
COBOL
Programmers Reference Manual

dec
COBOL
PROGRAMMER'S
REFERENCE MANUAL

This manual reflects the software as of Version 6 of the COBOL

compiler and Version 7 of LIBOL, the object-time system.

Additional copies of this manual may be ordered from: Software Distribution
Center, Digital Equipment Corporation, Maynard, Massachusetts 01754

Order Code: DEC-10-LCPRA-A-D

DIGITAL EQUIPMENT CORPORATION • MAYNARD, MASSACHUSETTS

1st Printing August 1969
2nd Printing (Rev) July 1970
Update Pages October 1970
Update Pages December 1970
Update Pages Apri I 1971
Update Pages June 1971
3rd Printing (Rev) October 1971
Update Pages November 1971
Update Pages October 1972
4th Printing (Rev) February 1973
5th Printing (Rev) November 1974

The information in this document is subject to change without notice
and should not be construed as a commitment by Digital Equipment
Corporation. Digital Equipment Corporation assumes no responsibility
for any errors that may appear in this manual.

The software described in this document is furnished to the purchaser
under a license for use on a single computer system and can be copied
(with inclusion of DIGITAL's copyright notice) only for use in such
system, except as may otherwise be provided in writing by DIGITAL.

Digital Equipment Corporation assumes no responsibility for the use
or reliability of its software on equipment that is not supplied by
DIGITAL.

Copyright@ 1969, 1970, 1971, 1972, 1973, 1974 by Digital Equipment Corporation

The postage prepaid READER'S COMMENTS form on the last page of this
document requests the user's critical evaluation to assist us in
preparing future documentation.

The following are trademarks of Digital Equipment Corporation:

CDP DIGITAL INDAC PS/8
COMPUTER LAB DNC KAID QUICKPOINT
COMSYST EDGRIN LAB-8 RAD-8
COMTEX EDUSYSTEM LAB-8/e RSTS
DDT FLIP CHIP LAB-K RSX
DEC FOCAL OMNIBUS RTM
DECCOMM GLC-8 OS/8 RT-II
DECTAPE IDAC PDP SABR
DIBOL IDACS PHA TYPESET 8

UNIBUS

11/74-15

CONTENTS

Page

CHAPTER G ETTI NG STARTED WITH DECsystem-10 COBOL

1.1 DECsystem-10 COBOL 1-1
1 .1 .1 Modes of Operation 1-1
1 .1 .2 On-Line Editing and Debugging 1-2
1 .1 .3 Sharable Code 1-3
1 .1 .4 Peripheral Devices 1-3

1 .2 USING COBOL WITH DECsystem-10 1-4
1 .2.1 COBOL Programming in Timesharing Mode 1-4
1.2.2 COBOL Programming in Batch Mode 1-10

CHAPTER 2 INTRODUCTION TO COBOL LANGUAGE

2.1 SYMBOLS AND TERMS 2-1
2.1 .1 Symbols 2-1
2.1 .2 COBOL Terms 2-2

2.2 ELEMENTS OF COBO L LANG UAG E 2-2
2.2.1 Program Structure 2-2
2.2.2 Character Set 2-3
2.2.3 Words 2-4
2.2.3. 1 COBOL Reserved Words 2-4
2.2.3.1.1 Figurative Constants 2-4
2.2.3.1.2 Special Registers 2-5
2.2.3.2 User-Created Words 2-6
2.2.4 Literals 2-6
2.2.4.1 Numeric Literals 2-7
2.2.4.2 Nonnumeric Literals 2-7
2.2.5 Punctuation 2-7

2.3 SOURCE PROGRAM FORMAT 2-8
2.3.1 Conventional Format 2-8
2.3.2 Standard Format 2-10

CHAPTER 3 THE IDENTIFICATION DIVISION

3.1 GENERAL STRUCTURE 3-1

3.2 TECH N ICAl NOTES 3-1

CHAPTER 4 THE ENVIRONMENT DIVISION

4.1 GENERAL STRUCTURE 4-1

4.2 CONFIGURATION SECTION 4-3

4.3 INPUT-OUTPUT SECTION 4-8

iii

Page

CHAPTER 5 THE DATA DIVISION

5.1 FILE SECTION 5-1

5.2 WORKING-STORAGE SECTION 5-2

5.3 LINKAGE SECTION 5-2

5.4 COMMUNICATION SECTION 5-3

5.5 REPORT SECTION 5-4

5.6 DATA DESCRIPTIONS 5-4
5.6.1 Elementary Items and Group Items 5-4
5.6.2 Level Numbers 5-4
5.6.3 Records and Files 5-6

5.7 QUALIFICATION 5-6

5.8 SUBSCRIPTING AND INDEXING 5-7

5.9 REPORT EXAMPLE 5-73

CHAPTER 6 THE PROCEDURE DIVISION

6.1 SYNTACTIC FORMAT OF THE PROCEDURE DIVISION 6-2
6.1 .1 Statements and Sentences 6-2
6.1.2 Paragraphs 6-4
6.1.3 Sections 6-4

6.2 SEQUENCE OF EXECUTION 6-5

6.3 SEGMENTATION AND SECTION-NAME PRIORITY
NUMBERS 6-5

6.4 ARITHMETIC EXPRESSIONS 6-6
6.4.1 Arithmetic Operators 6-6
6.4.2 Formation and Evaluation Rules 6-7

6.5 CONDITIONAL EXPRESSIONS 6-7
6.5.1 Relation Condition 6-8
6.5.1.1 Format of a Relation Condition 6-8
6.5.1.2 Relational Operators 6-8
6.5.1.3 Comparison of Numeric Items 6-8
6.5.1.4 Comparison of Nonnumeric Items 6-9
6.5.2 Class Condition 6-9
6.5.2.1 Format of a Class Condition 6-9
6.5.2.2 The NUMERIC Test 6-10
6.5.2.3 The ALPHABETIC Test 6-10
6.5.3 Condition-Name Condition 6-10
6.5.3.1 Format of a Condition-Name Condition 6-10
6.5.4 Switch-Status Condition 6-10
6.5.4.1 Format of a Switch-Status Condition 6-10

iv

Page

6.5.5 Sign Condition 6-11
6.5.5.1 Format of a Sign Condition 6-11
6.5.6 Logical Operators 6-11
6.5.7 Formation and Evaluation Rules 6-12
6.5.8 Abbreviations in Relation Conditions 6-15

6.6 COMMON OPTIONS ASSOCIATED WITH THE ARITHMETIC
VERBS 6-15

6.6.1 The SIZE ERROR Option 6-16

6.7 THE CORRESPONDING OPTION 6-17

6.8 DETERMINATION OF USAGE IN ARITHMETIC
COMPUTATIONS 6-17

6.9 PROCEDURE DIVISION VERB FORMATS 6-18

CHAPTER 7 THE COBOL LIBRARY 7-1

CHAPTER 8 STANDARD 1-0 PROCESSING

8.1 ACCESS MODE 8-1
8.1 .1 SEQ UENTIAL Mode 8-1
8.1 .2 RANDOM Mode 8-2
8.1 .2. 1 Creating Random-Access Files 8-2
8.1.3 INDEXED Mode 8-3
8.1.3.1 Format of the Index Entry 8-4
8.1.3.2 Format of the Data File 8-4

8.2 RECORDI NG MODE 8-5
8.2.1 Default Conditions 8-5
8.2.2 ASCII 8-5
8.2.3 SIXBIT 8-5
8.2.4 BINARY 8-5

8.3 FILE TABLES 8-5
8.3.1 Explanation of Fields 8-7

8.4 CHANNEL TABLES 8-10

8.5 BLOCKING 8-11
8.5.1 Reading and Writing Blocked Files 8-12
8.5.2 Reading and Writing Unblocked Files 8-12

8.6 LABEL RECORDS 8-13
8.6.1 Standard Label Records 8-13
8.6.1.1 Ending Labels 8-13
8.6.2 Non-Standard Label Records 8-13

8.7 MULTIPLE-FILE TAPE 8-14

8.8 SAME AREA CLAUSE 8-14

v

Page

8.9 SAME RECORD AREA CLAUSE 8-14

8.10 FILE-LIMITS 8-14

8.11 SUBPROGRAMS 8-15
8.11.1 Using Subprograms 8-16
8.11 .2 Example of Subprogram Usage 8-17

CHAPTER 9 SOURCE LIBRARY MAINTENANCE PROGRAM

9.1 EQUIPMENT 9-1
9.1 .1 Machine Requirements 9-1
9.1 .2 Machine Options 9-1

9.2 SALIENT FEATURES OF MAINTENANCE PROGRAM 9-1

9.3 INPUT FORMAT 9-2

9.4 OUTPUT FORMAT 9-2

9.5 ORGANIZATION OF THE MAINTENANCE PROGRAM 9-2
9.5.1 Internal Organization 9-2
9.5.2 Operational Organization 9-3

9.6 OPERATING PROCEDURE 9-3
9.6.1 Start-Up 9-3
9.6.2 Default Assignments 9-3
9.6.3 Switches 9-4
9.6.4 Listing the Contents of a Library File 9-4

9.7 COMMAND LANGUAGE 9-4
9.7.1 Commands to Position Files 9-4
9.7.2 Commands to Alter Contents of Source File 9-6
9.7.3 Example of the Use of the Commands 9-6

9.8 ERROR RECOVERY 9-8
9.8.1 Input Errors 9-8
9.8.2 Operator Errors 9-8
9.8.3 Hardware Errors 9-9

9.9 SOFlWARE INTERFACES 9-10
9.9.1 Format of the Rough Table 9-10
9.9.2 Format of the Fine Table 9-10
9.9.3 Format of the Source Routines 9-11

APPENDIX A COBOL RESERVED WORDS A-1

APPENDIX B CHARACTER COLLATING SEQUENCE B-1

vi

Page

APPENDIX C STANDARD CALLING SEQUENCE C-l

C .1 CALLING SEQUENCE FOR COBOL, MACRO, AND
FORTRAN-l0 C-l

C .1.1 Example of the Standard Calling Sequence C-3

C.2 CALLING SEQUENCE FOR FORTRAN-IV C-3
C.2.1 Example of the Calling Sequence for FORTRAN-IV C-4

APPENDIX D COMMAND STRINGS D-l

APPENDIX E THE SORT PROGRAM E-l

E .1 SO RT EXAM PLE S E-3

APPENDIX F COBOL REPORT GENERATOR (COBRG) F-l

F .1 INPUT TO COBRG F-l
F .1 .1 NAME Specification F-2
F .1 .2 BREAK Specification F-2
F.l.3 HEADER Specification F-3
F.l.4 ACCUMULA TOR Specification F-3
F.l.5 TOTAL Specification F-4
F.l.6 LIST Specification F-4
F .1.7 EMIT Specification F-4
F.l.8 INPUT Specification F-5
F .1.9 OUTPUT Specification F-5

F.2 OUTPUT FROM COBRG F-5

F.3 COBRG COMMAND STRING F-5

F.4 THE REPORT-WRITING PROGRAM F-6

F.5 EXAMPLE OF USING COBRG F-6

F.6 COBRG RESERVED WORDS F-9

APPENDIX G THE RERUN PROGRAM G-l

G .1 OPERATING RERUN G-l

G.2 EXAMPLES OF USING RERUN G-2

APPENDIX H INDEXED SEQUENTIAL FILE MAINTENANCE H-l

H .1 DESCRIPTION OF INDEXED SEQUENTIAL FILES H-l
H .1 .1 Data File H-l
H.l.2 Index File H-2

H .2 PROGRAM TO MAINTAIN INDEXED SEQUENTIAL
FILES (ISAM) H-4

H.2.1 Building an Indexed Sequential File H-4

vii

Page

H .2.2 Maintaining an Indexed Sequential File H-7
H .2.3 Packing an Indexed Sequential File H-8
H.2.4 Ignoring Errors H-10
H .2.5 Reading and Writing Magnetic Tape Labels H-ll
H.2.6 Indirect Commands H-12

APPENDIX DEBUGG ING COBOL PROGRAMS 1-1

1.1 LOADING AND STARTING COBDDT 1-1

1.2 COBDDT COMMANDS 1-2
1.2.1 The ACC E PT Command 1-2
1.2.2 The BREAK Command 1-2
1.2.3 The CLEAR Command 1-2
1.2.4 The DISPLAY Command 1-3
1.2.5 The MODULE Command 1-3
1.2.6 The PROCEED Command 1-4
1.2.7 The STOP Command 1-4
1.2.8 The TRACE Command \-4
\.2.9 The WH ERE Command \-4

1.3 OBTAINING HISTOGRAMS OF PROGRAM BEHAVIOR 1-5
1.3.1 Initializing the Histogram Table 1-5
1.3.2 Starting the Histogram 1-5
1.3.3 Outputting the Histogram 1-6
1.3.4 Using the Histogram Feature 1-7

1.4 ERROR MESSAGES FROM COBDDT 1-7
1.4.1 Syntax Error Messages 1-7
1.4.2 Execution Error Messages 1-8

viii

FIGURES

Number Page

8-1 Structure of a File Table 8-6
H-1 Locating a Record in an Indexed Sequential File H-3

TABLES

Number Page

6-1 Procedure Verb and Statement Categories 6-2
6-2 Types of Segments 6-5
6-3 CLOSE Options and File Types 6-27
8-1 Flags and Fields in Word 9 of File Table 8-8
8-2 Flags and Fields in Word 19 of File Table 8-9
8-3 Codes for Indexed Key 8-10
8-4 Channel Table Entry 8-11
8-5 Standard Label for Nonrandom-Access Media 8-13
9-1 Data Sections in the Library File 9-2
9-2 Commands for Positioning Files 9-4
9-3 Commands for Altering Contents of Source File 9-6
9-4 Operator Errors 9-9
9-5 Format of a Rough Table Entry 9-10
9-6 Format of a Fine Table Entry 9-10
D-1 Explanation of Command String Terms D-1
D-2 Explanation of File Description Terms D-2
D-3 COBOL Switch Summary D-3
E-1 Summary of SORT Switches E-2

ix

Foreword

This manual describes COBOL as it has been implemented in DECsystem-10. Chapter 1 tells how to

get started with COBOL in DECsystem-10. Chapter 2 discusses language elements, conventions used

in the manual, and the structure of a COBOL program. Chapters 3 through 6 detail the four major

divisions of a COBOL program. The COBOL library is described in Chapter 7. I/O processing is

discussed in Chapter 8, and Chapter 9 contains information about the Source Library Maintenance

program 0 Several Appendices have been included in the manual. Appendices A and B contain the

COBOL reserved words and the character collating sequence. The standard cal ling sequence, used to

link COBOL programs to subprograms written in COBOL and in other languages, is described in

Appendix C. Appendix D contains the command strings that can be issued to the COBOL compi ler.

Appendices E, F, G, H, and I describe severa I programs that are of use to COBOL programmers:

SORT; COBRG, the report generating program; RERUN, the program that restarts interrupted pro­

grams; ISAM, the program for maintaining indexed sequential files; and COBDDT, the COBOL

debugging program.

It is assumed that the reader has a knowledge of the COBOL language. This manual is intended pri­

marily for reference and is not a tutorial guide for beginning COBOL programmers. Those wishing to

learn the COBOL language are referred to the fol lowing books.

Farina, Maria V., COBOL Simplified, New Jersey, Prentice Hall,
Inc., 1968.

McCameron, Fritz A., COBOL Logic and Programming, Homewood,
Illinois, Richard D. Irwin, Inc., 1966.

McCracken, Daniel D. and Garbassi, Umberto, A Guide to COBOL
Programming, Second Edition, New York, John Wiley and Sons, Inc.,
1970.

The COBOL programmer should be familiar with the operating system commands and the editing lan­

gauges of DECsystem-l0. The commands are discussed in the DECsystem-l0 Operating System Com­

mands manua I (DEC-l O-MRDD-D). TECO is described in the TECO (Text Editor and Corrector Pro­

gram) Programmer's Reference Manual (DEC-l0-ETEE-D). LINED is described in a.document in the

DECsystem-l0 Software Notebook.

xi

ACK NOWLEDGMENT

COBOL is an industry language and is not the property of any company or group of

companies, or of any organization or group of organizations.

No warranty, expressed or implied, is made by any contributor or by the COBOL

Committee as to the accuracy and functioning of the programming system and

language. Moreover, no responsibility is assumed by any contributor, or by the

committee, in connection therewith.

Procedures have been established for the maintenance of COBOL. Inquiries con­

cerning the procedures for proposing changes should be directed to the Executive

Committee of the Conference on Data Systems Languages.

The authors and copyright holders of the copyrighted material used herein are:

FLOW-MAnC (trademark of Sperry Rand Corporation), Programming

for the Univac (R) I and II, Data Automation Systems copyrighted 1958,

1959, by Sperry Rand Corporation; IBM Commercial Translator Form

No. F 28-8013, copyrighted 1959 by IBM; FACT, DSI 27A5260-2760,

copyrighted 1960 by Minneapolis-Honeywell.

They have specifically authorized the use of this material, in whole or in part,

in the COBOL specifications. Such authorization extends to the reproduction

and use of COBOL specifi cations in programming manuals or similar pub I i cations.

xii

Chapter 1

Getting Started With DECsystem-10 COBOL

COBOL (Common Business-Oriented Language) is an industry-wide data processing language designed

for business applications, such as payroll, inventory control, and accounts-receivable. In COBOL,

the programmer can describe his data and the processing of it in simple, English-like statements.

COBOL programs are written in terms that are easily recognized by the business user; thus, little pro­

grammer training is required, the programs are virtually self-documenting, and programming of desired

applications is accomplished quickly and easily.

1. 1 DECsystem-10 COBOL

The COBOL implemented for DECsystem-lO conforms to American National Standards Institute (ANSI)

specifications as described in the document USA Standard COBOL, X3.23-1968.

DECsystem-10 COBOL operates within the DECsystem-10 operating system, thereby offering the

COBOL user the business processing capability of COBOL, in addition to the many features of

DECsystem-10. Some of these features are:

a. Batch and timesharing modes of operation,

b. On-line editing and debugging,

c. Sharable compiler and object code,

d. Wide choice of peripheral devices.

1. 1. 1 Modes of Operation

The DECsystem-10 operating system supports both timesharing and multiprogramming batch modes of

operation. The COBOL programmer can use either or both of these operating environments to develop

his applications. Under timesharing, a program can be written at an interactive terminal, edited and

debugged while the user is on-line, and then run immediately. The tum-around time normally associ­

ated with preparing an error-free program can be substantially reduced, because the programmer re­

ceives the results of his program immediately and can determine, on the spot, whether or not his

program is running properly.

1-1

Programs that need no interaction with the user, that require large amounts of data, or that are very

long can be entered into the batch system through a noninteractive device such as the card reader

or from disk files. Through commands in his batch job, the programmer can specify the processing that

he requires, the constraints that must be fulfilled (e. g., deadlines, priorities, and time limits), and

the devices that are necessary. The normal tasks required of the timesharing user (e. g., logging in

and out) are performed by the batch system. Because there is no interactive dialogue, the batch job

is processed faster than it would be under timesharing and the programmer need on Iy wait for his out­

put to be returned to him.

Whether the user needs fast interaction with the system or rapid throughput, the DECsystem-10 opera­

ting system can offer him both.

1. 1.2 On-Line Editing and Debugging

To develop error-free programs, the COBOL user can take advantage of the system programs TECO and

LINED and the program COBDDT. TECO {Text Editor and Corrector} and LINED {Line Editor} are the

system editing programs, and COBDDT {COBOL Dynamic Debugging Technique} is the program used for

debugging COBOL programs during execution.

LI NED is a simple, easily-learned program for editing disk files. It performs editing on sequence­

numbered lines in these files. If the file does not have sequence numbers, LINED adds a sequence

number to each line. Within a line, the user can add, delete, and change characters by retyping the

line. New lines can be added to the file and unwanted lines can be deleted by means of simple LINED

commands. If the user desires sequence numbers in his file, or if he has to correct a file that has se­

quence numbers, he can take advantage of the editing capabilities of LINED. A description of LINED

can be found in the Software Notebooks.

TECO is a highly sophisticated and powerful text editor. Unlike LINED, TECO is character-oriented,

rather than line-oriented. This means that one or more characters in a line can be edited without the

user retyping the line. TECO does not require that sequence numbers be associated with the file, nor

does it create sequence numbers for the file unless the user requests them. When complicated correc­

tions must be performed (e.g., changing or deleting a word that occurs repeatedly in a program), the

programmer can use TECO to simplify his editing task. An abridged description of TECO that con-

tains the commonly-used commands is given in the Software Notebooks. The full program descrip­

tion is contained in the TECO Programmer's Reference Manual (DEC-10-ETEE-D) in the Software

Notebooks.
1

1-2

The timesharing user, when creating pr09rams at his terminal, must use one of the editors so that his

programs will be stored as files on disk. Either TECO or LINED can be used for this purpose. If he

wants to create sequence-numbered fi les, the programmer shou Id use LINED; if he does not want

sequence numbers, the programmer should use TECO.

COBDDT is a program that allows the user to perform checkout and debugging of his programs. By

typing commands to COBDDT, the user can set breakpoints in his program and examine and modify the

contents of any locationo COBDDT is described in detail in Appendix I.

1 .1.3 Sharable Code

The COBOL compi ler, like most of the system software, is divided into high and low segments so that

most of its code can be shared by many users. The high segment of the compiler is reentrant; that is,it

contains code that all COBOL users share. The low segment, containing tables, data names, procedure

names, and the like, is unique to each user. This reentrant capability means that only one copy of the

compiler must be resident in core at anyone time to serve all COBOL users, thus minimizing the amount

of core used by COBOL compilations. The operating system (LIBOL) is also sharable to minimize the

amount of core used during execution of COBOL programs.

The user can, if he desires, compile his COBOL programs so that they are a Iso sharable. This feature

is advantageous if many people need to use the same program simu Itaneously.

1. 1.4 Peripheral Devices

The DECsystem-l0 COBOL user has available to him a wide choice of peripheral devices, whether he

is operating in timesharing or batch mode. Programs and data can be entered from interactive terminals,

DECtape, paper-tape reader, card reader, magnetic tape, or disko Also, programs and data can be

ent~red from a remote station through any input device at that station 0 Program listings and program

output can be printed on local or remote printers and on the user's interactive terminal. They can be

stored on paper tape, cards, DECtape, disk, and magnetic tape either at a remote station or the

central station.

The operating system allows the programmer to reference a device with a user-assigned logical name as

well as its physical name; thus allowing dynamic assignment of peripheral devices at run-time. For

example, within his program, the user could assign his input file to a device named FRED 0 At run-time,

he could then associate any desired input device with the logical name FRED by means of the ASSIGN

monitor command 0

1-3

To prevent slow-speed devices, such as line printers, from being tied-up by individual users, the system

allows output to be spooled to these devices. When spooling, the user places his output on disk and

issues a monitor command (QUEUE) to place his output into a queue to spool it to the required device.

Therefore, no user has to wait for a slow-speed device to become available so that he can run his pro-

grams.

DECsystem-10 has been designed to provide maximum speed, efficiency, and ease of operation for ~

large number of simultaneous batch and timesharing users. Because COBOL has been fully integrated

into this system, the COBOL programmer can take advantage of the full range of capabilities provided

by DECsystem-10, in addition to the power of the high-level, ANSI-standard, DECsystem-10 COBOL.

1.2 USING COBOL WITH DECsystem-10

Two sample COBOL runs are shown .below. The first demonstrates operations in timesharing mode; the

second shows batch mode.

1.2. 1 COBOL Programming in Timesharing Mode

A sample COBOL program is illustrated and described below, along with all the steps necessary to cre­

ate, compile, and execute it. This example shows an interactive session, using the timesharing mode

of operation. The source program format is the standard DECsystem-10 format, not the conventional

COBOL format. Both formats are acceptable to the COBOL compiler; they are described in Chapter 2.

The sample run is shown in its entirety first. Each part is then described in detail. The data and out­

put of the program are also shown. Output from the system is underlined in all of the examples.

,!LOGIN 11,,141
JOB 18 5S0220G SYSTEM #2 TTY26
PASSWORD:
1237 I1-JUN-71 FRI

.MAKE PHONEY.CBL
iIIDENTIFICATION DIVISION.
PROGRAM-ID. PHONEY.
REMARKS. CONVERTS A PHONE NUMBER TO A LIST OF ALL

ALPHABETIC COMBINATIONS REPRESENTING IT.

ENVIRONMENT DIVISION.
INPUT-OUTPUT SECTION.
FILE-CONTROL.

SELECT LISTING" ASSIGN TO DSK.
SELECT SORTING" ASSIGN TO DSK" DSK" DSK.

1-4

DATA DIVISION.
FILE SECTION.

FD lISTING .. VALUE OF IDENTIFICATION IS "PHONESlSr".
01 PHONES .. DISPLAY-7.

02 PHONE .. OCCURS 7 TIMES .. PIC X.
02 FILLER .. PIC X(29).

01 MJLTI-PHONES .. DISPLAY-7.
02 M-PH .. OCCURS 3 TIMES .. PIC X(12).

SO SORTING.
01 SORT-REC.

02 S-R .. PIC X(7).
02 FILLER .. PIC X(29).

WORKING-STORAGE SECTION.

01 ALPHA .. PIC X(30) .. VALUE "000111ABCDEFGHIJKlMNOPRSTUVWXY".
01 CHARS .. REDEFINES ALPHA.

02 CHAR .. OCCURS 10 TIMES.
03 C .. OCCURS 3 TIMES .. PIC X.

01 NUMBR.
02 N .. OCCURS 8 TIMES .. PIC X.

01 I NDXS •
02 INDX .. OCCURS 7 TIMES .. PIC 9.

01 PHONE-STORE.
02 PH-STORE .. PIC X(7).
02 FILLER .. PIC X(29).

77 I.. PIC 99.. CO tv;p •
77 J .. PIC 99 .. COMP.
77 K .. PIC 99 .. COMP.
77 L .. PIC 99 .. COMP.

PROCEDURE DIVISION.

{ltAIN SECTION.
START.

DISPLAY "TYPE PHONE-NUI'v18ER".
MOVE SPACES TO NUMBR.
ACCEPT NUMBR.
PERFORM GET-NUM VARYING K FROM 4 BY 1 UNTIL K > 7.
MOVE 1111111 TO INDXS.

LOOP.

END- IT.

MOVE 1 TO I.
OPEN OUTPUT LISTING.
MOVE SPACES TO PHONES.

PERFORM ASSEMBLE VARYING J FROM 1 BY 1 UNTIL J > 7.
WRITE PHONES.
MOVE SPACES TO PHONES.
PERFORM BUMP-INDX THRU BX.
GO TO LOOP.

CLOSE LISTING.
SORT SORTING ON ASCENDING KEY SORT-REC ..

USING lISTING ..
OUTPUT PROCEDURE THREE-PHONES.

STOP RUN.

1-5

* SUBROUTINES

GET-NUM.
MOVE K TO J.
SET J UP BY 1.
MOVE N (J) TO N (K).

ASSEMBLE.
MOVE INDX (J) TO K.
MOVE N (J) TO L.
ADD 1 TO L.
MOVE C (L~ K) TO PHONE (J).

BUMP-INDX.
MOVE 7 TO J.

82. ADD 1 TO INDX (J).

IF INDX (J) > 3 AND J = 1~ GO TO END-IT.
IF INDX (J) > 3~ MOVE 1 TO INDX (J)~

SET J DOt-JN BY 1 ~
GO TO 82.

8X. EX IT.
* OUTPUT PROCEDURE FOR SORT

THREE-PHONES SECTION.
START.

OPEN OUTPUT LISTING.
L-1 •

MOVE 1 TO I.
MOVE SPACES TO MULTI-PHONES.

L-2.
RETURN SORTING INTO PHONE-STORE~ AT END GO TO END-3-PHONES.
MOVE PH-STORE TO M-PH (I).
SET I UP BY 1.
IF I > 3~ WRITE MULTI-PHONES~

GO TO L-l~
ELSE GO TO L-2.

END -3 -PHONES.
IF I > 1, WRITE MULTI-PHONES.
CLOSE LISTING.

SEX$$

EXIT

I ~EXEC UTE PHONEY.eBl
C DB C l : PH 0 N E Y

LOAD I NG

LOADER 2K CORE
EXECUTION

TYPE PHONE-NUMBER
263 -2445

EXIT

.QUEUE LPT:=PHONES.LST
TOTAL OF 44 BLOCKS IN LPT REQUEST

1-6 November 1974

The first step is logging in to the timesharing system. The monitor types a period to indicate that it is

ready to receive a command. The user types the LOGIN command with his project-programmer number.

The system returns a job number, the version of the monitor, the system it is running on, and then requests

the user's password. The password is not echoed to the terminal to preserve the security of the user's

project-programmer number. After the correct password is typed, the system types the date, ti me, and

any pertinent messages.

!LOG IN 1 1 ~ 1 ~ 1
JOB 1 [5 5S02?0G S YSTEtv'1 #2 TTY:? 6_
PASS\.oJORD:

1237 II-JUN-71 Fk I

!.

After logging in, the user creates his COBOL program through one of the editors. TECO is used in this

example. The user issues the MAKE monitor command to cause TEeO to open a disk file with the specified

name and extension. When TECO returns an asterisk, the user can enter his program by typing the I (In­

sert) command to TECO and immediately following it with the text of his program.

~MAKE PHONEY.CBL
*IIDENTIFICATION DIVISION.

- ~ ~ f
To end the insert (his program), the user must press the ALTMODE key, which prints as a dollar sign ($).

Whatever the user types between the I command and the concluding ALTMODE is stored in his file. To

close the file and return to the monitor, the user types EX followed by two ALTMODEs.

$EX$$
EXIT

The sample program requests that the user type a telephone number, and then finds all the possible alpha­

betic combinations that can represent the number, based on the letters on the telephone dial. For example,

the number 2 could be A, B, or C. Note that a 1 or 0 in a phone number does not have an alphabetic

equivalent. If either is typed by the user, the number is printed for each combination of letters. All

possible combinations are then printed in three groups of seven letters.

Within the FILE SECTION of the program, the record PHONES is redefined by the record MULTI-PHONES,

although the REDEFINES clause is not and should not be used. If more than one 01-level record is de­

fined for a file, the 01-level records after the first merely redefine the first. This is done because only

one record area is allowed per fi Ie.

1-7

FD LISTING" VALUE OF IDENTIFICATION IS "PHONESLST".
01 PHONES" DISPlAY-7.

02 PHONE" OCCURS 7 TI~ES" PIC X.
02 FIllER" PIC X(29).

01 t/:ULTI-PHONES" OISPLAY-7.
02 M-PH" OCCURS 3 TIMES" PIC X (12).

In the FILE-CONTROL section, the user selects devices for sorting. At least three devices are required

for sorting. It is recommended that the disk be used because sorting is faster on disk.

FILE CONTROL.
SELECT •••
SELECT SORTING" ASSIGN TO DSK" DSK" DSK.

The input to the program is the telephone number that the program requests. The DISPLAY statement within

the program causes the request to be typed on the user's terminal.

PROCEDURE DIVISION.
MA INS E C T I 0 (\! •

START.
DISPLAY "TYPE PHONE-NU~8ER".

To compile, load, and execute his COBOL program, the user issues the EXECUTE monitor command with

the filename included in the command string. The system recognizes the COBOL program because of -the

extension (.CBL). The request for the telephone number is typed when the program begins execution, and

the program pauses to await the type-in. To signal that the program has completed execution, the system

types EXIT.

=.EXECUTE PHONEY.CBl
COBOL: PHONEY
LOAD I NG

LOADER 2K CORE
EXECUTION
TYPE PHONE-~UMBER
263-2445

.:.

1-8

~QUEUE LPT:=*.LPT
TOTAL Or 44 BLOCKS IN LPT REQUEST

A portion of the output listing is shown below. The program prints 2,187 combinations on about 12 pages.

AMDAGGJ
AMDAGHJ
AMOAGIJ
AMOAHGJ
AMDAHHJ
AMDAHIJ
AMOAIGJ
AMOAIHJ
AMDAIIJ
AM08GGJ
AMOt1GHJ
AMDEiGIJ
AMD8~:GJ
AMOB!--!HJ
AMr)8;..!IJ
AMDBIGJ
AMODIHJ
AMD3IIJ
AMOCGGJ
AMflCGHJ
AMDCGIJ
AMOCHGJ
AMOCHHJ
AMDCr! I J
AMOClGJ
AMDCYHJ
AMOCIIJ
AMEAGGJ
AMEAGHJ
AMEAGIJ
AMEAHGJ
AMEAHHJ
AME,L\~n J
AMEAIGJ
AMEAIHJ
AMEAIIJ
AMEBGGJ
AME8GHJ
AME8GIJ
AME8!--fGJ
AME8HHJ
AME8HIJ
AMEBIGJ
AMEOIHJ
AME8IIJ
AMECGGJ

AMDAGGK
AI~DAGHK
,AMDAG I!<
i\MDAHGK
AMDAHHr\
AMDAHIK
t\MDAIG~
AMDAIHK
!\MDA 1 I K
;\MDBGG:(
AMD8G~K
AMDBG If<
Ai1 DBr'GK
AMDBI-lHK
AMDBH I i<
A~DB I G:<
AMDBIHK
t\t,1DB 11K
td~DCGG:\
AMDCGH:<
AMOCGIK
A~DCHGK
AMDCHHf\
AMDCHIK
AMOCIGK
AMDCIHK
AMDCIIK
Ai~EAGG:'<
AMEAGHi<
.A,MEAGIK
AMEAHGK
AMEAHHK
At~EAHIK
,A,MEA I GK
AMEAIHK
I\MEAIli\
I\MEBGG~
AMEBGH!{
AMEBGIK
AMEBHGf(
AMEBHHK
AMEBHIK
AMEBIGK
A MEB I H'<
AMEBIIK
AMECGGK

AMDAGGL
A,MDAGHL
AMDAGIL
AMDAHGI...
AMDAHHL.
AMDAHI~
AhDAIGL.
AMDAIHL.
AMDAIIL.
AMD8GGL
AMDBGHL
AMD8GI~
AMDBHGL.
AMDBHHL.
AMD8HIL
AMDBIGI..
Ar~ 0 8 I HL.
AM08IIL
AMDCGGL
AMDCGYL
AMDCGIL
AMDC~GL
AMDCHHL
AMDCHIL
A.MOC I GL
AMDCIHL
AMOCIII~
AMEAGGL
AMEAGHL
AMEAGIL
AMEAHGL
Ai'1EAHHL
AMEAH1L
ANE A I.GL
AMEAIHL
AMEAIIL
AMF~8GGL
AMEBGHL
AMERGIL
AMEBHGL
AME8HHL.
AMEBHIL.
AME8IGL
AMEBIHL.
AME8IIL
AMECGGL

{continued on next page}

1-9

I

I

AMECGHJ
AMECGIJ
AMEC~GJ
AMEC:'IHJ
AMEC:-i I J
AMECIGJ
AMECIHJ
AMECIIJ
AMF'AGGJ
AMF' t~GHJ

AMECGHK
AMECG I!{
/l,MECHGK
'!d1ECHH~<
AMECHIK
4MECIGK
AMECIHK
AMECIIK
,4MF' AGG¥­
AMF'AGHK

AMECGHL
AMECGIL
AMECHGL
AMECHHL
AMECHIL
AMECIGL
AMECIHL,
AMECIIL
AMF'AGGL
AMF'AGHL

If the output is satisfactory to the user, he can log off the system or he can continue to perform other tasks

at his terminal.

1.2.2 COBOL Programming in Batch Mode

The sample program described in this section shows the steps that are necessary to run a program using the

Multiprogramming Batch system. The input card deck, which contains the program, data, and the batch

control commands, is shown first. Each part of the sample deck is then described in detail. The output

from the program, a listing of the program, and the job's log file are also shown.

10-0731

The programmer writes his program and punches it on cards in ASCII code to be input to the Batch system.

The sample program is shown as it has been coded. The standard format is used in this example as in the

previous example. The program reads a I ist of items sold, sorts them into ascending alphabetic order, and

1-10 November 1974

prints a report containing the items grouped according to type, the price of each item, and the subtotal

for each group of items. The program requests display of the number of items sold and the gross income

from the sales. These are printed in the log file.

IDENTIFICATION DIVISION.
PROGRAM-ID. EXAMPL.
REMARKS. READS A LIST OF SALES AND PRINTS

A REPORT WITH SUBTOTALS FOR ITEM TYPES.

ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SOURCE-COMPUTER. PDP-10.

INPUT-OUTPUT SECTION.
FILE-CO NTROL.

ASSIGN TO DSK. SELECT SALES,
SELECT TEMP,
SELECT REPT,

ASSIGN TO DSK, DSK, DSK.
ASSIGN TO LPT.

DATA DIVISION.
FILE SECTION.
FD SALES, VALUE OF IDENTIFICATION IS "SALES CDS".
01 SALES-CARD, DISPLAY-7.

SD
01

02 ITEM, PIC X(20).
02 PRICE, PIC 9(5)V99.

TEMP.
SORT -REC.
02 ITEM,
02 FILLER,

PIC X(20).
PIC 9(7).

FD REPT, VALUE OF IDENTIFICATION IS "SALES REP".
01 REPT -LINE.

02 R-ITEM, PIC X(20).
02 FILLER, PIC X(5).
02 R-PRICE, PIC Z(8). 99.

01 HEADER, PIC X(36).

WORKING-STORAGE SECTION.
01 REC-STORE.

77
77
77
77
77

02 REC-ITM,
02 REC-PR,

NUM,
GROSS-TMP,
GROSS,
SUBTOT,
LAST -ITEM,

PIC X(20).
PIC 9(5)V99.

PIC 9(6).
PIC 9(8)V99.
PIC Z(8). 99.
PIC 9(8)V99.
PIC X(20).

1-11

(continued on next page)

PROCEDURE DIVISION.
MAIN SECTION.
BEGIN.

SORT TEMP ON ASCENDING KEY ITEM OF SORT-REC,
USING SALES,
OUTPUT PROCEDURE MAKE-REPORT.

DISPLAY liN UMBER OF ITEMS SOLD ", NUM.
MOVE GROSS-TMP TO GROSS.
DISPLAY "GROSS INCOME ", GROSS.
STOP RUN.

* OUTPUT PROCEDURE FOR SORT

MAKE-REPORT SECTIO N.
INIT •

LOOP.

LOOP-2.

FINIS.

OPEN OUTPUT REPT.
MOVE ZERO TO NUM, SUBTOT, GROSS-TMP.
MOVE "SALES REPORT" TO HEADER.
WRITE HEADER BEFORE ADVANCING 2 LINES.

RETURN TEMP INTO REC-STORE, AT END GO TO FINIS.
IF GROSS-TMP = 0, GO TO LOOP-2.
IF REC-ITM NOT = LAST-ITEM,

MOVE SPACES TO R-ITEM,
MOVE SUBTOT TO R-PRICE,
MOVE ZERO TO SUBTOT,
WRITE REPT-LINE BEFORE ADVANCING 2 LINES.

SET NUM UP BY 1.
ADD REC-PR TO GROSS-TMP.
ADD REC-PR TO SUBTOT.
MOVE REC-ITM TO R-ITEM.
MOVE REC-PR TO R-PRICE.
WRITE REPT -LINE.
MOVE REC-ITM TO LAST-ITEM.
GO TO LOOP.

MOVE SPACES TO R-ITEM.
MOVE SUBTOT TO R-PRICE.
WRITE REPT-LINE BEFORE ADVANCING 2 LINES.
MOVE liTO TAL II TO R-ITEM.
MOVE GROSS-TMP TO R-PRICE.
WRITE REPT -U NE •
CLOSE REPT.

The data for the program, which is a group of items sold, is also placed on cards. This data is shown on

the following page.

1-12

WRENCH 0000265

WRENCH 0000240

10-0732

The programmer sets up his job as an input deck containing his program, data, and Batch control commands

on cards. The following Batch commands are used for this job.

$SEQUENCE 138

10- 0733

The $SEQUENCE command contains the job's sequence number. This command is an installation option; if

a sequence number is used, it is assigned by the installation.

$JOB SAMPLE [ll.141J

10-0734

The $JOB command contains the name of the job and the user's project-programmer number. Several other

parameters can be used in this command to control processing. For example, the user can assign a priority

1-13

m

I

for the job, a central processor time limit, a limit to the number of pages printed, or a deadline time. In

this example, the defaults for all parameters are assumed. The parameters in the $JOB command, as well

as all of the Batch control commands, are described in the DECsystem-10 Operating System Commands

manual (DEC-10-MRDC-D).

$PASSWORD ABDM

10-0736

The $PASSWORD command contains the password associated with the project-programmer number in the

$JOB command. This command is also an installation option.

$COBOL

10-0737

The $COBOL command is followed immediately by the deck containing the program. The

$COBOL command causes the program to be copied into a disk file with a name supplied by

the Batch system. When the job is run, the program is compiled, and a listing is produced.

The listing is printed with the output of the job.

$DATA SALES. CDS

10-0735

The $DATA command is immediately followed by the deck containing the data. The data is copied to a

file on disk named SALES.CDS, the name that was in the $DATA command. The $DATA command causes

the program (or programs) that precedes it to be executed when the job is run by the batch controller.

1-14 November 1974

$EOJ

I The end of the job is signalled by the $EOJ card •

•

to-0739

The user inputs his job deck through the card reader and then simply waits for his output. The Multipro­

gramming Batch system reads and separates the cards into disk files, runs the job, and spools the output to

the I ine printer. The output is in the form of a printed I isting that begins with a header page and ends

with a trai ler page. Both the header and trai ler contain the user's name, project-programmer number,

date, time, system name, and monitor version. Between the header and trailer are the compilation list­

ing, the loader map, the output from the program, and the log fi Ie of the job. With the exception of the

header and trailer pages and the loader map, the listing is shown. Note that the compiler assigns sequence

numbers to the compilati on listing even though the user did not place sequence numbers on his program.

PRO G RAM E X AMP L
LN6TPN,C8L 31~OCT~73 11:37

0001 IDENTIPICATION DIVISION,
0002 PROGRAM-ID. EXAMPL.
00~3 REMARKS, REAOS A LIST OF SALES AND pRINTS
0004 A REPORT WITH SUBTOTALS FOR ITEM TYPES.
0005 ENVIRONMENT DIVISION,
00 to 6 CON FIG U RAT I 0 f\J SEC T lor J ,

0007 SOURCE-COMPUTER, DECsystGm-10~
0028 INPUT-OUTPUT SECTION,
0009 FILE-CONTROL.
0010 SELECT SALES, ASSIGN TO rSK.
0011 SELECT TEMP, ASSIGN TO JSK, DSK, aSK,
0012 SELECT REPT, ASSIGN TO LPT,
0013 DATA DIVISION,
0014 FILE SECTION.
001 5 J;' D ~ ALE S , V A L U E 0 FlO E I'JT I FIe A T I [1 N IS" SAL ESC 0 s" .
0016 21 SALES~CARD, OISPLAy~j~
0017 02 ITEM, PIC X(20),
0018 02 PRICE, PIC 9(0)V99.
0019 SO TEMP,
0020 01 SORT-REG.
0021 02 ITEM, PIC X(20)~
0022 02 FILLER, PIC 9(7).
~1023!="D REPT, VALUE or IDE:~Tlrlr:AT10N IS "SALES REp".
0024 (J1 REPT-LlnE_
0025 02 R~ITE~, PIC X(2~'.
0026 02 FILLER, PIC X(~).
0027 02 R-PRIcE, PIC 2(G).99,
~102~ ;~1 HEADER, PIC X (36) • (continued on next page)

1-15 November 1974

0029
00~~0

0031
0032
02133
0034
0035
0036
0037
0038
0039
0040
0041
0042
0043
0044
'~04 5
0046
0047
0048 *
0049
00~;0

0051
0052
00:53
0054
0.055
k1056
"J0!S7
00~)8

fJ2);59
0060
~H'ol
0062
0063
0064
0065
0066
0067
0068
0069
0070
0071
0072
0073
0074
0075
0076
0077
0078
0079

W 0 R KIN G - S T O-R AGE SEC T ION,
71 REC~STOP.E.

02 REC-llM,
02 REC-PF,

77 \JUM,

PIC XC~0).
PIC 9(:::)\199,

PIC 9(6),
PIC 9(8)Vt?9.
PIC 2(8).99.
PIC 9(B)V99,
PIC X (2 r)) '.

77 GROSS-T~p,
77 ·GRuSS,
77 SU8TOT,
77 LAST-ITEM,
PROCEDURE DIVISION.
~AIN SECTION,
8EG 11'1J.

SORT TEMP ON ASCENDING KEY ITEM OF SoRT-REe,
USING SALES;
OUTPUT PROCEDU~E MAKE-REPOrT.

DIS P lAY" N U M 8 E R 0 FIT E r'i S SOL D " N U M •
MOVE GROSS-TMP TO GROSS.
o I S P LAY " G R ass I He 0 M [t" G R 0 S S •
sTOP RUN.
oUTPUT PROCEOURE FOR SJRT

~AKE-REPoRT SECTIO~.
1 N T T •

LOOP.

LOOP-2.

OPEN ouTPUT REPT.
MOVE lERO TO NUM, SUGt:T, GROSS~TM~.
~~ 0 V E '1 SAl,. E S REP 0 P T " T a Ii E A:) E f;) •
wRITE HEADER BEFORE ADVANCING 2 LINES.

RETURN TEM o INTO REC-STORE, AT E~D GO TO FINIS.
rr GRbSS-TMP = ~, GQ T0 ib~p~2.
IF REC-ITM NOT = LAST~ITEM,

MOVE SPACES TO R"ITE~,
! ~ 0 V E SUB TOT To, R - P rn C E •
f',QVE ZERO TO S'3 TOT,
i'R 1 T ERE P T - L I ,\j F. ~3 E roo E A C V t, N C I N G 2 L I \1 E S •

sET ~~UM l,)p BY 1,
ADD REC-PR TO GROSS-TM~
ADD REC-FR TO SUBTOT.
i10VE REC- I TM TO R- I T[~11
MOVE REC-PR TO R-PRICE,
wRITE REPT~LlNE.
MOVE REC-ITM TO LAST-~TEM,
GO TO Loep.

MOVE SPACES TO R-ITE~.
MOVE SUBTOT TO R-PRICE.
WRITE REPT-LINE REFQRE AOVANCI~G 2 LINES,
~OVE "TOTAL" TO R-ITEM,
MOVE GROSS-TMp TO R-PRICE.
\JRITE REPT-LIN[,
CLOSE REPT.

NO ERRORS DETECTED

1-16

5 ALE S f, E P 0 r~ T

HAi'1MER
HA,·H1ER
HA~MER

S A ~l
S A ',~
S A·~

S C :~ E ~.J D R I V E n
SCi~EW DR I VEt';

WRENCH
WRENCH
WRENCH

TOTAL

15;43:52 STOAT
15:43:'2 STeRD
15: 43: ~;;2 STeRD
15 : .; 4 : j\ 0 S T : R D
15; 44: G5 sn-1SG
15: 4 4:[.5 STC~D
15: 44: ;~;7 STHSG
15: 44: ~',8 STCQO
15: 44::':'8 STSUM
15 : 4 4 : (:' 8 S T 5 U M
1!:;: 44 IlJ8 STSUM

15:44:11 BAJOB
15:';4:11 BAFIL
15:44:11 BAFIL
15:44:11 BASUM

15: 44 11 MO~~TR
15; 44 11 ;10~nR

15:44 13 USER
15:44 14 USER
15 ; 4 4 15M 0 ;'a R
15; 44 15 MO;~TR
15:44 16 USER
15:44 31 MONTR
15; 44: 31 MO;'HR
15; 44: 31 t10:~TR
15 : 4 4 :.31 M 0 !.J T R
15:-14:33 USER
15: 44: ~>3 USE~
15:44:38 USt:R
15:44:38 USER
15:44:39 MoNrR
15 ; 44 : 39M 0 ~,1 T R

~; , 75
'l,~b
f, , 5:;

1().65

~1. 52
1?.45

:i. S,",
2().4c;

2.3fl
1,7e
-1 , 0~'

l,6C
2.65
2. -1~'
0.6:5

56,a7

11-0CT-84 R57AV Sys #40/2 SP~I~T Version 2(1°3 5) Running On COn0
$SF.:QUENCE 138
~J08 SAMPLE [27,235J
$C080L
Fi Ie DSK:LN6B85,CBL Created - 79 C3r~s Rea~ - 11 810CkG Wrltten
1)D;\ TA SALES. CDS
F I leD S K : SALES .-CDS C rea tAd .. 11 Car d $ n e a d - 2 a I 0 c k ~ ~! ri t t e ~
:£E.JJ
End of JOb Encountered
96 Cards Read
Batch Innut ReQUost Created

f3 ATe 0 N V e r s ion 12 (1 0 4 l' r U !~ n I n C1 S A v P t., ESe que r c e 1 ~S 8· Ins t r e ~ 'T1 1
I n put fro m 0 S K C el : SAM P L E , C Tl- [2 7 I 2 3 5 J
0utDut to DSKCe:SAMPLE.LOGC27,235J
Joh Darameters
Tl me:00:05:0J Unlque:YES ~est~rt:YES

, LOG l!',! 27 /2 3 5 / S P 0 0 L l ALL / T ! Me: :~ 0 ? / L 0 CAT E ; 1/ ~~ t. ME: II S MIT H I,

J08 22 R57AV SYS #4~j2 TT v1 4 5
1544 11-0ct-84 Th~r

, ,C 0 ~1 P I L / C 0 ~'l PIC 0 B 0 S K ; L ;.! 6 n 8 5 , C 8 L /l. I t; T
CO;)OL: EXAt--1PL [LN6rJ85. cr3l.. J

EXIT

,.EXECUT /RE~ DSK:LN6B85.RCL
l",INK: Loading
(LNKXCT EXAMPL EXecutionJ
NUMBER OF ITEMS SOLO 11
GROSS IMCOME 56,27

EXIT

(continued on next page)

1-17 November 1974

15J44:39 MONTR
15: 44: ~~9 MONTR
15144;39 BLA8L
15;44;39 MONTR
15:44:40 USER
15:44:41 USER
15:44:41 USER
15:44:42 USER
15144:42 USER
15:44:42 MONTR
15:44;42 MONTR
15144:46 K..,QUE
15:44:49 LGOUT
15:44;49 LGOUT
15:44;49 LGOUT
15:46:46 LPMSG
15:46:53 LPMSG
15: 47: ~:7 LPMSG
15 : 4 7 : (: 8 L P M S G
,15:47:17 LPMSG

~

~~FIN::
.DElETE DSK:LN6895,Cal,OSK;LN6085~REL
Files deletecl :
I,..N6885.C8L
11 Blocks freed
LN6885.REL
08 Slacks freed

.KJ08 DSKC0:SAMPlE.LOG=/W/?/l;4/VR;1~/VS:138/VL:200/VD~O
Total of 18 blocks In 3 fl!es Tn LPT S1 request
Job 22, User [27,235) LOQged 0'" TTV 14 5 1544 11-0ct-e~
Saved all files (20 blocks)
R u.., t T m 9 7', 89 Sec
LPTSPl VersIon 6(344) Runnfng on LPT 0
.JOb SAMPI.,E file OSKC~'J:LN68;}5(27,235J for (27,235) started
DSKC0:LN6B85C27,235J Done
.,lOb SAMPLE fIle OSKCe:SAlE~;C27.235J for (27,235) started
DSKCO:SALESC27,235J Done

1-18 November 1974

Chapter 2

introduction to COBOL Language

The conventions, special terms, language elements, and formats acceptable to COBOL are described

below to aid the user in writing COBOL programs. The source language statements are discussed in sub­

sequent chapters.

2.1 SYMBOLS AND TERMS

The symbols and terms used in the following chapters of this manual are either necessary to describe the

language or are commonly-used COBOL terms.

2.1.1 Symbols

The symbology used in this manual to illustrate the various COBOL statement formats is essentially the

same as that used in other COBOL language manuals and is based on the CODASYL COBOL reference

document.

Symbology

Lower-case characters

Upper-case characters, underscored

Upper-case characters, not underscored

Braces

Meaning

Represent information that must be supplied by the
programmer, such as values, names, and other
parameters.

Key words in the COBOL lexicon that must be used
when the formats of which they are a part are used.

Other words in the COBOL lexicon that serve only
to make the COBOL statement more readable. Their
use is optional and has no effect on the meaning of
the formats of which they are a part.

Indicate that a choice must be made from the two or
more lines enclosed.

(continued on next page)

2-1

Symbology

Brackets

Ell ipsis •••

2. 1.2 COBOL Terms

Meaning

Indicate an optional feature. The contents of the
brackets are used according to the rules above if
the feature is desired.

Indicates that the information contained within the
preceding pair of braces or brackets can be repeated
at the programmer's opti on.

The terms block, record, and item have special meanings when used in a COBOL program.

Term

Block

Record

Item

Meaning

Signifies a logical grouping of records. This term commonly
refers to a logical block of records on some storage medium.

Signifies a logical unit of information. In relation to a data
file, a record is the largest unit of logical information that can
be accessed and processed at a time. Records can be subdivided
into fields or items.

Signifies a logical field or group-of fields within a record. A
group item is one that is further broken down into subitems (e.g.,
a group item called TAX might be broken down into sub items
called FED-TAX and STATE-TAX). Subitems can be further
broken down into other subitems. An item that has no sub items
is ca lied an elementary item.

2.2 ELEMENTS OF COBOL LANGUAGE

2.2. 1 Program Structure

A COBOL program consists of four divisions. Within each division are the program statements; some

are required, others are opti ona I.

Division

IDENTIFICATION DIVISION

ENVIRO NMENT DIVISIO N

DATA DIVISION

PROCEDURE DIVISION

Meaning

Identifies the source program.

Describes the computer on which the source program is to be
compi led, the computer on which the object program is to
run, and certain relationships between program elements and
hardware devices.

Describes the data to be processed by the object program.

Describes the acti ons to be performed on the data.

2-2

2.2.2 Character Set

Within a source program statement, all ASCII characters are valid except:

a. null, delete, and carriage return (which are ignored);

b. I ine feed, vertical tab, form feed, and the printer control characters (208 through 24
8

} ,
which mark the end of a source line;

c. Control-Z, which marks the end-of-file.

The lower case ASCII characters are translated to upper 'case characters except when they appear in non­

numeric I itera Is.

Of this character set, 37 characters (the digits ° through 9, the 26 letters of the alphabet, and the hyphen)

can be used by the programmer to form COBOL words, such as data-names, procedure-names, and identi­

fiers •

Punctuati on characters include:

(space)

(comma)

(semicolon)

(peri od)

Special editing characters include:

II or I (quotation mark)

(left parenthesis)

)

-I
(right parenthesis)

(horizontal tab)

+ (plus sign)

(minus sign)

* (check protection symbol)

$ (dollar sign)

(comma)

(decimal point)

Z

B

°
CR

DB

(zero suppression)

(blank insertion)

(zero insertion)

(credit)

(debit)

Special characters used in arithmetic expressions include:

+
'\

(a'ddition)

(subtraction)

(multipl ication)

/
**

(division)

(exponentiation)

(exponentiation)

Special characters used in conditional (IF) statements include:

(equal) > (greater than) <

2-3

(less than)

November 1974

2.2.3 Words

A COBOL word is composed of not more than 30 characters chosen from the 37 characters given in the

previous section. A word is terminated by a space, period, right parenthesis, comma, semicolon, or

horizontal tab. If the terminator is not a space or horizontal tab, at least one space or tab must follow

the terminator.

Words used in writing COBOL source programs are of two types: COBOL reserved words and user-created

words.

2.2.3.1 COBOL Reserved Words - COBOL reserved words are those words that constitute the COBOL

lexicon and have a special meaning to the compiler (e.g., DIVISION, PROCEDURE, ADD); these words

are listed in Appendix A. They include all the COBOL division, section, and paragraph names, descrip­

tive clauses, procedure verbs, certain prepositions, figurative constants, and special registers. Reserved

words must be spelled and used exactly as shown in the formats given in this manual.

2.2.3. 1 • 1 Figurative Constants - Figurative constants are reserved words that specify certain fixed

values. When these reserved words are to be used as figurative constants, they must not be enclosed in

quotation marks; otherwise they will be treated by the compiler as nonnumeric literals.

The figurative constants are given below. Except for one case (the ALL constant), singular and plural

forms are given; these forms are equivalent and can be used interchangeably.

Figurative Constant

ZERO
ZEROS
ZEROES

SPACE
SPACES

HIGH-VALUE
HIGH-VALUES

LOW-VALUE
LOW-VALUES

Use

Represents the value 0 or one or more of the character 0 depending on con­
text.

Represents one or more blanks or spaces.

For DISPLAY-6 and DISPLAY-7 items this represents the highest value in the
collating sequence. For CaMP and COMP-1 items, this represents the
largest number that can be placed in the machine word(s) containing the item.

For DISPLAY-6 and DISPLAY-7 items, this represents the lowest value in the
collating sequence. For CaMP and COMP-l items, this represents the
smallest number (most negative) that can be placed in the machine word(s)
containing the item.

(continued on next page)

2-4

Figurative Constant

QUOTE
QUOTES

ALL any-I itera I

Use

Represents one or more quotation marks (II). It can be used anywhere that the
quotation mark character CI) is valid, except to delimit nonnumeric literals
(see Nonnumeric Literals). QUOTE{S) is frequently used where an actual
quotation mark character would erroneously appear to delimit a nonnumeric
literal. For example, if the user wanted his program to type out the exact
character stri ng

MOUNT TAPE LABELLED IIMASTER II ON DRIVE 3

he cou Id use the procedure statement

DISPLAY "MOUNT TAPE LABELLED II QUOTE
"MASTER" QUOTE II ON DRIVE 3 11

•

Represents repetiti ons of the string of characters that constitute either a non­
numeric literal or a figurative constant (other than ALL any-literal). If a
figurative constant is used, the ALL is redundant; thus, ZEROS and ALL
ZEROS are equivalent.

Figurative constants generate a string of characters whose length is determined, based on context, by the

compiler. For example, if TOTAL-AMOUNT is a five-character field, the procedure statement MOVE

ALL ZEROS TO TOTAL-AMOUNT moves a string of five zeros to the field TOTAL-AMOUNT; MOVE ALL

IIAB" TO TOTAL-AMOUNT moves "ABABAII to TOTAL-AMOUNT. If the length cannot be determined

by context, a single character (or a single-character sequence, in the case of ALL) is generated. For

example, the procedure statement DISPLAY ALL QUOTES will result in the output of a single quotation

mark CI) to the user's terminal.

Examples of Use of Figurative Constants:

DATA DIVISION Usage:

PROCEDURE DIVISION Usage:

02 AMOUNT PICTURE IS 9999.99 VALUE IS ZERO.
04 MESSAGE PICTURE IS A (10) VALUE IS SPACES.

MOVE ZEROS TO AMOUNT. (Puts the value of zero in the
AMOUNT field)
MOVE SPACES TO MESSAGE. (Puts spaces in the MESSAGE
field)
IF TOTAL IS EQUAL TO ZERO ••..
EXAMINE FLD-A TALLYING LEADING ZEROS.

2.2.3.1.2 Special Registers - In addition to figurative constants, COBOL recognizes two other special

reserved-word constants: TALLY and TO DAY.

TALLY is the name of a fixed five-digit signed computational field. It is used primarily to hold informa­

tion produced by the EXAMINE verb. However, the programmer can utilize TALLY in any situation where

a signed numeric field is valid (e.g., temporary storage of any integer value of five or fewer digits).

2-5

TODAY is a 12-character alphanumeric display field that contains the current date and time. Its format

is:

yymmddhhmmss

where yy is the year (last two digits)

mm is the month

hh is the hour

mm is the minute

ss is the second dd is the day

2.2.3.2 User-Created Words - User-created words are labels for the various parts of the user's data (files,

records, and fields) and the user's procedures (sections and paragraphs). They can contain only the symbols

o through 9, A through Z, and the hyphen. With the exception of procedure names, they cannot be all

digits. A user-created word can neither begin nor end with a hyphen.

