TOPS-10 MONITOR INTERNALS

Supplemental Reédings

EDUCATIONAL SERVICES
DIGITAL EQUIPMENT CORPORATION

BEDFORD,

REVISION

REVISION
REVISION

REVISION

MASS.

Ul W

JULY 1979

AUGUST 18978
FEBRUARY 1980

NOVEMBER 1980

EY-CD013-RB-006

PREFACE

The purpose of this document is to supplement the TOPS-10
MONITOR INTERNALS COURSE MATERIAL prose with graphic
illustrations and additional support documents.

This supplement is divided into parts with the page
numbering continucus within each part but not continuous
across parts. The page numbering in part 1, Graphics,
is of the form "a-b" where "a" corresponds to the
chapter number in the course materials and "b" is the
page number within chapter "a". This numbering scheme
facilitates cross referencing the course materials to
the supplement.

PART

TABLE OF CONTENTS

1 - GRAPHICS

INTRODUCTION

MAPPING

PI SYSTEM

MONITOR BUILDING

MONITOR CODING CONVENTIONS

CLOCKX CYCLE OVERVIEW
CLOCK CYCLE LEVEL "3"
CLOCK CYCLE LEVEL 7
TIMING CHARTS
ACCOUNTING

CORE MANAGEMENT
PAGE FAULTS

COMMAND PROCESSING OVERVIEW
COMMAND PROCESSING DETAILS
DELAYED COMMANDS

JOB STATE TRANSITIONS
SCHEDULER QUERIES
SCHEDULER DETAILED FLOWS ~

SWADPER

UUC PROCESSING OVERVIEW
UUO PROCESSING DETAILS
HOW TOPS-10 DIES
STOPCODES

I/C MODULE ARCHITECTURE
INIT UUO

INBUF/OUTBUF UUO

INPUT UUO

OUTPUT UUO

CLOSE UUO

RELEASE UUO

NOTES ON I/O UUOS

INTERRUPT CHAIN
MONGEN PI ASSIGHMENT
PI ASSIGNMENT DEVICE GROUPS

DEVICE INTERRUPT ROUTINE OVERVIEW

bt b b
= W

N O

NN!}JI\)N
= OV N
et

tln)w
i
’..4

b b
b

WM =N
[

[V}
LI]

)}
|

TV
HHNE R e
|

TABLE OF CONTENTS
PAGE 2

ADVANCE BUFFER ROUTINE 9-5
DEVICE DATA BLOCKS 9-8
WAIT ROUTINES 9-9
CALIN - START DEVICE ROUTINE 9-11
SETOID - ROUTINE TO UNBLOCK A JOB 914
9-2

A RACE CONDITION =20

DISK RESIDENT DATA BASE 10-1

CORE RESIDENT DISK DATA BASE 10-5

DISK UUO I/O FLOWS ' 10-10
I/0 INSTRUCTION FORMAT 10-17
DISK QUEUES 10-20
DISK INTERRUPT LEVEL FLOWS - FILINT 10-21
DISK POSITIONING OPTIMIZATION 10-24
DISK TRANSFER OPTIMIZATION 10-25
START I/0 10-26
SET UP COMMAND LIST 10-27

PART 2 - KL DOCUMENT

PART 3 KL SYSTEM OPERATIONS (CHAPTER 3 HARDWARE REFERENCE MANUAL)

PRIORITY INTERRUPTS

CACHE MANAGEMENT

TOPS-10 PAGING AND PROCESS TABLES
MEMORY MANAGEMENT

TIMING AND ACCOUNTING .

ERROR AND DIAGNOSTIC INSTRUCTIONS

WWwwww
B .« . .
ooVt

PART 4 - SCHEDULER/SWAPPER PLM
PART 5 - DISK I/0 PROCESSING

PART 6 - LABS

PART 1

GRAPHICS

TOPS-10 (DECsystem-10) TRAINING PROGRAM

J2070-A

J2086-A

OPERATOR proy

SYSTEM
MANAGER

=

OPERATOR

2080-A

SYSTEM USER MOMTOR EBYSSMS MONITCR PN
PROGRAMMER | > | stRucTuRe KCIR INTERNALS
LECLAB
AssEmaLy | uoue |
LANGUAGE ADVANCED
PROGRAMMING ALP
ASSEMBLY
LANGUAGE
APPLICATIONS »}
PROGRAMMER | wows | o8 | [tecus
| Joogs-A | [21844 | | JBo26-A | [Jooss-a |
COBOL =
APPLICATIONS P 0 oA
PROGRAMMER cosoL PROGRAMMING O BASE
TECHNIQUES CONCEPTS MANAGEMENT
SYSTEM
LEC/LAB LEC/LAB LEG/LAB SPi LEC/LAB

TOPS—IO Monitor Internals

Length: 10 days

J2080-A

Lecture/Lab

This quite advanced course teaches the experienced programmer
the internal algorithms of the TOPS-10 operating system in detail.
In-depth studies of the monitor clock cycle and device service
routines receive equal emphasis. Students will study monitor MAC-
ROs and conventions, TOPS-10's data base in great detail, and will
learn methods for adding new commands, monitor calls (UUO),
and device service routines to TOPS-10. Laboratory exercises
introduce on-line examination of the data base and post-mortem
crash analysis with the FILDDT utility. .

The experienced Progremmer who completes this course will be
well-grounded in the monitor's major algorithms. from core man-
agement to communications service routines. He will feel comfort-
able finding his way through the code, and will be capable of making
modifications to TOPS-10 to implement new features for his
installation.

Students:

« Systern Programmers

Will Learn to:

«» Describe the steps which must be followed in adding either a new
command or UUO to the monitor.

« Describe the principles involved in adding a new device service
routine.

« Given a specific systemn state, trace the control path through the
monitor.

« Describe the effects of an interrupt on the monitor data base and
on subsequent monitor behavior.

» Describe how a user disk /O request is handled by the disk service
routines.

» Use FILDDT to examine the data base of a running monitor or to_
post mortem a crash.

« Efficiently find the section of TOPS-10 code that performs a
particular function and follow its flow.

Ensuring Success: :

The flowchart illustrates the proper course sequence for every job
classification within the TOPS-10 training program.

In order to ensure the training success of every participant, itis
mandatory that prospective students take all coursesin the recom-
mended sequence. For example, before taking this course, you
should have compieted TOPS-10 Monitor Structure and
TOPS-10 Assembly Language Programming. We also recom-
mend six months practical experience as a systems prograrmmer
under TOPS-10.

Topics:

« Monitor Coding Conventions and Cross-Reference Tools
Clock Routine

Core Managerment

Command Processor

Scheduler and Swapper

Monitor Calls and Device Service Routines

File Service Routine

Communications Processor

FILDDT and Introduction to Crash Analysis

77?

256K

7%

A

\ USER
\ TABLE

000 ~ 777 256

EXECUTIVE 340 - 377 16
H TRAP & MuUQ 1%

':-
|
(3
=

nn

\!TRGOCX

84

—

-3

[+

EXECUTIVE
VIRTUAL
ADDRESS

SPACE

112K

340000
-~
-
-7 16K
400000
128K
mnn

TOPS - 10 VIRTUAL ADDRESS SPACE AND PROCESS TABLE LAYQUT

~—
,_._-

.»-<

EXECUTIVE
PROCESS
TABLE
LOSOUT REas 3
TNTERRUPT 16
CRANNEL BLOCK FILL WORDS | ¢

2

»
n

0TE20 32
CONTROL BLOCKS
7
R 400-777 128
S AT
I' TRAP 3

i

o

2

7

ETERBLOC

!

000 -337 12

V7. L6

SHADED AREAS
ARE RESERVED

MR-0Q750

0 | yuser PAGE 0

377
400

417
420
N
422
423
424
425
426
427

431
432

SEREHBEEY

w
-
Q

Eakbea

USER PROCESS TABLE

USER PAGE 1

- - - — - —

USER PAGE 776 USER PAGE 777

EXECUTIVE PAGE 340 EXECUTIVE PAGE 341

EXECUTIVE PAGE 376 EXECUTIVE PAGE 377

R R

RESERVED

USER ARITHMETIC OVERFLOW TRAP INSTRUCTION

USER STACK OVERFLOW TRAP INSTRUCTION

USER TRAP 3 TRAP INSTRUCTION

MUUQ STORED HERE

MUUO OLD PC WORD

MUUO PROCESS CONTEXT WORD

RESERVED

KERANEL NO TRAP MUUQ NEW PC WORD

KERNEL TRAP MUUQ NEW PC WORD

SUPERVISOR NO TRAP MUUO NEW PC WORD

SUPERVISOR TRAP MUUO NEW PC WORD

CONCEALED NO TRAP MUUQ NEW PC WORD

CONCEALED TRAP MUUO NEW PC WORD

PUBLIC NO TRAP MUUO NEW PC WORD

PUBLIC TRAP MUUQ NEW PCWORD

RESERVED '

PAGE FAIL WORD

PAGE FAIL OLD PCWORD

PAGE FAIL NEW PC WORD

RESERVED

USER PROCESS EXECUTION TIME

USER MEMORY REFERENCE COUNT

RESERVED

|

EXECUTIVE PROCESS TABLE

o[EIGHT CHANNEL LOGOUT AREAS

|
i
|
|
¥

EACH: O INITIAL CHANNEL COMMAND
1 GETS CHANNEL STATUS WORD
2 GETS LAST UPDATED COMMAND
3 RESERVED

- —

RESERVED

STANDARD PRIORITY INTERRUPT INSTRUCTIONS

FOUR CHANNEL BLOCK FILL WORDS

137

RESERVED

140

177

FOUR DTE20 CONTROL BLOCKS

200

377

EXECUTIVE PAGE 400 EXECUTIVE PAGE 401

EXECUTIVE PAGE 776

EXECUTIVE PAGE 777

420

RESERVED

I I

a

EXECUTIVE ARITHMETIC OVERFLOW TRAP INSTRUCTION

422

EXECUTIVE STACK OVERFLOW TRAP INSTRUCTICN

423

EXECUTIVE TRAP 3 TRAP INSTRUCTION

424

507

RESERVED

510
511

TIME BASE

512
513

PERFORMANCE ANALYSIS COUNT

514

INTERVAL COUNTER INTERRUPT INSTRUCTION

515

577

RESERVED

797

EXECUTIVE PAGE 0 EXECUTIVE PAGE 1

EXECUTIVE PAGE 336 EXECUTIVE PAGE 337

760

'
777 l

RESERVED

e e e e e - e e

TOPS-10 PROCESS TABLE CONFIGURATION

MR-0751

VIRTUAL TO PHYSICAL ADDRESS TRANSLATION

EFFECTIVE ADDRESS

9 ' 9 18 bits = J-zsex words
k.SlZ pages

(COMPUTED
INDEX)

HARDWARE PAGE TABLE

_ U/E 13 bits
512 LOADED
WORDS FROM
UPMP /EPMP
IF ENTRY NOT
. ALREADY HERE

13 9 22 bits = 4096K words
8192 pages

PHYSICAL ADDRESS

USER PAG PMP) MAPP

A|P | W/| S| C | PAGE ADDRESS

18 BIT QUANTITY - 512 PER UPMP

A = 0 ACCESS DENIED, PAGE FAULT OCCURS

1]
|t

ACCESS ALLOWED

P=0 CONCEALED PAGE (EXECUTE ONLY)
1 PUBLIC PAGE

W =0 WRITE PROTECTED

1}
’_l

WRITABLE
S =0 ALLOCATED

=1 ALLOCATED BUT ZERO
C=o0 CACHEABLE
=1 NOT CACHEABLE
PAGE ADDRESS - 13 BIT PHYSICAL MEMORY PAGE NUMBER OR
- 17 BIT SWAPPING SPACE ADDRESS
INCLUDES P,W,S,C BITS

MUUO:

P

10

FPaje .iap
CPDTT HMUTO (T
40/
21/ 0 (JSR LUUCPC placed here Luro®C: 0
. at SYSINI time) EXCH T1, LUUOPC
: MOVEM T1, UUQO
JRST UUOERR% &
LCC 420
£20/MUUD SEILMEE ; Page fault- trap
421/3FCL ; Arithmetic trap
422/MUUC SEPDLO#F ; Push down overflow trap
£Z3/3JSR TRP2IEC ; Trap 3 Trap
- " :
's Page Map K1 sk
Lec NLUPMP (= 2000)
NUPPPM = NLUZMP + 400
Loc NUPPPM
| i00, . o \
P 400/PM.ACC + PM.WRT + 340,, PM.ACC + PM.WRT + 341\
? PM.ACC + PM.WRT + 342,, PM.ACC + PM.WRT + 343
5 . ' gExer.Per Process
! . ! Map
g 417 /2M.ACC ; PM,WRT + 374,, PM,RCC + BM.WDT -+ 375/
i
i 420/ MUUQ SEILME: i Pzge fault trap
£ 421/ JFCL SARQUF:: ; Arithmetic trap
: 422/ MUUC SEPDLO#% ; Push down overfiow trap
f £23/ JFCL ‘ ; Trap 3 Trap
| 424/ EXP 0 ; MUUC stored here
; 425/ EXP 0 ; PC word of MUUQ stored here
| 426/ EXP 0 ; Exec page fail word
[427/ EXP O ; User page fail ward
i 430/ EXP IC, UCU ULO## ; Kernel No trap MUUO new PC word
| 431/ EX¥P IC.UQU + XTUUO%# ; Kernel trap MUUQO new PC word
| 432/ EXP IC.UQU + CY-JLD## i Supervisor No trap MUUO new PC word
i 433/ EXZ IC.UOU + STUUO ; Supervisor trap FUUO new 2C word
¢ 434/ EXP IC.UQU + MUUQO%: ; Concealad No %r MUUO new PC word
| 435/ EX? IC.UQU + CTUUO ; Concealed trap M‘UO new PC word
{ 438/ EXD IC.UOU + MUUO## ; Public No trap MUUQ new 2C word
{437/ ZXP IC.UOU + BTUUO ; Public trap MUUO new PC woxd
KTUUO: SRST @ TLUBMP FUTUPHU® 7 Dispatdh to Xerdel mode trap
handler
SNTUUC: Halt
STUUOC: Hazalt
CTUU0: JRST @ _(UPMPT.UDMUO ; Dispatch to use mode trap handler
PNTUUO: JRST @ .UPMD + .UPMUO ; " "
BTUTO: JRST @ LUPMP + [UPMUO ; " "
7 Come here cn a MUUO call to similuate a KA jsiéte]

L8

6.03Aa

Executive Virtual Memory

Monitor Virtual Address Space

Page O . Absolute Locations
| EPMP (CPUD)
2 EPMP (CPU1)
3 Null Job UPMP
- Monitor
Low
Segment
340 UPMP
341 JOBDAT
342 Vestigal JOBDAT
343 TEMP
400 - Used to Buiid UPMP
401 Swapping Checksum
402 Pl Levei Temporaries
4n SKPCPU Instruction
412 PAGTAB
432 MEMTASB
452
Monitor
High
Segment
SYSsiZ
EVM
777

xR

' Page 0

340

367
370
371
372
373

400
401
402

41
- 412

414

454

Syssiz

777

7.01

Absolute Locations

EPMP (CPUO)

EPMP (CPU1)

Null Job UPMP

Menitor
Low
Segment

Funny Space

UPMP

JOBDAT

Vestigal JOBDAT

TEMP

Used to 8uild UPMP

Swapping Checksum

P1 Level Temporaries

PAGTAB

MEMTAB

Monitor
High
Segment

EVM

MR Sana

METHOD

A

USE

RESSABILITY

OVERHEAD

RESTRICTIONS

PER PROCESS

ACCESS UPMP
& JOBDAT

SETTING UP
UPMP MAPPING
ENTRIES FOR

CURRENT JOB

EXEC MODE
PAGING
XCT UUO ARGUMENTS NONE . CURRENT JOB
USER ACS
SETTING UP
EVM 1/0 BUFFERS EPMP MAPPING NONE

ENTRIES FOR
EXEC MODE
PAGING

. CONO P,

Interrupt Programming
The program can control the priority interrupt system by means of condition 1/O instructions.
The device code is 004, mnemonic PL.7

Conditions Qut, Priority Interrupt

h

70060

x|

|

0

121314

1718

35

MR.0372

Perform the functions specified by the effective conditions £ as shown? (a 1 in a bit produces the
indicated function, a 0 has no effect).

ORQP PROGRAN INITIATE

REQUESTS ON INTERRUPTS

SELECTED [oL]

LEVELS !

WRITE EVEN' N\ | ciear [] TURN | TuRN | TURN | TURN
- PARITY L|§| ! ov | orr | orr | o . SELECT LEVELS FOR BITS 22, 24, 25,26
$00RESS] QAT | DIRCTRY SISTEM | SELECTED LElELS PI SYSTEN U2 |3 | 4] s | s | 7
'8 13 20 2 22 3 24 25 26 ! oot 28 29 ' 30 k)| 32 b33 34 35
MR-Q381
CONI Pl, Conditions In, Priority Interrupt
| 70064 | x| Y |
0 121314 1718 35
MR-0373

Read the status of the priority interrupt (and several diagnostic bits) into location £ as shown.

PROGRAM REQUESTS ON LEVELS

{ ! !] | I [| L O N N NN N S LN
- 0 I 2 3 4 5 3 7 g | 3 10 n oo 13 o 16 I%;
A, INTERRUPT IN PROGRESS ON LEVELS crotew LEVELS ON,
200PEss) SaTA imRCTRY! v 1 2 | 3 4 s 1 s | 7 o v o2 13 e 1s 18 17
18 15 o a2 23 24 5 2% v 28 29 130 n 32 11 34 35
: MR-0382

v-10

TOPS~-10 MONITOR GENERATICN

STEP 1.

Specifying Configuration

.

F22 . .MAC
FEATURE

7 NETCHF . MAC TEST SWITCHE:

MONGEN -
/ HDWCNF . MAC NETHORK
TELETYPES
N.
FGEN.HLP -
CONFTGURATION
STEP 2.

Assembling Configuration Dependent Modules

COMLCEV.REL

NETCNE
/ TTYewE] -
MACRO
/ A
COMMON . MAC
COMMOD . MAC S.1
COMNET . MAC NETPRM. MAC

:OMDEV . MAC

&
N

DTEPRM. MAC /—\
\\\‘_“:%‘ziarched by COMCEV

searched by COMNET

COMMON . REL STEP 3.

Load and Save New Monitor

COMNET.REL

LINK
/ COMDEV.=EL

YURMCN.EXE

—

TOP?10.REL

Moniter Configuration

Independent Library

(SYSTEM.EXE)*

*Note: Object patches are sometimes
applied to SYSTEM.EXE thru the use
of FILLDDT after step 3.

1)

MONITOR AC LOCATIONS

All sixteen monitor AC locations (that 1s, the TOPS-10 system's
sixteen fast-memory locations) have names that are descriptive of
their contents. These names remain the same throughout the monitor.

The following 1is a description oi.thése locations, alsc known as CPU
registers. :

Fast-Memory Locations 0 to 17

0 S -~ Contains the status word from a DDB while the monitor 1is
processing I1/0 operations.

1 »» -- Contains the pushdown stack pointer currently in use.

2 J =-- Contains the Jjob number, high-segment number, or
controller data block address at interrupt level.

3 R -- Contains the Jjob's relocation value. On KI or” KL
machines, this usually points to the user page map via
exec page 341; that is, R contains the value of 341000.
If the 3job 1is locked in EVM, however, it contains the
exec virtual address of the job.

4 F -- Contains the file DDB address when the monitor is
working with I/0. This AC 1is usually used as a

temporary register when the monitor is executing code in
an area not concerned with I/0.

5 U -- Contains the unit data block address in FILSER; nolds
the 1line <dcata block address in SCNSER. This AC 1is
generally associated with a particular I/0 device.

6 T1 -- Is an unpreserved temporary AC.
7 T2 =-- Is an unpreserved temporary AC.
10 T3 =- Is an unpreserved temporary AC.

11 T4 -- Is an unpréserved temporary AC. -

12 4 -- Contains a mask, or, in UUOCCON, holds the UUC address
and special bits.

13 W -- Usually contains the pointer to the process data block;
is a general work register.

14 Pl -- 1Is a preserved temporary AC.

15 P2 -- Is a preserved temporary AC. -

16 P3 -~ Is a preserved temporary AC.

17 P4 -- Is a preserved temporary AC; often points to the CPU
v

data block.

Notice that two sets of general-purpose registers are provided, Tl to
T4 and Pl to P4. When the system programmer writes a subroutine, he
knows he can use T1 through T4 without bothering to preserve the
original contents,- because they should be saved by the caller. The
system programmer should also realize that any subroutine he may call
need not, worry about the original contents of registers Tl through T¢;
however, if he wants to use Pl through P4, he must take steps to save
their data. Once this is saved, if the system programmer writing a
subroutine uses Pl through P4, he can £feel f£free to call other
subroutines and expect to return with these registers intact.

1-1Z

Sym=iols
MASKS star
with a dot.

GETTAB word
error codes

ot

ining numbers begin with a do
Io

foliowed by a two=letzer prefix,
with a two-letter prefix, en

3
ilewed by a dot, and UUO opcodes

arguments start with %. CETITAB masks are of the form XXZYYY;
end with %; and $§ symbols are reserved for the installaticns,.

DATA BLCCX WOZD ADDRESSES:

«TY?727
«ERMSG
+OK?72?
JBcL?7?
SP.727
AP. 7?7
rPCe 7272

Job data aresa symbocls {JOBDAT . MAC)
CALLI UUO symbols implemented after 5.%3 (UUQCON,MAC)
Symbols in the process data block (PDB), usually indexed by W.
File extended arguments (LOOKXUP, ENTER, RENAME) (S,MAC)
Locations in CPU data Block {Cbz),
cations in CPUS CDE (COMMON.MAC)
Locations in CPU2 CDB (COMMON,MAC)
GZITAB tzble numbers (UUCCONL.MAC)
KI1lZ exec page map page symbols {(S.MAC)
KIl3 vser page map pzge symbols (S.MAC)

that the Zirst Four do not follswm the convention in tha monitor)

Or messages on error intezcept
Intercept device ok errors {SeMALC)

Job limit bits (S.MAC)

Second processor status bits (SaMAC)

APR CONI/CONO bits (S.MAC)

PC word flag (S,MAC)

PI CONI/CONO bits (S.MAC)

KIl5 APR CONI/CONO bits {(SoMaC)

KI18 PC werd flags (SeMAC)

KI1lZ PI CONI/CONO bits (S.MAC)

APR CONO/CONI bits for both KALS and KIig (S.MAC)
PC werd flags for both KAXZ and KI10 (S.MAC)

PI CONO/CONI bits for both K&l and XI1E (S.MAC)

SIRUCTURE UUO CODES: (NCIZ: These do not follow monitor convention)

«FS777
«ER?7?7?

STRUUO Function code
STRUUO error code

=13

:d

Clock Cycle

RSCHED

TIME
ACCOUNTING
_FORJOBS

cP2 |

SERVICE
POSSIBLE

. CACHE SWEEP
REQUEST

CSREQS —SERVICE REQUEST
BY OTHER CPU

JIFFY
CLOCK
TICKED

NO

“JUST
"RESCHEDULE

YES

SYSTEM TIME
ACCOUNTING

cps |

TIMING
REQUESTS -
ARE SERVICED

)

PROCESS
COMMANDS
{COMCON}

CIPS

4

START TTY, -
QD 1/0

:

ONCE A SECOND.
REQUESTS

_Cipg -

CALL .
SCHEDULER
(NXTJOB)

RUN USER
PROGRAM OR
NULL JOB

|

.

save P
in

.CnsP

save PC
in
APnCHL
2 CaCHT

reset
interval
timer

H

set
clock
ticked flag
.CaTIM

|

APR INTERRUPT ROUTINE

GoarD

save P
in
.CnsP

APNCLK:

set up new
PDL from
APnPDP

save
contents
of
P4

!

set up
CDB addr.
in P4

process
interrupt

APRSUB

<::>__. restore
P and P4

set up
APR PI

Fssignment

|

dismiss

2-7 int. & ret

(APRSUB >
|

increment
‘ time
of
day

|

set flags
.CPTMF
.CPCKF

regquest
CEN 7
interrupt

clear
clock
ticked flag
in APR

i

®

CIGITAL EQUIPMENT CCRPORATION

SOFTWARE CILCCX INTERRUPT RCUTINE

|

save
EXEC. AC's
in JOBDAC
{
save save
return PC
ac 17 . in .C::Pc
’ |
leadé / set up
return null DL
2C frem
.c«;N‘PD
i
set
¥
«CBISF

rastore

AC 17

APRITM

dismiss
interrvept

DIGITAL EQUIPMENT CORPORATICN

®__.

USCHED

WSCHED

RSCHED

e

TIME
ACCOUNTING

CIPG:}

DECREMENT
AND CHECK
TIME LIMITS

CIPd:

PROCESS
TIMING
REQUESTS

CIP5;

EVEN
SECOND
?

Y

DO
ONCE-A~SECOND
FUNCTIONS

SECOND

JZ

PROCESS
A

COMMAND
COMMAND

|
()

CONTROL ROUTINE

|

CHOOSE
NEXT
JOB

NXTJOB

N

RING OTHER
CPU DOORBELL
IF LAST JOB
STILL RUNNABILaZ

I

SAVE LasT
JOB's ACs IN
SHADCW AREA

SAVUAC

CIP6Al[

SAVE SOFTWARE
STATE
(0}
LAST JOB

CIP7: t

SET UP
UBR FOR
NEXT JOB

SETRL1

RESTORE

NEXT JOB's
ACs

RESUAC

©)

(1)

(2

USER
PROGRAM
RONNING

- - -

SAVE PC
AND SWITCH
TO EXEC. ACs

CRIINT

|

®

-d
—~aid

ik
cHi

COCX TIXX
CR
PROGRAM
BLOCKS

DIGITAL EQU'PMENT CCRPORATION

Page 11

NOTES FOR THE CONTRCL ROUTINE

For VM Systems, this means saving the job's PC into
JOBPC and the address of DDT into JOBDDT.

For Non-VM Systems, this means saving the above
items and copying the 1last wuser's Job Device
Assignment table from the CDB into the JOB ATA
AREA, '

(Also See Note 3 Below)

For KA Systems, this routine sets up the hardware
relocation and protection registers.

For VM Systems, this means restoring the job's PC
into .CPPC and the address of DDT into .CPDDT
(USRDDT) both in the CPU Data Block.

For Non-VM Systems, this means restoring the above
items and copying the next wuser's Job Device
Assignment table from the JOB DATA AREA 1into the
CPU Data Block.

(The Reverse of Note #1)

For KA Systems, this routine would save the User's
PC and the User's AC.

N
\
u\

CLOCK TICK

CH3
CH7 vere
' i h 4
USER JOB A] JOB A

APR INT xask1)

INTERVAL TIMER (KL)

SCHEDULING

n»

USER JOB A

RS NG E Nk

R R G PP Sete- 1 &

|
JoB BY | FIoB A f |

-AMM&M&.W!

-T

CLOCK TICK DURING INTERRUPT

nou

CH'3

CHS

CHY 1 o

USER JOBA J0B B
1/0 INT CH7 REQUEST

APR INT (xa/k1)

INTERVAL TIMER (KL)

170 WAIT

CHS
o (partial cycle)
2 CH7? - REQUEVE| scH
) artial cycle)
vuo HREDUEUE $(H
USER JoB A NULL Jb8 ‘ JoB A

DEVICE
INT

-T

gl

UUO INTERRUPTED

CH3
CH7
USER JOBA JOB 8

!

APR INT (KA/KI)

INTERVAL TIMER (KL)

KL EBOX / MBOX TIME ACCOUNTING

MACHINE CYCLE TIME

e

CASE # 1.
(L1GHT 1/0) MBOX REFERENCE COUNTS
MBOX
Y Y TOTAL = 2 .
T A
INSTRUCTION IOPERAND
FETCH FETCH

INSTRUCTION DECODING

o]

EBOX BuUSY TIME

INSTRUCTION EXECUTION

L ToTAL = 10

" CASE # 2.

(HeEavy 1/0)

12

TOTAL TIME =_J8

CASE 1 TOTAL

MBOX REFERENCE COUNTS

Y

MBOX
TOTAL = 2

INSTRUCTION
FETCH

INSTRUCTION DECOD

v

EBOX BUSY TIME

ING

OPERAND
FETCH

INSTRUCTION EXECUTION EBOX

oo toTAL = 10

12

TOTAL TiMe =_26_

CASE 2 TOTAL

TIME ACCOUNTING

PlLEVEL L
?_ DEVICE INTERRUPTS
et \
_____ , —)
3 » T~
o ~ -
ll]
—
5
6
PLLEVEL 7 |CONTROL ROUTINE
- i
T luuo PROCESSOR | SCHED.
© SR JOB A JOB B
A J‘ A
; ot
CLOCK CLOCK
TICK TICK

TIME

OPERATION

DISPATCH

PREPROCESSING .

ALLOCATICON

ASSIGNMENT

CORE COMMAND CORE UUO SWAPPER
{COMCON]} {UUOCON)
COREQ CORUUO SWAP
{CORE1) {CORE1} {SCHED1) ~
VIRCHK CORE1
(VMSER) {CORE1)
CORE1A CORGET
(KxSER}) {KxSER)

A_j’,_\.

MR-2648

/ UPMP
p 0 0
AGTAB oss
1 1
2 2
3 3
4 4 / UPMP
5 0
JOB7
6 0
7 8
8 0 PAGPTR
9 ! POINTS TO FIRST
|
10 10 FREE LINK
11 1
12 12
13 13
®
®
®
NOTE:
1. A ZERO ENTRY INDICATES THE END
OF THE CHAIN.

2. ALL FREE PAGES ARE LINKED
TOGETHER ALSO.

MR-4647

‘ Jos
Jo8B
DOESN'T
HAS CORE HAVE CORE
?EB- o8 - Q"‘é‘? UNT AMOUNT
CREASING INCREASING AVAILABLE AVAILABLE
1 , / \ 4 5
NOT ‘
VIRTUAL VIRTUAL

2

3-3

MR-4653

CORUUC

m
~ ZERO
ARGUMENT
NO

CHGOR

CHANGE CORE
ASSIGNMENT

NO
YES

SET UP
SKIP RETURN

CORBND

DETERMINE HIGHEST
JOB ADDRESSES

STORE j

RESULT IN---{ STOTAC '
USER AC ,

CORE UUO

CHGCOCR

IFJACCT
ON, SET PHYSICAL
ONLY BIT

:

IOWAIT

WAIT FOR ALL
DEVICES TO BE
INACTIVE

REQUEST
LOW SEGMENT

JOB
LOCKED

NO'

CORE1

TRYTO
ASSIGN CORE

SUCCESS

YES

CORU1::

UCORHI

TRY TO ASSIGN
HIGH SEG CORE

1. THE CORE UUQ WITH ZERO ARGUMENT
DOES NOT AFFECT THE SIZE OF USER

CORE. RATHER IT RETURNS THE VALUES
OF THE JOB'S HIGHEST ADDRESSES.

2. ERRORS ARE: ACTIVE I/0 OR SAVE IN
PROGRESS; SUM OF SEGS TOO LARGE:
PROTECTION FAILURE.

34

SET UP
SKIP RETURN
WSCHED YES KPANDING
BLOCK JO8 CASE
L NO

< RETURN ’

MR-4650

CORE COMMAND

OCCUPYING

BIT SET

CHGSwp

CHANGE
INCORE SIZE
TO NEW SIZE

MA 4849

CORE ALLOCATION

SEG
LOCKED OR

NEGATIVE
ARG

TRYING
TO EXCEED
CORMAX

YES

LOwW
TRYING TO YES

EXPAND INTO
HIGH

ANY
CHANGE
IN SIZE

RETURN

YES CORE12: NO
1S
VIRCHK THIS A
PERFORM VIRTUAL LOW SEG

ALLOCATION IF
APPROPRIATE

ALLOW ONE PAGE | -
USER FOR UPMP

TRYING TO YES

EXCEED 'DIRECT RETURN

LIMITS FROM VIRCHK y

UPDATE -
0 SKIP RETURN VIRTAL

{IUST WE - FROM VIRCHK
ALLOCATE UuUO SKIP
PHYSICAL RETURN PERFORM

: ASSIGNMENT
YES DOUBLE SKIP RETURN
FROM PAGE CM-6 : FROM VIRCHK
VIRTAL ERROR
OKAY RETURN
SUMSEG 1. VIRCHK SATISFIES ALL REQUESTS EXCEPT:
COMPUTE SIZE a. CHANGES TO SHARABLE HIGH SEGS,
OF JOB , AND
b. LOW SEGMENTS EXPANDING FROM
ZERO SIZE.

MR-4651

U)
\
0‘\

ALLOCATION AND ASSIGNMENT

HERE IF JOB VIRTUAL
OR HAS TO GO VIRTUAL

VIRCHK

~SEG ™
SIZE

YES PHYSICAL
INCREASING ONLY
FROM O

SEG A
SHARABLE HIGH
SEG

YES

y M

RETURN
CM-8

ENCUGH
-DECREASE DEALLOCATE VIRTUAL SWAP
IN SIZE STORAGE SPACE LEFT

RETURN
{UUO SKIP)

UPDATE VIRTAL,
VMTOTL, VMCMAX

}

MARK NEW PAGES AS
ALLOCATED BUT
ZERO .

