF JaOB

The command to submit this job is as follows.

SUBMIT MYFOR,CTL,MYFOR,LOG/DISPOSE:DELETE

The log file will be deleted ofter the output has been printed.

29157, 87
09150127
go157127

peisgay
B9:i50:07
0eI50109
eois@309
29150313
29150313
29350343
vos50:14
$9:150314
#o:50:14
09:50314
Q9350316
goss50s17
nos5a17
9330317
posSasl7
R985a:17

. 09350123

09150123
29150323
9150123
@9315@:123
29350223
29:50123
0950223
09:5@:23
n935a323
po1%50:23
P5:1503:23
09150123
29350123
29:50123
9150823
09150:23
29:50123
0o150125
293150325
poets0:12%5
09150327
291508327

BVERS BATCON 7(52) [NP: SUBJOB 22 OF 04

BOATE 14wpPR-72

BASUM MYFORL1p,1461] FOR #SMITH :C4@,14611 LOG FILE IN (1g.14611
REQUEST GREATED AT 29149119 14-APR-72
UNIQUED 2 RESTART: @

MONTR
MONTR ,LOGIN 18/146}

USER JOB 23 554251 DUAL CPU TTY115
USER OTHER JOBS SAME PPN

USER @950 14mAPRw72 FRI

MONTR . ‘

MONTR ,SET TIME 300

MONTR _

MONTR ,SET SPOOL ALL

MONTR \

MONTR ,,COMPILE MYPROG,F4

USER FORTRAN: MYPROG,F4
MONTR

MONTR EXIT

MONTR

MONTR , ,EXECUTE MYPROG,F4

USER LOADING
USER)
USER MYPROG 2K CORE

USER EXECUTION
USER

USER 11 IS PRIME,
USER 13 IS PRIME,
USER 17 1S PRIME,
USER 19 IS PRIME,

USER 23 IS PRIME,
USER 29 IS PRIME,
USER 31 IS PRIME,
USER 37 I8 PRIME,
USER 41 15 PRIME,
USER 43 IS PRIME

USER 47 18 PRIME,
USER ‘
USER CPU TIMES B.37 ELAPSED TIME: 0,60
USER NO EXECUTIUN ERRORS DETECTED
MONTR
MONTR EXIT
MONTR
MONTR
MONTR

END1

JEND OF JOB

BEGINNER'S BATCH - 174 -

09350127
v9150:28
89150132
po1508:34
29150834
09:5@:34
2950134

MONTR
K=QUE
KJOB

LGOouT
LGOUT
LGOUT
LGOUT

»KJOB DSKB1IMYFOR,LOG(10,1461)18/W/234/B/VR110/V8¥420/VL3200/VD3IP

TOTAL OF 3 BLOCKS IN LPT REQUEST

OTHER JOBS SAME PPN

JOB 23, USER (10,1461) LOGGED OFF TTY1t5 B9850 14=APR=72
SAVED ALL 33 FILES (61®8, DISK BLOCKS)

ANOTHER JOB STILL LOGGED IN UNDER (18,14611]

RUNTIME @ MIN, 05,39 SEC

COBOL Example

The fourth program shows a COBOL program that reads a magnetic tape and writes output on another

magnetic tape. To have your magnetic tapes mounted on drives and assigned to you, you must re=

quest that the operator mount them. Since you do not know which drives will be assigned to your

job, you must assign them in your job with logical device names. The MOUNT command assigns

the drive to your job and associates the logical name that you specify in it with the physical drive

assigned. You should include a PLEASE command to the operator to tell him that you want two

magnetic tape drives. If he can't let you have the drives because they are in use, you can ask him

to enter your job again. Your magnetic tapes, one with the input ‘data, the other blank so that you

can write on it, should be given to the operator or kept at the central site, so that the operator can

find your tapes. The program is as follows.