User-created words can be further subdivided into several categories. To understand the remainder of this

manual, the user should be fami liar with the following types of words.

data-name

file-name

record-name

procedure-name

identifier

mnemonic-name

condition-name

index-name

index data-name

2.2.4 Literals

The user-created name assigned to an item (field) within a record.

The user-created name assigned to a data file.

The user-created name assigned to a data record within a file.

The user-created name assigned to a paragraph or section in the PROCEDURE
DIVISION. When assigned to a section, it is referred to as a section-name;
and when assigned to a paragraph I it is referred to as a paragraph-name.

A user-created name used in PROCEDURE DIVISION statement formats to
indicate a data-name followed, as required, by the syntactically correct
combination of qualifiers, and/or subscripts, and/or indexes necessary to
make reference to a unique item of data.

A user-created name assigned to a hardware device or a report code.

A user-created name assigned to a value or range of values of the associated
data item. Condition-name can also be assigned to console switch settings.

A user-created name defined in the INDEXED BY clause (see OCCURS in
Chapter 5). Its function is identi cal to that of an index data-name.

A user-created name defined with USAGE INDEX. Its function is identical
to that of an index-name.

A literal is a string of characters, the value of which is identical to the characters that compose the literal.

Literals are of two types: numeric and nonnumeric.

2-6

I

2.2.4.1 Numeric Literals - A numeric literal is a string of 1 to 18 numeric characters (0 through 9). It

cannot contain any alphabetic characters. It can be preceded by a plus sign (+) or a minus sign (-); if

no sign is used, the literal is assumed to be positive. A decimal point can appear anywhere in the literal

except to the left of the sign or as the rightmost character. If no decimal point is used, the literal is

assumed to be an integer. A numeric literal is considered to be of the numeric class; that is, it can be

used legitimately as a value in arithmetic expressions.

Examples of Numeric Literals:

123 -123 +123 1.23456 .123456789

-.123456789 1234567890.12345678 -1234567890.12345678

2.2.4.2 Nonnumeric Literals - Nonnumeric literals are character strings containing from 1 to 120 char­

acters enclosed in single or double quotation marks. The value of the literal is equal to the characters,

including any spaces, enclosed by the quotation marks. Note that the compiler will accept either

single or double quotation marks to enclose a literal; however, the opening and closing quotation

marks must be the same type, either single or double. Any ASCII character except the quotation

mark, null, delete, carriage return, and printer control can appear within a literal.

All nonnumeric literals are considered to be in the alphanumeric category; they cannot be used as val­

ues in arithmetic operations, and numeric editing cannot be performed on them. If a literal conforms

to the rules for formation of a numeric literal, but is enclosed in quotation marks, it is considered to be

a nonnumeric literal. That is, "120.45" is not equivalent to 120.45.

Examples of Nonnumeric literals:

"A" 'THIS ACCOUNT HAS A CREDIT BALANCE '
II RETURN II

"-125.50" 'DEDUCT 10% IF PAID BEFORE JAN. 31ST '

2.2.5 Punctuation

The punctuation that can be used in source programs inc ludes the space, comma, semicolon, and period.

The space is used to separate words, phrases and clauses. The comma and semicolon can be used inter­

changeably within a program to improve the appearance of the program. However, both the comma and

the semicolon are treated as spaces by the compiler; they can be used any place in the program where a

space is expected.

November 1974

2-7

The pericx:l is used to terminate a division name, a section name, and a paragraph name. It is also used

in the PROCEDURE DIVISION to terminate sentences. Paragraphs and sections are terminated by the

period ending the last sentence of the paragraph or section. In the DATA DIVISION, a period must be

placed after the description of a data item. Examples of the use of periods are:

PROCEDURE DIVISION.!.

INPUT SECTION.

READ INFILE AT END GO TO ENDER.

DATA DIVISION.
FILE SECTION.

01 MYDATA PICTURE IS X(lot

2.3 SOURCE PROGRAM FORMAT

Two source program formats are acceptable to DECsystem-10 COBOL: conventional format and standard

format. The compi ler assumes that the source program is written in standard format unless the /S switch

is included in the command string to the compiler (refer to Appendix D) or the special sequence numbers

created by LINED are detected by the compi ler.

2.3. 1 Convent i ona I Format

The conventional format is used when the programmer wishes his source programs to be compati-ble with

other COBOL compi lers. It is the format that is normally used when input is from the card reader. A

line of conventional format is shown below; the numbers refer to card columns, although this format can

be used with any input medium.

MARGIN L

+

CONTINUATION
COLUMN

1 r"G'N A MARGI N B

+

IDENTIFICATION
COLUMN

1
MARGIN R

+
1 2 3 4 5 6 7 8 9 10 II 12 13 • • 72 73 • 80 '-___ ..,-, ___J''-y--J' '-_____ ..-____ ---' '----,,-----'

SEQUENCE I AREA A AREA B IDENTIFICATION
NUMBER AREA AREA

CONTINUATION
AREA

10-0740

Margin L designates the leftmost (first) character position of a line.

The continuation column designates the seventh character position relative to the left margin.

Margin A designates the eighth character position relative to the left margin.

2-8

Margin B designates the twel fth character positi on relative to the left margin.

The identification column designates the seventy-third character position rei ative to the left margin.

Margin R designates the rightmost (eightieth) character positi on of a line.

The sequence number area is a six-character field beginning at margin L that normally contains a sequence

number. The compiler ignores this field.

The continuation area occupies one character position in the continuation column. The continuation area

is used whenever it is necessary to split a word, a numeric literal, or a nonnumeric literal between the

end of one line and the beginning of the next, or when 0 comment line is to be inserted. The following

rules apply to comment or continuation lines.

a. The programmer can insert a comment line in a program by placing an asterisk (*) in the
continuati on area.

b. To continue a line without splitting a word or literal, the programmer must begin the first
continuing word on the second line at, or after, margin A. The continuation area is left
blank. As many spaces as desired can follow the last word on the first line, or the word
can continue up to the identification column (column 73).

c. To spl it a word or numeric I iteral from one line to the next, the programmer places a
hyphen in the continuation area of the second line and begins the first continuing char­
acter of the word or I itera I at, or after, margin A. As many spaces as desired can occur
after the last character of the word or numeric literal on the first line, or the last char­
acter can occur immediately before the identification column.

d. To split a nonnumeric literal between two lines, the user must ensure that the last char­
acter to be placed on the first line occurs immediately before the identification column.
Otherwise, all spaces following this character on the first line will be treated as part
of the literal. A hyphen is placed in the continuation column of the second line, and
a quotation mark is placed at, or after, margin A, followed by the first continuing
character of the literal. In cases where the last character of the literal appears imme­
diately before the identification column on the first line and only the quotation mark
that ends the literal remains to be entered, the same rule applies (0 hyphen in the con­
tinuation field, a quotation mark at, or after, margin A followed by the terminating
quotation mark).

Examples

Columns
72 73

000123 •••.•••••••••••.••••.•••••.•.•••••••••.•••• IITOTAL HOURS WORK I
000 124- II ED II ••••...•...•••••.•••••••••••.••••••••••••••.••.•..•...••••

Y I LMargin A Identification

~
Continuation
Sequence number
Margin L

(continued on next page)

2-9

Columns
72 73

000456. 00 ••• 0 ••••••••••••••••••• 0 •• 0 •• 0 •• 0 •• 0 • o"TOT AL HOURS WORKED I
000457 -~'L' 0 • 0 0 : 0 0 0 • 0 0 0 0 ••• 0 ••• 0 0 • 0 •• 0 • 0 •• 0 ••••• 0 0 •• 0 •••• 0 • 0 •••••••••• 0

~ Margin A Id Of 0 0

~C t
o to entl Icatron

on rnua Ion
Sequence number
Margin L

e. A continuation line cannot be immediately preceded by a blank line or a comment line.

Area A occupies four character positions beginning at margin A. All division-names, section-names, and

I paragraph-names must begin in area A. In the DATA DIVISION, the FD entry must begin in Area A

and level-number entries can begin in area A, but are not required to.

Area B occupies 61 character positions beginning at margin B and ending at column 720 All remaining

entries begin in area B 0

The identification area occupies eight character positions beginning at the identification column and

ending at margin R. This area is reserved as an identification field into which any combination of eight

or fewer characters can be punched to identify the card deck 0 This identification is printed on a listing

of the source program.

203.2 Standard Format

The standard format is provided for those programmers who are more fami liar with the format normally used

in DECsystem-10 operations 0 It differs from the conventional format in that sequence numbers and identi­

fication are not used, because most DECsystem-10 programs do not require either. A line in the standard

format is shown be low; the numbers represent character positions.

COLUMN 0

1 rRG1N
A rRG1N

B

~ ~,-_' __ 2---..y __ . _3 __ 4 ___ J\. 5 6

CONTINUATION AREA A
AREA

y
AREA B

MARGIN R

~ .)
10-0738

Column 0 designates -a character position that is not counted by the compiler. It is only used for comment

or continuation. A hyphen, asterisk, or space in column 0 is recognized by the compi ler, but it is not

counted by the compiler as a character position. Thus, if the user typed a space, hyphen, or asterisk in

column 0 and then typed three additional spaces, he would still be in area A, not at margin B. In other

words, five spaces or a horizontal tab is required to move to margin Bo

Margin A designates the first character position.

2-10 November 1974

Margin B designates the fifth character position relative to Margin A (not column 0). To reach margin B,

the user should type horizontal tab.

Margin R designates the rightmost character position of a line.

The continuation area occupies one character position in column o. The continuation area is used when­

ever it is necessary to split a word, a numeric literal, or a nonnumeric literal between the end of one line

and the beginning of the next, or when a comment line is to be inserted. The following rules apply to

comment or continuation lines.

a. The programmer can insert a comment line in a program by placing an asterisk (*) in the
continuation area.

b. To continue a line without splitting a word or literal, the programmer must begin the first
continuing word on the second line at, or after, margin A. The continuation area is left
blank. As many spaces as desired can follow the last word on the first line, or the word
can continue up to margin R.

c. To split a word or numeric literal from one line to the next, the programmer places a hyphen
in the continuation area of the second line, and begins the first continuing character of
the word or literal at or after margin A. As many spaces as desired can occur after the
last character of the word or numeric literal on the first line, or the last character can
occur at margi n R.

d. To split a nonnumeric literal between two lines, the user must ensure that the last character
to be placed on the first line occurs at margin R. Otherwise, all spaces following this
character on the first line will be treated as part of the literal. A hyphen is placed in the
continuation column of the second line, and a quotation mark is placed at, or after, margin
A, followed by the first continuing character of the literal. In cases where the last charac­
ter of the literal appears at Margin R on the first line and only the quotation mark that ends
the literal remains to be entered, the same rule applies (a hyphen in the continuation field,
a quotation mark at, or after, margin A followed by the terminating quotation mark).

,Margin R

••.••.••• IITOT AL HOURS WORK
liED II - C

I LMargin A
LContinuation

r-Margin R

••• IITOTAL HOURS WORKED
1111 f L~~~~;~ ~ · · · . · ... · . · · · .. · . · . · · · ... · . · · · . · .. .

Continuati on

e. A continuation line cannot be immediately preceded by a blank line or a comment line.

2-11

I
Area A occupies four character positions beginning at margin A. All division-names, section-names,

and paragraph-names must begin in area A. In the DATA DIVISION, the FD entry must begin in

Area A and level-number entries can begin in area A, but are not required to begin there.

Area B occupies up to 101 character positions, beginning at margin B. All remaining entries begin in

area B. On an interactive terminal, the user can reach margin B by typing horizontal-tab anywhere in

area A (or in column 0). Area B is terminated by a line-feed, form-feed, or vertical tab usually pre­

ceded by a carriage return.

2-12 November 1974

I

I

Chapter 3

The IDENTIFICATION DIVISION

The IDENTIFICATION DIVISION is required in every source program and identifies the source program

and the output from compi lation. In addition, the user may include other documentary information such

as the name of the program's author, the name of the installation, the dates on which the program was

written and compiled, any special security restrictions, and any miscellaneous remarks.

3. 1 GENERAL STRUCTURE

IDENTIFICATION DIVISION.

[PROGRAM-ID. [program-name] [comment paragraphJ.:.J

[AUTH OR. comment paragraph.:.]

[INSTALLATION. comment paragraph.:.]

[DATE-WRITTEN. comment paragraph.:.]

[DATE-COMPILED. comment paragraph.:...

[SECURITY. comment paragraph.:.]

[REMARKS. comment paragraph.:.]

3.2 TECHNICAL NOTES

a. The IDENTIFICATION DIVISION must begin with the reserved words IDENTIFICATION
DIVISION followed by a period and a space.

b. The FROGRAM-ID paragraph contains the name identifying the program. The program­
name may have up to six characters, and must contain only letters, digits, and the hyphen. It
can be enclosed in quotation marks. The program-name cannot be a reserved word and must be
unique. It cannot be the same as a section, paragraph, file, data or subprogram name.

This paragraph is opti ona I. If it is not present, the name MAIN is assigned to the program.

c. The remaining paragraphs are optional and, if used, may appear in any combination and in
any order. A comments paragraph consists of any combination of characters from the COBOL
character set organized to conform to COBOL sentence and paragraph format. All text appears
as written on the output listing, except the DATE-COMPILED paragraph, which will be replaced
by the current date. Reserved words can be used in any comment paragraph.

3-1 November 1974

Chapter 4
The ENVIRONMENT DIVISION

The ENVIRONMENT DIVISION allows the programmer to describe the particular computer con­

figurations upon which the compilation and resulting object program are to be run, and to specify

the hardware features of his computer configuration.

4.1 GENERAL STRUCTURE

ENVIRONMENT DIVISION.

CONFIGURATION SECTION.

~OURCE-COMPUTER. r comment-paragraph].!.]

rOBJECT COMPUTER {DECSYSTEM-10} t-------· PDP-10
--{CHARACTERS}

[MEMORY SIZE integer-1 WORDS
MODULES

[SEGMENT-LIMIT IS integer-21 !. J
SPECIAL-NAMES. [CONSOLE IS mnemonic-name-1]

[CHANNEL (m) IS mnemonic-nome-2

[,CHANNEL (n) IS mnemonic-name-31 ••• J

[SWITCH (m)

IS mnemonic-name-4 [ON STATUS IS condition-name-1]

[OFF STATUS IS condition-name-2]

ON STATUS IS condition-name-l

[OFF STATUS IS condition-name-2]

OFF STATUS IS condition-name-2

[2t:! STATUS IS condition-name-l]

[SWITCH (n) ••••• 1 •• J
[literal-1 IS mnemonic-name-5]

[CURRENCY SIGN IS literal-2]

[DECIMAL-POINT IS COMMA] .!.

4-1

I

INPUT-OUTPUT SECTION.

FILE-CONTROL. SELECT [OPTIONALJ file-name

ASSIGN TO device-name-1 ['device-name-2]

[FOR MULTIPLE (REEL)]
UNIT

[
RESERVE {integer-2} ALTERNATE [AREA J]
-- NO AREAS

[{~:t~-t:~:~:~ } [(data-name-1) THRU J (data-name-2)
FILE-LIMITS ARE Iiteral-1 literal-2
FILE LIMITS ARE

[
, (data-name-3) THRU (data-name-4)J •••]

literal-3 I iteral-4

ACCESS MODE IS RANDOM] [{

SEQUENTIAL }

INDEXED [DEFERRED OUTPUT]

[PROCESSING MODE IS SEQUENTIAL]

[ACTUAL KEY IS data-name-5]

[SYMBOLIC_KEY IS data-name-6, RECORD KEY IS data-name-7]

[
{

ASCII }
RECORDING [MODE IS SiXBT"T]

BINARY

{
200} [DENSITY IS 556] [PARITY IS
800

[SELECT •••••] •••

I-O-CONTROL. IRERUN EVERY {END OF {~~h}} OF file-name-~
L integer-1 RECORDS

liAME[~RD]AREA FOR file-name-2, file-name-3, [,file-name-41. J
~UL TIPLE FILE TAPE CONTAINS file-name-5 [POSITION integer-2]

~le-name-6 [POSITION integer-31] •.• J-=-

4-2 November, 1974

4.2 CONFIGURATION SECTION

The CONFIGURATION SECTION allows the user to describe the computer configuration on which he

wi II run his obi ect program. It also allows him to assign mnemoni c names to certain hardware features.

CONFIGURATION SECTION.

[};OURCE-COMPUTER. [comment-paragraph J]

{
DECSYSTEM-101.

~BJECT-COMPUTER. PDP-TO J

{

CHARACTERS}
[MEMORY SIZE integer-l WORDS

MODULES

[SEGMENT-LIMIT IS integer-2 J ..:...]

SPECIAL-NAMES. [CONSOLE IS mnemonic-name-l J

~HANNEL (m) IS mnemonic-name-2

[,CHANNEL (n) IS mnemonic-name-3 J .. ~

~WITCH (m)

IS mnemonic-name-4 [ON STATUS IS condition-name-l J

[OFF STATUS IS condition-name-2 J

ON STATUS IS condition-name-l

[OFF STATUS IS condition-name-2 J

OFF STATUS IS condition-name-2

[ON STATUS IS condition-name-l J

[SWITCH (n) ••.• .J ... J
[Iiteral-l IS mnemonic-name-5J

[CURRENCY SIGN IS [literal-2J J

[DECIMAL-POINT IS COMMA J •

Technical Notes

a. This section is optional.

b. All commas and semicolons are optional. A period must terminate the entire entry in each
of the three paragraphs.

4-3

SOURCE-COMPUTER

Function

The SOURCE-COMPUTER paragraph describes the computer on which the program is to be compiled.

General Format

~ OURC E-C OMPU TER. [comment-paragraph l.!.]

Technical Notes

a. This paragraph is optional.

b. This paragraph is for documentation only. The comment paragraph is replaced in the I ist­
ing by the word DECsystem-10.

4-4

OBJECT -COMPUTER"

Function

The OBJECT-COMPUTER paragraph describes the computer on which the program is to be executed.

General Format

[DECSYSTE M-l O}
OBJECT-COMPUTER. LPDP-10

{

CHARACTERS}]
[MEMORY SIZE integer WORDS

MODULES

[SEGMENT-LIMIT IS integer-2J .

Technical Notes

a. This paragraph is optional.

b. PDP-10 or DECsystem-10 must appear as the first entry following the paragraph-name
OBJECT-CO MPUTER.

c. The MEMORY SIZE clause is optional. If it is omitted, 262,144 WORDS are assumed. If
it appears, the following ranges are applicable.

CHARACTERS

WORDS

MODULES

Up to 1 ,572,864 (262, 144 words x 6 character/word)
.4

Up to 262,144

Up to 256 (l modul e equals 1024 words)

The MEMORY SIZE clause indicates the maximum amount of core that can be used by the
run-unit. The only use of this clause is to determine the size of core to which the program
can expand when sorting. If this clause is specified, the program will expand to the specified
size when sorting. The sort buffer will be the specified memory size less the size of the
program and L1BOl (the object-time system). If the MEMORY size clause is not specified,
the sort will use a buffer whose size is equal to one-half of available core less the size of
the run-unit.

d. If the SEGMENT -lIMIT clause is given, only those segments having priority numbers from
o up to, but not inc! uding, the val ue of integer-2 are considered as resident segments of the
program. Integer-2 must be a positive integer in the range 1 to 49.

If the SEGMENT-LIMIT clause is omitted, segments having priority numbers from 0 through 49
are considered as resident segments of the program (that is , SEGMENT-LIMIT IS 50 is assumed) •

More on segmentation can be found in Chapter 6.

4-5 November 1974

SPECIAL-NAMES

Function

The SPECIAL-NAMES paragraph provides a means of associating hardware devices with user-specified

mnemonic names.

General Format

SPECIAL-NAMES. [CONSOLE IS mnemonic-name-l]

[CHANNEL (m) IS mnemonic-name-2

[CHANNEL (n) IS mnemonic-name-3] ••.]

~WITCH (m)

IS mnemonic-name-4 [ON STATUS IS condition-name-l]

[OFF STATUS IS condition-name-2]

ON STATUS IS condition-name-l

[OFF STATUS IS condition-name-2]

OFF STATUS IS condition-name-2

[ON STATUS IS condition-name-l]

[SWITCH (n) J .J
[literal-l IS mnemonic-name-5]

[CU RRENCY SIG N IS Iiteral-2]

[DECIMAL-POINT IS COMMA] -

Technical Notes

a. This paragraph is optional.

b. The name CONSOLE refers to the user's Teletype console. The assigned mnemonic-name
may be used with the ACCEPT and DISPLAY verbs in the PROCEDURE DNISION to input data
from and output data to the console.

c. The name CHAN NEL refers to a channel on the I ine-printer control tape. m and n repre­
sent any integer from 1 to 8 and refer to anyone of the eight channels on the tape. Control
tape channels can be referred to in the ADVANCING clause of the WRITE verb in the
PROCEDURE DIVISION to advance the paper form to the desired channel position. Refer to
the DECsystem-10 System Reference Manual for a description of printer control tapes. For
example, if the entry

4-6

CHANNEL (1) IS TOP-OF-PAGE

is included in this paragraph, the following procedure statement will print the I ine and then
skip to the top of the next page.

IF LINE-COUNT IS GREATER THAN 50 WRITE PRINT-RECORD BEFORE
ADVANCING TOP-OF-PAGE.

d. The name SWITCH refers to the hardware switches on the PDP-10 console. m and n repre­
sent any integer from 0 to 35 and refer to the corresponding consol e switches.

The mnemonic-name can be used in conditional expressions in the PROCEDU RE DIVISION.
For example, if the entry

SWITCH (4) IS INPUT-1

is included in this paragraph, the following condition is considered to be true if switch (4) is
on.

I FIN PU T - 1 ISO N ••••

If a condition-name is specified for the ON or OFF STATUS of a switch, that condition-name
can be used in a conditional expression. For example, if the entry

SWITCH (4) IS INPUT-1i OFF STATUS IS NO-INPUT

is included in this paragraph, the following procedure statements are functionally equival ent.

IF INPUT-1 IS OFF ••••

IF NO-INPUT ••••

e. The clause Iiteral-1 IS mnemonic-name-5 specifies the CODE value for a particular
report (refer to the CODE clause below). Literal-1 must be a nonnumeric literal enclosed
in quotes, and can be from 1 through 120 characters in length.

f. The literal which appears in the CURRENCY SIGN clause must be used in PICTURE clauses
(DATA DIVISION) to represent the currency symbol. If this clause is not present, only the
standard $ may be used as a currency symbol in a PICTURE clause.

This literal is limited to a single printable character and must not be one of the following char­
acters:

digits 0 through 9

alphabetic characters A, B, C, D, P, R, S, V, X, Z

special characters * + - , . i () II

g. The clause DECIMAL-POINT IS COMMA, if present, causes the functions of the comma
and the period to be interchanged in any PICTU RE clause character-string and in any numeric
literal.

4-7

4.3 INPUT-OUTPUT SECTION

The INPUT-OUTPUT SECTION names the files and external media required by the object program and

provides information required for transmission and handling of data during execution of the object

program.

INPUT-OUTPUT SECTION.

FILE-CONTROL. SELECT [OPTIONAL] file-name

ASSIG N TO device-name-l [, device-name-2] •••

[FOR MULTIPLE (~~~T)]

[RESERVE (~~ger-I) ALTERNATE [~~~S]]

{

FILE LIMIT IS }

~:t~=t:~:~SI~RE [(data-name-l) THRUJ (data-name-2)
literal-l literal-2

FILE LIMITS ARE

[
,(data-name-3)

literal-3
THRU

(
data~name-4)] • ••]
literal-4

[{

SEQUENTIAL)]
ACCESS MODE IS RANDOM

INDEXED [DEFERRED OUTPUn

[PROCESSING MODE IS SEQUENTIAL]

[ACTUAL KEY IS data-name-5]

[SYMBOLIC KEY IS data-name-6, RECORD KEY IS data-name-7]

[RECORDING [MODE IS
{

ASCII)
SIXBIT]
BINARY

[PARITY IS

4-8 November, 1 974

L [SELECT ••••]

I-O-CONTROL.

[{
END OF {REEL }}] RERUN EVERY UNIT OF file-name-l

integer-l RECORDS

[[{
RECORD}]

SAME SORT . UAREA FOR file-name-2, file-name-3 [,file-name-4J

[MUL TIPLE FILE TAPE CONTAINS file-name-5 [POSITION integer-2 J

...]

[, fil e-name-6 [PaS 1TI ON in teg er-3l]]

Technical Notes

a. This section is optional.

b. All semicolons and commas are optional. Each SELECT statement in the FILE-CONTROL
paragraph must end with a period. The entire entry in the I-O-CONTROL paragraph must
end with a period.

4-9

I

FILE-CONTROL

Function

The FILE-CONTROL paragraph names each file, identifies the file medium, and allows logical

hardware assignments.

General Format

FILE-CONTROL. SELECT [OPTIONAL] file-name

ASSIG N TO device-name-l [, device-name-2]

[FOR MULTIPLE (~~~T}J
--- NO

[

RESERVE (integer .• l) ALTERNATE
[AREA J]

AREAS

[{mH~Hs:tJ [Ui~:~:~~;e-l)
FILE LIMITS ARJ

THRU J

[, (
d.ata-name-3) THRU (d?ta-name-4)]
h teral-3 l.teral-4

(
data-name-2)
literal-2

.. J
[ACCESS MODE IS RANDOM]

{

SEQ UENTIAL }

INDEXED [DEFERRED OUTPUT]

[PROCESSING MODE IS SEQUENTIAL]

[ACTUAL KEY IS data-name-5]

[SYMBOLIC KEY IS data-name-6, RECORD KEY IS data-name-7]

[
RECORDING [MODE IS {~I~~I/T)

BINARY

P)ENSITY IS GgO 1 [PARITY IS (~~~ }] ~
[SELECT ••••] •••

4-10 November, 1974

Technical Notes

a. This section is optional.

b. All semicolons and commas are optional. Each SELECT clause must end with a period.

c. The SELECT and ASSIGN clauses must appear before any other clause shown. The other
clauses can be in any order.

d. The individual clauses are described on the following pages in the order shown above.

4-11

SELECT

Function

The SELECT statement names each file that is to be described in the DATA DIVISION, and assigns

each file to a particular device.

Genera I Format

SELECT [OPTIONAL] file-name ASSIGN TO device-name-1 [, device-name-2] .••

T echn i ca I Notes

a. Each file described in the DATA DIVISION must be named once and only once as a
fi Ie-name in a SELECT statement. Conversely, each fi Ie named in a SELECT statement must
have a File Description entry in the DATA DIVISION. Each file-name must be unique with­
in a program.

b. The key word OPTIONAL is required for input files that are not necessarily present each
time the object program is run. When an OPEN statement is executed for a file that has been
declared OPTIONAL, the question IS file-name PRESENT? is typed and the operator responds
with YES or NO. If the response is YES, the file is processed normally; if the response is NO,
the first READ statement executed for that file will immediately take the AT END or INVALID
KEY path.

c. The ASSIGN clause specifies the file medium. Device-names can be either physical
device-names or logical device-names.

Physical device-names are fixed mnemonic-names that are associated with specific peripheral
devices. When specified in an ASSIGN clause, a physical device-name assigns the associated
file to that device. Physical device-names are described in the DECsystem-10 Operating System
Commands manual, which appears in the DECsystem-10 Software Notebooks.

Logical device-names are names created by the programmer. They can contain up to six char­
acters, consisting of any combination of letters and digits. At object execution time, each
logical device-name must be assigned to a physical device by means of the monitor ASSIGN
command (refer to the DECsystem-10 Operating System Commands manual, DEC-10-MRDC-D,
for details of the ASSIGN command).

d. More than one device can be assigned to a file to avoid delay when switching from one
reel or unit to the next. When more than one device is specified, the object program auto­
matically uses the next device, in a cycl ic manner, when an end-of-reel condition is detected.

4-12

e. At least three, but no more than six, devices must be assigned to a sort file. These
devices must be retrievable, i.e., disk, D ECtape, or magnetic tape.

f. If the access mode is I NDEX ED, and two devices are assigned, the first device contains
the index portion of the file and the second contains the data portion of the file.

4-13

FOR MULTIPLE

Function

The FOR MULTIPLE clause specifies that a file occupies more reels than the number of devices

assigned.

Genera I Format

[FOR MULTIPLE {~~~}]

Technical Notes

a. Whether or not multiple devices are assigned, the FOR MULTIPLE clause must be included
for any file that occupies (or might occupy) more reels than the number of devices assigned.

4-14

RESERVE

Function

The RESERVE clause allows the user to specify the number of input-output buffer areas to be allocated

by the compiler to this file.

General Format

[{

integer- 1 }
RESERVE NO ALTERNATE

Technical Notes

a. If the access mode is RANDOM or INDEXED, this clause is ignored and only one buffer
area is assigned.

b. If the NO option is used, only two buffer areas will be allocated.

c. If the integer-l option is used, the integer specifies the number of buffer areas to be as­
signed in addition to the two areas always assigned by the compiler. Integer-l must be
positive.

4-15

FILE-LIMIT

Function .

The FILE-LIMIT clause is used to define the logical limits of a file whose access mode is RANDOM.

General Format

I {FILE LIMIT IS }

[
FILE-LIMIT IS
FILE-LIMITS ARE

I FILE LIMITS ARE C
data -name-2}
Iiteral-2

I
I

I

[{
data-name-3} {data-name-4}]]
literal-3 THRU literal-4 .••

Technical Notes

a. The FILE-LIMIT clause is required only for files whose access mode is RANDOM; it is
optional for files with SEQ UENTIAL access mode residing on mass-storage devices. It is
ignored in all other cases.

b. The words FILE and LIMIT (or LIMITS) can be separated by space or hyphen.

c. Every data-name used in this clause must be defined as USAG E COMP and must be
integers of 10 digits or less.

d. Each pair of operands represents a logical portion of the file. If the first operand
of the first pair is not specified, it assumed to be 1 •

e. The operands represent logical record numbers relative to the beginning of the file.

f. The logical beginning of a random-access file is considered to be that record represented
by the first operand of the FILE-LIMIT clause. The logical end of a random-access file is
considered to be that record represented by the last operand.

g. The value of data items specified in this clause is utilized by the object-time operating
system only when the file is opened by an 0 PEN statement.

h. If a file whose access mode is RANDOM is processed sequentially, the FILE-LIMIT clause
is ignored. Thus, records with keys higher than the upper FILE-LIMIT can be created.

4-16 November 1974

ACCESS MODE

Function

The ACCESS MODE clause specifies the way in which a file will be accessed.

General Format

[{

SEQUENTIAL }]
ACCESS MODE IS RANDOM

INDEXED [DEFERRED OUTPUT]

Technical Notes

a. The ACCESS MODE clause is required for random-access and indexed-sequential fi les.
I t is ignored for sequential fi les.

b. If ACCESS MODE IS SEQUENTIAL and the file is on a'random-access device, the random­
access records 'are obtained or placed sequentially. That is, the next logical record is made
avai lable from the fi Ie on a READ statement execution, and an output record is placed into the
next available area on a WRITE statement execution. Thus sequential access processing on a
random-access devi ce is functionally simi lar to the processing of a magnetic tape fi Ie.

c. If ACCESS MODE IS RANDOM, the contents of the data item associated with the ACTUAL
KEY specifies which record, relative to the beginning of the file, is made available by a READ
statement, or where the record is to be placed by a WRITE statement.

d. If ACCESS MODE IS I NDEX ED, the contents of the data item associated with the
SYMBOLIC KEY specifies which record is made available by a READ statement, or where the
record is to be placed by a 'MUTE statement, or which record is to be deleted by a DELETE
statement, or which record will be replaced by a REWRITE statement.

e. The DEFERRED OUTPUT option of the I NDEXED ACCESS MODE causes the operating sys­
tem to output a block of an indexed sequential file only when another block must be brought
into core. Normally, to ensure security for the file, a block is output every time a record is
written, even if records are written successively in the same block.

4-17

PROCESSING MODE

Function

The PROCESSING MODE clause specifies that the file is to be processed sequentially.

Genera I Format

[PROCESSING MODE IS SEQUENTIAL]

Technical Notes

a. This clause is for documentation only; records are always processed in the order in which
they are accessed.

4-18

ACTUAL KEY

Function

The ACTUAL KEY clause specifies which record is read or written in a random-access file.

General Format

[ACTUAL KEY IS data-name]

Technical Notes

a. The ACTUAL KEY clause is valid only for files whose access mode is RANDOM; it must
be speci fied for those fi I es. This clause cannot be used for fi les whose access modes are
INDEXED or SEQUENTIAL.

b. The ACTUAL KEY data-name must be defined in the DATA DIVISION as a
COMPUTATIONAL item of ten or fewer digits. The PICTURE can contain only the characters
Sand 9.

4-19

SYMBOLIC KEY

Function

The SYMBOLIC KEY clause specifies the record in an indexed-sequential file that is read, written,

deleted, or rewritten.

General Format

[SYMBOLIC KEY IS data-name-l, RECORD KEY IS data-name-2]

Technical Notes

a. The SYMBOLIC KEY clause is valid only for files whose access mode is INDEXED; it
must be specified for those files (refer to the READ statement in the PROCEDURE DIVISION).

b. The SYMBOLIC KEY data-item must be defined in the DATA DIVISION, and must not
appear in the record area of the file to which it pertains. It must agree with the description
of the RECORD KEY data item in class, usage, size, and number of decimal places.

c. The RECORD KEY data item must be defined as an item in the record area of the file to
which it pertains. Though the RECORD KEY is described in only one of the records, it is
assumed to occupy the same position in all records for that file.

d. The RECORD KEY is required to describe the location in the record area of the key for
the file. The contents of the RECORD KEY data item must be unique for each record in the
file, and cannot be equal to LOW-VALUES (refer to the READ, WRITE, REWRITE, and DELETE
statements in the PROCEDURE DIVISION).

4-20

RECORDING MODE/DENSITY/PARITY

Function

The RECORDING clause specifies the mode in which a file is recorded, and/or the density at which

a magnetic tape is recorded, and/or the parity at which a magnetic tape is recorded.

General Format

[RECORDING
SIX BIT 200 ODD

[MODE IS iiINARy] [DENSITY IS ~g~ J [PARITYIS {EVEN}]
{

ASCII } { }]

Technical Notes

a. The RECORDING MODE clause allows the user to record data on the device in a format
other than that used in core. For further explanation of recording modes, refer to Chapter 8.

b. The DENSITY and PARITY clauses are valid only for magnetic tape, and are ignored for
all other devices. If the DENSITY clause is not present, tapes are recorded in the density
standard for the installation. The density at an installation can be modified by the. SET
DENSITY command, which is described in the DECsystem-10 Operating System Commands
manua I. If the PARITY clause is not present, ODD is assumed.

4-21

I-O-CONTROL

Function

The I-O-CONTROL paragraph specifies the points at which a rerun dump is to be performed, the

memory area which is to be shared by different files, and the location of files on a multiple-file reel.

Genera I Format

I-O-CONTROL.

[
SEN D OF {~~~T }} OF fi le-name-l]

RERUN EVERY 1 --
[SAME ~~RD] :t:e:~RRf~~~:::e_2' filename-3 [. file-name-4] •• J
[MULTIPLE FILE TAPE CONTAINS file-name-5 [POSITION integer-2l

~ file-name-6 [POSITION integer-3l] .• J
Technical Notes

a. This paragraph is optional.

b. The RERUN clause specifies when a rerun dump is to be performed.

The dump is always written onto a disk file, using the program's low segment name as the
filename, and an extension of CKP. If the program has no r"i1ename because it was never
SAVEd, the program name (from the PROGRAM-ID paragraph in the IDENTIFICATION
DIVISION) is used as a filename, with the extension CKP.

If the END OF{ ~~~T} option is used, a rerun dump is taken at the end of each input or out­

put reel of the specified file.

If the integer-l RECORDS option is used, a rerun dump is taken whenever a number of logical
records equal to a multiple of integer-l is either read or written for the file.

A rerun dump is not taken if any files are open for input/output (updating), or if any file is
open on a device other than magnetic tape, disk, or teletype or if an indexed sequential file
is open.

4-22

c. The SAME AREA clause specifies that two or more files are to use the same area during
processing; this includes all buffer areas and the record area.

If the RECORD option is specified, the files share only the record area (i .e., the area in
which the current logical record is processed). If the RECORD option is not used, only one
of the named fi les can be open at one ti me.

The SORT option is used for sort files. However, this option need not be specified because
all sort files always use the same sort area.

d. The MULTIPLE FILE clause is required when more than one file shares the same physical
reel of tape. This clause is invalid for media other than magnetic tape.

Regardless of the number of files on a single reel, only those files defined in the program
may be listed. If all files residing on the tape are listed in consecutive order, the POSITION
option need not be given. If any file on the tape is not listed, the POSITION option must
be included; integer-2, integer-3, etc., specify position of the file relative to the beginning
of the tape.

All files on the same reel of tape must be ASSIGNED to the same device in the FILE-CONTROL
paragraph.

Not more than one file on the same reel of tape can be open at one time.

4-23

Chapter 5
The DATA DIVISION

The DATA DIVISION, required in every COBOL program, describes the characteristics of the data to

be processed by the object program.

I This data can be divided into five major types:

I

a. Data contained in fi les, both input and output.

b. Data initia "y stored as part of the program (e.g., constant data such as messages,
tables of fixed values, and the like), or data developed during processing (e.g., inter­
mediate information such as partial arithmetic results).

c. Data in a subprogram that is passed from the program calling it.

d. Data used in a communications environment.

e. Data to be printed in a report, and the format used to print such data.

I To handle these five types of data, the DATA DIVISION consists of four sections:

a. The FILE SECTION, which describes the characteristics and the data formats for each
fi Ie processed by the object program.

b. The WORKING-STORAGE SECTION, which contains any fixed values and the working
areas in wh i ch intermediate data can be stored.

c. The LlNKAG E SECTION, which describes the data in a subprogram that is available
through a calling program. .

I d. The COMMUNICATION SECTION, which describes the data items used to store special
information about communications data and the communications network.

I

e. The REPORT SECTION, which describes the data and the format of a report.

5. 1 FILE SECTION

In the FILE SECTION, the characteristics of each file to be processed are described by two types of

entries.

The first type of entry, the file description, describes the physical aspects of the file. These aspects

include:

a. How the logical data records of the file are physically grouped into blocks on the file
medium.

b. The maximum length of a logical record, which cannot exceed 4095 characters.

c. Whether or not the file contains header and trailer labels and, if so, whether the format
of these labe Is is standard or nonstandard.

Version 6 COBOL
Version 7 L1BOl 5-1 November 1974

d. The names of the records contained in the fi Ie.

e. The names of any reports in the fi Ie.

The second type of entry, the data description, describes the data formats of the logical records in the

fi les.

The FILE SECTION begins with the section-header FILE SECTION. If present, it must be the first

section.in the DATA DIVISION.

5.2 WORKING-STORAGE SECTION

The WORKING-STORAGE SECTION is used to define (1) data (such as constant values and messages)

that is to be initially stored when the object program is loaded, and (2) areas that are to be used for

storing intermediate results. The WORKING-STORAGE SECTION is similar to the FILE SECTION,

except that the WORKING-STORAGE SECTION cannot contain FD, SD, or RD entries and it can

contain level-77 items.

The WORKING-STORAGE SECTION begins with the section-header WORKING-STORAGE SECTION.

5.3 LINKAGE SECTION

The LINKAGE SECTION is used in a subprogram to describe data that is available through a calling

program. The LINKAGE SECTION can appear only in a subprogram, and can be placed anywhere in

the DATA DIVISION after the FILE SECTION. The structure is the same as that of the WORKING­

STORAGE SECTION with certain restrictions. These restrictions are:

1. The VALUE clause can only be used in condition-name Oevel-88} entries.

2. The VALUE OF IDENTIFICAT ION {or ID}, the VALUE OF DATE-WRITTEN,
and the VALUE OF USER NUMBER cannot appear in this section.

3. The OCCURS clause with the DEPENDING phrase cannot appear in this
section.

4. The SYMBOLIC KEY and ACTUAL KEY data items cannot be defined in
this section.

5. The data items in the FILE-LIMITS clause cannot be defined in this section.

6. Subscripted items cannot appear in this section.

No storage is allocated in a subprogram for the data described in the L1NKAG E SECTION.

Instead, at run-time, the PROCEDURE DIVISION references to items in the LINKAGE SECTION are

5-2 November, 1974

resolved by equating the data items in the called program.to the data items in the calling program.

The compi ler finds the references to equate in the USIN G clause of the CALL statement in the ca II ing

program and in the USING clause of the ENTRY statement or PROCEDURE DIVISION header of the

called program. The identifiers in the USING clause of the CALL statement refer to entries in the

FILE, WORKING-STORAGE, or LINKAGE SECTION in the calling program. The identifiers in the

USING clause of the ENTRY statement or the PROCEDURE DIVISION header refer to entries in the

LINKAGE SECTION in the called program. The identifiers are equated by COBOL according to

their positions in the USING clauses. Thus:

CALLING PROGRAM

DATA DIVISION.
FILE SECTION.
FD •••
01 MAIN •••
02 MAIN1 •••
02 MAIN2 •••

PROCEDURE DIVISION.

CALL ENTRPT USING MAIN.

CALLED PROGRAM

DATA DIVISION.
FILE SECTION.
LIN KAGE SECTION.
01 SUB •••
02 SUB 1. ••
02 SUB2 •••

PROCEDURE DIVISION.
ENTRY ENTRPT USING SUB.

EXIT PROGRAM.

The identifier MAIN is defined in the FILE SECTION of the calling program and the identifier SUB is

defined in the LINKAGE SECTION of the called program. At run-time, they are equated to each

other by the compi ler so that the identifier SUB can use the location of MAIN and the data contained

therein. Refer to Section 8. 11 for more information on subprograms.

Each 01- or 77-level item in the LI NKAG E SECTION must have a unique name because it cannot be

qualified. Also, each 01- and 77-level item must correspond to a word-aligned item of the same

size or larger in the calling program. Word-aligned items start at the beginning of a computer word.

All 01- and 77-level items fulfill this requirement; items that do not, can be made to do so by means

of the SYNCHRONIZED LEFT statement.

5.4 COMMUNICATION SECTION

The COMMUNICATION SECTION is the section where data items that establish a link between a

COBOL Message Processing Program (MPP) and the Message Control System (MCS-10) are defined.

These data items are used whenever the MPP interacts with MCS-10. Within the COMMUNICATION

SECTION, the user defines communication-description entries (called CD-entries) for input

communication functions and output communication functions.

Version 6 COBOL
Version 7 LlBOL 5-3 November 1974

A CD-entry causes a data record to be defined. This record, called a CD-record, contains all of

the special data items required by that CD-entry. These special data items are called CD-items.

The formats and rules for input and output CD-entries are described in the MCS-10 Programmer's

Procedures Manual (DEC-1 O-CMC PA-A-D) along with a description of MCS-1 0 and the procedures

for writing Message Processing Programs.

The COMMUNICATION SECTION begins with the section-header COMMUNICATION

SECTION. If present, it must appear after the FI LE SECTION and before the REPORT SECTION.

5.5 REPORT SECTION

The REPORT SECTION provides the facility for producing reports by allowing the programmer to spec­

ify the physical appearance of a report rather than requiring him to specify the detailed procedures

necessary to produce the report. A report consists of data presented in a particular format.

The data for a report can be read from a fi Ie or another part of the program or can be summed within

the REPORT SECTIO N. The format of the report is given in the record description and report group

entries in the REPORT SECTION.

The REPORT SECTION begins with the section-header REPORT SECTION, and must follow the FILE

SECTION, the WORKING-STORAGE SECTION and the LINKAGE SECTION.

5.6 DATA DESCRIPTIONS

5.6.1 Elementary Items and Group Items

The basic user-defined datum in a COBOL program is called an elementary item; it may be referenced

directly only as a unit. An el ementary item may be associated with contiguous elementary items to

form sets of data items called group items. Group items may be associated with other group items

and/or elementary items to form more inclusive group items. Thus, an elementary item may be con­

tained within one or more group items, and a group item may contain more than one elementary item.

5.6.2 Level Numbers

Level numbers indicate a hierarchy in which data items are ranged. The highest level is 01, which

signifies that the data item is a record within a file named in an FD clause (or is a contiguous area in

the WORKING-STORAGE SECTION). Level numbers of 02 through 49 indicate items that are subor­

dinate to a 01-level data item. For example, an employee record can be described in the following

mannero

Version 6 COBOL
Version 7 LlBOL 5-4

November, 1 974

01 EMPLOYEE-RECORD
02 NAME

03 FIRST-NAME PICTURE IS A(6)
03 MIDDLE-INITIAL PIClURE IS A
03 LAST-NAME PICTURE IS A(20)

02 BADGE-NUMBER PICTURE IS X(5)
02 SALARY-CLASS PICTURE IS X(2)

Within a record description, the level numbers indicate which items are contained within higher-level

items. That is, in the above example, the items that have a 03 level are subordinate to NAME,

which has a 02 level, which is in turn subordinate to EMPLOYEE-RECORD, which has a 01 level. The

example also shows elementary items (those that contain PIClURE clauses) contained within group

items. In this example, EMPLOYEE-RECORD is a group item, NAME is a group item contained within

a group item, and FIRST-NAME is an elementary item contained within the group item NAME. An

item at a 01 level can be an elementary item as well as a group item as long as it is referenced as a

unit. For example:

01 EMPLOYEE-RECORD PIClURE IS A(34)

shows the same record as above, but in this case the record is always operated on as a single entity.

Three other level numbers are available to the COBOL programmer: 77, 66, and 88.

Items with a level number of 77 are noncontiguous elementary items that are written only in the

WORKING-STORAGE SECTION to define constant values and to store intermediate results.

Level-66 data items are those items that contain an explicitly specified portion of a record, or even

the whole record. A data item at a level of 66 is used in a RENAMES clause to regroup items within

a record. After a record is described, a level-66 data item RENAMES a portion of that record. The

level-66 data item can be a regrouping of the whole record, a group within the record, or a combina­

tion of group and elementary items. For example:

01 EMPLOYEE-RECORD
02 NAME

03 FIRST-NAME •••
03 MIDDLE-INITIAL •••
03 LAS T -NAME •••

02 BADGE-NO ••••
02 SALARY -CLASS •••
66 PERSONNEL-REC RENAMES NAME THRU BADGE-NO
66 PAY-REC RENAMES LAST-NAME THRU SALARY-CLASS

When the level-66 item PAY-REC is referenced, the items LAST-NAME, BADGE-NO., and SALARY­

CLASS are referenced as a unit. The programmer can thus regroup portions of a record for differing

purposes.

5-5 November 1974

Level-88 items are condition-names that cause a value or a range of values to be assigned to a data

item. The data item that is assigned the value is then considered a conditional variable. The condi­

tion name (i.e., the level-88 item) is used in a conditional expression in the PROCEDURE DIVISION

instead of the conditional variable. For example:

03 BADGE-NO ••••
88 FIRST -BADGE VALUE IS A0001
88 LAST-BADGE VALUE IS Z9999

In a comparison, the following statements would then be equivalent:

Conditional Variable

IF BADGE-NO. IS EQUAL TO AOOOl •••

IF BADGE-NO. IS EQUAL TO Z9999 .••

5.6.3 Records and Files

Condition-Name

IF FIRST-BADGE •••

IF LAST -BADG E •••

Records can be divided into two categories: those associated with a file and those not associated with

a file. A file is the highest level of data organization in COBOL; and in DECsystem-10 COBOL, a

file represents a collection of data records held on some external medium, i.e., not wholly in real or

virtual core. Records not associated with a file are those values stored in the WORKING-STORAGE

and LINKAGE SECTIONS or sum counters in the REPORT SECTION.

5.7 QUALIFICATION

Any data item that is to be referenced must be unique Iy identified. This unique identifi cation can be

achieved by the assignment of a unique name to each item. However, in many applications this is

tedious and inconvenient (1) because of the large number of names required, and (2) because items

containing the same type of information in different records would have different names. Therefore,

qualification is introduced to allow similar items and certain records to have identical names.

Qualification means giving enough information about the item to specify it uniquely. In COBOL, this

information is the name of the group items containing it, in order of increasing inclusiveness. It is not

necessary to name each group containing it, but only enough groups so that no other item with the

same name as the original item could be identically qual ifi ed. It is also unnecessary to name each

successively higher group containing the item until a unique qual ification is made. Any set of names

that uniquely describe the item can be used.

Example:

01
02

03
04

RECORD-l.
ITEM-l.

SUB-ITEM.
FIELD PIC X.

01

5-6

02
03

04

RECORD-2.
ITEM-2.

SUB-ITEM.
FIELD PIC X.

FIELD in the left-hand example can be referenced uniquely in any of the following ways:

FIELD OF SUB-ITEM OF ITEM-l OF REC ORD-l •
FIELD OF SUB-ITEM OF ITEM-l •
FIELD OF SUB-ITEM IN RECORD-l •
FIELD IN ITEM-l OF REC ORD-l .
FIELD IN RECORD-l.
FIELD IN ITEM-l •

Since the connectives OF and IN are equivalent, they may be used interchangeably.

The only data items which need have unique names are level-77 items and records not associated with

files, since they are not contained in any higher level data structure. Records associated with files

may be qualified by the file name, as may any item contained within the record. File names must be

unique.

Level-66 items may be qualified only (l) by the name of the record with which they are associated and

(2) by the name of any file with which that record is associated.

5.8 SUBSCRIPTING AND INDEXING

In some applications, it is convenient for the programmer to specify a set of data values as a table

rather than assign a name to each element of the set. A table (or array) is a set of homogeneous items

stored together in core for use by the program. The table elements are defined in the program by an

OCCURS clause appearing in the description of a data item. The data item thus defined represents not

one item but a set of items having the identical format. To refer to one of the elements of the set, sub­

scripting or indexing is used. In DECsystem-10 COBOL, subscripting and indexing are identical in use

and can be used interchangeably. However, the manner in which they are defined differs. Subscripting

is defined simply by the fact that an item has an OCCURS clause in its description. For example,

01 RATE-TABLE
02 AREA OCCURS 25 TIMES

describes AREA as 25 elements of RATE-TABLE. To refer to an element of RATE-TABLE, the user must

subscript it, i.e., AREA (10) is the tenth element (or occurrence) or AREA. A subscript can be a data­

name to which an integer value has been assigned as well as an integer. Thus, AREA (DIST), when

DIST has been assigned the value 10, is the same as AREA (10).

To specify indexing, the user must add the INDEXED BY option to the OCCURS clause 0 Thus,

01 RATE-TABLE
02 AREA OCCURS 25 TIMES INDEXED BY IND

defines AREA as 25 elements of the table and defines IND as the index by which each element of the

table can be indexed, i.e., AREA (IND) is an element in the table. The index-name IND is treated

5-7

exactly like the data-name DIST because the compiler recognizes an index-name as being exactly the

same as a data-name. An item defined as an index in an OCCURS clause has an implicit USAGE of

INDEX, and is equivalent to a data item that is declared USAGE INDEX. However, this USAGE is

included in DECsystem-10 COBOL for compatibility with other compilers because an item whose

USAGE is INDEX (implicit or explicit) is treated as if its USAGE were COMPUTATIONAL. This is

because the PDP-10 does not have special index registers to handle index-data-items. The registers in

the PDP-10 are not dedicated to indexes; all computation is done in these registers. In fact, a data­

name that is used as a subscript can be explicitly declared as USAGE INDEX. It will be treated as a

COMPUTATIONAL data item by the compiler.

In COBOL, tables can be 1-dimensional (requiring a single subscript/index for referring to individual

items) or 2-dimensiona I or 3-dimensional (requiring two or three subscripts/indexes, respective Iy).

For example,
C (1, 3)

represents the item located in the first row and third column of a 2-dimensional table defined by the

DATA DIVISION entries

01 TABlEA
02 lEVEL 1 OCCURS 20 TIMES

03 C OCCURS 5 TIMES

Two forms of subscripting/indexing are permissible in DECsystem-10 COBOL - direct and relative. Dir­

ect subscripting/indexing means that the subscript/index refers directly to the desired element. The

subscript/index must be enclosed in parentheses and must appear immediately after the terminal space

that follows the data-name. When referring to elements in multi-dimensional tables, subscripts/indexes

are written from left to right in the order of major (subscript/index varying least rapidly), intermediate,

and in the case of a 3-dimensional table, minor (subscript/index varying most rapidly). Subscripts/in­

dexes are separated by a comma followed by a space. No spaces can appear immediately following the

left parenthesis or immediately preceding the right parenthesis. The form for direct subscripting/in­

dexing is:

({

subscriPt} [{SUbscriPt}]) data-name
index ,index 0 ••

Thus in a table having a major element occuring 10 times, an intermediate element occuring 5 times

within each occurence of the major element, and a minor element occurring 3 times within each inter­

mediate el ement, the last major element of the table is referred to by the subscript form (10, 5, 3).

When a table element must be qualified for uniqueness, the format for direct subscripting/indexing is:

data-name[{OF} data-name-l] ••• ({~ubscriPt} [{~ubscriPt}] •••)
IN Index , Index

5-8

Relative subscripting/indexing means that the element of the table is referred to indirectly by a

subscript/index to which an integer is added or subtracted. Relative subscripting/indexing is specified

when the subscript/index is followed by the operator plus (+) or minus (-) followed by an unsigned inte­

ger numeric literal - all enclosed in the parentheses immediately following the terminal space of the

data-name.

The form for r(e{la:~::c::~f:}ting/indeX[in{gs~S~scriPtl{+} l)
data-name index J l- integer , index J _ integeJ ...

When relative subscripting/indexing is used, the element of the table that is referred to is not the one

to which the subscript/index refers, but the element to which the subscript/index plus or minus the inte­

ger refers. That is, if the item

AREA (IND + 2)

is specified, and IND is set at 3, the fifth occurrence of AREA is referred to, not the third. However,

the value of the subscript/index is not changed by relative subscripting/indexing; the value of IND

remains 3.

5-9

File Description (FD)

Function

The Fit e Description (FD) furnishes information concerning the physical structure, identification, and

record names pertaining to a given fit e.

General Format

FD fi Ie-name

[BLOCK CONTAINS [integer-l TOl integer-2 {~~~~STERS}]
[RECORD CONTAINS [integer-3 TOl integer-4 CHARACTERS]

[LABEL {~~~g~~sI~RE} {~~~~:DRD }]
record-name-l [,record-name-2] ...

[{ ~~~g~~I~RE} report-name-l [,report-name-2 00 ol]

[
VALUE OF[f~gENTIFICATION} IS {d.ata-name-11.] ~ Iiteral-l S

[
DATE-WRITTEN IS {d.ata-name-2}]

Ilteral-2

[USER-NUMBER IS {1i~~:~~;,eli~era'-4}]]

[DATA {~~~ g~SI~RE } record-name-3 [, record-name-4] 0 0 0 }

Technical Notes

a. An FD entry must be present for each file-name selected in the FILE-CONTROL paragraph
of the ENVIRONMENT DIVISION.

b. All semicolons and commas are optional. The entire FD entry must terminate with a
period.

c. The clauses may appear in any order within the File Description entry.

d. Each of the above clauses appears in alphabetical order on the following pages.

5-10

BLOCK CONTAINS

Function

The BLOCK CONTAINS clause specifies the size of a logical block.

General Format

[.. r RECORD(S) tJ
BLOCK CONTAINS [mteger-l TO] mteger-2 (CHARACTERSj

Technical Notes

a. If this clause is not present or if integer-2 is 0, the file is not organized into logical blocks.
Rather, a II records are placed in the fi Ie with no empty space. The fi Ie is then considered to be
"unblocked" or "blocked zero".

b. If the CHARACTERS option is used, the logical block size is specified in terms of the num­
ber of character positions required to contain the record. If the recording mode is ASCII (that
is, all records for the file are described, explicitly or implicitly, as USAGE DISPLAY-7), it
is assumed that the size is specified in terms of DISPLAY-7 characters. If the recording mode
is SIXBIT (that is, the records for the fi Ie are a II described as other than USAGE DISPLAY -7),
it is assumed that the size is specified in terms of DISPLAY-6 characters. See "USAGE" for a
discussion of the USAGE of group items, including records.

c. Integer-1 and integer-2 must be positive integers. If only integer-2 is specified, it
represents the exact size of the logi cal block. If both integer-1 and integer-2 are given,
integer-1 is ignored and integer-2 is used as the b locking factor.

d. Fi les whose access modes are RANDOM or INDEXED must have a nonzero blocking factor.
Also, RANDOM fi les with a recording mode of ASCII must have a blocking factor of 1.

5-11

DATA RECORD

Function

The DATA RECORD clause cross references the record descriptions with their associated file.

Genera I Format

record-name-l [record-name-2]]
Technical Notes

a. Th is clause is opti ona I because a II records not assoc i ated with a LABE L REC ORD S
clause are assumed to be data records.

b. Both record-name-l and record-name-2 must be the names given in 01-level data entries
subordinate to this FD. The presence of more than one such record-name indicates that the file
contains more than one type of data record. These records may have different descriptions.
The order in which they are listed is not significant.

c. All records within a file share the same area.

5-12

FD file-name

Function

The FD fi Ie-name clause identifies the fi Ie to which this fi Ie description entry and the subsequent

record descriptions relate.

General Format

FD file-name

Techni cal Notes

a. This entry must begin each fi Ie description.

b. The file-name must appear in a SELECT statement in the FILE-CONTROL paragraph of the
ENVIRONMENT DIVISION.

5-13

LABEL RECORD

Function

The LABEL RECORD clause specifies whether or not labels are present on the file and, if so, identifies

the format of the labels.

General Format

[LABEL

Technical Notes

r RECORD IS }
l RECORDS ARE {

OMITTED }]
STANDARD
record-name-l [, record-name-2] •.•

a. If the clause is omitted, LABEL RECORDS ARE STANDARD is assumed.

b. The OMITTED option is used when the file has no header or trailer labels.

c. The STANDARD option is used when the file has header and trailer labels that conform to
the DECsystem-10 standard format (see Chapter 8). If this clause is used for files on disk or
DECtape, LABEL RECORDS ARE STANDARD must be specified. See VALUE OF IDENTIFICA­
TION clause for the association between the label and the filename on disk or DECtape.

d. The record-name option is used when the file labels do not conform to the DECsystem-10
standard format. The record-names must appear as the names of record descriptions (Ievel-O 1)
subordinate to this FD; the record-names must not appear in a DATA RECORDS clause.

5-14

RECORD CONTAINS

Function

The RECORD CONTAINS clause specifies the size of the data records in this fi Ie.

General Format

[RECORD CONTAINS tlnteger-l TOJ integer-2 CHARACTER~

Technical Notes

a. Because the size of each data record is completely defined by its record description entry I
this clause is for documentation purposes only and is never required. However I if it is used I
the following rules must be observed.

b. Integer-l and integer-2 must be positive integers. Integer-2 may not be less than the size
of the largest record but cannot exceed 4095, which is the limit on the size of a record. The
limit on the size of ASCII (DISPLAY-7) records in a sort file is approximately 3400 characters.

c. The data record size is specified in terms of the number of character positions required to
contain the record.

5-15 November 1974

REPORT

Function

The REPORT clause specifies the name of each report that is associated with the file.

General Format

[{
REPORT IS } REPORTS ARE report-name-l [,report-name-2] .••]

Technical Notes

a. This clause is optional; it is used only when Report-Writer statements cause output to be
written on the file.

b. Report-name-l and report-name-2 must be the names of Report Descriptor items in the
REPORT SECTION.

c. If this clause is used, the data record description can be omitted because the name of the
data record is not referred to directly in the PROCEDURE DIVISION. When the data record
description is omitted, the compiler automatically assumes a 1 32-character record.

5-16

SO file-name

Function

The SD file-name clause identifies the sort file to which this file description entry and the subsequent

record descripti ons relate.