DOES
INCREASE
EXCEED

VIRTAL

ANY
MAP ENTRIES
IN RANGE OF
INCREASE

RETURN
{UUQO SKIP)

YES L
: / ERROR
RETURN

GSIZT

TEST VARIOUS CORE
LIMITS

WiLL
WE ALLOCATE
PHYSICAL
CORE

1. IN THESE TWO CASES, VIRCHK LETS CORE 1
" DO THE ALLOCATION.
2. WE TAKE THIS PATH IF:

veS a. NEW SIZE < CPPL, OR
(2) b. CPPL < NEW SIZE < MPPL AND CPPL IS
PHYCRZ - A GUIDELINE RATHER THAN A
ALLOCATE PHYSICAL LIMIT.
CORE 3. YMCMAX CHECKED.

RETURN
{UUO SKIP)

MR-4652

HERE WHEN ALLOCATION HAS
BEEN DONE.

!

KLSER

CORE1A

JOB
STARTING
WITH 0 CORE

COMPUTE
CHANGE

INCREASE NO

CORE ASSIGNMENT

HERE WHEN ASKING
FOR CORE AND IT
IS AVAILABLE

\d

SCPAGS

GET PHYSICAL PAGE
NO. OF LAST PAGE
SEGMENT

!

JBTSWP

!

ADPAGS

UPDATE

ADD REQUESTED
NUMBER OF PAGES

‘ CORGT2)

(1) CALLS FRDCR IN SEGCON TO FREE
DORMANT AND IDLE HIGH

CORGT7

IT IS A LOW SEGMENT

CORE1B

WANT
TO GIVE ALL
OF CORE

NO

- HERE WHEN
GIVING UP CORE

SNPAGS

SNPAGS

FIND PHYSICAL PAGE
NUMBER OF FIRST
PAGE TO RETURN

FIND PHYSICAL PAGE
NUMBER OF FIRST
LOGICAL PAGE

J

GVPAGS

GIVE BACK PAGES

HAVE ANY CORE

NO

CLEAR
JBTUPM
ENTRY

:

GVPAGS

GiVE
BACK UPMP

ANDITIS A
LOW SEGMENT

CORGT?2

CORGT!1

MA.4654

HERE WHEN DOING
ASSIGNMENT)
STARTING WITH O

IN KLSER

C CORGET j
I

SVEUB

i

SAVE CURRENT
UBR

CORGTO

JUST BUILDS LIST IN

PAGTAB AND RETURNS

CHAIN OF ITS OWN

PHYSICAL PAGE GTPAGS

NUMBER OF START GET PAGES

-OF CHAIN
Upmp
ALREADY

NO ExIsTs
GTPAGS
UPMP GOES ON

GET ONE MORE
PAGE FOR UPMP

!

UPDATE JBTUPM
WITH ADDRESS
OF UPMP

:

HERE FROM
SWAPPER

EXPANDING SEGMENT

CORGT?)

o)

STORE STARTING
PAGE NUMBER IN

JBTHSA]

T L

¢

&

HERE WHEN JO8
HAS NO CORE AND,_
THE UPMP MUST

BE BUILT

INITIALIZE UPMP
VALUES, JOBDAT
VESTIGAL JOBDAT

!

MAP UPMP
THROUGH EXEC
340 PAGE

!

STEUB

TELL HARDWARE
OF NEW UPMP

:

STORE IN UPMP
MAPPING FOR FIRST
PAGE OF LOW SEG

:

MAKE JOBDAT
ADDRESSABLE
THROUGH EXEC
PAGE 341

HERE WHEN
1. JOB WITH CORE
GET SOME MORE
2. JOB GIVING UP
CORE

I

THIS AND PAGTAB
MAKES MAPPING IN
OTHER JOB'S UPMP EASY

MAKE UPMP WRIT-
ABLE AND ACCESS.
IBLE AS EXEC
PAGE 400

MARK JOB AS
EXPANDING (JXPN)
SKIP RETURN

!

TELL HARDWARE OF
CHANGE TO EPMP

:

©

3-9

SEG
HAVE ANY
CORE LEFT

C XPAND) IN SCHED1

{
; 1

NO, JOB IS DECREASING TO 0

Q CORGT? 3 L CORGTS j
l .

MR 4656

APPLIES

TO SWAPPER
USE OF
CORE

USE IMGOUT
AS SEGMENT
SIZE

(coaevsﬂ\

IS

SEG SIZE

: : INCREASING
NQTHING TO CLEAR

CORGTS

YES

UPDATE
JBREL
. CORGTS
, (- J |

NON. UPDATE
SHARABLE JBTADR

HIGH SEGMENT ENTRY
(FROM R)

NEGATIVESIZEIN U

:

(3) SNPAGS

GET PHYSICAL PAGE
NO. OF FIRST NEW

PAGE

(' CORGT4 }

. ~
MAKE A
PAGE
ADDRESSABLE

THRUP EVA 400

:

CLEARIT -

ZEROS

NEW l

PAGES
STEPTO
NEXT PAGE
CHAINED THRU
PAGTAB

L YES
NO

1. I[F CHANGE IS TO CURRENT HIGH SEG,
UPDATE CURRENT JOB’S PAGE MAP.

2.SET UP R AND ADDRESS BREAK.

3. JOBDAT IS ALWAYS THE FIRST PAGE IN
THE CHAIN. PICK UP THE PHYSICAL PAGE
NUMBER FROM RH UPMP LOCATION 400
TO USE AS THE PAGTAB INDEX. CHAIN
DCOWN 0'IF HAD NO CORE OR NO. PAGES
TO NEW ASSIGNMENT.

4. GIVEN STARTING PHYSICAL PAGE

NO

1S

THIS THE NO

CURRENT JOB SWAPPER OR CORE
COMMAND
CORE UUO

SETREL
SET UP PAGE)
MAP SLOTS (2) CALLS MAPLOW TO

SET UP UPMP
.
CURHGH 1S
YES THIS A
(1) HIGH SEG

RETURN

YES

CURRENT
JOB

lN

MAPLOW (4)

SET UP PAGE MAP
SLOTS FOR
E AND D COMMANDS

|

NUMBER, FILL THE UDMP SLOTS BY
CHAINING DOWN PAGTAB AND EX-
TRACTING THE PHYSICAL PAGE
NUMBERS FOR PLACEMENT IN THE
UPMmP,

RETURN

3-10°

RETURN

MR4855

\b-¢

USER PAGE MAP (UPMP) MAPPING ENTRY

ONE ENTRY PER PAGE (18 BITS)

| N S N ROt TSN BEDNE RN NRNNE NENR IR N B
AlP|wW]S|C PAGE ADDRESS

] 1 I [l i 1 1] L 1l 1 [] i

18 BIT QUANTITY —~ 612 PER UPMP
A=0 ACCESS DENIED, PAGE FAULT OCCURS
=1 ACCESS ALLOWED
P =0 CONCEALED PAGE (EXECUTE ONLY)
=1 PUBLICPAGE
W=0 WRITE PROTECTED
=1 WRITABLE
S =0 ALLOCATED
=1 ALLOCATED BUT ZERO
cC=0 CACHEABLE
=1 NOT CACHEABLE
PAGE ADDRESS — 13 [lIT'PHYSICA;_ MEMORY PAGE NUMBER OR
— 17 BIT SWAPPING SPACE ADDRESS
TO FIND THE STATUS OF ANY PARTICULAR PAGE, USE THESE GUIDELINES:
1.1E A=1ANDS = 0, THE PAGE IS IN CORE AT THE ADDRESS SPECIFIED BY PAGE-ADDRESS.
2.1F A=0,8=0, AND C = 0, THE PAGE DOES NOT EXIST.

3.IF A =0 AND THE WSBTAB ENTRY FOR THIS PAGE =1, THE PAGE IS IN CORE AT PAGE-
ADDRESS.

4. IF A =0, AABTAB = 1 AND WSBTAB =0, THE ENTRY CONTAINS A DISK ADDRESS.

5 IFA=0,5=1, AND AABTAB = 0, THE PAGE 15 ALLOCATED BUT ZERO.

MRA-4661

21-€

PAGE FAILL WORD

KL10
00 01 02 03 04 05 06 07 08 09 10 11-12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35
T T T DA IS e T T T T T T T T T T
s g //
u| FAILTYPE [V / = VIRTUAL ADDRESS
§ ’ o
1111%1//// -/’%'111111111111_11111

l—' 1 = USER VIRTUAL ADDRESS
0 = EXECUTIVE VIRTUAL ADDRESS

®on

IF BIT 1 =0, THEN BITS 1-7 ARE
INTERPRETED AS FOLLOWS:

01 02 03 04 05 06 07

OjAjwi{s]|T{P]|C

READ ONLY
WRITE

-
o

00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35

%/%Z v 'V.ETJA{M:GE: %///‘/‘///////// :FA.:LT:YPE:

IF BIT 31 =0, BITS 31-35 ARE INTERPRETED
AS FOLLOWS:

31 32 33 34 35

OFAIWISHT

MR-4662

ci-<

ARGUMENT BLOCK IN THE PFH

oLbPC

PAGE FAULT WORD

VIRTUAL TIME

PAGE RATE

PSI VECTOR ADDRESS

THE PAGE FAULT WORD 1S ORGANIZED AS FOLLOWS:

01 17 18 35
{1 PAGE NUMBER | FAULT TYPE |

SET IF WORKING
SET CHANGED

THE FAULT TYPES ARE:

A OFF

PAGE NOT IN WORKING SET

PAGE CONTAINING UUO ARGUMENT NOT IN WORKING SET
TIME TRAP

ALLOCATED BUT ZERO (ABZ)

ABZ AFTER UUO

ST WN —

MR-4666

HERE ON PAGE FAULT

GET PAGE
FAIL CODE

FAILTYPE 25

PTPPAR
PRTRP

~ PARITY

FAIL TYPES
36&37

MAKE K! STYLE
PAGE FAIL WORD

YES
NO
W OFF NO
. YES
TRIED TO CHANGE
WRITE PROTECTED SETBITT
PAGE
SEILMB:: l FAIL TYPE 23

ADDRESS
BREAK

STOPCODE
IME

MR -46863

USER MODE

‘ SEILMO: FAILTYPE 23

ADDRESS
BREAK

SEILM?

USER
ENABLED

FAILTYPE 21

PROPRIETARY
VIOLATION

USRELT] CHECK PFH FOR VM USER

DON'T RETURN IF FOUND
‘ ILL MEM REF ’

MR 4684

3-S5

gi-&

(VMSER)

ACCESS
ALLOWED
FAIL

USRFLO::

PAGE IN
WRITABLE HIGH
SEGMENT

ENTER HERE — USRFLL::
1. WHEN .UPTMC COUNTED DOWN

FOR CURRENT JOB TO CAUSE

TIME INTERRUPT YES
(COMES FROM CLOCK 1 @INCTMA+T)
OR TURN ON
2. UUOCON FINDS ARGUMENT OUT NO wBIT
OF CORE (UUOCHK) AND CALLS
WOF LT WHICH ENTERS HERE TO GET PAGE
GET PAGE IN CORE NUMBER AND
MAP BITS
GO TO USER PROGRAM
1S THE NO
PAGE USRFLB
THERE
YES
MAKE SURE ESTIMATE ADDRESS TO
PFH EXISTS STORE ARGUMENT BLOCK
TIME YES SET REASON TIME
INTERRUPT = TIME INTERRUPT INTERRUPT
NO
GET VIRTUAL .

PAGE

PAGE IN
WORKING SET

PAGE NOT IN CORE

YES
WAD WSBTAB + AABTASB
STOPCODE DO NOT AGREE

MA.4666

PAGE ACCESSIBLE
.BUT NOT
IN CORE

:

SHOULD WE
SET A BIT

LETPFHDOIT

‘USRFLE

TURN ON
ABIT

}

CLEAR PAGE
TABLE CONTINUE PROGRAM

" GO TO USER

MR-4667

27

USRFL5

PAGE NOT IN CORE

SET CAUSE

TO ABZ SET AABTAB
< USRFLG)
STUFFINFO INTO PFH
ARGUMENT BLOCK

GO TO PFH

v UFLTRT

YES

USCHD1

UFLTRT

THE FOLLOWING INFORMATION IS RETURNED
TO THE PFH:

GO TO PFH

1.0LDPC

2. PAGE FAULT WORD
3. VIRTUAL TIME

4. PAGE RATE

MR-4668

VIRTUAL TIME TRAPPING
IN CLOCK1 RIGHT AFTER
INCTM4 LIMIT CHECKING

NO

_NO

RUNNABLE

’ YES
EXPIRED
UPTMC
NO

DECREMENT
UPTMC

i -

NO

EXPIRED

SET .UPTMC .
=1TICK

SAVE QLD PC
IN .UPTMC

T

MAKE CONTEXT
SWITCH START |
AT TIMFLT— .CPPC

CONTINUE
MONITOR CYCLE

3-19 -

MR-1663%

JOB RESTARTED IN VMSER (TIMFLT)

TIMFLT TO HANDLE TIME INTERRUPT

SAVE USER
PC ON STACK
(JOBPDL)

:

RESET INTERNAL

COUNTER
.UPTMC

'

0-T3
TO INDICATE
TIME INTERRUPT

!

USRFL1
HANDLE IT

EXIT
THROUGH PFH
TO USER PROGRAM

MRA4670

it |

\2-<

GET PAGE
NUMBER
[T T)
PAGE NOT IN ALLOCATED ACCESS TIME
MEMORY BUT ZERO ALL(‘)WED TRAP

SETA |
By EXCEED

OR =

AT CORE YES YES AT CORE MUST BE USING

PHYSICAL GUIDE-
LT LIMIT ' LT LINE OR AT HARD
RETURN) LMy
PAGEIT CREATE SET UP NEXT PAGE OUT PAGES * TO BRING W.S. BACK
IN PAGE TIME INT. WITH A OFF AND DOWN TO THE LIMIT
. 1 FOR 1/2 SEC IN WORKINGS * (GUIDELINE)
PUT PAGE . LOOP . SET UP NEXT
ON FIFO LIST LOGIC FIND CANDIDATE TIME INT FOR
l : FORPAGE OUT © YES SIZE LA2see HERE ON FIRST PAGE FAU
> 5 PAGES | ! E FAULT
SAVE TIME
‘/)\Nl) PC GET NEXT BUILD NEW FIRST
PAGE FIFO LIST
FROM FIFO
TRAP FOR 1/2 SEC
ALLOCATED |
vl CREATE
PAGE 776
PAGE IT PAGE , SET UP NEW
out ouT JBPFH ADDRESS
‘ »* THE FIFO LIST IS A LIST OF VIRTUAL l
PAGE PAGE NUMBERS FOR PAGES IN THE BUILD 57"
IN WORKING SET. THE LIST IS COMPRISED FIFO LIST
NOW THAT RDOM OF TWO SUBLISTS IN VIRTUAL PAGE
HAS BEEN MADE NUMBER ORDER. THE FIRST SUBLIST IS
m GO CREATE PAGE FOR PAGES WITH THE “A” BIT OFF, THE

SECOND SUBLIST IS FOR PAGES WITH
. THE A" BIT ON. CANDIDATES FOR
PAGE-OUT COME FROM THE FRONT OF THE
LIST. THE NUMDER OF A PAGE PAGED IN
IS PLACED AT THE END OF THE LIST.

Ml 402

(COMCON ’

COMMAND

SCAN CMDMAP
FOR COMMAND
BIT

COoMI

GET COMMAND
FROM TTY
BUFFER

OR TTFCOM

FIND
COMMAND
IN
COMTAB

CAN
COMMAND BE

COMDIS

EXECUTIVE
COMMAND
ROUTINE

COMRET

CLEAR
COMMAND
BIT, ETC.

COMMAND PROCESSOR FLOW

DELAY
COMMAND
OR TYPE
ERROR
MESSAGE

A-|

YES

SET JNA,
PRINT JOB#,
ETC.

PCRLEA‘E

PRINT MESG
|F NEEDED

REQUEUE
JoB?

YES

REQUEUE

MARK JOB
T0 BE
REQUEUED

RETURN TO
CLOCK1

ENTER HERE FROM CLOCK1 BECAUSE COMCNT#0

(COMMAND >

COMMAND

FIND LINE WITH
CMD READY

TTYCOM

PARTIAL CONTEXT
SWITCH-UBR
SVEUB

IS CMD

SETUP AC F,U,J,W

FORCED?

NO

COMI

GET CMD FROM
TTY BUFFER

CTEXT

Z

GET CMD
YES FROM TBL
TTFCOM

I&—

FIND CMD IN
COMTAB & ITS
DISPATCH

TBL ENTRY

Jes

CAN COMMAND
BE DONE

NO

LOGGED
IN?

YES

CHKNO

NO

4-2

JOB # NOT NEEDED

NOJOBN
SET?

; TYPES
""LOGIN PLEASE"

HERE TO FIND A FREE JOB NUMBER

NUMLOP

NUMLOP

SCAN FOR
FREE JOB #

JBTSTS JNAECMWBEJRQ
ALL OFF

NO '
. PRINTS "'JOB CAPACITY EXCEEDED"
YES
NEWJOB

TRY 70 ATCH
TTY TO JOB

TTYATI

CREATE A
PDB

CREPDB

CLEAR JoOB
TABLES ¢
PDB

CLRJBT

SET UP
WATCH TBL
ENTRY

SET TTY
LOC IN
JBTLOC

a-3

; PRINTS 'JOB CAPACITY EXCEEDED"

HERE WITH A JOB NUMBER

JOB HAVE T0O
BE STOPPED

JoB
RUN BIT
ON

; "PLEASE TYPE ¢
FIRST!

CHKBAT

; ""ILLEGAL IN BATCH
Jos"

CHKXO0

COMMAND? ; ""ILLEGAL WHEN

EXECUTE ONLY JOB"

JOB HAVE TO
BE INCORE
INCORE
SET?

"YES

JOB EITHER
SWAPPED OR
IN TRANSIT

SET DISP
ADR FOR
DLYCM

GO DELAY COMMAND
UNTIL JOB IS IN CORE

CHKCO2

1/0 MUST RUNCHK ANYACT
STOP
Jos
. (1N CORE? O <
Y no
Y

JOB NEED NOT

N

; "'NO CORE ASSIGNED'"

SPECIAL FOR YES
SAVE COMMANDS

CHKDLY

EXPAND CORE
I MAGE

EXPAND

SET DISP
ADR FOR
DLYCMI

HERE WHEN
READY TO
GO TO CMD
ROUT INE

CLEAR
REQUEUE BIT,
CMWRQ

CLEAR CMD
WAIT BIT,
CMWB

B ——

A4

N

DO SELECTED
ROUTINE

HERE ON
ANY ERR.
MSG ADR
SET UP

SEY
NOINCK BIT

SET DiIsP
ADR FOR
MSG ROUT

SET CMWB
& JRQ BIT
[F NOT SET

DLYCOM

INCREMENT
SCANNER'S
COMMAND PTR

TTYCM

(EXIT)

HERE AFTER THE COMMAND HAS BEEN “DONE”

COMRET

|

NOTE THAT

CMD HAS
BEEN DONE

TTYCMR

INCREMENT
COMTOT

DECREMENT
COMCNT

ERR
ERRFLG=17?

CLEAR BITS
SET NOINCK
CMWRQ

DON'T KEEP JOB#

COMRT]

KEEP JOB #

PCRLFA

SET JNA
FOR THIS
JoB

ATTACH
TTY TO JOB

[EAVES)

TTYATI

PCRLFA

CLEAR OPR
WAIT BIT,
JDCON

YES

WV

ANY
RUN BIT
SET?

NO

YES /

START SET
TIME FOR

WATCH
WCHBEG

PCRLF@

' YES
SUPRESS

CRLF?

TYPE
CRLF

CRLF

TYPE
PERIOD

PRPER

PCRLF2

ERROR OR
NO JoB

START JOB

YES LINE AT USER
LEVEL
TTYUSR
START JOB
TTYRNW YES AFTER 10
SET? WAIT
TTYUSW
|
START JOB
TTYRNG YES ON'T CHNG
SET? LINE LEVEL
SETRON
NO
MESG NO START
SUPRESSED TTY
? TTYSTR

ERR YES

CLEAR TYPE

ON CMD? P
NOJOBN
SET?
KILL TTY
o 2 ASS | GNMENT
cHo? IF_NO_JOB
TTYKLQ
s 17 YES
CURRENT 3
J087
v
%
1
MARK JOB
TO BE
REQUEUED

REQUE

4-1D

b

EXAMPLE OF DELAYED COMMAND
INITIAL STATE : JOB A RUNNING

Iy JOB B STOPPED (COMMAND LEVEL) & SWAPPED-OUT
2 4
3 - —
[l] —
5 1.
b
/ MONITOR [MONTTOR MONITOR
Uuo CYCLE CYCLE | {/L,CYCLE
on (2) Jon ¢ | (3) JOB A [(5 JOB D
N A A
1 CLOCK TICK CLOCK TICK CLOCK TICK
IHN
= (1 (4)
NOTES :
1. E COMMAND TYPED BY USER ASSOCIATED WITH JOB B,
SCANNER SERVICE INTERRUPT CODE SETS CMDMAP BIT FOR THIS TTY LINE,
2. COMMAND PROCESSOR STARTS TO PROCESS THE E COMMAND , THIS COMMAND HAS THE “IN-cORE”
BIT SET AND THE JOB IS SWAPPED-OUT, SO THE COMMAND MUST BE DELAYED UNTIL JOB B IS IN-CORE,
COMMAND PROCESSOR SETS JOB'S JRQ BIT AND CMWB BIT (LEAVING THIS TTY LINE’S CMDMAP BIT SET).
REQUEUING ROUTINE OF SCHEDULER PUTS JOB B INTO COMMAND WAIT QUEUE. (HIGH PRIORITY FOR SWAP-IN)
SWAPPER PICKS JOB B FOR SWAP-IN. |
3. THE DELAYED COMMAND WILL BE PROCESSED AGAIN HERE IF NO OTHER COMMANDS ARE PENDING; IF SO,
THE COMMAND WILL BE DELAYED AGAIN BECAUSE THE JOB IS STILL SWAPPED-OUT.
4, SWwAPPER 1/0 COMPLETE INTERRUPT, SWAPPER CLEARS JOB B'S SWAP BIT INDICATING JOB B NOW IN-CORE.
5. COMMAND PROCESSOR EVENTUALLY PICKS THE DELAYED COMMAND'S TTY LINE AGAIN AND SEES ORIGINAL

COMMAND AGAIN (CMDMAP BIT STILL SET). THE COMMAND CAN NOW BE PROCESSED SINCE JOB IS NOW

IN-CORE. AFTER PROCESSING THE COMMAND JOB MUST BE REQUEUED BACK TO ORIGINAL QUEUE (STOP QUEUE)
THIS 1S INDICATED BY THE CMWRQ BIT FOR THIS COMMAND.

TYOPL- A0 STATE . CTRAVSVIIONG

SHDRT TERM warww saTg FIED

» — O = B e & e € e e ——

—rt— = c T e —_—
—_—— T T T - " ~
SV ED 4 g ~ ~
,(f}"‘,j“' —_ """'I'\- X“X\\" »
\Pp@/ i — %\\ AN
~ SN\ NN
N .
2 \x \ \
p \ ’
f; X \ \ SHORT TERM
\ x \ . W/ALT
TIME SLICE / x \ \ SATSFIED
* EXCIRED / \
x / x | *
. x »
N _L
/ {TIHE SLACE — Nt?i\
o . / EYPIRED / SHORT)

—6\.0
£RA
EVENTS
CTR - chosen TO Runy —. . HPQ b8 STATE TRAUSITIONS
NCTR = Aot cHoseN T Run/ —_—— POL TV STAIL TRAUSITILMS
—_ X — X PAZ Ju8 STATE TRANSITIDMS

ANY PREVIOUS S TATE

SCHEDULER QUEUES

HPQLS
IN-CORE | OUT-CORE
. /)
Time
Slice : 7 |
Expired D& |
] 2 !
REAL TIME { SWAD~OUT |
ENTRY I - !
POl
ouT
Time IN
Slice
Expired
NORMAL
ENTRY
pQ2
QUT
~N
/ Fan_
n
Time g7,
b~ - ll

(
\(

or

\

N

BACXGROUND
BATCH

(# defired in MONGEN)

-
>

HPQ1
QuUT
IN
{(# defined in MONGEN)
JBTOLS
JBTJIL (Output List For
(Just Swapped in List) Swapper)
J=3=) BB
~
T/S S~ T/S
~
~
~ . ~
-~ ~ ~ -
~ ~a
-
-
/L//
sQ15 | outr @

IN

(Any SQ can be designated as BB)

_L@@

7.01 SCHEDULER FLOWCHART

NXTJOB

F1

SELECTIVELY
2 DEC ICPT &
REQUE IF
NECESSARY

NXTJBX ¢

RESET CLASS
QUOTAS IF END
OF SCHEDULING
INTERVAL

NXTJB1 ¢

CHK CURRENT

F.3 JOB FOR QUANTUM
RUN/MCU
EXPIRING

CKJB1 |

REQUE. CURRENT
F4 JOB IF
NECESSARY

1
REQUE OTHER

F4 JOBS THAT
NEEDIT

CKJBSE

“REQUE” JOBS

FOR SHAR EVM
RESQURCE

v
DO ANY

NEEDED
SWAPPING

SCHED +

CHOOSE JoB
TO RUN
NEXT

A

ALLOCATE
SHAR RES

(IF NECESSARY)
TO JOB

5-3

<

{ POPJ)

F3

F-9, F-10

F-11, F-12

MR-5001

7.01 SCHEDULER

THE SCHEDULER IS CALLED FROM CLOCK1 AT CIP6+ 1

ENTER FROM
CLOCK 1

NXTJOB

DECREMENT
CORSCD

SELECTIVELY DECREMENT

ARE WE
CORE '
SCHEDULING

ICPT - RETURN TO NXTIBX |
NXTJBX WHEN DONE
RESET CLASS
QUOTAS AT END
. OF MICRO
SCHEDULING
INTERVAL
scoata
N IN
§$ st CHICN"‘;"DED RECORD WANT TO
RQTPAT/JFCL RUN TImMES
y
NXTJB1
F3

5-4

MR-5002

HERE TO START
SCANMING NEW
QUEUE

HERE TO

" CONTINUE wWiTH
SAME Q BUT
NEXT JOB

1CPT
HAS NOT
EXPIRED

NXTIOB

POINT TO
DCSCAN

GETJOB
FROM QUEUE

Tves

F-2
ICPT MAINTENANCE

ALL DONE
NO MORE
QUEUES TO
scaM

NO MORE JOBS

ICPY HAS EXPIRED.

RESET ICPT

iN G BEING SCANNED

MAINTAIN
STATISTICS

!

REQUEVE
Jog

QXFER

CLEAR JOB
SCANNED BIT

DECREMENT
[~44
YES
NO

SET
»

OMSWP
comwe NO
CR JRQ
ves
O=iCPT

STORE
ICPT IN
PDB

POINT TO
NEXTQ

GO PROCESS
NEXT Q

NXTJB8G

HERE TO
SWITCH QUEUES

MA.5003

F3

THIS PAGES REQUEUES CURRENT JOB IF ICPT OR QRT
EXPIRED AND THEN GOES TO REQUEUE ALL JOBS

- = REQUEUE ALL NEEDFUL‘JOBS

CURRENT
JoB8 - = — SPECIAL HANDLING
RUNNABLE

IF SO. JOB HAS BECOME
e e mm = e = SWAPPABLE AND IS TREATED
AS IF QRT HAS EXPIRED

QUANTUM RUN TIME HAS

T EXPIRED
RECORD
OCCURRENCE
RSPRC2Z
REQUEUE JOB
AND RESET CXJB1
QRT ! P
QARNDT

MR.5004

|
\
&

F-4

HERE TO REQUEUE CURRENT JOB IF NECESSARY
AS WELL AS ALL JOBS IN JBTRQ

HERE TO REQUEUE HERE WHEN CURRENT JOB
CURRENT JOB DOESN'T NEED REQUEUING
CKJ80 CKJB1

N

JOB NEED
REQUEUING

NO

REQUEUE

QREQ

JBTRQ IS A LINKED
LIST OF JOBS WITH

JRQ SET AND AWAITING
REQUEUE

CKJBS
F3

ALL REQUEUING
DONE

GET JOB
NUMBER

:

DELETE JOB
FROM Q

CLEAR
JRQ

|

REQUEUE

QREQ

]

MR-5005

F5
THIS ROUTINE REQUEUES A SINGLE JOB

HANOLES
DAEMON WAIT

T AND COMMANO
WAIT

JoB
ENTERING
DAEMON wWaIT
OR COMMAND

WAIT

Jo8

ENTERING
COMMAND
WAIT

JOB
SWAPPED

Jos
STOPPING
(RUN=0)

PUT JOB IN
COMMAND WAIT
QUEUE

GET DISPATCH .

ADDRESS FROM QXFER

QBITS + wsC

_ _ DAEmoON
WAIT

THESE DISPATCHES
ARE SHOWN ON THIS
AND THE FOLLOWING
TWO PAGES

1S
Jog poing

ERROR
LOGGING

" DOES

08 OWN MARK JOB
SHARABLE
ISk SWAPPABLE
_RESOURCE SERIPT
PUT JOB
IN Joca
QXFER
v { EXIT)
MR-S006

B
'
P

aJocT
QTIOWT

()

MARK JOB
SWAPPABLE

ZERIPT

:

TAKE TRANSFER
TABLE ADORESS
FROM QBITS

QXFER

(O @

F.6 -

QREQ DISPATCHES

GOING
INTQ RULL
QUEUE

- = JOB STOPPING

TTY /0 waIT
SATISFIED

SET UP 5
YES TRANSFER :
TBLE ADOR
FOR STOP
a
ZERO iCPT
TRANSFER
Jo8
axFeR

H
CLEAR WAIT
STATE CODE QIOWT ... I/OWAIT
QDIOWT ... DISK /O WAIT
l CPIOWT ... PAGING 1/0 WAIT
QNAPT ...NAP -~ :
TAKE TRANSFER CHECX MADE 8Y CALL
TABLE ADDRESS ~ TO INRNQ ROUTINE.
FROM QBITS e
QXFER

PUT JOB AT
B8ACK OF PQ1

QCHNG

EVENT WAIT
7~
7~

QEWT
QsLPT QREQX

F7

sLeer ~

0 ©

TAKE TRANSFER
TABLE ADDRESS
FOR QB8ITS

(D

MR.5007

U
1\
<

1/O WAIT SATISFIED
PAGING 1/0 SATISFIED
DISK 1/Q SATISFIED

PUT JOB INTO
THE BACK OF
PQ1

QCHNG

y

CLEAR WAIT
STATE CODE

JOB STARTING
uep

STILLIN
PQ2

YES
USE wsC
INDEX QBITS
QXFER
b
QREQX

ALL REQUEUING EXITS THROUGH HERE

PUT TO BACK
OF SuB Q
ANDO PQ2

‘ EXIT ’

MR-5008

F8

HERE AFTER JO8 REQUEUING TO MANAGE EVM B
RESQURCE AND TO CALL SWAPPER IF APPROPRIATE

TIMESHARING
TURNED OFF

CALL THE
SWAPPER
EV,DA AU
RESQURCE SwWap
AVAILABLE

WITH JOBS
WAITING

:

IF SWAPPER IDLE AND
JOB WAITING TO BE
LOCKED, TRY TO LOCK

I
TAKE ALL JOBS
OUT OF EV,AU, Locxo
DA WAIT :
cxi87 THIS CODE DETEAMINES
= —= —— — = — WHETHER OR NOT
GIVE BACK
SWAPPING WILL BE DONE. MM, RES
HPQ
J08 GIvMM
AVAILABLE
y
SCHED
s E8

Yes CURRENT

JOB NULL

CALL
SWAPPER

NO PARTIAL CYCLE

MM,
RESOURCE
AVAILABLE

NO

GET MM,
RESQURCE

MR-5009

CPUQ - SSCAN
CPU1 . SSCAN1T

F9
HERE TC CHOOSE A SCAN TABLE
CLEAR POTENTIAL

LOST TIME FLAG
{.CPPLT) "

SCHEDJ

GO RUN NULL
408

SELECT CPU
DEPENDENT SCAN

GQ RUN
TABLE

SAME JO8

SCHED2

SWAPPER
FORCING JO8

HAS
FAIRNESS
EXPIRED

I CLEAR UNWIND FLAG—]

SETUPTO
START WITH
FORCED JO8
CONTINUE WMITH
SCAN TABLE

1

GO CHQOSE A Jos
FROM THE QUEUES

*REALLY A JRST TO MSCHED IN CPNSER.
IN GENERAL, MSCHED WILL DO A -

GO AND TRY PUSHJ TO SCHEDJ.