IDENT
ENVIR
INPUT
FILE=

IFICATIGN DIVISION,

ONMENT DIVISION,

=0UTPUT SECTION,

CONTROL,

SELECT INFIL, ASSIGN MAGH,

SELECT OUTFIL, ASSIGN MAG2,

DATA DIVISION.
FILE SECTION,

FD

21
FD

01
PROCE
STARTY

LOOP,

FIN,

INFIL, LABEL RECORDS ARE STANDARD,
VALUE OF IDENTIFICATIUN IS "INFIL DAT",
BLOCK CONTAINS 20 RECORDS,

INREC, PIC X(82),

OUTFIL, LABEL RECORDS ARE STANDARD,
VALUE OF IDENTIFICATION IS "OUTFILDAT",
BLOCK CONTAINS 12 RECORDS,

OUTREC, PIC X(88),

DURE DIVISICN,

OPEN INPUT INFIL, OUTPUT QUTFIL.
READ INFIL} AT END GO TO FIN,
WRITE OUTREC FROM INREC,

GO TO LOOP,

CLOSE OUTFIL, INFIL.
STOP RUN,

5-6

=175 - BEGINNER'S BATCH

The control file and the SUBMIT command to enter this program to Batch is as follows.

+PLEASE NEED TWO MAGTAPES, IF I CAN'T HAVE THEM, REQUEUE,
»MOUNT MTASMAGL/VIDZINFIL /RONLY

+MOUNT MTASIMAG2/VIDIOUTFIL/WENABLE

+«COMPILE MYPROG,CBL

+EXECUTE MYPROG,CBL

«DISMOUNT MAG1S

«DISMOUNT MAG23

+DELETE MYPROG,w

« SUBMIT MYJOB®MYJOB,CTL
The log file is shown below.

11353126
11353:26
11853326

11853326
11353126
11:53:3¢
11353330
11:53:3¢2
11:53:32
11353130
11:53:30
11:53:30
11:53:30
11853230
11253350
11353:5@
11:53:52
11:64:49
11354119
11154321
18854322
11854:25
11:567:123
11857:23
113157323
11357125
11357125
1135725
11357:25
11857148
11:58:05
11858105
11:158:45
11158805
11358105
11:58:085
11:68:05
1158112
1158112
11583545
1858146
11158346
11858358
11:58:58
12:00:07

H
1
1
i

BYERS
BDATE
BASUM

MONTR
MONTR
USER
USER
USER
MONTR
MONTR
MONTR
MONTR
MONTR
MONTR
MONTR
USER
USER
USER
USER
MONTR
USER
USER
USER
USER
MONTR
MONTR
MONTR
MONTR
MONTR
USEK
USER
USER
USER
MONTR
MONTR
MONTR
MONTR
USER
USER
USER
MONTR
MONTR
USER
USER
USER

BATCON 7(53) INP: SUBJOB @1 OF 26

20¢mAPR=72 o
MYJOB[10,1416] FOR wSMITH #(18,1461) LOG FILE IN (lw,1461)
REQUEST CREATED AT 11352:3] 20=APR=72 ' ~
UNIQUES 2 RESTART: ®

«LOGIN 10/1464

JoB 17 554250 DUAL CPU TTY123
OTHER JOBS SAME PPN
11353 20=APR=72 THURS

«SET TIME 300
«SET SPOOL ALL

oo PLEASE NEED TWO MAG TAPES, IF I CAN'T HAVE THEM, éEQUEUE.
s MOUNT MTASMAGL/VIDSINFIL/RONLY .

"OPERATOR NOTIFIED

WAITING,,.
MAGY (MTA1) MOUNTED

+ o MOUNT MTAIMAG2/VIDSQUTFIL/WENABL
OPERATOR NOTIFIED - ’
WAITING, e

MAG2 (MTA2) MOUNTED

+ o COMPILE MYPROG,CBL
EXIT

« o EXECUTE MYPROG,CBL
LOADING -

COBOL 1K CORE
EXECUTION

EXIT

¢« o DISMOUNT MAGY:
OPERATOR NOTIFIED
WAITING,. o

MAG1 DISMOUNTED

» o DISMOUNT MAG2?
OPERATOR NUTIFIED
NAIT!NG.O! !
MAG2 DISMOUNTED

BEGINNER'S BATCH =176 -

12300207 MONTR

12368307 MONTR

12109397 MONTR KJOB DSKovIMYJOB,LOG(14,1461)3/W/234/8/VRE1Q/VSeBWVLI20C/VPELB/VD
12580s1é K=GUE TOTAL OF 4 S8LOCKS IN LPT REQUEST

12:00214 RJOE GThER JUBS SAME PPN

123¢M217 LGOUT JOoB 17, USER [12,1461) LGGGEC OFF TTY123 12¢9 20=APR=72

12:2¢218 LGOLT SAVED ALL 38 FILES (bd45, DISK BLOCKS)

12:06:18 LGOLT ANQTHER JOE STILL LOLGED IN UNDER (14,1461) ®

2:0@318 LGULT RUNTIME © ™MIN, 86,39 SEC

12322317 LPMSG LFTSPL VERSION 4A(141) RUNNING ON LPTR

5.2 USING CARDS TO ENTER JOBS
ALGOL Example

The first job is a simple ALGOL program that writes its output into the log file because it has state-

ments that would cause it normally to write to the terminal. The program is as follows.