Genera I Format

. [(RECORD IS) SD File-name DATA RECORDS ARE

[RECORD CONTAINS [integer-l TO]

record-name-l [, record-name-2] ...]
integer-2 CHARACTERS] .:

Technical Notes

a. This entry must begin each sort fi Ie description.

b. The file-name must appear in a SELECT statement in the FILE-CON TROL paragraph of the
ENVIRONMENT DIVISION.

c. The DATA RECORD and RECORD CONTAINS clauses are the only descriptive clauses al­
lowed.

5-17

VALUE OF IDENTIFICATION/DATE-WRITTEN/USER-NUMBER

Function

The VALUE OF clause provides specific data for an item within the label records associated with a

file.

General Format

[VALUE OF

Technical Notes

[{~gENTIFICATION} IS {d.ata-name-l}]
Ilteral-l

[
DATE-WRITTEN IS {d.ata-name-2}]

Ilteral-2

[{
data-name-3}]]

USER-NUMBER IS literal-3, literal-4

a. The VALUE OF IDENTIFICATION claus.e is required only if label records are standard; it
is ignored in all other cases. The VALUE OF DATE-WRITTEN is always optional.

b. The three clauses can be written in any order, but only one of each can be specified for
a fil e.

c. IDENTIFICA nON represents the file-name and file-name extension of a file with stan­
dard labels. If a data-name is specified, it must be associated with a DISPLAY-6 or DISPLAY-7
data item nine characters in length. If a literal is specifi ed, it must be a nonnumeric literal
nine characters in length. The first six characters are taken as the file-name, and last three
characters ,are taken as the extension. The programmer must provide spaces as required to con­
form to this convention.

Examples:

(1) VALUE OF IDENTIFICATION IS "COST llll TST"

(2) VALUE OF IDENTIFICATION IS FILE-1-NAME

(WORKING-STORAGE SECTION.)

77 FILE-1-NAME PICTURE IS X(9).

5-18

d. DATE-WRITTEN represents the date that a file (with STANDARD labels) was written. If
a data-name is specified, it must be associated with a DISPLAY-6 or DISPLAY-7 data item six
characters in length. If a literal is specified, it must be a nonnumeric or numeric literal six
characters in length. The first two characters are taken as year, the next two as month, and
the last two as day. The DATE-WRITTEN clause is ignored when the fi I e is OPENed for output;
instead, the current date is used.

Examples:

(1) VALUE OF IDENTIFICATION IS II RANDOMXYZ II , DATE-WRITTEN IS 690612

(2) VALUE OF IDENTIFICATION IS IIDATA b.b.b.b.1Y. 1
, DATE-WRITTEN IS FILE-1-DATE

(WORKING-STORAGE SECTION.)
77 FILE-1-DATE PICTURE IS 9(6).

e. USER-NUMBER represents the project-programmer number of the owner of a disk file; it is
ignored for all other devices. Data-name-3 must be a COMPUTATIONAL item of 10 or fewer
digits in which the project-programmer numer is stored. Literal-3 and literal-4 are octal liter­
als of six or fewer digits. literal-3 is the project number and literal-4 is the programmer
number.

f. For input files the VALUEs specified are checked against the file when it is opened. For
output files, the VALUE OF IDENTIFICATION is written when the file is opened. Refer to
Chapter 8, IIStandard Label Procedures. II If the specified values do not match a file on the
selected medium, a run-time error message is issued.

g. If the access mode is INDEXED, only a litera I can be specified for the VALUE OF
IDENTIFICATION. It represents the index file, not the data file. The identification of the
data fi Ie is stored in the index fi Ie.

h. If data-name-3 is used to represent the project-programmer number, the user must be
aware that the value of data-name-3 is treated as decimal, even though the project-program­
mer number is octal. The data-name-3 value will be translated from decimal to binary by the
COBO L conversion routine. Thus, the project-programmer number wi II not be accurate unless
the user provides a conversion routine in his program to convert his octal project-programmer
number to its decimal equiva lent so that it will be converted to the correct binary number.
The following example is a suggested method for performing the conversion.

77
77
77
77
01

ERR-FLAG,
HALF-NUM,
OCTAL-PPN,
DIGIT,
PP-NUMBER,

PIC 9,
PIC S9(7) ,
PIC S9(10),
PIC 9,

02 PROJ-NUMBER, PIC 9(6).
02 PROG-NUMBER, PIC 9(6).
02 EITHER-NUM, PIC 9(6).
02 X REDEFINES EITHER-NUM.

USAGE COMPo
USAGE COMPo
USAGE COMPo

03 PP-DIGIT, PIC 9, OCCURS 6 TIMES, INDEXED BY I.

ACCEPT PROJ-NUMBER, PROG-NUMBER.
SET ERR-FLAG TO ZERO.
MOVE PROJ-NUMBER TO EITHER-NUM.

5-19

(continued on next page)

CONVERT.

*

MOVE ZERO TO HALF-NUM.
PERFORN\ CONVERT VARYING I FROM 1 BY 1 UNTIL I > 6.
IF HALF-NUM > 32767, SET ERR-FLAG UP BY 1 •
COMPUTE OCTAL-PPN = HALF-NUM * 262144.
MOVE PROG-NUMBER TO EITI-IER-NUM.
MOVE ZERO TO HALF-NUM.
PERFORM CONVERT VARYING I FROM 1 BY 1 UNTIL I > 6.
COMPUTE OCTAL-PPN = OCTAL-PPN + HALF-NUM.
IF ERR-FLAG IS NOT = 0, GO TO OCTAL-ERROR.

IF PP-DIGIT (I) = 8 OR 9, ~SET ERR-FLAG UP BY 1 .
COMPUTE HALF-NUM = 8 * HALF-NUM + PP-DIGIT (I) •

THIS ROUTINE It~VALID FOR PROJECT NUMBERS LARGER THAN 77777.

Ii. None of the VALUE clauses can appear in the LINKAGE SECTION.

5-20 November 1974

RECORD DESCRIPTIONS

Following the FD for a fi Ie, a record description is given for each different record format in the file.

A record description begins with a level-01 entry:

01 data-name

where the data-name is one of those listed in the DATA RECORDS clause of the FD.

A complete record description may be as simple as

01 data-name PICTURE picture-string.

or it may be more complex, where the 01-level is followed by a long series of data description entries

of varying hierarchies that describe various portions and subportions of the record. A 01 level data­

name in the FILE SECTION cannot be explicitly redefined (using the REDEFINES clause). However,

because a file has only one record area, if more than one data-name is specified in the DATA

RECORDS ARE clause in the FD, they implicitly redefine the first data-name.

Record Concepts

A record description consists of a set of data description entries which describe a particular logical

record. Each data description entry consists of a level-number followed by a data-name (or FILLER)

which is followed, as required, by a series of descriptive clauses.

The general format of a data description entry follows.

5-21

DATA DESCRIPTION ENTRY

Function

A data description entry describes a particular item of data.

General Format

I

level-number (data-name-1l
lFILLER)

[REDEFINES data-name-2]

[C~TUR~ IS picture-string]

[

[
[
[

[USAGE IS]

COMPUTATIONAL
CaMP
COMPUTATIONAL-l
COMP-1
DISPLAY
DISPLAY-6
DISPLAY-7
INDEX
DATABASE-KEY

UYNCHRON1ZED}C LEFT J]
SYNC RIGHT

eUSTlFIED)(RIGHT)]
JUST LEFT

BLANK WHEN ZERO]

VALUE IS'literal-1]

[OCCURS Dnteger-I TO] integer-2 TIMES [DEPENDING ON data-name-I]

[{
ASCENDING } KEY is data-name-2 [, data-name-3] •••] •••
DESCENDING

[INDEXED BY index-name-I [, index-name-2J •••] J.:
Version 6 COBOL 5-22 November 1974
Version 7 L1BOl

RENAMES ENTRY

66 data-name-l RENAMES data-name~2 [THRU data-name-3]

CONDITION-NAME ENTRY

88 condition-name C~SI~RE} literal-l [THRU Iiteral-2]

[literal-3 ~HRU literal-4J] ...

Technical Notes

a. Each data description enfry must be terminated by a period. All semicolons and commas
are optional.

b. The clauses may appear in any order, with one exception: the REDEFINES clause, when
used, must immediately follow the data-name.

c. The VALUE clause must not appear in a data description entry which also contains an
OCCURS clause, or in an entry which is subordinate to an entry containing an OCCURS clause.
The latter part of this rule does not apply to condition-name (level-88) entries.

d. The PICTURE clause must be specified for ,every elementary item, except a USAGE INDEX
or COMP-l item.

e. The clauses SYNCHRONIZED, PICTURE, JUSTIFIED, and BLANK WHEN ZERO can be
specified only at the elementary level.

f. The clauses shown in the General Format appear in alphabetical order on the following
pages.

5-23

BLANK WHEN ZERO

Function

The BLANK WHEN ZERO clause causes the blanking of an item when its value is zero.

Genera I Format

[BLANK WHEN ZERO]

Technical Notes

a. When the BLANK WHEN ZERO option is used and the item is zero, the item is set to
blanks.

b. BLANK WHEN ZERO can be specified only at the elementary level and only for numeric or
numeric-edited items whose usage is DISPLAY-6 or DISPLAY-7.

c. More comprehensive editing features are available in the PICruRE clause. For example,
if a PICTURE clause appears in the same data description entry and contains the zero suppres­
sion symbol* (zero suppress and replace with *), the field is replaced with * (see PICruRE).

5-24

· condition-name (level-88)

Function

To assign a name to a value or range of values of the associated data item.

General Format

(VALUE IS l . I,]
88 condition-name (VALUES ARE) Iiteral-l LTHRU literal-2

[I iteral-3 ~HRU I iteral-4]] .•• _

Technical Notes

a. Each condition-name requires a separate level-88 entry. This entry contains the name
assigned to the condition, and the value or values associated with that condition. Condition­
name entries must immediately follow the data description entry with which the condition-name
is to be assoc i ated •

b. A condition-name entry can be associated with any elementary or group item except

(1) another condition-name entry, or

(2) a level-66 item.

c. Some examples of possible level-88 entries are given below.

(1) 05 B-FIELD PICTURE IS 99.
88 Bl VALUE IS 3.
88 B2 VALUES ARE 50 THRU 69.
88 B3 VALUES ARE 20, 25, 28, 31 THRU 37.
88 B4 VALUES ARE 70 THRU 75, 80 THRU 85, 90 THRU 95.

(2) 02 C-FIELD PICTURE IS XXX.
88 C-YES VALUE IS IIYES II •
88 C-NO VALUE IS "NO .6.".

d. The data item with which the condition-name is associated is called a conditional variable.
A conditional variable may be used to qualify any of its condition-names. If references to a
conditional variable require indexing, subscripting, or qualification, then references to its
associated condition-names also require the same combination of indexing, subscripting, or
qualification.

.5-25

e. A condition-name is used in conditional expressions as an abbreviation for the related
condition. Thus, if the above DATA DIVISION entries (Note c) are used, the statements
in each pair below are functionally equivalent.

Relational Expression

(1) IF B-FIELD IS EQUAL TO 3

(2) IF B-FIELD IS GREATER THAN 49
AND LESS THAN 70 ••••

(3) IF B-FIELD IS EQUAL TO 20 OR
EQUAL TO 25 OR EQUAL TO 28
OR GREATER THAN 30 AND LESS
THAN 38 ••••

(4) IF B-FIELD IS GREATER THAN 69
AND LESS THAN 76 OR GREATER
THAN 79 AND LESS THAN 86 OR
GREATER THAN 89 AND LESS
THAN 96 ••••

(5) IF C-FIELD IS EQUAL TO "YES"

Condition-Name

IF B 1

IF B2

IF B3

IF B4 ••••

IF C-YES .•••

f. Literal-1 must always be less than I iteral-2, and I iteral-3 less than literal-4. The values
given must always be within the range allowed by the format given for the conditional variable.
For example, any condition-name values given for a conditional variable with a PICTURE of
PP999 must be in the range of .00000 to .00999. (See Note i under PICTURE in this chapter for
the meaning of P in a picture-string.)

5-26

data-name/FILLER

Function

A data-name specifies the name of the data being described. The word FILLER specifies an unreferenced

portion of the logical record.

General Format

rdata-namel
level-number 1j=ILLER J

Technical Notes

a. A data-name or the word FILLER must immediately follow the level-number in each data
description entry.

b. A data-name must be composed of a combination of the characters A through Z, 0 through
9, and the hyphen. It must contain at least 1 alphabetic character and must not exceed 30
characters in length. It must not duplicate a COBOL reserved word. Refer to Section 2.2.3.2
for further information.

c. The key word FILLER is used to name an unreferenced item in a record {that is, an item to
which the programmer has no reason for assigning a unique name}. A FILLER item cannot,
under any circumstances, be referenced directly in a PROCEDURE DIVISION statement.
However, it may be indirectly referenced by referring to a group-level item of which the
FILLER item is a part. FI LLER can be used at any level, including the 01 level.

5-27

JUSTIFIED

I

Function

The JUSTIFIED clause specifies nonstandard positioning of data within a receiving data item.

General Format

[rJUSTIFIEQl (RIGHT)]
(JUST J \JEFT

Technical Notes

a. The JUSTIFIED clause cannot be specified at a group level or for numeric edited items.
If neither RIGHT nor LEFT is specified, RIGHT is assumed for numeric DISPLAY items and
LEFT is assumed for alphanumeric items.

b. An item subordinate to one containing a VALUE clause cannot be JUSTIFIED.

c. Only DISPLAY-6 and DISPLAY-7 items can be JUSTIFIED.

d. The standard rules for positioning data within an elementary data item are as follows:

(l) Receiving data item described as numeric or numeric-edited {see definitions in Notes
f and i under PICTURE in this chapter}. A numeric or numeric-edited item is justified
according to the following rules, thus the JUSTIFIED clause cannot be used.

The data is aligned by decimal point and is moved to the receiving character positions with
zero fi II or truncation on either end as required.

If an assumed decimal point is not explicitly specified, the data item is treated as if it had
an assumed decimal point immediately following its rightmost character, and the sending
data is aligned according to this decimal point.

(2) Receiving data item described as alphanumeric (other than numeric edited) or alpha­
betic (see definitions in Notes e and g under PICTURE in this chapter).

The data is moved to the receiving character positions and al igned at the leftmost character
position with space fill or truncation at the right end as required.

• e. When a receiving item is described as JUSTIFIED LEFT, positioning occurs as in d (2) above.

f. When a receiving data item is described with the JUSTIFIED RIGHT clause and is larger
than the sending data item, the data is aligned at the rightmost character position in the re­
ceiving item with space fi II at the left end.

When a receiving data item is described with the JUSTIFIED RIGHT clause and is smaller than
the sending data item, the data is aligned at the rightmost character position in the receiving
item with truncation at the left end.

Examples are given below.

5-28 November 1974

03 ITEM-A PICTURE IS
X(8) VALUE IS "ABCDEFGH II •

03 ITEM-B PICTURE IS
X(4) VALUE IS "W)0{Z II •

03 ITEM-C PICTURE IS X(6).

03 ITEM-D PICTURE IS X(6)
JUSTIFIED RIGHT.

MOVE ITEM-A TO ITEM-C.

MOVE ITEM-A TO ITEM-D.

MOVE ITEM-B TO ITEM-C.

MOVE ITEM-B TO ITEM-D.

Contents of Receiving Field

IclDIEIFIGIHI

IWIXlylz! ~I~I

I ~I ~I Wi Xl y I Z I

5-29

level-number

Function

The level-number shows the hierarchy of data within a logical record. In addition, special level­

numbers are used for condition-names (level-88), noncontiguous WORKING-STORAGE items (Ievel-

77), and the RENAMES clause (Ievel-66).

General Format

level-number

Technical Notes

[data-name}
~ILLER

a. A level-number is required as the first element in each data description entry.

b. Level-numbers may be placed anywhere on the source line, at or after margin A.

c. Level-number 88 is described under "condition-name (level-88)", and level-number 66
is described under IIRENAMES (Ievel-66) II, both in this section.

d. A further description of level-numbers and data hierarchy can be found in the introduction
to this chapter.

5-30

OCCURS

Function

The OCCU RS clause eliminates the need for separate entries for repeated data, and supplies information

required for the application of subscripts and indexes.

General Format

[OCCURS [integer-1 TO] integer-2 TIMES [DEPENDING ON data-name-1]

rr ASCENDING} [J] L1DESCENDING KEY IS data-name-2 ,data-name-3 ••• • ••

[INDEXED BY index-name-I [, index-name-2J •••]]

Technical Notes

a. This clause cannot be specified in a data description entry that has a 66 or 88 level-number,
or in one that contains a VALUE clause.

b. The OCCURS clause is used to define tables or other homogeneous sets of repeated data.
Whenever this clause is used, the associated data-name and any subordinate data-names must

o always be subscripted or indexed when used in all PROCEDURE DIVISION statements.

c. All clauses given in a data description that includes an OCCURS clause apply to each
repetition of the item.

d. The integers must be positive. If integer-1 is specified, it must have a value less than
integer-2. No value of a subscript can exceed integer-2; in addition, if the DEPENDING
option is specified, no subscript can exceed the value of data-name-1 at the time of subscrip­
ting.

e. The value of data-name-l is the count of the number of occurences of the item described
by the OCCURS clause; its value must not exceed integer-2.

f. The DEPEN DING option, when specified, must immediately follow TIMES. Data-name-l
must be USAGE INDEX or USAGE COMP of 10 digits or less with no scaling or decimal
places. It cannot be subscripted or appear in the LlNKAG E SECTION.

g. The KEY IS option is used to indicate that the repeated data is arranged in ascending or
descending order according to the values associated with data-name-2, data-name-3, and
so forth. The data-names are listed in descending order of significance.

5-31 November 1974

h. Data-name-2 must be either the name of the entry containing the OCCURS clause, or the
name of an entry subordinate to the entry containing the OCCURS clause. Data-name-3, etc.,
must be the name of an entry subordinate to the group item that is the subject of this entry.

i. An index-name defined in an OCCURS clause must not be defined elsewhere; its appearance
in the INDEXED option is its only definition. There can be no items of the same name defined
elsewhere. The USAGE of each index-name is assumed to be INDEX.

j. Subscripting and indexing are described in the introduction to this chapter.

5-32

PICTURE

Function

The PICTURE clause describes the general characteristics and editing requirements of an elementary

item.

General Format

[(:TURE) IS pi cture-string]

Techni cal Notes

a. A PICTURE clause may be used only at the elementary level. It may not be used with an
item described as USAGE INDEX or COMP-l •

b. A picture-string consists of certain allowable combinations of characters in the COBOL
character set used as symbols. These symbols are as follows:

(l) Symbols representing data characters

9 represents a numeric character (O through 9)

A represents an alphabetic character (A through Z, and the space)

X represents an alphanumeric character (any allowable character)

(2) Symbols representing arithmetic signs and assumed decimal point positioning

V represents the position of the assumed decimal point

P represents an assumed decimal point scaling position

S represents the presence of an arithmetic sign

(3) Symbols representing zero suppression operations

Z represents standard zero suppression (replacement of leading zeroes by spaces)

* represents check protection (replacement of leading zeroes by asterisks)

(4) Symbols representing insertion characters

$ represents a dollar sign (this sign floats from left to right and replaces rightmost
leading zero when more than one $ appears) t

tIf the CURRENCY SIGN IS clause appears in the SPECIAL-NAMES paragraph, the symbol specified
by the literal must be used in all instances in place of the $.

5-33

, represents an insertion comma t

• represents an actual decimal point t

B represents an insertion blank

o represents an insertion zero

(5) Symbols representing editing sign-control symbols

+ represents an editing plus sign These float and replace rightmost leading zero

- represents an editing minus sign when more than one + or - appear

CR represents an editing Credit symbol

DB represents an editing Debit symbol

(6) Consecutive repetitions of a picture-string symbol can be abbreviated to the symbol
followed by (n), where n indicates the number of occurrences.

c. A maximum number of 30 symbols can appear in a pi cture-string. Note that the number of
symbols in a picture-string and the size of the item represented are not necessarily the same.
There are two reasons for this discrepancy. First, the abbreviated form for indicating consecu­
tive repetitions of a symbol may result in fewer symbols in the picture-string than character po­
sitions in the item being described. For example, a data item having 40 alphanumeric character
positions can be described by a picture-string of only 5 symbols:

PICTURE IS X(40)

The second reason is that some symbols are not counted when calculating the size of the data
item being described. These symbols include the V (assumed decimal point), P (decimal point
scal ing position), and S (arithmetic sign); these symbols do not represent actual physical char­
acter positions within the data item. For example, the character-string

S999V99

represents a 5-position data item.

Other size restrictions for numeric and numeric edited items are given under the appropriate
.headings below.

d. There are five categories of data that can be described with a PICTURE clause: alphabetic,
numeric, alphanumeric, alphanumeric edited, and numeric edited. A description of each cate­
gory is given in the notes below.

e. Definition of an Alphabetic Item

(1) Its picture-string may contain only the symbol A.

(2) It may contain only the 26 letters of the alphabet and the space.

f. Definition of a Numeric Item

(1) Its picture-string may contain only the symbols 9, P, S, and V. It must contain at
least one 9.
The picture-string must have from 1 to 18 digit positions.

(2) It may contain only the digits 0 through 9 and an operational sign.

tIf the DECIMAL-POINT IS COMMA clause appears in the SPECIAL-NAMES paragraph, the function
of the comma and decimal point is reversed.

5-34

g. Definition of an Alphanumeric Item

(1) Its picture-string can consist of all Xs, or a combination of the symbols A, X, and 9
(except all 9s or all As). The item is treated as if the character-string contained all Xs.

(2) Its contents can be any combination of characters from the complete character set
(see Section 1.2, Chapter 1).

h. Definition of an Alphanumeric Edited Item

(1) Its picture-string can consist of any combination of As, Xs, or 9s (it must contain at
least one A or one X), plus at least one of the symbols B or o.
(2) Its contents can be any combination of characters from the complete character set.

i • Definition of a Numeric Edited Item

(1) Its picture-string must contain at least one of the following editing symbols:

* + z o B CR OB $

It may also contain the symbols 9, V, or P.

The allowable sequences are determined by certain editing rules for each symbol and can be
found in Note i.
The picture-string must have from 1 to 18 digit positions.

(2) The contents can be any combination of the digits 0 through 9 and the editing
characters •

i. The symbols used to define the category of an elementary item and their functions are as
follows.

A Each A in the picture-string represents a character position which can contain only a
letter of the alphabet or a space.

BEach B in the picture-string represents a character position into which a space charac­
ter wi II be inserted during editing.

Examples: (A-FLO contains the value 092469)

MOVE A-FLO TO B-FLO.

MOVE A-FLO TO B-FLO.

~-FLO picture-string

99B99B99

9999BBBB

Also see Note n, "Simple Insertion Editing".

Result

10191 ~12141~16191
10191 2141 ~I~I~I~I

PEach P in the picture-string indi cates an assumed decimal point scal ing position and is
used to specify the location of an assumed decimal point when the point is outside the
positions defined for the item. Ps are not counted in the size of the data item. They
are counted in determining the maximum number of digit positions (18) allowed in nu­
meric edited items or numeric items. Ps can appear only to the left or right of the
picture-string and must appear together. The assumed decimal point is assumed to be
to the left of the string of Ps if the Ps are at the left end of the picture-string and to

5-35

the right of the string of Ps if the Ps are at the right end of the picture-string. If the V
symbol is used in this case, it must appear in either of those positions; it is redundant.

Examples:

PPP9999 (or VPPP9999) defines a data item of four character positions whose contents will be
treated as .000nnnn during any decimal point alignment operation (such as in a MOVE or ADD).

9PPP (or 9PPPV) defines a data item of one character position whose contents will be treated as
nOOO during any decimal point al ignment operation.

,"
S An S in a picture-string indicates that the item has an operational sign and will retain

the sign of any data stored in it. The S must be written as the leftmost character in the
picture-string. If S is not included, all data will be stored in the item as an absolute
value and will be treated as positive in all operations. The S symbol is not counted in
the size of the data item.

V

x

Z

*

A V in a picture-string indicates the location of the assumed decimal point and may
appear only once in a picture-string. The V does not represent a physical character
position and is not counted in the size of the data item. If the assumed decimal point
position is at the right of the rightmost character position of the item, the V is redun­
dant (that is, 9999 is functionally equivalent to 9999V).

Each X in a picture-string represents a character position which can contain any allow­
able character from the complete character set.

Each Z in a picture-string represents the leftmost leading numeric character positions
in which leading zeroes are to be replaced by spaces. Each Z is counted in the size of
the item.

Each * in a picture-string represents the leftmost leading numeric character positions in
which leading zeros are to be replaced by *. Each * is counted in the size of the item.

Examples: (A-FLO contains the value 00305)

B-FLD picture-string Result

MOVE A-FLO TO B-FLO 999999 10 0 01 3 1 0 5

MOVE A-FLO TO B-FLO ZZ9999 I~ ~ o 1310 5

MOVE A-FLO TO B-FLO zzzziz I~ ~ ~131 0 5

MOVE A-FLD TO B-FLO ZZZZ.ZZ 1~13 0 51 • 10 0

Also see Note S, "Zero Suppression Editing".

9

o

Each 9 in a picture-string represents a character position which can contain a digit.
Each 9 is counted in the size of the item.

Each 0 in a picture-string represents a character position into which a zero will be in­
serted. It is counted in the size of the item. The 0 symbol works in the same manner
as the B symbol.

Each, in a picture-string represents a character position into which a comma will be
inserted.

5-36

Examples: {A-FLD contains 362577}

B-FLD picture-string

MOVE A-FLD TO B-FLD

MOVE A-FLD TO B-FLD

9,999,999
Z,ZZZ,ZZZ

10 I, 13161 21 , I 51 71 71
I /).1 /).1 3 I 61 21 , I 51 71 7 I

Also see Note n, IISimple Insertion Editing II .

A . {dot or period} in a picture-string is an editing symbol that represents an actual deci­
mal point. It is used for decimal point alignment and also indicates where a point {.} is
to be inserted. This symbol is counted in the size of the item. Only one . may appear
in a picture-string.

Examples: {A-FLD contains 352~9} t

B-FLD picture-string

MOVE A-FLD TO B-FLD

MOVE A-FLD TO B-FLO

MOVE A-FLO TO B-FLO

99,999.99
ZZ,ZZZ.ZZ

99999.9999

10 131,1512161.\9191
1/).131,1512161·19191

10131512161·191910101

See Noted under MOVE in Chapter 6 for a clarification of the rule governing the third example.

Also see Note 0, IISpecial Editing ll
•

+
Each of these symbols is used as an editing sign-control symbol. When used, they

represent the character position{s} into which the editing sign-control symbol will be

placed. Only one of these symbols can appear in a 'character-string.

The + and - symbols can appear either at the beginning ,or at the end of a picture-string. The
CR and DB symbols can appear only at the end of a picture-string.

+ The character position containing this symbol will contain a + if the sending field either
was unsigned {absolute} or had a positive operational sign; it will contain a - if the send­
ing field had a negative operational sign.

The character position containing this symbol will contain a space if the sending field
either was unsigned {absolute} or had a positive operational sign; it will contain a - if the
sending field had a negative operational sign.

CR~ Each of these symbols requires two character positions. The character positions containing
DB j either of these symbols will contain spaces if the sending field either was unsigned

{absolute} or had a positive operational sign; they will contain the symbol specified if the
sending field had a negative operational sign.

tThe caret (I\) symbol is used to indicate the location of the assumed decimal point.

5-37

Examples: (A-FLO contains 345625, B-FLO contains -345625) t
A A

C FLO picture-string Result

MOVE A-FLO TO C-FLO 9999.99BCR 3 41516 2 5 fll fllfll

MOVE B-FLO TO C-FLO 9999.99BCR 3 41 5 16 2 5 fllC IR I
MOVE A-FLO TO C-FLO +9999.99 + 3 41 5 1 6 2 5

MOVE B-FLO TO C-FLO +9999.99 - 3 4 5\ 6 2 5

MOVE A-FLO TO C-FLO -9999.99 fl 3 4 5 6 .1 2 5

MOVE B-FLO TO C-FLO -9999.99 - 31 4 5 6 215 I
MOVE A-FLO TO C-FLO 9999.990B 31 4 5 6 2151fllfll

MOVE B-FLO TO C-FLO 9999.990B 314 5 6 . 21 5 101 B I
MOVE B-FLO TO C-FLO $9999.99+ 1$ 314 5 6 2151-1

Also see Note P, IIFi xed Insertion Editi ng II .

The + and - can also be used to perform floating insertion editing, a combination of zero sup­
pression and symbol insertion. Floating insertion editing is indicated by the occurrence of two
or more consecutive + or - symbols at the beginning of the picture-string. The total number of
significant positions in the editing field must be at least one greater than the number of signifi­
cant digits in the data to be edited. The floating + or - moves from left to right through any
high-order zeros until a decimal point or the picture character 9 is encountered.

Examples: (A-FLO contains 005625; B-FLO contains -005625)

" "
MOVE A-FLD TO C-FLD

MOVE B-FLD TO C-FLD

MOVE ZERO TO C-FLD

MOVE ZERO TO C-FLD

C-FLO picture-string

++999.99

++++9.99

++999.99

+++++.++

Result

Ifl+lol5 61·2151

[fl fll-15 61.2151

I fl + 10 10 0 I. 01 0 I

I fl fll fll fl fll fl fll fll

(In order for floating to go past decimal point, all numeric positions of item must be represented
by the floating insertion symbol)

MOVE A-FLD TO C-FLD

MOVE B-FLD TO C-FLD

MOVE ZERO TO C-FLD

MOVE ZERO TO C-FLD

--999.99

--999.99

---99.99

Also see Note 0, IIFloating Inserti on Editing II •

Ifllfllo15161·2151

Ifll-I O I51 6 1·2151

Ifllfllfllolol·olol

[jJ fll fll fll fll fl fll fll

t The caret (1\) symbol is used to indicate the location of the assumed decimal point.

5-38

Note that the + and - symbols are distinct from the S (operational sign) symbol. Normally,
the + and - symbols are used to describe display items that are to appear on some printed report;
they provide visual sign indication and cannot be used with items appearing as operands in
arithmetic statements.

$ A $ (or the symbol specified by the CURRENCY SIGN clause in the SPECIAL-NAMES
paragraph) represents the character position into which a $ (or the currency symbol) is to
be placed. This symbol is counted in the size of the item.

Examples: (A-FLD contains 345675)
1\

B-FLD character-string

MOVE A-FLD TO B-FLD

MOVE A-FLD TO B-FLD

$9,999.99

$999,999.99

Also see Note p, IIFixed Insertion Editing II •

The $ symbol can also be used to perform floating insertion editing. Floating insertion editing
is indicated by the occurrence of two or more consecutive $ symbols at the beginning of the
character string. The total number of significant positions in the editing field must be at least
one greater than the number of significant digits in the data to be edited. The floating $ symbol
floats from left to right through any high-order zeros until a decimal point or the picture char­
acter 9 is encountered.

Examples: (A-FLD contains 005625)
1\

B-FLD pi cture-string

MOVE A-FLD TO B-FLD

MOVE A-FLD TO B-FLD

MOVE ZERO TO B-FLD

MOVE ZERO TO B-FLD

$$9,999.99

$$$,$$$.99

$$$,999.99

$$$,$$$.$$

Also see Note q, IIFloating Insertion Editing ll
•

k. There are two general methods of performing editing in the PICTURE clause:

(1) insertion, or

(2) suppression and replacement.

There are four types of insertion editing available:

(1) Simple insertion

(2) Special insertion

(3) Fixed insertion

(4) Floating insertion

There are two types of suppression and replacement editing:

(1) Zero suppression and replacement with spaces

(2) Zero suppression and replacement with asterisks

5-39

I. The type of editing that may be performed upon an item depends on the category to which
the item belongs.

Category Type of Editing Allowed

Alphabetic None

Numeric None

Alphanumeric None

Alphanumeric edited Simple insertion: o and B

Numeric Edited All (except for the restrictions given in Note m)

m. Floating insertion editing and zero suppression/replacement editing are mutually exclusive
in a PICTURE clause. Only one type of replacement can be used with zero suppression in a
PICTURE clause.

n. Simple Insertion Editing (, B O)

The, (comma), B (space), and 0 (zero) constitute those editing symbols used in simple
insertion editing. These insertion characters represent the character position in the item into
which the character wi II be inserted. These symbols are counted in the size of the item.

o. Special Insertion Editing (.)

The • (decimal point) symbol is used in special insertion editing. In addition to its use as
an insertion character, it also represents the position of the decimal point for decimal point
alignment. This symbol is counted in the size of the item. The symbols. and V (assumed

decimal point) are mutually exclusive in a PICTURE clause. If the • is the last symbol in the
character-string, it must be immediately followed by one of the punctuation characters (semi-
colon or period) followed by a space.

p. Fixed Insertion Editing ($ + - CR DB)

The currency symbol ($) and the editing sign control characters (+ - CR DB) constitute the
characters used in fixed insertion editing. Only one $ and one of the editing sign control
characters can be used in a PICTURE character-string. When the symbols CR or DB are used,
they represent two character positions in determining the size of the item. The symbols + or -
when used must be the leftmost or rightmost character positions to be counted in the size of the
item. The $ when used must be the leftmost character position to be counted in the size of the
item, except that it can be preceded by a + or - symbol. A fixed insertion editing character
appears in the same character position in the edited item as it occupied in the PICTURE
character-string.

Editing sign control symbols produce the following results depending on the value of the
data being edited.

5-40

Editing Symbol in Result
PICTURE character-string Data Positive Data Negative

+ + -
- space -
CR 2 spaces CR

DB 2 spaces DB

q. Floating Insertion Editing ($$ ++ --)

The $ and the editing sign control symbols + and - are the floating insertion editing char­
act~rs and are mutually exclusive in a given PICTURE string.

Floating insertion editing is indicated in a PICTURE character-string by using a string of at
least two of the allowable insertion characters to represent the leftmost numeric character
positions into whi ch the insertion characters can be floated. Any of the simple insertion
characters embedded in the string of floating insertion characters or to the immediate right of
this string are part of the floating string.

In a PICTURE character-string, there are only two ways of representing floating insertion
editing:

(1) Represent any two or more of the leading numeric character positions on the left of the
decimal point by the insertion character. The result is that a single insertion character will be
placed in the character position immediately preceding the leftmost nonzero digit of the data
being edited or in the character position immediately preceding the decimal point, or in the
character position represented by the rightmost insertion character, whichever is encountered
first.

(2) Represent all numeric character positions in the character-string by the insertion char­
acter. If the value is not zero, the result is the same as when the insertion character appears
only to the left of the decimal point. If the value is zero, the entire item is set two spaces.

A picture-string containing floating inserting characters must contain at least one more
floating insertion character than the maximum number of significant digits in the item to be
edited. For example, a data field containing five significant digit positions requires an edit­
ing field of at least six significant positions.

All floating inserti on characters are counted in the size of the item.

r. Zero Suppression Editing (Z *)

The suppression of leading zeroes and commas in a data field is indicated by the use of the
Z or the * symbol in a picture-string. These symbols are mutually exclusive in a given picture­
string. Each suppression symbol is counted in the size of the item. If a Z is used, the re­
placement character is a space. If an * is used, the replacement character is an *.

Zero suppression and replacement is indicated by a string of one or more Zs or *s to repre­
sent the leading numeric-character positions which are to be replaced when the associated
character position in the data contains a leading zero. Any of the simple insertion characters
embedded in this string of zero suppressi on symbols or to the immediate right of this string are
part of the string.

If the zero suppression symbols appear only to the left of the decimal point, any leading
zero in the data that corresponds to a zero suppression symbol in the string is replaced by the
replacement character.

5-41

Suppression terminates at the first nonzero digit in the data represented by the suppression
symbol in the string or at the decimal point, whichever is encountered first.

If all numeric character positions in the picture-string are represented by the suppression
symbol and the value of the data is not zero, the result is the same as if the suppression char­
acters were only to the left of the decimal point. If the value is zero, the entire item will be
set to the replacement character (with the exception of the decimal point if the suppression
symbol is an *).

When the * is used and the clause BLANK WHEN ZERO appears in the same entry and
zeros are moved to the field, all character positions with the exception of the decimal point
are replaced by *.

s. The symbols + - * Z and $ when used as floating replacement characters are mutually ex­
clusive within a given picture-string.

t. The foil owi ng chart shows the order of precedence of the vari ous pi cture-string symbols.
Each "Y" on the chart indicates that the symbol in the top row directly above can precede the
symbol at the left of the row in which the "Y" appears.

{ } indicate that the symbols are mutually exclusive.

The P and the fixed inserti on + and - appear twice.

P9, +9, and -9 represent the case where these symbols appear to the left of any numeric
positions in the string.

9P, 9+, and 9- represent the case where these symbols appear to the right of any numeric
positions in the string.

The Z, *, and the floating ++, --, and $$ also appear twice.

Z., *., $$., ++., and --. represent the case where these symbols appear before the
decimal point position •

• Z, • *, .$$, .++, and .-- represent the case where these symbols appear following the
decimal point position.

5-42

z
o
i=
0::::
W
V')

Z -c
w
X u:

0::::
w
:c
I-o

B

0

,

(~~}

~~
~~

$
A
X

P9

9P

S

V

I(;J
1'- •

t;}
9

C~J
[~
$$.

.$$

B 0

Y Y

y y

y y

y y

y y

y y

Y Y

Y y

y y

y y

y y

Y y

y y

y y

y y

y y

FIXED INSERTION

, (~~ ~~ (~~) $

y y y y

y y y y

y y y y

y y y

y y y

y y y

y

y y y y y

y y y y y

y y y

y y y y

y y y y

y y

y y y

y y

y y y

OTHER

A
P9 9P S V [;J [:;} 9' 'r++~l I:~} $$. .$$ X It--.

y y y y y y y y y y

y y y y y y y y y y

y y y y y y y y y

y y y y y

y y

y y y y y y y

y y y y y y y

y y

y y

Y y y

y y y y y y

y y y y y y

y

y y y y

y y y y y y y y

y

y y y y

y
,

y y y y

5-43

REDEFINES

Function

The REDEFINES clause allows the same core memory area to be allocated to two or more data items.

General Format

level-number data-name-l REDEFINES data-name-2

Technical Notes

a. The REDEFINES clause, when used, must immediately follow data-name-l •

b. The level-numbers of data-name-l and data-name-2 must be identical.

c • Thi scI ause must not be used for I eve I-number 66 or 88 items. AI so, it must not be used
for level-Ol entries in the FILE SECTION; implicit redefinition is provided by specifying more
than one data-name in the DATA RECORDS ARE clause in the FD.

d. When the level-number of data-name-2 is other than level-Ol, it should specify a storage
area of the same size as data-name-l. FILLER items may be used to comply with this rule.

e. The REDEFINES entry must immediately follow the entries describing data-name-2.

f. The data description entry for data-name-2 cannot contain an OCCURS clause or be sub­
ordinate to an entry that contains an OCCURS clause. Also, the redefinition entries cannot
contain VALUE clauses, except in condition-name (Ievel-88) entries.

g. Data-name-2 must not be qualified.

h. The following example illustrates the use of the REDEFINES entry. The entries shown
cause AREA-A and AREA-B to occupy the same area in memory.

03 AREA-A.

04 FIELD-l PICTURE IS X(7).

04 FIELD-2 PICTURE IS A(13).

04 FIELD-3.

5-44

05 SUBFIELD-1 PICTURE IS

S999V99 USAGE IS caMP.

05 SUBFIELD-2 PICTURE IS

S999V99 USAGE IS caMP.

03 AREA-B REDEFINES AREA-A.

04 FIELD-A PICTURE IS X(22).

04 FIELD-B PICTURE IS X(5).

04 FILLER PICTURE IS X (9).

Note how the length of each area is calculated so that AREA-B can be defined so that its
size is equal to that of AREA-A.

AREA-A: FIELD-1

FIELD-2

SUBFIELD-1

SUBFIELD-2

Total 6-bit characters

AREA-B: FIELD-A

FIELD-B

FILLER

Total 6-bit characters

7

13

6-bit characters (DISPLAY -6 assumed)

6-bit characters (DISPLAY -6 assumed)

4 6-bit characters (not used because caMP items

must start at a new word boundary)

6

6

36

22

5

9

36

6-bit characters (CaMP items occupy one word I or
six 6-bit character positions)

6-bit characters (CaMP items occupy one word I or
six 6-bit character positions)

6-bit characters (DISPLAY -6 assumed)

6-bit characters (DISPLAY -6 assumed)

6-bit characters (needed to make AREA-B size equal
to AREA-A)

5-45

RENAMES (level-66)

Function

The RENAMES clause permits alternate, possibly overlapping, groupings of elementary items.

General Format

66 data-name-l RENAMES data-name-2 [THRU data-name-3] _

Techni cal Notes

a. All RENAMES entries associated with items in a given record must immediately follow the
last data description entry for that record.

01 data-name-a

(data description entries)

(level-66 entries associated with this logical record)

01 data-name-b.

b. Data-name-l cannot be used as a qualifier, and can be qualified only by the names of the
level-Ol or FD entries associated with it.

c. Data-name-2 and data-name-3 must be the names of items in the associated logical re­
cord and cannot be the same data-name.

Neither data-name-2 nor data-name-3 can have a level-number of 01, 66, 77, or 88.
Neither of these data-names can have an OCCURS clause in its data description entry, nor be
subordinate to an item that has an OCCURS clause in its data description entry.

Data-name-2 must precede data-name-3 in the record description, and data-name-3 can­
not be subordinate to data-name-2. If there is any associated redefinition (REDEFINES), the
ending point of data-name-3 must logically follow the beginning point of data-name-2.

When data-name-3 is specified, data-name-l is a group item that includes all elementary
items starting with data-name-2 (if data-name-2 is ar. elementary item) or the first elementary
item in data-name-2 (if data-name-2 is a group item) and concluding with data-name-3 (or
the last elementary item in data-name-3).

5-46

If data-name-3 is not specified, data-name-2 can be either a group or elementary item.
If it is a group item, data-name-1 is treated as a group item and includes all elementary items
in data-name-2; if data-name-2 is an elementary item, data-name-1 is treated as an elementary
item with the same descriptive clauses.

d. The following examples illustrate the use of the RENAMES entry.

01 RECORD-NAME.

02 FIRST -P ART.

03 PART-A.

04 FIELD-1 PICTURE IS .••

04 FIELD-2 PICTURE IS .••

04 FIELD-3 PICTURE IS •••

03 PART-B.

04 FIELD-4 PICTURE IS •••

04 FIELD-5.

05 FIELD-5A PICTURE IS .••

05 FIELD-5B PICTURE IS •••

02 SECOND-PART.

03 PART-C.

04 FIELD-6 PICTURE IS •..

04 FIELD-7 PICTURE IS •••

66 SUBPART RENAMES PART-B THRU PART-C.

66 SUBPART1 RENAMES FIELD-3 THRU SECOND-PART.

66 SUBPART2 RENAMES FIELD-5B THRU FIELD-7.

66 AMOUNT RENAMES FIELD-7.

5-47

I

SYNCHRONIZED

Function

The SYNCHRONIZED clause specifies the positioning of an elementary item within a computer word

(or words).

General Format

[r SYNCHRONIZEQl
(SYNC)

Technical Notes

(LEFT l]
(RIGHT)

a. This clause can appear only in the data description of an elementary item.

b. This clause specifies that the item being defined is to be placed in an integral number of
computer words and that it is to begin or end at a computer word boundary. No other adjacent
fi elds are to occupy these words. The unused positi ons, however, must be counted when cal­
culating (1) the size of any group to which this elementary item belongs, and (2) the computer
core allocation when the item appears as the object of a REDEFINES clause. However, when
a SYNCHRONIZED item is referenced, the original size of the item (as indicated by the
PICTURE clause) is used in determining such things as truncation, justification, and overflow.

c. SYNCHRONIZED LEFT or SYNC LEFT specifies that the item is to be positioned in such a
way that it wi II begin at the left boundary of a computer word.

SYNCHRONIZED RIGHT or SYNC RIGHT specifies that the item is to be positioned in
such a way that it will terminate at the right boundary of a computer word.

d. When the SYNCHRONIZED clause is specified for an item within the scope of an OCCURS
clause, each occurrence of the item is SYNCHRONIZED.

e. Any FILLER required to position the item as specified will be automatically generated by
the compiler. The content of this FILLER is indeterminate.

f. COMP(UTATIONAL) and COMP(UTATIONAL)-l items are always implicitly
SYNCHRONIZED RIGHT, and therefore cannot be SYNCHRONIZED LEFT.

g. An item subordinate to one containing a VALUE clause cannot be SYNCHRONIZED.

h. Only DISPLAY-6 or DISPLAY-7 items can be SYNCHRONIZED.

5-48

USAGE

Function

The USAGE clause specifies the format of a data item in computer storage.

General Format

[[USAGE IS]

Technical Notes

COMPUTATIONAL
COMP
COMPUTATIONAL-1
COMP-1
DISPLAY
DISPLAY-6
DISPLAY-7
INDEX
DATABASE-KEY

]

a. The USAGE clause can be written at any level. If it is written at a group level, it
applies to each elementary item in the group. The USAGE clause of an elementary item can­
not contradict the USAGE clause of a group to which the item belongs.

The implied USAGE of a group item is DISPLAY-7 if all items subordinate to it are de­
fined as DISPLAY-7i otherwise, its USAGE is DISPLAY-6 (DISPLAY).

b. This clause specifies the manner in which a data item is represented within computer
memory.

c. COMPUTATIONAL (COMP)

(1) COMP is equivalent to COMPUTATIONAL.

(2) A COMPUTATIONAL item represents a value to be used in computations and must be
numeric. Its picture-string can contain only the symbols: 9 S V P
Its value is represented as a binary number with an assumed decimal point.

(3) If a group item is described as COMPUT A TIO NAL, the elementary items in the group
are COMPUTATIONAL. However, the group item itself is not COMPUTATIONAL and
cannot be used as an operand in arithmetic computations.

(4) COMPUTATIONAL items of 10 or fewer decimal positions will be SYNCHRONIZED
RIGHT in one computer word. COMPUTATIONAL items of more than 10 decimal posi­
tions will be SYNCHRONIZED RIGHT in two full computer words.

Version 6 COBOL
Version 7 LlBOl 5-49 November 1974

(5) The following illustrations give the format of a COMPUTATIONAL item.

• sign

I I
o 1 ~

1-WORD COMPUTATIONAL ITEM

~ __ sign
t
I I
o 1 35

=--__ not used

i
o 1 35

2-WORD COMPUTATIONAL ITEM

d. COMPUTATIONAL-1 (COMP-1)

(1) COMP-1 is equivalent to COMPUTA TIONAL-1 •

(2) A COMPUTATIONAL-1 item can contain a value, in floating point format, to be
used in computations and must be numeric. A COMP-1 item must not have a PICTURE.

(3) If a group item is described as COMPUTATIONAL-1, the elementary items within
the group are COMPUTATIONAL-1. However, the group item itself is not COMPUTA­
TIONAL-1 and cannot be used as an operand in arithmetic computations.

(4) COMPUTATIONAL-1 items will be SYNCHRONIZED in one full computer word.

(5) The following illustration gives the format of a COMPUTATIONAL-1 item.

o

sign

binary
exponent

9

e. DISPLAY-6 (DISPLAY)

(1) DISPLAY is equivalent to DISPLAY-6.

mantissa

35

(2) A DISPLAY-6 item represents a string of 6-bit characters. Its picture-string may
contain any picture symbols. Refer to Appendix B for the SIXBIT collating sequence.

(3) DISPLAY-6 items may be SYNICHRONIZED LEFT or SYNCHRONIZED RIGHT, as
desired. Otherwise, they may share a computer word with other DISPLAY-6 items.

(4) The illustration below gives the format of a DISPLAY-6 word.

5-50

(5) If the USAGE clause is omitted for an elementary item, its USAGE is assumed to be
DISPLAY-6 (DISPLAY).

f. DISPLAY-7

(l) A DISPLAY -7 item represents a string of 7-bit ASCII characters. Its picture-string
may contain any picture symbols.

(2) If any item in a record is DISPLAY -7, a II items in that record must be DISPLAY-7.

(3) DISPLAY-7 items can be SYNCHRONIZED LEFT or SYNCHRONIZED RIGHT, as
desired; otherwise, they may share a computer word with other items. If the item is
SYNCHRONIZED RIGHT, the last character of the item will end in bit 34 of a computer
word.

(4) The illustration below gives the format of a DISPLAY-7 word.

o 7 14 21 28 35

g. INDEX

(1) An elementary item described as USAGE INDEX is called an index data-item. It is
treated as a COMP item with PICTURE S9(5) and can be used as a COMP item.

(2) An index data-item must not have a PICTURE.

(3) If a group item is described as INDEX, the elementary items within the group are
treated as INDEX. However, the group item itself is not INDEX and cannot be used as
an operand in arithmetic statements.

(4) Index data items and index-names (defined in the OCCURS clause by the INDEXED
BY option) are equivalent.

(5) If an index-name is defined in an OCCURS clause, it cannot be defined elsewhere.

h. DATABASE-KEY

(1) An item described as USAGE DATABASE-KEY is treated as a COMP item with
PICTURE S9(lO) and can be used as a COMP item.

(2) The item with USAGE DATABASE-KEY must not have a PICTURE.

(3) An item with USAGE DATABASE-KEY is primarily used in programs accessing
data bases through the DECsystem-10 Data Base Management System (DBMS-1 0).
This item can be used to store the value of a data base key. All data base keys are
assigned by DBMS-10 and cannot be changed by the user. Refer to the DBMS-10
Programmer's Procedures Manual (DEC-10-APPMA-A-D) for more information
about DBMS-1 O.

Version 6 COBOL
Version 7 L1BOL 5-51 November 1974

VALUE

Function

The VALUE clause defines the initial value of WORKING-STORAGE items, and the values associated

with condition-names (level-SS).

General Format

FORMAT 1: [VALUE IS literal]

FORMAT 2: [{VALUE IS } literal-1 [THRU literal-2]
VALUES ARE

[. literal-3 [THRU Iiteral-4]] ...]

Technical Notes

a. Format 2 can be specified only for level-SS items.

b. In the FILE SECTION, the VALUE clause can be used only with level-SS items. In the
WORKING-STORAGE SECTION, it can be used at all levels, except level-66. It must not
be stated in a data description entry that contains an OCCURS clause or that is subordinate to
an entry containing an OCCURS clause. Also, it must not be stated in an entry that contains
a REDEFINES clause or that is subordinate to an entry that contains a REDEFINES clause (unless
the VALUE clause is part of a level-SS entry).

c. If the VALUE clause is used at a group level, the I iteral must be a figurative constant or
a nonnumeric literal. The group item is initialized to this value without consideration for the
individual elementary or group items contained within this group. No VALUE clauses can ap­
pear at subordinate levels within the group.

d. If no VALUE clause appears for a WORKING-STORAGE item, the initial value of the
item is unpredi ctable.

e. More information concerning Format 2 can be found under "condition-name (Ievel-SS)"
in this chapter.

5-52

I

f. The VALUE clause must not conflict with other clauses in the data description entry or in
the data description entries within the hierarchy of the item. The following rules apply:

(1) If the category of an item is numeric, all literals in the VALUE clause must be nu­
meric. All literals in a VALUE clause must have a value within the range of values in­
dicated by the PICTURE clause; for example, an item with PICTURE PPP9 may have only
the values in the range .0000 through .0009.

(2) If the category of the item is alphabetic or alphanumeric, all literals in the VALUE
clause must be nonnumeric literals. The literal will be aligned according to the normal
alignment rules (see "JUSTIFIED ") except that the number of characters in the I iteral must
not exceed the size of the item.

(3) If the category of an item is numeric-edited or alphanumeric-edited, no editing of
the value is performed in the VALUE clause.

(4) The USAG E of the literal agrees with the USAG E of the item. Thus, if the item has
USAGE DISPLAY-6, the literal also has USAGE DISPLAY-6 and its value must contain
legal SIXBIT characters.

g. The figurative constants SPACE(S), ZERO(E)(S), QU OTE(S), LOW-VALU E(S), and HIGH­
VALU E(S) may be substituted for a literal. If the item is numeric, only ZERO(E)(S), LOW­
VALUE(S), and HIGH-VALUE(S) are allowed.

5-53 November 1974

REPORT SECTION

The REPORT SECTION contains the descriptions of one or more reports and the report groups that make

up each report.

Report groups are the basic elements of a report. Each report group is divided into report lines, which

are in turn divided into fj elds. The report groups that can appear in a report are:

REPORT HEADING

REPORT FOOiING

PAGE HEADING

PAGE FOOTING

DETAIL

CONTROL HEADING

CONTROL FOOTING

printed once at the beginning

printed once at the end

printed at the beginning of each page

printed at the end of each page

printed for each set of report data

printed at the beginning of each detail
report group when a control break occurs

printed at the end of each detail report
group when a control break occurs

The detail report groups contain the data items that constitute the report. Data items within a detail

group can be designated by the programmer as controls. These control items are in descending order

of rank from FINAL, through major, intermediate, to minor. Each time a control item changes, a con­

trol break is said to occur; the control footings for that detail group are printed, and control headings

for the next detail group are printed before the next detail group is printed. A FINAL control break

occurs twice during the generation of a report, before the first detail I ine is printed and after the last

detail line is printed. The most major control breaks least often and the most minor control breaks

most often. If the most minor control field breaks, the control footing for that control field is gene­

rated, and the control heading for the next detail group for that control is generated. If a more major

control field breaks, the control footings for all fi elds more minor than that which broke are generated,

starting with the most minor and continuing up to the control footing for the control that broke. The

control headings are then printed starting with the control field that broke and continuing through the

most minor control field. An example of a skel eton report follows.

5-54

REPORT HEADING
PAGE HEADING
CONTROL HEADING (FINAL)
CONTROL HEADING (MAJOR)
CONTROL HEADING (MINOR)
DETAIL GROUP

CONTROL FOOTING (MINOR) (control break occurred)
CONTROL HEADING (MINOR)
DETAIL GROUP

CONTROL FOOTING (MINOR)
CONTROL FOOTING (MAJOR) (control break occurred)
CONTROL HEADING (MAJOR)
CONTROL HEADING (MINOR)
DETAIL GROUP

CONTROL FOOTING (MINOR)
CONTROL FOOTING (MAJOR)
CONTROL FOOTING (FINAL) (control break occurred)
PAGE FOOTING
REPORT FOOTING

Within a report file, more than one report can be written. If more than one report is written in a file,

the names of all the reports must be specified in the REPORTS clause of the file description entry, and

a unique code must be specified for each report by means of the CODE clause in the Report Description

of each report. The code must also be identified in the SPECIAL-NAMES section of the ENVIRON­

MENT DIVISION.

To print one of the reports within a report file, the user enters the filename and the code of the de­

sired report into the queue for the line-printer spooler, LPTSPL. LPTSPL copies the report lines with

the designated code to the line printer, but does not erase the lines from the file. The fil e is entered

into the line-printer queue by means of the QUEUE monitor command. The code is specified by the

/REPORT switch in the QUEUE command string •

• QUEUE = filename.ext/REPORT: code

Only the first 12 characters of the code will be accepted in the QUEUE command string.

Included in the description of a report are the number of lines on a report page, where headings

should begin on the page, where footings should end, the column on the page where each item in a

report group is to be placed, and the number of lines that are I eft between report groups.

5-55

To cause a report to be printed, in addition to specifying its format and data in the DATA DIVISION,

the user must include certain verbs in the PROCEDURE DIVISION. These verbs are: INITIATE, which

initializes the report and sets sum counters to zero; GENERATE, which causes report groups to be

generated on specified control breaks; and TERMINATE, which ends the report. An additional state­

ment, USE BEFORE REPORTING, causes programmer-specified procedures to be performed before a

report group is produced.

5-56

Report Description (RD)

Function

The Report Description furnishes information concerning the physical structure for a report.

General Format

RD report-name

[CODE mnemonic-name]

[{ } {

FINAL
CONTROL IS -. --. . . •.
CON TROLS ARE Idenhfler-l [,Idenhfl er-2 J .••

FINAL, identifier-l [,identifier-2J

[{
LIMIT IS }. {LINE } PAGE LIMITS ARE Integer-l LINES

[HEADING integer-2 J [FIRST DETAIL integer-3 J

[LAST DETAIL integer-4J [FOOTING integer-5J

Technical Notes

... }]

a. The order of appearance of the optional clauses is immaterial.

b. The fixed data-name PAGE-COUNTER is automatically generated for each RD entry.
Its function is to contain the current page number of a report. It is a computational item;
its size is equal to the size of the largest field that refers to it in a SOURCE clause. The con­
tents of the PAGE-COUNTER are set to 1 by the INITIATE statement.

c. The fixed data-name LINE-COUNTER is automatically generated for ea'ch RD entry.
Its function is to contain the current line number within a report page. It is a computational
item; its size is based on the number of lines specified in the PAGE-LIMIT clause.

d. PAGE-COUNTER or LINE-COUNTER may be referenced as if it were any data-name. It
must be qualifi ed by the report-name if more than one RD entry is present in the program.

e. Each of the above clauses appears on the following pages.

5-57

CODe

Function

The CODE clause defines a unique string of one or more characters that is affixed to each line of the

report.

General Format

CODE mnemonic-name

Technical Notes

a. This clause is necessary only if more than one report is to be written in a singl e fj Ie.

b. Mnemonic-name is defined in the SPECIAL-NAMES paragraph of the ENVIRONMENT
DIVISION.

c. The character string represented by mnemonic-name is affixed to the beginning of each
report line I and is used to uniquely define the lines of separate reports written in one file.

d. The number of characters represented by mnemonic-name must be the same for the codes
of all reports in the same fi Ie.

5-58

I

CONTROL (5)

Function

The CON TROl clause indicates the identifiers that control the printing of totals in the report.

General Format

{
CONTROL IS }
CONTROLS ARE

Technical Notes

{

FINAL }
identifier-l [,identifier-2] .••
FINAL, identifier-l [, identifier-2] •••

a. The CONTROL clause is required when CONTROL HEADING or CONTROL FOOTING
report groups are specifi ed •

b. The identifi ers specify the control hi erarchy for this report. They are I isted in order
from major to minor; FINAL is the highest I evel of control, identifi er-l is the major control,
identifier-2 is the intermediate control, etc. The last identifier specified is the minor
control. -

c. Identifiers must be defined in the FILE or WORKING-STORAGE SECTION of the
DATA DIVISION. They cannot be subscripted or indexed.

5-59 November 1974

PAGE LIMIT

Function

The PAGE LIMIT clause indicates the specific line control to be maintained within the presentation of

a report page.

G en era I Forma t

PAGE {t:~:~I~RE} integer-l {t:~~s}
[HEADING integer-2] [FIRST DETAIL integer-3]

[LAST DETAIL integer-4] [FOOTING integer-5]

Technical Notes

a. The PAGE LIMIT clause is required when page format must be controlled by the Report
Writer.

b. All integers must have a positive value I ess than 512. Integer-2 through integer-5 must
not be greater than integer-1 •

c. If absolute line spacing is indicated for all report groups (see the LINE and NEXT GROUP
clauses described later in this section), integer-2 through integer-5 need not be specified.

d. The integers specify line numbers relative to the beginning of a page.

e. The HEADING clause specifies the first line of a page to be used; no line will precede
integer-2.

f. The FIRST DETAIL clause specifies the first line of the first DETAIL or CONTROL print
group; no DETAIL or CONTROL group will precede integer-3.

g. The LAST DETAIL clause specifies the last line of a DETAIL or CONTROL HEADING
report group; no such group wi II extend beyond i nteger-4.

h. The FOOTING clause specifies the last line number of the last CONT ROL FOOTING
report group; no CONTROL FOOTING group will extend beyond integer-5.

i. If any optional clause is omitted, a value is assumed for its integer. The default values
are:

5-60

integer-2:

integer-3:

integer-4:

integer-5:

default is 1

default is the value of integer-2

defaul t is the val ue of integer 5 if specifi ed; if integer-5 is
also omitted, the default is the value of integer-l

default is the value of integer-4 if specified; if integer-4 is
omitted, the defaul t is the value of integer-l •

5-61

Report Group Description

Function

The Report Group Description entry specifies the characteristics and format of a particular report group.