TO RUN FORCED

Jos

MR-S010

F-10
SCAN THE QUEUES CHOOSING A JOB TO RUN

FIND A
RUNNABLE
scHon JOB IN
THE QUEUES
YES JoB

SELECT A BEING
JoB FROM LOCKED
THE QUEUES
QSCAN

REQUEUVEING.
SWAPPED,
SHUFFUING OR
EXPANDING

YES

HERE WITH FORCE]
JOB OR WHEN T/S
TURNED .OFF AND
08B STILL RUNNABLE

_scocsH
,/' ROUTINE

GO RUN
NULL JOB

RUNNABLE
WITH RESPECT
TO CACHE

NO

Jos
OKAY FOR
THIS CPY

WE'LL USE

™\ CHECKED THIS JoB

8Y DXRUN IF A FORCED
zc;ﬁ'gis JOB, INCREMENT
DECREMENTED - — :;‘rg:sé:cn FoRere
THE NEXT)
cYCLE ‘
THIS PATH
1S TAKEN
__ WHENEVER
. T aJos
Is
REJECTED
SET CPSQF
YES (TELL CLOCK1
SO IT CAN
ADJUST CLASS
SET .CPPLT QUOTAS)
CIFWRX
~7 7 " mouTine MAIN:I'AIN
JFOO:\‘,:,E,%, YES RESPONSE
NO RESOURCE DATA. CLEAR
CPPLT AND
CPCLF
INCREMENT
FAIRNESS
COUNT
RESET
FAIRNESS ~ — — —-{ YES
COUNT
y
LEAVING
exIT ——-JoB 4
iNJ
MR.5011

F11

HERE WHEN WSC # FOR CANDIDATE JOB
TO RUN - EITHER GIVE HIM RESOURCE
OR GO UNWIND

_ _ HERE WHEN

WSC ¥ 0
IF FORCE JOS
WITH JXPN=| CLEAR
LET IT RUN == — JXPN
TEMPORARILY
CJFRCX -

RESQURCE
WAIT

5
RESQURCE
AVAILABLE

Is
IT THE
FORCE JOB

SCHEDE

HAS
SCHED.
UNWOUND
JHiS CALL

N
NOW WE UNWIND

STILL
HAVE
RESQURCE

YES

GIVE RESOURCE

== — — To.J08
! AND UNWING
MAINTAIN UPDATE
SHARABLE
— AVTEMQ,

RESOURCE usTEMQ
DATA BASE

CLEAR JOB'S

WAIT STATE

COoDE

{ scHEDC RUN THE

F-10 Jos

oy
A
Y

SET

| UNWIND FLAG

MR-5012

GIVE UP ON
TRYING TO
UNWIND FOR
THIS JOB.

JUST GO
CHOOSE
ANOTHER JOB.

UNWNDF

YES

RESTORE AC

F12

HERE TO UNWIND RESOURSE EITHER

UNWIND UP TO 10 LEVELS DEEP
OR GIVE UP JOB

g RUN THE
BEST JO8
- === TO FREE
THE DESIRED
RESOURCE

DOES
REQUESTING
Jos
OWN T

1S
OWNING

JoB's wsC
=0

OWNING
JOB IN SHAR

RESQURCE
WAIT

IS IT
A RUNNASLE
Jo8

EXEC

SETJOB'S
ouT OF
ORDER BIT
{J5.000}

VIRTUAL
WAIT

:

INCREMENT
CTR { UNWNDC)

IS
RESQURCE
AVAILABLE

TENTH
TIME
THROUGH
Looe

GO ONE LEVEL
DEEPER IN
UNWINDING

NO

YES

UNWINDING
SUCCEEDED

MR-5013

F-13

HERE WHEN NO JO8 CAN BE FOUND TO RUN-
DETERMINE IF LOST TIME FLAG SHOULD BE
SET THEN RETURN JOB Q

ALREADY
LOST TIME

POINT TO QUT
OF CORE SCAN
TABLE - LSCAN

GET JOB

SET .CPLLT
TOJ

SCHON

EXIT
WITH NULL JOB

MR-5014

SWAP1

F1

DETERMINE WHERE WE LEFT OFF ON THE
LAST PASS AND WHAT TO DO NOW

7.01 SWAPPER

TRYING
TO FIT IN
AJos

THERE A
REAL-TIME
RESCHED.

IS R.T. 0B
PRI>PRI QOF FIT

JOB

NO

R.T.Joe
ALREADY
IN CORE

CLEAR FIT,
REMEMBER
TIME IN POB
OF VICTIM
ZERFIT

RETURN IPCF

PAGES

GVIPCP

COMPLETED

FORCING
A HIG-SEG

FIND COMPLETED
SWPLST

YES ENTRY

FNDSLE
FININN

SwWap
IN ERROR

MR.5015

F-2
PICK A JOB TO SWAP IN

PICK A JOB
) USING
ISCAN
QSCAN
CLEAR FLAG
FOR 1/0

JUST FINISHED

: RESET
HAVE . FAIRNESS
COUNT
WE PICKED FORCE1 YES SWAPPING
A JOB FOR N O N
SwapouT PROGRESS

ANY JOBs
EXPANDING?
XJO8 » 0

YES

s
(T ALREADY
IN CORE

SWAPS IN
- PROGRESS?
{ SPRCNT
= 0)

YES

SWAP
170 DONE

IN LAST
IFFY?

ITS HIGH
SEG
EXPANDING

TRYING STORE JOB NUMBER
TO FIT IN IN FIT-
A JoB .
1S Jo8 YES
LOCKING EXIT INBB.
A Jos (SKIP RETURN)
- NO
ALLOW SCAN REMEMBER
PTR TO ADVANCE JOB NUMBER

SET FLAG TQ
INHIBIT SCANNING
CKXGROUND BATCH

ADJUST FAIRNESS
COUNT

HAS
- FAIRNESS
EXPIRED

NO

RESET COUNT
ISWPIFC)

AND SCAN
WITH ISCAN1

MRA.5016

F-3

SWAP IN JOB CHOOSEN
NOW BRING iT IN

COMPUTE
CORE
NEEDED

FITSIZ

ARE
ves THERE YES
ENOUGH ENOUGH SWAP!
AVAILABLE FREE PAGES 8
NO
DELETE
HAVE IS IDLE
WE PICKED IT THE {IF COPY OF
A JO8 FOR FORCEF DISK) OR
SWAPOUT Jos DORMANT SEG
FRECR1?
IF
7 IDLE SEG. :
o 1S 1T ON ;
HEne AN . DISK YET !
EXPANDING
Jos
L] SCNJOB
CHOOSE AN 4 FORIOL
EXPANDING &
Jos
ON OTHER
crPy
vEs DOES
IT HAVE
ANY CORE
. -
DECREMENT
XJOB &
CLEAR JXPN
8IT
y
FORCED
6
MR-5017

CAUSES QUEUE
SCANNING TO GO UP
TO AND INCLUDING
JOC 1QFOR1

F-4

ESTABLISH THE PROPER SCAN TABLE FOR SWAP OUT JOB
SELECTION AND DECIDE HOW MUCH OF THE TABLE TO SCAN

SUMCOR =
CORTAL

SET FLAG TO
IGNORE ICPT
DURING QUEUE
SCAN

WAS FIT
JOB FORCED
8Y TIMER

CLEAR FLAG
SO ICPT WiLL
BE CONSIDERED

QSCANT

SET QUEUE SCAN
TERMINATOR TO

JOBIN
PQOR CMQ

YES

JOBISIN
SET QUEUE SCAN
TERMINATOR TO
QSCANTQ
POINT TO
QSCAN
i
OSCAN HAS THE FOLLOWING ENTRIES
SEARCH LABEL QUEUE SEARCH CRITERIA
OSCAN sToP 1QFOR
sLP IQFOR
EW 1QFOR
Joc 10BAK1
T 1QFOR
QSCANT Joc IQFOA1
QSCANTQ PQ2 OLFOR (INCLUDES IQBAK!
PQ1 10BAK
cMa 1a8AK
HPQ? 1a8AK

6-4

CAUSES QUEUE SCANNING
TO GO UP TO AND INCLUDING
THE QUEUE THE FIT

MR.5018

F-5
SELECT A JOB FOR SWAP OUT

A 8
COMPUTE
SELECT A CORE
o8 sizg
Qscan

T

AND TIMER NOT
GONE OFF

SAVE AS
408 TO SwaAP

COMPLEX REJECTION
CRITERIA

SEE SCnuBO
THROUGH SCNJB2

ACTIVE YES

ADD CORE
TO TOTAL

GO LOOK FOR
MORE JOBS
UNTIL ENOUGH
CORE COULD

BE POTENTIALLY
FREED

o

YES

SAVE

STATISTICS

SET TIMER 8IT IF
TIMER GONE OFF

ANO JOB IN PQ AND
START ICPT COUNTING

FORCOO

THIS WetL BE

THE SINGLE JOB
ACTUALLY SWAPPED
our

MA-5019

OUT 10LE MIGH SEGS

FORCGO

THE EFFECT OF THIS ENTRY
CHANGES ALL DISPATCHES
TO EXIT THE SWAPPER
THAT WOULD OTHERWISE
GO TOAPAGE £S5

SAVE IN PROGRESS
FOR HIGH
SEG.

F-6

DETERMINE IF JOB SELECTED FOR SWAP OUT
CAN 8€ SWAPPED OR MUST I T WALT FQR

170 TQ STOP OR SHARABLE RESOUACES

TO BE GIVEN P -

STORE J

1 IN FORCE
ANO FORCES

NO

JIN FORCEF WiILL

SIGNAL THE SCHEDULER
ES
FORCES ‘l TO RUN JUNTIL
THE SMARABLE RESOURCE
CHANGE J TO MIGH 1S GIVEN U®
SEGMENT = 1F
MEEDED
romIoL 4
ENTRY POINT TO FORCE

STORE JG8
NUMBER IN
FORCE

FORCET {

STILL OWN
DISK RES.

DOES Jos
HAVE CORE
YES

STAAT
TIMER

TIMER

EXPIRED

MARK JOB
AS HUNG WITH
ACTIVE 1/Q

}

GIVE UP ON
SWAP QUT FOR
THIS JOR

A

FLGUNL
2

MA-5020

F7

DO SOME PRESWAPOUT HOUSEKEPPING
AND THEN BUILD THE SWPLST ENTRY

@
h 4

CLEAR SWaP
QUT TIMER

)

’ . STORE JG8 #
IN FORCE
TRY AGAIN
ro sosLst NEXT TICK
: BUILD AN
OUTPUT SWPLST
' . ENTRY
YES l
DELETE JOB FROM
OUTPUT SCAN LIST INCREMENT #
loLsi OF SWAPS IN
PROGRESS,
‘ CLEAR SWPPLT
DELETE JOB FROM l
JUST SWAPPED IN LIST
m) START AREQUEST
l IF POSSIBLE
CLEAR XPN HGN,NUQ sSQouT
SAVE J IN LAST OUT A L
. HOUSEKEEP
JXPN
CLEAR FIXXPN .
FORCE

|

HOUSEKEEP
JXPN
PRETEND
SWA PBWT

FIXXPN

lNO

ADJUST SiZE
NO NEED TO IN JBTSWP
SWAP QUT IF ’ (IMGOUT)

USING NO.CORE

:

ASSIGN
SWAPPING
SPACE

. SWPSPC

MR.5021

F-8

GET CORE FOR SWAP IN
JOB AND MAKE SWPLST

ENTRY
SWAP IN
= = THE CHOSEN
JoB
SAVE JOSB #
iN LASIN
CLEAR FiT
COMPUTE
CORE NEEDED
YES

PUT JOB #
IN FINISH

!

ASSIGN CORE

CORGET

JOB’'S
SWAPPED-OUT
SIZE = 0

SET UP TO
SWAP IN THE
UPMP

BUSLST

}

INCAREMENT #
OF SWAPS IN
PROGRESS,
CLEAR SWPPLT

!

START 170
IF POSSIBLE

SQIN
]

EXIT

MR.5022

F38

MR.5023

FININ

— et
ROUTINE

F-10
SWAP {N HOUSEKEEPING

FININ H

YES GIVE BACK

MIGRATING SPACE

GIVE BACK
DISK SPACE

GIVBAK

JOB HAVE
A HIGH SEG
TO SWAP IN

SET upP

MORE
MAP

FRAGMENTS
TO DO

MAPUSR

HAS JOB
DECREASED
IN SIZE

NO

YES

ADD AMOUNT
OF DECREASE
TO AVAILABLE
VIRTUAL CORE

MARK JOB
IN CORE
AGAIN

UNSWAP

MR.5024

W-9

FININ? l

SET POMSWP

YES

CLEAR NEW
QUANTA BIT

CLEAR FLAGS

00 TIMING

SwPy
2

ALL DONE SWAP IN

HOUSEKEEPING [}

FRUSTRATION
FLAGS

TIME NETWEEN
BEING REQUEVED
TO fai O CMQ
AND SWAP IN

F-11
CONTINUATION OF SWAP iN HOUSEKEEPING

FINING

MIGRATE
Jos

408 IN
BACKGROUND
BATCH

YES

—

CLEAR BACKGROUND
BATCH

SET BACKGAOUND
BATCH

J08
ol
GETSEQ

JOB IN
JATIHL

SET UP ICPT

08 IN
JBTHL

PUT IN
JBTIHL

PUT JOBIN

ASICET BTIL

]

CLEAR POMSWP

NO

YES

ASSIGN ORT

CMPQSI

MAKE SURE JOH NOT
ON OLS

OLOLST

I

Mh'ﬁo‘ﬂi

F-12
SWAP OUT HOUSEKEEPING

FINOUT

__ FINOT

//_ ROUTINE

/

1

IF SWAPOUT
ERROR GO
TO OUTERR

!
DELETE

SWPLST
ENTRY

Y
THAT A ES .

HIGH SEG

DLTSLE

Gooo ___-
LOW SEG

ALL
PAGES
OFF BAD
UNITS

YES

SET JS.MIG-
1LE. COMPLETELY
MIGRATED

FINOU2

RETURN CORE
FOR SEGMENT

KCORE1

MR-5026

F-13

HERE WHEN ENOUGH CORE CANNOT BE FREED BY DELETING
IDLE & DORMANT AND ENOUGH ELIGIBLE JOBS CANNOT BE
FOQUND TO SWAP QUT

JoB
PREEMPTED
EARLIER 8Y
HPQ JOB

NO SAVE JOB START
NUMBER TIMER

NOQ

TIMER
STILL ON FROM
LAST TiC

NG

‘COUNT NBR
TIMES
FRUSTRATED
USED BY SCNJOB TO
FLAG AS IGNORE QUEUE POSITION
FRUSTRATED AND ICPT EVEN IF
HIGHER PRIOAITY
FLGUNL
E

MR-5027

JU0 FLOW

) agPoRT
MARK JCB)
™0 82
RESCEED FCRCE
RESCEED
WD
PERFCRY - J
REZUESTED
OFERATION _ RZCTTST
SOPTYARE
CLOCE IX?
fo)
cLoCX
1cxy” =S
NO y
RESCHED
LATER
' TSCRED
RESTORE
AC'S AND
PC

- PREI TMINARY MUUO TRAP_CODF

COMMON

j(. MUUO)} HERE ON KERNEL; CONCEALED OR
: PUBLIC NO TRAP TRAP-

~SWITCH AC BLKS|

-SET UP P4 FOR

| CORRECT CDB
-COUNT #MUUO.

GET PC
FROM
| UPMP 425
UuosyYl DO UUO
(UUOCON) ,
NO EITHER DOORBELL
OR ERROR IN
NULL JOB

- ON
STOPCODE

UUOSY1
(UUOCON) /|

|
DO Uuo

Detecting the CPU Doorbell

(muwoia).

COUNT THE
NUMBER OF
DOORBELLS
1
SETPC
FLAG;
1IC.UoU

oo pSKTIC
PROTOCOL \JES TAPTIC
DOORBELL

START I/O FOR
DISK, TAPE

SCHEDULER
DOORBELL

RETURNTO
NULJOB

CLEAR BITS

!

STORE NULJOB
PC ASTHE PC

"CHECK FOR A RUNNABLE JO8 BY
DISPATCHING TO THE

CLKSPD SCHEDULER; CACHE IS SWEPT
: . : IF NECESSARY

UU - Preaprocessing, Dispatcna and EXit

uugosy!l

DISPS:
GET uuQ 1
INTO AC M Y CHECK Th
UUCCHK 7 »
MOVE JOB# NO |
INTO J
DISPATCH
TG
LPRINT ERROR FUNCTION

UUCERR# #

SAVE RETURN HANDLE
CN PD LIST TRAP ON
ON ANY UUO ANY UUG
ANYUUO # #
. DISPATCH
TO
FUNCTIAN

MPUUQO s SKIP

SESYRES

USRXT1: YES

ADJUST ¢
STACK FOR
SETUP USER EXIT SKIP RETURN .
CHANNEL #

USRXIT1: ,(g

STOP JOB NO

PRINT ERROR

ILLEGAL
NSTRUCTIO

?

ILLINS#»

ISP. TABLE

7-4

YES ——r-—"

DC MONITOR
CYERHEAD
CYCLE

USCHD 1l ##

USRRET ¢

 EXZESSS
| ADOR.BREAK

EXCABK#»

PSI
ENABLED

NG

I

s
TRA
MSTRUCTIONA

s

RAP
PENDING
?

YES;

PRQCESS
TRAP

U\

EXIT
UMPRET 44

NQ

ICIERR
##

FROM USER

, SET FOR
DEVICE SKIE
DISPg

SPQOLED 5.1 BETURN

STORE

ERROR

CODE

USRXIT

P.1

STOPCD

STOPCD MACRO

CONT, TYPE, NAME, DISP

LOCATION TO JUMP TO AFTER
PROCESSING ERROR

TYPE OF FAILURE, USED TO
DETERMINE NEXT COURSE OF
ACTION

HALT

STOP

JOB

DEBUG

CPU

UNIQUE THREE LETTER NAME, WILL

BE EXPANDED TO FORM GLOBAL LABEL
S..NAME

ADDRESS OF ROUTIMNE TO TYPE
ADDITIONAL INFORMATION (USUALLY
NOT SPECIFIED)

CODE GENERATED VIA

STOPCD MACRD

HALT TYPE
STOPCD CONT, TYPE, NAME
S..NAME :: dALT CONT

CODE GENERATED VIA
STOPCD MACRD

DEBUG, JNB, STOP TYPES

— IF CONT IS A SYMBOLIC ADDRESS

STOPCD CONT, TYPE, NAME

S.. NAME :: PUSHJ P,DIE
CAIA Type, (SIXBIT/name/)(17)
JRST conT

— IF CONT IS . OrR .+l or CPOPJ or CPNPJ1

STOPCD ., ijg, NAME
y
S..NaME :: PUSHJ P,DIE

CAT Tvpe, (SIXBIT/NAME/) (CONTINUE TYPE)

7-9

SOURCE CODE

EXPANSTON

ROUT:

CONT:

ROUT:

S..NAME::

CONT:

CODE GENERATED VIA

STOPCD MACRQ

RECOVERABLE STOPCD

3

CONDITIONAL TEST
STOPCD CcONT, TYPE, NAME

%

POPJ P,

%

POPJ P,
g
CONDITIONAL TEST
PUSHJ P,DIE
CAIA
JR?T CONT
POPJ P,
3
POPJ P,

7

.
7

; EVERYTHING QK 7

MO,
YES.

SYSTEM CONTINUE
ROUTINE

Tvee, (SIXRIT/name/) (17) ; param rFor DIE

;5 WHERE TO GO
IF WE COME BACK

SOURCE

EXPANSION

CODE_ GENERATED VIA

STOPCD MACRO

NONRECOVERABLE STOPCD

ROUT:

ROUT:

S..NAME::

?

CO'IDITINNAL TEST
STOPCD ., TYPE, NAME ; DON'T COME BACK

;

POPJ P,

:

CO'IDITINYAL TEST ; EVERYTHING NK ©
PUSHJ P,DIE ; No, DIE

CAI Tvyre, (SDXBIT/naMe/) (1); vES, NO-OP

g ; CONTINUE

POPJ P,

EFFECT OF STOPCD TYPES

TYPE
LEVEL DEBUG JOB STOP HALT
ONTIMIUE
PI CONTL:HU RELOAD RELOAD YALT
SYSTEM
.H s =
" JoB
ON-PI > RELNAD HALT
ABORTED |
CPU
SINGLE CPU
OR RELOAD
LLAST CPU OF
MULTI CPU

MULTI-CPU

JUMP INTO AC

=L

FINDING THE FAILING _ CYCLE

PISTS: CONT PI, PISTS BEFORE THE CRASH

PISTS: 010000, .150377 AFTER THE CRASH

A

?
PI ACTIVE

ALL CHANNELS
ON

— INTERRUPTS IN PROGRESS
ON CH1 AND CH3

v\-L

PUSHDOWN _ LISTS

Uuo CYCLE —> 340510
MONITOR CYCLE > NULPDL *

DEVICE INTERRUPT ~ CYCLE =—> C1PD1
C2PD1
C3PD1
C4PD1
C5PD1
C6PD1

INTERRUPT LEVEL-—-———J

* Typed by FILDDT as ONCPDL + n

S\-L

HOW TOPS10 DIES

DEPOSIT NON-ZERO START AT IN-LINE APR | PAGE FAULT
IN LOCATION 30 407 STOPCODE | ERROR UUO ERROR
§ .
CLOCK APR TRAP
INTERRUPT INTERRUPT
(1)
SYSTOP DIE
(1) Depending on the contents of the STATES
REBOOT and DEBUGF the DIE routine may kill the
job (ZAPJOB) and continue the system.
[(2) If BOOTS cannot be found the system will
(2) halt with a BNF stopcode.
ENDSTS
(3) If DF.NAR bit set in DEBUGF BOOTS will
not automatically reload the monitor.
I
(3
SYSTEM
RELOADED

CLOCK1

1/0 BUS 1/0 MODULE
ARCHITECTURE

USER
PROGRAM

UUOCON

??2SER

PTPSER
PTRSER
CDPSER
LPTSER
PLTSER
DTASER
- CDRSER

COMCON

DLPSER

DTE BASED [/0 MODULE ARCHITECTURE
USER
CLOCK1 PROGRAM COMCON
UUOCON
ANF-12 SCNSER
MODULES
|
i DCRSER FEDSER D8SINT TTDINT
|
DTESER

DISK

MODULE ARCHITECTURE

USER 4
COMCON PROGRAM CLOCK1
UUOCON SCHED1
FILUUD SWPSER
FILFND]
FILIO
[]

DPXKON FSXKON RPXKON
RP10 RH10 RH10/20
(RPO2, 3) (RSO4) (RPO4,6)

g-3

MAG TAPE 1I/0

CLOCK1

MODULE

ARCHITECTURE

USER
PROGRAM

UUOCON

TAPUUO

TAPSER

COMCON

TMXKON

TM10

TD2KoN

TX1KON

TM2KON

DX20/TX0

2

TX01

TRHKON

T™™02/3

TTY I/0 MODULE ARCHITECTURE

CLOCK1

USER

PROGRAM

UUOCON

SCNSER

COMCON

=

PTYSER

o =

DL?INT CCIINT TTDINT NETSER D76INT
DC10 DC68 CFE DC76
TTY
DSSINT D85 INT
DN87S DAS 85
DN20 DN87
4 "DL10 BASED"
|
DTESER ;
DTE BASED
DEVICES

8-S

TURE |

ANF-10 [I/0 MODULE ARCHITEC
USER
CLOCK1 PROGRAM COMCON
l
UUOCON
NETDEV RDXSER TSKSER SCNSER
NETSER
D8SINT D8SINT
DTESER

INIT wuo

VINIT E . [Dwsre)
- SeArCy Fof
' | LO8 FoR

GENEFIC Dty pe

ELEA |
RELEASE ANY
OLD pDevies

/—\ ON CHANNEL
i UI ’V J'Tt’i!' > é . -
1 77 .

DEvice
NAAIE "

RANT
Dhrsical
ONLZ?

CE7sRE
SEAKCH FoR ,
SPECIFIED '
DOG _DvAS
: SEARGH Fog
007 fFer i
GENERIC DEY oo

WO
res - (e gV)

o/

. . . ' . J - | (l)

pe

uNITZ

HERE WHEN
WE HAVE
FOUND A/
USEABLE DDS

CHEMOD
CHECY FOR
LEGAL DATA
AODE

STACHKE
CHECK FUR
STAT/ON
IN CONTACT

STuA/

NwHarr For
SrS TAPE
NRESOURCE

vinry

FOR 45516/~

} YES

N INCREMENT
INIT Counr

| ASSASG ()

GY-PROGEAM

TRY 70
ASSIGN DEV.

70 JOB

L. DSL)

SET UP

BUFFER
SIZE

.

SE7105

WArr 7o Dey
70 BF INACTIVE

~SET UP Déey |-

 STATVS wodD]

VINITL

UPDATE USER'S
HICHEST .
CHAN N USE

P /

N

>
vinite \f

VINITS

TTIRLEG
If FREETTY
OISARD Do

Jo 181TIAL .
JETUP FOR
BUF HDRS

1 | BACE UP ‘t
Pur 205 - : Y MURIBER CF
ADR INTO - INITS
JOA

: SUCCE&SFUL
EXIT

L

(eer exir

DEVSRC

‘ DEsRC)

- il

et

g o
SERCG FOR

008 wiry
AlALCIHINIG
‘ 717 AATE

a_——

HEFE To Find

03 wiry
GIVEN LICICAL
OR PHY NAME

QFYZHY

SEARCH FoF

i
TTHING

é&rqq LML

No

»>

7z

NO

O S&1R \
FETURN

reg

- K977
RETURH

g- 10

NOTES ON INIT

1. DVASRC -- Generic Device Search

On the first generic device search, we are only trying
to verify the existence of a device of the specified type at
an appropriate station. If the user is spooling the device,
this is all we need in order to let the INIT succeed. If he
is not spooling, we must find a device which is available to
him. This is the purpose of the second call to DVASRC.

On the generic search we look first at the user's own
station. If no such device exists at his station, we look
at the central station. We try to find a device ASSIGNed to
this user, but not INITed. If that fails we attempt to find
any free device of the correct generic type at the «correct
station.

There are four possible outcomes:

1. Find a device ASSIGNed to this user but not INITed

2. Find a free device

3. Device exists, but not available

4. Device does not exist .

Note that if the device exists at the user's station
but is unavailable we get result 3. However, if the user is
at a remote station and the device does not exist at his
station, we look at the central station.

2. If the device should be unavailable at the time we try
to assign 1it, this flag says we should come back and
look for another. (Normally will not happen.)

3. This is relevant only to nondisk systems,.

4, This routine is used by both the INIT UUOC and the ASSIGN
command.

5. This flag is used when we must distinguish the real
system device from a device assigned logical name SYS.

g-1

The device name TTY always means the Jjob's controlling
TTY.

e.g., LPTS1

Unless we found a DDB that was ASSIGNed but not INITed
by the wuser, we will set up a new DDB by copying the
prototype disk DDB. We copy DEVNAM from the DDB which
we found. If we found this DDB on a logical device
search, DEVNAM will match the physical device name
specified on the ASSIGN command which set up the logical
name. Otherwise, DEVNAM will match the argument of the
INIT.

8-12

- INBYF QurEuE

\ WINGF ;" liou73F)
{
SEr G , SET s
o iyl | ZYFFER
LYUFFER i e
t a’o;";f { e
’ o HA S ‘ DEVIAD
| FLC |
| SeT yp |
| DEVIAD
| .
by
| Lol 2
USERS
i»jwc HOL

EXI7

—_—

8-13

(GeRLc)

GET &/;‘l
|
€

LENGTH,
JogFE

ADR CHEXX,
CLEAR use
B,

e

INPUT ULO

‘8- 4

INPUT p.L

NPUTF

oUTHUT UUO

ITEm CNT
TO BUFFER
IF NEFDED

2
J

ADVANCE
BUFFERS
(2

device?

Get first
word of
ring
header

Address

buffer and

clear use
bit

W

Set ring use bit o
1l; clear item
count i headar;
clear end #£ile bits
in DEVICS

Dcn
(DsER)

£9)

[3{ safir3: |

-A
Clsar =ing
use bit

hsader it
count

WAITY

L nl

(DSER)
)

]S tsra UUO

r

KELEASE L4

¢

RELEAG

CLOSEL Called to close
both input and
) output

Make sure device
is inactive

RELEAS

x
(_(a\lt_
1
~
L

Device service
release routine

B

(DSZR)
&)

€ar IO Active it
in PEVIOS:
Claear doyice assiga-

; meal n USRT DA
——
b

A Update
ighest channel in
“se]

tha one laéa'ﬂ’
Pel%?Sed

Figure 8. Flow Chart of RELEASE Operator

©-19

/PEZE)?IE 2.2

{Clear systam usex t
no.; dacrement
ragquest count, I
set flag is scmeone'
was wai‘:;.z:g

(%

ﬁ;

Set up
ASSPRG biz

RELEAG ’
Clsar fJL.

ass;gmnen"

Yes

C€LRDpOB

Aefurn 008
+» sTo raee

IN:

8-20

NOTES ON INPUT

This will always be true wunless the wuser |is
changing the structure of the buffer ring.

Mark the user's current buffer as now available to
the device interrupt routine.

Check IOACT in DEVIOS.

Except for TTY, this is a check if the buffer ahead
of the buffer we are about to give to the user is
empty. Hence, for a N buffer ring, we start the
device when N-1 buffers are empty.

For TTY we check the same buffer which we are
giving to the user. The TTY device dependent
routine does not actually "start the device," but
copies characters from the meonitor TTY buffer to
the user's buffer. See SCNSER flows for details.

WSYNC sets the job's wait state code to IO Wait and
calls WSCHED. The job is stopped at this point and
its stored PC will say to restart it after the
PUSHJ to WSYNC. The interrupt routine must get the
job out of IO Wait when the next buffer is full.
WSYNC will give an immediate return if IOACT is not
set. This allows us to give the 3job an "error"
return on end of file.

NOTES ON OQUTPUT UUO

Normally the user's first OUTPUT UUO will take the
NO branch. 1Its only function then is to set up the
buffer ring and 1initialize the buffer control
block.

Unless the user set the IOWC bit, we compute the
buffer word count by looking at the byte pointer in
the ring header.

Mark the current buffer as available to be written
out.

Check IOACT

See WSYNC note for INPUT

Notes on CLOSE
WAIT] will repeatedly call WSYNC until the device
is no longer active. Hence, it holds the job in IO
Wait until all buffers have been released by the
interrupt routine.

Hence, after CLOSE it will appear that the ring has
been set up but not used.

Device dependent routine for dump mode input close.

Device dependent routine for buffered mode 1input
close.

Device dependent routine for dump mode output
close,

Ensures that all buffers are written.

Device dependent routine for buffered mode output
close.

Notes on Release

Hence, RELEASE implies a CLOSE for the same
channel.

This will normally give an immediate return, since
CLOSEl also called WAITI.

Device dependent routine for RELEASE.

This applies only to non-disk systems.

8-

INTERRUPT ROUTINE CHAIN

40 + 2N:

CH'N:

DEV1'INT:

DEV2'INT:

DEV3'INT:

JSR CH'N
JSR PIERR
g

JRST DEV1'INT

CONSO DEV1, Conditions
JRST DEV2'INT

Process DEV1 Interrupt

.CONSO DEV2,Conditions

JRST DEV3'INT

Process DEV2 Interrupt

CONSO DEV3,Conditions
JEN @CH'N

Process DEV3 Interrupt

5.17 MNON-STANDARD DEVICE PI ASSIGNMENT

Under ordinary circumstances when COMMON is assembled, devices are
assigned to Pl channels according to their group priority. (Refer to
Table 8-1.) If you have at your installation a device not listed as a
standard device in Table 8-1 and you have written your own Monitor
Device Service Routine, you must specify the device 'mnemonic (in 3
characters or less) and designate an appropriate priority interrupt
channel. You must answer all three gquestions as they apply to your
configuration. The first guestion

TYPE "DEVICE-MNEMONIC, PI-CHANNEL" FOR SPECIAL DEVICES

reqguests special device service routines that do not need either a
Channel Save Routine or a Device Data Block. The second gquestion

TYPE "DEVICE-MNEMONIC,PI-CHANNEL, NO.-OF-DEVICES"

requests devices with special service routines that have a Device Data
Block but no Channel Save Routine. The third gquestion

TYPE "DEVICE-MNEMONIC,PI-CHANNEL, BIGHEST-AC-TO-SAVE"

recuests deviges with special service routines that have a Channel
Save Routine, but no Device Data Block.

Special devices that ycu added during the HDWGEN dialogue are chained
to the regquested channel. To give a device the exclusive use of a
channel, you respond to the "symbol,value” guestion with

UNIQn,1
where n is the priority interrupt channel to be reserved. (Refer to
the UNIQn,l entry in Section 8.14.1.)

One or more priority interrupt channels may be reserved for real-time
devices with the RTTRP monitor call. These devices are completely
controlled by user programs and have no specific code loaded with the
monitor. To reserve a priority interrupt channel for use with RTTRP,
you should respond to the "symbol,value" question with

RTCEn,l
where n is the priority interrupt channel to be reserved.

(Refer to the RTCHn,l entry in Section 8.14.1 and to the DECsystem-10
Monitor Calls manual.)

1/0 devices are grouped by their relative interrupt speeds. . If any
device of a particular group is present, a PI channel is assigned to
that device according to 1its group priority. Group priorities for
standard devices may be revised by rearranging the devices in INTTAB,
wnich is in the COMMON source file.