BEGIN
REAL X; INTEGER |;
X =1
FOR | :=1UNTIL 1000 DO X := X+|;
PRINT(X) ;
END

The cards to enter this program are as follows.

|END - OF-FILE

Y 4
7 ALGOL PROGRAM

$ALGOL MYPROG. ALG/NOLIST

$PASSWORD ABCD

$40B ALGYB [10,1461]

$SEQUENCE 10

10-0925

The control file that MPB makes up for you contains the following commands.

.COMPILE MYPROG.ALG /COMPILE /LIST
.EXECUTE

The output, including the log file is shown below.

09301143

093:01:43

291021145

69:iQ1353
09801153
PoIu1853

093741353
29:01:53
29301158
29301358
0e:01:58
a9te1:58
09:01:58
05:01:58
P9:01:58
09101159
0159

89102101

0e:02:01
e9ia2:08
pot02:08
@9re2328
veio2:08
@9:02:08

posp2:e8
vos02310
voa2327
09102:39
09102339
09:02:39
09:02341
v9te2:41
091021241
0930214}
09502344
091022341
P93e2:41
0920214y

potp2:4;
Bo302:42
n9in2142
293021243
08302343
09102343
09302243
09102144
BS102145

DATE
CARD

STSUM

BYERS
BDATE
BASUM

MONTR
MONTR
USER

USER

USER

MONTR
MONTR
MONTR
MONTR
MONTR
MONTR

MONTR

MONTR
USER

MONTR
MONTR
MONTR
MONTR

MONTR
USER
USER
USER
USER
USER
USER
USER
USER
USER
USER
USER
USER
MONTR

MONTR
USER
USER
USER
USER
MONTR
MONTR
MONTR
K=QUE

-177 - " BEGINNER'S BATCH

§3=APR®72 55425E DUAL. CPU. CDRSTK VER "12(26) DSk
$J0B ALGJB(10/1461)
$ALGOL MYPROG,ALG/NOLIST

END OF FILE AFTER 12 CARDS, @3 FILES, 03 BLKS

BATCON 7(52) INPt SUBJOB @2 OF 06
13=APR=72 '

"ALGJBL1@G,1461) FOR w+[10,1461) LOG FILE iN [10,1461)

REGUEST CREATED AT @9:01308 13~APR=72
UNIQUE: 2 RESTARTS 1

+LOGIN 10,1464

JoB 13 55425E DUAL CPU TTY1158
OTHER JOBS SAME PPN

0oay 13=APR=72 THUR

«.SET TIME 300

«SET SPOOL ALL

$J0B ALGJB10/1461) ,

$ALGOL MYPROG,ALG/NOLIST

.COMP /COMPILE MYPROG,ALG /N JCREATED BY CDRSTK
ALGOL1 MYPROG

EXIT

;EOD

" «EXECUTE

ALGOL?: MYPROG
LOADING

MYPROG 1K CORE
EXECUTION
5,0050100& 5

END OF EXECUTION = 1K CORE
EXECUTION TIME: 2,88 SECS,
ELAPSED TIME: ©,.12 SECS,
YFIN:

.DEL MYPROG,REL,MYPRUG,ALG
FILES DELTEDS .
MYPROG o REL

MYPROG,.ALG
@2 BLOCKS FREED

:KJOB DSKBIALGJB,LOGI1V,1461)7/W/2284/B/VS3320/VL210/VDID
TOTAL OF 4 BLOCKS IN LPT REQUEST

5-9

BEGINNER'S BATCH -178 -

BASIC Example

The next example shows entering a BASIC program. You must include the program after a $DECK

card so that it will be copied into a file on disk. No $DATA card can be used because BASIC does
not use the EXECUTE command and because the data is entered in the control file. The program re-
quests data when it is running; it finds the data in the control file. The final data item must be 2 so

that the program can be concluded. The progfam is shown below.