General Format

Option 1

01 [data-name-1]

rUNE NUMBER IS {~~t~ei~~~er_2} J L NEXT PAGE

'NEXT GROUP IS { ~~t~~rn-t~er_4}] l NEXT PAGE

TYPE IS

REPORT HEADING

RH

PAGE HEADING

PH

1~NTROL HEADING}

DETAIL

DE

{~NTROL FOOTING}

PAGE FOOTING

PF

REPORT FOOTING

RF

[[USAGE IS] {DISPLAY }]
DISPLAY-6 •
DISPLAY-7

5-62

{
identifier-1}
FINAL

{
identifier-2}
FINAL

(continued on next page)

Option 2

level-number [data-name-1]

[BLANK WHEN ZERO]

[COLUMN NUMBER IS integer-1]

[GROUP INDICATE]

[{~IFIED} RIGHT]

[
LINE NUMBER IS {~~~~rn-t~ger_3}]

NEXT PAGE

[{~nJRE} IS character-string]

[
RESET ON { identifi er-l}]
-- FINAL

{

SOURCE IS identifier-2
SUM identifier-3 [,identifier-4] •••
VALUE IS literal-l

[UPON data-name-21 }

I[USAGE IS] {~!~~~~~-6}] _ L DISPLAY-7

Technical Notes

a. Except for the data-name, which when present must immediately follow the level-number,
the clauses may be written in any order.

b. In order for a report group to be referred to by a PROCEDURE DIVISION statement, it
must have a data-name.

c. All elementary items must have a PICTURE clause and one of the clauses SOURCE, SUM,
or VALUE.

d. For a detailed description of the BLANK WHEN ZE~O, JUSTIFIED, PICTURE, VALUE,
and USAGE clauses, see the pages following the Data Description Entry.

e. The data-name need not appear in an entry unl ess it is referred to by a GENERATE or
USE statement, or reference is made to the SUM counter.

f. If the 01-1 evel item is el ementary, the clauses in Format 2 may be used in addition to the
clauses in F6rmat 1 •

g. The remaining clauses are described in detail on the following pages.

5-63

COLUMN

Function

The COLUMN NUMBER clause indicates the column on the printed page in which the high-order

(leftmost) character of an item will be printed.

General Format

COLUMN NUMBER IS integer

Technical Notes

a. Integer must have a positive value less than 512.

b. This clause is valid only for an elementary item.

c. Within a report group and a particular LINE NUMBER specification, COLUMN NUMBER
entries must be indicated from left to right.

d. If the COLUMN NUMBER clause is omitted, the elementary item, though included in the
description, is suppressed when the report group is produced at object time.

5-64

GROUP INDICATE

Function

The GROUP INDICATE clause indicates that this elementary item is to be produced only on the first

occurrence of the item after any CON TROL or PAGE breaks.

General Format

GROUP INDICATE

Technical Notes

a. This clause can only be used at the elementary level within a TYPE DETAIL report group.

b. A GROUP INDICATEd item is presented in the first detail line of a report after any con­
trol breaks and after any page breaks; it is suppressed at all other times.

5-65

LINE NUMBER

Function

The LINE NUMBER clause indicates the absolute or relative line number entry in reference to the page

or the previous entry.

General Format

Technical Notes

a. Integer-1 and integer-2 must be positive integers with values less than 512. Integer-1
must be within the range specified by the PAGE LIMITS clause in the RD entry.

b. The LINE NUMBER clause must be given for each report line of a report group, and must
be specified at or before the first el ementary item of each report line.

c. If a LINE NUMBER clause is specified for an item, all entries following that item, up to
but not including the next item with a LINE NUMBER clause, are presented on the same line.

d. A LINE NUMBER at a subordinate level may not contradict a LINE NUMBER at a group
level.

e. Integer-l indicates that the current line is to be presented at that line number.

f. PLUS integer-2 indicates that the LINE-COUNTER is to be incremented by the value of
integer-2, and that the current I ine is to be presented on the line specified by the new val ue
of the LINE-COUNTER.

g. NEXT PAGE is used to indicate an automatic skip to the next page before the current line
is presented.

5-66

NEXT GROUP

Function

The NEXT GROUP clause specifies the spacing condition following the last line of the report group.

General Format

{

integer-1 }
NEXT GROUP IS PLUS integer-2

NEXT PAGE ----

Technical Notes

a. The NEXT GROUP clause may appear only at the 01 level of a report group.

b. Integer-1 and integer-2 must be positive integers with values less than 512. Integer-1
cannot exceed the number of lines specifi ed by the PAGE LIMIT clause.

c. Integer-1 indicates a line number to which the LINE-COUNTER is set after the group is
presented.

d. PLUS integer-2 indicates a relative line number that increments the LINE-COUNTER by
the val ue of integer-2 after the group is presented. Integer-2 is the number of I ines skipped
following the last line of the report group.

e. NEXT PAGE indicates an automatic skip to the next page after the group is presented.

5-67

RESET

Function

The RESET clause indicates the CONTROL data-item that causes the SUM counter to be reset to zero

on a control break.

General Format

RESET ON {identifier-l}
-- FINAL

Technical Notes

a. Identifier-l must be one of the identifiers associ-ated with the CONTROL clause in the RD
entry •

b. The RESET clause may be used only in conjunction with a SUM clause at a CONTROL
FOOTING el ementary level.

c. Identifi er-l must be a higher I evel (more major) control identifi er than the control
identifier associated with this report group.

d. After a TYPE CONTROL FOOTING report group is presented I the sum counters associated
with that group are automatically set to zero I unl ess an explicit RESET clause directs that the
counter be cleared at a higher level.

5-68

SOURCE

Function

The SOURCE clause indicates the source of the data for a report item.

General Format

SOURCE IS identifier

Technical Notes

a. The SOURCE clause can only be given at the elementary level.

b. Identifier must indicate an item that appears in the FILE or WORK ING -STORAG E
SECTION.

I c. The identifier cannot be subscripted or indexed.

d. When the report group is presented, the contents of this report item are replaced by the
contents of identifier.

5-69 November 1974

SUM

Function

The SUM clause indicates the items to be summed to produce the source of data for a report item.

Genera I Format

SUM identifier-l [, identifier-2] ••• [UPON data-name-1]

Technical Notes

a. A SUM clause may appear only in a TYPE CONTROL FOOTING report group.

b. Each identifier must indicate a SOURCE item in a TYPE DETAIL report group, or a SUM
counter in a TYPE CONTROL FOOTING report group.

c. If the SUM counter is referred to by a PROCEDURE DIVISION or REPORT SECTION
statement, a data-name must be specified for the item. The data-name then represents the
summation counter automatically generated by the Report Writer; that data-name does not
represent the report group item itself.

d. A summation counter is incremented just before the presentation of the identifiers. Any
editing of the SUM counters is done only when the sum item is presented; at all other times
it is treated as a numeric item.

e. If higher-level report groups are indicated in the control hierarchy, mch lower level that
is figured into the sum is summed into the higher level before each lower level is reset, i.e.,
counters are rolled forward prior to the reset operation.

f. The UPON option is required to obtain selective summation for a particular data item that
is named as a SOURCE item in two or more TYPE DETAIL report groups. Identifier-1 and
identifier-2 must be SOURCE data items in data-name-1; data-name-1 must be the name of a
TYPE DETAIL report group.

g. When the UPON option is used, summation occurs only when a GENERATE statement
references data-name-1. It does not occur during summary reporting (refer to the GENERATE
statement in the PROCEDURE DIVISION).

I h. The identifiers cannot be subscripted or indexed.

5-70 November 1974

TYPE

Function

The lYPE clause specifies the particular type of report group that is described by this entry and indi­

cates the time when the report group is generated.

General Format

TYPE IS

Technical Notes

REPORT HEADING

RH

PAGE HEADING

PH

{~NTROL HEADING}

DETAIL

DE

{~NTROL FOOTING}

PAGE FOOTING

PF

REPORT FOOTING

RF

{
identifier-n}
FINAL

{
identifier-n}
FINAL

a. RH is an abbreviation for REPORT HEADING;
PH is an abbreviation for PAGE HEADING;
CH is an abbreviation for CON TROL HEADING;
DE is an abbreviation for DETAIL;
CF is an abbreviation for CONTROL FOOTING;
PF is an abbreviation for PAGE FOOTING;
RF is an abbreviation for REPORT FOOTING.

b. If the report group is described as TYPE DETAIL I the GENERATE statement in the
PROCEDU RE DIVISION directs the Report Writer to produce the named report group.

c. The REPORT HEADING entry indicates a report group that is produced only once at the
beginning of a report I during the execution of the first GENERATE statement. There may be
only one report group of this type in a report.

5-71

d. The PAGE HEAD ING entry indicates a report group that is automatically produced at the
beginning of each page of the report. There may be only one report group of thi s type in a
report.

e. The CON TROL HEADING entry indicates a report group that is produced at the beginning
of a control group for a designated identifier. In the case of FINAL, it is produced once
before the first control group during the execution of the first GENERATE statement. There
may be only one report group of this type for each identifier and for FINAL.

f. The CONTROL FOOTING entry indicates a report group that is produced at the end of a
control group for a designated identifi er, or that is produced only once at the termination of
a report in the case of FINAL. There may be only one report group of this type for each
identifier and for FINAL. In order to produce any CONTROL FOOTING report groups, a
control break must occur.

g. The PAGE FOOTING entry indicates a report group that is automatically produced at the
bottom of each page of the report. There may be only one report group of this type in a report.

h. The REPORT FOOTING entry indicates a report group that is produced only once, at the
termination of a report. There may be only one report group of this type in a report.

i • Each identifi er, as well as FINAL, must be one of the identifi ers associated with the
CONTROL clause in the RD entry.

5-72

5.9 REPORT EXAMPLE

The following is an example of a program that generates two reports - a summary report and a detail

report. Comments within the program (indicated by an asterisk in the continuation area) are used to

point out report statements and their use in the program. The data for the report and the two reports

follow the program.

*
*
*
*
*
*

IDENTIFICATION DIVISION.
PROGRAM-ID. EXAMPL.
REMARKS.

THIS PROGRAM IS AN EXAMPLE OF THE USE OF THE REPORT-WRITER.

IT GENERATES TWO REPORTS: ONE IS A LIST OF CUSTOMERS BY
CITY AND STATE, THE SECOND IS A LIST OF TOTAL NUMBER OF
CUSTOMERS IN EACH STATE.

BOTH REPORTS ARE GENERATED AT ONE TIME ONTO ONE FILE, TO BE
SEPARATED BY THE LINE-PRINTER SPOOLER.

ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
OBJECT-COMPUTER. PDP-10; MEMORY SIZE 6 MODULES.
SPECIAL-NAMES.

THESE MNEMONIC NAMES DEFINE CODES OF THE TWO REPORTS.
THE APPROPRIATE CODES WILL BE APPENDED TO THE BEGINNING OF EACH
LINE.
NOTE THAT THESE ARE NEEDED ONLY BECAUSE TWO REPORTS ARE WRITTEN
ONTO ONE FILE; IN THE NORMAL CASE OF ONE REPORT PER FILE, THEY
NEED NOT (AND PROBABLY WOULD NOT) BE SPECIFIED.

'A' IS BY-CITY-CODE; 'B' IS STATE-TOTALS-CODE.

INPUT-OUTPUT SECTION.
FILE-CONTROL.

SELECT CUSTOMER-FILE; ASSIGN TO DSK;
RECORDING MODE IS ASCII.

SELECT PRINTER-FILE; ASSIGN TO DSK.
SELECT SORT-FILE; ASSIG N TO DSK, DSK, DSK, DSK, DSK.

DATA DIVISION.
FILE SECTION.

SD SORT-FILE.
01 SORT-RECORD.
02 SORT-NAME
02 SORT -CITY
02 SORT -STATE
02 SORT-STREET
02 SORT-SALES

FD CUSTOMER-FILE;

PIC X (24) •
PIC X(20).
PIC XX.
PIC X(20).
PIC S9(10); COMP.

VALUE OF IDENTIFICATION IS 'CUSTMRDAT'.
01 CUSTMR-RECORD.

02 CUSTMR-NAME
02 CUSTMR-STREET
02 CUSTMR-CITY
02 CUSTMR-STATE
02 CUSTMR-SALES
02 FILLER

PIC X(24).
PIC X(20).
PIC X(20).
PIC XX.
PIC S9(10)V99.
PIC X(302).

5-73

*
*

*
*
*
*

THE 'REPORTS ARE' CLAUSE SAYS THAT THOSE RD-ENTRIES ARE DEFINED IN
THE REPORT SECTION, AND THE REPORTS WILL BE WRITTEN ONTO THIS FILE.

FD PRINTER-FILE;
VALUE OF IDENTIFICATION IS 'CUSTMRLPT';
REPORTS ARE STATE-TOTALS-ONLY, BY-CITY.

01 PRINTER-RECORD PIC X (89).
NOTE THAT THE SIZE OF THE PRINTER RECORD IS LARGE ENOUGH TO CONTAIN
THE LARGEST LINE WRITTEN, PLUS THE 1-CHARACTER CODE.
IT COULD BE LARGER WITH NO CHANGE IN OUTPUT, BUT IT CANNOT
BE SHORTER.

WORKING-STORAGE SECTION.

01 THIS-DATE PIC X(8).
01 TD-REDEFINED REDEFINES THIS-DATE.
02 TD-MONTH PIC Z9.
02 TD-HYF-1 PIC X.
02 TD-DAY PIC 99.
02 TD-HYF-2 PIC X.
02 TD-YEAR PIC 99.

01 UNEDITED-DATE.
02 UE-YEAR
02 UE-MONTH
02 UE-DAY
02 FILLER

PIC 99.
PIC 99.
PIC 99.
PIC X(6).

77 ONE-COUNT PIC S9; COMP; VALUE l.
77 CURRENT-STATE PIC XX.

* THE FOLLOWING IS THE GUTS OF THE PROGRAM. IT DEFINES HOW THE
* REPORTS ARE TO APPEAR ON THE PRINTED PAGES.

* SEVERAL CLAUSES ARE USED AGAIN AND AGAIN. THEY ARE:

* TYPE -
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

THIS SPECIFIES WHERE THE RECORD WILL APPEAR IN THE REPORT.
IT MUST BE SPECIFIED AT THE 01-LEVEL FOR EACH RECORD.
THERE ARE SEVEN TYPES:
REPORT HEADING (RH) - THIS APPEARS ONLY ONCE, AT THE

BEGINNING OF THE REPORT.
REPORT FOOTING (RF) - THIS APPEARS ONLY ONCE, AT THE

END OF THE REPORT.
PAGE HEADING (PH) - THIS APPEARS AT THE TOP OF EACH

PAGE OF THE REPORT.
PAGE FOOTING (PF) - THIS APPEARS AT THE BOTTOM OF EACH

PAGE OF THE REPORT.
CONTROL HEADING (CH) - THIS APPEARS JUST BEFORE ANY

DETAIL LINES WHENEVER THE SPECIFIED CONTROL
FIELD BREAKS (I. E. CHA NGES FROM THE PREVIOUS
RECORD), AND AT THE BEGINNING OF THE FIRST PAGE
AFTER THE PAGE HEADING.
THIS CLAUSE IS WRITTEN 'TYPE CH BREAK-NAME', WHERE
'BREAK-NAME' IS THE FIELD TO TEST FOR A BREAK.

CONTROL FOOTING (CF) - THIS IS PRODUCED WHENEVER THE
SPECIFIED CONTROL FIELD BREAKS (SEE CONTROL HEADING)
AFTER THE LAST DET.b.IL LINE BEFORE THE BREAK.

(Continued next page)

5-74

*
*
*
*

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

*
*
*
*
*
*
*
*
*

*
*
*
*
*
*
*
*

*
*
*
*
*
*

DETAIL (DE) - THIS IS THE DETAIL LINE, USUALLY PRINTED
FOR EACH INPUT RECORD. IT IS PRINTED WHENEVER
THE 'GENERATE DETAIL-L1NE-NAME' STATEMENT IS
EXECUTED IN THE PROCEDURE DIVISION.

LINE - THIS CLAUSE SPECIFIES WHERE ON THE PAGE THE RECORD IS TO
BE PRINTED. IT APPLIES FROM THE ITEM WHICH CONTAINS THE
LINE CLAUSE THROUGH THE END OF THE RECORD, OR UNTIL
ANOTHER CLAUSE IS SPECIFIED,.
THIS CLAUSE COMES IN THREE FLAVORS.
LINE N - 'N ' IS AN INTEGER; THE RECORD WILL BE

PRINTED ON THE NTH LINE OF THE PAGE. IF THAT
LINE HAPPENS TO BE BEFORE THE CURRENT LINE, A
NEW PAGE WILL BE STARTED.

LINE PLUS N - AGAIN, 'N ' IS AN INTEGER. THIS ITEM WILL
BE PRINTED AFTER SKIPPING N-1 LINES.

LINE NEXT PAGE - THE RECORD WILL BE PRINTED ON THE
NEXT PAGE. IF THIS IS A PAGE HEADING,
IT WILL APPEAR ON LINE 1; OTHERWISE IT WILL APPEAR
AFTER THE PAGE HEADING.

COLUMN - THIS CLAUSE SPECIFIES WHERE ON A LINE THE ITEM WILL
APPEAR. IF THIS CLAUSE IS NOT PRESENT FOR A N ITEM, THE
ITEM WILL NOT BE PRINTED.
COLUMNS MUST BE SPECIFIED IN INCREASING ORDER WITHIN
EACH LINE.

VALUE - SAME AS IN FILE AND WORKING-STORAGE SECTIONS.

SOURCE - THIS CLAUSE SPECIFIES WHAT IS TO BE PRINTED. IN
EFFECT, THE DATA-NAME SPECIFIED IN THE SOURCE CLAUSE
IS MOVED TO THE ITEM BEFORE THAT ITEM IS PRINTED.

SUM - THIS CLAUSE SPECIFIES THAT THE DATA-ITEM IS TO BE SUMMED
OR ACCUMULATED. THE CLAUSE IS WRITTEN
'SUM DATA-NAME'; DATA-NAME WILL BE ADDED TO A COMPILER­
GENERATED ACCUMULATOR, AND THAT ACCUMULATOR IS MOVED
TO THE ITEM BEFORE IT IS PRINTED.
SUM CLAUSES MAY APPEAR ONLY IN 'TYPE CONTROL FOOTING '
RECORDS. THE ACCUMULATOR IS CLEARED TO ZERO AFTER BEING
MOVED TO THE ITEM.

REPORT SECTION.

THE FOLLOWING DESCRIBES THE SUMMARY LISTING.
THE CODE CLAUSE SAYS TO PUT A CODE (SEE SPECIAL-NAMES PARAGRAPH)
AT THE BEGINNING OF EACH LINE OF THE REPORT.
THE CONTROL CLAUSE SPECIFIES THE BREAK FIELDS, IN ORDER OF
MOST MAJOR TO MOST MINOR. 'FINAL I IS THE SPECIAL CASE, AND
MEANS 'AT THE END OF THE REPORT ' •

RD STATE-TOTALS-ONLY;
CODE STATE-TOTALS-CODE;
CONTROLS ARE FINAL, SORT-STATE.

5-75

* 'NEXT GROUP PLUS 21 MEANS THAT WHATEVER RECORD FOLLOWS THIS ONE
* WILL BE PRINTED 2 LINES AFTER THIS ONE.

01 TYPE PH; NEXT GROUP PLUS 2.
02 LINE 1 COLUMN 1 PIC X(25); VALUE 'STATE TOTALS OF CUSTOMERS ' •
02 LINE 2 COLUMN 1; PIC X(8); SOURCE THIS-DATE.

01 TYPE CF SORT-STATE; LINE PLUS l.
02 COLUMN 10 PIC ZZ, ZZ9; SUM ONE-COUNT.
02 COLUMN 16 PIC X(5); VALUE I FOR I.
02 COLUMN 21 PIC XX; SOURCE CURRENT-STATE.
02 COLUMN 23 PIC X; VALUE I,..
02 COLUMN 33 PIC X (6); VALUE 'SALES:'.
02 COLUMN 40 PIC $$,$$$,$$$,$$9; SUM SORT-SALES.

01 TYPE CF FINAL; LINE PLUS 2.
02 COLUMN 10 PIC ZZ ,ZZ9; SUM ONE-COU NT.
02 COLUMN 17 PIC X(14); VALUE 'FOR ALL STATES ' •
02 COLUMN 31 PIC X(8); VALUE I, SALES:'.
02 COLUMN 40 PIC $$,$$$,$$$,$$9; SUM SORT-SALES.

* THERE ARE SUM CLAUSES IN THE CONTROL FOOTING RECORDS WHICH
* MENTION THESE ITEMS. THERE IS A RULE ABOUT SUMMING: ONE MAY
* SUM ONLY THOSE ITEMS WHICH APPEAR IN A 'SOURCE ' CLAUSE OF A
* DETAIL ITEM, OR IN ANOTHER SUM CLAUSE.
* NOTE THAT SINCE NO COLUMNS ARE SPECIFIED, NOTHING WOULD BE PRINTED
* EVEN IF WE TRIED TO GENERATE THIS RECORD.

01 TYPE DETAIL.
02 PIC S9(5); SOURCE ONE-COUNT.
02 PIC S9(10); SOURCE SORT -SALES.

* THE FOLLOWING DESCRIBES THE DETAILED REPORT.
* THE 'PAGE LIMIT' CLAUSE MEANS THAT THERE ARE NEVER
* MORE THAN 58 LINES PUT ON A PAGE; GENERATION OF WHAT WOULD
* BE THE 59TH LINE CAUSES AN AUTOMATIC 'TOP OF NEXT PAGEl
* GENERATION, COMPLETE WITH ANY PAGE FOOTING AND/OR PAGE HEADING
* LINES.
* 'FOOTING 58 1 MEANS THAT NO CONTROL FOOTING LINE WILL APPEAR AFTER
* LINE 58, BUT INSTEAD WILL CAUSE AN AUTOMATIC SKIP TO TOP OF PAGE.
* 'FIRST DETAIL 3' MEANS THAT NO DETAIL, CONTROL HEADING, OR CONTROL
* FOOTING LINE WILL APPEAR BEFORE LINE 3.
* 'LAST DETAIL 551 MEANS THAT NO DETAIL LINE WILL APPEAR AFTER
* LINE 55.

RD BY-CITY
CODE BY-CITY-CODE
CONTROLS ARE FINAL, SORT-STATE, SORT-CITY;
PAGE LIMIT IS 58 LINES;

HEADING 1, FOOTING 58, FIRST DETAIL 3, LAST DETAIL 55.

01 REPORT -HEADER; TYPE REPORT HEADING; LINE 25.
02 COLUMN 27; PIC X(27); VALUE 'CUSTOMERS BY CITY AND STATE'.
02 LINE 29 COLUMN 36; PIC X(8); SOURCE THIS-DATE.

01 REPORT -FOOTER; TYPE REPORT FOOTING; LINE PLUS 2.
02 COLUMN 30; PIC X(19); VALU E 1** END OF REPORT **1.

5-76

*
*
*
*
*
*
*
*

*
*

'PAGE-COUNTER' IS A DATA ITEM GENERATED BY THE COMPILER FOR EACH
'RD'ITEM. IT IS, AS ITS NAME IMPLIES, THE PAGE NUMBER. IT IS
SET TO 1 BY AN 'INITIATE' STATEMENT (SEE PROCEDURE DIVISION),
AND BUMPED BY 1 FOR EACH NEW PAGE.
NOTE THAT SINCE WE HAVE TWO 'RD' ITEMS IN THIS PROGRAM, WE
MUST QUALIFY THE PAGE-COUNTER.

THERE IS A SIMILAR COMPILER-GENERATED ITEM, LINE-COU NTER, WHICH
SPECIFIES THE CURRENT LINE NUMBER WITHIN A PAGE.

01 PAGE-HEADI,NG; TYPE PAGE HEADING; LINE l.
02 COLUMN 1 PIC X(33); VALUE 'CUSTOMERS BY CITY AND STATE'.
02 COLUMN 45 PIC X(8); SOURCE THIS-DATE.
02 COLUMN 60 PIC X(4); VALUE 'PAGE'.
02 COLUMN 65 PIC ZZZ9; SOURCE PAGE-COUNTER OF BY-CITY.

01 TYPE CONTROL HEADING SORT-CITY; LINE PLUS 2; NEXT GROUP IS PLUS 1.
02 COLUMN 1 PIC X(l3); VALUE 'CUSTOMER NAME'.
02 COLUMN 30 PIC X(6); VALUE 'STREET'.
02 COLUMN 59 PIC X(5); VALUE 'SALES'.
02 COLUMN 65 PIC X(5); VALUE 'STATE'.
02 COLUMN 71 PIC X(4); VALUE 'CITY'.

'GROUP INDICATE' MEANS PRINT THIS ITEM ONLY ON THE FIRST DETAIL
LINE AFTER A CONTROL BREAK, OR ON THE FIRST DETAIL LINE OF A PAGE.

01 DETAIL-LINE; TYPE DETAIL; LINE PLUS l.
02 COLUMN 1 PIC X(24); SOURCE SORT-NAME.
02 COLUMN 30 PIC X(20); SOURCE SORT-STREET.
02 COLUMN 51 PIC Z,ZZZ,ZZZ,ZZ9; SOURCE SORT-SALES.
02 COLUMN 66 PIC XX; SOURCE SORT-STATE; GROUP INDICATE.
02 COLUMN 69 PIC X(20); SOURCE SORT-CITY; GROUP INDICATE.
02 PIC S9(5); SOURCE ONE-COUNT.

01 CITY-FOOTING; TYPE CONTROL FOOTING SORT -CITY; LINE PLUS 2.
02 COLUMN 10 PIC X(10); VALUE 'CITY TOTAL'.
02 CITY-COUNT COLUMN 22 PIC ZZ,ZZ9; SUM ONE-COUNT.
02 CITY-SALES COLUMN 29 PIC $$,$$$,$$$,$$9; SUM SORT-SALES.

01 STATE-FOOTING; TYPE CF SORT-STATE; LINE PLUS 1; NEXT GROUP NEXT PAGE.
02 COLUMN 7 PIC XX; SOURCE CURRENT-STATE.
02 COLUMN 10 PIC X(ll); VALUE 'STATE TOTALI.
02 STATE-COUNT COLUMN 22 PIC ZZ,ZZ9; SUM CITY-COUNT.
02 STATE-SALES COLUMN 29 PIC $$,$$$,$$$,$$9; SUM CITY-SALES.

01 FINAL-FOOTING; TYPE CF FINAL; LINE PLUS 2.
02 COLUMN 10 PIC X(ll); VALUE 'FINAL TOTAL'.
02 COLUMN 22 PIC ZZ, ZZ9; SUM STATE-COU NT.
02 COLUMN 29 PIC $$,$$$,$$$,$$9; SUM STATE-SALES.

PROCEDURE DIVISION.

* THE 'USE' PROCEDURE FOR A REPORT-RECORD IS EXECUTED JUST BEFORE
* THAT RECORD IS PUT ONTO THE LISTING FILE.

DECLARATIVES.
EOR SECTION. USE BEFORE REPORTING REPORT-FOOTER.
EOR-A. DISPLAY 'END OF REPORTS'.
END DECLARATIVES.

5-77

*
*
*

*
*
*
*
*
*
*
*
*

MAIN SECTION.

START.
SORT SORT-FILE ON ASCENDING KEYS SORT-STATE, SORT-CITY, SORT-NAME;

INPUT PROCEDURE IS IN-PROCEDURE;
OUTPUT PROCEDURE IS OUT -PROCEDURE.

STOP RUN.

IN-PROCEDURE SECTION.

START.
OPEN INPUT CUSTOMER-FILE.

LOOP.
READ CUSTOMER-FILE; AT END GO TO DONE-INPUT.
COMPUTE SORT-SALES ROUNDED = CUSTMR-SALES.
MOVE CUSTMR-NAME TO SORT-NAME.
MOVE CUSTMR-STATE TO SORT-STATE.
MOVE CUSTMR-STREET TO SORT -STREET.
MOVE CU STMR-CITY TO SORT -CITY.
RELEASE SORT-RECORD.
GO TO LOOP.

DONE-INPUT. CLOSE CUSTOMER-FILE.

OUT -PROCEDURE SECTION.

START.
OPEN OUTPUT PRINTER-FILE.
MOVE TODAY TO UNEDITED-DATE.
MOVE UE-DAY TO TD-DAY; MOVE UE-MONTH TO TD-MONTH;

MOVE UE-YEAR TO TD-YEAR; MOVE I_I TO TD-HYF-l, TD-HYF-2.

THE 'INITIATE' STATEMENT INITIALIZES A REPORT. THE"LISTING
FILE MUST BE OPEN, AND THE REPORT ITSELF MUST NOT ALREADY BE
INITIATED.

I NITIA TE BY -C ITY •
INITIATE STATE-TOTALS-ONLY.

LOOP.
RETURN SORT-FILE; AT END GO TO DONE-REPORTS.

THE 'GENERATE' STATEMENT CAUSES THE REPORT WRITER TO TEST THE
BREAK CONTROL FIELDS, AND PRODUCE ANY NECESSARY CONTROL
FOOTING AND/OR HEADING RECORDS.
IF THE OPERAND FOR THE GENERATE IS A DETAIL RECORD, THAT DETAIL
RECORD WILL BE PRINTED AFTER ANY BREAK PRINTING (THIS IS CALLED
'DETAIL REPORTING'); IF THE OPERAND IS AN 'RD' ITEM, ANY
DETAIL LINES FOR THAT 'RD' WILL BE SET UP, BUT NONE WILL BE
PRINTED (THIS IS CALLED 'SUMMARY REPORTING').
THE REPORT MUST BE INITIATED BEFORE GENERATES ARE ALLOWED.

GENERATE DETAIL-LINE.
GENERATE STATE-TOTALS-ONLY.

MOVE SORT-STATE TO CURRENT-STATE.
GO TO LOOP.

5-78

*
*
*
*
*

DONE-REPORTS.

THE 'TERMINATE' STATEMENT COMPLETES THE PROCESSING FOR THE REPORT.
BREAKS ARE FORCED ON EACH CONTROL FIELD, SO THAT CONTROL FOOTING
RECORDS WILL BE PRINTED (CONTROL HEADINGS ARE NOT, HOWEVER). IN
ADDITION, ANY REPORT FOOTING RECORDS WILL BE PUT OUT.
THE REPORT MUST BE INITIATED BEFORE TERMINATION IS ALLOWED.

TERMI NA TE BY -CITY, ST ATE-TOT ALS-ON LY •
CLOSE PRINTER-FILE.

The data that is input to the above program for the reports is shown below.

WORCESTER POLYTECHNIC
DIGITAL EQUIPMENT CORP
MASSACHUSETTS BAY FISH
ABERDEEN t-JIDGET
PRUFROCK CEMENT

PINE POINT
MAIN STREET
100 THE FENl'JAY
10400 PHOXMIRE
10 WASHINGTON ST

WOkCESTEk MA
MAYNARD MA
BOSTON MA
ABERDEEN KA
BOSTON MA

8798858
76549381
12654700

12378
100045

To have the individual reports printed from the file CUSTMR. LPT, the user must issue the QUEUE

monitor command, which will add the reports to the line-printer queue. The command is

.QUEUE = CUSTMR.LPT /REPORT:A, /REPORT:B

A is the code for the first report (the detail report), and B is the code for the second report (the sum­

mary report). Both reports are shown on the following pages.

5-79

CUSTOMERS BY CITY AND STATE

10-12-71

5-80

CUSTOMERS BY CITY AND STATE

CUSTOMER NAME

ABERDEEN WIDGET

CITY TOTAL
KA STATE TOTAL

STREET

10400 PROXMIRE

$124
$124

5-81

10-12-71 PAGE 1

SALES STATE CITY

124 KA ABERDEEN

CUSTOMERS BY CITY AND STATE 10-12-71 PAGE 2

CUSTOMER NAME STREET SALES STATE CITY

MASSACHUSETTS BAY FISH 100 THE F'EN\OJAY 126,,547 MA BOSTON
PRUF'ROCK CEMENT 10 ~JASH INGTON ST 1,,000

CITY TOTAL 2 $127,,547

CUSTOMER NAME STREET SALES STATE CITY

DIGITAL EQUIPMENT CORP MAIN STREET 765,,494 MA MAYNARD

CITY TOTAL $765,,494

CUSTOMER NAME STREET SALES STATE CITY

WORCESTER POLYTECHNIC PINE POINT 87,,989 MA WORCESTER

CITY TOTAL $87,889
MA STATE TOTAL 4 $981,030

5-82

CUSTOt-'IERS BY CITY AND STATE 10-12-71 PAGE 3

FINAL TOTAL 5 $981,154

** END OF REPORT **

5-83

STATE TOTALS OF CUSTOMERS
10-12-71

1 FOR KA,
4 FOR MA,

SALES:
SALES:

5 FOR ALL STATES, SALES:

5-84

$124
$981,030

$981,154

Chapter 6
The PROCEDURE DIVISION

The PROCEDURE DIVISION specifies the processing to be performed on the files and file data

described in the ENVIRONMENT and DATA DIVISIONS. This processing is described by a series of

COBOL procedure statements. Statements, sentences, paragraphs, and sections are described in

Section 6. 1. The PROCEDURE DIVISION must contain at least one paragraph, and each paragraph

must contain at least one sentence. Sections are optional and permit a group of consecutive paragraphs

to be referenced by a single procedure-name; sections can also be used for segmentation purposes (see

"Segmentation"). If any section appears in the PROCEDURE DIVISION, then all paragraphs must

appear within a section.

The first entry in the PROCEDURE DIVISION of a source program must be the division-header.

PROCEDURE DIVISION [USING identifier-l [, identifier-2J •••] .!

The next entry must be either the D ECLARA lIVES header (see "USE"), or a paragraph-name or section-

name.

Only in a subprogram can USING clauses appear in the PROCEDURE DIVISION header. Refer to

Section 8. 11 for more information on subprograms.

When a program-name is specified in a CALL statement in a calling program, control is transferred to

the beginning of the executable code in the subprogram (i .e., the PROCEDURE DIVISION).

The identifiers in the USI NG clause indi cate those data items in the ca lied program that may

reference data items in the calling program. The order of identifiers in the CALL statement of the

call ing program and in the PROCEDURE DIVISION header of the called program is critical. The

items in the USING clauses are related by their corresponding positions, not by name. Corresponding

identifiers refer to a single set of data that is available to both the calling and the called programs.

The number of identifiers in the USING clause in the PROCEDURE DIVISION header must be less

than or equal to the number of identifiers in the USING clause in the CALL statement in the calling

program.

6-1

I

6.1 SYNTACTIC FORMAT OF THE PROCEDURE DIVISION

The PROCEDURE DIVISION consists of a series of procedure statements grouped into sentences, para­

graphs, and sections. By grouping the statements in this manner, reference can be made to them via a

procedure-name (i .e., a paragraph-name ora section-name). The order in which procedure-statements

are executed can be controlled by using the sequence-control verbs ALTER, GO TO, and PERFORM.

6. 1 • 1 Statements and Sentences

Statements fall into three categories: imperative, conditional, and compi ler-direding, depending

upon the verb used. Verbs, in turn, are also classified into certain categories. These categories and

their relationship to the three statement categories are given in Table 6-1.

Verb

ADD
COMPUTE
DIVIDE
MULTIPLY
SUBTRACT

ALTER
CALL
ENTER
ENTRY
EXIT PROGRAM
GOBACK
GO TO
PERFORM
STOP

EXAMINE
MOVE
SET
STRING
UNSTRING

CANCEL
EXAMINE
RELEASE
RETURN
SEARCH
SORT
TRACE

Version 6 COBOL
Version 7 L1BOl

Table 6-1
Procedure Verb and Statement Categories

Verb Category Statement Category

ARITHMETIC IMPERATIVE

SEQUE NCE-CONTROL IMPERATIVE

DATA MOVEMENT IMPERATIVE

MISCELLANEOUS IMPERATIVE

6-2 November 1974

Verb

GENERATE
INITIATE
TERMINATE

ACCEPT
CLOSE
DELETE
DISPLAY
OPEN
READ
REWRITE
SEEK
WRITE

IF

COpy
EXIT
NOTE
USE

ACCEPT COUNT
DISABLE
ENABLE
IF MESSAGE
RECEIVE
SEND

CLOSE
DELETE
FIND
GET
IF
INSERT
INVOKE
MODIFY
MOVE
OPEN
REMOVE
STORE
USE

Table 6-1 (Cont)
Procedure Verb and Statement Categories

Verb Category

REPORT

1-0

CONDITIONAL

COMPILER-DIRECTIN G

* COMMUNICATIONS

** DATA BASE
MANAGEMENT

Statement Category

IMPERATIVE

IMPERATIVE

CONDITIONAL

COMPILER-DIRECTIN G

IMPERATIVE

IMPERATIVE

*These verbs are used when writing programs for use with the DECsystem-10
Message Control System (MCS-10). Refer to the MCS-10 Programmer's
Procedures Manual for more information.

**These verbs are used when writing programs for use with the DECsystem-10
Data Base Management System (DBMS-1 0). Refer to the DBMS-10
Programmer's Procedures Manual for more information.

Version 6 COBOL
Version 7 L1BOL 6-3 November 1974

A statement or sequence of statements terminated by a period forms a sentence. Sentences are classi­

fied into the same three categories as statements.

An imperative sentence consists sole Iy of one or more imperative statements. Except for imperative

sentences containing one of the sequence control verbs, control passes to the next procedural sentence

following execution of the imperative sentence. If a GO TO or STOP RUN statement is present in an

imperative sentence, it must be the last statement in the sentence.

A conditional sentence performs some test and, on the basis of the results of that test, determines

whether a IItrue II or a IIfalse II path should be taken. A conditional sentence is one that contai ns the

conditional verb (IF) or one of the option clauses ON SIZE ERROR (used with arithmetic verbs), AT

END (used with the READ verb), or INVALID KEY (used with the READ verb for mass storage devices).

A com pi ler-directing sentence consists of a single compi ler-directing statement. Compi ler-directing

sentences are used to indicate the end point of a PERFORM loop (EXIT), insert comments in the

PROCEDURE DIVISION (NOTE), and specify procedures for input-output errors and label handling

(USE). Generally, compiler-directing sentences generate no object program coding.

6. 1 .2 Paragraphs

A single sentence or a group of sequential sentences can be assigned a paragraph-name for reference.

The paragraph-name must begin in Area A (see Chapter 2) and terminate with a period. The first sen­

tence of the paragraph can begin after the space following this period or it can begin on the next line,

beginning in Area B.

A paragraph-name must be unique within its section, but need not be unique within the program. A

non-unique paragraph-name must be qualified by its section-name except when it is referenced from

within its own section.

6.1.3 Sections

A single paragraph or a group of sequential paragraphs can be assigned a section-name for reference.

The section-name must begin in Area A and be followed by the word SECTION followed by a priority

number, if desired, followed by a terminating period.

section-name SECTION nne

If the section-name is in the DECLARATIVES portion, it may not have a priority number. A USE state­

ment may appear following the terminating space after the period.

The section-name applies to all paragraphs following it until another section-header is encountered.

6-4

All section-names must be unique within a program. Sections are optional within the PROCEDURE

DIVISION, but if a DECLARATIVES portion is used there must be a named section immediately following

the END DEC LARA TIVES statement.

When a section-name is referenced, the word SECTIO N is not allowed in the reference.

6.2 SEQUENCE OF EXECUTION

In the absence of sequence-control verbs, sentences are executed consecutively within paragraphs,

paragraphs are executed consecutively with in sections, and sections are executed consecutively within

the PROCEDURE DIVISION (with the exception of sections within the DECLARATIVES portion, which

are executed individually when the related condition occurs).

6.3 SEGMENTATION AND SECTION-NAME PRIORITY NUMBERS

COBOL source programs can be written to enable certain portions of the PROCEDURE DIVISION code

to share the same core memory area at object run time, thus decreasing the amount of core required to

run the object program. The method used to achieve this reduction is called segmentation.

Segmentation consists of dividing the PROCEDURE DIVISION sections into logically related groupings

called segments. The programmer defines a segment by assigning the same priority-number (a priority­

number follows the word SECTION in the section-header, and can be in the range 00 through 99) to all

the sections he wants inc luded in that segment; these sections need not appear consecutively in the

source program.

Segments are classified into three groups, depending upon their priority-number. These three groups

are described in Table 6-2.

Priority-Number

None, or 00 up to
SEGMENT -LIMIT
minus 1

SEGMENT -LIMIT
up to 49

Type

Resident
Segment

Nonresident;

Table 6-2
Types of Segments

Description

This segment is always resident in core and is
never overlaid.

These segments are nonresident and are brought
ALTERed GO into core when needed. Any ALTERed GO TOs
TOs retained retain their most recently set values.

6-5

Table 6-2 (Cont)
Types of Segments

Priority-Number Type Description

50 through 99 Nonresident; These segments are a Iso nonresident and are
ALTERed GO brought into core when needed. Any ALTERed
TOs reset GO TOs do not retain their latest values, but

are reset to their original setting each time the
segment is entered from another segment.

In addition to the resident segment, all data areas described in the DATA DIVISION are resident at all

times. Thus, memory can be thought of as being divided into two parts:

a. A resident area, in wh ich reside all data areas and the resident segment, and

b. A nonresident area, equal to the size of the largest nonresident segment, into which each
nonresident segment is read when needed. Since each nonresident segment reads into the same
memory area, any previous nonresident segment in that area is overlaid and must be brought in
again when it is to be executed again.

The resident segment should consist of those sections that constitute the main portion of the
processing. Infrequently used sections can be allocated to the nonresident segments.

6.4 ARITHMETIC EXPRESSIONS

An arithmetic expression is an identifier of a numeric elementary item, or a numeric literal, or such

identifiers and literals separated by arithmetic operators.

Algebraic negation can be indicated by a unary minus symbol.

6.4. 1 Arithmetic Operators

There are five arithmetic operators that may be used in arithmeti c expressions. They are represented by

specific character symbols that must be preceded by a space and followed by a space.

Arithmetic Operator

+

*
/
**

6-6

Meaning

Addition or unary plus
Subtraction or unary minus
Multipl ication
Division
Exponentiation
Exponentiation

6.4.2 Formation and Evaluation Rules

The following rules for formation and evaluation apply to arithmetic expressions.

a. Parentheses specify the order in which elements within an arithmetic expression are to be
evaluated. Expressions within parentheses are evaluated first. Within a nest of parentheses,
the evaluation proceeds from the elements within the innermost pair of parentheses to the outer­
most pair of parentheses. When parentheses are not used, or parenthesized expressions are at
the same level of inclusiveness, the following hierarchal order of operations is implied:

Fi rst: unary +, unary -

then

then

and then

** and t

* and /

+ and -

(exponentiati on)

(multiplication and division)

(addition and subtraction)

b. When the order of a sequence of operations on the same hierarcha I level (e.g., a sequence
of + and - operations) is not completely specified by use of parentheses, the order of operations
is from left to right.

c. An arithmeti c expression may begin only with one of the following:

(- + variable

and may end only with one of the following:

) variable

d. There must be a one-to-one correspondence between left and right parentheses in an arith­
metic expression; each left parenthesis must precede its corresponding right parenthesis.

6.5 CONDITIONAL EXPRESSIONS

A conditional expression causes the object program to select between alternate paths (called the true

and false paths) of control depending upon the truth value of a test. Conditional expressions can be

used in conditional (IF) statements and in PERFORM statements (options 3 and 4). A conditional ex­

pression can be one of the following types:

Relation condition

Class condition

Condition-name condition

Switch-status condition

Sign condition

Each of these types is discussed below.

(greater than, equal to, less than)

(numeric or alphabetic)

(level-aa condition-names)

(SPECIAL-NAMES paragraph)

(positive, negative, zero)

6-7

6.5. 1 Relation Condition

A relation condition causes a comparison of two operands, each of which may be an identifier, a literal,

a figurative constant, or an arithmetic expression. Comparison of two numeric operands is permitted re­

gardless of their formats as described by their respective USAGE clauses. Comparison of two operands is

permitted if each is either DISPLAY-6 or DISPLAY-7. However, for all other comparisons, the operands

must be described as having the same USAGE.

A numeric-edited operand may not be compared to a numeric operand. An alphanumeric operand may not

be compared to a numeric operand un less the alphanumeric operand contains no characters other than

numeric digits. For example, the statement:

IF NUM < "2".

is permissible but the statement:

IF NUM < "2.0".

is not.

6.5.1.1 Format of a Relation Condition - The general format for a relation condition is

identifier-1

literal-1
relati onal-operator

identifi er-2

literal-2

arithmetic-expression-1

figurative-constant-1

ari thmeti c -express i on-2

figurative-constant-2

The first operand is called the subject of the condition; the second operand is called the object of the con­

dition. Either the subject or the object must be an identifier or an arithmetic expression.

6.5.1.2 Relational Operators - Relational operators specify the type of comparison to be made in the

relation condition. Relational operators must be preceded by a space and followed by a space.

Relati ona I Operator

IS [NOT] GREATER THAN

IS [NOT].,.2: THAN

IS [NOT] LESS THAN

IS [NOT] <THAN

IS [NOT] EQUAL (EQUALS) TO

IS [NOT] = TO -- -

Meaning

Greater than, not greater than

Less than, not less than

Equa I to, not equa I to

6.5.1.3 Comparison of Numeric Items - For operands with a numeric category, a comparison results in

the determination that the algebraic value of one of the operands is less than, equal to, or greater than

the other operand. The number of digits contained in the operands is not significant. Zero is considered

6-8

a unique value regardless of the sign (i .e., +0 and -0 are considered equal). Unsigned numeric operands

are considered positive for purposes of comparison.

6.5. 1.4 Comparison of Nonnumeric Items - For operands whose category is nonnumeric (or where one

operand is numeric and the other is nonnumeric), a comparison results in the determination that one of

the operands is less than, equal to, or greater than the other operand with respect to a specified col­

lating sequence of characters (see Appendix B). The size of an operand is the total number of characters

in the operand.

There are three cases to consider: operands of equal size, operands of unequal size, and operands with

differing iustification.

a. Operands of equal size - If the operands are of equal size, characters in corresponding
character positions of the two operands are compared, starting at the higher-order {leftmost) end
and continuing through the low-order end. If all pairs of characters compare equally through
the last pair, the operands are considered to be equal. If they do not all compare equally, the
first pair of unequal characters encountered is compared to determine their relative position in
the collating sequence. The operand containing the character that is positioned higher in the
collating sequence is considered to be the greater operand.

b. Operands of unequal size - If the operands are of unequal size, the comparison of characters
proceeds from the high-order end to the low-order end until either

(1) A pair of unequal characters is encountered, or

(2) One of the operands has no more characters to compare.

If a pair of unequal characters is encountered, the comparison is determined in the manner
described for equal-sized operands.

If the end of one of the operands is encountered before unequal characters are encountered,
this shorter operand is considered to be less than the longer operand unless the remaining char­
acters in the longer operand are spaces, in which case the two operands are considered equal.

c. If one operand is right-iustified and the other is left-iustified, they are compared
lust as they appear in the record. That is, PICTURE XXX, VALUE II B" and PICTURE
XXX, VALUE "B", JUSTIFIED RIGHT are not equal because the first appears in the
record as B66 and the second as 6 6B.

6.5.2 Class Condition

The class condition determines whether the operand is numeric (i .e., whether it consists entirely of the

digits 0 through 9, with or without an operational sign) or alphabetic (i .e., whether it consists entirely

of the characters A through Z and the space).

6.5.2. 1 Format of a Class Condition - The general format of a class condition is

The identifier must be described '" implicitly or explicitly, as DISPLAY, DISPLAY -6, or DISPLAY -7.

6-9

6.5.2.2 The NUMERIC Test - The NUMERIC test cannot be used with an item that is described as al­

phabetic. If the item being tested is not described as containing an operational sign, it will be con­

sidered numeric only if the contents are numeric and an operational sign is not present.

6.5.2.3 The ALPHABETIC Test - The ALPHABETIC test cannot be used with an item that is described

as numeric. The item being tested is determined to be alphabetic only if the contents consist entirely

of any combination of the alphabetic characters A through Z and the space.

6.5.3 Condition-Name Condition

In a condition-name condition, a conditional variable is tested to determine whether or not its value is

equal to one of the values associated with a condition-name {level-88}.

6.5.3. 1 Format of a Condition-Name Condition - The general format for a condition-name condition

is

[NOT] condition-name

If the condition-name is associated with a range of values, then the conditional variable is tested to

determine whether or not its value falls within this range, including the end values.

The rules for comparing a conditional variable with a condition-name value are the same as those spec­

ified for relation conditions.

The result of the test is true if one of the va lues assoCiated with the condition-name equals the value

of its associated conditional variable.

6.5.4 Switch-Status Condition

A switch-status condition determines the on or off status of a hardware switch.

6.5.4. 1 Format of a Switch-Status Condition - The general formats for a switch-status condition are

Format 1:

Format 2:

Format 3:

[NOT] condition-name

mnemonic-name IS [NOT] {g~F}

SWITCH {integer} IS [NOT] {g~}

6-10

In format 1, condition-name is associated with a SWITCH IS ON or OFF STATUS clause in the

SPECIAL-NAMES paragraph of the ENVIRONMENT DIVISION.

In format 2, mnemonic-name is associated with a SWITCH (not an ON or OFF STATUS) in the SPECIAL­

NAMES paragraph of the ENVIRONMENT DIVISION.

In format 3, integer must be in the range from 0 through 35.

In format 1, the result of the test is true if the switch is [NOT] set to the position associated with the

condition-name.

In formats 2 and 3, the result of the test is true if the switch is [NOT] set to the position specified in

the condition.

6.5.5 Sign Condition

The sign condition determines whether or not the algebraic value of a numeric operand is less than,

greater than, or equa I to zero.

6.5.5. 1 Format of a Sign Condition - The general format for a sign condition is

(
identifier) {POSITIVE ~
.. . IS r NOT] NEGATIVE

arithmetic-expression -- ZERO

An operand is positive if its value is greater than zero, negative if its value is less than zero, and zero

if its value is equa I to zero (the sign is ignored if the value is zero).

6.5.6 Logical Operators

The interpretation of any of the above conditions is reversed by preceding the condition with the logical

operator NOT. Any of the above types of conditions can be combined by either of two logical opera­

tors. A logical operator must be preceded by a space and followed by a space.

Logical Operator

OR

AND

Meaning

Entire condition is true if either or both of the
simple conditions are true.

Entire condition is true if both of the simple con­
ditions are true.

6-11

6.5.7 Formation and Evaluation Rules

A conditional expression can be composed of either a simple-condition or a compound-condition. A

simple-condition is one that performs a sing Ie test. A compound-condition is one that contains a string

of simple-conditions connected by the logical operators AND, OR. A compound-condition can contain

any combination of types of conditional expressions {relational, class, cond ition-name, switch-status,

and sign}.

The evaluation rules for conditions are analogous to those given for arithmetic expressions, except that

the following hierarchy applies:

ar i th met i c -express io ns
all relational operators
NOT
AND
OR

Parentheses may be used either to improve readabi I ity or to override the effects of the hierarchy given

above. Each set of conditions within a pair of parentheses is reduced to a single condition. When this

is accomplished, reductions which cross parentheses are done.

Examples:

a. Using parentheses for ease of reading.

The following expression

A = B OR C> D AND F < G AND H IS ALPHABETIC OR I IS NEGATIVE

can be parenthesized for readability without changing its effect as shown below.

{A = B} OR (C > D AND F < G AND H IS ALPHABETIC) OR (I IS NEGATIVE)

If all the conditions within any of the three sets of parentheses are true, then the entire con­
ditional expression is true.

The diagram belo~ illustr~tes the effect of this statement and the order of evaluation.

6-12

TRUE

b. Using parentheses to override normal order of evaluation.

To illustrate this usage, a compound-conditional is shown in three forms, each accompanied by a flow

diagram showing the result of each.

AND F3=F4 OR FS = F6 AND F7 = F8

FALSE

FALSE

6-13

Q
\::Y

AND (F3 = F4 OR FS = F6

FALSE

FALSE

F\ = F2 AND ((F3 = F4 OR F5 = F6) AND F7 = F8)

FALSE

6-14

AND F7 = F8)

6.5.8 Abbreviations in Relation Conditions

When a string of consecutive relation conditions appears in a statement, abbreviations can be used I in

certain cases, for any relation condition other than the first. The subject I or the subject and rela­

tional operator, or the subject, relational operator and logical connective may be omitted. In each of

these cases, the effect of the abbreviated relation condition is as if the omitted parts were the same as

those in the nearest preceding complete relation condition with in the same sentence. There are two

val id forms of abbreviation.

a. Abbreviation 1

If the subject is identical in a series of relational conditions, it can be omitted in all the
relational conditions except the first.

Example: A = B OR A < C AND A = D OR A = E

can be abbreviated to

A = B OR < C AND = D OR = E

b. Abbreviation 2

If subjects and relational operators are identical in a series of relational conditions, they
can be omitted in all the relational conditions except the first.

Example: A = B OR A = C AND A = D OR A = E

can be abbreviated to

A = B OR C AND D OR E

6.6 COMMON OPTIONS ASSOCIATED WITH THE ARITHMETIC VERBS

Associated with the five arithmetic verbs (ADD, COMPUTE, DIVIDE, MULTIPLY, and SUBTRACT) are

two options: the ROUND ED option, and the 0 N SIZE ERROR option. These two options are described

here to avoid the necessity of including their descriptions with each of the arithmetic verbs.

If the ROUNDED option is specified, the absolute value of the item is increased by 1 if the leftmost

truncated digit is greater than 4.

6-15

Example: result:

resultant-identifier picture:

stored result without
ROUNDED option:

stored result with
ROUNDED option:

5671\8756

999V99

When the low-order positions in a resultant-identifier are represented by the symbol P in the PICTURE

associated with the resultant-identifier I rounding or truncation occurs relative to the rightmost integer

position for which storage is allocated.

Example: result: 5388

resultant-identifier picture: 99PP

stored result without
53

ROUNDED option:

stored result with
54

ROUNDED option:

6.6.1 The SIZE ERROR Option

If I after dec imal point al ignment, the number of significant digits in the resu It of an arithmetic opera­

tion is greater than the number of integer positions provided in the result-identifier, a size error con­

dition occurs. Division by zero always causes a size error condition. The size error condition applies

to both the intermediate results and the final result of an arithmetic operation. If the ROUNDED option

is specified I rounding takes place before checking for size error. When such a size error does occur,

the subsequent action depends upon whether or not the SIZE ERROR option is specified.

If the SIZE ERROR is not specified and a size error condition occurs, the value of the resultant-identifier

is unpredictable, and no additional action is taken.

If SIZE ERROR is specified, and a size error condition occurs, then the values of the resultant-identi­

fier{s} affected by the size errors are not altered. Values for resultant-identifier{s) for which no size

error condition occurs are unaffected by size errors that occur for other resultant-identifier{s}. After

completion of the execution of the arithmetic operation, the statement{s} after SIZE ERROR is executed.

I Example: ADD A TO B ON SIZE ERROR GO TO OVERFLW

I

A: 954

B:

Result:

PICTURE IS 999; VALUE 954.

The contents of B are left unchanged and control is transferred
to the paragraph or section named OVERFLW

6-16 November 1974

6.7 THE CORRESPONDING OPTION

The CORRESPONDING option is used in the formats of two of the arithmetic verbs (ADD and SUB­

TRACT) and in the format of the MOVE verb.

For the purpose of this discussion, d
1

and d
2

represent identifiers that refer to group items. A pair of

data items, one from d 1 and one from d
2

, correspond if the following conditions exist:

a. A data item in d1 and a -data item in d2 have the same data-name and the same qualifica­
tion up to, but not including, d1 and d2 •

b. Both of the data items are elementary numeric data items in the case of an ADD or
SUBTRACT statement with the CORRESPONDING option.

Neither d
1

nor d
2

may be data items with level-number 66, 77, or 88.

Each data item subordinate to d1 or d2 that contains a RENAMES, a REDEFINES or an
OCCURS clause is ignored. However, d1 and d2 may have REDEFINES or OCCURS clauses
or be subordinate to data items with REDEFINES or OCCURS clauses.

See "ADD, II "MOVE, II and "SUBTRACT" for information on the specific formats and results of the use

of the CORR ESPON DI NG opti on.

6.8 DETERMINATION OF USAGE IN ARITHMETIC COMPUTATIONS

If a programmer describes a numeric field as having USAGE DISPLAY-6 or DISPLAY-7, the compiler

converts this data to fixed-point binary when performing arithmetic computations with it. If the field

contains 10 or fewer digits, it is converted to single-precision fixed-point binary. Conversion to

double-precision fixed-point binary is performed if the field contains more than 10 digits. A field

described as COMPUTATIONAL (or INDEX) is fixed-point binary; single-precision for 10 or fewer

digits, double-precision for more than 10 digits. A field described as COMPUTATIONAL-1 is floating­

point binary.

When any arithmetic computation is performed, the arithmetic usage (single-precision fixed-point,

double-precision fixed-point, or floating-point) used for each operation is determined from the usages

of the two operands of the computation. If either operand is floating-point, the operation is performed

in floating-point arithmetic. If neither operand is floating-point, but one operand is double-precision

fixed-point, the operation is performed in double-precision fixed-point arithmetic. Otherwise, the

operation is performed in single-precision fixed-point arithmetic. If both operands are constants, the

operation is performed in single- or double-precision fixed-point arithmetic, as appropriate.

If any nonnumeric characters appear in the DISPLAY-6 or DISPLAY-7 field that is to be converted, the

compiler attempts to convert them to binary; however, in many cases, undefined results can occur.

When DISPLAY-6 and DISPLAY-7 characters are converted to binary, the following rules apply.

6-17

o through 9

A through I

?

J through R

Nulls

Leading spaces
and tabs

+ and -

are converted to 0 through 9.

are converted to 1 through 9.

is converted to O.

are converted to 1 through 9, and the field is made negative
if it is found in the low-order digit, unless an explicit sign is
present.

is converted to 0, and the field is made negative if it is found
in the low-order digit, unless an explicit sign is present.

are ignored.

are ignored.

are treated as sign characters.

Scanning of a field proceeds from left to right, it stops when one of the following conditions is met:

a. The entire field has been scanned.

b. A trai ling space, tab, plus, or minus is seen.

If both leading and trailing signs appear in the field, the trailing sign will be ignored.

6.9 PROCEDURE DIVISION VERB FORMATS

The format of each PROCEDURE DIVISION verb is given on the following pages. The verbs are pre­

sented in alphabeti cal order.

The word "identifier" is a data-name followed, as required, by any qualification, subscripts, and/or

indexes to make the data-name unique.

6-18

ACCEPT

Function

The ACCEPT statement causes low-volume data to be read from the user's terminal.

Genera I Format

ACCEPT identifier-1 [, identifi er-2J ••• [FROM mnemonic-name]

Technical Notes

a. The ACCEPT statement causes the next set of data available from the terminal to replace
the contents of the item named by identifier-l, identifier-2, .0.0

b. If the FROM option is specified, the mnemonic-name must appear in the CONSOLE IS
clause of the SPEC IAL - NAMES paragraph.

c. When the data to be read for one or more ACCEPT statements is numeric, comma (,),
I] space, or tab is used as a delimiter separating the data items.

6-19 November 1974

ADD

Function

The ADD statement computes the sum of two or more numeric operands and stores the result.

Genera I Format

Option 1

Option 2

Option 3

ADD rdentifier-i'\ [, {identifier-2~]
l!iteral-l J literal-2 J TO identifier-m ~OUNDEDJ

[. identifier-n [ROUNDED] J ...
[ON SIZE ERROR statement-l [, statement-2] !.]