9-2

DEVICE GROUPS FOR PI CHANNEL

ASSIGNMENT
DEVICE NMEMONIC GRQUP NAME
MTA, MTB A TM10A MAGTAPE DATA CHANNEL
DTA,DTB B TD10 DEC TAPE
RTC C DK10 REAL TIME CLOCK
CDP ' CARD PUNCH
CDR CARD READER DATA
APR KI ARITHMETIC PROCESSOR
SCN D TERMINAL SCANMNER
DLJZ, DL1 DL10 PDPll DMA INTERFACE
ccg, ccl 680I COMMUNICATIONS
PTR PAPER TAPE READER
CDR ’ CARD READER FLAGS
LPT LINE PRINTER
DLP RSX20 LINE PRINTER
DTA, DTB ‘ DEC TAPE FLAG CHANNEL
MTA, MTB MAGTAPE FLAG CHANNEL
CTY CONSOLE TTY
DTE DTE PRIMARY/SECONDARY PROTOCOL
DLX IBM INTERFACE
NET REMOTE DEVICES
DSK E DISK DEVICES
XTC DA28 PDPll DMA INTERFACE
PEN LIGHT PEN
PTP PAPER TAPE PUNCH
CDP CARD PUNCH FLAG
PLT PLOTTER
DIS F DISPLAY
NET G NETWORK SOFTWARE
CLK H SCHEDULER CLOCX ROUTINES

(ALWAYS ASSIGNED TO PI CHANNEL 7)

a9

INTERRUPT
RCUTINE

COMMCN

INTERRUPT
RCUTINE

COMMCHN

DEVICE INTERRUFT ROUTINE

RET'N

9-4

SAVE ACS
INIT PDL

PROCESS
INTERRUPT

RESTCRE
ACS

N
DISMISS
NTERRUPT

< ADV3ET ;

PICK UP
DEVIAD

LG pa
FHLIERVE

BARS

& SET UP UBR
SO CURRENT USER
IS ADDRESSABLE

EVIC

dAVE EVY

7 YES

DUMP S INTO
3UFTER

PO apETRN

L1

BADRCX
ADR CHECX
NEXT 3UF

FOR NEXT BUF

ADVEVM 52
SET EPMP

NO

YES

(GETS EZXEC VIRT

SET NEW
SEVIAD

ADDR OF NEXT
3UFTER)

(ADVBU2 }

ADVBF1

D

UHP S INTO
BUFFER

MU
[y

(e |
c

1+ N
ot
[s}
CRER

3

VRS

(Abvaui)

N

SCHEDULER
WANT IC

STOPPED

2
///ﬁﬁi\

YHC 30

ADR CHECK
NEXT BUF

?

SET NEW
DEVIAD

ADVBU2

O
\
W\

AOVYBU2

RINEVHM 23
RELEASE
VM

(R4
H
-3

Device can
remain activ:

Device will
be storped

/

DATAI PAG,

l

| sETEum
‘ SET UP BAR

FOR THIS USEX

TIX PUSHDOWN
LIST SO THAT
CALLIRS POPJ
RETURNS HERE

b

SETS G2 TC
2ESTORE PREVIOUS
CONTENTS CF

UBR & I3R

(ADVEVY ’

COMPUTE
MAX # OF
PAGES FOR

3UFTER

DCES
DEVICEZ HAVE
ENOUGH?

e - ==STOP I0 FOR HCH
WILL HAVE TO CUEUE
TOR MORE PAGES AT

yue LIZVEL

Ygs

MAPUEY i‘
MAP NEXT 2UTTER !
I =vH z

EXIT

{ RTUEVM)

PICK UP BITS
TOR INDEXING
3Y]

RIoEvM

RESET DEVOAD
TC 3 (R)

]

CLEAR LH

DEVEVYH

CLZAR RH
DEVEVM

!
»

GIVE UP

EvH

|
| GIVEVM
|
|

(GIVEVH }

SET UP PTR

- FOR 3ITS TO
BE MARKED

FREE

SEZRS
MARK THESE
SLOTS AS FREEX

ANYONE
WAITING
FOR EV

JOD DATA AREAS DEVICE

=== RING

DATA /
! Y. | RLUCKS)
/%*—« (BUFFER

HEADERS

— l..m N purmn
| ’\) r"—] S / | ;:_1\41 RING

) / | -
VA e SR | -)
e o DEVICE
. 1 DiIsPATC
' L. s
/ | --~—--—--}
/ i |
, / /

6-6

WAIT1)

no méw\
SET?

YES

.. d _
WAIT TIL

BUFFER)
FINISHED
WSYHNC

WAIT ROUTINES

WSYNC)

RE
MARK JOB T

FOR I/0
VALT

ALLOW
OTHER JOBE
10 RUN
WSCHED

_WHEX BUFFER
FINISHED AT

)k INTERHUPT LEVEL

(o™)

SAVE AC'S
AND PC

RUNOTHER
USER JOB3

S

RESTORE
AC'S ARD
PC

S T4

(RETURN)

WSYNC ROUTINE IN CLOCKI

CALLED AT UUO LEVEL TO PUB JOB IN IOW IF .
THE NEXT BUFFER IS NOT AVAILABLE. ROUTINE
SETIOD WILL BE CALLED AT INTERRUPT LEVEL TO
UNBLOCK JOB,

WSYNC

~SAVE AC
~ASSUME NEW
WSC=10WQ
YES—— WSC=TIOWQ
NO
POOLED
YES ™ WSC=DIOWQ
]
SET IOW IN DDB I0ACT CAN BE
WSC->JBTSTS CLEARED IF EOF
ALREADY ENCOUNTERED

FROM THE DEVICES
POINT OF VIEW BUT

CHOOSE NEXT] USER PROGRAM STILL
JOB TO RUN HAS BUFFERS TO
WSCHED PROCESS

OTHER JOBS RUN UNTIL NEXT
BUFFER IS AVAILABLE TO THE
USER JOB AND JOB CHOSEN TO
RUN. JOB RESUMES RIGHT AFTER
PUSHJ P,WSCHED

CLEAR IOW
IN DDB

(RETURN)

9-10

)
N

NO

DCES e

IT?

YES

GIEVYEF p2
EET EXEC VIRTY
ADR FOR 3UF.} !

STORE
EXEC VIRTUAL
ADR IN DEVIAL

1

STORZ STARTING FACE #

& PAGES OF EVY

(4]

[EY
~

amimm
START

DEVICE

CUEIVS—

(EXIT >

GTEV

)
o

COMPUTE HAX
PAGZS PER
BUFFTER

(7]
-1
[
&
§-b
3

GTEVEW

rYWﬁTT
WAIT TOR

ZV TO BE

|
|

AVATLABLE |

HEPEV p3
SET EPMP TO
MAP TC USER

BUTTER

SET UP EXEC
VIRTUAL ADR
FOR FIRST 3UE

IN AC

(EXIT)

(GETEVM >

LOQK FOR EMOUGH
CONSECUTIVE FREE
SLOTS

GENERAL EIT
MAP SEARCH
L ROUTINE IN
: CORE1

! COMPUTE

fTQST VIRTUAL
i
i

SXEC PAGE #

1

ARX THESE

cTics ﬁ !

TEYTINeR & T e

Sl iy

vy fer e

ETTING ROUTI
b=}

%
.IN CCRE1

| ¥
|EVH SLOTS AgY]
| IN USE

1
he]
-
]

‘ MAPEUY ,

MAPEU]
SET EP¥P 70
Mzp TO
USER SUFFER

e e

B

RESET ZAR's
(CLEAR ASSOC MEM)

< MAPEU1 >

—
e

SET UP BYTB
PTRS TO COPY

UPMP TC
SPMP

W

PICK UP UPMP
NTRY

(Y

a——

3.

:Here directly at

—lint level when 2A¥'s
ill be reset latsr
tnyway '

ROUTINE TO UNBLOCK A JOB FROM 10 WAIT

ENTRIES: SETIOD MAIN ENTRY, CALLED FROM DEV'SER
STDIOD DISK 1/0 CALLED FROM FILIO
STPIOD PAGING I/0 CALLED FROM SWPSER
STTIOD TTY 1/0 CALLED FROM SCNSER
(sTTiop) (seTiop) (sTpron)
STATUS STATUS STATUS
.= TsQ = WsQ = DsQ
]
SET .CORTF
IN HPQ >-YES———REQUEST LEVEL
7_INT,
JNO
' 50 STPIOD
WAKE JOB STATUS { COUNT JOBS
IF TSQ WsC = PSQ UNBLOCKING
NECESSARY
YES
REQUEUE JOB
RNQ=—>=WSC
REQUEUE
—1 >]
YES STOP 2
10 STOP NULL JOB

(RETURN)

WAIT UNTIL NEXT
MONITOR CYCLE

TO START JOB
3-14

AND START THIS

ONE

Buffer T\’.‘nj ofter an OPEN UUO

/] (4}
@ |swE|O | ? 4
)} %)
JOACT =@
Iow =0

No bueffers -- Only +he Buffer Control Bk

Li-b

Buffer Ring affer anw OUTBUF wo

1K
@ |sire
@
TIOACT = @
ITow =0
o 201 —1T" L_——>? 201

A)
(4
A}
(4%

)
s

Q-6

Bufler Rc’u\) atter -ﬁnf OUuT VUo

S
\
\
/
/l TOACT =9
< Tow =@

\

~\\

bi-6

Buffer Qc‘nj atfter Suecessive OUT YuUo's

TOACT =1
Iow =@
1 Qs @
- ph o
JOACT = 1
Jow = 1
1 - 2 —1 { PUN——
,.L. ‘.:_4».1 e o
T > T r

0t-b

3u-€(‘er Eiuj atiter o CLOSE VWO

TOACT = @
Io0wW = @

11
[4)

1Z-6

FIAJS used -Fw "i‘o?&-;lﬁ's Aéruc&rono«.& /o

Flaa T«rae‘f N :Messaoe_' Action
R Set at UVO leve
IOACT | VUOD-level code Sterted ITfo trawsfer “r e o
; . Cleared at Interrup?
: S ; level
Iow Iu'hwkr'i‘: c‘Jé Seheduler should reaucuc ‘Sd- by VOO
: ‘ . Clrd. by Luterewpt
3uB | Both VWO and | Availibility of Bubher | St by LwO

Iﬂ"tfrur"‘ Co«lc

Cled, by Ih‘hfn‘p‘r

ouUT

TInterrupt (buffer dowe)

vuo
) A

Jet BUB Clear BUB
E Y
N ’ A . | N Clear IOW
Set ToacT (Ca::; rca.)
1 (Start xfer) - -
: ot
Next Y
BUB et
T
N y
L 36:/ Clle:u'm_'r Do next
Id o
‘ (Step device) Buffer

Wait for.
interrupt
+o clear
Tow

Y
@e?‘um next 3;&{@9

%-27

Y T
-
oi‘_;j.. - “!‘ﬂ |
: seuBRECE
‘a! | :/"; ,__E_IJ
iy 5]
PTR 2 1 : () {.—...m..i
3 g ?\Q i
L i _5 P } z__
4 | , % T e
RIB | -

RIBFIR
RIBPPN
R | BNAM
RIBEAT
RIBPRY
RIBSIZ

-NR RETRIEVAL ?TESﬁF’iRST °PTR ADR

PROJECT

PROGPAMMER 7

FILE NAME

FIE

EXTENSION | I/Acc DATE

PRY

|MODE JCREAT TIME | CREAT DATE

FILE LENATH [N WORDS

ADDITIONAL DESCRIPTIVE
INFORMATION

FTT

| I O B |

RETRIEVAL
POIN TERS

2l S.Jl

|

RYTPIEM POTNTERS

CLUSTER CNT| CHECK SUM |CLUSTER ADR|
___V,.._JW —— J

e -
! t ITYCLP
. L ST}’{KD
STYCNP

\0-3

[
)
1
™y
|
o

NAME
 EXT | CFP
N AME

EIT !CF?

L
L
-

CIRECTORY.
{ DATA BLOCK)
FOR
ONE [PROJ-PROG J

T NAME | e '
k\%}

N
e
iy
<
(i
=4
L -
o

)

RIB
oF FIRST GROUP
FILEF Z OF
FOR DATA BLOCKS
THIS [PRod-PROG] FOR

FILE 7

v,
Lad

(N

LINKA

STR

10-<

LOCATION

-
lﬂH”
Led

STORAG

>
(Vs |
-

S
<

..
S
o

B
<0R

T
M

ON DISK

10-0

FILE ACCESS TABLES

JBTPP8

oT1

-a"‘-&zy #

\O-7

JBT P8

&C

. eeao .f.i’!.;;, STR

e

AKB

Tl ACC

P ot
) 2
- oo
=
Pl
Lgablfhjﬁ
SN

\o-©

' JDA

s FOMNTERS
. Te SFECIFIC
% GROUPS

\0-9

»
A3
4 -mﬂwu»mze.g

h

gﬂ T Mg n.
i
WETLAE
)

;A";r_'
GUEVE
%‘1 ()
¥ ”?u‘wm?-
i s 3
-t
m_Ed
USER'S
SUFRER
REIME

ASSASG

OEYPHY

TSTOSK

GET4WO |

SETODB

SETDD3

SETDOZ2

ASSAS?

ASSIGN

FAOM
COMCON

Is DEV
ANY NAME
FOR DIsK?

YES

F« ADR
PROTOTYPE
OISk DDB

D ‘

—

C

V

LOG

ASsFe2

DEVLOG +

LoG

LoG \
GIVEN?)

TES

GET SPACE
FOR DD8

CoPr ¢ LINK

PROTOTYPE

PEVNAM &
Dev

DEVCHR +
JOog #

SET ASSCON

\O—_\O

TrPE
ASSIGNED
MESG

URN
COMCCN

. DEY3RC

INIT DISK

FROM
UUOCON

DEVLOG
FSEARCH FOR |
MATCHING /]} ves
LOGICAL NAME | . - INJTED? ,
SET F 10 ADR ‘
NO
FIND
PROTOTTRE:
TsTosk | N9
IS D&y
ANY NAME
FOR DISX?/ NO SET SPACE
/ FOR 008
7ES SETDO3
COPY £ LINK
e ADR R
PROTOTIPE ? 07'07795
D{sx D02 |
- SET002
SET UpP
DEVNAM
LEGAL —_—
NO
DEVYCHR
esoo JOB #
SET
ASSPRG

SETDDA

— ASSASG

| - 1

INIT DI

SET UP
DEVIOS

S INITIALIZE
BUFFER
HEADERS

DEVBUF «
SUFFER
HOR ACRS

JOA &
‘DOB ADR

ETYRN-
Uy ocoN

[W

[AVERYH

K -2

LOOK UP
(Ugeon)

DEVFIL +
FILE NAME

DEVEXT «
FILE £XT

SETSRC

SET UP
SEARCH
SPECIFICATION

FNDFIL

FIND OR SET
FILE ACCESS
BLOCKS

F“'E__
-
FOUND. /HO
ERROR
Founo |7ES RETURN

CoPY INFO
FOR USER

10-13
RETU RN

INPUT UUO

NPT

SPTSTI

CHECK FOR FIRST
SPOCL INPUT

QUTPYT ULO

3PTSTD

CHECX FOR FIRST

REQUEST

DEvics

}

(wr)

i
(sr)

10-14

SET

loiMPM

T

!

SET
108xXTL,

\.

SET UP POINTERS

4T (ECP)

UNT
A

10-15

QUEUE FOR POSITIONING

QUELE FOR TRANSFER

Channel Command Word Format

CCW - HALT
OC C1 Q203 04 Q% 0607 08 09 10 11 12 '3 14 15 18 17 18 19 20 21 22 23 24 2% 28 27 28 29 3C 31 32 31 34 35
gigio NOT USED NEW CHAN. COMMAND LIST POINTER
[1 1 '] i | 1 1 ! |] ! i L L ! ! ! 1]] 1]

1 '] +] [} !
v

CCW - Jump

CO 0y G203 04 C5 0637 08 09 10 11 12 13 14 15 1§ 17 18 19 20 2t
T 0 T i

1 g [i T b t 1 i 1 1 H i

22 23 24 25 26 27 289 29 3C 3 32 33 34 1§
T T

1 H 1 T) T T T l

‘at1to0 NOT USED NEXT CCW ADDRESS

| 1 3) ' ' . ' | ' . | ! : ! !

3 L ' ! : : . i | . . : ! L

CCW - DATA XFER

CO 21 0203 04 CS 0507 Q8 0% 10 11 12 13 14 18 18 17 18 19 20 21 22 23 24 25 26 27 28 29 3C 3! 32 33 34 315

| v i i 1 . v I 4 1) ll 3 N] . H . 1 1l 1 i + k] O
1 xlx! POSITIVE WORD COUNT CATA BUFFER STARTING AOORESS
| {ADDRESS » 0 FOR SKIP OPERATION}
T
i
HALT
LAST
xFeR |
|
REVERSE

10-2193

OP CODE (bits 00-02)

0s - Causes halt in command list execution (HALT command).
2: - Causes branch in command list execution (JUMP command).

44 - Causes a forward data transfer (device read or write) without halting (DATA TRANS-
FER command).

5« - Causes a reverse data transfer (device read only) without halting (DATA TRANSFER
command).

6, - Causes a forward data transfer (device read or write) and a halt ("LAST™ DATA
-TRANSFER command).

74 - Causes a reverse data transfer (device read only) and a halt (“LAST” DATA TRANS-
FER command).

107

RH20.

DATAO Command Format

20 O 820306 05 06727 08 0% !0 t1 12 13 14 1S 16 17 18 19 20 21 22 23 24 25 28 27 28 29 3C 3t N 33 34 1S
patac | '70’ ' , l ; l NOT | o | DRIVE . " BLOCK ADORESS FRAME COUNT
SBAR i L . D . L;'SE? S?LE?T X L (D'ISK') . (TAPFI L

LOAD
(FILE} REG
(LR}
0001 02030405 0607 08 C9 10 11 12 13 14 tS 16 17 18 19 20 2% 22 23 28 25 26 27 28 29 30 3! 32 33 34 3%
?:g: ° Tx I 7:1 o i 1 i E o ' ‘% i ‘:2;0 0 g::‘;’CET 0 . NE;G’ B:LO{:K c:nur;u'r :‘{j‘:i?f;osj
LIR STORE DTES
RCLP
- Drive Commands
Command Drum and
Code Fixed-Head Moving-Head ! Magnetic Tape
(Octal) Disk (RS04) Disk (RP04) ' (TM02/TU45)
0l No Operation No Operation *No Operation
03 Unload Rewind, Off-line
05 Seek
07 ! Recalibrate Rewind
11 Drive Clear ! Drive Clear Drive Clear
13 | Release !
15 i Offset
17 Return to Centerline
21 Readin Preset Readin Preset i Readin Preset
23 [Pack Acknowledge
25 ! Erase
27 | I Write File Mark
31 Search Search ! Space Forward
33 : Backspace
*51 Write Check Data Write Check Data ! Write Check Forward
*33 Write Check Header and Data
=57 i ' Write Check Reverse
61 Write Data : Write Data Write Forward
63 ' Write Header and Data
71 Read Data i Read Data Read Forward
73 ' Read Header and Data
77 Read Reverse

10-18

Channel Reset and Status Logout Area

00t
092
003
Qo<
00s
[e10]]

007

034
035
Q38

037

EPT

INDIRECT POINTER TO
CHANNEL COMMAND LIST

COMMAND

STATUS | ST pOINTER

CURRENT CCW¥

OP CODE] oo i ADR

WORD 3 RESERVED
FOR EXPANSION

WOROD Q

WwORD 1

WORD 2

WORD 3

WORD O

WORD 1

WORD 2

WwWOROD 3

=
EPT +4 {RH20 PHYSICAL NUMBER)+ O :wORD O
EPT + 4 (RH20 PHYSICAL NUMBER}+ 1 : wCORD
EPT + 4 (RH20 PHYSICAL NUMBER}+2 WORD 2

\0-1\9

>CHANNEL O*

> CHANNEL 1 *

~CHANNEL T "

10-2086

DISK QUEULS

m:
CHN 1

| TRANSFER
: ’ WAIT
5 QUELE

gw" ‘

O%
AT

Lo

=7 § Dev

S &
5 g%
L.x&mﬁcmwt

=

POSITION
WAIT

QUEVE

yO-20

Wera
All Ints

any
Position
cuests

CNIPCS
< Stars
Pasi=icning

SETTWG STRTIO
Queue for Start
Transier Transfer

1O -2

Decrement
Fairness
Counts

l

STDIOD

Get Jopb Out
of I/0 Wait

BUFAD

Advancs
Buffers

Next
Buffer
Available

Next
RIB PTR

In Core
?

Does
KON

Position
?

SETIPA |,

Set Req
And Unit
Idle

Any

Position

Requests
2

T Yes

Set Unit

To PW

Set Reqg and

SETTWG

Queuve Req
For Transfer

Unit to PW

]

Queue for
Positioning

lc-22

No

Noa- /M

SWPINT
Do Swapper

Beokkeeping

?

PIXPCS

PIXTRX

Was
Int. for a
Swap Reg

CLRACT DONE
~ Clear /0 Do Swap
Active Status Housekeeping

¢

Se£TIp!

I;\\\\\ﬁk\
The Swapre? Yo

b‘ﬂq MmO~ f?L“/’_s

Cces
Zontroller

Going
2

i;fes

SWPSCTY
Start Swap

Position

Yes

IX°0s

Seeks

\0-23

UNIPGS

INTIALIZE
UMNT
POINTER

—

STEP TO
NEXT UNIT

INITIALIZE
BEST 0IST
TO@

:

INITIALIZE
REQUEST
POINTER

¥) g
: PW CR SW
7
UNIPCS '

CHOQSE REQ AND
START UNIT

TO CYUNOER

COMPYTE DIST

TG THIS REQ

YES

10-124

UNQUE O

REMOVE FROM
QUELE

PIRTRY *

INITIALIZE
SEST LATINGY
To®

PIKTAN %

\0-25

E==_) START 10

FILCCOD

SET FILE &
UNIT STATUS
TC T

SETLST
SET UP CHN
CMD LST !

SET PAR
UPDATE
DATA
ELOQ(§

CHXSUM
aﬁsl: U I b .
CHKSUM

STORE
CHKSUM
IN RET PTR

(,

SET ADR

OR R2AD O DISPATCH ™0 ;
WRITZ KONRED POR R=AD

\.__T___J -lxcuwnr POR WRIT®:
F-

Koo
START XF=R

G OB C VO BEP S s Wy |

=IT

>

10-26 .

TRANSFER

FIILCOD

DEVCOD <
TCOD

UNISTS &
TCOD

=3IT

SZTPAR

ED
Gan)

KONCTA &= U

UNICDA &= F

&
& DEVBLX

SET UP COMMAND LIST

INC BLX S S4 ’
NXTBLK COUNT INC BLK
SET UP REQ ’ COUNT
IN DDB
N
NEXT
_ BUFFER 5o E
SET UP AVAILABLE?
INITIAL SBETLSS
CMD WORD
YES STORE BLX
‘ COUNT IN
SETLSS CH DATA BLZ
PUT IOWD
FOR BUF
ON CMD LST EXIT
STEP T0
NQ
HODE # | NEXT BUF
YES

19-77

SETLST -2

SET UP ICWD POR
MIN QF WORDS I¥
DEVDMP QR WORDS
LEFT IN CURRENT GRP

UPDATE

DEVDMP

SETOML
COMMAND
SET UP ICWD LIST 4
TO WRITE 2'S CEVTMP
FOR REST OF BLCCK

SET UP
BLOCX
COUNT

®

1O- 29

PART 2

KL DOCUMENT

KL Document

DIGITAL EQUIPMENT CORPORATION
Educational Services
February 1978

Revision |

K L Document

Copyright € 1878 by DIGITAL EQUIPMENT CORPORATION

The material in this document is for informaticnal
purposes and is subject to change without notice: it
should not be construed as a2 commitment by Digital
Equipment Corpcoration. Digital Equipment Corporation
assumes noc responsibility for any errors which may appear
in this document.

The information in this document is furmished under
2 license and may be used or copied only in accordance
with the terms of suchk licease.

Digital Equipment Corporation assumes nc rasponsi-
bility for the use or reliability of its software on
eguipment that is not supplied by Digital.

The follcwing are trademarks of Digital Eguipment
Corporaticn:

DIGITAL DECsystem-10 MASSBUS
DEC DECtape OMNIBUS
ooP DIZOL cs/8
DECUS EDUSYSTEM PHA
UNIZUS FLIP CZ=ID RSTS
COMPUTER LAES FOCAL RSX
COMTEX ' INDAC TYSESET-8
DDT LAB-8 TYPESET-10
DECCOM DECSYSTEM-20 TYPESET-11

Document on the KL Processor

TABLE OF CONTENTS

Seétion Subject

1 Introduction and KL Orientationl
2 Paging on a KL ProCeSSOT cueeaceceeoeoennn 4
=l@~style cecsesevanccscnena ceannadd

-28-styla tecteereseescsanensanaas 14

3 KL Hardware .veeecececeeeeecesananeeeesald
Bbox A 1

Mbox ceeseecvesesasenns D +

Memory SUDSYSZem ..iivveeeccneeseeasa.dB

Front-End SubSYSEemM .eveeereeencncenn 53

I/0 Subsystem ceeasecssasbBl

4 Previous contexXt eXeCULS..eveeeoveoeens 63
Appendix A ceeteevanae tecesssacsss Al

Document on the KL Processor

Introduction and KL Orientation

The RL processor is the basis of the high-end DECsystem~19 line
(1988,189%8) and the =20 serias systems (2848, 20858). - Each of these
systems contains five subsystems:

& Ebox

o Mbox

® Memory

e Front End

E e

I7/C devices

L]

The diagram on the following page 1illustrates the -basic
configuration of the RL's subsystems.

front-end
subsystem
FBox I/0 subsystem
Ebus
Diagnostic
IREEREERE
E/M intarface Bus
REREER
MBox
Chus
Sbus
Memory
subsystem Data channels

KL Configuration
- Figure 1

D7 0353

<1>

Document on the KL Processor
Introduc;ion and KL QOrientation

The Ebox (Bxecuticn box) 1is primarily concerned with the
processing of program instructions. It fetches instructions from
@emory, computes effective addresses, and performs instruction
actions. Additionally, the Ebox controels all devices by
transmitting control information through the &Ebus, and ian turn
receiving interrupts and device status along the same routa.
Finally, the Ebox controls dara transfers betwesn devices and memory
for those devicas ot using a data channel.

~The Mbox 1is responsible for coordinating physical memory
requests. For instance, the Mheox must Service all Ebox memory
requests. Moreover, on DECSYSTEM~-29. and 1994 systems the data
channels are connected to the Mbox rather than being hooked to
physical qemory. Aside from its function in handling
physical-memory Fequests, the Mbox has two related and significant
jobs. First, the Mbox is the only System component that translates
virtuzl addresses ints ophysical addresses. Seceond, the Mbox .
contains and controls the cache memory.

The front-end subsystem comprises the PDP-1l, associated =11
devices, and the DTE24 (which interfaces the -1l tc the -13's Ebus).
At the very least the -1l is respansible for overseeing operation of
the KL processor. This responsibility extends to requiring the =11
to initialize the -1§'s memory and micromemories during bootstrapg.
Support of the operator's terminal is associated with these =asks.
Addéitionally, DECSYSTEM-28s place all unit record and communications
equipment under control of the front ené -11., or of other -lls
attached to a DTE.

The I/0 subsystem includes all I/Q0 devices that are controlled
directly bv the XL-14d. Such devices invariably include disk
controllers and tape controllers. Additionally, DECsystem-18s place
unit record ecquipment and DECtapes in the I/0 subsystem. (In other
sSystems, suck devices belong to the front end =ll.) To provide this
support, =-l19s need an additional device called the DIA.

Finally, the memory subsystem contains physical core memory.
(It does not include the cache; cache is located in the Mbex.)

All KL-based systems contain these five subsystens. However,
the internals of a particular subsystem might vary with the type of
System. For instance, a 18986 Mbox will have cache while 2948 Mboxzes
do not. 1In the interest of clarifying the distinctions between the
different systems, each section of this document will describe the
appearance of the subsystems for each type of C24,.

HBere is a summary, by subsystem, of optional KL-based system
cmponents. .

<25

Document on the KL Processor

Introduction and L Orientation

Mbox 13849 189¢ 2843 2359
Cache Y ' N Y
Internal channels N ¥ Y Y
Memory subsystem 1a8g 1894 2343 28548
Inteznal memory N N b4 b4
DMa — b4 Y N N
External channels Y S* N N

* Sometimes

Front end 128¢ 1899 2840 290583
Unit recorgd equipment N N Y b4
Communications gear N S* Y b4

* Sometimes

I/0 subsystem 198g 1898 2849 2852
DIa b4 b4 N N
The Ebox is substantially the same for all’ SyYstems although

microcode will differ.

<3>

the

Document on the KL Processor
PAGING ON A XKL PROCESSOR

Paging on a KL Processor

This section describes the different types of paging available
on KL processors: Section 2.1 concerns so-called KI-style paging,
which is the scheme implemented on XKL-18 processors (1384, 1888,
1898, 1899). Section 2.2 explains XL-style paging as implementad on
XL~-23 processors {2848, 2833).

Befora discussing paging, it would be well to Quickly review KL
address management. This discussion freguently refers to the KL
subsystems described in Section 1, and you might find it useful to
- consult Figure 1 as needed. Another available aid is Appendix A,

which contains a glassary of commonly used paging terms.

Three different types of address are possible: physical,
executive virtual, and user virtual. Physical addresses are 22 bits
long and denote a word in the physical address spaca. The physical
address space can contain as many as four milliocn words. The
average programmer rarsly encounters physical addressing, but a
study of the XKL requires a knowledge of where physical addresses are
used. There are four circumstances that deserve attesntion:

1. &ll recuests ta the memory subsystem must take the form of
shysical. Thus any request made by the Mbox using the Sbus
must have beemr translated, by the Mbox, t3s a physical
acdress. Alsa, any transfer invelving an external data
channel has to be initiated in terms of physical addressas.

2. Certain address inputs to the Mbox are expressed as
physical addrasses. Most significant are rasquests for
(Cbus) transfers between RE23 controllers and the Mbox Waen
2 monitor program needs to initiate disk I/0, Zor example,
the monitor must convert the address of the I/0 buffer from
virtual to physical b»efore the transfsr is started. The
channel (i.e., the Cbus) then controls the passage of data
from the physical addresses specified. Note that the
treatment of internal data channels 1is thus logically
consistent with that of external channels: both types
reguire physiczl addresses.

3. A tiny subset of Ebox-to-Mbox requests is expressed in
terms of physical addresses. The only physical Ebox
requests are several (but not all) operations originating
in the front-end subsystem.

4. Finally, most diagnostic-bus conmunication involves
physical addresses.

Another class of address
is 18-hiz long and is com
physical address before it is

at of exec-virtual. This address
ted " (by the Mbox) into a 22 bit
t to the memory. An address

el

Document on the XL Processor
Paging on a KL Processor

reference from an instruction is Lreated as exec-virtual if it
originatsd in an instruction being performed while the processor is
in an exec mode (either kernel or supervisor). The translation fre:
exec-virtual to physical address is described in Section 2.1 for
-1%s and 2.2 for -28s.

Many I/0 requests are expressed iIn terms of exec-virtual
addresses. The only requests that are not exec-virtual are
data-channel requests (which are physical addresses, as described
abcV¥e) and some real-time transfers (which could take place in I/0
mode) . An example of the use of axec-virtual addresses to
accomplish I/0 is monitor programming of DECtape, paper tape, or
unit record equipment.

More importantly, a large proportion of instructioen references
are exec-virtual, Specifically, any instruction executed in the
monitor requires at least one, and freguently more, exec-virtual
memory reference. Consider the fact that instructions to be
executed are fetched from the location pointed to by the processor
PC-word. The PC-word contains an 18-bit counter, and this counter
always points to a virtual address. The address will be treated as
exec-virtual when the processor is in an exe<¢ mede and user-vir:zual
wnen the processor is in user mode. Therefore, fetching an exec
instruction reguires an exec-virtual - to - physical translation.
Of course, many instructions cause other memory references, thus
adding to the total number of translations that must be made.

The third and last class of address is user virtual,
User-virtual addresses are 18-bits long (like exec-virtual), and
also require translation to physical addresses before memory can be
read or written. Programs running in a user mode (either public or
concealed) wuse user-virtual addressing. The translation of a
user-virtual address to a physical address is described in Section
2.1 for -18s and 2.2 for -20s.

Cf these three types (physical, exec-virtual, and
user-virtual), exec and user-virtual addresses are the types most
frequently encountered by the system programmer. Any virtual
Tequest must be translated into a physical address by the Mbox.

<5>

Document c¢n the KL Processor
Paging on a KL Procassor

B Physical

User virtual
Ebo =
* B Exec virtual
PIUIE
nis|x
R
Melv
Lidli
-~ Sirci|rc
=S - -
1{ueiu
aja
yliyly
Ehysical
Mo Y (Cs)
Shysical
ysica 07 0369
L Systemt Address Flow
Sbu= Figure 2

It shculd be noted that an Ehox-based memory regquest might be
any o©f the three types of address. The address will rarely be
physical, but occurrences of exec—virtual and user-virtual requests
are frequent. The type of address used depends on the circumstances
of the request. For example, suppose that the Ebox has Just

finished ©processing an instruction. It must now read a new
instruction from memory. The address <f the new instruction is
- founé in the processor's PC (Program Counter). Suppose the PC holds

the number @61481. In this case, the Ebox must request the contents
of address 961481 from the Mbox.

But what kind of address is 98614412 It cannot be physiecal, if
for no other reason than because physical addresses have 22 bits and
the PC has only 18 address bits. Therafors the address aust bBe
either user-virtual or exec-virtual, but which?