5 INPUTD

10 IFD=2THEN 110 _

20 PRINT "X VALUE", "'SINE'", ""RESOLUTION""
30 FOR X=0TO 3STEP D

40 IF SIN(X) =M THEM 80

50 LET X0 =X

60 LET M= SIN(X)

80 NEXT X

‘90 PRINT X0, M, D
100 GOTOS5

110 END

The cards to enter the program and run it are as follows.

| END-OF-FILE
*BYE

2

.0t

A
*RUN
#*DSK :MYBAS.BAS
#*0LD
.R BASIC
$EOD

$DECK MYBAS.BAS
SPASSWORD ABCD
$s0B BASJOB [10,1461]
/" $SEQUENCE 10

10-0926

The output from the program will be printed in the log file because it would normally be printed on

the terminal. The log file is shown below.

5-10

11112445
11117145
11112146

11110149
11110349
11112149

11140449
11110149
11110351
11:12151
11819152
114102353
11812583
11112153
11112153
111192153
11112158
11112¢53

11412153
14117153
11117154
11:12154
11117:55
11110155
11119155
11112156
11117156
11113456
111121586
11112156
118171586
11t1z156
11132157
11412:87
11t102:1%87
11312¢59
111172159

11tim159.

111192459
111141060
1111100
11114100
111111020
11111120
11s11100
11111401
11111104
1101111023
11111103
11114103
11111103

DATE
CARD
STSUM

BVERS
BDATE
BASUM

MONTR
MONTR
USER
USER
USER
USER
MONTR
MONTR
MONTR
MONTR
MONTR
MONTR

MONTR
USER
USER
USER
USER
USER
USER
USER
USER
USER
USER
USER
USER
USER
USER
USER
USER
USER
USER
USER
USER
USER
USER
USER
USER
USER

-USER

USER
USER
USER
USER
USER
MONTR

=179 - BEGINNER'S BATCH

13=APR=72 55425 DUAL CPU CDRSTK VER 12 (26) DSK
$UOR BASJOBL1g/1461))
END OF FILE AFTER 24 CARDS, @3 FILES, B4 BLKS

BATCON 7(52) (NP: SUBJYOB @1 OF 14

13~APR=72

BAS O0BL10,1461] FOR #e[10,14611 LOG PILE IN'T1@.:14611
REQUEST CREATED AT 11189:57 13 APR-72

UNIQUEY 2 RESTARTH 3

LOGIN 12,1481

JOoB 1% 55425E DUAL OPU TTY11l4
OTHER JOBS SaAME PPN
1i1o 13mABRe72 THUR

(SET TIME 307
,SET SPOOL ALL

$J0B BASJOBL1@/1461)
$DECK MYBAS,BaS

$E0QD

+R gASIC

NEW OR OLDe-wolLD
OLD FILE NAME-w#DSKiMYBAS

REAQY

#RUN

MYBAS 11110 13=APR=72
241

X VALUE SINE *. RESOLUTION
3 B,14412 2.1
7.01 :

X VALUE SINE RESQLUTION
3 £,14112% 0.01
2.523 ‘

X VALUE SINE RESOLUTION
299999 2y14113 g.001
12

TIMEY 1,52 SECS.

READY

#BYE .

JOB 19+ USPR [10,1461) LOGGED OFF TTY114 4111 13=APR=72
SAVED ALL 33 FILED (6P%, DISK BLOCKS).

ANOTHER J0B STILL LOGGED IN UNDER [1@,14611

RUNTIME @ MIN, 83,085 SEC

BEGINNER'S BATCH -180 -

FORTRAN Example

The third example shows a FORTRAN program that prints output on the line printer. in the control
file, you want to tell Batch to punch your relocatable binary program if it executes correctly. Other-

wise, you want to end your job so that you can find your error from the message in the log file. The
program is shown below.

C THIS PROGRAM CALCULATES PRIME NUMBERS FROM 11 TO 50.
DO 10 =11, 50, 2
J=1
4 J=s2
A=J/
A=I/A
L=1/J
B=A-L
IF () 5,10,5
5 IF (J.LT.SQRT(FLOAT(I))) GO TO 4
PRINT 105, 1
10 CONTINUE
105 FORMAT (i4, ' IS PRIME. ")
END

The cards used to enter this program are as follows.