ADD [identifier-1\ ,{ identifier-2} [,{ identifier-3~] .••

lliteral-l J literal-2 literal-3 J
GIVING identifier-m [ROUNDED] [identifier-n [ROUNDED]] .••

[ON SIZE ERROR statement-l [, statement-2J ••• ..:.]

~
CORRESPONDINGJ

ADD identifier-l TO identifier-2
CORR

[ROUND ED] [0 N SIZE ERROR statement-l [, statement-2J • •• .:]

6-20

Technical Notes

a. Each ADD statement must contain at least two operands (i .e., an addend and an augend).

In options 1 and 2, each identifier must refer to an elementary numeric item, except that
identifiers appearing to the right of the word GIVING may refer to numeric edited items. In
option 3, each identifi er must refer to a group item.

Each literal must be a numeric literal; the figurative constant ZERO is permitted.

b. The composite of all operands (i .e., the data item resulting from the superimposition of
all operands aligned by decimal point) must not contain more than 19 decimal digits.

c. Option 1 causes the values of the operands preceding the word TO to be algebraically
summed. The resultant sum is then added to the current value of identifier-m and this result
replaces the current value in identifier-m. If other identifiers follow, the same process is re­
peated for each of them.

d. Option 2 causes the values of the operands preceding the word GIVING to be algebrai­
cally summed. The resultant sum then replaces the current contents of identifier-m. If other
identifiers follow, their contents are also replaced by this resultant sum. The current values of
identifier-m, id~ntifier-n, ••• do not enter into the arithmeti c computati on.

e. Option 3 causes the data items in the group item associated with identifier-1 to be added
to the current value of the corresponding data items associated with identifier-2, and each re­
sult replaces the value of the corresponding data-items associated with idEmtifier-2. The cri­
teria used to determine whether two items are corresponding are described under liThe COR­
RESPONDING Option II at the beginning of this chapter.

f. The ROUNDED and ON SIZE ERROR options are described earlier in this chapter under
"Common Options Associated with Arithmetic Verbs II •

6-21

ALTER

Function

The ALTER statement changes the object of one or more GO TO statements.

Genera I Format

ALTER procedure-name-l TO PROCEED TO procedure-name 2

C procedure-name-3 TO PROCEED TO procedure-name-4]

Technical Notes

a. During execution of the object program, the ALTER statement modifies the GO TO statement
in the paragraph named procedure-name-l, procedure-name-3, ••. replacing the object of the
GO TO by procedure-name-2, procedure-name-4, .•• , respectively.

b. Each procedure-name-l, procedure-name-3, .••• must be the name of a paragraph that
contains only a single GO TO statement without the DEPENDING option.

c. Each procedure-name-2, procedure-name-4, ••• must be the name of a paragraph or sec­
tion within the PROCED URE DIVISION.

d. A GO TO statement in a section whose priority is greater than or equal to 50 must not be
referred to by an ALTER statement in a section with a different priority.

e. An ALTER statement in a procedure not in the DEC LARA TIVES portion of the program may
not reference a procedure name within the DECLARA TIVES; conversely, an ALTER statement
within the DECLARATIVES may not reference a procedure-name not in the DECLARATIVES.

f. Restrictions similar to those in Note e also apply to the INPUT PROCEDURES and to the
OUTPUT PROCEDURES associated with sort verbs.

6-22

CALL

Function

The CALL statement is used to transfer control to a subprogram.

Genera I Format

CALL {program-namel
entry-name J [US [N G identifier-I [, i denti fie r-2J • • •] .!.

Technical Notes

a. Program-name is a 1-to-6 character name (PROGRAM-ID) of the subprogram to be called.
Entry-name is a 1-to-6 character name of an entry point in the subprogram. Either name can
be enclosed in quotation marks, but can contain only letters and digits.

b. If the program-name is used, the entry point wi II be at the beginning of the executable
code in the subprogram.

c. Called programs can call other subprograms, but a called program cannot call, either
directly or indirectly, any part of itse If or the program that called it.

d. The number of operands in each USING clause of the CALL statement must be greater
than or equal to the number of operands in the ENTRY statement or PROCEDURE DIVISION
header in the subprogram.

e. Each of the operands in the USING clause may be any item defined in the FILE,
WORKING-STORAGE, or LINKAGE SECTION of the calling program. However, these
items must be word-aligned, i.e., they must begin on a word boundary. 01- and 77-level
items are always word-a ligned. Any other item can be word-al igned by means of the
SYNCHRONIZED LEFT clause.

f. The identifiers in the USING clause indicate those data items in the calling program that
may be referenced (or whose subordinate parts may be referenced) in the called program. The
order of the identifiers in the CALL statement in the calling program and in the PROCEDURE
DIVISION header or ENTRY statement of the called program is critical. The items in the
USING clause are related by their corresponding positions, not by name. Corresponding
identifiers refer to a single set of data that is available to both the calling and called programs.

(continued on next page)

November, 1974

6-23

o

g. The first time a called program is entered, its state is that of a fresh copy. Subsequently,
un less the program has been cancelled, its state when entered is exactly as it was left after
the last exit from it. That is, all internal variables, altered GO TO's, and the like are
exactly as they were left. However, external data (i.e., data described in the LINKAGE
SECTION) may have been changed since the last exit.

h. Refer to Section 8. 11 for more information on subprograms.

6-24 November 1974

CLOSE

Function

The CLOSE statement terminates the processing of input and output files, reels, or units.

General Format

[{~~~T }] [{ NO ~WIND } J CLOSE file-name WITH LOCK
DELETE

[, fil e-name-l [{~E~~T } 1 [{NO REWIND} 1
J WITH LOCK

DELETE

Technical Notes

a. Each fi Ie-name must appear as the subject of an FD entry in the FILE SECTION of the
DA TA DIVISION.

b. The REEL, UNIT, and NO REWIND options apply only to magnetic tape files. UNIT
is synonymous with REEL.

c. The DELETE option applies only to disk and DECtape files. If this option is included,
the fi Ie wi II be deleted from the device.

d. For the purpose of showing the effect of various CLOSE options as applied to the various
storage media, all input, output, and input-output files are divided into the following three
mutually exclusive categories:

(1)

(2)

(3)

NON-REEL

SINGLE-REEL

MUL TI-REEL

A file whose device is such that the concepts of
REWIND, REEL, or UNIT have no meaning. This
category includes files residing on disk, punched
cards, paper tape, I ine printer, and Tel etype.

A file that is entirely contained on one reel or unit.

A file that may be contained on more than one reel or
unit.

The results of each CLOSE option for each of the above types of files are summarized in
Table 6-3. The definitions for the symbols used in this table are given below. Where the
definition depends upon whether the file is an input or output file, alternate definitions are
given; otherwise, the single definition given applies to both input and output files.

6-25

A Any subsequent reels of this fi Ie will not be processed.

B The current reel is not rewound.

C Standard CLOSE File Procedure

INPUT and 1-0 Fi les (see IIOPEN II)

If the fi Ie is positioned at its end, the user's ENDING FILE LABEL PROCEDUREs
are performed, if the user has specified any via a USE statement. An input file
is considered to be at the end-of-file if the imperative-statement in the AT END
clause of a READ for the file has been executed, and no CLOSE statement for
the fi I e has been executed.

OUTPUT Fi les

If LABEL RECORDS are STANDARD, an ending label is created and written on
the output medium. Then, any user ENDING FILE LABEL PROCEDUREs are per­
formed.

D The current reel is rewound and unloaded.

E Any attempt to subsequently OPEN this file will result in an error message being typed
and the run terminated.

F Standard CLOSE REEL Procedure

INPUT Files

(1) If the file is assigned to more than one device, the next device specified in
the ASSIGN clause becomes the current device. If no other device is specified,
the first device mentioned becomes the current device.

(2) The standard beginning reel label procedure and the user's BEGINNING
REEL LABEL PROCEDURE (specified in a USE statement) are performed for the
new reel.

OUTPUT and 1-0 Files

(1) The standard ending reel label procedure and any user's ENDING REEL
LABEL PROCEDURE are performed.

(2) If the file is assigned to more than one device, the devices are swapped. A
halt occurs to allow the user to mount an available reel.

(3) The standard beginning reel label procedure and any user's BEGINNING
REEL LABEL PROCEDURE are performed.

G The tape is rewound.

H The fi Ie is deleted from the device.

X Illegal. This is an illegal combination of a CLOSE option and a file type.

6-26

Table 6-3
CLOSE Options and File Types

File Type

NON-REEL
SINGLE

MUL TI-REEL
REEL/UNIT

CLOSE C C,G C,G,A

CLOSE C,E C,G ,E C,G,E,A
WITH LOCK

CLOSE WITH X C,B C,B,A
NO REWIND

c CLOSE REEL X X F ,G
0
""- CLOSE REEL X X F ,D 0..
0 WITH LOCK
UJ
V')

CLOSE REEL X X F,B 0
.....J WITH NO u

REWIND

CLOSE WITH C,H X X
DELETE

e. If a fi I e is OPENed but not CL OSEd before the STOP RU N statement is executed, the fil e
will be automatically CLOSEd.

f. If the file has been specified with an OPTIONAL clause in the FILE-CONTROL paragraph
of the ENVIRONMENT DNISION and the file was not present for this run, the CLOSE has no
effect.

g. If a CLOSE statement without the REEL or UNIT option has been executed for a file, a
READ, WRITE, or CLOSE statement for that file must not be executed until another OPEN for
that fil e has been executed.

6-27

COMPUTE

Function

The COMPUTE statement assigns to a data item the value of a numeric data item, literal, or arithmetic

expression.

Genera I Format

COMPUTE identifier-1 eRO UND ED] EQUAL TO I it.eral-1. .
{

EQUALS } {identifier-2 }

= arithmetic-expression

[ON SIZE ERROR statement-1 [, statement-2J ~]

Technical Notes

a. The COMPUTE statement allows the user to combine arithmetic operations without the
restrictions on the composite of operands and/or receiving data items imposed by the arithmetic
statements ADD, SUBTRACT, MULTIPLY, and DIVIDE. If the composite operand exceeds 19
decimal digits I the composite is converted to COMP-1 format.

b. Identifier-1 must be an elementary numeric or numeric edited item.

c. Identifier-2 must be an elementary numeric item. Literal-1 must be a numeric literal.

The identifier-2 and Iiteral-1 options provide a method for setting the value of identifier-1
equal to identifier-2 or litera 1-1 .

d. The rules for forming arithmetic expressions and the order of evaluation are given earlier
in this chapter under "Arithmetic Expressions. II

e. The ROUNDED and SIZE ERROR options are described earlier in this chapter under
"Common Options Associated with the Arithmetic Verbs II.

6-28

DELETE

Function

The DELETE statement removes a specified record from a file whose access mode is INDEXED.

General Format

DELETE record-name INVALID KEY statement-l G statement-2] .!

Technical Notes

a. Record-name must be a record associated with a file whose access mode is INDEXED.

b. When the DELE TE statement is executed, the record in the fil e that has a key equal in
va lue to the SYMBOLIC key for the fi I e is removed from the fi Ie. If no such record exists,
the statement(s) associated with the INVALID KEY clause is executed.

c. At the time that the DELETE statement is executed, the file must be open for OUTPUT or
INPUT-OUTPUT.

6-29

DISPLAY

Function

The DISPLAY statement causes low-volume data to be written on the user's Teletype console.

Genera I Format

DISPLAY (~itera.l: 1) [(literal-2 lJ
Identlfler-l 'identifier-2j· •.

[UPON mnemo~ic-name] [WITH NO ADVANCING]

Technical Notes

a. The contents of each operand are written on the user's Teletype console in the order listed.

b. Each of the I iterals can be numeric or nonnumeric, or one of the figurative constants. If
a figurative constant is specified as one of the operands, only a single occurrence of that con­
stant is written on the device.

c. The mnemonic-name must appear in the CONSOLE clause in the SPECIAL-NAMES para­
graph of the Environment Division.

d. If WITH NO ADVANCING is specified, the Teletype does not advance to the next line.
Thus, printing or type-in can continue on the same line.

6-30

DIVIDE

Function

The DIVIDE statement divides one numeric item into another and sets the value of a data item equal to

the result °

General Format

Option 1

DIVID E C1t:~:it~~r-l} 1 NTO ident ifi er-2 [RO UN D ED] [REMAI ND ER identifier-4J

[0 N SIZE ERROR statement-1 [, statement-2J 000 .!.]

Option 2

DIVIDE ridentifier-2} BY °d t"f -1 'ROUNDED] 'REMAINDER identifier-4] lliteral-2 - I en I ler lJ U

[ON SIZE ERROR statement-1 [, statement-2] 000 ~]

Option 3

DIVIDE ri~entifier-1} INTO fi~entifier-2l GIVING identifier-3
lhteral-1 -- ~lteral-2)

[ROUNDED] [REMAINDER identifier-4]

[ON SIZE ERROR statement-1 [, statement-2J 000 -!.]

Option 4

DIVIDE (identifier-2) BY Cidentifier-ll GIVING identifier-3
lliteral-2 - literal-1)

[ROUNDED] [REMAINDER identifier-4]

[ON SIZE ERROR statement-1 [, statement-2J .!.J

6-31

I

Technical Notes

a. The value of identifier-lor literal-l is divided into the value of identifier-2 or literal-2.

In option 1 I the resulting quotient replaces the value of identifier-2. In option 2, the re­
su Iting quotient replaces the value of identifier-l. In options 3 and 4 I the resulting quotient
replaces the va lue of identifier-3.

b. Each DIVIDE statement must contain two operands (i. e. I a dividend and a divisor). Both
of these operands (identifier-l and identifier-2) must refer to elementary numeric items. Iden­
tifier-3 may be an elementary numeric or numeric edited item. Each literal-lor literal-2 must
be a numeric literal.

c. The ROUNDED and SIZE ERROR options are described earlier in this chapter under "Com­
mon Options Associated with Arithmetic Verbs".

d. If the REMAINDER clause is used I the resulting remainder replaces the value of identifier-4.

e. The composite of all operands r. .e. , the data item resulting from the superimposition of all
operands aligned by decimal point) must not contain more than 19 decimal digits.

6-32 November 1974

I

I
•

o

I

ENTER

Function

The ENTER statement allows the execution of MACRO, FORTRAN-10, and FORTRAN IV subroutines

in conjunction with the COBOL program.

Genera I Format

ENTER

{

MACRO} -
FORTRAN-IV program-n':lme
FORTRAN
COBOL

[~.dentifjer-l J ~{identifjer-2 J] J
USING literal-l literal-2

procedure-name-l I procedure-name-2 .••

Technical Notes

a. MACRO refers to MACRO assembly language, FORTRAN-IV to the old DECsystem-10
FORTRAN language, and FORTRAN to the new DECsystem-10 FORTRAN-10 language.

b. The program-name can be enclosed in quotation marks.

c. The ENTER statement generates a subroutine call followed by the address in which the
items associated with the USING clause are located. The ENTER statement is discussed fur­
ther in Appendix C.

d. ENTER COBOL is equivalent to CALL.

6-33 November 1974

ENTRY

Function

The ENTRY statement establ ishes an entry point in a subprogram.

Genera I Format

ENTRY entry-name [USING identifier-I [. identifier-2] •• .] -'

Technical Notes

a. The ENTRY statement can only be used in a subprogram.

b. Control is passed to the entry point by a CALL statement in a calling program.

c. Entry-name is a 1-to-6 character name that can contain only letters and digits. It
can, however, be enclosed in quotation marks. This name must not be the same as any
other entry-name or PROGRAM-ID in any program with which the subprogram containing
it is loaded.

d. The identifiers listed in the USING clause must be defined as 01- or 77-level items
in the LINKAGE SECTION of the subprogram containing the ENTRY statement.

e. The number of operands in the USING clause of an ENTRY statement must be less
than or equal to the number of operands in any CALL statement referencing that ENTRY
statement.

f. The identifiers in the USING clause indicate those data items in the called program
that may reference data items in the ca II ing program. The order of identifiers in the CALL
statement in the calling program and in the ENTRY statement in the called program is
critical. The items in the USING clauses are related by their corresponding positions,
not by name. Corresponding identifiers refer to a single set of data that is available to
both the calling and called programs.

g. At run-time, ENTRY statements are ignored unless there are specific ca lis to them.

h. Refer to Section 8. 11 for more information on subprograms.

6-34

EXAMINE

Function

The EXAMINE statement replaces or counts the number of occurrences of a given character in a data

item.

General Format

EXAMINE identifier

{

ALL }
TALLYING LEADING literal-1

UNTIL FIRST ----
[REPLACING BY JiteraJ-2]

{
ALL }

REPLACING LEADING literal-l
[UNTIL] FIRST -- --

BY literal-2

Technical Notes

a. The USAGE of identifier must be DISPLAY or DISPLAY-7, implicitly or explicitly.

b. Each literal must consist of a single character belonging to a class consistent with that of
the identifier. A literal may be any figurative constant.

c. Examination starts at the leftmost character of the identifier and proceeds to the right.

d. When the TALLYING option is used, a count is kept of

(1) Occurrences of litera 1-1 when the ALL option is used.

(2) Occurrences of I iteral-l prior to a character other than I iteral-1 when the LEADI NG
option is used.

(3) Characters prior to the first occurrence of literal-1 when the UNTIL FIRST option
is used.

6-35

This count replaces the contents of the special register called TALLY (see "Special Registers,"
Chapter 1) . TALLY has a PICTURE of S99999, and can be referenced in any statement where an
identifier referring to an elementary numeric data item is valid.

If the REPLACING BY clause is used with the TALLYING option, replacement is performed
according to the rules below.

e. When either of the REPLACING BY options are used, replacement rules are

(1) If the ALL option is used, literal-2 is substituted for each occurrence of literal-1.

(2) If the LEADING option is used, the substitution of literal-2 for literal-1 terminates
as soon as a character other than I iteral-1 is encountered.

(3) If the UNTIL FIRST option is used, literal-2 is substituted for each character prior to
the first occurrence of literal-1.

(4) If the FIRST option is used, I iteral-2 is substituted for only the first occurrence of
literal-1.

f. If the identifier is classified as numeric, it must consist solely of numeric characters. It
may possess an operational sign, but this sign is ignored by the EXAMINE process.

6-36

EXIT

Function

The EXIT statement provides a common end point for a series of routines executed by a PERFORM or

USE statement.

Genera I Format

paragraph -name. EXIT.

T echni ca I Notes

a. EXIT must be the first sentence in a paragraph. Only NOTE may follow.

b. The EXIT statement may be used to provide an end point for a series of paragraphs that are
PERFORMed, or at the end of a section in the DECLARATIVES. By using EXIT at the end of
the range of a PERFORM or USE, a variety of exits from the performed procedure can be ac­
complished by making each point at which an exit is required a transfer to the EXIT paragraph.
However, unless EXIT is specified as the end of the range of a PERFORM or USE or is placed as
the last paragraph in the range of a PERFORM or USE, it is ignored.

Example:

PERFORM TAX-ROUTINE THROUGH EXIT-RTE.

TAX-ROUTINE.
IF TOTAL-TAX IS EQUAL TO OR GREATER THAN TAX-LIMIT
GO TO EXIT -RTE.
MULTIPLy

DEDUCTION-RTE.
IF NO-OF-DEPENDENTS IS EQUAL TO ZERO
GO TO EXIT -RTE.
MULTIPLY NO-OF-DEPENDENTS BY DEP-DEDUCT

EXIT -RTE. EXIT.

c. If control reaches an EXIT statemeryt and no associated PERFORM or USE statement is active
or if EXIT is not the last paragraph in the range of a PERFORM or USE statement even if the
PERFORM or USE statement is active, control passes through the EXIT paragraph to the first
statement of the next paragraph. .

6-37

EXIT PROGRAM

Function

The EXIT PROGRAM statement is used to return control from a subprogram to its calling program.

Genera I Format

EXIT PROGRAM.

Techni ca I Notes

a. EXIT PROGRAM can only appear in a subprogram.

b. When an EXIT PROGRAM statement is executed, control is returned to the calling
program at the statement immediately following the CALL statement.

c. If an EXIT PROGRAM statement is encountered in a subprogram that is operating as
a main program, it is ignored.

d. Refer to Section 8. 11 for more information on subprograms.

6-38

o

GENERATE

Function

The GENERATE statement causes the Report-Writer to execute all automatic report operations, and, if

required, produce one or more report group.

General Format

GENERATE identifier

Technical Notes

a. If identifier is the name of a TYPE DETAIL report group, the GENERATE statement per­
forms all the automatic report operations, and produces an output detai I report group on the
output file. This is called detailed reporting.

b. If the identifier is the name of an RD entry, the GENERATE statement performs all the
automatic report operati ons, but does not produce an output detail report group. This is
ca II ed summary reporti ng .

c. A GENERATE statement performs the following automatic operations:

(1) Steps and tests the LINE-COUNTER and/or PAGE-COUNTER to produce, if
necessary, any PAGE FOOTING and PAGE HEADING report groups.

(2) Recognizes any specified control breaks to produce appropriate CONTROL FOOTING
and CONTROL HEADING report groups, and resets appropriate summation counters.

(3) Accumulates into the summation counters all specified identifiers.

(4) Executes any routines defined by a USE statement.

(5) If this is detailed reporting, produces the detailed report group.

d. During the execution of the first GENERATE statement for a report, the foil owing groups,
if specified, are produced:

(1) Report Heading
(2) Page Headi ng
(3) All Control Headings, in the order major to minor.
(4) The detail report group, if this is detailed reporting.

e. Data is moved to the data item in the Report Group Description Entry according to the
same rules for movement described for the MOVE statement.

f. A GENERATE statement for a particular report may not be executed until an INITIATE
statement has been executed for that report. In addition, if a TERMINATE statement has been
executed for that report, a GENERATE statement may not be executed until an intervening
INITIATE statement is executed for the report.

g. Refer to "REPORT EXAMPLE" in Section 5.7 for an example of a report-writing program.

6-39 November 1974

GO

Function

The GO TO statement causes control to be transferred from one part of the PROCEDURE DIVISIO N to

another.

Genera I Format

Option 1

Option 2

GO TO [procedure-name-l]

GO TO procedure-name-l, procedure-name-2 [, procedure-name-3] •••

DEPENDING ON identifier

Technical Notes

a. Each procedure-name is the name of a paragraph or section in the PROCEDURE DIVISIO N
of the program.

b. Option 1 causes transfer of control to the specified procedure-name, or to some other
procedure-name if the GO TO has been previ ously ALTERed.

In order to be alterable, Option 1 must appear as the first sentence in a paragraph; only
NOTE may follow.

If procedure-name-l is not specified, the GO TO must be alterable and an associated
ALTER statement must be executed prior to executing this GO TO.

When this form of GO TO appears in an imperative sentence, it must appear as the last
or only statement in the sentence, except for NOTE.

c . Opti on 2 causes transfer of control to procedure-name-l, procedure-name-2, ••• or
procedure-name-n depending on whether the value of the identifier is 1, 2, ••• or n, re­
spectively.

The identifier must refer to an elementary numeric item having no positions to the right of
the decimal point. The item may not be USAGE COMPUTATIONAL-l.

If the value of the identifier is other than the positive integers 1, 2, ••• or n, the GO TO
statement is by-passed.

6-40

GOBACK

Function

The GOBACK statement is used in a subprogram to return control to the calling program.

Genera I Format

GOBACK.

Technical Notes

a. The GOBACK statement can only be used in subprograms.

b. When control reaches a GOBACK statement, control is returned to the calling program
at the statement immediately following the CALL statement.

c. If a GOBACK statement is encountered in a subprogram that is operating as a main
program, it is treated as a STOP RUN statement.

d. Refer to Section 8. 11 for more information on subprograms.

6-41

IF

Function

The IF statement causes a conditional expression to be evaluated and the subsequent operations to be

performed to be determined as a result of this evaluation.

Genera I Format

I

lf conditional expression

{

statement-l [, statement-2]

NEXT SENTENCE }

IELSE {statement-3 [, statement-4J o. o} J
L NEXT SENTENCE •

a. Conditional expressions are discussed in Paragraph 6.5 in this chapter.

b. The subsequent action of the program is determined by whether the conditional expression
is true or false. .

(1) If the conditional expression is true and statement-l and any followi ng statements are
given, statement-l and any following statements are executed and, provided that they do
not contain a GO TO or STOP RUN, control passes to the next sentence.

If the conditional expression is true and NEXT SENTENCE is, given, control passes to
the next sentence.

(2) If the conditional expression is false and statement-3 and any following statements are
given, statement-3 and any following statements are executed and, provided that they do
not contain a GO TO or STOP RUN, control passes to the next sentence.

If the conditional expression is false and either ELSE NEXT SENTENCE is given or the
entire ELSE clause is omitted, control passes to the next sentence.

c. Statement-l, statement-2, statement-3, and statement-4 may be any statement or sequence
of statements.

Any statement may contain another IF statement; in this case, this second IF statement is
said to be nested. Nested IF statements may be considered paired IF and ELSE combinations.
Each subsequent ELSE encountered is considered to app Iy to the nearest preceding IF that has
not already been paired with an ELSE. In other words, the pairing process begins with the in­
nermost nested IF ••• ELSE pair and works outward.

6-42 November 1 974

Example: (c = condition; s = statement)

6
IF c-l IF c-2 s-2 ELSE IF c-3 s-3 ELSE s-4 'ELSE s-5. 1

t
y 1 1

6-43

INITIATE

Function

The INITIATE statement is used to initialize all counters before a report is produced.

General Format

INITIATE report-name-l [,report-name-2]

Technical Notes

a. Each report-name must be defined by an RD entry in the REPORT SECTION of the DATA
DIVISION.

b. The INITIATE statement resets all data-name entries that contain SUM clauses associated
wi th a report.

c. The PAGE-COUNTER is set to 1 during the execution of an INITIATE statement. If a
different starting value for the PAGE-COUNTER is desired, it may be reset following the
INITIATE statement before the execution of the first GENERA TE statement.

d. The LINE-COUNTER is set to 0 during execution of the INITIATE statement.

e. The IN ITIATE statement does not open the fi I e with which the report is associated. An
OPEN statement must be executed prior to the execution of the INITIATE statement.

f. A second INITIATE statement for a particular report-name may not be executed until a
TERMINATE statement for that report-name is executed.

g. An example ofa report-writing program is shown in Section 5.7 in Chapter 5.

6-44

MOVE

Function

The MOVE statement transfers data in accordance with the rules of editing, from one data area to one

or more data areas.

Genera I Format

Option 1

MOVE ridentifier- it TO·d ·f· 2
__ lliteral-l) I entl ler- [, identifier-3J ...

Option 2

MOVE (CORRESPONDI NG) identifier-l TO identifier-2
-- CORR

T echn i ca I Notes

a. Identifier-1 (or literal-l) represents the data to be moved and is called the sending item.
Identifier-2, identifier-3, .•. represent the receiving data items.

b. In option 1, the data contained in identifier-lor literal-1 is moved first to identifier-2,
then identifier-3, etc.

In option 2, data items within the group item associated with identifier-1 are moved to
corresponding data items within the group item associated with identifier-2. The results are
the same as if the user had referred to each pair of corresponding identifiers in separate MOVE
statements. The criteria used to determine whether two items are corresponding are described
under liThe CORRESPONDING Option II at the beginning of this chapter.

c. The following rules apply to both group and elementary items; a group item is treated as a
single field._

(1) A numeric edited, alphanumeric edited, or alphabetic data item must not be moved to
a numeric or numeri c edited data item.

(2) A numeric or numeric edited item must not be moved to an alphabetic data item.

(3) A numeric item whose implicit decimal point is not immediately to the right of the
least significant digit must not be moved to an alphanumeric or alphanumeric edited item.

All other moves are lega I.

6-45

I

d. The following rules apply to legal moves.

(1) When an alphanumeric, alphanumeric edited, or alphabetic item is the receiving item,

(a) If the size of the sending field is greater than the size of the receiving field, the
least significant (rightmost) characters are truncated if the receiving field is not de­
scribed by a JUSTIFIED RIGHT clause; the most significant (leftmost) characters are
truncated if the receiving field is described as JUSTIFIED RIGHT.

(b) If the size of the sending field is less than the size of the receiving field, spaces
are placed in the remain ing rightmost characters of the receiving field if the receiving
field is not described by a JUSTIFIED RIGHT clause; spaces are placed in the remain­
ing leftmost characters of the receiving field if the receiving field is described by a
JUSTIFIED RIGHT clause.

(c) If the siz~s of the sending and receiving fields are equal, no truncation or filling
with spaces takes place.

(2) When a numeric or numeric edited item is the receiving item, the sending and re­
ceiving fields are aligned by decimal point. If the sending field is not numeric, the deci­
mal point is assumed to be on the right. Any necessary zero filling takes place before
editing. If the receiving item has no operational sign, the absolute value of the sending
item is stored. If the receiving item has fewer digits to the left or right of the decimal
point than does the sending item, the excess digits are truncated. If the sending item
contains any nonnumeric characters, the result is unpredictable.

(3) Any necessary conversion of data from one form of internal representation to another is
performed automatically during the move, along with any editing specified by the PICTURE
of the receiving item.

e. Any move that is not an elementary move (that is, both the sending and receiving items are
not elementary items) is called a group move. A group move is treated as if it were an alpha­
numeric to alphanumeric elementary move, except that there is no conversion of data from one
form of internal representation to another. In other words, the individual data descriptions of
the items within the sending group item and the receiving group item are completely ignored
and both items are treated as though they were described by a PICTURE IS X(n} clause, where n
is the number of character positions in the particular item.

6-46 November 1974

MULTIPLY

Function

The MULTIPLY statement causes one data item to be multiplied by another data item and the resulting

product to be stored ina data item.

General Format

Option 1

MULTIPLY ridentifier-l) BY'd t'r -2 [ROUNDED] lliteral-l - I en I ler

[0 N SIZE ERROR statement-l [, statement-2] ••• .:]

Option 2

MULTIPLY ri~entifier-1) BY r i~entifier-2) GIVI NG identifier-3
ll,teral-1 - ll,teral-2

[ROUNDED] [ON SIZE ERROR statement-l [, statement-~ J
Technical Notes

a. Each MULTIPLY statement must contain at least two operands (a multiplicand and a multi­
plier). Each identifier must refer to an elementary numeric item, except that identifier-3 may
refer to either a numeric or a numeric edited item. Each literal must be a numeric literal; the
figurative constants ZERO and TALLY are permitted.

b. Option 1 causes the value of identifier-lor literal-1 to be multiplied by the value of
identifier-2. The resultant product replaces the value of identifier-2.

c. Option 2 causes the value of identifier-lor literal-l to be multiplied by the value of
identifier-2 or literal-2. The resultant product replaces the value of identifier-3.

d. The ROUNDED and SIZE ERROR options are described earlier in this chapter under "Com­
mon Options Associated with Arithmetic Verbs".

e. The composite of all operands O.e., the data item resulting from the superimposition of
all operands aligned by decimal point) must not contain more than 19 decimal digits.

6-47 November 1 974

NOTE

Function

The NOTE statement allows the programmer to insert comments in the PROCEDURE DIVISION of his

program.

Genera I Format

NOTE character-string .:.

Technical Notes

a. Any combination of characters from the ASCII character set may be included in the
character-stri ng.

b. If the NOTE sentence appears as the first sentence in a paragraph, the entire paragraph
is considered to be part of the character-string. The paragraph is ended when a new paragraph
is begun. A new paragraph has its first word starting in Area A.

c. I f the NOTE statement appears as other than the first sentence in a paragraph, the
character-string ends at the first period followed by a space or carriage return.

d. The contents of the character-string appear on the compilation listing, but are not compiled.

6-48

OPEN

Function

The OPEN statement initiates the processing of fi les and, where necessary, performs the checking and

writing of labels,

General Format

l
{~~~p~T } file-name-1 [WITH NO REWIND] [, file-name-2 [WITH NO REWIND]] '"

OPEN

{ I -0 } f'l I 4] INPUT-OUTPUT I e-name-3 [, fi e-name- .••

T echn i ca I Notes

a. The OPEN statement must be executed for a file prior to the execution of any SEEK,
READ, WRITE, or CLOSE for that file.

b. A second OPEN statement for a fi Ie cannot be executed prior to the execution of a CLOSE
st~tement for that fi Ie.

c. An OPEN statement does not obtain or release the first record of a file. A READ statement
must be executed to obtain the first record (or a WRITE statement must be executed to release
the first record).

d. Up to 16 files can be opened at a time. If the program is segmented, one less file can be
open; similarly, if the RERUN option is being used, one less file can be open. When indexed
sequential files are being used, each indexed sequential file is treated as two files: the index
file and the data file. The key word INPUT, OUTPUT, INPUT -OUTPUT, or 1-0 applies to
each subsequent file-name until another such key word is encountered or until the end of the
OPEN statement is reached.

e. The NO REWIND option has meaning only for magtape files and is ignored for all other
devices. If the NO REWIND clause is not specified for a tape file, the tape is rewound to the
beginning of tape.

f. If labels exist, the label is read into the record area to make it available to the USE
routines. The record area is then filled with spaces. If a file has been described as LABEL
RECORDS ARE STANDARD, standard labcl checking or label writing is performed; the user's
BEGINNING LABEL (USE) routines are executed if provided. If a file has been described as
LABEL RECORDS ARE data-name-l, the user's BEGINNING LABEL (USE) routines are executed,
If a fi Ie has been described as LABEL RECORDS ARE OMITTED, no labe I checking or writing is
performed 0

6-49

•

I

g. If an INPUT file is described as OPTIONAL (in the FILE-CONTROL paragraph), the
operating system will type the message

IS fi Ie-name PRESENT?

and wait for the user to type IIYES II or IINO II. If the user types IINO II, the first READ state­
ment for this fi Ie causes the imperative-statement at the AT END or INVALID KEY clause to
be executed.

h. The 1-0 or IN PUT -OUTPUT options permit the opening of a file on a random-access de­
vice for both input and output processing. When the 1-0 option is specified, the execution
of the 0 PEN statement causes the standard beginning label procedures (see Chapter 8) and
the user's BEGINNING LABEL routines, if specified by a USE statement, to be executed.
If the file does not exist when it is opened for IN PUT -OUTPUT, an empty file is created.

6-50 November 1974

PERFORM

Function

The PERFORM statement is used to depart from the norma I sequence of execution in order to execute

one or more procedures and then return control to the norma I sequence 0

Genera I Format

Option 1

Option 2

Option 3

Option 4

PERFORM procedure-name-l [THRU procedure-name-2]

PERFORM procedure-name-l [THRU procedure-name-2]

(~dentifier-1J TIMES
I nteger-l --

PERFORM procedure-name-l [THRU procedure-name-~

UNTIL condition-l

PERFORM procedure-name-l [THRU procedure-name-2]

VARYING identifier-l FROM {Iiteral-l }
identifier-2

{
literal-2 }

BY 0d tOfO 3 UNTIL condition-l
- I en I ler- --~

[AFTER VARYING identifier-4 FROM {literal-3 J
--- identifier-5

6-51

{
literal-4 } 0 0

BY 0d ·f· 6 UNTIL condltlon-2
- I entl ler-

I AFTER VARYING identifier-7 FROM [!ditertaOlf:5 a} L: I en I ler-

[I iteral-6 J 0 0 3J~ BY 0d of· 9 UNTIL condltlon-
- I entl ler-

Technical Notes

a. Each procedure-name is the name of a section or paragraph in the PROCEDURE DIVISIO N.
Each identifier must refer to a numeric elementary item described in the DATA DIVISION 0
Each literal must be a numeric literal or the figurative constants ZERO and TALLY 0

b. When the PERFORM statement is executed, control is transferred to the first statement
of procedure-name-l. An automatic return to the statement following the PERFORM
statement is established as follows. The procedures executed constitute the range of the
PERFORM.

(1) If procedure-name-l is a paragraph-name and procedure-name-2 is not specified, the
return is after the last statement of procedure-name-l 0

(2) If procedure-name-l is a section-name and procedure-name-2 is not specified, the
return is after the last statement in the last paragraph in procedure-name-l .

(3) If procedure-name-2 is a paragraph-name, the return is after the last statement in that
paragraph 0

(4) If procedure-name-2 is a section-name, the return is after the last statement in the last
paragraph of that section.

c. There is no relationship between procedure-name-l and procedure-name-2, except that the
sequence of operations beginni ng at procedure-name-l must eventually end with the execution
of procedure-name-2 in order to effect the return at the end of procedure-name-2o Any number
of GO TO and/or PERFORM statements may occur between procedure-name-l and procedure­
name-2.

do If control passes to these procedures by means other than a PERFORM statement, control
passes through the return po int to the fo "owi ng statement as though no return mechan ism were
present 0

eo No perform statement may terminate until all PERFORM statements that it has executed
have terminated 0 No PERFORM statement may be executed which terminates at the same
procedure-name as another active PERFORM.

6-52

f. Option 1 causes the PERFORM range to be executed once, followed by a return to the
statement immediately following the PERFORM.

g. Option 2 causes the PERFORM range to be executed the number of times specified by
identifier-lor integer-l. The value of identifier-lor integer-l must not be negative; it may
be zero. Once the PERFORM statement has been initialized, any modification to the contents
of identifier-l has no effect on the number of times the range is executed.

h. Option 3 causes the PERFORM range to be executed until the condition specifieq in the
UNTIL clause is true. If this condition is true at the time the PERFORM statement is initial­
ized, the range is not executed. Conditions are explained under "Conditional Expressions"
earlier in this chapter.

i. Option 4 is used to augment the value of one or more identifiers during the execution of
a PERFORM statement.

In option 4, when only one identifier is varied, identifier-l is set equal to identifier-2
or literal-2 when the PERFORM statement is initialized. If the condition specified is deter­
mined to be false at this point, the PERFORM range is executed once. Then the value of
identifier-l is augmented by identifier-3 or literal-3 and the test of the condition is done
again. This cycle continues until condition-l is true; at this point, control passes to the
statement following the PERFORM statement. If condition-l is true at the beginning of the
execution of the PERFORM, control immediately passes to the statement following the PER­
FORM.

The flow chart below illustrates the logic of the PERFORM cycle when two identifiers are
varied.

6-53

Set d I equal

to d2 or 12

Set d4 equal

to dS or IS

Execute

PI [THRU P21

Augment d4

by d6 or 16

TRUE

TRUE

6-54

each di represents an identifier

each I i represents a literal

each ci represents a condition

each Pi represents a procedure-name

Set d4 equal

to dS or IS

Augment dl

by d3 or 13

The following flow chart illustrates the logic of the PERFORM cycle when three identifiers
are varied.

Sct <II to <12 or 12

Sct <14 to <IS or IS

Sct <17 to <18 or 18

Execute PI

[TIIRU P2J

Augment d7

by d9 or 19

TRUE

TRUE

TRUE

Set d7 to

d8 or 18

Augment d4

by d6 or 16

Set d4 to

dS or IS

Augment dl

by d3 or 13

i. A PERFORM statement that appears in a section whose priority is less than the SEGMENT­
LIMIT can have in its range only those procedures contained in sections

(1) Each of which has a priority number less than 50, or

(2) Wholly contained in a single segment whose priority number is greater than 49.

A PERFORM statement that appears in a section whose priority number is equal to or greater
than SEGMENT LIMIT, can have in its range only those procedures contained in sections

(1) Each of which has the same priority number as that containing the PERFORM statement,
or

6-55

(2) Each of which has a priority that is less than the SEGMENT-LIMIT.

When a procedure-name in a segment with a priority number greater than 49 is referred to
by a PERFORM statement contained in a segment with a different priority number, the segment
referred to is made avai lable in its initial state (that is, with all ALTERable GO TOs set to their
initial setting) for each execution of the PERFORM statement.

k. A PERFORM statement in a section not in the DECLARATIVES may have as its range, pro­
cedures wholly contained within the DECLARATIVESi however, a PERFORM statement in a
section within the DECLARATIVES may not have any non-DECLARATIVE procedures within its
range.

I . A PERFORM statement within an INPUT or OUTPUT PROCEDURE associated with a SORT
verb may not have within its range any procedures outside of that INPUT or OUTPUT proce­
dure.

6-56

READ

Function

The READ ~tatement makes avai labl e a logical record from an input fi I e and allows performance of a

specified imperative statement when end-of-file or invalid key is detected.

General Format

READ file-name RECORD

[INTO identifier] { ~~-J~~D KEY} statement-l [, statement-2 J ••• :

Technical Notes

a. An OPEN INPUT or OPEN 1-0 statement must be executed for the file prior to execution
of the first READ statement for that file.

b. The AT END clause is valid only for those files whose access mode is SEQUENTIAL
(expl ici tly or impl ici tl y) .

The INVALID KEY clause is valid only for those files whose access mode is RANDOM or
INDEXED.

If an end-of-file condition is encountered during the execution of a READ statement for a
sequential fil e, the statement{s) specified in the AT EN D clause is executed, and no logical
record is made available.

The logical end-of-file depends upon the type of device to which the file is assigned (see
DECsystem-10 Monitor Calls manual, which appears in the DECsystem-10 Software Notebooks).
After execution of the imperative-statement{s) in the AT END clause, no further READ state­
ments can be executed for that file without first executing a CLOSE statement followed by an
OPE N statement for the fi Ie.

If, during the execution of a READ statement for a file whose access mode is RANDOM,
the ACTUAL KEY is found to contain a value not within the range specified by the FILE­
LIMITS clause for that file or a value for a record that has not been written (i.e., a zero­
length record), the statement{s} specified in the INVALID KEY clause is executed and no
logical record is made available.

When a READ statement is executed for a fi Ie whose access mode is RANDOM and the
ACTUAL KEY contains a value of 0, the first nonzero-length record having a key higher
than the last record processed {by a READ or WRITE statement} is made available. If no
such record exists (i.e., end-of-file), the INVALID KEY statement{s} is executed and no
record is made available. If the file has been opened but no READ or WRITE statement has
been executed, the first nonzero-length record is made available. The user can use this
method to sequentially read a file whose access mode is RANDOM.

6-57

When a READ statement is executed for a fi Ie whose access mode is INDEXED and
the SYMBOLIC KEY contains a value other than LOW-VALUES, a search of the file is
made to find the record that has a key equal to the contents of the SYMBOLIC KEY
associated with the fi Ie. If that record is found, it is moved to the record area for the fi Ie;
if it is not found, the statement(s) associated with the INVALID KEY clause is executed,
and no record is made available.

When a READ statement is executed for a file whose access mode is INDEXED and the
SYMBOLIC KEY contains a value of LOW-VALUES, the first logical record having a key
higher than the last record processed (by a READ, WRITE, REWRITE, or DELETE statement)
is made available. If no such record exists (i .e., end-of-file) , the INVALID KEY statement(s)
is executed, and no record is made avai lable. If the fi I e has been opened but no READ,
WRITE, REWRITE, or DELETE statement has been executed, the first record of the fi I e is
made available.

c. If a file described by an OPTIONAL clause is not present, the imperative-statement(s) in
the AT END or INVALID KEY clause is executed on the first READ for that file. Any specified
USE procedures are not performed.

d. If logical end-of-reel is recognized during execution of a READ statement, the following
operati ons are carri ed out.

(1) The reel is rewound and the user's ENDING LABEL PROCEDUREs are executed, if
specifi ed in a USE statement.

(2) If the file is assigned to more than one device, the devices are swapped. The pre­
vious reel is rewound and the message

MOUNT REEL nn OF file-name ON device-name

is typed on the user's Tel etype consol e. The program then wai ts for the operator to type

CONTINUE

after he has mounted the next reel.

(3) The standard beginning label procedure (see Chapter 8) and the user's BEG IN NING
LABEL PROCEDURE are executed, if specified in a USE statement.

(4) The first data record on the new reel is made available.

e. If a file consists of more than one type of logical recor.d, these records automatically share
the same storage area. This is equivalent to an implied REDEFINE for the record area. Only
information in the current record is accessible.

f. If the INTO identifier option is specified, the READ statement is then equivalent to a
READ without the INTO option, followed by a MOVE of the record area associated with the
file-name to identifier.

6-58

RELEASE

Function

The RELEASE statement transfers records to the initial phase of the sort operation.

Genera I Format

RELEASE record-name [FROM identifierJ

Technical Notes

a. A RELEASE statement may be used only in an input procedure associated with a SORT
statement for a file whose SD description contains record-name.

b. If the FROM option is used, the contents of identifier are moved to record-name, then the
contents of record-name are released to the sort subroutines.

c. After the RELEASE statement is executed, the contents of record-name may no longer be
available.

d. Refer to the description of the SORT verb for examples.

6-59

RETURN

Function

The RETURN statement obtains sorted records from the final phase of a sort operation.

Genera I Format

RETURN file-name RECORD [INTO identifier] AT END statement-l [, statement-2] .•. .!..

Technical Notes

a. File-name must be described by an SD file descriptor.

b. A RETURN statement may be used only in an output procedure associated with a SORT
statement for fi Ie-name.

c. If the INTO phrase is specified, the current record is moved from the record area associ­
ated with fi Ie-name to identifier.

d. After executing the statement(s) in the AT END clause, no RETURN statements may be
executed unti I another SORT is executed.

e. Refer to the description of the SORT verb for examples.

6-60

I

RE\J\jRITE

Function

The REWRITE statement replaces an al ready existing record in a fi I e whose access mode is IND EXED .

Genera I Format

REWRITE record-name [FROM identifierJ INVALID KEY statement-l [, statement-2] ••• .!..

Technical Notes

a. Record-name must be a record associated with a fi Ie whose access mode is INDEXED.

b. When the REWRITE statement is executed, a record in the fi Ie is located whose key value
is equal to the contents of the SYMBOLIC KEY associated with the file • .The contents of
the SYMBOLIC KEY item are moved to the RECORD KEY item and the contents of the record
are then replaced with the contents of record-name. If no such record exists in the file, the
statement(s} associated with the INVALID KEY clause is executed.

c. At the time the REWRITE statement is executed, the file must be open for OUTPUT or
INPUT-OUTPUT.

d. If the FROM option is used, the statement is equivalent to:

MOVE identifier TO record-name
REWRITE record-name (without the FROM option)

6-61 November 1974

SEARCH

Function

The SEARCH statement is used to search a table until a specified condition exists.

Genera I Format

Option 1

SEARCH identifier-l [VARYING identifier-2J [AT END statement-l [, statement-2] •••]

W
{

statement-3 [, statement-4] ••. }
HEN condition-l

-- NEXT SEhlTENCE

[, WHEN condition -2 .] '.0 • ~tatement-5 [, statement-6] .• }

NEXT SENTENCE

Option 2

SEARCH ALL identifier-l [AT END statement-l [,statement-2] ••.]

{

statement-3 [, statement-4] .• }
WHEN condition-l

NEXT SENTENCE

Technical Notes

a. I f any of the optional clauses are present, they must appear in the order shown.

b. Identifier-l must not be subscripted or indexed, but its description must contain an OCCURS
clause with an INDEXED BY option. In option 2, identifier-l must also contain a KEY option
in its OCCURS clause.

c. Identifier-2 must be an index, or an elementary numeric item with no places to the right
of the decimal point.

d. In option 1, condition-l, condition-2, etc. , can be any condition described in Section 6.5.

e. In option 2, condition-l must consist of a relation condition incorporating the EQUAL TO
or equal sign, or a condition-name condition where the VALUE clause contains only a single
literal, or a compound condition consisting of two or more such simple conditions connected
by AND.

6-62

I

A data-name that appears in the KEY clause of identifier-1 must appear as the subject or
object of a test, or be the name of the data-item with which the tested condition-name is
associated. However, a II preceding data-names in the KEY clause must a Iso be incl uded within
condition-1.

f. If the AT END clause is not present, AT END NEXT SENTENCE is assumed.

g. If the VARYING option is not specified, the first index specified in the INDEXED BY
option for identifier-1 is used.

If the VARYIN G option is used, and identifier-2 is the name of an item specified in the
INDEXED BY option for identifier-1, then identifier-2 is used as the index. If identifier-2 is
not specified in the INDEXED BY option for identifier-l, the first index-name in the INDEXED
BY opti on is used as the index, and identifier-2 wi II contain the val ue of the index at each
step of the search.

h. If option 1 of the SEARCH verb is used, a serial type of search takes place, starting with
the current index setti ng.

If, at the start of execution of the SEARCH statement, the index contains a value that is
not positive or is greater than a Ilowed (greater than the number of occurrences or greater than
any DEPENDING item), the statement(s) specified in the AT END statement is executed.

If, at the start of execution of the SEARCH statement, the index is within the allowed
range of values, the WHEN conditions are evaluated one at a time. If any condition is true,
the associated statement(s) is executed. If no condition is true, the index is incremented by 1,
and the search operation is executed again.

The contents of the index are always left as they were when the search is terminated,
either by a WHEN condition, or the AT END condition.

i. If option 2 of the SEARCH verb is used, a binary search takes place. It is up to the user to
ensure that the keys associated with the table are in the correct sequence (either ascending or
descending). The initial contents of the index are ignored; instead, the table is examined until
the WHE N condition is satisfied (in whi ch case statement-3 and any following statements are ex­
ecuted)or until the entire table is examined (in which case the AT END statement(s) is executed).

When the search is terminated, the contents of the index reflect the occurrence number of
the entry that satisfied the WHE N condition if it was satisfied, or is abitrary if it was not
satisfied.

j. In either option, after any WHEN or AT END statement(s) is executed, control is trans-
ferred to NEXT SENTENCE unless that statement contained a GO TO.

k. If identifier-l is a data item subordinate to a data item that contains an OCCURS clause
(i.e., this is a multidimensional table), only the index associated with identifier-1 is modified
during the search. To search an entire multidimensional table, the SEARCH statement must be
executed several times.

01 TABLE.
02 TABU OCCURS 200 TIMES INDEXED BY I,

ASCENDING KEYS A, B.
03 A, PICTURE XXX.
03 FOO, PICTURE X(20).
03 B, PICTURE 9(4).
03 DES, PICTURE X (40) •
03 AM, PICTURE S9(5)V99.

SEARCH ALL TABU, AT END GO TO WHAT-HAPPENED;
WHEN A{I)=IIXYZ" AND B{I)=350 GO TO GO-ONE.

6-63 November 1974

SEEK

Function

The SEEK statement initiates the accessing of a mass storage data record for subsequent reading or

writing.

Genera I Format

SEEK file-name RECORD

Technical Notes

a. The SEEK statement uses the contents of the ACTUAL KEY item to position the read-write
arms on a mass storage devi ce. If the key is inval id, no action is taken; however, if the con­
tents of ACTUAL KEY are not changed before the next READ or WRITE statement is executed,
that READ or WRITE statement wi II then take the I NV ALID KEY path.

b. The file must be assigned to a mass-storage device, and the ACCESS MODE must be
RANDOM.

c. The statement cannot be used for files whose ACCESS MODES are SEQUENTIAL or
INDEXED.

6-64

SET

Function

The SET statement a II ows a data -item to be incremented, decremented, or set to a va I ue.

Genera I Format

SET identifier-l [, identifier-2] . . . UP BY ;. en:II~~r-
{

TO } { . d . f" 3}

DOWN BY Iter

Technical Notes

a. All identifiers must be numeric elementary items described without any positions to the
right of the assumed dec; ma I poi nt.

All literals must be integers, or the figurative constant ZERO.

b. The SET statement causes identifier-l, identifier-2, ... to be set (TO), incremented
(UP BY), or decremented (DOWN BY) the value of identifier-3 or literal-l.

6-65

I

SORT

Function

The SORT statement provides the capabi I ity of ordering a fi Ie of records according to a set of user­

specified keys within a record.

Genera I Format

{
{

{
ASCENDING}

SORT file-name-1 ON DESCENDING KEY data-name-1

r ASCENDING }
[, data-name-2] ... [ON l DESCENDING KEY data-name-3

[, dara-name-4] ...] ...

INPUT PROCEDURE IS procedure-name-1 [THRU procedure-name-2]}
USING file-name-2

OUTPUT PROCEDURE IS procedure-name-3 [THRU procedure-name-4]}
GIVING file-name-3

Technical Notes

a. Fi le-name-1 must be described in an SD fi Ie descripti on entry in the Data Division. Each
data-name must represent data items described in records associated with file-name-1 .

b. File-name-2 and file-name-3 must be described in an FD file description, not an SD file
description, in the Data Division. All records associated with file-name-2 must be large
enough to contain all of the KEY data-names.

c. The data-names following the word KEY are listed in order of decreasing significance
without regard to how they are divided into KEY clauses.

d. The data-names may be qualified but not subscripted, and must appear in a record
description in an SD file description. If the records are ASCII (DISPLAY -7), their
maximum size cannot exceed 3400 characters.

e. SORT statements may appear anywhere in the Procedure Division except in the Declara­
tives portion or in an input or output procedure associated with a sort.

f. When the ASCENDING clause is used, the sorted sequence is from the lowest value to
the highest value; when a DESCENDING clause is used, the sorted sequence is from the
highest value to the lowest value.

6-66 November 1974

g. The input procedure, if present, must consist of one or more sections or paragraphs that
appear contiguously in a source program and do not form a part of any output procedure. The
input procedure must contain at least one RELEASE statement in order to transfer records to the
sort subrouti ne .

h. The output procedure, if present, must consist of one or more secti ons or paragraphs that
appear contiguously in a source program and do not form a part of any input procedure. The
output procedure must contain at least one RETURN statement in order to make sorted records
avai lable for processing.

i. ALTER, GO and PERFORM statements in the input procedure are not permitted to refer to
procedure-names outside the input procedures; similarly, ALTER, GO and PERFORM statements
in the output procedure are not permitted to refer to procedure-names outside the output pro­
cedures.

i. If an input or output procedure is specified, those procedures are PERFORMed by the SORT
statement, and all rules relating to the range of a PERFORM must be observed.

k. If the USING opti on is specifi ed, all the records in fi le-name-2 are automatically trans­
ferred to the sort subroutine. At the time of the execution of the SORT statement, file-name-2
must not be open. Any USE procedures associated with fi le-name-2 wi II be executed as ap­
propriate.

The USING option is equivalent to the following input procedure:

% 1. OPEN INPUT file-name-2

%2. READ file-name-2 INTO sort-record; AT END GO TO %3.
RELEASE sort-record.
GO TO %2.

% 3. CLOSE file-name-2.

I. If the GIVING option is specified, all the sorted records in file-name-1 are automatical­
ly transferred to file-name-3. At the time of the execution of the SORT statement,
file-name-3 must not be open. Any USE procedures associated with file-name-3 will be exe­
cuted as appropriate.

The GIVING option is equivalent to the following output procedure:

%4. OPEN OUTPUT file-name-3.

%5. RETURN sort-file INTO record-name-3; AT END GO TO %6.
WRITE record-name-3.
GO TO %5.

% 6. CLOSE file-name-3.

m. If an input or output procedure is present, fi le-name-2 or fi le-name-3 must be opened
before reading or writing sort-records and closed when sorting is ended.

n. Two programs that show sorting can be found in Chapter 1.

6-67

I

STOP

Function

The STOP statement halts the object program.

Genera I Format

Technical Notes

a. If the literal option is used, the literal is displayed on the user's Teletype console, and the
program wa its for the operator to type

CONTINUE

Following receipt of this message, the program continues execution at the statement following
the STOP.

The literal may be a figurative constant; in this case, a single character is displayed.

b. If the RUN option is used, all files currently open are closed, and execution of the program
is terminated.

6-68 November 1974

STRING
Function

The STRING statement is used to concatenate the partial or complete contents of several data

items into a single data item.

Format

STRING {
identifier-I\' [, identifier-2J
literal-l J ' literal-2

, 1o entl ler- , 1o entl ler- ••• DELIMITED BY literal-6
({

od °fo 4}[°d of 5J { identifier-6}]
II teral-4 , hteral-5 SIZE

INTO identifier-7 [WITH POINTER identifier-8]

[; ON OVERFLOW statement-lJ

Technical Notes

a. Source I terns

1. The data items referenced by identifier-l identifier-2, ••• are called source data
items. Source data items must be alphanumeric data items or numeric data items
with DISPlAY-6 or DISPLA Y-7 usage.

2. If a source item is an unsigned numeric data item, it is treated in the execution
of the STRI NG statement as if it were an alphanumeric data item.

3. If a source item is a signed numeric data item, it is treated in the execution of
the STRING statement as if it had been moved to an unsigned numeric data item
of the same size and that new data item is used as the source item.

4. If subscripting or indexing is needed to identify a source data item, the values
of the required subscripts and/or indexes and the depending items, if any, just
prior to the transfer of that particular source item are used.

5. Literal-I, literal-2 ••• are called source literals. Source literals must be
alphanumeric literals or alphanumeric figurative constants without the All
modifier.

6. If a source literal is a figurative constant, it refers to a single-character
literal of the specified type.

Version 6 COBOL
Version 7 L1BOl 6-69 November 1974

b. Delimiter Items

1. Each series of source items specified in the STRING statement must be followed by
a DELIMITED BY phrase. This phrase specifies the delimiter condition to be
associ ated with each source item in that seri es.

2. The data items referenced by identifier-3 and identifier-6 are called delimiter
data items. Delimiter data items must be alphanumeric data items or numeric
data items with DISPlAY-6 or DISPlAY-7 usage.

3. If a delimiter item is an unsigned numeric data item, it is treated in the
execution of the STRING statement as if it is an alphanumeric data item.

4. If a delimiter item is a signed numeric data item, it is treated in the execution
of the STRING statement as if it had been moved to an unsigned numeric data
item of the same size and that new data item is used as the delimiter item.

5. If subscripting or indexing is needed to identify a delimiter data item, the
values of the required subscripts and/or indexes and the depending items, if
any, just prior to the transfer of the source item corresponding to that
particular delimiter item are used.

6. Literal-3 and literal-6 are called delimiter literals. Delimiter literals must
be alphanumeric literals or alphanumeric figurative constants without the
ALL modifier.

7. If a delimiter literal is a figurative constant, it refers to a single-character
I itera I of the specifi ed type.

8. If a delimiter data item or a delimiter literal is specified, the content of
the data item, during the execution of the STRING statement, or the value
of the literal is the delimiter string for each source item corresponding to
that delimiter item.

In this case, the delimiter condition for each of the corresponding source
items is the first occurrence in the source item of a character string that
matches the delimiter string. If there is no such character string in the
source item, the del imiter condition is the rightmost boundary of that source item.

N .B. Two character strings match if, and only if, they are of equal length
and each character of the first string is equivalent, according to the rules for code
conversion, to the corresponding character of the second string.

9. If the DELIMITED BY SIZE phrase is specified, the only delimiter condition for
each of the corresponding source items is the rightmost boundary of the source item.

c. Destination

1. The data item referenced by identifier-7 is called the destination. The
destination must be an unedited alphanumeric data item. It cannot' be
justified (i.e., the JUSTIFIED clause cannot be used for this item).

2. If subscripting or indexing is needed to identify the destination, the
values of the required subscripts and/or indexes and the depending
items, if any, just prior to the execution of the STRI NG statement
are used.

Version 6 COBOL
Version 7 L1BOl 6-70

November 1 974

d. Pointer

1. The data item referenced by identifier-8 is called the pointer. The pointer must
be an unedited integer data item of sufficient size to contain a value one greater
than the size of the destination.

2. The pointer serves as a character index for the destination.

3. If subscripting or indexing is needed to identify the pointer, the values of the
required subscripts and/or indexes and the depending items, if any, prior to
the execution of the STRI NG statement are used.

4. If the POINTER phrase is specified, the pointer is directly available to the user.
It must be initialized before the execution of the STRING statement to a value
greater than zero and not greater than the size of the destination.

5. If the POI NTER phrase is not specified, the STRING statement is always
executed as if the user had specified a pointer and set the initial value to 1 •
In this case, the pointer is not directly available to the user.

6. The STRING statement is executed as if the initial value of the pointer were
stored in a temporary location. This temporary location is used as the pointer
during the execution of the STRING statement. The final value of the
temporary location is stored into the real pointer item at the end of the
execution.

e. Execution

1. When the STRING statement is executed, each source item in turn, starting with
the first source item specified, is transferred to the destination character-by­
character, beginning at the leftmost character position of the source item and
continuing to the right, unti I the delimiter condition corresponding to that
source item has been encountered or the destination has been filled.