The answer depends on the processor's mode when the instruction
fetch is done. If the processor is in exec mode (as reflected by PC
bit 5 being #) then 881441 must be treated as an exec address. Cn
the other hand, if a user program is being run then PC-bit 5 is 1,
indicating that the processor is in us2r mode. In that event,
881481 is a user address. :

At the hardware level, the Ebox makes its request by sending
the address (261481) to the Mbox across the E/M intarface.
Additionally, the Ebox must tell the Mbox what kind of addressinc is
needed. (The Mbox cannot determine this directly because PC bit 3

<6>

Document on the KL Processor
Paging on a KL Processor

determines processor mode, and the PC is in the Ebox.) This is
accomplished by the =Ebox sending an additional signal to the Mbox
specifying the address mode. : .

Another example involves an instruction like "ADD 5,1786". The-
Ebox must obtain the contents of 1782 to perform the addition. As
before, this reguires that the Zbox set ©p the address {1738) om the
E/M dimterface. And Ebox must again inform the Mbox of the desired
addressing mode scheme (user or exec). The type of addressing is
stTll dictated by B2C bit 5. Thus a user program executing the
instruction will cause 1708 to be treated as a user-virtumal address,
while the same instruction performed in the monitor would make 1788
be an exec address.

Amid this sea of confusion there is an island of fact: the
only part of the system that converts one type of address to another
is the Mbox. 1If the Ebox supplies a user-virtual address to the
Mbox, that 1is because the Ebox found the user-virtual address
elsewhere. Similarly, if the Ebox feeds the Mbox a physical
address, then the Ebox was given a physical address by samething
else. The Ebox cannot take a virtual address and translate it, for
that is the sole province of the Mbox.

Cache memory is a different matter altogether and has no direct
bearing on the paging concepts just described. Cache provides a
means of eliminating roughly 96% of the possible refarences =to
physical core, thus speeding up CPU operation by a substantial
margin. Please note that the cache contents are indexed by phvsical
address, therefore cache is only accessed after a virtual address
nas been translated to the corresponding physical address.

Section 2.1 describes the specifics of DECsystem~-18 paging,
while Section 2.2 provides information on DECSYSTEM-28 paging.

2.1 DECSYSTEM-10-STYLE PAGING (“KI-STYLE™)

DECsystem-19 paging is the paging scheme supported by systems
running TCPS-18 (1488, 1694).

Under RI paging, the processor has two "process tables™. The
User Process Table (UPT) controls the mapping of all user and some
exec pages. The Exec Process Table (EPT) is used for most exec
addresses.

These tables are also referred tc as the ﬁser/exec page maps or
the user/exec page map pages.

<7>

Document on the XL Processor
-l3-styla Paging

points to which
A base register :
A points to A
process chysical
table , ege
Ki-Style Paging
Figure 3 | D7 0373

The basic mapping process inveolves translation of an 18-bit
virtual address into a 22~-bit physical address. In this process the
virtual adéress is treatad as a 9-bit virtual page number and an
adjacent 9-bit "offset"™ into the page.

o 18 bixs -

Eg 2

Virtual zage aumber Qfiset

Virtual Address Struciure

Figure 4 07 Q371

The mapring hardware removes the $-bit virtual page numser (the
"VPN") from the address, uses these ¢ bits to produce a 1l3-bit
physical page number, and plugs the newly produced physical page
number Bback intoe the address. This replacement procedure is the
scle topic of secticm 2.1.

<8>

Document on the XL Procgessor
-l9-style Paging

-t 18 bits -
-~ 9 - 9 Virtual
address
Virtnal page number | Dffset
- f%$7 !
- !
| No
| change
Replacement by pager l
' !
!
|
Physical page number |]
< 13 - g9 > PhY‘Sical
addéress
- : 22 bits
Address Transiation
D7 0372

Figure 5
Here is a detailed presentation of the RI-style process tables.

<9>

Decument on the XL Processor
-lg-style Paging

of ===erz 0 | m=maxzEl | Yzer caeer oooor ames

; i | | EACH: 0 INITTAL CEANNEL. CoMMAND |

| |) 1 TS CRNNEL STATTS WORD

| | I { 2 GITS LAST (PDATED CoMeND |

; i : ==

| 4 i

| = _ ! | I STANDARD PRICRITY
377 SERPAE 776 | USERBRETTT | 57 INTERRUPT DNSTRUCTIONS i
400{3@::‘73 BAGE ko;mm oaGe 341l 5°l : -

FOUR CHAMNET, BIOCK FITL WORDS

41 71ECCTTIVE BAE 376 | EXECUTIVE PACE 3‘7‘7| §3 f
420{EovED 64 x|
421{ISER ARITMETIC OVESFLOW TOAD INST |RESERVED
422!TSER STRCX OVEEIOW TRAP DSimirion | 137]
423{TSe2 TRED 3 TRSP LNeTrrCoied 140l
424[MT0 STORD Eme [FCOR DTE20 CONTRAL EIOCKS
425110 QLD PC WCRD 177
42 E[MU0pREVTO0S e WORD 200/EXECOTIVE PAaE 400 | EXECUTIVE SACE 40L
427[RESEoVED I l
430, N0 T20 R0 NEW B5C moRD i I |
431N ToRs MOLC NEW PC WORD 37T\ EXECUTIVE PACE 776 |EXECOTIVE PAME TTT

433[5EER7IS0R ToAP MLUO NEW o€ WomD | AVAITARIE TO SCETWARE
e BTN T L Y L T ——
4 34|CONCAISD SO _TREP MLUO New BC WoiD 417
4335i1CNCALD oD MLUO NaW 5C WO 420(ESeren
436|FLoLiC O TREP VLU0 NEW TC WORD 421 ECC T s SR _IC OVERE LW Tiae oNssl-
437{PLELIC TRAP MLLO NEA PC WOED 422|ECCUTIVE STACR OVESELON NS UCIIoh
440 423(EXCCoIoVE ohr 3 28D Dol
|AVAITARIE TO SCETWARE | 422
447 - |FESERVED |
SQO(FAGE FALL WORD 507
501PA= riL GO 3C WO 510 -
502(EAs Tir oW S WORD 511 TEE B
203z 212 PERFORMANCE ANBLYSTS CONT
s¢4f. —— ‘ 5130
55| PROCSS DECITIN TLME 51 4TNTERVAL COUTTER, NI oT DS Teerc
506 515
m .'ﬁnﬂ fyt=Agioliad By L0 y
so7i== = = o |FESERVED |
510 ST |
|RESERVED | 600IDECUTIVE PAGE 0 |EXBECUTIVE PAGE 1 ;
577) y i |
§00, !] | !
| | 657, EXSCUTIVE PACE 336,EXECUTIVE PACE 337,
AVAIIAEIZ TO SETREE | 780f !
! |AVATLARIE TO SCETVARE !
67714 l 7771 1
Kl-Style Process Table Cenfiguration
Figure 6

SUPIEVISCR YO TFaP

MOUC_NSW _2C WOPD

— i ey v B s s e
! .

<18>

D7 Q373

Document on the KL Processor
-l3-style Paging

’

When a virtual address is received by the Mbox, the following
procedure is used to translate the address. *

Pind addrass UPT address comes from
Of IPTTOPTILCE fo — - I5€T Base Register (UBR),
process table. EPT address comas f-om

Exec 3ase Register (ESR)

Ottain the map
daza for
specifiad vir.
tual page.

Use map daca

€0 praoduce phy-
sical page ouzberie - - Subject 20 accass kays
correspending t3 built izzo zhe mzp Qata
vizrtual page.

i
Kl-Style Paging Algorithm
Figure 7

07 037s

Here is a detailed examination of each of the thrae steps.
Keep in mind that the ultimate geoal of these steps is to produce a
13-bit physical page number.

Find Address of Appropriate Table

One of the two process tables contains the information needed
to0 translate the address. Each process table is pointed to by a
base register. 1In the case of the UPT the User Base Register (UBR)
is wused, while the EPT 1is pointed to by the Exec Base Register
(EBR). The EBR is loaded when the system is started and never
changed agzin. Conversely, the UBR is reloaded every time a job
context switch takes place.

Both the UBR and EBR hold the (13-bit) physical page number of the
page containing the corresponding process table.

* The algorithm shows the complete 1logical paging process. The
hardware generally takes shortcuts in the mappring process. However,
these shortcuts involve the hardware page table (Section 3.2.1) and
cache (Section 3.2.2).

=

<11>

_ Document on the KL Processor
-lg=-style Paging

Obtain Map Data for Specified Virtual Page

For this step the virtual page number is used as an index into
~the appropriats process <table. The exact use of the virtual page
nunber depends on whether the address is user or exec, and on what

parT of the virtual-addrass space the virtual address is in. The
breakdown is as follows:

2.1.2.1 All User Addrasses
The S-bit VPN is treatad like this:

3 ——)

T L A G S D ey
=] b
<

i»t (offset not used here)

L —_— -

Index ints process Specifies which
t2bla half-werd &= use
VPN. Breakdown

Figure 8 C7 Q375

The 8-bit field selects the process table word that holds the
map dats. Since the map information <for a given virtual gage
‘occupias l8-bits, each process table word contains information about
two pages; the desired half-word is chosen by the rightmost bit of
tie VPN. IZ the bit is @ the 1la2ft half word is used, while L
implies the right nalf-word.

For example, suppose the address is user-virtual 948@43. This
can be interpreted as a2 request for word 883 of virtual page 244.
The virtual page number breaks down like this:

548 (3)= 98318282034
UPT word... 26(8) 8 ...left half

which means that the 18-bit map data are in UPT word 828, left half.

Similarly, map data for user address 277949 are in UPT word
137, right half. :

<12>

Document on the KL Processor
-1l8~style Paging

EXEC Addresses Between 000000 and 337777- {Exclusive of ACs)

The virtual page number is dissected as before. However, ' the
desired map data are in the EPT, not the UPT. Additionally, the
treatment of the offset is slightly different. To select the proper
EPT word, add 688 to the offset to produce an index into the table.
Then select the proper half-word using the low order bit.

For example, exec address 802741 would be mapped u51ng the left
half of EPT word 8§61, as follows:

202 (8)= 660009318
T
861 (8) 2
.+ 680 (8)
= 681 (8) LE

2.1.2.3 Exec Address Between 408988 And 777777

These are handled exactly as user addresses are, except that
the map data are in the EPT; the offset is not altered beFOte use
2s an index into the process i'aole.

For example, exec address 463375 is mapped through EPT word
261, right half.

433(8)= 130806668 31 %
\/Wv

281 (8) 1l

leads to 291 RE

4. Exec addresses between 348860 and 377777 =-- add 228 to the
offset and read the desired word from the UPT. Unlike any other
exac addresses, this range is mapped through the UPT, not the EPT.

. An instance of this is exec address 346648. It would be mapped
through UPT word 404, left half.

343 (8)= 9 1110994948
\/’Wi
168 (8) %}

+ 228 (8)

= 4¢0(8) '~ LE

<13>

Document on the KL Processor
—-l3-styla Paging

Produca Physical Page Number of Desired Virtual Page

The process table datalfcund during step 2 look like this:

18
Afp{wi{stc 13
Pagexa:;EE:keys Phys?cal?ﬁgeznxﬁe:
& virmml pace
07 0378
Kl Map Data
Figure &

The page access keys have these mezanings:

f implies &that the Page is inaccessible. Referencas ta
such a page cause az pages faulk.

@ implies that the page is concealad, while 1l implies the
Fage is publie. .

g indicates that the Page cannot be written. Attempts to
write result im z page fault.

Avzilable to the softwars. TOPS-14 uses this bit ipg
conjunction with VM paging.

§ indicates that the contents of this page may not be
Placed in cache. .

N 0 5 m p

Qf course the physical Page number is the 1l3-dit quantity we've
Besnr seeking. This field simply replaces the 9=-bit virtual page
number ia the original address, thus providing the final physical
csre address.

2.2 DECSYSTEM-20-STYLE PAGING (“KI=STYLE™)

The DECSYSTEM-28 paging scheme is conceptually the same as that
of the DECsystem-13 in that both map the limited user address space
into a much larger memory pool. in the =19, the user space is
distributed primarily within physical core, with some Pages being
mapped instead to a a page on disk. The =-28, however, 1is more
general: not only can user Space comprise a portion of core, but it
can also map usar pages to parts of a file on disk. More generally
still, the =28 system permits efficient sharing of both file and
C€ore pages between process; the ~13 shares only core.

Document on the KL Processor
~-28~Style Paging

The description in this section focuses on the behavior of the
KL28 paging microcode. However, the narrative will occasioneslly
touch on TOPS28'S use of various pointers; otherwise, it's hard to
see how the different pointer types are used.

Your understanding of the paging process will be helped by
realizing the role of the paging microcode. The microcode
completely handles requests for in-core pages; any other condition
requires . action on the part of the monitor. These other cases
include reference to a disk-resident page, attempts to use
nen-existent pages, and troubles in the paging hardware. Any of
these situations cause the microcode to issue a page fault, which is
a hardware trap that terminates the current operation and gives
control to the monitor. :

As with so-called RI-style paging, KL paging involves the
replacement of a virtual page number with a physical page number.
There are two tables called the "user process table™ (UPT) and “exec
process table" (EPT), each one page long. These are analogous to
the XI-style "user process table® and "exec process table”. The
user and exec process tables can be anywhere in physical core, with
their addresses held in the User Base Register (UBR) and Exec Base
Register (EBR) respectively.

Now for a significant difference: under KL paging, the UPT and
EPT do not hold relocation information! Rather, word 448 of each
process table contains a pointer which, when evaluated, will 1lead
the hardware to a "page map"; this Page map contains the mappings
for specific wvirtual pages. This scheme 1is reflected by the
following diagram:

A A anc the The desired

ir i emap e

A base points process *ﬁlCh page pa? —={physical

register o zable points to map pints tolpage
Simplified KL Paging D7 0377

Figure 10

You might wish to compare the RI process tables (figure 6) with
the RL process tables shown here.

<15>

USZR PROCESS TARIE

0

i N
| |
’ !
' |
lmmm 1
1 xore: !
| = Items in parentheses and at B
3 the right in double ent—ies |
77 arply to the wmextesndad X110 |
400 1
{ RESESVED]
417

4201 ADCRESS OF LUD BLOCK
4&mmmmcw—1?ﬂmwsr !
422|USER STACK OVERSLOW TRAD INSTRUCTICN

423|CSER TRAD 3 TRAD DSTRUCTICN
424{7T2AG5 [MO CP AC RESERVED

425|MCTO LD BC MI0 STORED FE=E
426{ = CF MO MO QLD 2C WORD

427 ML’CG?aEv:ous ONTET WOorD ‘
.430@&&@«1?%13.\134?:@ ‘
M

432 SUPERVISCR TRED MULO NEW BC wesn
434/ C.NC'}J_’D NO_TRAS MULC NEW °C WCRD
433|FUSLIC TRAD MULD NEW BC WORD
438izuEr=c h:o TR22 MO NEW °C WCrD
43712UELIC TRAE UG oW oC.WORD
440{USER SECT-ON TODNT==

e e B e —— e

431{KEONEL, TRAD MGUO Now B¢ s]
432[SCEFRVISOR N0 TREAD WUD oW 5C W [

Document on the RL Processor
—-28-Style Paging

EXECUTIVE PRCCESS TRELE

37 3 RESERVED
40 .

41

42 -

5_7£.<a*1'.=.1\1::m: PRICRITY INTERRIPT DETRICIIONS
1

631
] mmmmmwm
83

641
| RESERVED
137

140
| FOUR DTE20 CONTRCL ELOCKS
177

20c!
|

| AVAITAELE TO SCETWARE

417

..——.J».—-—.
s

420 t
421 | TXECUTIVE ARILVELTC CVERFTOW TRAP INST

42| 2ECUTIVE STACK OVESST oW

TEAZ TSIRUCTZO:

423 IBECUTTVE TRAD 3 TRAD > INSTRUCTTCN
424

S

237 }
440 EXECUTTVE SZCIicN PomNT=R

4 441l
1) FESERVED . | 477 ERVED 1
S00(PAGE FALL woRD 500 L
50l sacm TaTr TS PACE FATT tORD | resmven)
S02{Pace T2, oD oe | TAe TAOrS =0 g% =
03| P27 TRTLNEW OC | PA= FALL NEW ST :
504 s11| TOE 3ASE
o= USER FROCESS SECUTION TOME 5101 -
08 53| PEECRMANCE ANALYSTS COUNT
307 CSER MEMORY REFERENCE COXNT S14| INTERVAL COONTER INTERRUDT DETRUCToN
510 31s '
| RESERVED] | RESERVED l
Eyiil] STTL |
" I sool |
| AVAITARIE TO SCFTWARE I :Amm TC SCETWARE !
Eexi T |
KL-Style Process Tzble Conf figuration
Figure 11 07 0330

<1l6>

Document on the XL Processor
-28-5tyle Paging

e

The page map entries differ markedly from the pointers used in
KI-style page maps. Under RKI paging the process table contains
halfword entries, each of which holds a physical Page address and
- five access keys (see figure 9). On KL28 Processors the page map
entries are each one word long and hold a pointer which must be
evaluated to detarmine the final memory address. This address is
frequently the Page number of a page in core, in which case the
microcode performs the substitution. In other cases the memory
address is a disk address, which results in the microcede turning
over the translation process to the monitor. '

To reiterate, there are two different sets of pointers invelved
in this process. The first type of pointer (called the "section
pointar®) effects the link between the process table angd the page
map. The second type (the "map pointer") resides in the Page map
and points, directly or otherwise, to a specific physical page.
This page may either be on disk or, more commonly, in core.

Both pointer types have the same format:

- 36 bits
Pointer|oiui |clreserves Mapping data
type
0 234567 1112 _ 35
Pointer Format '
Figure 12 D7 0378

Despite this similarity, +the two pointer types function
somewhat differently and serve diffarent purposes. This distinction
will be dealt with in succeeding sections, as section pointers arse
treated in section 2.2.1 and map pointers are explained in section
2.2.2.

The entire mapping process can be treated as a series of
discrete steps, as follows:

17>

Docume‘nt on the KL Processor
-28-Style Paging

ez virsual
adéress
Ssom IZhax.

Fi=ng adé-msxs
ef aporopriace
Br3cess tazle.

Qbtaix & sec=ion
Poiztar f-am tha
Process table.

Use seczicm
seinter T finm3
ihe apprssriate
| Page map.

Chzasi= 3 map
Poiznter from
the zage map.

|

|

Use map zointer
23 fi=d deaired
13 bit shvsical
fage: ou=ber. '

i

i
KL-Style Paging Algorithm
Figure 13 77 7

The following sections examine sach of these steps in somewhat
more detail.

Document on the KL Processor
-28-Style Paging

1. Get virtual address from the Ebox

The virtual address arrives from the Ebox as 18 address bits
plus a signal indicating whether the address 1is exec or user.
Actually, nothing happens 1in this step other than hardware
handshaking (wireshaking?); however, this is a good place for us to
logically split the address into two halves. The high-order 9 bits,

bits 1B-26, ars treated as the virtual page number, while the low
order 9 bits, bits 27-35; are used as the offget inte the page. The
virtual page number supplies the pager with the information
necessary to determine the address of the page corresponding to the
specified virtual page. Once determined, the physical page number
replaces the virtual page number in the original address. The 9 bit
word 1index will never be changed by the mapping process. This is
illustrated in figure 5.

2. Find address of appropriate process table

This is handled the same way it was on the KI. Please see
section 2.1.1.

3. Obtain section pointer from process table

.The section pointer is held in 1location 444 of the process
table.

4. Use section pointer %o find the appropriate page map

This operation begins at a process table. For a user address
this 1is the. UPT, which is pointed to by the User Base Register
(UBR). For an exec address, the EPT is used. The EPT is pointed to
by the Exec Base Register (EBR).

Once the process table is found, the pager reads word 444, the
USECT (or ESECT) word. The word contains a "section pointer" which
eventually produces the address of the page map. -

There are four different kinds of section pointsars. They are
treated in section 2.2.1.

5. Obtain a map pointer from the page map

The preceding step provided the address of a page map. Page
maps contain 512 one-word entries that specify the physical address
of a single memory page belonging to a process's virtual address
space. Usually the page is in core, though it's sometimes on disk.
Rarely the reference is illegal and corresponds to nothing, in which
case the issuing process is in error.

<1%>

Document on the KL Processor
-23-5tyle Paging

8. Use map pointer to find desired memory

Page map pointers (hereafter refarred to as map pointers) have
the same .format as section pointers, but are used somewhat
differently. There are four types: no-access, immediate, shared,
and indirect. They are discussed in detail in section 2.2.2. :

Please keep in mind that the nltimare goal of this step is
either to detaermine the 13 bit physical page number corresponding to
the virtual page specified in the original address, or to produce &
disk address that the monitor will use to bring in the needed page.

Section Pointers

- Reep in mind that the section pointer's purpese is ts point to
2@ page map. Evaluationm of the pointer will eventually produce a 13
bit physical page number. In zhat page is the page map.Note that
only 13 bits are needed to find the page map: all page maps start
on & physical page boundary, and there are at most (2)13 physical
pages of memory. .

The treatment of this pointer varies depending on the first 3

. Bitss
if the Zirst 3 bits ars... : then the pointer is...
g6g no—access
491 immediate
d13 shared

311 indirect

2.2.1.1 No-access section pointers

02 35

No-Access Section Pointer
Figure 14

If a2 memory reference leads to a no-access section pointer,
then the reference is 1illegal. The result is a page fault, and
further processing of the memory request is determined by the page

fault ha=dling scftware.

<28>

Document on the KL Processor
-2@-Style Paging

The capability exists primarily for the sake of generality;
recall that there are map pointers in addition to section pointers,
and that map and section pointers have the same format. As will be
shown in section 2.2.2 there is need for no—~access map pointers.
Since they must be included, it was easiest £o provide a section
pointer that behaves the same way. '

2.2.1.2 Immediate section pointers

1 ,PW " Storage [Zers if| Page rumber
medium |in cor of pece mep
0 234 s 12 1718 22 23 35
Immediate Section Pointer Format
Figure 15

An immediate section pointer provides the address of a
section's page map. The page map may be in core, in which case bits
12-17 of the pointer are zero. The page map might be on disk,
howeaver. This case is signalled by a non-zero value in bits 12-17,
a condition that causes a page fault. The monitor then uses Dbits
12-35 as the disk address of the Page map and reads it into core.

Assuming that the page map is in core (as indicated by bits
12-17=3), then the 13-bit physical page number of the page map is
found in bits 23-35 of the pointer.

- —— - - - ———

un:éumz. ? ?
ame | [= % amal
i L
| d @ e e wa ww wm - —
/ \
\
3535;3 “ap moimzes
seczicn
sointer
D7 0331

immediate Section Pointer Structure
Figure 16

<21>

" Document on the XL Processor
-28-Style Paging

From the point of view of TOPS-28, immediate section pointers
exist for much the same reason that no-access section pointers
exist; namely, as parallels to immediates map pointars.

-
-

i‘ n:u::ﬁ@;xn#n
pa) emTAning sace ackTesy of
0 234 & _ 18- 35

Shared Section Peointer Format

-

Figure 17

In this case, the address of the desired page map is nat Dbuilt
intog the pcinter. Instead, the page map's address is in the Shared
Pages Table (SPT). The sectiom pointer provides an index intes the
table, and the SPT location thus specified contains the desired
13-bit physical page number. The painter need not contain tae
address of the SPT; the pager knows this independent of the pointer

_Because the pager's SPT Base Register (SBR) was Lloaded long
beforehand with the SPT's page address. The offset is found in bics
18=35 of the pointer. :

In other words, the page map's address is stored in an SPT
word. The pager always knows where the S2T itself is, so the
pointer only has to say which SPT word holds the data. The address
is obtained by adding the l3-pit SBR to the offset from the section
pointsr thus:

13-bit SBR X XX XXX X XXXXXX080d02d003a@
+18-pit SPT index 8 9 6 # X X X X X X X X X X X X X X X X X X
= 22-bit physical word address of th

e word that contains the page
map address :

It is from this address that the pager obtains the address of the
page map.
It should be statad that the SPT word consists primarily of the

Page map address, but not exclusively. The full format of the SPT
word is:

<22>

Document on the KL Processor
-290-Style Paging

Avai £ 2Zero if : .
vailable in core Zero { Physical page momber
G 1 1718 2 23 35
SPT Word Format D7 0382
Figure 18
=R
Cfisen is
, izl age
l | & TIDer i
Ciser Given f
- - T Sraret [:{acwm T s
i o ; Feinner !
N Pracess ‘443 t Pa-c_.! !.J
atle ! i / =E !
! L4
| [|
9 — L] -
/ /-
7
Shazed Mas
ses=icn ointer
ozer
Shared Secticn Pointer Structure
Figure 19 37

<23

Document on the KL Processor
-28-5tyle Paging

2.2.1.4 Indirect section pointers ‘

. - m | e m— -—-ﬂv-iq:
14?'3(1 |§m11i3 7ace xoTess of anocher secTion

0 234 § 9 1718 35

44

!f

Indirect Section Pointer

.= Figura 20
gure b7 0385

Unlike either immediate or shared secticn pointers, indirect
section pointers do not lead the pager directly to the address of a
vage map. Instead, an indirect section pointer results in
acquisition of a new section pointsr, wnich may in turn be
no—access, immediata, shared, or indirect.

Cnce the pager has the indirect pointer, bits 18-35 furnish an
index ints the shared page table. In that location the pager finds
the physical page number of a special table call a "section table.”
The ' secticnm table may coantair as many as S12 entries, each of which
is 2 new section pointer. Bits 9 through 17 of the origimal sactien
pointer furnish an index into the saction tabla. The indicated
location holdés a new section pointer (no-access, shared, immediata,
or indirect) which will be evaluated appropriately.

S=X Cliser saven Ty
mEx JelT o
sectizn oiTces
4 Clisgr @ven
oy its 18235 ;
I Yt ry Srared e secm 3
TamsTar . paoes I Pizmas |
_ anle ! Sec===
Proceas 440 eanle
X
Y :
/ ' /
Indiress Thiz is a new
secziss sge=s .
ioear =ion poinTer

Indirect Section Pointer Structure
Figure 21 57 o3
<24>

Document on the KL Processor
-28-5tyle Paging

Map Pointers

As with section pointers, the treatment of this pointer varies
depending on the first 3 bits:

if the first 3 bits are... then the pointer is...
gaa no-access
481 immediats
g1l3 shared
- g1l indirect

2.2.2.1 No-access pointers

No-Access Map Pointer

Figure 22

This pointer indicates that the specified virtual page is not
part of the requesting process. The result is a page fault.

No-access pointers are used to prevent a process from using
illegal and unassigned pages.

2.2.2.2 Immediate map pointers

HOT ™R R 25700
a 234 8 = 17 18 =23 35

Immediate Map Pointer

Figure 23

25>

Document on the KL Précesscr
-28-Style Paging

A given page may reside either in core or on disk. If it's inm
core, pointer bits 12-22 are zero, and. the page's physical number is
held in Dbigs 23-35 of the map pointer. These 13 bits are

concatenatad with the original 9 bit page index to provide the final
physical address.

If the page is om disk instead, them bits 12-22 are nom-zers.

This condition forces the microcode to issue a page fault, in

response to which the monitor uses bits 12-3Y as the disk address of
the desired page.

Sectiom pointer

- c— Ly
Page |cffser is vizsuzal Prysical
map | Fage nuber Page
i
|
-
t 3
/
mesiate .
=y
sointar
o7, 0336

Immediate Map Pointer Structure .
Figure 24

Immediat=s map pointers are used for privats pages, l.e.

sages
belonging to exactly one process.

2.2.2.3 Shared map pointers

2 lofwd [e OTEX 10 2T IISOTON CONmDNE
FAGE NDPESS TR MAFPREG

Shared Map Pointer
Figure 25

<286>

Document on the XL Processar
-20-Style Paging

Shared map pointers provide an index into the system's S?PT.
The SPT ‘location thus specified contains the 13-bit physical page
number of the desired virtual page. (See the description of shared
section pointers for more detail on this.)

l - ¢ Cffsez miven B

Iy
Sec==cn mimeer ! oy bizs 18-13
. | of map
i Shared | Pointer
; I pages i
Page |9fSset given by table i Physical
=ap }virzal page ; sa
| rumber | Page
§ v
L_/’—‘ /
//‘ : 57 0387
/’ |
Shared map .
seinter Shared Map Pointer Structure
Figure 26

A shared map pointer is used for a page that belongs to several
different processes. For instance, suppcse that a particular page
contains only executable code that is part of a compiler. Several
different processes may be compiling at any given time, so the
various page maps will each contain a shared map pointer to the
shared page. By doing this, the system can swap out the page and
painlessly inform all interested processes simply by <changing the
single SPT pointer. If immediate ©pointers were used instead of
shared pointers, the system would be forced to find all page maps
using that page and change them individually.

Another use of shared pointers arises from TOPS-20'S treatment
of disk I/0. When a program uses a page from a disk file, that page
is considered shared between the program and the file; the file 1is
viewed as a process. in brief, when a file is opened, its indeX
Block (XB) is read into core, and its format is the same as a page
map. Initially, all the XB pointers are immediate. Now supposa the
user maps process page 58 to correspond to file page 28. This
results in the disk address of file page 20 being placed in the SPT.
Then entry 56 of the user page-map and entry 28 of the file's XB are
Both <changed to shared pointers so both now use the same SPT word.
When the page is referenced, then the page is read in and the S?PT
entry is changed to a core address.

The beauty of this mechanism is that TOPS-28 uses the same copy
of the XB for every process that uses the file. Por instance,
Suppose a new process decides to use our file, specifically page 28.
The system need not read in the page again; instead, the new

27>

Document on the XL Processor
-28-Style Paging

s

Process's page-map is given the shared pointer from the X3B. When
that pointer is used, the in-cora copy of the page is automatically
referenced, thanks to the information in the SPT.

2.2.2.4 Indirect map Pointer

3 ol e 9oPnE: Mz ST T T LTI CoNTDmG
Dorx . PAGE ADRESS OF A HAFFDG &2

e 234+ & ¥ pa B i3 b1

07 a4Qu
Indirect Map Pointar

Figure 27

The pointer's SPT index directs the Dager ts an SPT entry, as
was done with shared map poiatsrs. In the case of indirec=
pointers, thas entry contains the paysical page address of a
"mapping table®. ,

The mapping table, in turnm, contains up to 512 entries. One af
these entries is selected by the 9 bit mapping table index {pointer
bits $-17). The resulting address contains a new Dointer ta be
evaluated.

o=
Shazred I
Sezzien ¢ Faces Cotsme
cineer I tanle give
acw CZses civen Mooy oy mes
e by vis=al table (917
o — Bt - o= =z
| — pmimes
PY / ° .
/ /
Indirees ~s isa
TED Sointe e mEm
M- -
Indirect Map Pointer Structure o7 0338

Figure 28
<28>

Document on the KL Processor
-28~Style Paging

There are several occasions for usz of indirect pointers. One
of these 1is the case of process A examining a page in process B.
For the sake of argument, suppose A's page 179 1is mapped to
correspond to B's page 36. When the mapping occurs, entry 134 in
A's page map becomes an indirect pointer. At the same time, an SPT
word is loaded with the address of B's Page—-map; the SPT address aof
the word is put intc the indirect pointar. Then bits 9-17 of the
pointer are loaded with 36 (the Page number of B's page).

-

<29>

Document on the KL Processor

KL HARDWARE
KL Hardware
| EBOX
Pront—end
ILFYIIE
- 7//// .
o ZSax P 1/C subsystem
Itfﬁ%€2 Diagmestic
pitriTrieg
MBox
Cous
tsm
sudsyscus Data chacneis
o7 o383

The Ebox (Executiom box) has twe basic purposes. Fizrst, it
must control execution of program instructions from memory. Seccnd,
it must interface non-channel I/0 devices to memory. :

A lock at the XL configuration. diagram in Figure 1 reveals thakt
the Ibox has three links. to the ocutside world. These are the Ebus,
the E/M interface, and the diagnostic bus.

. The Ebus links the Ebox to the system's I/0 devices and the
- Front End. The Ebus carries all control informaticn from the C2U to
the output devices. Additionally, the Ebus transmits data to those
devices that do not have a data-channel. Similarly, all devices
send control information back to the (BT through the Ebus, and
non-channel devices send data via the same route.

The E/M interface connects the Ebox o the Mbox. The
information carried across this set of links is not normally of
interest to the programmer, but typical signals include the 22 bits
©f an address desired by the Ebox, a signal indicating whether that
address is virtual or physical, and signals describing the nature of
an Mbox-detected page fault.

Finally, the diagnostic bus connects the Ebus to the conscle

front end. The controlling PDP-1l uses this bus to bootstrap the XKL
and to gather information about the RL's health {(or lack of it).

<38>

Document on the RL Processor
Ebox

The Ebox consists of Emitter-Coupled Logic (ECL). This
technology is wused because of its high speed, which was gained at
the expense of considerable power drain.

The following components are found in the Ebox of any EKL-based

system:
* arithmetic logic
* accumulator blocks
* Ebus centrol logic
*~ microcode and microprocessor
* Program Counter (PC)
* metars

The following sections of this chapter provide further details
on the accumulator blocks, the microcode, the PC, and the KL meters.

Accumulator Blocks

The accumulator blocks are variously called AC blocks, fast
ACs, Fast Memory (FM), or fast-memecry blocks. In this text we'll
refer to them as the AC blocks.