:END-OF-FILE
END::;END OF JOB

*CDP:MYPROG=DSK:MYPROG. REL

«R PIP

$ERROR .GOTO END

*EXECUTE

V' FORTRAN PROGRAM

$FORTRAN MYPROG.F4

$PASSWORD ABCD

$JOE TEST [10,1461] /CARDS 1K

$SEQUENCE 10

10-0927

-181 - BEGINNER'S BATCH

Batch puts the following commands into the control file as a result of the cards you entered.

.COMPILE MYPROG.F4 /COMPILE /LIST
.EXECUTE MYPRQG.REL /MAP:MAP.LPT
.IF (ERROR) .GOTO END v
.R PIP

*CDP:MYPROG = DSK:MYPROG . REL
END: : ;END OF JOB

The printed output from the job, including the log file is shown below.

\MYPROG ,F 4 Fag vz5 12u4PR=72 13143 PAGE 1

0o 12 1=11.,59,2
NESE

4 JzJe2
A=z
Az1/a
L=1/J
UBA-L'
IF (B) 5,10,%

5 IF (Jo_ToSORT (FLOAT (1))) GO TO 4
TYPE 125,1

19 CONTINJE

195 FORMAT (14, '%1S PRIME,")
END

SUBRROGRAMS

FORSE, JOSFF FLOAT SQRT INTO, INTI. EXIT
SCALARS

1 61 J 62 A 63 L 64 B 65

13143121 DATE 12=APR™72 554A4B DUAL CcPU CDRSTK VER 12(26) DSk
13143;21 CARD $J0R TESTL10,1461)/CARDI1K \
13143103 STSUM END OF FILE AFTER 19 CARDS, 83 FILES, 24 BLKS

131432121 BVERS BATCON 7(52) [NP! SUBJOB 21 OF 14

13143121 BDATE 12-APR~72

13143;21 BASUM TEST[LY,14617 FOR wel(10,14613 LOG FILE IN [10,1461)
REAUEST CREAYED AT 13:42:04 12-APR-72
UNIQUE?® 2 RESTART: 1

13143121 MONTR
13443121 MONTR ,LOGIN 10,1461

13143124 USER J0B 11 554A4B DUAL .CPU TTY1pR2
13143124 USER OTHER JOBS SAME PPN

13143126 USER 1343 12aAPRw72 WED
13143128 MONTR :
13143128 MONTR ,SET TIME 20
1314%;28 MONTR
13143128 MONTR ,SET SPOOL A_L
13143128 MONTR ,
13143128 MONTR

, $J0g TESTL12,14613/CARDI1K
$SFORTRAN MYPR06G.F4

BEGINNER'S BATCH

13143;28
13143;:3¢
13143433
13143133
13147133
131473133

13143133
13143:34
13143137
13143341
13143141

13143142
13143:42
13143:42
13143142
13143142
13143142
13143342
13843142
13143142
13143143
13243143
13143143
133143143
13143:43
13143143

13143143
13143543
13143143
13143143
13143143
13143143
13143143

13143144

13143144
13143344
13143145
13143146
13143146
13143144
131433146
1314348
13i143148
13143352
1314384
13143:54
13143154
13143154
13143357
13144;:p2
1314409

MONTR
USER

MONTR
MONTR
MONTR
MONTR

MONTR
USER
USER
USER
USER

USER
USER
USER
USER
USER
USER
USER
USER
USER
USER
USER
USER
USER
USER
USER

USER

MONTR
MONTR
MONTR
MONTR
USER

MONTR

MONTR

USER
USER
USER
USER
USER
MONTR
MONTR
MONTR
K=QUE
KJOB
LGOUT
LGOUT
LGOUT
LGOUT
L.PMSG
LPMSG
LPMSG

- 182 -

+COMP /COMPI_E MYPRQG,F4/LIST ;CREATED BY CDRSTK
FORTRANT MYPROG.F4

Ex!T

$EOD

JEXECUTE

FORTRAN? MY®2ROG.F4
LOADING

MYPROG 2K CORF
EXEcUTION

11 1S PRIME.
13 1S PRIME.
17 1S PRIME.
19 1S PRIME.
23 1S PRIMe,
29 1S PRIME,
31 1S PRIME,
37 1S PRIME.
41 1S PRIME.
43 1S PRIME.
47 1S PRIME.