2. If a delimiter item was specified for a source item and a string of characters
is found in the source item matching the delimiter string, a" characters of the
source item preceding the matching string are used in the transfer to the
destination, but none of the characters that are in the matching string and no
characters following it in the source item are used in the transfer.

3. If no delimiter item was specified for a source item or no string of characters
is found in the source item matching the delimiter string, a" characters of
the source item are used in the transfer to the destination.

4. During the execution of the STRING statement, characters are transferred to
the destination from the source items as if the destination were a table of single
character data items indexed by the pointer, being automatically incremented
after each character transfer.

Version 6 COBOL
Version 7 L1BOl 6-71 November 1974

5. The first character transferred is stored in the character position of the
destination indicated by the initial value of the pointer. The nth character
transferred is stored in the character position indicated by the initial
value of the pointer plus n-1 •

6. The transfer of characters ends when one of the following conditions occurs.
These conditions are specific~IIy checked for in the order stated.

(a) The initial value of the pointer is not a positive integer
less than or equal to the size of the destination.

(b) All appropriate characters of all source items have been
transferred to the destination.

(c) A character has been transferred to the last character
position of the destination, though not all appropriate
characters of all source items have been transferred.

7. If the transfer of characters to the destination is terminated because of condition
(b) of note 6, those character positions of the destination to which characters
were not transferred, if any, will retain the values they contained before the
execution of the STRING statement. That is, remaining character positions
in the destination are not space-filled.

8. After the transfer of characters to the destination has ended, the pointer is
set to a value one greater than the ordinal number of the last character position
of the destination to which data was transferred.

f. Overflow

1" If the transfer of characters to the destination is terminated because of either
condition (a) or condition (b) of note 6, the STRING statement is considered
to have caused an overflow.

2. If the ON OVERFLOW phrase is not specified, after the execution of the
STRING statement, regardless of whether or not there was an overflow,
control passes to the point in the program immediately following the
STRING statement.

3. If the ON OVERFLOW phrase is specified, after the transfer of characters
has ended and the pointer set to the appropriate value, the flow of control
of the program depends on whether or not there was an overflow.

(a) If an overflow did not occur, control passes to the point
in the program corresponding to the end of the sentence
containing the STRING statement (following all the
statements in the ON OVERFLOW phrase).

(b) If an overflow did occur, control passes to the point
in the program corresponding to the beginning of
statement-1 •

Version 6 COBOL
Version 7 L1BOl 6-72 November 1974

SUBTRACT

Function

The SUBTRACT statement is used to subt ract one, or the sum of two or more, numeric items from one or

more numeric items and set the values of one or more items to the result.

Genera I Format

Option 1

SUBTRACT (i?entifier-l) [, (i?entifier-2]l ...
Iiteral-l Ilteral-2 J

FROM identifier-m [ROUNDED] [identifier-n ~OUNDE~J

[0 N _SI_Z_E _E_RR_O_R statement-l [,statement-2] ... J
Option 2

SUBTRACT (i?entifier-l) [(identifier-2l]
Iiteral-l 'literal-2)···

FROM (i?entifier-m) GIVING identifier-n I ROUNDED]
-- Iiteral-m [

ldentifier-p @OUNDEDJJ •••

[ON SIZE ERROR statement-l [,statement-2] ••• J
Option 3

SUBTRACT C~ESPONDING } identifier-l FROM identifier-2

[ROUNDEP] [ON SIZE ERROR statement-l [,statement-2] . .. J

6-73

Technical Notes

a. Each SUBTRACT statement must contain at least two operands (i.e., a subtrahend and a
minuend).

In options 1 and 2, each identifier must refer to an elementary numeric item, except that
identifiers to the right of the word GIVING may refer to numeric edited items. In option 3,
each identifier must refer to a group item.

Each literal must be a numeric literal or the figurative constant ZERO.

b. The composite of all operands (i.e., the data item resulting from the superimpositi on of
all operands aligned by decimal point) must not contain more than 19 decimal digits.

c. Option 1 causes the values of the operands preceding the word FROM to be added together,
and this sum to be subtracted from the values of identifier-m, identifier-n, etc.

d. Option 2 causes the values of the operands preceding the word FROM to be added together,
the sum subtracted from identifier-m or literal-m, and the result stored as the new values of
identifier-n, identifier-p, etc. The current val ues of identifier-n, identifier-p, etc. , do not
enter into the computation.

e. Option 3 causes the data items in the group item associated with identifier-1 to be sub­
tracted from and stored into corresponding data items in the group item associated with iden­
tifier-2. The criteria used to determine whether two items are corresponding are described
under liThe CORRESPONDING Option II at the beginning of this chapter.

f. The ROUNDED and SIZE ERROR options are described earlier in this chapter under "Com­
mon Options Associated with Arithmetic Verbs".

6-74

TERMINATE

Function

The TERMINATE statement ends the processing of a report.

General Format

TERMINA TE report-name-l [, report-name-2]

Technical Notes

a. Each report-name must be defined by an RD entry in the REPORT SECTION of the DATA
DIVISION.

b. All control footings associated with the report are produced as if a control break had
occurred at the highest level. In addition, the last PAGE FOOTING and any REPORT
FOOTING report groups are produced.

c. A second TERMINATE statement for a particular report may not be executed until another
INITIATE statement is executed for that report.

d. The TERMINATE statement does not close the file associated with the report; a CLOSE
statement must be executed after the TERMINATE statement is executed.

e. An example of the use of the TERMINATE statement is included in the sample report­
writing program in Chapter 5, Section 5.7.

6-75

TRACE

Function

The TRACE statement causes the compi ler to trace paragraphs or to stop tracing paragraphs. When a

paragraph is traced, its name, enclosed in angle brackets « » is typed each time that the paragraph

is entered.

Genera I Format

Technical Notes:

a. The compiler generates trace calls for each paragraph in the program if the /p switch is
not included in the command string. If the /p switch is included in the command string, the
trace ca lis are not generated.

b. Although the compiler generates trace calls when the /P switch is not present, tracing is
not performed unless the user includes the TRACE ON statement in his program.

c. The TRACE ON statement causes all ensuing paragraphs to be traced; i.e., their names,
enclosed in angle brackets « », are typed each time they are entered. Tracing continues
unti I either the end of program is reached or a TRACE OFF statement is encountered.

d. The TRACE OFF statement stops tracing of all ensuing paragraphs until either the end of
program is reached or a TRACE ON statement is encountered.

e. When compiling for a production run, the user should include the /P switch in the com­
mand string so that trace calls will not be generated and TRACE statements in the program will
be ignored. The following example shows paragraphs with TRACE OFF and TRACE ON state­
ments included.

PROCEDURE DIVISION.
PARA.

TRACE ON.
PARB.

6-76

TRACE OFF.
PARCo

TRACE ON.
PARD.

Paragraphs PARB and PARD are traced. Paragraph PARC is not traced because the TRACE OFF
statement is included immediately before it. If the /p switch is included in the command
string when this program is compiled, the TRACE statements will be ignored and trace calls
will not be generated.

6-77

UNSTRING

Function

The UNSTRING statement is used to split a single data item (e.g., a text string) into

several parts, depending on the occurrence of specified delimiters, and to store the parts

into separate data items where they may be more easily accessed by the COBOL program.

Format

UNSTRING identifier-l

[
DELIMITED BY [All] {i?entifier-2} [, OR [All] {i?entifier-3}] ••]

-- I.teral-l - l.teral-2

INTO identifier-4 [, DELIMITER IN identifier-51 [, COUNT IN identifier-6]

[, identifier-7 [, DELIMITER IN identifier-8] [, COUNT IN identifier-9]]

[WITH POINTER identifier-10] [TAllYING IN identifier-l1]

[i ON OVERFLOW statement-1J

Technical Notes

a. Source Items

1. The data item referenced by identifier-1 is called the source. The source
must be a DISPLAY data item. If it is a numeric data item, it is treated
during the execution of the UNSTRING statement as if it were alphanumeric.

2. If subscripting or indexing is needed to identify the source, the values of
the required subscripts and/or indexes and the depending items, if any,
just prior to the execution of the UNSTRING statement are used.

b. Destination Items

1. The data items referenced by identifier-4, identifier-7, ••• , are called
destination items. Destination items may be any kinds of data items.

2. If subscripting or indexing is needed to identify a destination item, the
values of the required subscripts and/or indexes and the depending items,
if any, just prior to the transfer of data to that destination item are used.

Version 6 COBOL
Version 7 L1BOl 6-78 November 1974

c. Delimiter Items

1. The data items referenced by identifier-2, identifier-3, ••• , are called delimiter
data items. Delimiter data items must be alphanumeric data items or numeric
data items with DISPlAY-6 or DISPlAY-7 usage.

2. If a delimiter item is an unsigned numeric data item, it is treated in the
execution of the UNSTRING statement as if it were an alphanumeric
data item.

3. If a delimiter item is a signed numeric data item, it is treated in the
execution of the STRING statement as if it had been moved to an unsigned
numeric data item of the same size and that new data i tern is used as
the delimiter item.

4. If subscripting or indexing is needed to identify a delimiter data item, the
values of the required subscripts and/or indexes and the depending items,
if any, just prior to the transfer of data to each successive destination item
are used.

5. Literal-1, literal-2, ••• , are called delimiter literals. Delimiter literals
must be alphanumeric literals or alphanumeric figurative constants without
the All modifier.

6. If a delimiter literal is a figurative constant, it refers to a single-character
li tera I of th e spec i fi ed type.

7. If a delimiter data item or a delimiter literal is specified, the content of
the data item, during the execution of the UNSTRING statement, or the
value of the literal is a delimiter string for the source.

8. If more than one delimiter item is specified, the delimiter items are
separated by the connective OR. In this case, the several delimiter
strings are ordered by the order in which the delimiter items specifying
them occur in the UNSTRING statement.

9. If the All phrase is specifi ed with a delimiter item, the delimiter
string that that item specifies is considered to consist of as many
occurrences of that simple delimiter string as can be found contiguously
stored in the source.

10. A delimiter condition is an occurrence in the source of a character string,
not contained in the portion of the source that has already been scanned,
that matches one of the delimiter strings, or the rightmost boundary of
the source.

Version 6 COBOL
Version 7 L1BOl 6-79 November 1974

d. Delimiter Storage -Items

1. A DELIMITER IN phrase may be specified only if the DELIMITED BY
phrase is specified.

2. The data items referenced by identifier-5 and identifier-8 are called
delimiter storage items. Delimiter storage items may be any kinds of
data items.

3. If subscripting or indexing is needed to identify a delimiter storage
item, the values of the required subscripts and/or indexes and the
depending items, if any, just prior to the transfer of data to the
destination item corresponding to that delimiter storage item are
used.

e. Count Storage I terns

1. A COUNT IN phrase may be specified only if the DELIMITED BY
phrase is specified.

2. The data items referenced by identifier-6 and identifier-9 are called
count storage items. Count storage items must be unedited integer data
items of sufficient size to contain a value equal to the size of the
source.

3. If subscripting or indexing is needed to identify a count storage item,
the values of the required subscripts and/or indexes and the depending
items, if any, just prior to the transfer of data to the destination item
corresponding to that count storage item are used.

4. A count storage item is used to store the number of characters of the
source that were examined during the execution of the UNSTRI NG
statement and approved for transfer to the destination corresponding
to that count storage item.

N .B. This is not necessarily the same as the number of characters
that were actually transferred, because the destination may be too
small to hold all that were approved for transfer.

f. Pointer

1. The data item referenced by identifier-10 is called the pointer.
The pointer must be an unedited integer data item of sufficient
size to contain a value one greater than the size of the source.

2. The pointer serves as a character index for the source.

3. If subscripting or indexing is needed to identify the pointer,
the values of the required subscripts and/or indexes and the
depending items, if any, just prior to the execution of the
UNSTRING statement are used.

Version 6 COBOL
Version 7 LlBOL 6-80 November 1974

4. If the PO INTER phrase is specified, the pointer is directly available to the user.
It must be initialized before the execution of the UNSTRING statement to a
value greater than zero and not greater than the size of the source.

5. If the POI NTER phrase is not specified, the UNSTRING statement is always
executed as if the user had specified a pointer and set the initial value to 1 •
In this case, the pointer is not directly available to the user.

6. The UNSTRING statement is executed as if the initial value of the pointer
were stored in a temporary location. This temporary location is used as the
pointer during the execution of the UNSTRING statement. The final value
of the temporary location is stored into the real pointer item at the end of
the execution.

g. Destination Counter

1. The data item referenced by identifier-11 is called the destination counter.
The destination counter must be an unedited integer data item of sufficient
size to contain a value equal to the number of destinations specified in the
UNSTRING statement.

2. The destination counter is used to store the number of destination items to
which data was transferred by the execution of the UNSTRING statement.

3. If subscripting or indexing is needed to identify the destination counter,
the values of the required subscripts and/or indexes and the depending
items, if any, just prior to the execution of the UNSTRING statement
are used.

4. If the TALLYING phrase is specified, the destination counter is directly
available to the user, and it must be initialized before the execution of the
UNSTRING statement.

5. If the TALLYING phrase is not specified, the UNSTRING statement is
always executed as if the user had specified a destination counter and
set the initial value to O. In this case, the destination counter is not
directly available to the user.

6. The UNSTRING statement is executed as if the initial value of the
delimiter storage item were stored in a temporary location. This
temporary location is used as the delimiter storage item during the
execution of the UNSTRING statement. The final value of the
temporary location is stored into the real delimiter storage item at
the end of the execution.

Version 6 COBOL
Version 7 LlBOL 6-81 November 1974

h. Execution

1. The execution of the UNSTRING statement is an iterative process. There is
one iteration for each destination item specified in the UNSTRING statement,
starting with the first destination item specified and continuing in order
through the series of destination items. However, the iteration process wi"
be stopped after all the data in the source has been used, even if not all
destination items have been used.

2. Each iteration of the process involved in the execution of the UNSTRING
statement consists of the following steps:

(a) Se I ect a set of characters from th e source.

(b) Move a representation of these characters to the destination
item for that iteration.

(c) Set the count storage item corresponding to that destination
item, if one is specified.

(d) Move some characters to the delimiter storage item corresponding
to that destination item, if one is specified.

(e) Advance the pointer to indicate a new position in the source.

(f) Increment the destination counter.

3. During the execution of the UNSTRING statement, the source is treated as
if it were a table of single character data items indexed by the pointer.
The character position of the source indicated by the pointer, during each
iteration of the UNSTRING process, is called the pointer-indicated position
for that iteration. Only the pointer-indicated position for an iteration
and those source character positions to its right are used during that itera­
tion. Character positions to the left of that position are not involved in
that iteration in any way.

4. During each iteration of the UNSTRING process, a scan of the source is
done to determine which characters of the source will be selected as the
character set to be moved to the appropriate destination item. This scan
begins at the pointer-indicated position and continues to the right in the
source.

5. The scan of the source watches for a~y of the following conditions
(in the specified order):

(a) A string of contiguous characters in the source matching one of
the delimiter strings.

(b) The rightmost boundary of the source.

(c) A number of characters sufficient to completely fill the
destination item for th is iteration.

When one of these conditions is found, the scan ends and the set of characters
to be moved to the destination item is then known.

Version 6 COBOL
Version 7 L1BOl 6-82 November 1974

6. The source scan described in Note 5 proceeds as follows:

(a) Each character position of the source, starting at the pointer-indicated
position and continuing to the right, is first checked to see if any source
character-string beginning at that position matches the delimiter-string
specified by the first delimiter item in the UNSTRING statement. If
such a string is found, condition (a) of Note 5 is satisfied.

(b) If no such string is found, the same character position is then checked
to see if any source character-string beginning at that position matches
the second specified delimiter-string. This process is repeated using
each successive delimiter string until either condition (a) of Note 5
is satisfied or all specified delimiter strings have been tried.

(c) If condition (a) of Note 5 is not satisfied for the source character
position under consideration and one of the specified delimiter­
strings, that character position is then selected as part of the source
to be moved to the current destination item.

(d) The above process continues until either no more source character
positions remain (condition (b) of Note 5), or enough successive
character positions of the source have been selected to entirely
fill the destination item (condition (c) of Note 5).

7. During each iteration of the UNSTRING process, the set of contiguous
source character positions selected by the process described in Note 6
is considered to be a complete individual data item, and is moved to
the current destination item according to the rules for the MOVE
statement, including any class or usage conversion that might be necessary.
Th is data item might contain no character positions at all (if the
pointer-indicated position satisfied condition (a) of note 5), or it may
contain as much as the entire source.

8. If a count storage item is specified with the destination item for an
iteration of the UNSTRI NG process, the number of source characters
that are moved to the destination item is stored in that count storage
item.

9. If there is a delimiter storage item specified for a particular iteration
of the UNSTRING process, then:

(a) If the selection of source character positions described in Note 5
is terminated because of condition (a) of Note 5, the string of
contiguous source character positions that contain the match for
a delimiter string is treated as a complete individual data item
and is moved to the delimiter storage item according to the
rules for the MOVE statement, including truncation if necessary.

Version 6 COBOL
Version 7 L1BOl 6-83 November 1 974

If, in this case, the delimiter string that was matched is described with
the All phrase, the set of source character positions containing a match
for the simple delimiter string, plus every immediately succeeding set
of contiguous source character positions containing a match for the same
delimiter string, are used in the data item that is moved to the delimiter
storage item.

(b) If the selection of source character positions described in Note 5 is
terminated because of condition (b) or (c) of Note 5, spaces are moved
to the specified delimiter storage item.

10. In an iteration of the UNSTRI NG process, after the appropriate data has been
stored in the destination item, the delimiter storage item, and the count storage
item, the pointer is set to a value one more than the ordinal number of the
last source character position that participated in the selection process. This
includes all character positions that were selected for the move to the destination
item and all that were moved to the delimiter storage item (or would have been
so moved if the delimiter storage item were specified).

11. At the conclusion of execution of the UNSTRING statement, the destination
counter is set to a value equal to its initial value plus the number of
destination items to which data was transferred by the execution of the
UNSTRI NG statement.

i. Overflow

1. If the initial value of the pointer is less than one or greater than the size
of the source, execution of the UNSTRING statement is aborted before
any data is transferred, and the UNSTRING statement is considered to have
caused an overflow.

2. If, during the execution of an UNSTRING statement, data has been
transferred to all of the destination items in accordance with Note 7, but
the updated pointer still contains a value less than or equal to the size
of the source (i.e., not all of the source character positions have been
used in the UNSTRING process), the UNSTRING statement is considered
to have caused an overflow.

3. If the ON OVERFLOW phrase is not specified, after the execution
of the UNSTRI NG statement, regardless of whether or not there was
an overflow, control passes to the point in the program immediately
following the UNSTRING statement.

4. If the ON OVERFLOW phrase is specified, after the transfer of cha racters
has ended and the pointer and destination counter are set to the appropriate
values, the flow of control of the program depends on whether or not there
was an overflow.

(a) If an overflow did not occur, control passes to the point in the program
corresponding to the end of the sentence containing the UNSTRING statement
(following all the statements in the ON OVERFLOW phrase).

(b) If an overflow did occur, control passes to the point in the program
corresponding to the beginning of statement-1 •

Version 6 COBOL
Version 7 L1BOl 6-84 November 1974

USE

Function

The USE statement specifies procedures for input-output label and error handling that are in addition to

the standard procedures provided.

Genera I Format

Format 1

Format 2

Format 3

USE AFTER STANDARD ERROR PROCEDURE ON --- --

fi I e-name- 1
INPUT

LABEL PROCEDURE ON OUTPUT
1-0
INPUT -OUTPUT

USE BEFORE REPORTING identifier-l ..!.

Technical Notes

file-name-l [OPEN]
INPUT
OUTPUT
1-0
I NPUT -OUTPUT

a. USE statements may appear only in the DECLARA TNES portion of the PROCEDURE DNI­
SION.

The DECLARATIVES portion follows immediately after the PROCEDURE DIVISION header
and begins with the word

DECLARA TIVES.

The DECLARA TIVES portion ends with the words

END DECLARATNES.

6-85

Followi ng this must be a section-header as the first entry of the main portion of the
PROCEDURE DIVISION.

The DECLARATIVES portion itself consists of USE sections, each consisting of a section­
header, followed by a USE statement, followed by the associated procedure paragraphs.

The general format for the DECLARATIVES portion is given below.

PROCEDURE DIVISION.

DECLARATIVES.

section-name-1 SECTION. USE

paragraph-name-1a. (statement)

~aragraph-name-1b. (statement8

~ection-name-2 SECTION. USEJ

END DECLARATIVES.

section-name-m SECTION.

b. The USE statement may follow on the same line as the section-header and must be terminated
by a period followed by a space. The remainder of the section must consist of one or more pro­
cedural paragraphs that define the procedures to be used.

c. The USE statement itself is never executed, rather it defines the conditions calling for the
execution of the USE procedures.

d. The designated procedures are executed at the appropriate time as follows (see also Chap­
ter 8):

(1) Format 1 causes the designated procedures to be executed after completing the stand­
ard input-output error routine.

(2) Format 2 causes the designated procedures to be executed at one of the following times,
depending upon the options used.

(a) Before or after a beginning or ending input labe I check procedure is executed.

(b) Before a beginning or ending output label is created.

(c) After a beginning or ending output label is created, but before it is written on
tape.

(d) Before or after a beginning or ending input-output label check procedure is
executed.

(3) Format 3 causes the designated procedures to be executed just prior to the production
of the named report group.

e. There must not be any references to any non-DECLARA TNES procedure within a USE pro­
cedure. Conversely, there must be no reference to procedure-names that appear within the
DECLARA TNES portion in the non-DECLARA TNES portion, except that PERFORM statements
may refer to a USE section or to a procedure contained entirely within such a USE section.

6-86

I f. No input/output can be performed, other than use of ACCEPT and DISPLAY
statements, during execution of a USE procedure.

g. Format 1 causes the assoc iated procedures to be executed after the standard
input-output error routine has been executed. If the IN PUT option is used, the
procedures will be executed for all IN PUT files; if the OUTPUT option is used,
they will be executed for all OUTPUT files; if the 1-0 or the INPUT-OUTPUT
option is used, they will be executed for all INPUT-OUTPUT files; if the file­
name-l option is used, they will be executed on Iy for that particular fi Ie.

If the filename-l OPEN option is used, the system performs the associated
procedures only if a "FILE BEING MODIFIED" error occurs when an attempt is
made to open an output file. After performing the procedure, the system
automatically tries again to open the file, repeating this process until the file
is opened. This option allows the user to suspend his job until it can access
a fi Ie that another user is modifying.

h. Format 2 causes the associated procedures to be executed at the appropriate
times, as indicated by the options selected (see note d and Chapter 8). If the
words BEG INNING or ENDING are not included in Format 2, the designated
procedures are executed for both the begin~jng and ending labels. If neither
UNIT, REEL, nor FILE is included, the designated procedures are executed
for both REEL (or UNIT) labels and for FILE labels.

If the IN PUT, OUTPUT, IN PUT-OUTPUT, or 1-0 option is specified,
the label procedure applies to every file of that type except those files
described as LABEL RECORDS ARE OMITTED.

If the file-name-l option is used, its file description must not contain
a LABEL RECORDS ARE OMITTED clause.

i. Within a given format, a file-name must not be referred to, either implicitly
(i .e., by an INPUT, OUTPUT, INPUT-OUTPUT, or 1-0 option) or explicitly
(i .e., by a fi le-name-l option), in more than one USE statement.

i. Identifier-l in Format 3 represents a report group named in the REPORT
SECTION of the DATA DIVISION. An identifier must not appear in more than
one USE statement. The report group must not be TYPE DETAIL.

6-87 November, 1 974

WRITE

Function

The WRITE statement transfers a logical record to an output file.

Genera I Format

Option 1

WRITE record-name-1 [FROM identifier-l J
[{ BEFORE~

AFTER f {

identifier-2 LINES}]
ADVANCING integer~ 1 LINES

mnemonic-name

Option 2

WRITE record -narne- I [FRO M i dent i fi er-l] I NV ALID KEY stoterne nt-1 [, staternent-2] ••• .!.

Technical Notes

a. An OPEN OUTPUT or OPEN 1-0 or OPEN INPUT-OUTPUT statement must be executed
for the file prior to the execution of the WRITE statement.

b. After the WRITE is executed, the data in record-name-1 may no longer be available.

c. Record-name-l must be the name of a logical record in a DATA RECORDS clause of the
FILE SECTION of the DATA DIVISION.

d. Format 1 is valid for any file currently open for output, with ACCESS MODE IS SEQUEN­
TIAL

The ADVANCING clause allows control of the vertical positioning of the paper form for
print files as follows.

(1) If the ADVANCING clause is not specified and the recording mode is ASCII (see
Chapter 8), BEFORE ADVANCING 1 LINE is assumed.

(2) If identifier-2 or integer-1 is specified, it must represent a positive integer or zero.
The form is advanced the number of I ines equal to the value of identifier-2 or integer-1 •

(3) If mnemonic-name is specified, the form is advanced until the specified channel is
encountered on the paper-tape format control loop. Mnemonic-name must be defined by
a CHANNEL clause in the SPECIAL-NAMES paragraph of the ENVIRONMENT DIVISION.

6-88

(4) If the BEFORE option is used, the record is printed before the form positioning.

(5) If the AFTER option is used, the record is printed after form positioning occurs, and
no form positioning takes place after the printing.

If end-of-reel is encountered whi Ie writing on magtape, the WRITE statement performs the
following operations.

(1) The user's ENDING LABEL PROCEDURE is executed, if specified by a USE statement.

(2) A file mark is written, and the tape is rewound.

(3) If the file was assigned to more than one tape unit, the units are swapped.

(4) The operating system types the message.

MOUNT AVAILABLE TAPE ON device-name

and waits for the operator to type CONTINUE.

(5) A label is written on the new tape, if labels are not OMITTED, and any user's BE­
GINNING LABEL PROCEDURE is executed.

e. Format 2 is valid only for random-access files whose access mode is RANDOM or INDEXED.

The imperative-statement(s) in the INVALID KEY clause of a RANDOM file is executed
when an attempt is made to execute a WRITE to a segment outside the range of the FILE-LIMITS
of the file.

When a WRITE statement is executed for a file whose access mode is RANDOM and the
ACTUAL KEY contains a value of 0, records will be written sequentially in the file (i .e., no
records will be left null). If the previous operation performed on the file was by a READ
statement, the previous record will be replaced (i .e., the record will be updated).

When a WRITE statement is executed for a file whose access mode is INDEXED, the
contents of the SYMBOLIC KEY item are moved to the RECORD KEY item and the record
is written.

The statement(s) in the INVALID KEY clause of an INDEXED file is executed when the
SYMBOLIC KEY contains a value equal to the key of an already existing record in the file
(refer to the REWRITE statement).

f. When executing a WRITE statement for a SEQUENTIAL file opened for 1-0 (or INPUT­
OUTPUT), the logical record is placed on the file as the next logical record, if the previous
input-output operation was a WRITE, or it replaces the previous record, if the previous
input-output operation was a READ.

g. If the FROM option is used, the statement is equivalent to:

MOVE identifier-1 TO record-name-1

WRITE record-name-1 (without the FROM option)

6-89 November 1974

Chapter 7

The COBOL Library

The COBOL Library contains source language entries that are available for inclusion in a user's source

program at compile time.

For example, a library entry might consist of a PROCEDURE DIVISIO N section containing procedure

statements associated with a frequently used rate computation. If a programmer wishes to include this

computation procedure in his program, he need only write a COpy statement referencing this library

entry at the point where he wants this procedure included; it is unnecessary for him to write out the

full procedure himself. The effect of the COpy is the same as if the text contained in the library entry

were actually written as part of the source program. In addition to PROCEDURE DIVISION entries,

ENVIRONMENT DIVISION paragraphs and DATA DIVISION FDs and record descriptions can be copied

from the I ibrary into a user's source program.

7-1

I

COpy

Function

The COPY statement causes inclusion of a library entry into a COBOL source program at the

point where the COpy statement appears.

General Format

Co PY library-name

fREPLAC'NG word-l BY {~:;t~~ier-1 } l procedure-name-l

[
, word -3 BY {~'::t~ er-2 "\] •••] •

procedure-name-2 J
Technical Notes

a. The COPY statement may appear as follows:

(1) In any of the following paragraphs of the ENVIRONMENT DIVISION:

OBJECT-COMPUTER. COpy library-name ••••
SPECIAL-NAMES. COpy library-name ••• -:-
FILE-CONTROL. COpy library-name ••• :-
I-O-CONTROL. COpy Iibrary-name ••• ~

(2) In place of any of the following clauses in the DATA DIVISION.

FD file-name
SD sort-name
RD report-name
level no. name

CO PY library-name ••••
CO PY library-name ••• :­
CO PY library-name ••• :­
CO PY library-name ••• ~

(3) In a paragraph in the Procedure Division:

paragraph -name. [statement-I] CO PY statement. [statement-2).

statement-1 may not start with NOTE.

7-2 November 1974

b. In the ENVIRONMENT DIVISION, no other statement or clause may appear in the same
sentence as the COpy statement.

c. COpy causes the specified library text to be copied from the COBOL Library, and the re­
sult of compilation is the same as if the text were actually a part of the source program. The
COPYing process is terminated by the end of the library text.

d. Both the COpy statement itself and the statements of the library text, after any specified
replacing has been performed, appear on the output I isting produced by the compi ler.

e. The text in the I ibrary entry must not contain any COpy statements.

f. If the REPLACING option is used, each word specified in the format is replaced by the
stipulated word, identifier, or procedure-name that is associated with it in the format. That
is, word-2, identifier-1, or procedure-name-1 replaces every occurrence of word-1 in the
text copied from the library. The library entry itself is not altered.

Wnr~-l nnrl \A'''rrl-1 rnn" ht::. ,., rf" ,.,-nrt'vu::. n ... nl"'"orl •• ro_ ,.,""'o ,..."n,...J:.f.:,..""·"'_n,.. .. ··'·U'~ ,.,.., o~,...... :,.._ .. - - . __ ._" ____ - ... _', . ___ . _. __ ._ ... _ _, ,_. _____ ._ .. _ ... _, __ .. _ .•. _ _ ... _, '0"._'.,-".-

name, or file-name.

Word-2 and word-4 may be any COBOL word, including literals but excluding picture­
strings and reserved words.

Example:

COpy LIB001 REPLACING ITEM 1 BY AMOUNT OF INCOME-REC.

Library entry:

TAX-CALC. MULTIPLY ITEM1 BY TAX-RATE GIVING TAX-DUE •...••

Result of COPY:

TAX-CALC. MULTIPLY AMOUNT OF INCOME-REC BY TAX-RATE

GIVING TAX-DUE ••.••.

7-3 November 1974

Chapter 8
Standard 1-0 Processing

This chapter describes how the data is structured, stored, accessed, and moved in 1-0 operations at

run-time. Each of the followinq topics is described and explained in detail •

a. Access mode

b. Recording mode

c. File tables

d. Channel tables

e. Blocking

f. Labe I records

g. Multiple-file tape

h. SAME AREA clause

i. SAME RECORD AREA clause

i· Fi Ie-I imits

8.1 ACCESS MODE

Each file has one of the three access modes: SEQUENTIAL, RANDOM, or INDEXED. For random­

access and indexed-sequential files, the mode must be specified by means of the ACCESS MODE

clause of the FILE-CONTROL paragraph in the ENVIRONMENT DNISION (refer to Chapter 4).

8.1.1 SEQUENTIAL Mode

In the SEQUENTIAL mode records are accessed in the order in which they appear on the file. Each

READ (after the first) brings into memory from the peripheral device the logical record on that device

that immediately follows the logical record previously read from or written on that device.

8-1

If the file is open for output, each write appends the record to the end of the fi Ie. If the file is

open for input-output, the write replaces either the record previously read (if the last operation was

~
"':"' •. '.,: READ) or the record following the one previously written (if the last operation was WRITE). If the

, file is open for input-output and is read to the end, each write appends a record to the end of the

file.

8.1.2 RANDOM Mode

The record to be accessed is specified by the contents of the ACTUAL KEY, without regard to the

physical characteristics of the device. The following conditions must exist:

a. The device must be a random-access medium.

b. The records must be b locked (the b locking factor may be 1).

c. If the recording mode is ASCII (see Section 8.2), the blocking factor must be 1.

The contents of the ACTUAL KEY determine which record, relative to the beginning of the file, is

to be read or written. For example, to read the fifth record of a file, the following statements would

appear in the source program.

Example:

SELECT FILA ASSIGN TO DSK;
ACCESS MODE IS RANDOM.
ACTUAL KEY IS FILE-KEY.

MOVE 5 TO FILE-KEY.
[] READ FILA; INVALID KEY GO TO YOU-LOSE.

NOTE

FILE-KEY is a computational item defined by the
user. It consists of 10 or fewer digits with no
decimal places.

8. 1 .2. 1 Creating Random-Access Fi les - A random-access fj Ie can be created in one of two ways -

randomly or sequentially. To create the file randomly (i.e., by writing into scattered or random

records), the user need only open the file, move a value into the ACTUAL KEY for each record, and

output each record. When a fi Ie is created random Iy, there may be zero-length records in the file

because data was not written into the record that has that ACTUAL KEY. These dummy records can

be written into but cannot be read.

8-2 November 1974

To create the file sequentially, the user can open the file, move 0 into the ACTUAL KEY, and

output each record. No zero-length records will be in the file if it is written sequentially.

8.1.3 INDEXED Mode

A file whose access mode is INDEXED (an indexed-sequential or ISAM file) is actually two

files: a file containing an index or table of contents, and the actual data file. Both files

must be on a random access device, and the data file must be blocked (the blocking factor

may be 1).

Each record in an indexed-sequential file has a field, called a RECORD KEY. This field is

located in the same relative place for each record, but each record has a different value in

its RECORD KEY. Before reading, writing, rewriting, or deleting a record in an indexed

sequential fi Ie, the user moves the value of the RECORD KEY for the desired record to the
C'J'A.ADr'\111"' VI:'J' .. .I_~_I_ ~ __ r~_I_1 ~_ LL_ \A/r'\n'/I '_ C-Tr'\nA_r: c-r:rT''' ' _~ __ -I •..• - .• 1' ...•••. - •.•
eJ •• 'fu ... '-" "1..1, ''t.II'-'II."" '-4 'I' .. d\o..t III 111'-" "'-'I'.' '-'-..,I'-'I\.r\'-''- ""' '-'11"""1"'4 .)IIIIIIYI III IU&U ... IIVII

to an ACTUAL KEY. For example, to read the record containing "DEC" in its RECORD KEY,

the following statements would appear in the program.

SELECT ISAM-FILE ASSIGN TO DSK;
ACCESS MODE IS INDEXED;
SYMBOLIC KEY IS ISAM-SYMBOLIC KEY;
RECORD KEY IS ISAM-RECORD-KEY.

FILE SECTION.
FD ISAM-FILE

BLOCK CONTAINS 8 RECORDS
VALUE OF IDENTIFICATION IS "ISAMFLlDX".

01 ISAM-RECORD.
02 FILLER PIC X(12).
02 ISAM-RECORD-KEY PIC X (3).
02 FILLER PIC X(75).

WORKING-STORAG E SECTION.
77 ISAM-SYMBOLlC-KEY PIC XXX.

MOVE "DEC" TO ISAM-SYMBOLlC-KEY.
READ ISAM-FILE; INVALID KEY GO TO YOU-LOSE.

8-3 November 1974

•

To access an indexed sequential file sequentially, the user must declare that the ACCESS MODE

IS INDEXED and move LOW-VALUES into the SYMBOLIC KEY. This will cause the file to

be accessed in sequential order starting from the first record in the file or the last record

accessed (even if an INVALID KEY error occurs). While accessing the file in this manner,

the user must not change the value of the SYMBOLIC KEY or the file will be accessed

according to the new value.

8.1.3.1 Format of the Index Entry - Each index pointer block in an indexed sequential file is

written as if it were a block of a SIXBIT fi Ie. (SIXBIT file format can be found in the COBOL

I Users Guide.) There is one record per block. The format of the block is:

word 1: is the header word. The right hal f contains the size of the index block in bytes, as
if it were SIXBIT (i.e., six bytes per word). The left half contains a number repre­
senting the level of the index (the lowest level is 0).

word 2: contains the version number. This is initially set to 0 by the ISAM program, and is
incremented by 1 whenever this block is divided due to the insertion of an entry when
a WRITE is executed.

Following word 2 are the index entri es, packed to the top of the block. Each entry has the format:

word 1: contains the pointer to a data block (if this is index level 0) or a pointer to the next
lower level index block (if this is index level 1 or higher).

word 2: contains the version number of the index or data block to which this item points.

words 3-11 contain the val ue of a key. I f the key is nonnumeric, it extends over as many
words as are necessary. If the key is numeric, it is kept in COMPUTATIONAL
form (even if the record key for the file is DISPLAY). It is one word if 10 or fewer
digits are in the key; it is two words if 11 or more digits are in the key .

8.1.3.2 Format of the Data File - The format of the data file is similar to that of RANDOM and

I SEQUENTIAL files (refer to the COBOL Users Guide, DEC-10-LCUGA-A-D), with the following

exceptions.

a. The left half of the header word of a SIX BIT record contains a version number. Only
the version number of the first record of a block has any meaning; it pertains to all
records for that block.

b. ASCII records are line-blocked; they occupy an integral number of words. They always
end with a single carriage-return, line-feed pair.

c. A word is added to the beginning of each ASCII record. The left half contains a version
number, bits 18 through 34 contain the size of the record in bytes, and bit 35 is always 1.

November 1974

8-4

8.2 RECORDING MODE

8.2.1 Default Conditions

At both compilation time and run time, assumptions are made regarding the structure, or recording mode,

of data as it appears on the external devices. Ifa recording mode is not specified for a file, the re­

cording mode is assumed to be ASCII if all the data records for that file are described implicitly or ex­

plicitly as DISPLAY-7, if the WRITE verb is used with the ADVANCING option, or if the file descrip­

tor has a REPORT clause. In all other cases, the recording mode is assumed to be SIXBIT. At run time,

if the device is found to be other than magnetic tape, DECtape, or a random-access device, the re­

cording mode is assumed to be ASCII. Conversions necessary to conform to the USAGE of the records

are made automatically by the 1-0 routines.

8.L.2 ASCII

ASCII records contain a contiguous set of characters. Each record is terminated by a printer control

character (ASCII code 12-15, 20-24), or by a string of such characters. The first record in a block

starts in the first character position; each succeeding record in that block starts in the first character

position following the previous record.

8.2.3 SIXBn

SIXBn records contain a contiguous set of words. The right half of the first word, supplied by the

1-0 routines, contains the number of characters in the record. The last word in the record wi II, if

necessary, have filler added to insure that the record ends at a word boundary, so that records always

occupy an integral number of words.

8.2.4 BINARY

Binary records contain a contiguous set of ~rds. There is no particular format for binary files; every

word is data.

If there is more than one record described for the file, the READ statement will always read enough

words to fill the largest record. The WRITE statement will write variable-size records as it does in

other modes.

8 .3 FILE TABLES

There is a file table for each file named in a SELECT statement in the user1s program (see SELECT

statement in Chapter 4). Figure 8-1 shows the structure of a file table. The various fields in that

tab Ie are described in the paragraph following the figure.

8-5

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

o 4 6 12 17 35
I

NAME OF THE FILE (IN SIXBIn

COMPILER
CHANNEL NUMBER OF

ADDRESS OF FIRST DEVICE NAME VERSION DEVICES

NUMBER OF NOT USED POSITION ADD RESS OF NEXT FILE TABLE FILE LIMITS

NUMBER OF
RECORD SIZE RERUN COUNT BUFFERS

FLAGS ADD RESS OF REC ORD AREA

MAXIMUM SIZE OF ANY NON-STANDARD
MUL TIPLE-FILE ADDRESS LABEL

NOT USED BLOCKING FACTOR ADDRESS OF ACTUAL KEY

BYTE POINTER FOR VALUE OF IDENTIFICATION

BYTE POINTER FOR VALUE OF DATE-WRITTEN

ADDRESS OF A FILE TABLE THAT SHARES
ADDRESS OF ERROR USE PROCEDURE BUFFER AREA

ADDRESS OF BEFORE BEGINNING REEL ADDRESS OF BEFORE BEGINNING FILE

ADDRESS OF AFTER BEG INNING REEL ADDRESS OF AFTER BEGINNING FILE

ADDRESS OF BEFORE ENDING REEL ADDRESS OF BEFORE ENDING FILE

ADDRESS OF AFTER ENDING REEL ADDRESS OF AFTER ENDING FILE

FLAGS ADDRESS OF USER-NUMBER

BYTE POINTER TO SYMBOLIC KEY

BYTE POINTER TO RECORD KEY

CODES FOR ISAM KEY

RESERVED FOR EXPANSION

I

FILE LIMIT PAIRS (AS NEEDED)
I

Figure 8-1 Structure of a File Table

8-6

8.3.1 Explanation of Fields

NAME OF TH E FILE

COMPILER VERSION

CHANNEL

NUMBER OF DEVICES

ADDRESS OF FIRST DEVICE
NAME

NUMBER OF FILE-LIMITS

POSITION

ADD RESS OF NEXT FILE
TABLE

NUMBER OF BUFFERS

RECORD SIZE

RERUN COUNT

FLAGS

ADDRESS OF RECORD AREA

MAXIMUM SIZE OF ANY
NON-STANDARD LABEL

MUL TIPLE FILE ADD RESS

BLOCKING FACTOR

ADDRESS OF ACTUAL KEY

The name specified by the SELECT clause. It is used only
for error messages.

The version number of the current compil er.

The relative address of the channel tabl e entry assigned to
this file when opened.

The number of devices specified by the ASSIGN clause (see
Chapter 4). This number cannot exceed 63.

The address of the first device name in the device-name table.
Device names are kept in a table in the order in which they
are assigned. After the first name, the addresses of any other
assigned device names follow in sequence {i .e., each one is
consecutive and contiguous to its predecessor} •

The number of file-limit pairs associated with the file (see
FILE LIMIT clause in Chapter 4).
The position of this fi I e relative to the beginning of a mul ti­
file tape. This position is specified by the POSITION clause
in the 1-0 CONTROL paragraph (see Chapter 4).

The address of the first word of the next file table. Each file
tabl e points to the succeeding tabl e, in reverse order to that
in which the files are named in the SELECT statement. The
last file table has zeros in this field.

The number of buffers requested from the monitor. If the
access mode is RANDOM or INDEXED this number is 1. If
the access mode is SEQUENTIAL, this number is 2, unl ess the
user requests a different number of buffers by means of the
RESERVE clause (see Chapter 4) •

The size of the record given in bytes. The size cannot exceed
4095 characters.

The value of the integer if the RERUN EVERY integer
RECORDS clause is given for this file.

A half-word in word 9 containing flags and fields with the
meanings shown in Table 8-1 •

The address of the first location in core memory allocated to
a record in this file.

The size of the largest label record described in the FD
clause.

The link between file tabl es which share a device. If the
same device is used by more than one file, the file tables
will be linked in a circular, or round-robin, manner through
this field.

The number of records in a block, as specified by the BLOCK
CONTAINS clause (see Chapter 5).

The address of the word containing the val ue to be used as an
actual key.

8-7 November 1974

Table 8-1
Flags and Fields in Word 9 of File Table

Bits Meaning

0-1 Recording mode:

00 = SIXBIT
01 = BINARY
10 = ASCII
11 = EBCDIC

2-3 Type of labels:

00 = OMITTED
01 = STANDARD
10 = NON-STANDARD

4 This file is open for input.

5 This fil e is open for output.

6 This is a random-access device.

7 AT END path has been taken.

8 Device is a console.

9 Data and recording modes differ.

10 Rerun is to be taken at end of reel.

11 Rerun is to be taken every now and
then (see RERUN COUNT field).

12 Fil e is opti onal and not present.

13 Fil e is optional.

14 Type of data in core:

o = DISPLAY-6 (SIXBIT)
1 = DISPLAY-7 (ASCII)

15 Not used

16-17 Access mode:

00 = SEQUENTIAL
01 = RANDOM
10 = INDEXED

8-8

BYTE POINTER FOR VALUE
OF IDENTIFICATION

BYTE POINTER FOR VALUE
OF DATE-WRITTEN

ADDRESS OF A FILE TABLE
THAT SHARES BUFFER AREA

ADDRESS OF ERROR USE PRO­
CEDURE

FLAGS

A byte pointer that points to the byte preceding the fi rst
character of a string of characters containing the value of
identification.

A byte pointer that points to the byte preceding the first
character of a string of characters containing the val ue of
date-wri tten •

The link between file tables which share a buffer area. If
this file appears in a SAME AREA clause, all associated files
in that clause are linked in a circular, or round-robin,
manner through this fi eld •

The address (words 14 through 18) of the first instructions of
the USE procedure as declared in the DECLARA TNES (see
Chapter 6). The compi I er generates the following code to
call a USE procedure:

PERF. 17, %Y
IOCT

POPJ 17,

%Y is a location in working storage that will contain the
return location for a PERFORM. When the 1-0 routines
want to execute a USE procedure, they pick up the appro­
priate address in an AC and then execute:

PUSHJ 17, (AC)

A half-word in Word 19 containing flags and fields with the
meanings shown in Table 8-2.

Table 8-2
Flags and Fields in Word 19 of File Table

Bits

0-2

3

4-17

ADDRESS OF USER-NUMBER

Meaning

Recording density

000 = system standard
001 = 200 bpi
010 =556 bpi
011 = 800 bpi

Recording parity

o =odd
1 = even

Reserved for expansi on

The address of the location containing the project­
programmer number for the file.

8-9

BYTE POINTER TO SYMBOLIC
KEY

BYTE POINTER TO RECORD
KEY

CODES FOR INDEXED KEY

Bits

0-14

15-17

18-19

20

21-23

24-35

FILE-LIMIT PAIRS

8.4 CHANNEL TABLES

A byte pointer that points to the byte preceding the first
character of the symbolic key field (for key codes 0, 1,
and 2) or the address of the key (for key codes 3, 4, and 5).

Similar to byte pointer to symbolic key, except that the
pointer to the record key is relative to the beginning of the
record.

A word containing codes with the meanings shown in Table 8-3.

Table 8-3
Codes for Indexed Key

Not used

Type of key

Meaning

o = nonnumeric
1 = numeric display ~ 10 digits
2 = numeric display> 10 digits
3 = COMP ~ 10 digits
4 = COMP > 10 digits
5 =COMP-1

Not used

o = field is signed
1 = field is unsigned

Not used

Size of key in bytes (for codes
0, 1, 2 only)

For each file-limit, three words are allocated. The left­
half of word 1 contains the address of the lower limit; the
right-half of word 1 contains the address of the higher limit.
Words 2 and 3 contain the actual values of these limits at
OPEN time.

For each open file, a 20-word entry is placed in a channel table. Table 8-4 shows the contents of

each word in that entry.

8-10

Word Bits

21

20

0
1
2
3

19 4-14
15
16
17
18-35

----- - - -

18

17

16
0-17
18-35

0-11
12-15

15 16
17
18-35

14

13

12

11

10

7-9

4-6

3

2

1

8.5 BLOCKING

Table 8-4
Channel Table Entry

Contents

Number of bytes per word in the record area.

Device name in SIXBIT for RERUN.

Not used.
The file is optional.
Labels are nonstandard.
Labels are standard.
Not used.
Version number discrepancy between index levels.
WRITE invalid key.
READ, REWRITE, or DELETE invalid key.
Record size in words.

--------~ - - --- -~----- ---

Number of inputs executed.

Number of outputs executed.

Buffer location.
Larger of record or label size in words.

Magnetic tape reel number.
1-0 channel number.
File is IIlocked ll close.
Fil e is positioned over the read/write heads.
Not used.

Relative number of the current physical block.

Number of buffers per logical block.

Number of buffers yet to be processed for current block.

Number of records required to fill current logical block.

- - ----

IOWD pointing to device-name being used with multi-device file.

A 3-word header used for output.

A 3-word header used for input.

Number of records remaining until next rerun dump.

Current record number.

Characteristics of the device, as returned by a DEVCHR UUO.

A file is said to be blocked when a BLOCK CONTAINS clause is part of its description; conversely, a

file is unblocked when no BLOCK CONTAINS clause is specified. The number of records in a block

is termed the blocking factor. The next two paragraphs show how 1-0 processing differs for blocked

and unblocked fi les.

8-11 November 1974

8.5.1 Reading and Writing Blocked Files

For each READ statement referencing a SEQUENTIAL blocked file, the 1-0 routines transfer to the

record area (i .e., core memory allocated to contain the current record) the next consecutive record

from the fi Ie. If a number of records, equal to the blocking factor, have been transferred since the

previous block was read, the 1-0 routines do a physical read of the device.

When a RANDOM blocked file is read, both the blocking factor and the ACTUAL KEY are used to

specify which physical segment to read and which record in that segment to transfer to the record area.

When an INDEXED blocked file is read, the SYMBOLIC KEY is used to specify the record to be trans­

ferred to the record area.

Writing SEQUENTIAL blocked files is accomplished in a manner similar to the reading of them, except

that records are transferred from the record area to the buffer area.

When a RANDOM blocked file is written, the 1-0 routines do the following:

a. Read a physical segment whose address is determined by the blocking factor and the
ACTUAL KEY, if necessary •

b. Transfer the record to a portion of that segment.

c. The segment is written either when ·another segment is to be read or when the fil e is
closed.

When an INDEXED blocked file is written, the 1-0 routines perform the following:

a. Read, if necessary, the physical block that is to contain the record.-

b. If the write is due to a REWRITE statement, the contents of the record area replace the
record on the block and the block is rewritten.

c. If the write is due to a WRITE statement and the new record will fit in an unused part
of the block, the contents of the record area are transferred to the block and the block is
rewri tten. If the new record wi II not fit into the block, the block is spl it into two more or
less equal parts, the new record is added, and both blocks are written.

8.5.2 Reading and Wri ting Unblocked Fil es

When an unblocked file is either read or written, the 1-0 routines have complete control over the time

when the actual read or write takes place. The user need not concern himself with the physical char­

acteristics of the device; in fact, he does not have to know anything about such characteristics as

block or segment sizes.

8-12

8.6 LABEL RECORDS

The term label records refers to header or trail er labels on the fiI e. The presence or absence of label

records is specifi ed by the LABEL REC ORDS clause (see Chapter 5). Their format can be standard or

non-standard.

8.6.1 Standard Label Records

The standard label for DECtape and random-access devices is the directory block used by the monitor.

For magnetic tape, the standard label is 80 characters in length and is written in a separate block from

the data, with the same recording mode as the data. If the recording mode is ASCII, the 80-character

label includes a final carriage return and line feed. Table 8-5 shows the contents of each character

in a standard label for non-random-access devices.

Table 8-5
Standard Label for Nonrandom-Access Media

Characters Contents

1-4 HDR 1 = Beginning fi Ie.
EOFl = Ending file.
EOVl = Ending reel.

5-13 Value of identification.

14-21 Always spaces.

22-27 Not used.

28-31 Ree I number. The first reel is always 0001.

32-41 Not used.

42-47 Creati on date: two characters each for the year, month,
and day, respectively.

48-80 Not used.

8.6.1 .1 Ending Labels - Magnetic tapes are the only devices with ending labels. Each ending label

is preceded by and followed by an end-of-file mark.

8.6.2 Non-Standard Label Records

Non-Standard labels are specified by the LABEL RECORDS clause (see Chapter 5). Similar to standard

labels, they are written in a separate block on the device.

8-13

When a file is opened, the beginning non-standard label will be read (as input) or written (as output)

automatically by the 1-0 routines. If the file is being opened for output, the data for the record must

be suppJi ed by a USE procedure in the DECLARA TIVES (see Chapter 6). If the fil e is being opened for

input, no checks are made by the 1-0 routines to determine the validity of the label; the user may

write any check in a USE procedure.

8.7 MULTIPLE-FILE TAPE

Only magnetic tapes can contain multiple files in the COBOL sense. This may seem to conflict with

the obvious fact that random-access devices contain more than one file, but the programmer will recall

that files on a random-access device are treated by the monitor as though they are on separate devices.

Each file on a mul ti-file magnetic tape must have labels, and must be wholly contained on one reel.

8.8 SAME AREA CLAUSE

The SAME AREA clause specifies that two or more files are to share the same memory area during pro­

cessing. Since the area shared includes all storage areas (incl uding alternate areas) assigned to the

files specified in this clause, only one file at a time can be open.

8.9 SAME REC ORD AREA CLAUSE

The SAME RECORD AREA clause specifies that two or more files are to use the same memory for pro­

cessing the current logical record. All or any of the files specified in this clause may be open at any

time. The record area contains only one record at any time.

8.10 FILE-LIMITS

File-limits must be specified for RANDOM files. They may also be specified for input SEQUENTIAL

files, in which case only that portion of the file that is within the file-limits is read.

File-limits for files whose access mode is RANDOM specify the allowed range, or ranges, for the

ACTUAL KEY (see ACTUAL KEY in Chapter 5). When the contents of the ACTUAL KEY fall outside

all ranges given in the FILE-LIMITS clause for that file, the read or write transfers control to the state­

ment specified in the associated INVALID KEY clause (see Chapter 6).

8-14

8. 11 SUBPROGRAMS

The subprogram capability allow~ the COBOL programmer to write and compi Ie separate programs to

be executed together. Programmers who write in other languages can also make use of COBOL sub­

programs by calling them from their programs according to the standard calling sequence.

Subprograms enable the CaBO L programmer to divide a large task into smaller and more manageab Ie

units that can be executed together. Also, if many 'programmers are working on portions of a COBOL

job, their parts can be written as subprograms, compiled and debugged separately, and joined to­

gether at run-time. A COBOL subprogram is a program that is compiled separately but is normally

run with another program that calls it. A main program, in contrast, is a program that is not called

by another program and in which execution begins. The principal distinction between a main program

and a suboroaram (aside from the wav in which thp. nronrnm ic; IIC;Pr/) ic; thnt nft"'r t"'nrnni In+in rn i _. . . - , - -- --_.-.-.------ .. _. -'---'"

program has a starting address and a subprogram does not. The compiler, when it sees a LINKAGE

SECTION, ENTRY statement, PROCEDURE DIVISION header with a USING clause, or a GOBACK

statement assumes that the program is a subprogram and does not generate a starting address for it.

Otherwi~e, it assumes that the program is intended to be used as a main program and does generate a

starting address. Thus, a command of the form:

.R COBOL
*=MAIN1
*=SUB1

or .COMPILE MAIN1, SUBl

wi II cause the main program to be given a starting address whi Ie the subprogram (SUB 1) wi II not have

a starting address generated for it.

There are cases when a user might want to use a main program (i.e., one that does not contain any

of the special subprogram syntax) as a subprogram. In such a case, he can force the compiler to sup­

press the starting address by including the /1 switch in the command string. For example:

.R COBOL
*=MAIN1
*=MAIN2/I

or .COMPILE /COBOL MAIN1, MAIN2(,I)

The program to be used as a subprogram (MAIN2) wi II not have a starting address generated for it.

(, I) is the way that the user can pass binary compi ler switches such as /1 to the compi Ie-class monitor

commands. Refer to DECsystem-l0 Operating System Commands for more information about compile­

c lass commands.

There may also be cases when a user wishes to use a subprogram as a main program. In this case, he

can force the compiler to generate a starting address by including the /J switch in the command

stri ng. For examp Ie:

8-15

.R COBOL
*=SUB l/J
*=SUB2

or .COMPILE /COBOL SUB 1 (, J), SUB2

The subprogram that wi II be used as a main program wi II have a starting address generated for it. The

other subprogram (SUB2), because it contains subprogram syntax, wi II not have a starting address

generated for it.

Subprograms can be treated as main programs as long as the data in the LIN KAGE SECTION is not

referred to in the PROCEDURE DIVISION. This restriction is due to the fact that the data in the

LINKAGE SECTION does not have space reserved for it; instead, it uses the space reserved for data

items in the DATA DIVISION of the main program. Thus, if no main program is present, the items in

the LINKAGE SECTION cannot be used.

8. 11. 1 Using Subprograms

A subprogram is written and compiled separately from a main program, and thus has most elements of

a main program. Files can be opened for input, output, and input-output in a subprogram, but no

program can perform I/O operations on fi les in another program. The LIN KAGE SECTIO N is included

in a subprogram so that the subprogram can manipulate the data from another program without per­

forming I/O on this data. Also, unlike a main program, a subprogram cannot be segmented.

When a program calls a subprogram, the user must designate in the CALL statement of the ca II ing

program where the subprogram is to be entered. If the CALL statement in the main program refers to

the name of the subprogram (PROGRAM-ID), the subprogram is entered at the beginning of the

executable code (PROCEDURE DIVISION) and execution starts at that point. Execution of the sub­

program proceeds until an EXIT PROGRAM or GOBACK statement is encountered. Control then

returns to the calling program at the statement following the CALL statement. If no EXIT PROGRAM

or GOBACK statement is encountered, execution proceeds to the end of the subprogram (unless it

calls another subprogram) and control is never returned to the calling program. If the CALL statement

in the main program contains the name of an entry point in the subprogram, the subprogram is entered

at the ENTRY statement naming this entry point and execution proceeds from there. Control is re­

turned to the calling program when an EXIT PROGRAM or GOBACK statement is encountered. If

neither are present, the subprogram is executed to completion (unless it calls another subprogram) and

control is not returned to the calling program.

The USING clause in CALL, the PROCEDURE DIVISION header, and ENTRY need not be present if

the user does not wish to pass data from the main program to a subprogram. However, if one or more

are present in the ENTRY statement or PROCEDURE DIVISION header in the subprogram, an equal or

8-16

o

greater number of identifiers must be present in the CALL statement of the calling program. A USING

clause can be present in the CALL statement in the call ing program without a corresponding US I NG

clause in the ENTRY statement or the PROCEDURE DIVISION header of the called program; it wi II be

ignored.

8.11.2 Example of Subprogram Usage

B The example below shows a main program and two subprograms. The subprograms are called if

certain conditions are met in the data in the main program. From the main program, calls are

~.: made to entry points in subprogram B, which then calls subprogram C. Because the name of

B subprogram C is used in the CALL statements in B, the entry point is the beginning of the

PROCEDURE DIVISION. Note the presence of the USING clauses with identifiers in the

main program CALL statements and in the ENTRY statements and PROCEDURE DIVISION

header in the subprogram. The identifiers in the subprograms are defined in their respective

LINKAGE SECTIONS, while the identifiers in the main program are defined in the FILE

and WORKING-STORAG E SECTIONS. The identifiers in the subprograms use the core

space of the identifiers in the main program because no space is reserved for items in the

LINKAGE SECTION. Thus, REC and TOT in ENTRY statements BP and BN use the core

~ space of INR and TOTALS from the main program. Also, when subprogram C is called, the

M identifiers AMT, B, and T are related to items in the LINKAGE SECTIONS of subprogram

B which are, in turn, related back to the identifiers in the main program.

Each subprogram has, in addition to a LINKAGE SECTION, a WORKING-STORAGE SECTION.

The data items in this section are unique to each subprogram (even if they are used in calls to other

subprograms) and have space reserved for them.

* MAIN PROGRAM

IDENTIFICATION DIVISION.
PROGRAM-ID. A.

ENVIRONMENT DIVISION.

1-0 SECTIO N.
FILE-CO NTROL.

SELECT INF ASSIGN DSK.

8-17 November 1974

DATA DIVISION.

FILE SECTION.
I FD INF VALUE OF ID "TEST DATil.

•

I

01 INR, DISPLAY-7.
02 TYPE-KEY PIC X(4).
02 INF-AMT PIC S9(5)V99.

WORKING-STORAGE SECTION.
Ol TOTALS PIC S9(6)V99.
Ol TAX PIC SV999

PROCEDURE DIVISION.
START.