The KAlZ processor was equipped with one set of 16 ACs. This
meant that the monitor had :o save these ACs whenever an interrupt
Or trap happened, since the monitor was forced to use the same
accumulators as the user program.

To save this overhead the XI was given four blocks of 16 ACs.
Block @ was permanently assigned to any exec-mode program, but user
programs could be given any of the four blocks. The TOPS-1§
convention gave block 1 to the current user and left blocks 2 and 3
unused. (The unused blocks could, however, be used by real-time
programs. 1If such a program wantad to use Block 2, for instance, it
could take advantage of its user I/0 privileges to issue a DATAO PAG
instruction to switch to the desired block.)

KL processors are built with eight sets of 16 accumulators. KL
software can better use multiple AC blocks because the KL, unlike
the KI, permits both user- and exec-mode programs to use any of the
eight blocks. TOPS-13 assigns the blocks as follows:

mOSt monitor operations (cf. 2 and 3)
current user program
Scanner interrupt-level code
disk interrupt-level code

-6 unused, available for realtime
reserved for use by the microcode

W E®

<31>

Document on the KL Procassor
Ebox

The TOPS-24 assignments are:

4 exec-mode programs

1 user-mode or previous context exec ACs
2-3 unused

& ‘KL paging

7 raserved for use by the microcode

You will periodically see references in DEC documentation to
"previous context ACs" and "“current context ACs." This distinction
relates to the PXCT (Previous context eXeCuTe) hardware—instruction,
wiich is similar in concept to the exec-mode XCT of the RKI. PXCT is
described in the Hardware Reference Manual.

Microcode

The KL's operation is gcverned by microcode. While there are
several microstores ia various parts of the machiae, this discussion
centers on the CRAM. (Control RAM) and the DRAM (Dispatch RAM).
Thesa two 2RAMs (Random Access Memories) form the instruction
execution logic. They are writeable semiconductor memories that are
loaded by the consocla front end processor winen the system is brought
up.

The CRAM is 2948 words long, with each word 84 bits wide. It
contains the microprogram that implements the DECsystem—1d or =23
instruction set, priority iaterrupts, etc. To give you an idea of
the things ccntrolled by the CRAM program, here is a list of some of
the program modules of the microcode:

¢ Startup and stop handler = called at the end of each instruction
to look for new PIs, ets.

e Effective address manager — computes an instruction's effective
address using the instruction's I, X, and Y fields. (It does not,
however, compute the corresponding physical address;
virtual-to-physical mapping is done by the Mbox).

& Executor routine - contains the separate subroutines that
implement specific =18 or -29 instructions (e.g. half-word moves
and stack manipulation).

& Priority interrupt handler -~ checks if a PT has been reguested.
It is called from various points in EA calculation, and during
some long instructions such as BLT (thus preventing lengthy
operations from seriously delaying interrupt handling).

e Page fault handler - called when the Mbox can't resolve a
virtual-to-physical address translation for some reason (e.g. the
access-allowed bit being @ for a virtual page).

e Input - output handler - generates any Ebus dialogue required by
I/0 instructions (DATAx, CONx).

32>

Document on the KL Processecr
Ebox

The Dispatch RAM (DRAM) is 512 words long by 24 bits wide. The
CRAM program uses the DRAM to decide how to process a given =18 or
~20 instruction by obtaining, from the DRAM, the address of the
specific CRAM routine that handles the instruction. For instance,
suppose the current instruction is a MOVEI, for which the opcode 1is
281. The CRAM would first compute the effective address of the
instruction (regardlsss of the fact that it is a MOVEI; <+the EA is
the <first step in processing amy instruction). Then the CRAM
obtains the address of the MOVEI subprogram from DRAM word 281, and
jumss to ik, Similarly, if the instruction was a MOVE (opcode 2982),
the dispatch address would come from DRAM word 286. In other words,
the DRAM's entries are indexed by instruction opcode.

PC-Word

The KL PC word format is identical to that of the KI. It's
described in the Hardware Reference Manual.

KL Clocks

The KL processor contains four programmable clocks. They are
the:

interval timer

time basse

accounting meters .
performance analysis counter

o000

The clocks are controlled by use of the three I/0 device-codes
TIM, MTR, and PAG. All hardware clock logic is ECL and is contained
by the XL mainframe with the Ebox and Mbox.

The following presents a more detailed view of each of the KL
clocks. '

Interval Timer

The interval timer is similar in function to +the DR1# clock.
The timer can, at the programmer's option, interrupt on any desired
PI level. The resolution of the clock is 18 microseconds, and the
interval is programmable between 18 microseconds and 48.95
millisaconds. :)

The interval timer comprises a 12-bit counter and a period

register. The period register is 1loaded by program control.and
raflects the desired freguency of interrupt. As mentioned earlier,

<33>

Document on the XL Processor
' Ebox

the - frequency can range from 14 microseconds to 48.95 millisaconds
in increments of 19 microseconds. If the program sets the period
counter to four, the timer will go off every four increments, i.e.
every 40 microseconds. When the timer goes off it causes a vectored

priority interrupt %o EPT word 514. The interrupt occurs on the
clock's program-assigned PI lavel.

The interval timer is contrslled and ‘intarctogated by use of the

instructions CONO TIM and CONI TIM respectively.

M

Time Base

The time base is used to measure long-term elapsed time with
one microsecond resolution. It offers accuracy of +-.885%, which
amounts to 2 maximum of five seconds drift over 24 hours.

The time base is a 6d-bit clock. Its length permits it o
count intervals of 9148 vyears, after which it unfortunately
overflows. The time base 1is incremented every microsecond.
Theoretically, the 68-bit count could be maintained in the EPT and
incrementad there every microsecond. The increment isn't done this
way; though, because this would result in a blizzard of memory
references to the EPT. To hold down the overhead, the time base's
count is incremented in a 16-bit register contained in the Ebox.
Only wnen the count carries into the high order bit of this register
is the count added to the 68-bit =otal in the EPT, af-er which the
l6-pbit register is cleared. The ¢isadvantage of this technicue is
that the current time is not immediately available by looking at the
EPT. For that reasan, the system provides an instruction ("DATAT
TIM") that produces the current time. The 63-bit quantity is held
in E2MP words 514 and S1l.

The time base is controlled and interrogated by the "DATAI
TIM™, ™"CONG MTR*, "RDTIME" (read time-base doubleword), and "CONI
MTR" instructions.

<34>

Document on the KL Processor
Ebox

Accounting Meters

The accounting meters are, unsurprisingly, --intended for job
accounting. They consist of a Ebox busy meter and a memory cycle
meter. As they can be programmed to shu: off during PI processing,
they offer an extremely reproducidble way of billing users and
comparing program performance.

- These are two 6@-bit meters. One of these, +the Ebox busy
meter, increments while the Ebox is exacuting microcode. The other

meter, the Mbox cycle meter, counts the number of times - the Ebox
references memory through the Mbox.

The accounting meters are similar to the time base in that the
Ebcx contains two 16-bit registers (one for each meter), and the
68-bit values reside in memory. The Ebox busy meter is kept in UPT
words 584 and 585, while the Mbox cycle meter occupies UPT words 586
and 587. 1In this connection, it is interesting to note that the
time base is kept in the EPT (as it is a system-wide count), while
the accounting meters are put in the UPT (since they contain
information about a particular process).

The relevant hardware instructions are "CONO MTR", "CONI MTR",
"DATAI MTR" (alsc called "RDEACT"), "BLKI MTR", ("RDMACT"), and
"DATAQ PAG" (which causes the metars tc be saved on a contex:
Switch).

<35>

Document omr the KL Processor
Eng

Performance Analysis Counter

The performance analysis counter is a built-in hardware
moniter. It 1is designed to gather information that would be
difficult or impossible to get using software pProbes. The
performance analysis counter Permits sophisticatad systenm
R2asurements to be made. It offers advantages not available with
software monitoring. For instance, it does not interfeare with
System operation. Another feature is the ability to identify events
happening at the sub-microsecond level.

This:Counter is a 8§8-bit counter that is maintained ia EPT
words S12 and S13.

Use of the counter, being rather complex, is not intended for
the inexperienced. For that reason this document does not describe
the counter in detail, but you might wish to note that the counter
can measure combinations of the following conditions:

User mode

PI level active
cache miss

cache writeback
cache sweep
Ehox-Mbox reguest
microprogram avent
_Channel Bbusy

ECL probe input

LA N NN N

The counter is contrclled by "BLKO TIM®™ (or "WRPAE"), and "SLXT
TIM™ (cr "RDPERF™) . '

Complete datails on the counter's use can be found in the
hardware document entitled Meters-OUnit Description, EXR-MTR-UD-381.

ba 2 2 2

The following two sections describe TOPS-29 and TOPS-18 metar
usage conventions.

TOPS-10 Meter Usage

The following description applies to the 6.43 monitor.

Interval timer Provides the jiffy clock tick (every 6dth of a
second in 68 hz countries, every 58th o
second in 54 hz countries).

Time base Recocrds time of day, and opticnally, job
accounting if feature test switch FTEMRT is zero.

<36>

£ =
e

Document on the RL Processor

Ebozx ' ’

Accounting meters

Performance meter

TOPS~20 Meter Usage

Job accounting if feature test switch FTEMRT is
non-zero.
Accessible using the PERF. monitor call.

As of the Release 2 monitor, the following usage prevailed.

Interval timer

Time base

Accounting meters
Performance meters

Interrupts every millisecond. The interrupt
handler maintains a count of the number of
interrupts, and upon occurrence of the 20th tick
control is given to the monitor overhead cycle.
Used for time-of-day maintenance and job
acecounting.

Not used

not used

<37>

Document on the KL Processor

Ebox
MBOX
Pronteend
subsystas
e I/ sussyseam
- !}é””ilgc ain;s:st.‘.c
ISSNARS]
0000
%’/ SSus
2
bus
Memozy
subsystem Data channsls

o7 0353

The job of the Mbox is to connect devices =g memory. all
KL=-based processors require the Ebox o access memory through the
Mbox. Additionally, some systems (the 1890, 2848, and 2853) replace
the old DFl3/13C data=-channels with internal data-channels that are
connected to the Mbox instead of a memory port.

The external Mbox connections shown im Figure 1 are the E/M
interfaces, the Sbus, the Chbus (on some systems), and the diagnostic
tus. The E/M interface was described in Section 3.1. The Sbtus
connects the Mbox to the memory subsystem. The Cbus links the Mbox
to as many as 8 REZS controllers and serves as a data-channel. The
diagnostic bus permits the Front Ead to control Mbox operation and
determine ¥box status.

The Mbox may contain the following components, depending upon
the system;
hardware page table
user base register
exec base register
cache memcry
Chus interface (internal channels)
Not all of these are present in any given system, as shown in this
table. Any compeonent not mentioned is present in all.

[N B IR N

<38>

Document on the XKL Processor

Mbox

Mbox 1088 1390 2248 2959
Cache Y b4 N Y
Internal channels N Y* b4 Y

* but may also contain e@xtarnal channels

These components were described in the introduction to Chapter
2. Familiarity with these descriptions will help to avoid confusion
resulting from use of terminology.

There are two ways for requests to enter the Mbox: through the
_Ebox/Mbox interface, or through the Cbus. Ebox requests are usually
in the form of virtual addresses (either user or exec) which must be
mapped ontc physical addresses by the Mbox. Cbus requests specify

physical addresses and thus bypass the gager. Cbus reads, however,
may uss the cache, thus involving the Mbox.

Hardware Page Table

Suppose the Ebox requests the contents of a particular virtual
address. Theoretically, the Mbox must read a saction pointer from a
process table, probably f£find an SPT word, ‘and read a page-map entry,
etc. If this procedure were used, the system would have to makea
many memory refarences whenever one was fequested, thus drastically
increasing access times.

The KI minimized this by having a 32-word associative memory.
Built of semiconductor memory and internal to the CPU, it could hold
the 32 most recently used Page-map entries for rapid future access.
The CPU only had to read the in-core page-map if the desired entry
was not in the associative memory.

The KL has a similar but improved technigque. Instead of an
associative memory, the Pager contains a hardware page table, which
is a high-speed semiconductor memory that holds as many as 512

entries from the exec- and user-process tables (page maps for
KL23s).

I'd be delighted to tell you that the virtual page number is
used as an index into the hardware page-table. For instance, it
would be nice if the mapping for user page @847 were found in
hardware page-table word 847. Unfortunately, it is not. Moreover,
it couldn't Possibly be if the page-table size is 512 entries, since
at any given time, the system can know about as many as 1924 virtual
Page mappings (512 for user, 512 for exec). :

** Preceding not done in
Tops-10 (uses KI-style
Paging)

<3%>

Document on the RL Processor
Mbox

-

The most direct possible solution would have been to use the
virtual page number as an index into the page~table, and simply
provide a status bit for each entry that indicated whether the
mapping was user or exec. If that were done, however, a new problem
would appear. The problem is that in any given process (whether
user or exac), there are usually many refarences to the first few
Pagas. If the simple scheme just described wers usad, it would mean
that a reference to user Bage 939 would be writtem in page-table
word @6d. Then, if the user process issued a monitor call, it would
be "highly 1likely that a memory reference would shortly be made to
exec page 868. That would cause the mapping for exec page 988 to be -
written over the usaer 98¢ mapping. Then when control was returned
to the usar, the mapping would have to be recomputed and stored back
into the page—table (thus wiping out exec 888's mapping again).
This wasted page-table refill activity is a component of
"thrashing.” -

To avoid thrashing, the page-table is structured in such a way
that the mapping for exec page 366 is in a different place from user
Page 99d. The procedure used is this. When the Mbox looks for an
entry in the hardwares page—table, it picks up the 9-bit virtual page
number from the virtual address. Next, it £lips bit 19 of the Bage
number (the second from the left as we view it) if, and only if, the
virtual reference was from user space. The resulting 9-bit number
is used as an index ints the pPage-table.

Por example, suppose the Mbox desires the mapping for exsc
virtual address 882874. The virtual page number is 882 (octal),
which is 0804008013 in binary.. Since -he address is exec, bit 19 is
not changed. Therefore the map data are either in word 882 of the
Page~table, or the data are not in the page-table at all. Ir the
latter case, the Mbox would have to determine the mar data using the
Process tables and then load it into the page-~table.

Alternatively, suppose the Mbox needs usar-virtual address
982382, The VPN is 862 (octal), or 3866946137 (binary). This time
the address is user, so bit 19 gets flipped. from 4 to 1, which laads
to 2 modified index of 819088618, or 282. In this ca2se, then, the
desired data are in page-table word 232, or else not in the
page-table at all. ‘

Please note that the virtual page numbers in these two examples
were the same (982). But because the addresses used wera from
different address spaces, the desired page-table entries were
different.

Analysis of this scheme would reveal that the format of the
KL's page-table is this: :

<48>

Document on the XL Processor
Mbox

4 - 3

Exec pages 000-177

or .
User pages 200-377 ?128 éntries

A

Exec pages 200-377
or ? 128 entries
User pages 000-177

512 J
entries

VL

Exec pages 400-577 L
or rlzs entries

User pages 600-777

L

EXec pages 6Q0-777

or » 128 entries
User pages 400-577

KL Page Table

Cache Figure 29 D7 0330

The purpose of cache memory is to speed up instruction
execution time by substantially reducing the time needed for the
average memory reference. This 1is accomplished by placing a
high-speed semiconductor memory (the "cache") inside the Mbox. The
Cache can hold up to 2X - words from core. Whenever the program
accesses a word held in cache, the request is satisfied in 168
nanoseconds, as opposed to a microsecond or more for a core
reference.

The success of this scheme depends on the quality of the
algorithm used to decide which 2K from core is Put into cache.
Wnich locations are-cached changes constantly with varying system
demands, but the algorithm is based on the assumption that memory

<41>

Document on the XL Prbcessor
Mbox

references tend to be somewhat localized. As an example, consider a
typical program's structure. Usually, the flow of control is linear
within a narrow scope; if an instruction has just been exacuted
from locatien N, there is a good chance that there will soon be an
instruction executed from location N+l.

Tem e miod w -

In practice, this assumction has wocked out quite well. The

2 e e

*hic rate™ for the EL's cache memory is better than 3d%. In other
wozés,.any given memory reference has nine chances in ten of being
satisfied from cache, thus saving a great deal of time. The

algorithm used in the KL was developed at Stanford Oniversity using
extansive modelling. :

Naots

The cache contents are addressad
by physical addresses. Thus cache
comes into play only after a virtumal
address has been conver ted to
physical.

As menticned earlier, the cache can hold up to 2048 words from
core memory. ' The cache is arranged in four pages, as follows:

Page 0 Page 1 ' Page 2 Page 3

512 wds 312 wds 512 wés. 512 wds:

D7 §g391
Cache Pages

Figure 30

For simplicity, let us consider one of these four pages and the
format of the data stored within it. The structure to be described
is identical for each of the four pages of cache.

Each cache page has a directory associated with it. A
directory consists of 128 entries, each entry being 13 bits wide. a
single directory entry contains information concerning four words of
data within the cache page.

<42>

Document on the XL Processor
Mbozx

This gives rise to a structure that looks 1like this. (For
convenience the diagram uses decimal arithmetic.)

Cache word 0

—~— Dlrectory Cache word 1
entry
0 Cache word 2

Cache word 3

Cache word 4

Directory Cache wordbs
entr
1 Cache word 6

Cache word 7

L 3
®
L

L4

Cache word 508

Directory Cache word 509
antry
127 Cache word 510

Cache word 511

Structure of the Cache Page D7 0392

Figure 31

A four-word cell described by a single directory entry is
called a "guadword”. The 13-bit directory entry for a quadword
contains the physical page number of the page in core from which the
quadword came. In turn, the position of a word within a cache page

is always the same as the position of the word in its original page
of core.

Let's consider a specific, somewhat simplified example. Assume
for the moment that we’ have only one page of cache and its
associated directory, rather than the four that are really provided
in the hardware. Suppose that the Ebox has requested the contents

<43>

Document on the XKL Procassor
Mbox

of physical address 14787882, a 22-bi: address. The Mbox has first
to determine if it must read core location 14787082, or better, if
that location is already in cache. The first step is to split the
physical address into a 13-bit physical page number (in this case
14767) and a 9-bit index into the page (892). In other words, we
are concerned ' with the 862nd word of physical page 14787. If this
word is already cached, then +hs valy Pplace it could be in onor
single cache page would be in word 842 {(because “the position of a
worg within a cache page is always the same as the position of the
word in its original page"). The Mbox must therefore examine the
13-bit directory entry corresponding to the 962nd word of the page
and compare it to the desired physical page number of 14787. If the
directory entry holds 14787, then the #92nd cache page werd is
indeed the word we're looking for. If the comparison fails, then we
have no choice but to read physical core.

It might be worthwhile to examine the significance of quadwords
in some detail. Since there is exactly one directory entry for each
quadword, it follows that all four words in the quadword must come
from the same physical Page. Moreover, keep in mind that a word
must have the same position in the cache page that it had iz the
physical core page. These <facts imply that the four words in a
singls quadword are physically contiguous in core as well as in
caclhe. '

The example just traced was simplified by the omission of
three-fourths of the cache pages. In a real systam with four pages
(2K) of cache, a given physical word might actually reside in any
one of the four pages of cache. Lat us return to our example for a
moment. I£ we need physical address 14787902, we have to Keep in
mind the physical page number (L4787) and the index into that page
(382). If the word resides in any of the four cache pages, we know
it has to be in word 982 of whichever Page holds it, just as we knew
earlier that it had to be in word 882 of the single cache page-.
Therefore, the Mbox has to compare the desired physical page number
of 14787 to the contents of four directory entries, one for word 842
of each of the four cache pages. If a match is found for any one,
then the data is taken from the proper page. Qtherwise, physical
core must be reaad.

The system just described should serve to introduce you to the
XL implementaticn af - cache. There ars several further
characteristics that deserve mention.

* KL cache is not a write-through cache. If the Ebox instructs the
Mbox to write a given locaticn, the location is modified only in
cache. The corresponding physical location will be updated only
when the monitor instructs the Mbox to sweep cache, or when a
Guadword must be emptied to make room for new data. This fact
has considerable impertance for multi-processor KL systems.

* RL cache is organized to handle physical addresses. The cache

<44>

Document on the XKL Processor
Mbox

scheme used on some other large systems, however, is oriented to
virtual addresses. Stanford's modelling demonstrated that the

use of virtual addresses in the cache algorithm is less efficient
than use of physical addresses.

* The hardware's use of the cache is dependent upon the Mbox
microcode. This microcode is normally set up to suppoert use of .
all four cache pages and four-way interleaving. If gdesired

...... 2l T g

Rowever, some or 21l of the cache can be turned off. This option

is exercised when the front end is initializing the =18 at system
startup. .

There are three different operations to which the monitor <can
subject the cache: invalidation, validation, and unloading. Any of
these operations can be performed on the entire cache, or on entries
belonging to a single page.

To invalidate a location is simply to «clear its wvalid and
written bits, all of which has the effect of simply emptying the
location. Validation of a location means that if an entry has been
written since it was brought in from memory, then the modified
contents must be written back into physical core. This situation
arises from the fact that the cache is not a writa=through cache.
Finally, the unlcading of a location first requires the Mbox to
validate the location, then to invalidate. 1In other words. the
location is first written into core if it has ‘been changed since
being loaded, then the location is emptied.

Core Status Table (KL;style only)

The Core Status Table (CST) is indexed by physical page number
and contains one word for each physical core page. Each word has
the following format:

Page-modified
bit
Page . Process //
age - use register
0 56 34 35
CsT Datg Word D7 0393
Figure 32

The microcode references the CST only when the pager has tc get
data from memory (as opposed to finding it in cache). When this
happens, the CST entry for the referenced page is checked. If age
stamp bits 8-5 are non-zero, the reference proceeds. However, if
the ags stamp is zero, a page fault occurs.

<45>

Document on the KL Processor
Mbox

HBere's why. Periodically, the monitor may decide to housekeep
system storage, which results in various proceass pages being placed
on the system free list. Theoretically, the monitor could write
these pages on disk and change the pointer for that page +o reflact
the change. This is not good, though; there's ao guarantee that
all the pages just released will immediately be given away agaia.
So If a page is not reassigned, and the last owner of the page tries
te use it again, the monitor would have to read the pPage back from
disk, even though it's still in cores!

The CST gets around this problem. When a page is added to the
free 1list, the pointer to that page is left intact. The monitor
only zerces the age stamp in that Page's CST, and purges the page's
data from cache. ter this, &two situations can arise. First,
suppose the page is assigned to another process. At that time, the
page's contents are written to disk (if necessary), the old pointer
is changed, and the mapping proceeds. No time is lost over the
scheme described earlier; things just happen later. BHowever,
Suppose the page isn't reassigned, and the original owner -tries &o
use the page again. The pager won't £find the desired word in cache,
because cache was flushed when the page was added to the free list.
Therefore, the pager checks &the GCST, finds &the bits ze2rg, angd
generates & page fault. The monitor then takes over, determines
what's happened, and gives the Page back to the process by simply
stamping bits @-3 of the CST entry. Unnecessary writas and reads
are avoided..

CST entries alsoc contain a Process Use Registar (PUR) and a
"page modified™ bit. The PUR reflects the way a page is being
shared by different processes. The page modified bit is set waen
Page data is changed. When a page must be swapped out, it needs to
De written only if it's been changed; otherwise, the original copy
on disk is still valid. At page-out time, the monitor decides aon
the need for swap-out by checking bit 35 of the CST entry f£or the
Bage under consideration.

°

Internal Channeis (Cbus)

The Cbus, and associated "internal channels®, replace the older
DFl14/DF18C/DAS33 data-channels. Cbus features include such
advantages as increased reliability and lower cost. From a system
programmer's point of view, there are two principal differences.

First, the Cbus permits up to eight RH28 controllers to attach
‘£o the Mbox. Each RH28 effectively has its own data-channel in the
form of a Cbus connection. And since each controller has its own
channel, <they can all be transferring simultaneously. 1In older
configurations, to get the same capability would reguire that each

<486>

Document on the KL Processor
Mbozx

controller have its own DFlg-styls data—channel, which leads to
considerable expense.

Second, the Mbox provides a sixteen-word buffer for each

possible controller on the Cbus. This buffer provides protection
against data overruns.

. A lock at page 48 reveals that the Cbus departs significantly
from external channels in that the Chus communicates solely with the
Mbox, which in turn handles all transfers to or from the memory
subsystem. External channels had direct connections to memory
pores. Although the Mbox might seem to be a bottleneck in
Cbus-equipped systems, it has been determined by testing that the
Cbus runs no greater risk of overrun than external channels did.

Unfortunately, not all channel devices can be attached to the
Cbus. Notable exceptions include such DECsystem-19 devices as the
RHE1Z disk controller and the DX18 controller for TU79 tape. Systems
that have these devices are equipped with internal channels where
possible, and external channels when needed.

A fringe benefit of channeling data through the Cbus is that
channel reads can get data from cache. This is impossible using
external channels, since the data path avoids the Mbox. The
advantage ©partially extends to output; although the Cbus cannot
write cache, it does cause selactive invalidation of cache words
that have been changed. (Input is not directad to cache because
cache would tend to be flooded in an I/0 environment.) Writes using
external channels required a cache sweep following the transfer.

<47>

Document on the KL Processor

MEMORY SUBSYSTEM

b S
Pronteoend
subsyszem
Dox I/0 subsystem
Diagnostic
TTUTTT
T/% 1nvecsace s
EEENANEI
Max
SSus
Shus
;ZZOQZV»
777 i

The implementation of core memory varies
the DECsystem-ld computers and the
features "internal memory”, while the =13 line

are external to the CPU.

Memory subsystem 1888 139@ 2944 2958

Internal memory N N b4 p4
DMA b4 Y N N
External channels p 4 S* N N

* Sometimes -- see Section 3.2.4

<48>

Mbox

o7 4353

considerably between
DECSYSTEM-29s. The =28 line
uses

memcries that

Document on the XL Processor
Memory Subsystem

External Memories

. The external memories in use with KL systems are the MGlSs and
MHE1ds. The - MG13 is normally used with 12840 systems, while 1994

Systems are being shipped with MHl@s. The two memories are Similar
internally, as follows:

Port 0O
CoN Port
Bank 0 TROL rt 1
(128K) LER Port 2
0
Port 3
Port 4
coN
Bank 1 TROL Port S
(128) ?-ER cort. 6
Port 7

An MH10 Memory
Figure 33

A single MGld or MH1G consists of two banks of 64/12Bkwords, each
bank having its own controller. Thus any given memory location can
be serviced by exactly one controller. Since a controller <can
handle at most one request at a time, simultanecus requests for two
locations within a single bank will result in one of the requests
waiting until the other is complete. On the other hand, the two
controllers operate completely independently of one another.
Therefore, simultaneous requests can be made and serviced as long as
the two locations needed are in different banks.

Note also that the memory has eight ports. These are priority
ordered with ports @ and 1 sharing highest priority, ports 2 and 3
sharing second priority, and ports 4 through 7 having the lowest. A

reqguest coming in on any port can be sent to whichever controller is
required. :

The following diagram represents a typical 1894 memory
configuration.

<49>

Document on the XL Processor
Memory Subsystem

Sbus
DM
Bl 1] 2! 3l Zbuses
MGI0/MI10 s
Back £ 3 g |
R
ey T ks
2ank L s } ! t
7 b
. | ’
ws0 Ixzazzal das
/ME10 ¢ e s N P N
:4‘?'- Sxannel 1 !
Sazk £ & o -~ - et
R- pa
-~ -i
Samk 1 /=y T '
S =
37 0395

Typical 1020 Memory Configuration
Figure 34

Note that the use of external memories dictatess the presance of
a DMA. This box interfaces the Sbus (one word wide) to the Ffour
Kbuses, each of which is also one word wide. In =his way the system
effactively has a four-word data path into the DMA and a one-word
data path between the DMA and the Mbox. The <four Rbuses are
important to the correct operation of interleaving, which is
normally four-way. This is best illustrated by means of an example.
Consider the following segquence of events: ‘

l. The Ebox asks the Mbox for the contents of a memory
location. For the sake of example, suppose that the
location needed is physical address 17dd.

2. The Mbox attempts to satisfy the request by loocking in
cache. Frequently the desired data will already be in
Cache, in which case no refarence to physical core need be
made. Suppose, however, that location 1768 is not in any
of the four cache pages. This leads +o Step 3.

<58>

Document on the KL Processor
Memory Subsystem

3. Now the Mbox will read location 1788 from physical core
into cache. In fact, not only will location 1788 be
cached, but so will the other three words in the gquadword.
Thus the Mbox needs to read words 1788, 1761, 1742, and
1783. To do this, the Mbox requests the DMA ({Direct Memory

— ~ Access) to read the desired four words and pass them across
the Sbus to the Mbox for caching.

4. The DMA proceeds to issue four simultaneous ragquests, one
for each of its four Kbuses. The memories were configured
for four-way interleaving when the system was first brought
up, which guarantees that word 1768 will reside in memory 8
bank @, word 1781 will be in memory @ bank 1, 1782 will be
in memory 1 bank 8, and 1783 will be in memory 1 bank 1.
Since no two of these words are in the same bank, the £four
requests will be handled by four different controllers, in
parallel. Note that the first request issued, and thus the
first to be honorad, is for the address originally needed.
In this way, further processing can take place while the
rest of the quadword is being filled.

3. As the data is sent back to the DMA from the memories, the
DMA passes the information aleng to the Mbox. Thus the
guadword is fillad in cache, and ultimatesly the original
Ebox request is satisfied.

6. This concludes our examination of the Ebox request.
However, it is worth noting that in many cases the Ebox
will shortly request the word adjacent to the original
word, in this case 1781. If that happens, the Mbox will
£ind that 1781 is in cache, thus obviating most of the work
outlined above with considerable saving of time.

It is apparent from this example that four-way interleaving on
a KL system 1is powerfully tied to the concept of cache guadwords.
It is for this reason that system throughput suffers on caching
systems whose memories are configured for either two-way or no-way
interleaving.

As 2a final note, it should be mentioned that memory
configuration depends on the program in the Mbox microcode. The
choice of configuration is made when the system is brought up.

<51>

Document on the KL Processsor
Memory Subsystem

Internal Memories

DECSYSTEM-28 machines feature internal memories. These offer
improved reliability and lower cost than external memories. So far,
the only internal memories offered have been the MA28 and the MB23.

A close look 2f an intsrpnal memory reweals +hat +he MA2Z is
similar to the MGld. Like the MG13, an MA23 has two memory banks,
eack with its own controller. The two controllers operate
independently of each other, thus providing the ability to overlap
within a single unit of MA2§ memory. However, the MA28 contains no
ports like those of the MGl3. There is no need for them, as -24
Systems support no devices having extarnal data-channels, so all
memory requests are handled by the Mbox. These requests, in turn,
are fed back and forth through the Sbus. 23y the same - token, the
MB28 is analogous to the MEld.

Neither is there a DMA on -28 system. Instead, the various
Bemory controllers communicate dirsctly with the Mbox.

(Channel I/0 moves through
Cous and Mbox, thence t3 Sbus)

Sbus
MA20/MB23
128K
MA20/MB20
128K
Typical 2040 Memery Configuration D7 0396

Figure 35

<52>

Document on the KL Processor
Memeory Subsystem -

FRONT-END SUBSYSTEM

sy,
_ . f s:zﬁs'isiav/;
Vi
Box T - I/0 subsystem
Diagnestic
1
£/% intersace Bus
IRERERNI
MBox
Chus
iShus
Memory
sussyszem Data shannels)
07 0353
Front-end 1888 139¢ 2949 2858
Unit-record equipment N N b4 b4
Communications gear N S* Y p4

* Sometimes

The principal ingredient of the front-end subsystem 1is the
PDP-ll computer. Like any PDP-ll, it is connected to its devices by
its UNIBUS as shown in Figure 36.

The DTE is the interface between the Front End and the XKL CPU.
The primary purpose of the DTE is to permit the Front End to control
and monitor the operation of the KL CPU. The KL can support up to
four DTEs.

The DTE provides the following functions:

e examine or deposit of words in specified areas of KL memory

e high speed, simultaneous, two-way data transfer (so-called "byte
ransfers®)

e doorbell interrupts: the -1l can interrupt the KL and vice versa

<53>

°? 9

Document on the XL Processor
Front End Subsystem

Floow disic {-20) -
= =11 =il rahd
= DECsxne (=10 e
i ;
| f
o=s !
H |
! :
= =0
| i
[DiaguosTic]
! l Sus i
e
f ; !
1 m=me zmsl N S
| i P ~
' - SRR l
— !
O F204/06 diak <=ive
r-‘.l E
| = L- !
S | I t
{ =10/28 :
| 1
| IS

Generalized Front-End Subsystem

57 0339
Figure 386

Additionally, a specially enabled DTE can:
& examine or deposit words into any area of KL memory regardless of

protection;
control and obtain

status from from the XL CP2U;

let the =11 bootstrap the KL:;

e let the XKL bootstrap the -1l1.

The DTE has two operating modes: restricted and privileged.

This is determined

by the setting of a manual switch on the DTE.

PDP-1l attached to a restricted DTE can perform the £irst set of

Frym min 3 -

functisn listed on Page 52, while a privileged DTE/-11 pair can do
everything listed on Page 52. WNormally only the master -1l (usually
attached to DTEZ) is privileged.