CPU TIME: 0.27 ELAPSED TIME: 1.82
NO EXECUTION ERRORS DETECTED

ExIT
R PIF
sCDPpt MYPROGwDSKIMYPROG,REL

t
END;
JEND OF J0B

“EING

+ODEL MYPROGRELMYPROG.FA4
FILES UELETEN:

MYPROGREL,

MYPROG:F4

23 gLOCKS FREED

+KJOB USKBITEST.LOGL10,14611=/W/234/P/VS3277/VLL28E,/VDID
TOTAL OF 6 BLpCKS IN LPT REQUEST

OTHER JOBS SAME PPN

JOB 14+ USER [12,1461) LOGGED OFF TTYL102 1343 12-ADRa72,
SAVED ALl 3@ FILES (585, DISK BLOCKS)

ANOTHER JCB STILL LOGGED IN UNDER [1@,14613

RUNTIME @ Mivy, 05,64 DEC

LPTSPL VERSION 4A(141) RUNNING ON LPT1

JOB TEST FIL2 DSKBLIMYPROG.LSTC1p,1441] FOR [10,1461]1STARTED
DSKB1IMYPROG, STL10,1461] DONE

5-14

- 183 -~ BEGINNER'S BATCH

COBOL Example '

The fourth program shows a COBOL program that reads data from a magentic tape and writes output
on another magnetic tape. To have your magnetic tapes mounted on drives and assigned to you, you
must request that the operator mount them. Since you do not know which drives will be assigned to
your job, you must assign them in your job with logical device names. The MOUNT command
assigns the drive to your job and associates the logical name that you specify in it with the physical
drive assigned. You should include a PLEASE command to the operator to tell him that you want two
magnetic tape drives. If he can't let you have the drives because they are in use, you can ask him
to enter your job again. Your magnetic tapes, one with the input data, the other blank so that you
can write on it, should be given to the operator with your card deck or kept at the central site, so

that the operator can find your tapes. The program is as follows.

IDENTIFICATION DIVISION.

ENVIRONMENT DIVISION.

INPUT-OUTPUT SECTION.

FILE-CONTROL.

SELECT INFIL, ASSIGN MAGT.
SELECT OUTFIL, ASSIGN MAG2.

DATA DIVISION.

FILE SECTION.

FD INFIL, LABEL RECORDS ARE STANDARD,
VALUE OF IDENTIFICATION IS "'INFIL DAT'',
BLOCK CONTAINS 20 RECORDS.

01 INREC, PIC X(80). ’

FD OUTFIL, LABEL RECORDS ARE STANDARD,
VALUE OF IDENTIFICATION IS ""OUTFILDAT",
BLOCK CONTAINS 12 RECORDS.

01 OUTREC, PIC X(80).

PROCEDURE DIVISION,

START. : ,

OPEN INPUT INFIL, OUTPUT OQUTFIL.

P

READ INFIL; AT END GO TO FIN,
WRITE OUTREC FROM INREC.
GO TO LOOP,

FIN.
CLOSE OUTFIL, INFIL.
STOP RUN.

LOO

The cards to enter this job are shown below.

BEGINNER'S BATCH - 184 -

1
«DISMOUNT MAG2: l

$COBOL MYPROG.CBL

|

«MOUNT MTA: MAGZ/V‘ID'OUTFIL/WENABLI

«MOUNT MTA:MAG1/VID:INFIL/RONLY l

«PLEASE NEED TWO MAGTAPES]
$PASSWORD ABCD L

$J0B COBJOB [10,1461) |
$SEQUENCE 10

10- 0928

Batch puts the following commands into the control file for you.

.PLEASE NEED TWO MAG TAPES, IF | CAN'T HAVE THEM, REQUEUE.

.MOUNT MTA:MAG1/VID:INFIL /RONLY
.MOUNT MTA:MAG2/VID:OUTFIL /WENABL
.COMPILE /COMPILE MYPROG.CBL /LIST
.EXECUTE MYPROG.REL /MAP:MAP.LPT
.DISMOUNT MAG1:

.DISMOUNT MAG2:

The printed output from your job is shown below.