OPEN INPUT INF.
LOOP.

READ INFi
AT END CLOSE INF
DISPLAY TOTALS,
STOP RUN.

IF TYPE-KEY = "BP",
CALL BP USING INR, TOTALS,
GO TO LOOP.

IF TYPE-KEY = !lBN",
CALL BN USING INR, TOTALS,
GO TO LOOP •

* SUBPROGRAM FOR TYPE B RECORDS

IDENTIFICATION DIVISION.
PROGRAM-ID. B.

DATA DIVISION.

WORKING-STORAGE SECTION.
01 DISCOUNT PIC SV999
01 NEG-DISCNT PIC SV999

LINKAGE SECTIO N.
01 TOT
Ol REC, DISPLAY-7.

02 FILLER
02 AMT

PIC S9(6)V99.

PIC X(4).
PIC S9(5)V99.

PROCEDURE DIVISION.
ENTRY BP USING REC, TOT.

I CALL C USING REC, DISCOUNT, TOT.
EXIT PROGRAM.

ENTRY BN USI NG REC, TOT.
I CALL C USING REC, NEG-DISCNT, TOT.

EXIT PROGRAM.

8-18

VALUE 0.035.

VALUE O. 165.
VALUE -0.165.

November 1974

o

* SUBPROGRAM TO DO THE ARITHMETIC

IDENTIFICATION DIVISION. a PROGRAM-ID. C.

DATA DIVISION.
WORKING-STORAGE SECTION.
01 HOLD PIC S9(5)V99.

LINKAGE SECTION.
01 A, DISPLA Y-7.

02 FILLER PIC X(4).
02 AMT PIC S9(5)V99.

01 T PIC S9(6)V99.
01 B PIC SV999.

fB PROCEDURE DIVISION USING A, B, T.
C:;TA-'~T:

MULTIPLY AMT BY B GIVIN G HOLD.
IF B > 0,

IF B < 0,

ADD AMT TO T,
SUBTRACT HOLD FROM T.

SUBTRACT AMT FROM T,
ADD HOLD TO T.

EXIT PROGRAM.

8-19 November 1974

I

Chapter 9

Source Library Maintenance Program

The COBOL Source library Maintenance Program maintains on disk or DECtape a library file of COBOL

source-language text that can be copied into a ~OLJrce f'r~rnm nt ~t"Imri'l3 tirn.~_

gram has the capability of adding source-language data to the library file, replacing and/or deleting

lines, and listing entries in that file. Thus it allows the user to specify those source routines that are

used in many programs and to place them in a common file for use by the COBOL compiler. The rou­

tines on the I ibrary file are made available through the use of the COpy verb. (See pages 7-2 and 7-3

for the descri pti on of the CO PY verb.)

9.1 EQUIPMENT

9. 1 . 1 Machine Requirements

Required hardware for the COBOL Source library Maintenance Program consists of the following:

a. A PDP-10 central processor.

b. A diskfile.

c. A terminal.

9. 1.2 Machine Opti ons

With a small sacrifice of running time, th~ original and/or updated version of the library file can be

put on DECtape. Any device capable of handl ing ASCII output can be used as the I isting device.

9.2 SALIENT FEATURES OF MAINTENANCE PROGRAM

a. The routine runs in 2K of user core.

b. Though the routine is designed around disk, other devices can be used where appropriate.

9-1 November 1974

I

I

c. The routine runs under the control of BATCH.

d. Commands can be taken from any device.

9.3 INPUT FORMAT

The input file is a collection of COBOL source-language routines, each identified by a unique

a-character library-name. The library file must be on a directory device.

The data in the library is divided into the three sections shown in Table 9-1.

Table 9-1
Data Sections in the library File

Section Descripti on

Source language This is a collection of named COBOL routines (in ASCII)
that are to be referenced by the CO PY verb. The routines
are arranged in alphabetic order by library-name. The
maximum number of routines that can appear in the file
is 3969.

Fine Table This is a table of library-names. It may extend over as
many as 63 blocks. Each entry has a poi nter to the data
in the source language section.

Rough Table This table points to the blocks in the Fine Table. It is one
block (126 words) in length.

9.4 OUTPUT FORMAT

The format of the output files is identical to that of the input file. (See Section 9.3.)

9.5 ORGANIZATION OF THE MAINTENANCE PROGRAM

9.5. 1 Internal Organization

All subroutines are resident. The Maintenance program uses the core UUO to increase its core usage, if

necessary .

9-2 November 1974

9.5.2 Operational Organization

The Maintenance program copies the input file to disk, updating as it does. When the update is com­

pleted, the new library is copied to the output file; however, if the output is to disk, the Maintenance

program does a RENAME.

9.6 OPERATING PROCEDURE

9.6. 1 Start-Up

As one of the CUSPs, the Maintenance program is started with the R, RUN, or GET and START monitor

commands. There i!': no REENTFR ~rnt:.''='~I_I!",=,_

The operator specifies the devices to be used by typing

FILE1,FILE2 = FILE3

where FILEn is of the form DEV: NAME. EXT [PROJ,PROG].

FILE 1 is the fi Ie to contain the output, FILE2 is the listing file, and FILE3 contains the library to be up­

dated.

9.6.2 Default Assignments

If FILE2 is not specifi ed, no I isting of corrected routines is produced.

If FILE3 is not specified, it is assumed that there is no input library; in this case, only insertions can be

made.

If filename extensions are not specified, the following extensions are assigned:

a. LIB for FILE 1 and FILE3, and

b. LST for FILE2.

If devices are not specified, DSK is assigned.

If a filename is not specified for FILE3, LIBARY is assumed; if no filename is specified for FILEl or FILE2,

the fi lename of FILE3 is assumed.

If the input file and the output fi.le have the same filename and extension, and are both on the disk, the

extension of the input file is changed to BAK at the completion of the run.

9-3 November 1974

I

9.6.3 Switches

The following switches may be used:

z - C lear an output directory (for OECtape on Iy).

W - Rewind (listing on magtape only).

See Appendix 0, Table 0-3 for a complete list of COBOL switches.

9.6.4 Listing the Contents of a Library File

The user can obtain a listing of the contents of a library file by means of the following command string .

• R LIBARY
*Iibnam. LST ... I ibnam. ext /L

Libnam.LST is a disk file that contains a listable form of the library file named libnam.ext. The /L

switch causes LIBARY to create a listing file, which is stored in libnam.LST. This listing can be

printed by means of any monitor command available for this purpose (e.g., LIST or TYPE).

9.7 COMMAND LANGUAGE

9.7.1 Commands to Position Files

The six commands used to position the input and scratch files are shown in Table 9-2.

Command

INSERT library-name

INSERT library-name,
dev:file.ext [ppnJ

DELETE library-name

REPLACE library-name

Table 9-2
Commands for Positioning Files

Function

The input file is copied to the scratch file, starting at the
current position of the files, until a source routine with a
name alphabetically greater than the one specified is en-
countered. The new name is inserted in the Fine Table,
and the program awaits another command.

The entire file is inserted into the library with the name in-
dicated by library-name. The file must be ASCII. If there
are line numbers in the file, they are included in the file.
If there are no line numbers, they are added to the lines,
starting with 10 and incrementing by 10. These line
numbers are not COBOL sequence numbers; they are the
line numbers created by the LINED program.

The input file is copied to the scratch file until the source
routine with the name specified is encountered. The input
file is then positioned after that source routine.

The program does a DELETE followed by an INSERT.

9-4 November 1974

Command

REPLACE library-name,
dev:fi Ie. ext [ppn]

CORRECT library-name

END

RESTART

EXTRACT library-name
dev:fi Ie. ext [ppn]

Table 9-2 (Cont)
Commands for Position ing Fi les

Function

The file named library-name is replaced with the specified
file. The new fi Ie must be ASCII. I f there are I ine num-
bers in the file, they are included in the file. If there are
no line numbers in the file, they are added to the lines,
starting with 10 and incrementing by 10.

The input file is copied to the scratch file until a source
routine with the name specified is encountered. Typing IN
after the CORRECT command causes new line numbers to be
appl ied to the output version of the source language routine.

The remainder of the input file is copied to the scratch file,
and the output fi Ie is created, and the program then
; C:IIIIIIIUit::::..

The remainder of the input fi Ie is copied to the scratch fi Ie.
The scratch file then becomes the input file, and a new
scratch file is started. This command allows the user to
update routines out of library-name order.

A file with the specified name and extension on the speci-
fied device is created ITom the file named library-name.
If the IN switch is included after the file descriptor, line
numbers are put on the lines of the output file. If the IN
switch is not included, the file will not have line numbers.

9-5

I
I

I

I

9.7.2 Commands to Alter Contents of Source File

The three commands used to alter the contents of a source file are shown in the following table.

Table 9-3
Commands for Altering Contents of Source File

Command

Dnnnnnn

Innnnnn COBOL-statement

Rnnnnnn COBOL-statement

Function

The input file is copied to the scratch file until nnnnnn,
the specified Iin"e, is encountered. That line is then
skipped.

The input file is copied until either a line having a larger
line-number or a new source language routine is
encountered. The COBOL-statement is inserted at that
point. A space or tab must be included between the line
number and the COBOL statement. The space will not
be included in the statement; the tab will be included
in the statement.

The input file is copied until the specified line is
encountered. The COBOL statement with that line­
number is replaced by the statement in the command.
A space or tab must be included between the line
number and the COBOL statement. The space will not
be included in the statement; the tab will be included
in the statement.

9.7.3 Example of the Use of the Commands

A library on disk contains the routines PAYCOMP, FIND-MP, and MP-DESCR. The user

wants to do the following:

a. Delete PAYCOMP.

b. Correct MP-DESCR.

c. Insert a new routine called JOB-DESC.

The MP-DESCR routine contains the following source statements:

000010
000020

LABEL RECORDS ARE OMITTED
DATA RECORD IS MP-RECORD.

The dialog at the Teletype might appear as follows:

R LIBARY
L1BARY .NEW=LlBARY .OLD
INSERT
1000010
1000020
1000030
CORRECT
1000005
DELETE
END

JOB-DESC
LABEL RECORDS ARE STANDARD;
VALUE OF ID IS II JOBS DATil;
DATA RECORD IS JOB-RECORD.
MP-DESCR/N
BLOCK CONTAINS 5 RECORDS
PAYCOMP

9-6 November 1974

I

The file LlBARY .NEW now contains the following:

a. FIND-MP

b. JOB-DESC

c. MP-DESCR, altered to appear as follows:

000010
000020
000030

BLOCK CONTAINS 5 RECORDS
LABEL RECORDS ARE OMITTED
DATA RECORD IS MP-RECORD.

To insert one or more files in a library, the user can issue the following commands to

LlBARY.

• R Ll8ARY
*AL18,ALlB:
* 1 NSER T AF I L .A FI L
*lNSERT BFIL,BFIL
*END

The file ALiB .LlB contains the following files.

A F I L

8 F I L

COBOL LIBRARY

DISPLAY .. A" •

COBOL LIBRARY

DISPLAY "B".

26-JUN-74

26-JUN-74

tJ9:52

~9: 52

9-7 November 1974

9.8 ERROR RECOVERY

9.8. 1 Input Errors

The input file is not a library file if one of the following conditions exists:

a. The Rough Table is not in order by library-name.

b. A Fine Table is not in order by library-name.

c. A I ibrary routine is not in order by line-number.

If the input file is not a library file, the program types

? INCORRECT LIBRARY FILE FORMAT

and terminates with a CALL [SIXBIT/EXITj] •

9.8.2 Operator Errors

If an improper command is detected, an error message is typed, and the program looks for another com­

mand. For a complete list of operator error messages see Table 9-4.

9-8

I

Table 9-4
Operator Errors

Message

?THAT ROUTINE HAS ALREADY BEEN PASSED

? THAT ROUTINE DOES NOT EXIST

? THAT ROUTINE ALREADY EXISTS

"lTUAT IT I[: UAC AI ()CA~" DCC nACCC~
•• I I" I L..L I "1'- I I"..., f'""'\L.I\.'-"""" I n "...,....,,

? THAT LINE DOES NOT EXIST

? THAT LINE ALREADY EXISTS

? IMPROPER LIBRARY-NAME
-.

Meaning

An attempt was made to al ter a routi ne
that had already been copied to the
output fi Ie.

An attempt was made to correct, de-
lete, or replace a routine not in the
input file.

An attempt was made to insert a routi ne
that already exists in the input file .

A __ .L&. ___ "._"" __ ...J_ .L_ :_,._J~I~'"~
£""'\11 ""'-4""""IIt" • .,\,,4~ 111\,,4"--_ • ..., '.,oJ __ ., """"_1_._,
or replace a source line that had al-
ready been copied to the scratch file.

An attempt was made to replace or de-
lete a line not found in the source rou-
tine.

An attempt was made to insert a line
that already exists in the source rou-
tine.

The specified library-name is longer
than 8 characters or contains charac-

,ters other than A-Z, 0-9, and the hy-
phen.

?rMPROPER COMMAND A command was issued that was not
recognized by LlBARY.

9.8.3 Hardware Errors

If an error is detected while reading or writing on a device, the program types

? ERROR ON FILE DEY: filename, extension

If the operator wants the read or write re-tried, he types

AGAIN

9-9 November 1974

9.9 SOFTWARE INTERFACES

9.9. 1 Format of the Rough Table

The Rough Table consists of a single block of 128 words. The first word is unused; the last word contains

all 1s. The intervening space is divided into sixty-three 2-word entries. The format of an entry is

shown in Table 9-5.

Table 9-5
Format of a Rough Table Entry

Word Bits Contents

1 0-35 The routine name (in SIXBIT) that is
2 0-11 found in the first entry of a Fine Table.

2 12-28 The block-number of the Fine Table
block that contains the routine name
menti oned above. The block-number
is relative to the beginning of the
file.

2 29-35 Not used.

9.9.2 Format of the Fine Table

The Fine Table consists of one or more blocks of 128 words. In each block, the first word is not used,

and the last word is all 1s. The intervening space is divided into sixty-three 2-word entries. The for­

mat of an entry is shown in Table 9-6.

Table 9-6
Format of a Fine Table Entry

Word Bits Contents

1 0-35 The name of the routine in the library
2 0-11 (in SIX BIT) .

2 12-28 The block-number that contains the
start of the first line of the source rou-
tine mentioned in the preceding entry.
The block-number is relative to the be-
ginning of the file.

2 29-35 The relative word-number within that
block which contains the sequence num-
ber of the first line of that routine.

9-10

9.9.3 Format of the Source Routines

Source routines contain lines of COBOL source language. Each line has a line-number word, followed

by a string of ASCII. The line-number word has a line number I or sequence number I in bits 0-34 and a

1 in bit 35. Any space left between the last character of a I ine and the following I ine-number is fi lied

with nulls. The last I ine of a routine is followed by a I ine with a sequence number of 011 1s.

9-11

m

Appendix A
COBOL Reserved Words

In the listing below, words preceded by no symbols are standard COBOL reserved words that

are also reserved in DECsystem-10 COBOL. Words preceded by * are ANSI standard

reserved COBOL words that are not reserved in DECsystem-10, but should be avoided for

compatibility with other COBOL compilers. Words preceded by ** are reserved in

DECsystem-10 COBOL but not in the ANSI standard.

A -
ACCEPT

Arrl=C:;C:;
.. - - - --

ACTUAL

ADD

*ADDRESS

ADVANCING

AFTER

ALL

ALPHABETIC

ALTER

ALTERNATE

AND

**ANY

ARE

AREA

AREAS

ASCENDING

**ASCII

ASSIGN

AT

AUTHOR

Version 6 COBOL
Version 7 L1BOL

rJ

I

B COMMA -

BEFORE COMMUNICATION

RF~!NN!NG
COMP

**BINARY **COMP-l

BLANK B **COMPILE

BLOCK COMPUTATIONAL

BY **COMPUTA TlONAL-l

COMPUTE

C
CONFIGURATION

- **CONSOLE
**CALL

CONTAINS
**CANCEL

CONTROL
CD CONTROLS
CF COPY
CH

CORR
**CHANNEL CORRESPON DI NG

CHARACTERS I COUNT
CLASS CURRENCY

*CLOCK-UNITS I **CURRENT
CLOSE

COBOL

CODE

COLUMN

A-1 November 1974

D I **EMPTY G - -
DATA I ENABLE

GENERATE

I **DATABASE-KEY END
I **GET

I DATE ENDING
GIVING

DATE-COMPILED
ENTER

GO

DATE-WRITTEN
**ENTRY

**GOBACK
ENVIRONMENT

GREATER
I **EPI

GROUP
I **DBKEY

DE EQUAL
DECIMAL-POINT EQUALS

H -DECLARATIVES ERROR
HEADING **DECSYSTEM-l0 I ESI
HIGH-VALUE I **DECSYSTEM10 **EVEN

**DEFERRED EVERY HIGH-VALUES

**DELETE EXAMINE
I -I DELIMITED I **EXCL

1-0 I DELIMITER I **EXCLUSIVE
**DENSITY EXIT I-O-CONTROL

DEPENDING **ID

I DEPTH F IDENTIFICATION -
IF DESCENDING

FD
IN I DESTINATION

FILE
INDEX DETAIL

FILE-CONTROL
INDEXED I DISABLE

FILE-LIMIT
INDICATE DISPLAY

FILE-LIMITS
I INITIAL **DISPLA Y-6

FILLER
INITIATE **DISPLAY-7

FINAL
INPUT DIVIDE

I **FIND
INPUT -OUTPUT DIVISION

FIRST • **INSERT DOWN
FOOTING

INSTALLATION I **DUP
FOR

INTO I **DUPLICATE
**FORTRAN-IV

INVALID **FORTRAN
I **INVOKE E

FROM -
**EBCDIC IS

I EGI

ELSE

I EMI

Version 6 COBOL A-2 November 1 974
Version 7 LlBOL

J N PLUS -
JUST NEGATIVE I POINTER

JUSTIFIED NEXT POSITION

NO
POSITIVE

K NOT
g **PRIOR

-
KEY

NOTE I **PRIVACY

KEYS
NUMBER

PROCEDURE

NUMERIC
PROCEED

PROCESSING
L - 0

**PROGRAM

LABEL PROGRAM-ID

LAST
OBJECT -COMPUTER I **PROT

LEADING
OCCURS I ** PROTECTED

LEFT
**ODD

I LENGTH
OF Q -

LESS
OFF

LIMIT
OMITTED ~ QUEUE

LIMITS
ON

QUOTE

LINE I **ONLY
QUOTES

LINE-COUNTER
OPEN

LINES
OPTIONAL

R -

**L1NKAGE
OR RANDOM

LOCK
OUTPUT RD

LOW-VALUE I OVERFLOW READ

LOW-VALUES
FA **OWNER B RECEIVE

RECORD

M
P **RECORDING -

RECORDS
**MACRO PAGE REDEFINES

It **MEMBER PAG E-COUNTER REEL
MEMORY **PARITY I **RELA TIVE

I MESSAGE **PDP-10 RELEASE
MODE PERFORM REMAINDER

I **MODIFY PF REMARKS
MODULES PH I **REMOVE
MOVE PIC RENAMES
MULTIPLE PICTURE REPLACING
MULTIPLY

Version 6 COBOL
Version 7 L1BOL A-3 November 1974

REPORT *SIGN THRU

REPORTING I **SIXBIT • TIME

REPORTS SIZE TIMES

RERUN SORT TO

RESERVE SOURCE **TODAY

RESET SOURCE-COMPUTER **TRACE

I **RETR SPACE TYPE

I **RETRIEVAL SPACES

RETURN SPEC IAL-NAMES U -
*REVERSED STANDARD

UNIT
REYVIND STATUS • UNSTRING

**REYVRITE STOP
UNTIL

RF • **STORE
UP

RH I STRING I **UPDATE
RIGHT

I
SUB-Q UEUE-1 • **UPDATES

ROUNDED SUB-QUEUE-2
UPON

RUN· SUB-QUEUE-3
USAGE

I **RUN-UNIT I **SUB-SCH EMA • **USAGE-MODE
SUBTRACT

USE
S SUM

**USER-NUMBER -
SAME I **SUPPRESS

USING

I **SCHEMA
**SWITCH

SD SYMBOLIC V -SYNC SEARCH
SYNCHRONIZED VALUE

SECTION VALUES
SECURITY

VARYING T SEEK -
I SEGMENT • TABLE

W -SEGMENT -LIMIT TALLY

SELECT TALLYING WHEN

I **SELECTIVE TAPE WITH

I SEND • TERMINAL • **WITHIN

SENTENCE TERMINATE WORDS

SEQUENTIAL • TEXT WORKING-STORAGE

SET THAN WRITE

I **SETS THROUGH Z -

ZERO

ZEROES

Version 6 COBOL ZEROS

Version 7 L1BOL A-4 November 1974

Appendix B

Character Collating Sequence

The following table gives the collating sequences for ASCII (DISPLAY -7) and SIXBn (DISPLAY -6)

fields as used in condition comparisons.

- _.---

SIXBn Character ASCII SIXBIT Character ASCII Character ASCII
7-Bit 7-Bit 7-Bit

00 Space 040 40 @ 100 " 140
01 ! 041 41 A 101 a 141
02 II 042 42 B 102 b 142
03 # 043 43 C 103 c 143
04 $ 044 44 D 104 d 144
05 % 045 45 E 105 e 145
06 & 046 46 F 106 f 146
07 I 047 47 G 107 g 147

10 (050 50 H 110 h 150
11) 051 51 I 111 i 151
12 * 052 52 J 112 i 152
13 + 053 53 K 113 k 153
14 , 054 54 L 114 I 154
15 - 055 55 M 115 m 155
16 . 056 56 N 116 n 156
17 / 057 57 0 117 0 157

20 0 060 60 P 120 p 160
21 1 061 61 Q 121 q 161
22 2 062 62 R 122 r 162
23 3 063 63 S 123 s 163
24 4 064 64 T 124 t 164
25 5 065 65 U 125 u 165
26 6 066 66 V 126 v 166
27 7 067 67 W 127 w 167

30 8 070 70 X 130 x 170
31 9 071 71 Y 131 y 171
32 : 072 72 Z 132 z 172
33 ; 073 73 [133 { 173
34 < 074 74 \ 134 I 174
35 = 075 75] 135 } 175
36 > 076 76 t 136 ,...., 176
37 ? 077 77 +- 137 Delete 177

B-1

Appendix C

Standard Calling Sequence

The standard call ing sequence is used when COBOL programs co II COBOL subprograms by means of

the CALL statement and when COBOL programs call MACRO, FORTRAN-10, or FORTRAN-IV sub­

routines by means of the ENTER verb. Note that the calls to subroLJtinp.!; writtp.n fnr thp np\AI

FORTRAN-10 compiler use the standard calling sequence, while calls to subroutines written for the

old FORTRAN-IV compiler use another calling sequence. Both are described below.

The calling sequence, while it may be of interest to COBOL, FORTRAN-10, and FORTRAN-IV

programmers, is required knowledge only for the programmer who wishes to write MACRO subroutines.

The COBOL, FORTRAN-10, and FORTRAN-IV programmer need only use the statements in COBOL,

FORTRAN-10, and FORTRAN-IV that define entry points in the subprograms, the compiler will handle

entry and return.

When calling subprograms written in languages other than COBOL, the programmer must take care

that the input/output operations are performed only in the main program or only in the subroutine

written in another language. This restriction is necessary because the I/O channels cannot be used

by two languages in the same job.

C.l CALLING SEQUENCE FOR COBOL, MACRO, AND FORTRAN-10

The calling sequence used when a CALL statement calls a COBOL subprogram or an ENTER statement

calls a MACRO or FORTRAN-10 subroutine is:

MOVEI 16, address of first entry in argument list
PUSHJ 17, subprogram address

If the USING clause appears, an argument list is created containing an entry for each identifier or

literal in the order of appearance in the USING clause. It is preceded by a word containing, in its

left half, the negative of the number of entries in the list. If no USING clause is present, the

(continued on next page)

C-l

argument I ist contains an empty word and the preceding word is set to O. Each entry in the list is one

36-bit word of the form: o 8 9 12 13 35

I 0 I type address I

Bits 0-8 are always O.

Bits 9-12 contain a type code that indicates the USAGE of the argument.

Bits 13-35 contain the address of the argument or the first word of the argument; the address
can be indexed or indirect.

The types, thei r codes, how the codes appear in the argument list, and the locations specified by the

addresses are described below.

a. For l-word COMPUTATIONAL items

CODE: 2
IN ARGUMENT LIST: XWD 100, address
ADDRESS: that of the argument itself

b. For 2-word COMPUTATIONAL items

CODE: 11
IN ARGUMENT LIST: XWD 440, address
ADDRESS: that of the high-order word of the argument

c. For COMPUTATIONAL-l items

CODE: 4
IN ARGUMENT LIST: XWD 200, address
ADDRESS: that of the argument itself

d. For DISPLAY-6 and DISPLAY-7 items

CODE: 15
IN ARGUMENT LIST: XWD 640, address
ADDRESS: that of a 2-word descriptor for the argument

WORD 1: a byte pointer to the identifier or literal

WORD2: bit 0 is 1 if the item is numeric
bit 1 is 1 if the item is signed
bit 2 is 1 if the item is a figurative constant (including ALL)
bit 3 is 1 if the item is a literal
bits 4 through 11 are reserved for expansion
bit 12 is 1 if the item has a PICTURE with one or more pIS just

before the decimal point (e.g., 99PPY)
bits 13 through 17 are the number of decimal places. If bit 12

is 1, this is the number of PIS.
bits 18 through 35 contain the size of the item in bytes.

e. For procedure-names (which cannot be used for calls to COBOL subprograms)

CODE: 7
IN ARGUMENT LIST: XWD 340, address
ADDRESS: that of the procedure

C-2

C. 1. 1 Example of the Standard Call ing Sequence

77 FIELD 1 PICTURE S9(6) COMP.

77 FIELD2 USAGE INDEX.

77 FIELD3 PICTURE S9(lS) COMP.

77 FIELD4 PICTURE XX; DISPLA Y-7.

77 FIELDS PICTURE 99V9.

01 DUMMY.

02 FIELD6 OCCURS 3 TIMES INDEXED BY FIELD7.

ENTER MACRO ROUTIN USING FIELD1, FIELD2, FIELD3, FIELD4, FIELDS, FIELD7.

The preceding coding wi II generate:

MOVEI
PUSHJ

16, %LITOO+60
17, ROUTIN

%LITOO+21 / POINT
XWD

%LIT00+23/ POINT
XWD

%LITOO+S7 / XWD
%LIT00+60 / XWD

XWD
XWD
XWD
XWD
XWD

7, FIELD4
0,2
6,FIELDS
400001,3

-6, 0
0, FIELD1
0, FIELD2
440, FIELD3
640, %LIT00+21
640, %LIT00+23
0, FIELD7

C.2 CALLING SEQUENCE FOR FORTRAN-IV

The calling sequence used when an ENTER statement calls a FORTRAN-IV subroutine is:

JSA 16, subroutine address

C-3

If the USING clause appears, a single parameter for each identifier or literal follows the subroutine

linkage. (ARG is a PDP-10 instruction that does nothing.)

a. For 1-word COMP, index data items, and index-names:

ARG 0, identifier

b. For 2-word COMP:

ARG 11, identifier

c. For COMP-1:

ARG 2, identifier

d. For DISPLAY-6 or DISPLAY-7:

ARG 10, parameters

Parameters is the location of the first two consecutive words describing the item:

WORD 1: a byte pointer to the identifier or I itera I

WORD2: bit 0 is 1 if the item is numeric
bit 1 is 1 if the item is signed
bit 2 is 1 if the item is a figurative constant (including ALL)
bit 3 is 1 if the item is a literal
bits 4 through 11 are reserved for expansion
bit 12 is 1 if the item has a PICTURE with one or more pIS just

before the decimal point (e.g., 99PPV)
bits 13 through 17 are the number of decimal places. If bit 12

is 1, this is the number of PIS.
bits 18 through 35 contain the size of the item in bytes.

e. For Procedure-names:
ARG 17, procedure-name

C.2.1 Example of the Calling Sequence for FORTRAN-IV

PROCEDURE DIVISION.

ONLY SECTION.

PARA-NAME. ENTER FORTRAN-IV ROUTIN.

The preceding will generate:

JSA 16,ROUTIN

C-4

-I

I

I

Appendix D

Command Strings

The general form of the command string is as follows:

RELFIL, LSTFIL==SRC1 , SRC2, •••

Table D-1
Explanation of Command String Terms

Term Meaning

RELFIL The fi Ie that is to hold the generated code. If
no generated code is desired, the descriptor for
RELFIL is replaced by a hyphen.

Example: -,LSTFIL==SRC1,SRC2 •••

LSTFIL The fi Ie that is to hold the generated listing.
If no I isting is desired, the descriptor for
LSTFIL is replaced by a hyphen.

Example: RELFIL,-==SRC1,SRC2, •••

SRC1,SRC2 The source files required to form one input pro-
gram.

Each file description has the following form:

DEVICE:FILE .EXT [PROJECT ,PROGRAMMER] /SWITCH

Certain default assignments are made by the compiler whenever terms are omitted from the command

strings or the fi Ie descriptions.

a. If the device is omitted in any output fi Ie description, DSK is assumed. If the device is
omitted in an input file description, either the preceding device or DSK (if no preceding device
is specified) is assumed.

b. If the filename for RELFIL and/or LSTFIL is omitted, the filename of the first source file is
used.

D-1 November 1974

I

I

Term

DEVICE

FILE

Table D-2
Explanation of File Description Terms

Meaning

The name of a device. The name is composed
of 6 or fewer letters and/or digits.

The name of a file. The name is composed of
6 or fewer letters and/or digits.

EXT The fi lename extension. It is composed of 3 or
fewer I etters a nd/ or dig i ts •

PROJECT A user's project number.

PROGRAMMER A user's programmer number.

SWITCH Any of the switches shown in Table D-3.

c. If the fil ename extension is omi tted from RElFIl, • REl is assumed; if it is omitted from
lSTFIl, .lST is assumed; if omitted from the source file descriptor, CBl is assumed; and if
omitted from the library file descriptor, LIB is assumed.

d. If the [PROJECT,PROGRAMMER] option is omitted on any file, the file area for the user
is used.

Examples:

DTA1:RElOUT.A/Z,lPT:=OSK:SRCIN.C [27,36] /M/ S

The compiler compiles the program found in the file SRCIN • C in the area reserved for project-

program.m~r 27,36. iT ir~ub coiulrHls 1-6 ur i:lt: :)uUI~t:: (.15 U 5cyUciiCc iiUiiibci VS).

is written on DTA1, after the directory is cleared (/Z). The listing, including maps (/M) is put on the

lPT.

==LlBl/l, PROG/A

The compiler compiles the program found in PROG .CBl (CBl is assumed because the filename extension

is omitted from the source file descriptor) on the disk, using LIB1.LIB whenever a COpy verb is seen

(/l). The generated code goes into the file OSK:PROG .REl, and the listing onto the file

OSK:PROG. lST. The generated code is listed (/ A).

0-2 November 1974

- LIB1/L,PROG/A

This is identical to the preceding example, with the exception that no generated code is produced be­

cause the fi Ie descriptor for the fi Ie has been rep laced by a hyphen.

Switch

A

C

E

J

L

M

N

P

R

5

W

z

Table D-3
COBOL Switch Summary

Action by Compi ler

Allows the listing of the code generated (the source
program is listed whenever a listing file is specified).

Produces a cross-reference I isting of a II user-defined
items in the source program.

Checks the program for errors but does not generate
code.

Tu ",,, n rl"'",.. .. : f-:,..O"\ ,..f rrlp.rll ,..,.. ,.."",..1 "for:"",.." ,.."",..1
'/1--- - ----··1-··-·· -. ----- -- •..•.. _ •• - -··· .. 0- - •• -

lists the switches. When this switch is used, the other
parts of the command string are ignored.

Forces the compiler to suppress generation of a start­
ing address for a main program.

Forces the compi ler to generate a starting address
for a subprogram.

Uses the preceding fi Ie descriptor as a library fi Ie
whenever it encounters the COpy verb.

1. This switch is legal only with source files.

2. The file descriptor is not part of the main program.

3. More than one descriptor may have the /L switch.
If the first source file is not a library file, the
file LlBARY. LIB is used (if present on the DSK)
until the /L file is described.

Prints a map showing the parameters of each user­
defined item (e .g., data-names and procedure-names).

The source errors are not typed on the user1s terminal.

Indicates production mode. Trace calls are not
generated and user symbols are suppressed.

A two-segment object program is produced. The high
segment will contain the resident sections of the Pro­
cedure Division; the low segment will contain all else.
When the object program is loaded with the linking
loader, LI BOL will be added to the high segment.

The source file is in conventional format (with se­
quence numbers in columns 1-6 and with comments
starting in column 73).

Rewinds the device before reading or writing. (This
is valid for magnetic tape only.)

Clears the directory of the device before writing.
(This is valid for output DECtape only.)

D-3

I

I

Appendix E

The SORT Program

SORT is a stand-alone program that sorts fiI es according to user-specifi ed keys. The keys are sorted

in either ascending or descending order on numeric or alphanumeric data. The command string to

SORT has the form:

where: dev is the name of a device,

outfil.ext specifies the name and extension of the output file,

infil.ext specifies the name and extension of the input file, and

/sw 1/sw2 ... /sw are switches for both the input and output fil es. They are
-------n-listed in Table E-1.

If a fil e is contained on more than one devi ce (i. e., a mul ti-reel fil e), the devices must be magneti c

tapes. Up to six devices can be specified for each file. The device names for a multi-reel file are

written in the command string as follows.:

When a device is not specified for either file, DSK is assumed. No assumptions are made if filenames

or extensions are omitted. The defaul t conditions for the switches are described with the switches.

The command string can be continued on more than one I ine by means of a hyphen at the end of the

line.

The user can place several command strings into a command file and specify the file when running

SORT by means of the following command:

@dev:file.ext [P, pnJ

where: fil e. ext is the name of the file in which the commands are stored. If the extension is omitted,

I .eel is assumed. If the project-programmer number is omitted, that of the user running the

SORT program is assumed.

E-1 November 1974

At least three scratch devices are used by the SORT program. The user can specify one or more of

these scratch devices by means of the /T switch (refer to Table E-l). If none are specified by the

user, the SO RT program assumes D SK •

Switch

/A
/Bn

/Kabcm.n

flam

Table E-l
Summary of SORT Switches

Meaning

The fi Ie is recorded in ASCII mode.

A block contains n records; n is a decimal number. If the /B switch is
omitted, it is assumed that the fil e is unblocked.

/K defines the sort key according to the following parameters:

a = S The field has an operational sign.
a = U The field has no operational sign; its magnitude is used.

If this parameter is omitted, a numeric field is assumed to have an
operational sign (S).

b = X The field is alphanumeric.
b = C The field is COMPUTATIONAL.
b = F The field is COMPUTA TIONAl-l (floating point).
b = N The field is numeric display.

If this parameter is omitted, the field is assumed to be alphanumeric if
the sign parameter (a) is also omitted. If this parameter is omitted and
the sign parameter is included, the field is assumed to be numeric dis­
play (b=N). Data formats are described in Chapter 5, the USAGE
clause.

c = A The field is to be sorted in ascending order.
c = D The field is to be sorted in descending order.

If this parameter is omitted, the field is sorted in ascending order.

m is the starting byte or position of the field (e.g., the
starting column on a card).

n is the size of the field in either bytes or digits, depend-
:_~ __ 4-1.... ____ 4-_ .. 4-

II'~ VI, II.""", """VI""",,", •

More than one key can be entered with the /K switch, providing the
keys are separated from one another by commas (e.g.,
/Kabcm.n,abcm.n •••). The keys are sorted in the order that they
are entered in the command string.

/l specifies the label ing convention.

a = S The labels are standard.
a = 0 The labels are omitted.
a = N The labels are nonstandard.

m specifies the size of a nonstandard label in bytes.

E-2

I

Switch

Tabl e E-1 (Cont)
Summary of SORT Switches

Meaning

flam (Cont) If the /L switch is omitted, it is assumed that the labels are omitted un­
less a file name is specified or a directory device is used. In the latter
cases, standard labels are assumed.

/Rm

/s
/Tdev

or
/Tdev:

/R indicates the record size I where m is the size of the largest record
in bytes.

The fil e is recorded in SIXBIT mode.

/T indicates that the specified device is to be used as a scratch device
during the sort. More than one device can be specifi ed, providing the
devices are separated by commas (e.g., /Tdev

1
,dev

2
.•.).

When neither the / A switch nor the /S switch is specified for the input fiI e, the fil e is assumed to be

recorded in SIXBIT mode if there are any COMP or COMP-1 keys; otherwise, it is assumed to be re­

corded in ASCII mode. For the output fj Ie, if neither recording mode switch is incl uded, the record­

ing mode of the input file is assumed.

The /K, /R, and /T switches can be specifi ed with either the input or output fil e. The other switches

must follow the extension of the fil e to which they pertain.

RFCORD SIZE:

If the /L switch indicates that labels are standard (/lS) and a file name is not specified, SORT types

one of the following messages and waits for the user to enter a fj I ename and extension.

INPUT FILE NAME:

OUTPUT FILE NAME:

E. 1 SORT EXAMPLES

The command string below causes the sorting of a file of aO-character records. Both the input file

and the output fil e are unblocked. The input fil e is on MTA 1. The sorted output is to be placed on

MTAO. labels are omitted on the input file and are standard on the output file. The input file is

recorded in ASCII mode and the output file will also be recorded in ASCII mode. Two keys are speci­

fied: an a-character key in columns 9 through 16 and a 1-character key in column 2.

E-3 November 1974

I

I

.RSORT)
*~lTfl0:S0RTED .OUT IR80=~1TA 1: ILO/KX9 .8/KX2.1 IA)

The following command string causes sorting of a file which contains 40-word records (240 bytes).

Both files are on DSK, both are recorded in SIXBIT mode, and standard labels are assumed for both

files. The input file has three records per block; the output file is unblocked. The keys to be sorted

are: an unsigned 8-digit COMP field in word 2, a signed 12-digit COMP field in words 5 and 6, and

an 18-byte alphanumeric field in words 10 through 12. The command string is continued on another

line.

.R SORT)
*S OR TED • OUT IX UC 7 .8, C 2 5. 12,55. 18 =S OR T • I N -)
!B3/R240)

E-4 November 1974

Appendix F
COBOL Report Generator (COBRG)

COBRG is a program that produces COBOL source programs that generate reports. COBRG consists

of two parts: a basic report-writing program in unspecialized form; and a preprocessor that specializes

the basic program according to user-defined parameter val ues. One or more COBOL source programs

are generated by COBRG. These programs must then be compiled and executed to produce the desired

reports. The name of each program is defined by the user in his input specifications.

Certain processes are always performed in a report program. An input file is read, certain fields are

moved to an output record, the contents of some fields are accumulated to produce totals, and the

totals are printed at various times throughout the report. The programs produced by COBRG perform

these functions for the user, thus rei ieving him of the necessity of coding each report program himself.

The following terms are used in the descriptions of the input specifications:

FIELD

BREAK

ACCUMULATOR

HEADING

DETAIL LINE

TOTAL LINE

F.l INPUT TO COBRG

Any contiguous string of characters

A field is said to break when the contents of that field in the
current record differ from the contents of that field in the
preced i ng record

A numeric item in which the contents of an input field are
added to produce a total for one or more records

The I ine at the top -of each printed page in the report that
usually specifies the contents of each column of the report

A I ine of printed output that lists some field from the input
records. If any detail lines are printed, there is one line for
each input record

A I ine of printed output in which the value of accumulated
totals is listed

Input to COBRG consists of a file containing one or more sets of specification lines that describe the

report or reports to be produced. Each parameter in a specification line is separated from the others

F-l

by a single comma; each line is terminated by a carriage return. While most parameters are required

in the specification lines, some can be omitted. If they are omitted from the middle of the line, a

comma should be entered to denote this fact. If they are omitted from the end of the line, no desig­

nation is required.

Certain COBRG reserved words cannot be used as data names in the specifications. Refer to Section

F .6 for a comp I ete list of these words.

The specifications for each program to be generated must always begin with a NAME specification.

Each program's specifications are terminated by the NAME specification for another program or by an

end-of-file condition on the input file. The specifications should be entered in the order that the

formats are Ii sted be low.

F.l.l NAME Specification

The NAME specification line contains the parameters that specialize the IDENTIFICATION, DATA,

and ENVIRONMENT DIVISIONS of the report generator. A NAME specification must be the first

specification for each set of specifications. The parameters are as follows:

Parameter 1

Parameter 2

Parameter 3

Parameter 4

Parameter 5

Parameter 6

Parameter 7

Parameter 8

Parameter 9

F.l.2 BREAK Specification

Must always be N to indicate NAME.

The program identification; can be up to six characters in length.

The blocking factor for the input data file; if omitted 1 it is as­
sumed that the file is unblocked.

The device for the input data fit e; if omitted, DSK is assumed.

The device for the output (printing) fit e; if omitted, DSK is
assumed.

The value of identification of the input data file (filename and
extension without the separating period); this parameter can be
omitted if the input is from a nondirectory device.

The value of identification of the output file; this parameter can
be omitted if the output is to a nondirectory device.

The date the specifi cations were written; can be up to nine char­
acters in length. This parameter can be omitted.

The author; can be up to 20 characters in length. This parameter
can be omitted.

The BREAK specification defines one fi eld of the input record that is to be tested for breaks. There

is one BREAK specification for each field to be tested. Up to 25 BREAK lines can be entered. The

parameters are as follows:

Parameter 1

Parameter 2

Always B to indicate BREAK.

The break level; can be any digit from 0 to 9 or F (for final). 0 has
the lowest priority; 9 has the highest priority. More than one field
can have the same priority number, in which case a break occurs
whenever any of those fields break.

F-2

Parameter 3

Parameter 4

Parameter 5

Parameter 6

Parameter 7

Parameter 8

F.1.3 HEADER Specification

The number of lines to space before printing the total. Up to nine
I ines can be specified; 0 signifies no spacing.

The printer control channel to which a skip is made before the
total is printed. This can be in the range 0 through 8; 0 signifies
no skipping.

The number of I ines to space after the total is printed; 0 means no
spacing.

The printer control channel to which a skip is made after the total
is printed; 0 means no skipping.

The size of the break field expressed as characters or digits.

The name of the break fi eld. The field must be in the input record
description.

The HEADER specification gives the heading that will be placed on the top of each page of the report.

Two HEADER lines can be entered; the first specifies the heading for print columns 1 through 60, and

the second specifies the heading for print columns 61 through 132. Parameters 2 through 5 and param­

eter 7 should not be incl uded on the second specification line. The parameters are as follows:

Parameter 1

Parameter 2

Parameter 3

Parameter 4

Parameter 5

Parameter 6

Parameter 7

Always H to indicate HEADER.

The size of the field that will contain the page number in the
heading line.

The starting column for the page number in the heading line.

The number of I ines to space after printing the heading line;
o indicates no spacing.

The printer channel to which a skip is made after the heading line
is printed; 0 indicates no skipping.

The data to be placed in columns 1 through 60 or columns 61
through 132 of the heading.

The break priority numbers at which the page number is to be reset
to 1; the page number is always 1 on the first page. This param­
eter can be omi tted •

F. 1 .4 ACCUMULATOR Specification

The ACCUMULATOR specification determines which fields are to be accumulated. Up to 10

ACCUMULA TOR specifications can be included. The parameters are as follows:

Parameter 1

Parameter 2

Parameter 3

Always A to indicate ACCUMULATOR.

A unique digit that specifies the accumulator.

The size of the accumulator in digits.

F-3

Parameter 4

Parameter 5

Parameter 6

F.l.5 TOTAL Specification

The number of decimal places in the accumulator.

The name of the field in the input record which is to be accumu­
lated; up to 24 characters can be written.

The name of the field in the printer record into which the input
item is to be moved for I isting on detail lines. If the item is not
to be I isted on detai I lines, this parameter should be omitted.

The TOTAL specification determines which totals are to be printed and at which breaks they are to

be printed. Up to 50 TOTAL specifications can be included. The parameters are as follows:

Parameter 1

Parameter 2

Parameter 3

Parameter 4

F.l.6 LIST Specification

Always T to indicate TOTAL.

The number of the accumulator that is to be put into an output
field.

The name of the output field into which the accumulator is to
be moved; up to 24 characters can be written.

The break numbers at which the accumulator is to be printed;
these numbers should not be separated by commas. F signifies
the fi nal break.

The LIST specification determines which items are to be printed on detail lines. Up to 50 LIST speci­

fications can be included. The parameters are as follows:

Parameter 1

Parameter 2

Parameter 3

Parameter 4

F.l.7 EMIT Specification

Always L to indicate LIST.

A break priority number; the fj eld wi II be moved to the detail line
immediately following the total lines after a break at this level.
A signifies that the item is to appear on all detail lines.

The name of the input item that is to be listed; this can also be
a literal.

The name of the output field into which the item is to be moved.

The EMIT specification enabl es the user to place textual information on the total lines. Up to 50

EMIT specifications can be included. The parameters are as follows:

Parameter 1

Parameter 2

Always E to indicate EMIT.

The break priority number for the total I ine to which the infor­
mation is to be moved.

F-4

I

Parameter 3

Parameter 4

A I iteral which is to be pi aced on the total line. If the information
is alphanumeric, it must be enclosed in quotation marks.

The name of the output field into which the item is to be mo·ved.

F. 1.8 I N PUT Specification

Each INPUT specification contains a COBOL DATA DIVISION statement to describe the input record.

As many statements as are necessary to describe the input record can be placed in the IN PUT specifi­

cations. If the input file is recorded in ASCII mode, the specification for the input record must include

the USAGE is DISPLA Y-7 (or DISPLAY-7) clause. The parameters are as follows:

Parameter 1

Parameter 2

Always I to indicate IN PUT.

The COBOL statement which must start in column 7, the con­
tinuation column.

F.1.9 OUTPUT Specification

Each OUTPUT specification contains a COBOL DATA DIVISION statement to describe the output

record. As many statements as are necessary to describe the output record can be placed in the

OUTPUT specifications. The 01-level for the output record must not be incl uded. The parameters

are as follows:

Parameter 1

Parameter 2

Always 0 to indicate OUTPUT.

The COBOL statement which must start in column 7, the con­
tinuation column.

F.2 OUTPUT FROM COBRG

The output from COBRG consists of one or more COBOL source programs and a I isting file. The name

of each COBOL source file is that given in the NAME specifications as the program identification.

COBRG adds an extension of .CBl to each of these filenames. The source file is always placed on DSK.

The listing file, which is also placed on DSK, contains a list of input specifications for all the programs

that were generated, and any errors that were detected by COBRG.

F.3 COBRG COMMAND STRING

To operate COBRG, the user need only run the program and, in response to the asterisk, enter a com­

mand string of the following form:

where:

!istfil.ext == infil.ext

listfil.ext is the name and extension of the listing file, and
infi I.ext is the name and extension of the input fi Ie containing the specifica­
ti ons for one or more programs.

F-5 November 1974

I

The defaul t assumptions for the command string are as follows:

a. If the name of the listing fi Ie is omitted, the name of the input fi Ie is assumed.

b. If the extension of the listing fi Ie is omitted, • LST is assumed.

The name of the input fil e must be specifi ed. The output COBOL source programs that are produced

by COBRG are not specified in the command string. They are placed on DSK with user-assigned

names and extensions of .CBL.

For example, to produce COBOL programs and a listing file from an input file named TEST, the user

could enter the command string:

.R COBRG)
*TEXT .LST=TEST)

He can achieve the same results with the following command string:

.R C OBRG)
*=TEST)

F.4 THE REPORT-WRITING PROGRAM

The report-writing program (or programs) is the COBOL source program that is produced by COBRG

from the specification fil e. This program is compil ed and then executed with the user's data to pro­

duce the report. The input to the report-writing program is a data file that is assumed to be sorted.

The first sort-key represents the highest-I evel break; the last sort-key represents the lowest-I evel

break. The input can be read from any device; however, that device must be specified in the NAME

specification for COBRG unless it is to be read from DSK. The output from the report-writing program

is the user-defined report. The report, while normally output to the I ine printer, can be placed on

any device. Unl ess the output device is DSK, it must be specifi ed in the NAME specification for

COBRG.

F.5 EXAMPLE a FUSING COBRG

The following example produces a COBOL program that prints the total number of customers and

total sales for each city and state. The input data records have the following format:

F-6 November 1974

01 INPUT-RECORD.
02 CUSTOttER-NAtvlE
02 CITY
02 STATE
02 TOTAL-SALES

PICTURE X(30).
PICTURE X(20).
PICTURE xx.
PICTURE S9CI0)V99.

The specifications for the report-writing program are as follows:

CITY STATE SALES

A.pl,5,0,1

L,A,CUSTOMER-NAME,PRINT-CUSTOMER

E,I,"STATE TOTAL",TITLE-l

E,0,"CITY TOTAL",TITLE-l

E,F,"FINAL TOTAL",TITLE-l

I 01 INPUT-RECORD.

I 02 CUSTOMER-NAME PIC X(30).

I 02 CITY PIC X(20).

I 02 STATE PIC XX.

I 02 TOTAL-SALES PIC S9(10)V99.

0 02 PRINT-CUSTOMER.

0 03 FILLER PIC X(19).

0 03 T ITLE-l PIC XCII).

0 02 FILLER PIC XX.

F-7

I

0 02 PRINT-CITY PIC X(20).

0 02 FILLER PIC xx.

0 02 PRINT-STATE PIC xx.

a 02 FILLER PIC xx.

a 02 PRINT-SALES PIC ZZZ~ZZZ~ZZZ~ZZZ99-.

0 02 FILLER PIC xx.

0 02 PRINT-NUM PIC Z,ZZ9.

The above specifications are placed into a disk file named WRITE .REP and the COBRG program is run.

The listing and source files are placed on DSK •

• R C OBRG)
*= ~,IR I IE.R EP)

A COBOL source program called ROGER.CBL and a listing file are produced. The source program is

compiled and executed with the input file that has the following data:

ABERDEEN l:HDGET
PRUFROC K CEMENT
ALGAE LTD.
DIGITAL EQUIPMENT
SAHHORSE CORP.

HARTFORD
HARTFORD
NEH BEDFORD
MAYNARD
HUDSON

The printed report produced by ROGER.CBL is shown below.

("'I, 1C""""',",ftt~r.--n r"T"'rV STf\T~ \...IWv. \...1 "Jl_" v.&. "

ABERDEEN t<JIDGET HARTFORD CN
PRUFROCK CEtvlENT HARTFORD CN

CITY TOTt\lL

ALGAE LTD. NEW BEDFORD CN

CITY TOTAL

STATE TOTAL

<NEW PAGE>
ClISTOMER CITY STATE

DIGITAL EQU IPfvlENT MAYNARD tv!A

FINAL TOTAL

F-8

CN
CN
CN
MA
NH

St\LES

1,000,00
5,123,67

6;123;67

512,43

512,,43

6~ 636,10

SALES

10,0£10,£10

100000
512367

51243
1000000

143

P/\GE

2

3

PAGE 2

5

November 1974

F.6 COBRG RESERVED WORDS

The following is a list of COBRG reserved words. These words, in addition to the COBOL reserved

words that are listed in Appendix A, cannot be used as data-names in the specification of the input

and output fi les.

ACCUMULATOR-nn PAGE-COUNT

COMPARE PL-EXIT

FINISH PL-HEADER

HEADER PRINT

IN-FILE READ-IN

INIT-SW RESET-INIT

LEVEL-xxxx RESET-LEVEL-xxxx

LINE-COUNT SAVE-nn

L-PRINT START

ONLY TOP-OF-FORM

OUTPUT-LINE

NOTE: nn is any number and xxxx is any character string.

F-9

Appendix G
The Rerun Program

The RERUN program is used in conjunction with a checkpoint file to restart a COBOL program that has

been term i nated abnorma lIy because a system fa i1ure occurred, a device error was detected, or a disk

quota was exceeded. Checkpoint files are core-image dump files that are created in one of two ways:

normally, the user includes one or more 1{t:I{U N statements in his program (refer to I/O CO NTROL in

Chapter 4); however, the user can also create a checkpoint file by typing CTRL-C twice, followed by

REENTER, while the program is running.

The COBOL system creates a checkpoint fi Ie by writing a core-image dump fi Ie of the program onto

disk; at the same time, the COBOL system closes and reopens all disk and magnetic tape output fi I es.

The dump is not performed, however, if any files are open for input/output (updating) or if an indexed

sequential file is open when the dump is requested. Each time the checkpoint file is written, the

COBOL system types the message, DUMP COMPLETED, to notify the user.

If the COBOL program is interrupted during execution I the user can restart the program by means of the

RERUN program. The RERUN program reads the dump file back into core, restores the files to their

state at the time the checkpoint file was written, and then passes control to the COBOL program so

that it can continue processing to completion. RERUN assumes that the operating environment at the

time the COBOL program was interrupted is the same as the environment at the time the checkpoint

file was written. Thus, the files must be associated with the same types of devices and devices must

have the same logical names.

G. 1 OPERA TI NG RERU N

To restart a COBOL program from the last checkpoint file written before execution stopped, the user

runs the RERUN program by typing:

.R RERUN

The program responds with the message:

TYPE CHECKPOINT FILENAME

G-l

The user must type the name of the checkpoint file in which the core-image dump is stored. The

COBOL system uses the filename of the program as the name of the checkpoint file and adds the ex­

tension CKP. If the COBOL program does not have a filename because it was not SAVEd, the COBOL

system takes the checkpoint filename from the PROGRAM-ID in the program and adds the extension CKP.

If the program has been divided into a two-segment file, the high-segment filename must be the same

a s the low-segment fi I ena me.

If a logical device name is encountered in the program by RERUN, the user is requested to assign the

logical name to a specific device. RERUN types the message:

ASSIG N device name
TYPE CONTINUE WHEN DONE

G.2 EXAMPLES OF USING RERUN

In the following example, the user has a COBOL program that was terminated by a system fai lure.

Checkpoints had been inserted in the program by means of RERUN statements. The program has a file­

name of ACCNT; thus, the checkpoint fi lename is ACCNT. CKP. Instead of running the program

again from the beginning, the user employs the RERUN program to restart his program from the last

checkpoint written before the program stopped. He types:

• R RERUN

and RERU N responds:

TYPE CHECKPOINT FILENAME

The user types:

ACCNT .CKP

RERUN loads the checkpoint file into memory, reopens and repositions the magnetic tape and disk files,

and passes control to the COBOL program so that it can continue processing to completion.

In the example below, a user running a COBOL program is notified that the system is going down. He

does not have any RERUN statements in his program, yet he wishes to create a checkpoint file so that

the processing done by his COBOL program up to that point is not wasted. He creates the checkpoint

file by typing CTRL-C twice and then typing REENTER. The checkpoint fi Ie is written by the COBOL

system onto disk with a filename of PROG13 (taken from the PROGRAM-ID) and an extension of CKP.

After the system is restored, the user can restart the program by running the RERU N program. The

dialogue is as follows:

G-2

.R RERUN
TYPE CHECKPOINT FILENAME
PROG 13.CKP

The program PROG13 is loaded into core, its files are reopened, and it continues running to completion.

G-3

Appendix H
Indexed Sequential File Maintenance

Indexed sequential files (also called ISAM files) are data files in which records are accessed through a

hierarchy of indexes according to a key within each data record. This file type is commonly used for

applications in which the programmer wishes to access records without regard to their locations in the

file. The records are read, written, rewritten, and deleted according to the key in each record.

Some examples of files for which record keys can be specified are:

payroll (key is employee number)
inventory control (key is part number)
production control (key is job or batch number)

H.l DESCRIPTION OF INDEXED SEQUENTIAL FILES

An indexed sequential file consists of two files: one, the data file, contains the actual data; the

other, the index fi Ie, contai ns po inters to record keys within the data fi Ie. The location of the record

key within each record is specified by the user when he builds an indexed sequential file using the

ISAM program (described below). To build an indexed sequential file, the user provides a sequential

file and some necessary information to the ISAM program. The program then copi es the data from the

sequential file and creates an index file to reference the data file.

All reading and writing of the index file is performed by the run-time operating system (LIBOL); the

user need not be concerned wi th this function. When using indexed sequenti al fi I es, the programmer

need only specify which record is to be read, written, rewritten, or deleted. The operating system

performs all searching, insertion, deletion, and updating of both the index and data files.

Indexed sequential fil es must reside on disk or drum storage. Also, because each indexed sequential

file is actually two files, two 1-0 channels are required - one for the data file and one for the index.

H.l.l Data File

The data file can be recorded in either SIXBIT or ASCII mode; in either mode, the file must be blocked.

When building an indexed-sequential file (by means of the ISAM program), the user must input a

H-l

sequential file that contains record keys in the same relative location in each record. Each record

must have a unique key, and the keys must be arranged in ascending order {numeric or alphabetic}.

The user can also indi cate to the ISAM program that some records in each block are to be I eft empty ,

and some empty blocks should be added to the fil e. The empty records and blocks are to allow for in­

sertion or addition of new records in the file.

When the user is processing the indexed sequential fil e, insertions and additions are made by the

operating system • Records are inserted in a block in ascending order. If there are no empty records in

the block, the block is spl it into two more or I ess equal blocks, and the record is added to the appro­

priate block. When records are added to the file, they are placed in the empty blocks that were

al located when the fit e was buil t. If the user does not al locate empty records and blocks when he is

building the file, the operating system will request additional blocks from the monitor when the file is

full. If the monitor cannot allocate additional blocks, an error message is issued.

H. 1. 2 Index File

The index file is created by the ISAM program from the description of the data file. It contains up to

ten levels of indexes, the lowest of which contains pointers to the record keys in the data file. Each

successive level of index points to all of the blocks containing the next lower level index. The

highest level index is contained in one block and points to the blocks containing the next lower level

index. Index levels are provided so that the entire index need not be searched each time that a record

key is accessed. When a record key is accessed, the operating system reads the highest level index to

find which lower level index contains a pointer to the approximate location of that key. The block of

the next lower I evel index that contains the approximate location of the key is then searched. If this

is the lowest level index, it points to the first record of the data block in which the record is stored.

The data block is then searched for the appropriate record key, and the record is made available. If

this is not the lowest I evel index, the next lower I evel is searched until the lowest I evel is reached.

The figure on the next page ill ustrates the search.

Vvithin the index file, in addition to the index blocks, are two other blocks - the statistics block and

the storage allocation table. The statistics block is a header containing all the necessary information

about the index fil e and the data file. Incl uded in these statistics are: the name and extension of the

data file, the number of levels in the index, the blocking factor of both files, and a description of the

record key. The storage allocation table shows which data blocks are in use and which are free. There

are as many blocks of this tabl e as are necessary to contain this information.

H-2

I

I

I

POINTERS
TO NEXT

POINTERS LEVEL
TO NEXT 1

LEVEL r KEYS

REQUESTS r KEYS

POINTERS
TO DATA
BLOCKS

1 rKEYS

...----...L.r-L.,
1 '*
2 D

3 G

INDEX BLOCK 1
USER 1 •
RECORD WITH + 1 *'
KEY ~ 4 *' I-----I.~ 2 J t------+t 4 J

- p J--+-+-~ ~-.f-+--t\

~-+5~R~ ~ __ +:~~~~

A

B

C

I I I I
DATA BLOCK 1

D

E

F

DATA BLOCK 2

G

H

I

INDEX BLOCK 6
INDEX LEVEL 2

(HIGHEST)

INDEX BLOCK 4

3 R

INDEX BLOCK 2 f\\ATA

r\.~:

BLOCK 3

* = LOW VALUES

INDEX BLOCK 5

INDEX LEVEL 1
(INTERMEDIATE)

INDEX FILE

7 R

8 V

9 Y

INDEX BLOCK 3

INDEX LEVEL 0
(LOWEST)

DATA BLOCK 4

DATA FILE

10-0822

Figure H-l Locating a Record in an Indexed Sequential File

H-3 November 1974

H.2 PROGRAM TO MAINTAIN INDEXED SEQUENTIAL FILES (lSAM)

Indexed sequential files are created, maintained, and compacted for storage by means of the ISAM

program. ISAM performs the fo Ilowing functions for those users who have indexed sequential fil es.

a. Bui Ids an indexed sequential fil e from a sequential fil e.

b. Maintains an indexed sequential file by reorganizing it.

c. Packs an indexed sequential fil e into a sequential fil e for backup storage.