<54>

Document on the XL Processor
Front End Subsystem

There are two different ways the DTE lets an -11 communicate
with KL memory. First, the =11 can use the examine/deposit feature,
which permits the -1l to read or write a single KL word. The other
way 1is with byte transfers, 1in which the DTE is responsible for

transferring a string of data to or from XL memory without tying up
either the XKL or =11 CPU.

—-—- Examines and deposits can always be made to any address within
windows defined in KL memory. The windows are specified by the XKL's
exec process tabla. There are two windows, known as the to=-KL area

and the <to-ll area. These differ in their availability to the two
processors, as follows:

Can KL write? Can =11 write?
to=RKL area b4 b4
to-1ll area b4 , N

A restricted front end cannot examine or deposit outside of the
windows. This permits the XL to protect itself from a wayward -11.
However, a privileged front end can examine and deposit anywhere in
KL memory, without regard for protection.

The other transfer mechanism is the byte transfer. It has the
following characteristics:
& Permits transfers to or from anywhere in XL memory:
e Byte size can be eight or sixteen bits, at the programmer's "
option;
e Supports simultaneous to-1l and to-KL transfers.

Once the transfer has been initiated, the DTE handles it
without further intervention from either CPU at the program level.
In other words, the KL monitor will not be interrupted wuntil the
transfer is complete. The DTE can recognize the end of the transfer
either by the transfer of a null byte or by expiration of a byte
counter. Transfer completion results 1in an interrupt on the
assigned PI level.

It is important to understand how the byte transfer 1is being
handled internally. It was stated in the preceding paragraph that
the KL monitor does not see an interrupt from the DTE until the
transfer is complete. This is true, but please note that the Ebox
is internally interrupted by the DTE for every byte passed across
the DTE. The interrupt comes. through on PI level 8, which does not
cause an interrupt that is visible to the operating system. The
effect of the level 8 interrupt is to force the Ebox to move a byte
between the DTE and the Mbox. Thus, every byte transferred through
the DTE results in a small amount of CPU overhead, but does not
reqguire monitor action.

<55>

Document on the XL Processor
. Front End Subsystam

Byte transfers are not limitad to the windows. This dces not
represent a security problem since in the case of a to-RKL byte
transfer the XL, and not the PDP-11, specifies the byte pointer and
thus the destination address in XL memory.

Both forms of tranmsfer require use of the Ebox, which inaplies
tha:_tg%-micrcccée must be ruomnimg. IL the aicrocode is inoperable,
a privileged =11 can use the DTE's diagnostic bus Eo. access ZL
memgry.

Both types of transfer (examine/deposit and byte transfer) are
controlled in part by locations in the exec process table. These
locations begin at octal 1448:

- 148 + 8*N To 11 byte pointer -
141 + 8*N To 18 byte pointer
142 + 8*N OTE-29 interrupt instruction
143 + 8% Reserved for DEC hardware
144 + 8%y Examine protsction word
145 + g*N Examine relocation word
146 + 8*N Deposit protaction word
147 + 8=*N Deposit relocation word

wiere N is iz the range 9-3 and denctes the DTE under considerationt

Bere is a more detailed description of, these locations.

e To-l1l byte pointer -— a byte pointer, set up in standard XL
format, that tells the DTE what data to transfer to the =1l1. The
painter dirscts the DTE to exec-virtual addresses. The length of
the string is determined either by 2 count or by the presence of
2 null byte at the end of the string, at the option of the
programmer.

¢ To-10 byte pointer -— same as to-1ll pointer, with the obvious
e;ception, that this pointer is used on to-XKL transfers from the
-1l1.

® DTE-2J interrupt instruction -— contains ‘the instruction that
will be performed as an interrupt instruction when the DTE
interrupts the XL. The DTE is a vectored-interrupt device, sao it
does not intsrrupt through EPT locations 48+2N and 41+2N as many

older devices do. 1Instead, the interrupt instruction is taken
from this location.

Please note that the interrupt causing this instruction to be
executed will be caused by events such as transfer complets and
inter-CPU doorbell. Level @ interrupts arising from byte
transfers will not go through this location; indeed, they will
not produce an interrupt visible to the operating system at all.

® Examine protection word -- contains the length of the to-11
window. The length is expressed in 36-bit words.

® Examine relocation word -- contains the beginning physical
address of the to-1l window.

¢ DLeposit protection word -- containg the length <¢f +the to-XL
window.

<56>

Document on the KL Processor
Front End Subsystem

e Deposit relocation word -- the physical address of the to-XL
window.

Certain front-end operations and equipment are found in all
forms of XL system while others are not. Section 3.4.1 describes

those features common &2 all RLs, while Section 3.4.2 and 3.4.3

describe the =14 and -29 Front Ends, respectively.

Common Front-End Qperations
Please study Figure 36 as you read this section.

All KL-basad systems rely on the Front End for at least two
basic functions. First, the =11 ls responSLble for initiating RL
CPU operations from a dead stop. This process involves setting up
KL status, 1loading all microstores, configuring KL memory, and
starting the monitor bootstrap. These operations are conducted
primarily across the diagnostic bus which is shown in Figure 36
connecting the Front End to both the Ebox and the Mbox. The second
Job of the =-11 is to support the console terminal by which an
operator can control the system. t is this terminal that governs
the -1l operating system and the tasks running under it. In
addition to controlling the =11 operating system, %the console
terminal can talk directly to TOPS-12 or TOPS-24, thus acting as a
terminal as well.

The Kkey element of these jobs is the PDP-ll's operating system.
The systems used vary somewhat with processor type, but all are
based on the RSX operating system. The currently supported
front-end monitor is RSX-28F. This system runs multiple tasks. One
task is the "command parser," which is the program that recognizes
commands typed in on the <console terminal. Other tasks include
RLINIT, which oversees initialization of the KL processor, and
KLINIK, which provides a telephonic link that permits diagnosis and
control of the RL from remote locations.

Devices associated with the Front End include the RH11 disk
controller, which supports RP94/96 disk drives. Current front-end
operations require the RH1l to be connected to a dual-ported disk of
which the other port is connected to a KL controller (RE1d or RH28).
There are both software and hardware interlocks to prevent the KL
and the -1l from interfering with one another. The disk used has
several tracks formatted in PDP-ll format, while the rest of the
disk is KL formatted. 1In addition to the RE1l, the Front End has
either a floppy disk drive or a DECtape drive. These are used as an
alternate bootstrap device if, for some reason, the disk cannot be
used, or contains obsolete data.

<57>

Document on the KL Processor
Front End Subsystenm

KL systems can be attached to up to four PDP-1lls. Only one of
these, however, can be the controlling front end. In order to
prevent conflicts between different =-1ls, the operations described
in this section can only be done using a "privileged" DTE. A DTE is
made "privileged” or "restricted” by the setting of a manual switch
located on the DTE. Restricted DTSs can still move data between the
¥l and the =1l; such transfars reguire the -11 +o communicata and
cooperate with the XL using a software protocsl, however, which
presupposes that it is already running Correctly. Only the
privileged Front End can alter the KL state without permission from
the KL itself. :

DECsystam-10 Front-End

The configuration of the =18 Front End depends upon the use
intended for it. The controlling Front End (i.e. that attached to
a privileged DTE) will have only those devices shown in Figure 36,
and does no more than what was mentioned in Seection 3.4.1.

Some -14s have multiple ODTEs. One of these will be Ethe

controlling Fromt. End, and the others are part of a DN87S
‘communiczations unit. Here is the structure of the DN87S;

2eres for 1S

asynehroasus ' 1
lines synsahrsnous
line
POE=-11 | <ll czz> SH1l oQll
QAT3Cs
- o
>4
-us 57 0197
DN87s Configuration
Figure 37

The DN87S includes such basies as -1l memory, the DTE, and the
PDP-1ll, since the machine couldn't function otherwise. In addition
it has DE1l and DQll line interfaces. The CH11 handles as many as L6

<58>

Document on the KL Processor
Front End Subsystem

asynchronous lines. The DQll provides space for a single
synchronous line for a remote station or link. The total capacity
of the DN87S is diagramed below. This permits attachment of
up to 112 asynchronous lines (using seven DElls), or twelve

synchronous 1lines (using 12 DQlls), or any combination. For
instance, one could run 64 asynchronous and 4 synchronmous lines on a

- single DN87S. (Combinations other than those shown are also allowed.

~ Note that the diagnostic bus is absent from Figure 37.

LINE MAXIMUMS PER DN87S

Max, No. of Max. No. of
Sync. Lines Async. Lines
0 112

64
32
12 0

<59>

Document on the KL Processor

Front End Subsystem
3.4.3 DECSYSTEM-20 Front End
P KLINIK Ports for 16
=rr modem asynchroasus
- 1 lines
| | { i
Card Floppy poP-11 =11 L1l DLil DH1l
egpt. disk core
UNIBUS
oTE RIE11
———.—: - . L l k k
I gZbox i Fous d r
1

\]
R o RP04/06

t ! i h

v 1]

Yoy '

HE - '
- [I | i

1
- —-L'j --..L.__T

1

) i 1]
l MBex ! RHL0/20 1 -
! r]
—————— | R 07 9339

The -28 Front End is a much busier system

Typical DECSYSTEM-20 Front-End

Figure 38

under

TOPS-23. In

addition to handling those functions described in 3.4.1, DTE-based
PDP-1lls are responsible for handling all communications traffic and
all unit-record equipment.

<80>

Document on the KL Processer

Front End Subsystem

1/0 SUBSYSTEM

Fronteend
subsysten
C/ A A7 7S A
- U/ /////////////
= Z80x P /0 tubays:a%
Diagnostic ////////////%
ERRRRRRA Bus
E/M iatarface
FEEREER!
MBox
Chus
Sbus
Memory
suasystem Data channels
D7 03%3
I/0 subsystem 1984 1999 2949 23858
DIa b4 Y N N
(o s < o ey
1]
: Front end :
IR
e —————
1 | S DIA
‘ Ebox | Ebus I/0 bus | I
|
L] RPO4/06 RPO4/06 Line Card
e Bt B printer eqpt.
T o) |
1 1 1}
t 1]
[RH20 RH10
R
o ox10 |~ 01 | 7g70
'I 1)
,...'..---.._'-" O
1
1 ! Cbus pF10/10C
Mbo b = o = c————————)
! *] (Internal channel) or
| DAS33
| . «
1
1
i
fo==<=== 3 -
1 e ——
| Memory } External channels
' po——--
I |
/O Subsystem
Figure 38 D7 0398

<81>

Document on the KL Processor
I/C Subsystem

The I/C subsystem has three possible links to the rest of the
system. .

e Ebus == this connects all I/0 devices to the Ebox. It is through
: the Zbus that devices rsceive control signals from the CPU and
return device status 5 the CPOL

¢ (bus — acts as a data~chammel between TE23 controllers and the
¥bBox. For a complete description please read Section 3.2.4.

¢ External channels -- data-channels between memory and controllers
for those controllers not able to use the Chus.

The only component per se of the I/0 subsystem, other than I/0
devices themselves, is the DIA. The need for the DIA arises from
the fact that the RL's Ebus uses a different hardware protocol than
the RXA/RI I/0 bus, even though the basic purpose of both is the
same. Only on =13 systems, it is necessary to connect older I/0
devices to KL systems; devices that were designed to use the I/0
Bus protocol. To solve this problem, -13 systems are equipped with
the DIA, which accepts a conventional I/Q0 bus on one side and tke XL
Ebus on the other. The DIA is not needed on the =28 because the
kinds of devices that need the I/0 bus (2.g. unit-record equigment)
is not connected directly to the KL at all on -24s; instead, they
are attached to the Front End -1l.

<82>

Document on the KL Processor
PREVIQUS CONTEXT EXECUTE (PXCT)

Previous Context Execute

Normally, an instruction's address references are handled
completely within the current context. I.e., if an instruction is
issued in user mode, then all its address references are handled as
user-virtual addresses. There ars Situations, however, where it is
conveniant to cause an exec instruction to teference user-virtual
addresses. Tor instance, suppose a user process issues a monitor
carr (UUO or JS¥YS) that involves an argument block at user address
770. The monitor cannot read the first argument word by saying
"MOVE AC,778"; that would result in the acquisition of exec word
778, not user word 774. Theoretically, the monitor can set up a new
Page~-map entry to point to the desired user page, but this procedure

requires many instructions, and would adversely affect the operation
of the pager.

The problem is solved on KL systems by use of the PXCT
(Previous Context eXeCuTe) instruction. PXCT, like a conventional
XCT, loads an instruction from the location specified by the PXCT's
effective address. Unlike a conventional XCT, the instruction XCT'd
will be treated, in whole or part, as an instruction performed in
the “"previous context”; that 1is, in the processor mode the
processor was in when the most recent monitor call occurred.
Normally, the previous context will be user mode (public or
concealed). It could, however, be an exec mode.

Reconsider our earlier example. The monitor wishes to read
user address 779. Rather than juggle page maps, the monitor would
- issue this instruction:

PXCT 14, [MOVE AC,779]
This instruction results in ‘user address 778 being put into exec
"AC". (Note that the number "14" in the instruction does not refar
to AC l4; rather, the bit pattern 1100 in the AC field of the BPYCT
determines the treatment of the MOVE. This matter is discussed
snortly.)

PXCT has the same opcode as XCT; an XCT becomes a PXCT when:
e the XCT is performed in exec mode, and '

e the XCT's AC field (instruction bits 9-12) is non-zero.

By way of example, the instruction "XCT 8,anything” would be a
conventional XCT, with the target instruction being treated as
belonging to the current context. However, the instruction "XCT
5,anything” would be handled in the fashion described below.

It should be noted that the instruction name PXCT is an exact
synonym for XCT; the distinction betweem the two names is purely
mnemonic. Proper operation of the PXCT depends on the programmer
setting up the PXCT's AC field.

<83>

Document on the KL Processor
PREVIOQUS CONTEXT EXECUTE (PXCT)

-

Correct PICT behavior reguires that the hardware know what the
previous context was. Previous context is completely defined by the
following 3 items:

& previous context AC block number (8-7)
e previous context mode (user or exec)
e previous context protaction (public cor concsaled)

AYl inmstrnctisns, not just FXCT, require the <ranslation of
several virtual addrasses. For example, suppose the CPU has just
processed an instruction, and a new instruction is to be fetched and
performed. The instruction will be fetched from the address given
in the processor's PC word. PC addresses are virtual, so that
address must be converted to physical before the new instruction can
even be found. Now think ahead to the point where the instruction
has been found and brought inte the Ebex. The effective address
must be computed , and that process. involves translation, too.
Consider the dinstruction "MOVE 5, 1843". The address 1343 must be
translated to physical. In addition to all this, the system must
also figure out which of the eight possible AC blocks is to be used.
Qtherwise the right ACS cannot be found.

For. most instructions, all such memory references will De
treated as belonging to the current context. In using PICT,
however, the programmer has a choice regarding the way some, but not
all, memory rafarences ares treated. The following types of
instruction refsrence will always be exac mode:

& TFetch of the PXCT itself. This is only natural, since until the:
instruction has been fetched, the system doesm't even know it's a
PXCT.) -

e Resolution of the effective address of the ZFXCT: i.e., the
address of the target instruction is always an exec address.
This too is a necassary function of the way the hardware
operates: aeffactive addrasses are computed before the
instruction opcode is looked at.

e AC field in the target instruction; This is not to say all AC
references by the target instruction are exec. For instance,
"PXCT 2, [MOVE 5,1368]" would always move 1880 of the previous
context into exec AC 5, because the number 5 is in the target
instruction's AC field (bits 9-12). By contrast, "PXCT ?,[MOVE
5,6]" might either move user 6§ into exec 5, or exec 6§ into exec
5, depending on the value of PXCT bits 9-12. The option exists
in the latter instruction because the number €& appears in the
target instruction's Y field, not the AC field.

Other references may be either in user space or exec sgace, at
the programmer's option. This choice is exercised using PXCT bits
9-12. The meaning of a "1" in any of these bits varies somewhat
according +to the target instructicn, so we will <treat three
different classes: general, BLT, and EXTEND. A "l1" in a position

<84>

‘Document on the KL Processor
PREVIOUS CONTEXT EXECUTE (PXCT)

signifies that the corresponding sort of reference is treated as a
previous context address.

4.1 Genmerzl Instructions

b~

-l

pesition

9 Effective address calculation for target instruction

14 Memory operands specified by E, whether fetch or store. (E.g.
source address in MOVE or PUSH, destination in ADDM).

11 Not applicable - must be 4. ’

12 Applicable only to PUSH and POP =-- address of stack as

reflected by stack pointer.

4.2 BLT and XBLT

Bit

position

S EA calculation of BLT

i3 Destination address (from BLT AC right half)
1l Not applicable -- must be 4 .

12 Source address (from BLT AC left half)

For example, this instruction sequence will copy a 58 word block

from user address 468 to exec address 742.

MOVE AC, (468,,7082)] ;SET UP BLT AC WITH [SOURCE, ,DESTINATION]

BXCT 1,[BLT AC,751] ;EFFECTIVE ADDRESS OF BLT DENOTES LAST
;+..LOCATION TO BE WRITTEN

Only PXCT bit 12 is set, causing only the BLT source address +o be

treated as a user address.,

4.3 EXTEND

Bit
position
9 EA calculation of both instruction words. Alsc EXTEND EA

calculation of source pointer if bit 11=1, and of destination
pointer if bit 12=1. :

19 Memory reference of second instruction word.

11 EA calculation of source, and EA calculation of source pointer
if bit 9=1.

12 Destination, and EA calculation of destination pointer if bit
9=1.

<85>

EBR
EXec Base Register

Privates page

Section pointer

Exec Base Register.

An internal Mbox register that helds the
physical page number of the Exec Process Table.
A page belonging to the address space of exactly

_ one procgess. Pointed to by an immediate page

map pointer; it is not pointed to by a shared
pages table entry.

One word of data, residing in the exec process
table or user process table word 448, that
describes the location of a page map.

Special/Shared Pages Table A single in-core table comprising a

SPT
UBR
User Base Register

Section table

series of physically contiguous pages: it
contains the addresses of those pages being
shared between - process and a £ile, and
addresses of special pre-process data base
tables maintained by the monitor.

Shared Pages Table.

User Base Register

An internal Mbox register that holds the
physical page number of the current User Process
Table.

A one page table used 1in conjunction with
indirect section pointers.

<aA-1>

INDEX

-lf8-style paging’
-26-style paging

[
b

(VN
w

Accounting meters . . .
Accumulator blocks
TOPS-18 assignments .
TOPS-20 assignments .
Address
examples of uses . . .
exec virtual . .
physical
system flow . .
types of
user virtual . .
Associative memory

wwWw
e

* o & & o
¢ &« 0 s 0

Base registers 11
Byte transfers S5

Cache
e e o s e e e 4 e . o T, 41
quadword 43
Cbhus 4, 46, 62
Channels.
external 62
Clocks
e ¢« o ¢ o & o o o & & 33
accounting meters . . 35
interval timer » . o 33
performance analysis counter 36
time base 34
TOPS~-18 usage 36
TOPS-20 usage 37
Components

front end subsystem . 53
Control RAM 32
Core status table . . . 45
CRAM . v ¢ v v v o o « « 32
Data channels

external 4

internal 4
DIA ¢ o ¢ o« . . B2
Diagnostic bus 4
Dispatch RAM 32
DMA ., . ¢ . ¢ & 4. « « . 52

<Index-1>

DN 875 > - - - L] L] A
DRAM . L] L] < - . L] ©
DTE

byte transfers .

EBDP TamakriAanes
- e o e W Wwah wds W Abad

examine/deposit
functions . . .
cperating modes
privilegad . . .
restricted . . .

» s o 5 ¢ & & a6

Ebox
accunulator blocks
clocks
components . . .
description . .
memory reguests
microcode . . .
EbUS v ¢ & o « o
Examine/deposit .
Exec base register
Exec process table
Exec process table
RI-style ¢« ¢ o« « =
Ri=-style «
Exec virtual address
description . . .
External channels .
External memories .

s o & » & & 8 s 9

Front end
-13d operaticns . .
-24 operations . .
description . . .

a‘ocooqooo

§ o & g & o . L]

L] .

L 58

. 32

. 55
- 58
55

® e

. 35
. 34
- 54

. 31

. 31
vl'

. 32
- 62
. 55
. 11

. 13
® T

. 4
- 4,
. 49

L 2

operations on =18 and -29

Front end subsystem
DTE .
PDP-11
UNIBUS

- e @ °

e & o @
.
L]) s & o

Hardware page table

I/0 subsystem
désétiggién. .
DIA . - - -]

Interleaving . .

Internal channels.

- . L] L] . -

e & ¢ o
s v & 9

<Index=2>

e ¢ o o

() ° & @

< 33
. 54
. 54
. 54

. 39

(VIR W SN
(31 8 S o

6 e o @

54

3

62

57

46

INDEX

INDEX

Internal memories . . . 52
Interval timer 33

Kbus . . . s+« . 58
KI-style pag;ng « o o o 7
EL clocks 133
KL configuration 1
KL page table 41
KL process tables . . . 1§

KL subsystems

optional components . 2
summary . . S |
KL-style address translation process 18

MA28 . . . L 82
Map pointers 25
MB2852
Mbox 4
Mbox
* s s + 4 s+ 4 + . . . 38
base registers 11
Cache ., 7, 41
Cbhus 46
components, 38
core status table . . 45
description 2
exec base registerr . 11
internal channels . . 4§
Kbus 53
memory. subsystem . . . 48
Sbus 5@
User base register . . 11

Memories
MGl 49
ME18 49
ports 49

Memory subsystem
description . . .
bMa
external memories
interleaving . ., .
internal memories
Kbus

4, 48

e o6 ¢ s o & o o+ & o

¢ & o & & & ¢ & 8 a
w
=

MA28 52

MB2d 52

Sbus Y]
MG1l9

£l - - . . . - - * L] 49
configuration u51ng . 49
MB1Z 49

<Index-3>

Microcode. 32
routines 32

Page table 41
Paging :
c=lf=style 7
-Zﬂ-style « e e« o o o 14
associative memory . 39
general descrlptlcn . 4
hardware page table . 39
K1 associative memory 33
KI-style . . . e o 7
RI-style algcrlthm . o 11
KL algorithm 18
RL=style . . ¢« + o « . 14
map pointer details . 25
section pointer details 29
VPN . ¢ v ¢ 4 o ¢ o « B
PCusage . « « ¢« ¢« « « . 5
POP-11 54
Performance analysis counter 36
Physical addresses
descriptien 4
US€S v ¢ 4 2 o ¢ « « o+ 4
Previous context execute &3
Privileged DTE 54
Process tables

BXEC . ¢ o o+ o o o o o T
Ri-style ¢ v ¢ o ¢ &« « 7, 18
RL detail 18
RL=style . = v« v o « o 15
USELY o v o o o « o o o« 7
PAICT &« & ¢ & ¢ ¢« ¢ o « « B3~

Quadword . . ¢« . ¢ o . o 43

Real-time 5
Restricted DTE 54
REZQ .. - L 2 - L] L 4 LN L - . 4

SbUS . . . 4+ ¢ ¢« ¢« o+ + o 4, S8
Section pointers 28
Subsysteas
optional components . 2
SUMmMary .« . . « o o 1
System address Elow . o« 6

Time base . . « « « « . 34
UNIB Us - - - L] - - - * £l S 4

User base register . . . 11
User process table

RI-style . « ¢+ ¢« « « « 7, 12
Oser vir«ual address
description S
VPN ¢ ¢ « « o = 5 =« « + B

<Index-4>

PART 3

KL, SYSTEM OPERATIONS

Chapter 3 |
'KL10 System Operations

The information presented in this chapter is primarily for Digital’s own
system programmers, for their use in writing the Monitor and other soft-
ware. However it is also needed by anyone who wishes to write his own
operating system, to some extent by users who handle their own IO, and by
programmers in a situation where all the facilities of a system are dedi-
cated te a single large task. T

WARNING

KL10 functions are implemented in microcode, which can be
changed much more easily than hardware. Although user op-
"erations are deliberately kept as compatible as possible from
one machine to the next, Digital will change the KL10 sys-
tem microcode whenever such change will result in greater
speed, efficiency or effectiveness. Therefore anyone writing
system software should make sure to use the most recently

~ updated version of this documentation, and before embarking
on any project as enormous and critical as an operating sys-
tem, to check with Large Systems Engineering for any
changes not yet documented.

Programming for the system as a whole is programming in executive
mode. Only the kernel program is without instruction restrictions, and only
it can, if needed, access physical memory unpaged. The supervisor program
labors under the same instruction restrictions as the user and has no way of
bypassing them, although it can read but not alter concealed pages (the
kernel program can supply data tables to the supervisor program, and the
latter cannot affect them).

3-1

The amount of useful work done by the system depends upon how
- efficiently and effectively the executive manages the system. This means
selecting which processes will run when, managing their working sets, re-
sponding to their needs, and even reacting to error situations or perhaps
downright unacceptable behavior on the part of a user. The kernel program
accomplishes these objectives by handling all in-out for the system, setting
up page maps, trap locations, interrupt locations and the like for both itself
and the-users, handling user accounts, communicating with the front end,
and so forth. In other words, except for handling in-out, the activities of an
operating system are the topics covered in this chapter. Of course the sys-
tem programmer must also be quite familiar with all of the material pre-
sented in the preceding chapters. In particular he must fully understand
the architecture of the system as discussed in Chapter 1, and must be
especially well versed in the use of the JRST instruction, MUUQs, and 10
instructions (§§2.9, 2.16, 2.18). . :

_ System information for other processors is given in Chapters 4 and 5.
The present chapter is devoted solely to the KL10, but contains two sections
on paging, only one of which is applicable to a given system. §3.3 describes
the paging used with the TOPS—-10 Monitor; this paging is similar to that of
the KI10. §3.4 treats the paging associated with the TOPS-20 Monitor.
Both kinds of paging employ essentially the same hardware — the differ-
ence lies principally in the microcode. :

Much of the material presented here is related to the DTE20s, the
channels, and the DIA20. Although the chapter does describe all activities
of the microcode undertaken for these devices (e.g. the front end functions
in §3.7), the descriptions of the devices themselves are not included.

3.1 Priority Interrrupt

The DECSYSTEM-20 is essentially a system of processors clustered
around the E bus. The various controllers and interfaces are subsidiary to
the PDP-10, but maintain a considerable degree of independence from it.
Each RH20 Massbus controller operates from its own command list in
memory and handles all data transfers via the channels; but it must reach
the Ten program to start a new list or if something should go wrong. Each
PDP-11 is a whole computer with its own internal program; but for han-
dling IO equipment or acting as the system console, it must communicate
with Ten memory via the E bus (to which it is interfaced by a DTE20), and
the peripheral computer must reach the Ten program for setting up mutual
operations. Basically the priority interrupt system allows the other proces-
sors to interrupt the central processor at various levels of priority, so that
all can operate simultaneously. The hardware also allows conditions inter-
nal to the PDP-10 to signal its own program by requesting an interrupt.
In a DECsystem-10, the PDP-11 is limited to use as a system console
and diagnostic facility, and the unit-record peripheral equipment is organ-
ized around a KI10-type IO bus connected to the E bus via a DIA20 IO bus
interface. If the system lacks internal channels, Massbus controllers must

- 32 KL10 System Operations

be of the RH10 type, which the program controls via the IO bus. For data
‘purposes an RH10 is connected to external memory by a separate memory
bus. It is recommended that those who program a DECsystem~10 read both
‘this section and the first few pages of the discussion of the K110 mtez‘mpt:1
(§5.2).

"Interrupt Requests

Interrupt requests are handled on eight levels arranged in a priority se-
quence. Levels are numbered 0~7, with 0 having highest priority. Level 0 is
quite unlike the others, however, in that it is available only to the front end
processors for simulating console functions and handling byte transfers.
Moreover level 0 is always active — it cannot be turned off even by inac-
txvatmg the interrupt system. The program does control the enabling of
level 0 in the DTE20s, but the master front end can even override that.
Assignment of devices? to the remaining levels is entirely at the discretion
of the programmer. To assign a device to a level, the program sends the
- number of the level to the device control register as part of the conditions
given by a CONO (usually bits 33-35); a zero assignment disconnects the
device from the interrupt levels altogether. Any number of devices can be
placed on the same level. _

~ When a device requires service, it sends an interrupt request signal on
its assigned level over the bus to the processor. A request is recognized by
the processor if the level is active — meaning that both the interrupt sys-
tem and the individual level® have been turned on. But the processor can
accept no requests while it is processing a request or starting an interrupt
at any level, or holding an interrupt on the same level or on a level with

higher priority than those on which requests have been recognized (in other

words, if the current program is a higher priority interrupt routine). The
© request signal remains on the bus however until turned off by an appropri-
ate response from the processor: either given by the program (CONO,
DATAOQ, or DATAI, depending on the device), or generated automatically
by the hardware. Thus if a request is not recognized or accepted when
made, it will be when the necessary conditions are satisfied. A single level
will even shut out all others of lower priority if every time its service
routine dismisses the interrupt, a device assigned to it is already waxtmg
with another request *

1 On the Ten side of the DIA20, the interrupt works as described here. But on the other side
it acts more like the KI10 interrupt, with seven programmable levels, second-order prior-
ity determined by proximity to the DIA20, etc. Of course the processor activities and
interrupt functions available are those of the KL10.

2 As explamed in §2.18, the program treats all E bus controllers, internal subsystems, and
10 bus peripherals as 10 devices. In other words, it monitors and controls them by means
of IO instructions using appropriate device codes. For a PDP-11, the device is the DTE20.

3 Remember that level 0 is always. active, even when the interrupt system is off. In other
respects this discussion applies to all levels.

KL10 System Operations

33

The request signal is generally derived from a flag that is set by vari-
ous conditions in the device. Often associated with these flags are emabling
flags, where the setting of some device condition flag can request an inter-
rupt on the assigned level only if the associated enabling flag is also set.
The enabling flags are in turn controlled by the conditions supplied to the
device by a CONO. For example, a device may have half a dozen flags to
indicate various internal conditions that may require service by an inter-
rupt; by setting up the associated enabling flags, the program can deter-
mine which conditions shall actually request interrupts in any given cir-
cumstances. ' '

Processing a Request. The processor handles only one request at a
time. When it is ready, it accepts the highest priority request currently
- recognized, provided that request is on a level higher than the current
program (all levels are higher than a noninterrupt program). To process a
request the hardware sends an interrupt service demand to the devices on
the E bus to determine which ones are currently requesting an interrupt on
the accepted level. Note that at this point the processor is accepting not an
individual request, but rather a class of requests: namely all those being
made on the same level. Should the bus be busy, the demand is sent as soon
as it becomes available, taking precedence over any IO instruction that
' may also be waiting (note that in this situation the program actually stops).
From among the devices that respond to the demand on the accepted level,
the processor selects the one of highest priority* according to this schedule:

Physical
Devices in Order of Decreasing Priority Device Numbers®

Interval counter

Other internal requests — processor error
flags, program initiated request

'Channels 0=7 0-7
DTE20s 0-3 ' 10-13
DIA20 — i.e. any device on the IO bus 17

4 There are therefore two orders of priority associated with an interrupt: first the level, and
then for all devices requesting interrupts simultanecusly on the same level, physical de-
vice number. These physical numbers are not the device codes used in the 10 instructions;
they are just for interrupt priority purposes and depend on position on the backplane (the
RH20s are ordered opposite from the slot numbers). .

5 Physical numbers 14-16 are not used.

34 KL10 System Operations

If the device selected is internal, no further processing of the request is
required. Otherwise the hardware sends a function demand to the selected
device (by specifying its physical number along with the interrupt level),
and the device responds by returning an interrupt function word. In either
case, once all necessary information about the request has been gathered,
the interrupt system waits for the interrupt to start. The microcode checks
frequently for a waiting request, and upon discovering one departs from its
normal routine to start an interrupt. At such time PC points to the inter-
rupted instruction, so a correct return can later be made to the interrupted
program.

Interrupt Functions and Instructions

The action taken by the microcode to start an interrupt depends upon the
function specified by the function word returned to the processor. Two fixed
locations in the executive process table are associated with each level, loca-
tions 40 + 2N and 41 + 2N, where N is the level number. Level 1 uses
locations 42 and 43, level 2 uses 44 and 45, and so on to level 7 which uses
56 and 57. The processor starts a “standard” interrupt for level N by exe-
cuting the instruction in the first interrupt location for the level, i.e. loca-
tion 40 + 2N. This type of interrupt is performed for a processor error or
program-initiated request, for an external device whose function word spec-
ifies a standard interrupt, and also for an IO bus device that returns no
function word. The fixed locations however need not be used. The interrupt
function word sent by the device may specify an equivalent interrupt using
a pair of locations selected by the function word, or some other interrupt
function entirely. The function word has this format.

ADDRESS *
SPACE FUNCTION

: L
i . \ i : in DEVICE|Q O INTERRUPT ADDRESS
0 23 s 67 1011°1213 as

The microcode acts from a function word whether there is one or not; its
absence is taken as a zero function. The DIA20 returns the word supplied
over the IO bus or simulates a zero word. Bits 7-10 identify the device by
its physical number, but this is supplied by the interrupt hardware, not the
device. The meanings of the other bits in the word are as follows.

0-2 In unrestricted examine and deposit functions, codes given in
these bits select the space in which the address supplied in bits
13-35 is interpreted.
0 Executive process table
1 Ezxecutive virtual address space
.. 4 Physical address space

Remaining codes are reserved.