PEg14as2 1S THE LUW GSEGMENT BREAK

MAP STORAGE MaP 15142 22=APR-72

STARTING ADDRESS n31406 2ROG COBOL “FILE MYPROG

COMM, %02140 221040

cQoBQiL 401200 221317 FI1LES. PBO@14@ USES, @B0B141 SEGWD.
START, 2919p6 OVRFN. 000144 POINT, B@0145 COMMA,
ALTER, aldLl43 MEMRY. 808152 TRAC1, 9201%2 TRAC2,
MONEY, gAGLAT ANM-. 208155 %07, BP0156 %PR.
TRAC3, 272154 ‘

TRACED w2148/ 220923 PTFLG. 801461 TRACE, 81457 TRPD,
BTRAC, 7214672 .
TRPOP, ga1460

COBOL 1K CNRE, 225 4JROS FRET

LOANER USED 2+4K CORE

7geL4?2
272146
gI2153
GBe157

p71460

=185 - BEGINNER'S BATCH

PRAOAGRAWM CoBolk . CoeoL 3439 20«APR=72
15141 PAGE 1 |

poey IDENTIFICATION DIVISIQON.

ppe2 ENVIRONMENT DIVIS]ON,

Poe3 INPUT-QUTPUT SECT]ON,

P04 FILE=CONTROL,

P2o5 SELECT INFIL, ASSIGN MAG1,

2206 SELECT QUTFIL, ASSIGN MAG2.

peey DATA DIVISION,

pocs FILE SECTION, '

peos FD INFIL,) LABEL REZORDS ARE STANDARD,
p21g VALUE oF IDENTIFICATION IS "INFIL DAT",
pg1L - BLOCK CONTAINS 2¢ RECORDS,

pg12 /) INKEC, PJC X(80),

2213 FO OUTFIL, LABEL RECORDS ARE STANDARD, .

PR14 VALUE oF IDENTIFICAT]ION IS "OUTFILDAT",
egls BLOCK CONTAINS 12 RECORDS.

pPR16 21 OUTREC, PIC X(8p).
2017 PROCEDURE DIVISION,
o018 START.

P16 OPEN INPUT INFIL, OUTPUT OQUTFIL.
ge2p ,

8021 LoOP

2022 REAU INFIL) AT Exp GO TO FIN.
P23 WRITE OUTREC FROM INREG,

gp24 GO TO0 LQOP,

8025 FIN,

0226 CLOSE OuTFIL, INFIL.

op27 STOP RUN,

NO ERRORS DETECIED

15137137 DATE 20-pPR~72" 55428¢ DUAL CPU DSRSTK VER 12(26) DskK
15137137 CARD $J0OB COBJOBL1p/1461)
15137138 STSUM END OF FILE AFTER 37 CARDS. P4 FILES, @6 BLKS

15137146 BVERS BATCON 7(53) [NP: SUBJOB 21 .OF 26
153137146 BDATE 27=aPR"72 - .
15137146 BASUM C0BJ0BL10,1461) FOR %6l10,14611 LOG FILE IN [1P,1461)
REQUEST CREATED AT 15136134 20~APR-72
UNIQUE?Y 2 RESTART: 1
15137146 MGONTR
15137146 MONTR ,LOGIN 109/1461

15137148 USER JoB 24 554250 DYAL CPU TTY1D3
15137150 USER OTHER JOBS SAME PPN
15137153 USER - 1537 20=APRw72 THUR

15137153 MONTR

15137153 MONTR .SET TIME 3092
15137154 MCNTR :
151371%4 MONTR ,SET SPOOL AL
15137154 MONTR
15137154 MOWTR
$J0p COBJOBL1@/1464)

15137184 MONTR ,PLEASE NEED TWO MAG TAPES, IF CAN'T HAVE THEM, REQUEVE,
15138147 MONTR MOUNT MTAIMAGL/V]INtINFIL/RONOLY

15138148 USER OPERATUR NOTIFIED

15133118 USER WAITING, ,,

15139189 USER MAGL (MTAB) MOUNTED

15139159 USER

5-17

BEGINNER'S BATCH

15139159
151421021
15140: 01
15041:31
15144131
15141133

15141:31
1514135
1514159
154141:5%9
15141159

15141159
15141159
15141159
15142124
15142124
15142125
151421026
15142127
15442129
151421029
15142109
1514229