H. 2. 1 Building an Indexed Sequential File

When the user wishes to build an indexed sequential file, he must have as input a sequential file in

whi ch the record keys are arranged in ascending order. The ISAM program will change this file to an

indexed sequential data file with a user-specified number of empty records and blocks. ISAM then

creates the index file according to the description of the data file.

To run the ISAM program and select the option for building the indexed sequential file, the user types

the following •

• R ISAM
*devl :indfil.ext [ppn 1] ,dev2:datfil .ext=clev3:seqfil.ext [ppn2]/B

devl, dev2, and dev3 are the devi ces for the index, data, and input sequential
file. Devl and dev2 must be disk or drum. The default for devl, dev2, and
dev3 is DSK.

indfil • ext is the name and extension of the index fil e. If the filename is not
specified, the name of the input file is assumed. If the extension is omitted,
.IDX is assumed.

datfil.ext is the name and extension of the data file. If the filename is
omitted, the name of the index file is assumed. If the extension is omitted,
• IDA is assumed.

seqfil.ext is the name and extension of the input sequential file. This file­
name must be specified, but the extension can be omitted. If it is omitted,
• SEQ is assumed.

[ppr: 1], [ppr:2J ~pedf)' d!!"ede-ries fe-I" thp inrlpx file nnd the input file!
respectively. If either is omitted, then the directory of the logged-in user
is assumed. The data file must reside in the same directory as the index
file.

/B is the switch signifying that ISAM wi II be used to bui Id an indexed
sequential file. If the switch is omitted from the command string, /B is
assumed.

The equal sign (=) can be omitted if the specifications for the output files are omitted.

H-4

I

•
o

•

After reading the command string, ISAM asks a series of questions, which are described below.

Every question must be answered.

MODE OF INPUT FILE:

The user replies either SIXBIT (or S) or ASC II (or A) according to the mode of the input file.

MODE OF DATA FILE:

The user specifies either SIXBIT (or S) or ASCII (or A) according to the mode in which he

desires the data fi Ie to be recorded. If the mode of the inout file is ASC II and that of the

data file is to be SIXBIT, those characters that have no equivalent in SIXBIT are converted

in the same manner as they are converted in standard COBOL operations.

MAXIMUM RECORD SIZE:

The user specifies the size of the largest record in the input file in bytes. Note that for

ASCII records the user should not count the carriage return and line feed that are appended

to each A SC II record.

KEY DESCRIPTOR:

The user describes the key upon which the file is to be indexed in a code that has the form:

sxm.n

s designates the sign of the key:
S - the key is signed
U - the key is unsigned

x indicates the key type:
X - the key is nonumeric
N - the key is numeric display

m is the number of the byte in the record where the key begins.

n is the size of the key in bytes.

RECORDS PER INPUT BLOCK:

The user gives the blocking factor of the input file. If the file is unblocked, 0 should be

specified •

H-5 November 1974

TOTAL RECORDS PER DATA BLOCK:

The user gives the total number of records to be contained in each block of the data fi Ie.

EMPTY RECORDS PER DATA BLOCK:

The user specifies the number of records that are to be initially left empty in each block of the data

file.

TOTAL ENTRIES PER INDEX BLOCK:

The user specifies the total number of index entries to be contained in each block of the index file.

EMPTY ENTRIES PER INDEX BLOCK:

The user specifies the number of index entries that are to be initially left empty in each index block.

PERCENTAGE OF DATA FILE TO LEAVE EMPTY:

The user gives, as a percentage of the total number of blocks, the number of blocks to be initially left

empty in the data file.

PERCENTAGE OF INDEX FILE TO LEAVE EMPTY:

The user gives, as a percentage of the total number of blocks, the number of blocks to be initially left

empty in the index fiI e.

MAXIMUM NUMBER OF RECORDS FILE CAN BECOME:

The user replies with the maximum number of records that the data file can possess before the file is

next maintained. This number sets the upper limit of the size of the data file. It is required because

making this number excessively large.

An example of building an indexed sequential file follows •

• R ISAM
*TEST.IDX~ TEST.IDA=TEST.SEQ 18
MODE OF INPUT FILE: SIXBIT
MODE OF DATA FILE: SIXBIT
MC\XIMlJM RECORD SIZE: 40
KEY DESCRIPTOR: SN37.4
{The key is signed numeric display; it begins in the
thirty-seventh byte; and it is four bytes 10ng.J

H-6

(continued on next page)

RECORDS PER INPUT 8LOCK: 3
TOTAL RECORDS PER DATA BLOCK: 2
EMPTY RECORDS PER DATA BLOCK: 1
TOTAL ENTRIES PER INDEX BLOCK: 3
Et-"PTY ENTRIES PER INDEX BLOCK: 1
PERCENTAGE OF DATA FILE TO LEAVE EMPTY: 60
PERCENTAGE OF INDEX FILE TO LEAVE EMPTY: l~
tvAXIMUM NUMBER OF RECORDS FILE CAN BECOME: 12000

H. 2. 2 Maintaining an Indexed Sequential File

The ISAM program allows the user to recreate an exi sti ng indexed sequenti al fi I e after the fi I e has

become crowded. More empty space is added to the file and the number of index levels is decreased.

The input is the index portion of the indexed sequential file, and the output is a new indexed sequen­

tial data and index fi Ie. The command string for the ISAM maintain option is as fo Ilows •

• R ISAM
*devl :indfil • ext [ppn 1] ,dev2:datfi I .ext=infil • ext [ppn2]/M

devl, dev2, and dev3 are disk or drum devices on which the files are
stored. If any of the devi ces is omitted, DSK is assumed.

indfil.ext is the name and extension of the new index file. If the name
is omitted, the name of the input fi Ie is assumed. If the extension is
omitted, .IDX is assumed.

datfil.ext is the name and extension of the new data file. If the name
is omitted, the name of the new index fi Ie is assumed. If the extension
is omi tted, • IDA is assumed.

infil.ext is the name and extension of the index file of the old indexed
sequential file. The name of the file must be specified, but the
extension can be omitted. No extension is assumed if the extension is
omitted.

[ppnlJ, [ppn2] specify directories for the new index file and the old
index file I respectively. If either is omitted, the directory of the
logged-in user is assumed. The new data file must reside in the same
directory as the new index file.

/M is the switch indicating that the maintain option is being requested.
The switch must be specified.

If the output fi I e speci fications are not incl uded in the command string I the equal sign (=) can be

omitted.

After the command string has been scanned, ISAM asks a series of questions about values for the new

indexed sequential file. The mode of the file, the record size, and the key cannot be changed. The

val ues from the old fi I e are given in parentheses with the question. If the user wishes to change a

val ue, he enters the new val uei if he does not wish to change a val ue, he presses the RETURN key.

All questions refer to the output fi Ie.

H-7

TOTAL RECORDS PER DATA BLOCK (n):

The user specifi es the total number of records to be contained in each block of the data fil e.

EMPlY RECORDS PER DATA BLOCK (n):

The user gives the number of data records that are to be initially left empty in each data block.

TOTAL ENTRIES PER INDEX BLOCK (n):

The user gives the total number of index entries to be contained in each block of the index file.

EMPlY ENTRIES PER INDEX BLOCK (n):

The user specifies the number of index entries that are to be initially left empty in each index block.

PERCENTAGE OF DATA FILE TO LEAVE EMPlY (n):

The user gives, as a percentage of the total number of blocks, the number of blocks to be initially left

empty in the data file.

PERCENTAGE OF INDEX FILE TO LEAVE EMPlY (n):

The user gives, as a percentage of the total number of blocks, the number of blocks to be initially left

empty in the index fil e.

MAXIMUM NUMBER OF RECORD FILES CAN BECOME (n):

The user specifies the maximum number of records that can be contained in the file. This number sets

the upper I imit on the size of the data file. It is required because storage allocation tabl es must be

set up when the file is created.

An example of maintaining an indexed sequential file using the ISAM program follows •

• k ISAM
*TEST. lOX" TEST. IDA =TEST 1M
TOTAL RECORDS P~R nATA BLOCK (2): 4
EMPTY RECORDS PER DATA BLOCK (1): 2
TOTAL ENTRIES PER INDEX BLOCK (3):J
EMPTY ENTRIES PER INDEX BLOCK (1):J
PERCENTAGE OF DATA FILE TO LEAVE EMPTY (60): 50
PERCENTAGE OF INDEX FI~E TO LEAVE EMPTY (10): 40
ttAXIMUM NUMBER OF RECORDS FILE CAN BECOME (12000) 25000

H. 2.3 Packing an Indexed Sequential File

Packing an indexed sequential file is the reverse of building one. An indexed sequential file is copied

into a sequential file in the order specified by the index. This option is used primarily to compact an

H-8

•

I

indexed sequential file for backup storage, although the resulting sequential file can be treated as any

other sequential fi Ie. The command string for the packing option of ISAM is as follows •

. R ISAM
*dev1 :seqfil.exHppnlJ=dev2:indfil.exHppn2] /p

dev1 and dev2 are the devices on which the sequential file is to be stored
and the index file resides, respectively. The input file must be on disk or
drum. If neither device is specified, DSK is assumed.

seqfil.ext is the name and extension of the output sequential file. If the
name is omitted, the name of the input fi Ie is assumed. If the extension
is omitted, .SEQ is assumed.

indfil.ext is the name and extension of the index file of the indexed
sequential fi Ie. The name must be specifi ed, but the extension can be
omitted. If the extension is omitted, no extension is assumed.
r ___ " r ____ '" -.. ___ I~ __ L __ ... ~ __ r_ .. 1..'-_ . __ ... ___ .. ____ '.- I rei I.' 'I
Lt't'"'.I, Lt't'" J '-"v u"",,,,,.UII"';) .u. "'''' IICVV ;)C'1UCII.IUI IIiC UIIU lilt:: UIU

index fil e, respectively. If either is omi tted, the directory of the logged-in
user is assumed.

/p is the switch signifying that the packing option is being requested.
It must be included.

If the output file specification is omitted, the equal sign (=) can be omitted.

After the command string has been processed, ISAM asks the following questions.

MODE OF THE OUTPUT FILE:

The user specifies either SIXBIT (or S) or ASCII (or A) according to the mode in which he wishes the

sequential file to be recorded.

RECORDS PER OUTPUT BLOCK:

The user gives the blocking factor that he wishes for the sequential file (i .e., the number of records

per logical block). If the file is to be unblocked, the user answers o .

An example of the dialogue when the packing option is specified follows •

• R IS An
*~TA2:TEST.S[O=TEST.IDX /P
~iO:)r. OF THE OUTPUT FILL: SIXEIT
RECORDS P~:R OUTPUT PLOCK: ~~
SIZE: OF" Lf.l.HG[ST OUTPUT [LOCK: 40

H-9 November 1974

I

H .2.4 Ignoring Errors

When packing an indexed sequential file into a sequential file, the user can include the II switch

to force ISAM to ignore certain fatal errors. This is used to try to recover as much data as

possible from a damaged indexed sequential file.

Including the II switch in the command string to ISAM causes the program to make nonfatal

those errors that concern duplicate keys or keys out of order. The messages for these errors

would each be preceded by a percent sign (%) rather than a question mark (?) so that ISAM

will continue the packing operation. The II switch can be used only with the IP switch.

It cannot be used alone or with any other ISAM switches unless the user also wishes to

include the IL switch (see below) with the Ip switch.

The command string when using the II and IP switches is as follows •

• R ISAM
*devl :seqfil.ext[ppnl]=cIev2:indfil.ext[ppn2] IP II

dev1 and dev2 are the devices on which the sequential file is to be stored
and the index file resides, respectively. The input file must be on disk or
drum. If neither device is specified, DSK is assumed.

seqfil.ext is the name and extension of the output sequential file. If the
name is omitted, the name of the input file is assumed. If the extension
is omitted, • SEQ is assumed.

indfil.ext is the name and extension of the index file of the indexed
sequential file. The name must be specified, but the extension can be
omitted. If the extension is omitted, no extension is assumed.

[ppn ij, [ppn2j are directories for the new sequentiai fi ie and the oid
index file, respectively. If neither is omitted, the directory of the
logged-in user is assumed.

/p ic: thA c:witr-h dnnifvinn thnt thA nnl"'k-inn nn+inn ic: h""inn .. ""n""",d·"",...1 , . -- .- - . --v----, -··v .--.-. ---- r----- .. -·v -r·--·· .- --···0 ._,-------

It must be included.

II is the switch signifying that some fatal errors are to be ignored. It
must be included with the Ip switch.

The equal sign (=) can be omitted if the output file specification is
omitted.

Version 6 COBOL
Version 7 LlBOL H-10 November 1974

H.2.5 Reading and Writing Magnetic Tape labels

When building or packing an indexed sequential file, the user can include the /l switch to

cause ISAM to read or write labels on magnetic tape. The /L switch, when used with the /B

switch, causes ISAM to read standard tape labels on the input magnetic tape. When used

with the /P switch, the /l switch causes ISAM to write standard tape labels on the output

magnetic tape. The /l switch cannot be used alone or if the input to ISAM during building

or the output during packing is not magnetic tape.

The command string when using the /L switch with the /B switch is as follows •

• R ISAM
*dev1 :indfil.ext[ppn] ,dev2:datfil.ext::::MTAn:seqfil.ext/B/l

dev1, dev2, and MTAn are the devices for the index, data, and
input sequential file. Devl and dev2 must be disk or drum. The
default for dev1 and dev2 is DSK.

indfil.ext is the name and extension of the index file. If the
filename is not specified, the name of the input file is assumed.
If the extension is omitted, .IDX is assumed.

datfil.ext is the name and extension of the data fi Ie. If the fi lename
is omitted, the name of the index file is assumed. If the extension is
omitted, .IDA is assumed 0

seqfil.ext is the name and extension of the input sequential fi Ie.
This filename must be specified, but the extension can be omitted.
If it is omitted, .SEQ is assumed.

[ppn] specifies the directory for the index file. If it is omitted,
the directory of the logged-in user is assumed. The data fi Ie
must reside in the same directory as the index file.

/B is the switch signifying that ISAM will be used to build an
indexed sequential file. If the switch is omitted from the
command string, /B is assumed.

/l is the switch signifying that ISAM will read standard tape
labels. It must be included.

The equal sign (=) can be omitted if the file specifications for the output fi les are omitted.

Version 6 COBOL
Version 7 L1BOl H-ll November 1974

The command string when using the /l switch with the /P switch is as follows •

• R ISAM
*MTAn:seqfil.ext=dev1 :indfil.ext [ppn] /P/l

MTAn: and dev1 are the devices on which the sequential file is to be
stored and the index file resides, respectively. The input file must be
on disk or drum. If dev1 is not specified, DSK is assumed.

seqfil.ext is the name and extension of the output sequential file.
The name and extension can both be omitted because filenames are
not used on magnetic tape.

indfil.ext is the name and extension of the index file of the indexed
sequential file. The name must be specified, but the extension can be
omitted. If the extension is omitted, no extension is assumed.

[ppn] is a directory for the old index fi Ie e If it is omitted, the directory
of the logged-in user is assumed.

/p is the switch signifying that the packing option is being requested.
It must be incl uded.

/l is the switch signifying that ISAM will write standard tape labels.
It must be included.

H.2.6 Indirect Commands

The I SAM program accepts command strings and dialogue responses from indirect command files.

The command string to direct ISAM to read an indirect command file is:

.R ISAM
*@dev:cmdfil • ext[ppn]

@ indicates that this is an indirect command file.

dev is the device on which the command file is stored. If it is omitted,
DSK is assumed.

cmdfil.ext is the name and extension of the command file. The name
and extension must be specified.

[ppnJ is the directory in which the command file is stored. If it is
omitted, the directory of the logged-in user is assumed.

After ISAM reads the command string, it reads the command file and performs the processing

specified within it. The command file must contain the complete command string and all

dialogue responses for a single ISAM operation exactly as they would be typed if the user

were giving his commands directly. Nothing else can be present in the command file.

Version 6 COBOL
Version 7 L1BOl H-12 November 1974

I

Appendix I
Debugging COBOL Programs

COBOOT is an interactive program that is used to debug COBOL programs. With COBOOT, the user

can:

a. Chanqe the contents of a data-name,
b. Set up to 20 breakpo i nts ina program,
c. Continue from a breakpoint or any other point,
d. Oisplay the contents of a data-name, and
e. Trace paragraphs and sections.

1.1 LOAOING ANO STARTING COBOOT

COBOOT is run after it is loaded and started with a compiled program. When the user program is com­

piled, the /p switch should not be included in the command string to the compiler because the /p

switch suppresses the user symbols that are necessary for COBOOT. The program and COBOOT can be

loaded by means of either the monitor LOAO command or direct commands to the Loader. In either

case, the Loader must load user symbols along with the program and COBOOT. The /S switch in the

Loader command string causes the necessary user symbols to be loaded. After loading, the user issues

a monitor command to start the program. However, when COBOOT is loaded with the user program,

COBOOT is started, not the program. The three methods of loading and starting are shown below.

.LOAO % "LOCALS" dev:prognm, SYS: COBOOT

.START

.OEBUG prgnm

.R LINK
*/LOCALS dev:prognm, SYS:COBOOT /GO
.START

When the program is started, COBOOT is entered. This is shown by the message

ST AI~T I NG C OBDDT

*
The user can issue any COBOOT command (described below) at this time. If the user desires to run his

program, he can issue the PROCEEO command to COBODT. His program will run either to completion

or until a fatal error is encountered. If an error is encountered that would normally cause abortion of

execution, COBDOT is entered with the message

?ENTEH I NG C 08 DDT Fr< OM: <paragraph-name>

/-1 November 1974

giving the name of the paragraph in which the error occurred. COBDDT can then be used to locate

the error. The program cannot proceed after COBDDT has been entered due to an error.

1.2 COBDDT COMMANDS

Described below are the commands to COBDDT. Only the first letter of each command need be typed

for COBDDT to recognize the command. Data-names, paragraph-names, and section-names need not

be typed in full as long as each name or portion of the name is unique in the program. Paragraph-names

may be qualified by section-names and/or the program-name, and data-names may be qualified by

higher level data-names and/or by the program-name and/or subscripted. The subscripts for a

qualified data-name must appear immediate Iy after the first data-name.

1.2. 1 The ACCEPT Command

The ACCEPT command allows the user to change the contents of a data item. The new contents of the

data item are typed by the user on the next line. The ACCEPT command has the forms:

ACCEPT
ACCEPT data-name

If the data-name is not specified, the last name specified in a DISPLAY or another ACCEPT command

is assumed.

Example:

ACCEPT ALPHA
t6.25

1.2.2 The BREAK Command

The BREAK command sets a breakpoint (or pause) at the beginning of the specified paragraph. The

form of Tne BReAK command is:

BREAK paragraph-name

i~ot more rhan 20 breakpoints can be set In a program. I3reakpoints cannot be set at procedures in

overlay sections, nor in the high segment of a reentrant program.

Example:

:8REAK PARt IN CO(v.PUTING

1.2.3 The CLEAR Command

The CLEAR command removes the breakpoint at a specified paragraph. The CLEAR command has the

forms:

1-2

CLEAR paragraph-name
CLEAR

If the paragraph-name is not specified, all breakpoints that have been set in the program are removed.

Example:

CLEAR PARt IN COMPUTING

1.2.4 The DISPLAY Command

The DISPLAY command causes the contents of a data item to be displayed on the user's terminal. The

forms of the DIS PLAY command are:

DISPLAY
!)!S P!...A.':' ==~=-:-:=~;:;

If no data-name is specified, COBDDT uses the last data-name specified in an ACCEPT or DISPLAY

command.

Example:

DISPLAY ALPHA

1.2.5 The MODULE Command

The MODULE command causes COBDDT to look for data names and procedure names in the specified

program. The form of the MODULE command is:

MODULE program-name

Normally, within a run unit containing more than one program, COBDDT searches for data names

and procedure names in the current program. The MODULE command changes the program in which

the search will take place. All subsequent searches for data names and procedure names will be

within the specified program until COBDDT enters the next program in the run unit or until another

MODULE command is issued.

Example:

NODULE MYPROG

1-3

1.2.6 The PROCEED Command

The PROCEED command causes the program either to be started or to continue execution after a break­

point caused it to pause. The PROCEED command has the forms:

PROCEED
PROCEED n

After a PROCEED command is executed, the program runs either to completion or until another break­

point is reached. If an integer is inc luded with the command, the program runs until the nth occur­

rence of the preceding breakpoint has been reached. Thus PROCEED 1 is equivalent to PROCEED.

Example:

PROCEED 3

1.2.7 The STOP Command

The STOP command is equivalent to the COBOL STOP RUN statement. All files that are open are

closed, and program execution is terminated. The STOP command has the form:

STOP

1.2.8 The TRACE Command

The TRACE command either starts or stops tracing, depending on the form of the command. The forms

of the TRACE command are:

TRACE ON
TRACE OFF

TRACE ON causes tracing of all paragraphs and sections as they are executed. Whenever a paragraph

or section is entered, its name, enclosed in angle brackets « >), is typed on the user's terminal.

TRACE OFF causes COBDDT to stop tracing procedures either until execution is terminated, or another

TRACE ON command is executed.

1.2.9 The WHERE Command

The WHERE command causes COBDDT to list the names of all paragraphs at which breakpoints were

set. The form of the WHERE command is:

WHERE

1-4

1.3 OBTAINING HISTOGRAMS OF PROGRAM BEHAVIOR

The histogram facility in COBOOT allows the programmer to obtain a report of the number of

times each paragraph in his COBOL program was entered as well as the total amount of

processor and elapsed time spent in each paragraph. The commands for using this feature are

described in the following sections.

1.3.1 Initializing the Histogram Table

The HISTORY INITIALIZE command causes COBOOT to set up and initialize the histogram

table in which are stored the statistics for the histogram. The form of this command is:

HISTORY INITIALIZE

It is not necessary to use this command, but it is advisable to do so if only a portion of the

program's statistics are to be recorded. The table can also be reinitialized by means of the

HISTORY INITIALIZE command if the user wishes to begin a new histogram.

1.3.2 Starting the Histogram

The HISTORY BEGIN command causes COBOOT to start gathering statistics for each

paragraph entered after this command is issued. This command has the form:

HISTORY BEGIN

This command implies a HISTORY INITIALIZE command if one has not already been issued and

if a histogram has not already been started. If a histogram already exists, HISTORY BEG IN

will add data to that histogram. The statistics collected include:

The number of times each paragraph is entered.

The CPU time spent with in each paragraph.

The elapsed time spent within each paragraph.

Version 6 COBOL
Version 7 L1BOL 1-5 November 1974

I

1.3.3 Outputting the Histogram

The HISTORY REPORT command causes COBDDT to output the available statistics in a fixed

format. This format is:

paragraph name
34
executions

46
CPU time

The HISTORY REPORT command has the form:

HISTORY REPORT

59
elapsed time

The report will be output to logical device H ISTOR if that device has been assigned by the

user or to the user's terminal if HISTOR does not exist. If HISTOR is assigned to a directory

device, the report will be given the name REPORT .%%%. If more than one report is output

from a single execution, the last character of the extension will be incremented, i.e.,

REPORT .%%1, REPORT .%%2. Only those paragraphs that have been entered since the HISTORY

BEG IN command was issued are included in the report and are output in the same order as

they are defined in the program. The report can be sorted into ascending or descending

order on any field using the following definitions of field positions and sizes.

Field

paragraph name

no. of executions

CPU time

elapsed time

SORT Field Description

1.30

34.11

46.12

59.12

If the HISTORY REPORT command is not issued before a STOP RUN is executed in the program,

the data collected will be lost; hence, it is recommended that the user set a breakpoint at

the program's concluding paragraph and issue the HISTORY REPORT command when the

breakpoint is reached. A HISTORY BEG IN command must be issued before the report is

requested or no statistics will be gathered.

Version 6 COBOL
Version 7 UBOL 1-6 November 1 974

1.3.4 Using the Histogram Feature

To use the histogram feature, the programmer can issue the following commands upon entering

COBOOT for the first time:

HISTORY INITIALIZE
HISTORY START
BREAKPOINT concluding paragraph

Then he can issue the following command upon reaching the concluding paragraph:

HISTORY REPORT

This series of commands will cause COBDOT to set and initialize the histogram table,

start gathering the statistics for the histogram, and output the histogram when the concluding

paragraph in the program is reached.

1.4 ERROR MESSAG ES FROM COBDDT

Two types of error messages are issued by COBDDT: syntax error messages, which are indicated by an

up arrow (t)i and execution error messages, which are indicated by a question mark (?). The syntax

error messages deal with errors in the user's command to COBDDTi the up arrow is printed under the

last character of the element of the command in which the error was detected. The error messages

dealing with errors in the execution of the command are preceded by the question mark.

I .4 '. 1 Syntax Error Messages

t IllEGAL COMMAND

The command issued was not a legal command to COBDDT.

t IMPROPER SUBSCRIPT DELIMITER

A subscript must be followed by a comma or a right parenthesis.

t IN OR OF MISSING

When a data-name is to be qualified IN or OF must be used.

t MATCHES INITIAL SEGMENT OF 2 SYMBOLS

The abbreviation of a name in the command can apply to two items. Data-names and procedure-names

must be uniquely identified in a command.

Version 6 COBOL
Version 7 LlBOl 1-7 November 1974

t MISSING DATA-NAME

A data-name is required in the command.

- t MISSING QUALIFIER

IN or OF must be followed by a qualifier.

t NOT DEFINED

A name was defined, but not for the purpose it is being used. Another cause could be that insufficient

qualification was used.

t ONLY 3 SUBSCRIPTS ALLOWED

More than three subscripts were inc luded for a data- item; COBOL a IIows only three subscripts.

t SUBSCRIPT ERROR

Negative, zero, or no number was found in the subscript position.

t UNDEFINED DATA-NAME

The data-name used in the command was not defined in the program.

t UNDEFINED PARAGRAPH-NAME

The paragraph-name used in the command is not defined in the program.

t UNDEFINED SECTION-NAME

The section-name used in the command is not defined in the program.

1.4.2 Execution Error Messages

? CANNOT PROCEED

The PROCEED command cannot be executed because COBDDT has been entered due to an abortive

error detected in the program.

? ITEM MUST BE SUBSCRIPTED

The data-name has an OCCURS clause and must be subscripted when used.

? ITEM TOO LARGE FOR TEMP

The data item is too large to be displayed or accepted. The maximum number of characters that can

be displayed or accepted is approximately 500 characters.

? NO PREVIOUS DATA-NAME

The first ACCEPT or DISPLAY command was used without a data-name.

1-8

? NO SUBSCRIPTS ALLOWED

The data-name does not have an OCCURS clause in its description and should not be subscripted.

? NOT ENOUGH SUBSCRIPTS

The data-name requires at least one more subscript.

? OUT OF BREAKPOINTS

All the allowable breakpoints (20) have been set. Some breakpoints should be cleared if the user de­
sires to set more breakpoints.

? SUBSCRIPT TOO LARGE

One of the subscripts typed is outside the maximum range for that data item.

? SYMBOL NOT DEFINED

An attempt was made to place a breakpoint at a non-resident paragraph-name.

? TOO MANY SUBSCRIPTS

The data-name requires at I east one fewer subscri pt.

1-9

INDEX

ACCEPT command (COBDDT), 1-2
ACCEPT COUNT statement, 6-3
ACCEPT statement, 6-3, 6-19
ACCESS MODE clause, 4-8, 4-10, 4-17, 8-1
Accumulator, F-l
ACTUAL KEY clause, 4-8, 4-10, 4-19, 8-2
ADD statement, 6-2, 6-20
ADVANCING clause, 6-88
ALL (figurative constant), 2-5
ALL option

EXAMINE statement, 6-35
SEARCH statement, 6-62

Alphabetic item, 5-34
ALPHABETIC test, 6-10
Alphanumeric item, 5-35
Aipnanumeric edited item, 5-35
ALTERNATE AREAS (RESERVE clause), 4-10,

4-15
ALTER statement, 6-2, 6-22
American National Standards Institute

(ANS!), 1-1
Area A, 2-10, 2-12,6-4
Area B, 2-10, 2-12, 6-4
Arithmetic expressions, 6-6

Arithmetic operators, 6-6
Rules for formation and evaluation, 6-7

Arithmetic signs, symbols representing, 5-33
Arithmetic usage, determining, 6-17
Arithmetic verbs, options associated with, 6-15

ON SIZE ERROR option, 6-16
ROUNDED option, 6-15

ASCENDING clause (SORT verb), 6-66
ASCENDING KEY option (OCCURS clause),

5-31
ASCII

Collating sequence, B-1
Recording mode, 4-2, 4-21, 8-5

ASSIGN clause, 4-8, 4-10, 4-12
Assumed decimal point positioning, symbols

for, 5-33
AT END clause, 6-57, 6-62
AUTHO R statement, 3-1

BINARY recording mode, 4-2, 4-21, 8-5
BLANK WHEN ZERO clause, 5-22, 5-24, 5-63
Block (definition), 2-2
BLOCK CONTAINS clause, 5-9, 5-11
Blocked files, 8-11
Blocking factor, 5-11, 8-11
Break, F-l
BREAK command (COBDDT), 1-2
Bui Iding an indexed sequential fi Ie, H-4

Reading tape labels while, H-ll

Calling COBOL subprograms, 6-23, 8-16, C-l
Example, 8-17

Calling FORTRAN and MACRO subroutines, 6-34,
C-l

Calling sequence for COBOL, MACRO and
FORTRAN-l0, C-l

Example, C-3
Calling sequence for FORTRAN-IV, C-3

Example, C-4
CALL statement, 6-2, 6-23, 8-16
Categories of files (CLOSE statement), 6-27
CF (Control Footing), 5-62, 5-71
CH (Control Heading), 5-62, 5-71
Changing the contents of a data item

(COBDDT), 1-2
CHANNEL IS clause, 4-3, 4-6
Channel table, 8-10
Character collating sequence, B-1
Character set, 2-3

Punctuation characters, 2-3
Special characters used in arithmeti c

expressions, 2-3 .
Special characters used in c~nditional

(IF) statements, 2-3
Special editing characters, 2-3

CHARACTERS option (BLOCK CONTAINS
clause), 5-11

Checkpoint files, G-l
Class condition, 6-9

ALPHABETIC test, 6-10
Format of, 6-9
NUMERIC test, 6-10

CLEAR command (COBDDT), 1-2
Clearing breakpoints, 1-2
CLOSE statement, 6-3, 6-25
COBDDT, 1-1

Index-1

Commands
ACCEPT, 1-2
BREAK, 1-2
CLEAR, 1-2
DISPLAY, 1-3
HISTORY BEGIN, 1-5
HISTORY INITIALIZE, 1-5
HISTORY REPORT, 1-5
MODULE, 1-3
PROCEED, 1-4
STOP, 1-4
TRACE, 1-4
WHERE, 1-4

Error messages, 1-7
Syntax, 1-7
Execution, 1-8

COBOL language, elements of, 2-2

November 1974

COBOL library, 7-1
COBOL reserved words, A-1

DECsystem-10 COBOL reserved words, A-1
Standard COBOL reserved words, A-1

COBOL source program format, 2-8
Conventional format, 2-8
Standard format, 2 -10

COBRG, F-1
Reserved words, F-9

CODE clause, 5-55, 5-57, 5-58
COLUMN NUMBER clause, 5-63, 5-64
Comma (in ACCEPT verb), 6-19
Comma (in Source program), 2-7
Command language (Source Library

Maintenance Program), 9-4
Altering contents of source file, 9-6
Positioning files, 9-4

Command string, general form of, D-1
COMMUNICATION SECTION, 5-3
Comparison of nonnumeric items, 6-9
COMP-1, 5-49
Compiler switches, D-3
Compiling main programs as subprograms, 8-15
Compiling subprograms as main programs, 8-15
COMPUTE statement, 6-2, 6-28
COMPUTATIONAL items, 5-49
Condition-name, 2-6, 5-25
Condition-name condition, 6-10
Conditional expressions, 6-7

Abbreviations in relation conditions, 6-15
Class conditions, 6-9
Condition-name condition, 6-10
Formation and evaluation ru les, 6-12
Logical operators, 6-11
Relation condition, 6-8
Sign condition, 6-11
c ... : ~ ... t.. _ .. ~,..f. ,."' rI: +: "'.... A-l () ..." w._._ __ .. _ ... _ .. , _ ._

Conditional sentence, 6-4
Conditional-variable, 5-25
Configuration, computer (ENVIRONMENT

DIVISION), 4-1
CONFIGURATION SECTION, 4-3
CONSOLE clause, 4-3, 4-6
Constants

Figurative, 2-4
Special, 2-5

Continuation area, 2-9, 2-11
Continuing after a breakpoint (COBDDT), 1-3
Control break, 5-54
CONTROL FOOTING, 5-62, 5-71
CONTROL HEADING, 5-62,5-71
CONTROL(S) clause, 5-57, 5-59
Conventional format, 2-8

Continuation area, 2-9
Identification area, 2-10
Sequence numbers, 2-9

Conventions used in this manual
Block, 2-2
Item, 2-2
Record, 2-2

COPY statement, 7-2, 9-1
Core-image dump file, G-1
CORRECT command (L1BARY), 9-5
CORRESPONDING option, 6-17
CURRENCY SIGN clause, 4-3, 4-6, 5-33, 5-39

DATABASE-KEY (USAGE clause), 5-49
Data characters, symbols representing, 5-33
Data description entry, 5-4, 5-22

BLANK WHEN ZERO clause, 5-24
Condition-name (Level-88), 5-25
Data-name/F ILLER, 5-30
JUSTIFIED (JUST) clause, 5-28
Leve I-number, 5-30
OCCURS clause, 5-31
PICTURE (PIC) clause, 5-33
REDEFINES clause, 5-44
RENAMES clause, 5-46
SYNCHRONIZED (SYNC) clause, 5-48
USAGE clause, 5-49
VALUE clause, 5-52

DATA DIVISION, 2-2, 5-1
COMMUNICATION SECTION, 5-3
FILE SECTION, 5-2
LINKAGE SECTION, 5-2, 8-16
REPORT SECTION, 5-4
WORKING STORAGE SECTION, 5-2

Data file (indexed sequential file), H-1
Format, 8-4

Data name, 2-6
Data-name/F ILLER, 5-22, 5-30
DATA RECORD clause, 5-10, 5-12
nATA t~rp.,,; 5-1
DATE-WRITTEN clause (VALUE OF), 5-10,

5-18
Debugging COBOL programs, 1-1
DE (Detail), 5-62, 5-71
DECIMAL-POIN I IS COMMA ciause, 4-3, 4-6,

5-34
Decimal point positioning (Assumed), 5-33
DECLARATIVES, 6-85 (see USE statement)
DECsystem-10 (Object Computer clause), 4-1,

4-3, 4-5
DEFERRED OUTPUT option (ACCESS MODE

clause), 4-2, 4-8, 4-10, 4-17
DELETE command (L1BARY), 9-4
DELETE option (CLOSE), 6-25
DELETE statement, 6-3, 6-29
DENSITY (recording), 4-8, 4-21
DEPENDING option

GO TO statement, 6-40
OCCURS clause, 5-31

Index-2 November 1974

DESCENDING clause (SORT verb), 6-66
DESCENDING KEY option (OCCURS clause),

5-31
DETAIL, 5-62, 5-71
Detailed reporting, 6-39
Detail line, F-1
Detai I report, 5-80
Determination of usage in arithmetic

computations, 6-17
Device names, logical, 1-3, 4-12
Direct Indexing, 5-8
Direct subscripting, 5-8
DISABLE statement, 6-3
DISPLAY-6, 5-22, 5-49, 5-50
DISPLAY-6 and DISPLAY-7 fields in

arithmetic operations, 6-17
DISPLAY-6 characters, 5-11, 8-3, B-1
Llj:;?i...AY-I, ;;-22, ;;-47, 5-5i
DISPLAY-7 characters, 5-11, B-1
DISPLAY command (COBDDT), 1-3
Displaying the contents of a data item, 1-3
DI SPLAY statement, 6-3, 6-30
DIVI DE statement, 6-2, 6-31
Double-precision fixed-point binary, 6-17
DOWN BY (SET statement), ~-65

Edited items,
Alphanumeric, 5-35
Numeric, 5-35

Editing sign-control symbols, 5-34
Editing, types of, 5-40
Elementary item, 5-4

Symbols used to define the category of, 5-35
Elements of COBOL language, 2-2
ENABLE statement, 6-3
EN D command (L1 BARY), 9-5
Ending labels, 8-13
ENTER statement, 6-2, 6-33, C-1
ENTRY statement, 6-2, 6-34, 8-16
ENVIRONMENT DIVISION, 2-2, 4-1

CONFIGURATION SECTION, 4-3
OBJECT -COMPUTER, 4-5
SOURCE-COMPUTER, 4-4
SPECIAL-NAMES, 4-6

INPUT-OUTPUT SECTION, 4-8
FILE-CONTROL, 4-10
1-0 CONTROL, 4-22

ERROR PROCEDURE (USE verb), 6-85
EVEN parity, 4-2, 4-8, 4-10, 4-21
EXAMIN E statement, 6-2, 6-35
Execution, sequence of, 6-5
EXIT PROGRAM statement, 6-2,6-38, 8-16
EXIT statement, 6-3, 6-37
EXTRACT command (L1BARY), 9-5

FD file-name clause, 5-13
Field, F-1
Figurative constants, 2-4
FILE-CONTROL paragraph, 4-8, 4-10
FILE DESCRIPTION (FD), 5-10

BLOCK CONTAINS clause, 5-11
DATA RECORD IS clause, 5-12
FD file-name clause, 5-13
LABEL RECORD clause, 5-14
RECORD CONTAINS clause, 5-15
REPORT clause, 5-16
SDfile-name, 5-17
VALUE OF clause, 5-18

Fi Ie descriptor, D-1
FILE-LIMIT clause, 4-8, 4-10, 4-16, 8-14
File-name, 2-6, 7-3
Fi Ie option (USE statement), 6-85
fiLE SECTiuN, ,)-1

File, standard CLOSE procedure, 6-26
File table, 8-5
Fi les, categories of, 6-27
FILLER, 5-27
FINAL, 5-57, 5-71
FIND statement, 6-3
FIRST DETAIL, 5-57, 5-60
FIRST option (EXAMINE statement), 6-35
Fixed insertion editing, 5-40
Fixed-point binary, 6-17
Floating insertion editing, 5-41
F loating-point binary, 6-17
FOOTING, 5-57, 5-60
Format of a class condition, 6-9
Format of a da ta fi Ie (i ndexed sequenti a I), 8-4
Format of a relation condition, 6-8
Format of a sign condition, 6-11
Format of index entry (indexed sequential), 8-4
Format of indexing, 5-8
Format of subscripting, 5-8
Format of switch -status condition, 6-10
Format rules and conventions, 2-8
FOR MULTIPLE clause, 4-14

REEL option, 4-14
UNIT option, 4-14

FORTRAN subroutines, 6-34, C-1
FROM option (ACCEPT statement), 6-19

GET statement, 6-3
GENERATE statement, 6-3, 6-39
GIVING option (SORT verb), 6-66
GOBAC K statement, 6-2, 6-41, 8-16
GO TO statement, 6-2, 6-40
GROUP INDICATE clause, 5-63, 5-65
Group item, 5-4

Index-3 November 1 974

H switch, D-3
Heading, 5-57, 5-60, F-l
Help switch, D-3
High segment, 1-3
HIGH VALUES (figurative constant), 2-4
Histograms, obtaining (COBDDT), 1-5
HISTORY BEGIN command (COBDDT), 1-5
HISTORY INITIALIZE command (COBDDT), 1-5
HISTORY REPORT command (COBDDT), 1-5

I switch, 8-15, D-3
IDENTIFICATION DIVISION, 2-2, 3-1

AUTHOR paragraph, 3-1
DATE-COMPILED paragraph, 3-1
DATE-WRITTEN paragraph, 3-1
INSTALLATION paragraph, 3-1
PROGRAM-ID paragraph, 3-1
REMARKS paragraph, 3-1
SECURITY paragraph, 3-1

IDENTIFICATION, VALUE OF, 5-10, 5-18
ID (VALUE OF), 5-10, 5-18
Identifier, 2-6
IF MESSAGE statement, 6-3
IF statement, 6-3, 6-42

Nested IF statements, 6-42
Ignoring errors in indexed sequential files, H -1 °
Imperative sentence, 6-4
IN, 5-7
Index data item, 5-7, 5-31, 5-50
INDEXED ACCESS MODE, 4-8, 4-17, 8-3
INDEXED BY clause, 5-31
Indexed sequential files, 8-3, H-1
Index entry, format (indexed sequential), 8-4
Index file (indexed sequential), H-2
Indexing, 5-7
Index name, 5-7, 5-31, 5-51
1t...IITIATC ~,._,.~_~_,. '-_'l '-_AA
II , I I ., 'I". '-4 n I,, '-J I, -1'1

Input format (source I ibrary maintenance
program), 9-2

Input format, 2-8
INPUT option (OPEN statement), 6-49
INPUT option (USE statement), 6-85
INPUT-OUTPUT options (OPEN statement),

6-49
INPUT -OUTPUT option (USE statement), 6-85
INPUT-OUTPUT SECTION, 4-8

ACCESS MODE clause, 4-10, 4-17, 8-1
ASSIGN clause, 4-10, 4-12
FILE CONTROL paragraph, 4-10
FILE-LIMIT clause, 4-10, 4-16
1-0 CONTROL paragraph, 4-22
MULTIPLE FILE clause, 4-13, 4-22
PROCESSING MODE IS SEQUENTIAL

clause, 4-10, 4-17

INPUT-OUTPUT SECTION (Cont.)
RERUN clause, 4-22
RESERVE clause, 4-10, 4-15
SELECT clause, 4-10, 4-12

INPUT PROCEDURE (SORT verb), 6-66
INSERT command (LiBARY), 9-4
I NSERT statement, 6-3
Insertion characters, symbol representing, 5-33
I NTO identifier option (READ statement), 6-57
INVALID KEY option

DELETE, 6-29
READ, 6-57, 8-15
REWRITE, 6-61
WRITE, 6-88

INVALID KEY path, 6-29, 6-57, 6-61, 6-88
INVOKE statement, 6-3
1-0 CONTROL paragraph, 4-9, 4-22
1-0 option (OPEN statement), 6-49
ISAM {Indexed Sequential Access Mode} file,

8-3, H-1
ISAM program, H-1, H-4
Item

Elementary item, 2-2, 5-4
Group item, 2-2, 5-4

Jswitch, 8-15, D-3
JUSTIFIED (JUST) clause, 5-22, 5-28, 5-63

Comparison of justified items, 6-9

LABEL PROCEDURE (USE verb), 6-85
LABEL RECORD IS clause, 5-10, 5-14
Label records, 8-13
Language, elements of, 2-2
LAST DETAIL, 5-57, 5-60
LEADING option (EXAMINE statement), 6-35
Level-numbers, 5-4

u: _____ L: _ ~ ')f'\
III~I\"AI""'III""", ...,,-vv

Special, 5-4, 5-25, 5-30, 5-46, 5-52
Level-66, 5-5, 5-46,
Level-77, 5-5
Level-88, 5-5, 5-25, 5-52

Levels of index in indexed sequential files, H-2
LI BARY program, 9-1

Commands, 9-4
Library file, 9-1

Listing the contents, 9-4
LINE-COUNTER, 5-57, 6-39, 6-44
LINED (line editor), 1-2
LINE NUMBER clause, 5-62, 5-63, 5-66
Line-printer spooler, 5-55
LINKAGE SECTION, 5-2, 8-15
Listing the contents of a library file, 9-4
Literal option in STO P statement, 6-68
LITERALS, 2-6

Nonnumeric, 2-7
Numeric, 2-7

Index-4 November 1974

Loading and starting COBDDT, 1-1
Locating a record in an indexed sequential

fi Ie, H-3
Locating breakpoints (COBDDT), 1-4
Logical device names, 1-3, 4-12
Logical operators, 6-11
Low segment, 1-3
LOW VALUES (figurative constant), 2-4
LPTSPL (I ine-printer spooler), 5-55

MACRO subroutines, 6-33, C-1
Maintaining an indexed sequential file, H-7
MEMORY SIZE clause, 4-3, 4-5
Mnemonic-name, 2-6, 4-6, 6-31, 7-3
Modes of operation 1-1

Multiprogramming Batch, 1-1, 1-10
Timp.c;hnrinc.- 1-1.- 1-4

MODIFY statement, 6-3
MODULE command (COBDDT), 1-3
MOVE statement, 6-2; 6-45
Multiple file clause, 4-9, 4-22
Multiple file tape, 8-14
MULTIPLE REEL clause, 4-10,4-14
MULTIPLE UNIT clause, 4-10, 4-14
MULTIPLY statement, 6-2, 6-47
Multiprogramming Batch commands, 1-13
Multiprogramming Batch mode, 1-1, 1-10

Nested IF statements, 6-42
NEXT GROUP clause, 5-62, 5-67
NEXT PAG E option, 5-62, 5-63, 5-66, 5-67
NEXT SENTENCE clause (SEARCH statement),

6-62
NO REWIND option (CLOSE statement), 6-25
Nonnumeric items, comparison of, 6-9

Justified items, 6-9
Operands of equal size, 6-9
Operands of unequal size, 6-9

Nonnumeric literals, 2-7
Non-random access devices, labels for, 8-13
Non-standard label records, 8-13
NOTE statement, 6-3, 6-48
Numbers, sequence, 2-9
Numeric edited item, 5-35
Numeric item, 5-34

Comparison of numeric items, 6-8
Numeric literals, 2-7
NUMERIC test, 6-10

OBJECT-COMPUTER paragraph, 4-1, 4-3, 4-5
OCCURS clause, 5-7, 5-22, 5-31
ODD parity, 4-2, 4-8, 4-10, 4-21
OF, 5-7
OPEN option (USE verb), 6-85
OPEN statement, 6-3, 6-49

Operands of equa I size, 6-9
Operands of unequal size, 6-9
Operational sign, 5-34
Operators

Arithmetic, 6-6
Logical, 6-11
Relational, 6-8

Optional files, 4-12, 6-58
OPTIONAL, key word, 4-12
OUTPUT option (USE statement), 6-85
OUTPUT PROCEDURE (SORT statement), 6-66

Packing an indexed sequential file, H-8
Ignoring errors while, H-10
Writing tape labels, H-11

PAGE-COUNTER, 5-57, 6-39, 6-44
PA~I= l=(")rHIr--I~ t::._t..? t::._71
- - - - - . - - -, - --, - ..
PAGE HEADING, 5-62, 5-71
PAGE LIMIT, 5-57, 5-60
Paragraphs, 6-4
PARITY (recording), 4-2, 4-8, 4-10, 4-21
PERFORM statement, 6-2, 6-51
Period (in Source program), 2-8
Peripheral devices, 1-3
PF (Page Footing), 5-62, 5-71
PH (Page Heading), 5-62, 5-71
PICTURE clause, 5-22, 5-33, 5-63
PLUS option, 5-62, 5-63, 5-66, 5-67
POSITION option (1-0 CONTROL paragraph),

4-2, 4-9, 4-22
Priority number (sections and segments), 6-4,

6-5
PROCEED command (COBDDT), 1-4
PROCEDURE DIVISION, 2-2, 6-1

ACC EPT , statement, 6-19

Index-5

ADD, 6-20
ALTER, 6-22
CALL, 6-23
CLOSE, 6-25
COMPUTE, 6-28
DELETE, 6-29
DISPLAY, 6-30
DIVIDE, 6-31
ENTER, 6-33
ENTRY, 6-34
EXAMINE, 6-35
EXIT, 6-37
EXIT pROGRAM, 6-38
GENERATE, 6-39
GO, 6-40
GOBACK, 6-41
IF, 6-42
INITIATE, 6-44
MOVE, 6-45
MULTIPLY, 6-47

November 1974

PROCEDURE DIVISION (Cont.)
NOTE, 6-48
OPEN, 6-49
PERFORM, 6-51
READ, 6-57
RELEASE, 6-59
RETURN, 6-60
REWRITE, 6-61
SEARCH, 6-62
SEEK, 6-64
SET, 6-65
SORT, 6-66
STOP, 6-68
STRING, 6-69
SUBTRACT, 6-73
TERMINATE, 6-75
TRACE, 6-76
UNSTRING, 6-78
USE, 6-85
WRITE, 6-88

PROCEDURE DIVISION HEADER, 6-1, 8-16
Procedure-name, 2-6
PROCESSING MODE IS SEQUENTIAL clause,

4-2, 4-8, 4-10, 4-18
PROGRAM-ID paragraph, 3-1
Program-name, 3-1
Program structure

DATA DIVISION, 2-2
ENVIRONMENT DIVISION, 2-2
IDENTIFICATION DIVISION, 2-2
PROCEDURE DIVISION, 2-2

Project-programmer number (see USER-NUMBER),
5-18

Punctuation (in Source program), 2-7
Comma, 2-7
Period, 2-8
Semicolon, 2-7
Space, 2-7

QUALIFICATION, 5-6
c ... ___ I _ _ I: _ _1:£,: __ .. :__ r:;._~

I...A\.""t-"<;;; v, "1UY"""'Y"V", .., v

Level-66 items, 5-7
Level-77 items, 5-7

QUEUE monitor command, 1-9, 5-55
/REPORT switch, 5-55

QUOTES (figurative constant), 2-5

RANDOM Mode, 4-2, 4-8, 4-10, 4-17, 8-2
Reading tape labels (lSAM program), H-11
READ statement, 6-3, 6-57
RECEIVE statement, 6-3
Record, 2-2
Record area, 8-12
RECORD CONTAINS clause, 5-15

Record descriptions, 5-21
Recording density, 4-2,4-8,4-10,4-21
Recording mode, 4-2, 4-8, 4-10, 4-21, 8-5
Recording parity, 4-2, 4-8, 4-10,4-21
RECORD KEY, 4-2,4-8,4-10,4-20, 8-3
Record-name, 2-6
Record-name option, 5-14
RECORD OPTION (1-0 control) paragraph,

4-2, 4-9, 4-22
REDEFINES clause, 5-22, 5-44
REEL option

CLOSE statement, 6-25
USE statement, 6-85

REEL, standard CLOSE procedure, 6-26
Reentrant code, 1-3
Relation condition, 6-8

Abbreviations in, 6-15
Comparison of nonnumeric items, 6-9
Comparison of numeric items, 6-8
Format of a relation condition, 6-8
Relational operators, 6-8

Relative indexing, 5-9
Relative subscripting, 5-9
RELEASE statement, 6-2, 6-59
REMAINDER clause (DIVIDE statement), 6-31
REMARK S s tatemen t, 3-1
REMOVE statement, 6-3
RENAMES clause, 5-23, 5-46
REPLACE command (LiBARY), 9-4
REPLACING BY option

COPY statement, 7-2
EXAMINE statement, 6-35

REPORT clause, 5-10, 5-16
Report Description (RD), 5-57
Report exampl e, 5-73
REPORT FOOTI NG, 5-62, 5-71
Report group description, tJ-6'L

Report groups, 5-54, 5-62, 5-71
REPORT HEADING, 5-62, 5-71
REPORT SECTION, 5-4, 5-54
DJ:DflDT .. ,,,:f.,..(,... (~I 11=111= ""''"' :+'"' .. t",..."",,,,,,,.,nrl\ ll_llll .,,., • ..",t,_ •• \'""-"\. ____ ••• _,.,._. __ •..... _ .. _" _

Report wri ter, 5-16, 6-39
Report (writing) program, F-1, F-6
RERUN clause, 4-2, 4-9, 4-22
RERUN program, G-1
RESERVE clause, 4-2, 4-8, 4-10, 4-15
Reserved words

DECsystem-10, A-1
Standard, A-1

RESET clause, 5-63, 5-68
RESTART command (LiBARY), 9-5
Restarting a program, G-1
RETURN statement, 6-2, 6-60
REWRITE statement, 6-3, 6-61

Index-6 November 1 974

RD (Report Descri pti on), 5-57
RF (Report Footing), 5-62, 5-71
RH (Report Heading), 5-62, 5-71
ROUNDED option (arithmetic verbs), 6-15
RUN option (STOP statement), 6-68

SAME AREA clause, 4-2, 4-9, 4-22, 8-14
SAME RECORD AREA clause, 4-2, 4-9, 4-22,

8-14
SAME SORT AREA clause, 4-2, 4-9, 4-22
Scratch device (SORT), E-2, E-3
SD file-name, 5-17
SEARCH statement, 6-2, 6-62
Sections, 6-4

Section-name, 6-4
SEEK statement, 6-3, 6-64
SEGMENT -LIMIT clause, 4-1, 4-3, 4-5
Segmentation, 6-5
SELECT statement, 4-2, 4-8, 4-10, 4-12
Semicolon (in source program), 2-7
SEND statement, 6-3
Sequence numbers, 2-9
Sequence of execution, 6-5
SEQUENTIAL MODE, 4-2,4-8,4-10,4-17,

4-18, 8-1
SET statement, 6-2, 6-65
Setting breakpoints (COBDDT), 1-2
Sharable code, 1-3
Sign condition, 6-11

Format of, 6-11
Single-precision fixed-point binary, 6-17
SIXBIT collating sequence, B-1
SIXBIT recording mode, 4-2, 4-8, 4-10, 4-12,

8-5
SIZE ERROR option, (arithmetic verbs), 6-16,

6-20, 6-28, 6-31
Sort fi Ie, 5-16
Sort key, E-2
SORT program, E-1
SORT statement, 6-2, 6-66
SORT switches, summary of, E-2
SOURCE clause, 5-63, 5-69
SOURCE-COMPUTER, 4-1, 4-3, 4-4
Source Library Maintenance Program, 9-1

Command language, 9-4
Error recovery, 9-7
Input format, 9-2
Output format, 9-2
Start-Up, 9-3
Switches, 9-4

SOURCE PROGRAM, 2-8
SOURCE PROGRAM division

DATA DIVISION format, 5-1
ENVIRONMENT DIVISION format, 4-1

SOURCE PROGRAM division (Cont.)
IDENTIFICATION DIVISION format, 3-1
PROCEDURE DIVISION format, 6-1

Space (in source program), 2-7
SPACE, SPACES (figurative constant), 2-4
SPECIAL-NAMES paragraph, 4-1, 4-3, 4-6
Special registers

TALLY, 2-5
TODAY, 2-6

Spooling, 1-4
Standard calling sequence, C-1
Standard labels, 5-10, 5-14, 8-13
Standard format, 2-10
Statements and sentences, 6-2

Compi ler-directing sentences, 6-4
Conditional sentence, 6-4
Imperative sentence .. 6-4

STOP command (COBDDT), 1-4
STOP statement, 6-3, 6-68
STRING statement, 6-2, 6-69
Subgroupings of words, 2-6

Condition-name, 2-6
Data-name, 2-6
File-name, 2-6
Identifier, 2-6
Index-data-name, 2-6
Index-name, 2-6
Mnemonic-name, 2-6
Procedure-name, 2-6
Record-name, 2-6

Subprograms, 5-2, 6-1, 6-23, 6-34, 8-15
Subroutines (FORTRAN and MACRO), calling,

6-33, C-1
Subscripting, 5-7, 5-31
SUBTRACT statement, 6-2, 6-73
SUM clause, 5-63, 5-70
Summary reporting, 6-39

Example, 5-79
SWITCH clause, 4-3, 4-6, 6-10
Switches, compiler, summ~ry of, D-3
Swi tch -status condi ti on, 6-10

Format of, 6-10
SYMBOLIC KEY clause, 4-2, 4-8, 4-10, 4-20,

8-3
Symbols

Arithmetic signs, 5-33
Assumed decimal point positioning, 5-33
COBOL conventions, 2-1
Data characters, 5-33
Editing sign-control, 5-34
Elementary item categories, 5-35
Insertion characters, 5-33
Zero suppression operations, 5-33

SYNCHRONIZED clause, 5-22, 5-48

Index-7 November 1974

Syntactic format PROCEDURE DIVISION, 6-2
Paragraphs, 6-4
Sections, 6-4
Statements and sentences, 6-2

Tables, subscripting and indexing, 5-7
TALLY (special register), 2-5
TALLYING option (EXAMINE statement), 6-35
TECO (Text Editor and Corrector), 1-2, 1-7
TERMINATE statement, 6-3, 6-75
Timesharing mode, 1 -1, 1-4
TO DAY (special register), 2-6
TOTAL line, F-l
Trace calls, 6-76
TRACE command (COBDDT), 1-4
TRACE statement, 6-2, 6-76
Tracing procedures, 6-76, 1-4
TYPE clause, 5-62, 5-71

Unblocked files, 8-11
UNIT option

CLOSE statement, 6-25
USE statement, 6-85

UNSTRI NG statement, 6-2, 6-78
UNTIL ~IRST option (EXAMINE statement), 6-35
UP BY option (SET statement), 6-65
UPON option

DISPLAY statement, 6-30
SUM clause, 5-70

USAGE clause, 5-49, 5-62, 5-63
Usage in arithmetic computations, 6-17
USE statement, 6-3, 6-85
USER-NUMBER (VALUE clause), 5-10, 5-18
USING clause

CALL statement, 6-23, 8-16
ENTER statement, 6-33, C-l
ENTRY statement, 6-34, 8-16
PROCEDURE DIVISION header, 6-1, 8-16
SORT statement, 6-66

VALUE clause, 5-22, 5-52, 5-63
VALUE OF iD ciause, 5-iv, 5-iB
VALUE OF IDENTIFICATION clause, 5-10, 5-18
VARYING option

PERFORM statement, 6-51
SEARCH statement, 6-62

WHEN clause (SEARCH statement), 6-62
WHERE command (COBDDT), 1-4
WITH NO ADVANCING (DISPLAY statement),

6-30
WORKING-STORAGE SECTION, 5-2

Level-77, 5-5

Words, 2-4
COBOL reserved words, 2-4, A-I
DECsystem-l0, A-I
Standard, A-I
User-created words, 2-6

Writing tape labels (lSAM program), H-ll
WRITE statement, 6-3, 6-88

ZERO, ZEROS, ZEROES (figurative constant),
2-4

Zero suppression operations (symbols of), 5-33

Index-8 November 1 974

DECsystem-10 COBOL
PROGRAMMER'S REFERENCE MANUAL
DEC-10-LCPRA-A-D

READER'S COMMENTS

NOTE: This form is for document corr~ents only. Problems
with software should be reported on a Software
Problem Repcrt (SPR) form (see the HOW TO OBTAIN
SOFTWARE INFOR}~TION page).

Did you find errors in this manual? If so, specify by page.

Did you find this manual understandable, usable, and well-organized?
?led.::>e llld.Ke ::>uggesi:.ions for improvement.

Is there sufficient documentation on associated system programs
required for use of the software described in this manual? If not,
what material is missing and where should it be placed?

Please indicate the type of user/reader that you most nearly represent.

[] Assembly language programmer

[] Higher-level language programmer

[] Occasional programmer (experienced)

[] User with little programming experience

[] Student programmer

[] Non-programmer interested in computer concepts and capabilities

Name Date ________________________ _

Organization __ _

Street __ __

City ___________________________ S ta te _____________ Zip Code ______________ _
or

Country

If you do not require a written reply, please check here. [J

.--Fold lIere--

.--- Do Not Tear - Fold lIere and Staple ---

BUSINESS REPLY MAIL
NO POSTAGE STAMP NECESSARY IF MAILED IN THE UNITED STATES

Postage will be paid by:

Software Communications
P. O. Box F
Maynard, Massachusetts 01754

FIRST CLASS

PERMIT NO. 33

MAYNARD, MASS.