15142129
15142129

15142310
15142429
15142129
15142329
15142138
15142131
15142147
15142147
15142147

15142147
15142151
15142153
1514257
15142:59
15343120
1514221
15:43421
15142:0]
15143123
15142129
15143312
15143:13
15143113
151473343
15144107
15144115
15:44125
15144;25
15144135

MONTR
USER
USER"
USER
USER
MONTR

MONTR
USER

MONTR
MONTR
MONTR

MONTR
MONTR
MONTR
USER
USER
USER
USER
USER
MONTR
MONTR
MONTR
MONTR

MONTR
USER
USER
USER
MONTR
MCNTR
USER
USER
USER
MONTR
MONTR

MONTR
USER

USER

USER

USER

USER

MONTR
MONTR
MONTR
K=QUE
KJ0B

LeQuT
LGCUT
LROUT
LGouUT
LPMSG
LPMSG
LOMSG
LPMSG
LeM3G

- 186 -

« o MOUNT MTATVAG2/VID:OUTFIL/WENABL
OPERATOR NOTIFIED

WATTING,,,

MAG2 (MTAL) MOUNTED

L]

$COBOL MYPROS,CBL

,COMP /COMPI_E MYPRJG,CBL/LIST GREATED BY CORSTk
coBoLi

EXIT

$DATA
,SET CUR QAA,CDR JCREATED BY CDRSTK

W EXEC./MAPIVAP,.LLPT /REL MYPROG.REL ICREATED BY CODRSTK
LOADING '
2M1462 1S THf LOW SEGMENT BREAK

CoBol. 1Kk CORE
EXEQUTION

EXIT

SEOD
JDISMOUNT MA511
OPERATOR NOTIFIED

WAITING,,,
MAGY OISMOUNTED

o DISMOUNT Mag2:
OPERATOR NOTIFIED
WATTING, ¢4

MAG2 DISMOUNTED

%FINY

.DEL MYPROG.%ElL,0AA,COR,MYPROG.CBL
FILES DELETED:

MYPROG « REL,

GAA,COR

MYPROG .« CBL

27 BLOCKS FReg

+XJOR DSKB:COBJOB.LOGtiw,1461J=/1/2:4/B/vs:bza/vL:zmﬂlvaﬂo
T0TaL OF 9 B_pCKS IN LPT REQUEST

OTHER JOBS SAME PPN

JOB 24, USER [10.,1461] LOGGED OFF TTY1B3 1543 20=APR=72
SAVED ALL 43 FILES (855, DISK BLOCKS)

ANOTHER JOB STILL LOGGED IN UNDER [18,1461]

RUNTIME @ MIN, 07,14 SEC

LPTSPL VERSIAON 4A(141) RUNNING ON LPTZ2 ,

JOB COBJOB FILE DSKBLIMYPROG.LSTC1P,1461] FOR [12,Y461]STARTED
DSKE1iMYPROG, STCL1A,1461] DONE

JOB COBJOB FLLE DSKB1iMAP.LPT(10,1461] FOR [30.,14611 STARTED
DSKRLIMAP, L PY[108.1461] DONE

	0001
	0002
	0003
	0004
	0005
	0006
	0007
	0008
	0009
	0010
	0011
	0012
	1-01
	1-02
	1-03
	1-04
	2-01
	2-02
	2-03
	2-04
	2-05
	2-06
	2-07
	2-08
	2-09
	2-10
	2-11
	2-12
	2-13
	2-14
	2-15
	2-16
	2-17
	2-18
	2-19
	2-20
	2-21
	2-22
	2-23
	2-24
	2-25
	2-26
	2-27
	2-28
	2-29
	2-30
	2-31
	2-32
	2-33
	2-34
	3-01
	3-02
	3-03
	3-04
	3-05
	3-06
	3-07
	3-08
	3-09
	3-10
	3-11
	3-12
	3-13
	3-14
	3-15
	3-16
	4-01
	4-02
	4-03
	4-04
	4-05
	4-06
	4-07
	4-08
	4-09
	4-10
	4-11
	4-12
	4-13
	4-14
	4-15
	4-16
	5-01
	5-02
	5-03
	5-04
	5-05
	5-06
	5-07
	5-08
	5-09
	5-10
	5-11
	5-12
	5-13
	5-14
	5-15
	5-16
	5-17
	5-18