KL10 System Operations

3-6 Interrupt function (bits 3-5), sometimes qualified by @ (bit 6).
When unspecified, @ is irrelevant. The microcode handles func-
tions 4—6 even when it is in the halt loop. o

0 Internal device or zero word: for the interval counter perform a
vector interrupt (see function 2); otherwise perform a standard
interrupt (see function 1).

1 Standard interrupt — execute the instruction in location
40 + 2N of the executive process table.

2 Vector interrupt — action depends on device type as follows:
Interval counter — execute the instruction in location 514
of the executive process table.

DTE20 — execute the instruction in location 2 of the corre-
sponding DTE20 control block.®

Channel — execute the instruction in the executive process
table location specified by bits 27-35.

DIA20 — dispatch interrupt: execute the instruction in the
executive virtual location specified by bits 13-35.

3 Increment — depending on whether @ is 0 or 1, add 1 to or
subtract 1 from the contents of the executive virtual location
specified by bits 13-35.

4 Examine — send the contents of the specified location to the
selected DTE20. If Q is 0, select the location according to bits
0-2 and 13-35. If @ is 1, use bits 1435 as a physical address
and restrict the function to the communication area defined in
the DTE20 control block.® The examine is effected by perform-
ing a DATAO to the DTE20.)

Deposit — load the word supplied by the selected DTE20 into
the specified location. If @ is 0, select the loaction according to
bits 0-2 and 13-35. If @ is 1, use bits 14-35 as a physical
address and restrict the function to the communication area
defined in the DTE20 control block.® The deposit is effected by
performing a DATAI to the DTE20.

6 Byte transfer — increment the byte pointer for the direction
specified by @ (0 out, 1 in) from the control block for the se-
lected DTE20, and then move a byte between Ten memory and
the DTE20 according to the altered pointer.®

7 Reserved (produces a standard interrupt at present).

($)]

CAUTION

- Because of the special cycle in which it is executed, an inter-
rupt function that uses virtual addressing cannot employ in-
direct pointers in its paging procedure (83.4).

8 For further information on front end interrupt functions, refer to §3.7.

3-8 KL10 System Operations

13-35 The bits among these that supply the address when the function
' requires one depend on the address space.

Executive process table 27-35
Executive extended virtual address space 13-35
Executive unextended virtual address space 18-35
Physical address space 14-35

Regardless of what mode the processor is in when an interrupt occurs,
the interrupt operations are performed in kernel mode, and are therefore in
executive virtual address space unless the particular function selects some
other form of addressing. A page failure that occurs in an interrupt opera-
tion is never trapped; instead it sets the In-out Page Failure flag, which
requests an interrupt on the level assigned to the processor (§3.8). These
considerations of course do not apply to a service routine called by an inter-
rupt instruction.

Interrupt Instructions. An instruction executed in response to an
interrupt request and not under control of PC is referred to elsewhere in

“this manual as being “executed as an interrupt instruction.” Some instruc-
tions, when so executed, have different effects than they do when performed
in other circumstances. And the difference is not due merely to being per-
formed in an interrupt location or in response (by the program) to an inter-
rupt. To be an interrupt instruction, an instruction must be executed in the
first or second interrupt location for a level, in direct response by the hard-
ware (rather than by the program) to a .request on that level. These loca-
tions may be the fixed ones for a standard interrupt or those given by the
function word for a vector interrupt. §2.17 describes the two ways a BLKO.
is performed. If a BLKO is contained in an interrupt routine called by a
JSR, it is not “executed as an interrupt instruction” even in the unlikely
event the routine is stored within the interrupt locations and the BLKO is
executed by an XCT.-There are two types of interrupt instructions executed
in a standard or dispatch interrupt; the effects of all other instructions are
undefined.

BLKI, BLKO. If the pointer count is not zero, the processor dismisses
the interrupt and returns immediately to the interrupted program (i.e.
it returns control to the unchanged PC). If the count is zero, the proces-
sor executes the instruction contained in the second interrupt location.

XPCW, JSR. The processor holds an interrupt on the level, takes the
next instruction from the location specified by the jump (as indicated by
the newly changed PC), and enters either kernel mode or the mode

_ specified by the new flag word of the XPCW. Hence the instruction is
usually a jump to a service routine handled by the Monitor. XPCW is
the preferred instruction on the extended KL10.

The most important point of which the programmer must be aware is
that even while User is set, the interrupt instructions are not part of the
user program. They are executed in kernel mode and are therefore subject
only to kernel mode restrictions. Regardless of the current PC section, the
address part of an interrupt instruction is interpreted as referencing sec-

KL10 System Operations

37

tion 0, except in a dispatch interrupt, where it references the section speci-
fied by the interrupt function word. As an interrupt instruction, JSR auto-
matically clears both User and Public to jump to a kernel mode-service
routine. An XPCW should be set up to produce the same result. The XPCW
control block must be in section 0 unless the interrupt is a dispatch.

CAUTION

Because of the special cycle in which an interrupt instruction
is executed, the paging procedure for it cannot employ indi-

Interrupt Programming

The program can control the priority interrupt system By means of condi-
tion IO instructions. The device code is 004, mnemonic PL7

CONO PI, Conditions Out, Priority Interrupt
[70060 il ox Y |

0 121314 1718 as

Perform the functions specified by the effective conditions E as shown® (a 1
in a bit produces the indicated function, a 0 has no effect).

DROP PROGRAM INITIATE

REQUESTS ON INTERRUPTS

SELECTED ON

LEVELS : |

TURN | TURN TURN TURN
v cvex \ apm SRR AR SELECT LEVELS FOR BITS 22,24, 25,26

MJDRESS] 0aTA [DlRCTRY SYSTEM SELEFTED LEYELS 4} STSTEH 1 ‘ 2 l 3 l 4 ‘ 5 l 8] 7
% o = B ' # & & a s @ w u o ». B M

99 On levels selected by 1sin bits 28-35, turn off any interrupt requests
made previously by the program (via bit 24).

23 Turn off the priority interrupt system, turn off all levels, drop ail
program-set requests, and dismiss all interrupts that are currently
being held.

94 Request interrupts on levels selected by 1s in bits 29-35, and force the
" processor to recognize them even on levels that are off. The request
remains indefinitely, so as soon as an interrupt is completed on a
given level another is started, until the request is turned off by a
CONO that selects the same channel and has a 1 in bit 22.

7 Data instructions with device code PI are unassigned and execute as MUUOs. The block
instructions are used for error and diagnostic purposes (§3.8).

8 Bits 18-20 are for test purposes only. They are used to force errors and are discussed in
§3.8. ,

3-8 KL10 System Operations

Remember that the processor allows the program to continue
while it processes a request. Thus when this bit forces recognition of a
request, many additional program instructions may be performed be-
fore the interrupt, even on the highest priority level. Moreover if the
request is allowed to remain, additional instructions may be per-
formed between successive interrupts. For other than the highest pri-
ority level, the greater the number of higher levels active, the greater
the amount of program time available both initially and between suc-
cessive interrupts. If the program forces an interrupt on the lowest
level when all are active, there can be a very long time between

CONO PI, and its interrupt.
25

Turn on the levels selected by 1s in bits 29—35 so interrupt requests
can be recognized on them.
26 Turn off the levels by 1s in bits 29-35, so interrupt requests cannot be
_recognized on them unless made by a CONO PI, with a 1 in bit 24.
27 Turn off the interrupt system so no requests can be recognized.
28 Turn on the interrupt system so the hardware can process requests.
CONI PI, Conditions In, Priority Interrupt
| 70064 7l x| Y |
4] 121314 1718 kH

Read the status of the priority interrupt (and several dlagnostlc bits) into

location E as shown

PROGRAM REQUESTS ON LEVELS
| ! | ! J | | ! ! v} 2 | 3 1 4 |5} 6 | 7
0 i E 4 s | g 7 8 | 3 10 THLEET] 13 14 1 15 16 17
WRITE EVEN INTERRUPT IN PROGRESS ON LEVELS SYoTEn LEVELS ON
ADDRESS| 0ATA |DIRCTRY t L2 |3 b e | 5] 6 | 7 oN v o2 b 3] e s | s |

8 19 20 21 2 23l w2 o2

28

29 30 31 32 1 o33 14

Levels that are on are indicated by 1s in bits 29-35; 1s in bits 21-27 indi-

cate levels on which interrupts are currently being held; and 1s in bits

11-17 indicate levels that are receiving interrupt requests generated by a

CONO PI, with a 1 in bit 24. A 1 in bit 28 means the interrupt system is on, .

and 1s in bits 29-35 therefore indicate active levels.
The remaining conditions read by this instruction have nothing to do

with the interrupt. Bits 18-20 reflect several diagnostic functions discussed

in §3.8.

Dismissing an Interrupt. Unless the interrupt operation dismisses
the interrupt automatically, the processor holds an interrupt until the pro-

KL10 System Operations

3-9

gram dismisses it, even if the interrupt routine is itself interrupted by a
higher priority level. Thus interrupts can be held on a number of levels
simultaneously, but from the time an interrupt is started until ‘it is dis-
missed, no interrupt request can be accepted on that level or any of lower
priority. .

A routine dismisses the interrupt by using an instruction that restores
the level on which the interrupt is being held at the same time it returns to
the interrupted program. The proper instruction is XJEN (JRST 7,) in an
extended KL10, otherwise JEN (JRST 12,). Once the level is restored, the
hardware can again accept requests and start interrupts on it and lower
priority levels. These instructions also restore the flags: XJEN from the
flag-PC doubleword if the routine was called by an XPCW; JEN from the
left half of the PC word if the routine was called by a JSR in section 0.
XJEN also restores the previous context section if the return is being made
to an executive program. :

CAUTION

An interrupt routine must dismiss the interrupt when it re-
turns to the interrupted program, or its level and all levels of
lower priority will be disabled, and the processor will treat
the new program as a continuation of the interrupt routine.

Timing. The maximum time a device may wait for an interrupt to
start depends on how many active devices are of higher priority and how
long their service routines are. When a given request is of highest priority,
its device need never wait longer than 10 ps.

Special Considerations. When an interrupt occurs, PC points to the
interrupted instruction (or to an XCT that executed it), unless the interrupt
occurred in an overflow trap instruction, in which case PC points to the
instruction that overflowed. After taking care of the interrupt, the proces-
sor can always return to the interrupted instruction. Either @) the instruc-
tion did not change anything; b) the interrupt was in the second part of a
two-part instruction, where First Part Done being set prevents the proces-
sor from repeating any unwanted operations in the first part; or ¢) the
interrupt occurred at some point in a multipart instruction where the mi-
crocode rigged the various pointers and other quantities so the processor
actually restarts the instruction where it stopped, rather than from the
beginning. However, in a BLT and in byte manipulation, the very mecha-
nism that facilitates the return results in special properties of which the
programmer must be-aware. '

An interrupt can start following any transfer in a BLT. When one does,
the BLT puts the pointer (which has counted off the number of transfers
already made) back in AC. Then when the instruction is restarted following
the interrupt, it actually starts with the next transfer. This means that if
interrupts are in use, the programmer cannot use the accumulator that
holds the pointer as an index register in the same BLT, he cannot have the
BLT load AC except by the final transfer, and he cannot expect AC to be
the same after the instruction as it was before.

310 KLlO System Operations

An interrupt can also start in the second effective address calculation
in a two-part byte instruction. When this happens, First Part Done is set.
This flag is saved as bit 4 of a flag word, and if it is restored by the inter-
rupt routine when the interrupt is dismissed, it prevents a restarted ILDB
or IDPB from incrementing the pointer a second time. This means that the
interrupt routine must check the flag before using the same pointer, as it
now points to the next byte. Giving an IDLB or IDPB would skip a byte.
And if the routine restored the flag, the interrupted IDLB or IDPB would
process the same byte the routine did.

Programming Suggestions. The Monitor handles all interrupts for
user programs. Even if the User In-out flag is set, a user generally cannot
reference the interrupt locations to set them up. Procedures for informing
the Monitor of the interrupt requirements of a user program are discussed
in the Monitor manual.

For those who do program priority interrupt routines, there are several
rules to remember.
¢ Use interrupt instructions in a manner consistent with the special ef-
fects and conditions applicable to such instructions as described above.

e No request can be accepted, not even on higher priority levels, while a
request is being processed or an interrupt is starting. Therefore do not use
lengthy effective address calculations in interrupt instructions.

e To prevent a device from hanging up a level, the programmer must be
aware of — and satisfy — whatever requu‘ements the device has for drop-
ping the request.

e The interrupt instruction that calls the routine should be an XPCW on
an extended KL10, otherwise a JSR. In either case the paging for the in-
struction must not use indirect page pointers.

e The principal function of an interrupt routine is to respond to the situa-
tion that caused the interrupt. Computations and any other time-
consuming activities that can possibly be performed outside the routine
should not be included within it.

e Never turn off the interrupt system in a routine unless it is absolutely
necessary, and then always turn it back on again as soon as possible. If one
or more levels can be turned off in place of the entire system, always do
that instead. '

o If the routine uses a UUQ it must first save the contents of the loca-
tions that will be changed by it in case the interrupted program was in the
process of handling a UUQ of the same type (§2.16).

¢ The routine must dismiss the interrupt (with an XJEN or JEN) when
returning to the interrupted program. Flags and UUO locations should be
restored.

3.2 Cache Management

For the user, the cache is transparent: any program simply gets informa-
tion from memory and stores information in memory. But use of a cache as
part of the memory subsystem reduces program time, since the cache is
faster than the storage modules, and also reduces storage use by the pro-

KL10 System Operations

3-11

gram, making a larger percentage of total storage cycles available to other
parts of the system. As explained in §1.7, transfers between processor and
memory are in four-word groups: storage references are to four locations at
a time.? The cache contains representations of a selection of such location
groups. One may view the cache as 2048 general purpose registers, organ-
ized in sets of four, which substitute temporarily for the most frequently
referenced physical storage location groups. The cache serves this function
not only for the program, but for all microcode references, including those
for handling interrupts, traps, page refills, and other automatic operations.
The way the hardware handles the cache depends upon whether the initial

processor reference to a location in a particular group is read or write.

When the first processor reference to a group is to read the contents of
" one of its locations, memory control retrieves the entire four-word group
containing the referenced location. The single word requested is supplied to
the program, but all four are placed in the cache and are validated, i.e. they
are tagged as words that do represent the true contents of memory. Subse-
quent references, read or write, to the same group are made to the cache,
not to storage. If the processor modifies the contents of a location in the
group, the new word supplied is substituted for the one in the cache loca-
tion, which is tagged as written. Thus the cache word is different from
storage but still valid — i.e. it represents what the storage location should
contain. '

When the first reference to a group is for writing, there is no call to
storage at all. Instead the hardware sets aside a location group in the
cache, with the one word in it tagged as both valid and written. Further
reads or writes of the same location are handled solely with the cache, and
subsequent writes to other locations in the same group are handled just like
the first. But a read to a location that has not been written produces a
storage reference. The requested word is given to the processor; and all
words in the group that do not already have written representations in the
cache are inserted into the group entry.

When storage is being updated or a group entry that is not in use is
replaced by another, words. just valid can be thrown away. But written
words must eventually be sent to a storage module. '

Cache Structure. The 2048 locations in the cache are contained in 128
lines of sixteen each. The lines are identified by the possible group numbers
in a single page, 0~177. Each line contains four group entries for the given
number. Each group entry in turn comprises the number of the physical
page!? containing the storage group corresponding to the entry and repre-
sentations of the four locations in the group, each with valid, written and
parity bits. :

9 Of course memory control does not blindly request four storage cycles for every group even
when it is known that some are unnecessary. Fewer references are made when some
locations in a group aiready have valid representations in the cache, or the first or last
transfer in a channel block is for part of a group. .

10 The list of all page numbers makes up the cache “directory.” For many hardware func-
tions the cache is organized in four quadrants. A quadrant contains 128 group entries,
one from each line.

3-12 KL10 System Operations

The hardware also includes a mechanism for keeping track of the use

of the various group entries. Whenever the processor references a group
whose corresponding line in the cache already contains valid entries from
four other pages, the hardware puts the new group representation in place
of the least recently used entry in the line. But in doing so it also updates
from any representations tagged as written in the displaced group entry.

Internal Channels. The channels are expected in general to deal with
the storage modules, but if the cache contains any valid words for a page
being handled through the channels, the hardware acts as follows:

In an output operation, any valid representations at locations addressed
by a channel are taken from the cache instead of storage.

In an input operation, all data is sent to storage. However any entries
that are in the cache for locations addressed by the channel are invali-
dated. ' :

. The reasons for this behavior are apparent. For output any valid words left
in the cache might as well be taken since that is faster than going to
storage. Furthermore some valid entries may have been written, and it is
assumed that storage will certainly not be more up to date than the cache.
 Anything brought in via a channel is assumed to be the correct copy, and it
should therefore go to storage as the page cannot be in use at the same time
it is being loaded. Any valid entries left over in the cache must be from
. some previous operation, and they should therefore be invalidated, so any
future references to those locations will go to storage for the correct copy.
Should any of the valid leftovers be tagged as written, it is assumed the
Monitor would have swapped out the modified page before bringing in the
new. Of course a page used as temporary storage, or to hold counters and
control words, albeit modified, can just be thrown away.

Cache Programming

. The operations the program can perform on or for the cache are three: to
invalidate, to validate, and to unload. Any of these operations may be car-
ried out for all entries in the cache or for all entries of a single page. To
invalidate a location is simply to clear its valid and written bits so it no
longer represents anything. To validate or unload means to update storage,
i.e. to write a cached word into storage if it is tagged as written, and to
clear the written bit. Otherwise validating storage leaves the validity of the
cache entries unchanged, whereas unloading invalidates all entries, writ-
ten or not, in the groups being processed (all those in a single page or the
entire cache). :

Following power turnon in any system, the cache use tables must be
initialized and the cache invalidated, as its initial state is indeterminate.
Beyond this, a system with a single central processor and internal channels
requires no cache programming, as everything is handled adequately by
the hardware. However if a system contains facilities that bypass the proc-
essor to deal directly with external memory, whether such facility be an
external channel or another central processor, then the Monitor must actu-
ally manage the relationship between storage modules and cache.

KL10 System Operations

313

As an example of such management and to illustrate the difference in
use between validation and unloading, consider. the situation in which a
program is through with the datain a particular (modified) page and it is to
be swapped via an external channel with new data brought into the same
physical page for later use. The page must be unloaded into storage so that
subsequently the program will go there for the new data. On the other hand
suppose a program has created some code in a page, and the system is both
to go ahead and execute it immediately and place it in a library. Now
validation is the proper procedure: while the storage copy is being filed, the
program can continue execution from the cache.

For initialization and management, there is one instruction that ini-
tializes the use tables and six that sweep the cache to perform the above
- three operations for a single page or all pages. Note that a sweep of the
entire cache is always necessary, even for handling a single page, as there
is no prior way of knowing whether any given line contains a group from
any given page. Sweeping for a single page does however take less time
than sweeping for all pages. In the latter case the sweeper must check all
512 group entries, whereas the former requires checking only every line to
see if it contains an entry for the specified page, and there can be at most
~ one such entry. Moreover sweeping for all pages can usually be expected to
require more storage references than sweeping for a single page. In this
light it should be noted that the sweep instructions simply initiate opera-
tions which are then carried forward by the cache sweeper. The program
can continue while the sweep is going on, but this can be expected to slow
down the sweep as the cache and program would then compete for storage
references. That a sweep is in progress is indicated by the Sweep Busy flag
being on, and at completion the sweeper clears Busy and sets Sweep Done. -
The program can check both of these flags among what are otherwise the
processor error conditions, and it can enable the latter to request an inter-
rupt on the level assigned to the processor (§3.8).

These are 1O instructions wherein the cache sweeper has device code
014, mnemonic CCA. But the instructions have their own mnemonics since
they bear no relation to the standard IO operations. Six of the eight are
used: the BLKI and CONO also sweep, doing nothing but wasting cache
cycle time. The single instruction that initializes the use tables is discussed
at the end of the section.

SWPIA Sweep Cache, Invalidate All Pages (DATAI CCA,)
1 70144] x | Y | Eis not used."
]) 121314 1718 35

Set Sw}eep Busy, and clear the valid and written bits in all cache entries. At
the completion of the sweep, clear Sweep Busy and set Sweep Done, re-
questing an interrupt on the level assigned to the processor.

11 I X and Y are reserved and should be zero.

3-14 KL10 System Operations

- SWPIO . Sweep Cache, Invalidate One Page (CONI CCA,)

! 70164 x| Y |

0 . 121314 1718 s

Set Sweep Busy, and clear the valid and written bits in all cache entries for

‘the physical page specified by bits 23-35 of E. At the completion of the
sweep, clear Sweep Busy and set Sweep Done, requesting an interrupt on
the level assigned to the processor.

SWPVA Sweep Cache, Validate All Pages - (BLKO CCA))
{ 70150 11 x Y | Eisnotused.
K ' 121314 1718 ' T

Set Sweep Busy, and write into storage all cached words whose written bits
are set. Clear all written bits but do not change the validity of any entries.
At the completion of the sweep, clear Sweep Busy and set Sweep Done,
requesting an interrupt on the level assigned to the processor.

t

SWPVO Sweep Cache, Validate One Page (CONSZ CCA,)
N 70170] x| Y j
0 B 7121314 1718 .35

Set Sweep Busy, and write into storage all cached words whose written bits
are set and which are found in entries for the physical page specified by bits
23-35 of E. Clear the written bits associated with those words sent to stor-
age, but do not change the validity of any entries. At the completion of the
sweep, clear Sweep Busy and set Sweep Done, requestmg an interrupt on
the level assigned to the processor.

SWPUA Sweep Cache, Unload All Pages (DATAO CCA,)
| 70154 [x | Y | Eisnot used.!!
0 - 121314 1718 RH

Set Sweep Busy, and write into storage all cached words whose written bits
are set. Invalidate the entire cache, i.e. clear all valid and written bits. At
the completion of the sweep, clear Sweep Busy and set Sweep Done, re-
questing an interrupt on the level assigned to the processor.

KL10 System Operations 3-15

SWPUO Sweep Cache, Unload One Page (CONSO CCA,)

T 70174] x | y]

0 121314 1718 . 35

Set Sweep Busy, and write into storage all cached words whose written bits
are set and which are found in entries for the physical page specified by bits
93_35 of E. Invalidate all entries for the specified page, i.e. clear both their
valid and written bits. At the completion of the sweep, clear Sweep Busy
and set Sweep Done, requesting an interrupt on the level assigned to the
processor.)

Management of the cache is relatively straightforward. With external
. channels the program must simply be sure always to update storage pages
before having them sent out, and to invalidate the cache entries for pages
being brought in so processor references will go to storage for the new data.

The same procedures are used for a multiprocessor system, but here a
_problem arises when different processors are allowed to reference the same
page at the same time, if either is allowed also to modify the page. Without
modification the cache copies in both processors will remain valid; but if a
processor modifies the page, the other cannot expect to get up-to-date data
from cached words: To handle this situation, the pager includes mecha-
nisms for bypassing the cache. Each page mapping®? contains a cache bit for
determining whether cache use is allowed for the given page. This cache bit
applies only to an individual page, and has no effect at all unless cache use
is enabled by the cache look bit. Analogous to the mapping cache bit is a
load bit that applies to all unpaged references (such as pager references to
the process tables). The look and load bits are among the conditions the
Monitor provides to the pager. The way these “cache strategy” conditions
govern cache use is as follows.

Look
0 The cache is disabled — go to storage for all references.
1 Look in the cache for all references. This means always use the

cache (reading or writing) for any locations that already have valid
representations. Furthermore when there is no valid representa-
tion for a reference, load the-cache (reading or writing) if either the
reference is unpaged and the load bit is 1, or the reference is paged
and the cache bit in the mapping for the page is 1.

12 For information on page mapping refer to §3.3 or §3.4 depenaing on whether the system
uses respectively the TOPS-10 or TOPS-20 Monitor. Instructions for handling the pager
are discussed in §3.3.

3-16 KL10 System Operations

Timing. Simple invalidation takes little time, and it interferes mini-
mally with the program since it requires no storage references. Otherwise
an average sweep requires on the order of several hundred microseconds,
but varies widely depending on the number of references required. Allow-
ing the program to run simultaneously slows down the sweep because of
competition for storage cycles, but program time is saved nonetheless.

Initializing the Cache. The use logic contains two tables each with
128 entries. Each entry in the use table identifies the use history — from
most to least recently used — of the group entries in the corresponding
cache line. With each reference, the use entry for the line must be updated.
But instead of containing complex computational logic, the hardware has a
refill table that supplies new use entries as a function of the previous use
history of a given line and the group entry currently being accessed in the
line.- Following power up the program must initialize the use logic by giv-
ing this instruction 128 times to load every 3-bit location in the refill table.

WRFIL ‘Write Refill Table (BLKO APR,)
l 70010 x| Y . B
o 121314 1718 g 3s

Load the refill data given by bits 18-20 of E into the refill table location
specified by bits 27-33.13

REFILL TABLE DATA REFILL TABLE AODRESS
| !]] | I | l I J] I

1§ 12 20 ' 21 22 23! 24 28 26 ' 27 28 29 130 -3 32

After filling the refill table by stepping through locations 0~177 (val-
ues of E that are multiples of 4 from 0 to 774), the program should give an
SWPIA to invalidate the indeterminate initial contents of the cache. Dur-
" ing the sweep the normal monitoring of cache access by the use logic ini-
tializes the use table from the refill table. The way the use table gets set up
depends on the data pattern — the “refill algorithm” — loaded into the
refill table, and the pattern selected depends on the use strategy desired for
_ the cache. To limit cache use to a single quadrant, simply load the quadrant
number (0-3) into the entire refill table. The usual use strategy is to allow
equal use of all quadrants and to start with a presumed use history of most
to least recently used corresponding to the numerical order of the quad-
rants. To implement this strategy,* load the following data pattern.

13 The refill locations are selected by bits 27-33 to make use of the same lines that supply
group numbers to address entries in the use table.

14 For information on refill algorithms for other use strategies, refer to the writeup of
MAINDEC10-DDQDA-L-D(SUBRTN).

33

KL10 System Operations

34

317

35

0 1 2 3° 4 5 6 7
000 0 1 2 3 4 5 6 7
010 3 1 2 3 2 1 2 3
020 7 1 2. 7 1 1 -2 1
030 6 5 6 7. 5 5 6 7
040 0 3 2 3 0 2 2 3
050 - 0 1 2 3 4 5 6 7
060 0 7 7 7 0 0 0 7
070 4 6 6 6 4 4 6 4
100 3 1 3 3 1 1 1 3
110 0 7 7 7 0 0 0 7
120 0 1 2 3 4 5 6 7
130- 4 5 5 7 4 5. 4 7
140 0 1 2 2 0 1 2 1

150 0 5 6 6 0 5 6 0
160 4 5 6 5 4 5 6 4
170 0 1 2 3 4 5 6 7

3.3 TOPS-10 Paging and Process Tables

General information about the machine modes and paging procedures is
given in §1.3. Here we treat in detail the structure of the process tables and
certain hardware procedures — paging and page failures — a knowledge of
which is necessary for an understanding of executive programming. This
* section covers these topics relative to a machine that uses the TOPS-10
Monitor. The next section presents equivalent information for the TOPS-20
Monitor. Instructions through which the Monitor controls the pager and
otherwise exercises overall management of the program environment are
the same whether the system uses TOPS-10 or TOPS-20, and are described
in §3.5.

With paging turned on, the program considers all of its dealings with
memory to be in its virtual address space, and interrupt functions and
instructions reference executive virtual address space except in special
cases where a function specifically calls for physical references. A virtual
address is any address given in virtual space except those for fast memory,
which are treated as physical. The pager maps only virtual addresses, but it
is involved in all references to the extent that it responds to error situa-
tions. Physical references include those made by the pager-microcode to
carry out the mapping procedure, and also microcode references to retrieve
interrupt instructions, handle traps and UUOs, and service the meters and
front end. .

318 KL10 System Operations

Paging

All of memory both virtual and physical is divided into pages of. 512 words
each. The virtual memory space addressable by a program is 512 pages; the
locations in virtual memory are specified by 18-bit addresses, where the left
nine bits (18-26) specify the page number and the right nine (27-35) the
location within the page. Physical memory can contain 8192 pages and
requires 22-bit addresses, where the left thirteen bits (14-26) specify the
page number. The hardware maps the virtual address space into a part of
the physical address space by transforming the 18-bit addresses into 22-bit
addresses.!s In this mapping the right nine bits of the virtual address are
not altered; in other words, a given location in a virtual page is the same
. location in the corresponding physical page. The transformation maps a
virtual page into a physical page by substituting a 13-bit physical page
number for the 9-bit virtual page number. The mapping procedure is car-
ried out automatically by the hardware, but the page map that supplies the
necessary substitutions is set up by the kernel mode program. Each word in
the map provides information for mapping two consecutive pages with the
substitution for the even numbered page in the left half, the odd numbered
page in the right half.

The pager contains two 13-bit registers that the Monitor loads to spec-
ify the physical page numbers of the user and executive process tables. To
retrieve a map word from a process table, the pager uses the appropriate
base page number as the left thirteen bits of the physical address and some
function of the virtual page number as the right nine bits. For example, the
entire user space of 512 virtual pages at two mappings per word requires a
page map of just half a page, and this is the first half page in the user
process table. Thus locations 0-377 in the table hold the mappings for
pages 0 and 1 to 776 and 777. To find the desired substitution from the 9-bit
virtual page number, the hardware uses the left eight bits to address the
location and the right bit to select the half word (0 for left, 1 for right).

The executive virtual address space is also 256K, but the page map for
it is in three parts. The map for the first 112K (pages 0-337) is in executive
process table locations 600-757. The map for the second half of the virtual
address space uses the same locations in the executive process table as are
used in the user process table for the user map (locations 200-377 for pages
400~777). The map for the remaining 16K in the first half of the executive
virtual address space is in the user process table, the mappings for pages
340-377 being in locations 400—417. This means the Monitor can assign a
different set of thirty-two physical pages (the per-process area) for its own
use relative to each user. Hence when switching from one user to another,
the Monitor need change only the user process table, this single substitu-
tion making whatever change is necessary in the executive address space
for a particular user.

15 For paging purposes page 0 has only 496 locations using addresses 20-777, as addresses .

0-17 reference fast memory, which is unrestricted and available to all programs. (In
general a user cannot reference the first sixteen storage module locations in his virtual
page 0.) Throughout this discussion it is assumed that all references are to storage.

KL10 System Operations

319

Figure 3.1:

USER
VIRTUAL
ADDRESS

SPACE

256K

T

3-20

USER
PROCESS
TABLE
000 -777 256
TXECUTIVE 390 = 3717 115_ .
TRAP & MUUQ 16

METPR SLOCK

////

/4

SECTION REFERENCES

TRaP 2.9
MUvO 2.18
INTERRUPT 3.1
METERS 3.6

7

oTe20 3.

K110 System Operations

277"

EXECUTIVE

112K

340000
rd

16K

—————

128K

rreIY

\
\\ % ;49/ 52

TOPS-10 Virtual A&d're.ss Space and Process Table Layout

EXECUTIVE
PROCESS
TABLE

CHANNEL »
LOGOUT AREAS
INTERRUPT 16
CHANNEL BLOCK FILL WOROS

7227

CDNTROL ELDCKS

ry
-~

400 -777 128

L v
3

TRAP -

\ I\ METER [3 5
\\ 1
" /51
\’I %4
1

I\ 000 -337 1]

6

1TSS ST,

/ SHAOED AREAS
ARE RESERVED N

Figure 3.2: TOPS-10 Process Table Configuration

o

3717
400

417
420
a
422
423
424
425

426

427
430

432
433
434
435
438
437

$10

USER PROCESS TABLE

o o e o e e e

USER PAGE O USER PAGE 1

USER PAGE 776 USER PAGE 777

- - - =

EXECUTIVE PAGE 340 EXECUTIVE PAGE 341

forrsn o s - e - - - — - - — - d—

EXECUTIVE PAGE 376 EXECUTiVE PAGE 377

- RESERVED

USER ARITHMETIC OVERFLOW TRAP INSTRUCTION

USER STACK OVERFLOW TRAP INSTRUCTION

USER TRAP 3 TRAP INSTRUCTION

MUUO STORED HERE

MUUQ OLD PC WORD

MUUO PROCESS CONTEXT WORD

RESERVED

KERNEL NO TRAP MUUQ NEW PC WORD

KERNEL TRAP MUUQ NEW PC WORD

SUPERVISOR NO TRAP MUUC NEW PC WORD

- SUPERVISOR TRAP MUUG NEW PC WORD

CONCEALED NO TRAP MUUQ NEW PC WORD

CONCEALED TRAP MUUO NEW PC WORD

PUBLIC NO TRAP MUUQ NEW PC WORD

PUBLIC TRAP MUUC NEW PC WORD

RESERVED

PAGE FAIL WORD

PAGE FAIL OLD PCWORD

PAGE FAIL NEW PC WORD

RESERVED

USER PROCESS EXECUTION TIME

USER MEMORY REFERENCE COUNT

RESERVED

I

757 EXECUTIVE PAGE 336

EXECUTIVE PROCESS TABLE

0 [EIGHT CHANNEL LOGOUT AREAS .

i EACH: 0 INITIAL CHANNEL COMMAND
1 GETS CHANNEL STATUS WORD

— o ——

i
| 2 GETS LAST UPDATED COMMAND
i 3 RESERVED
37 ;
:‘1’ RESERVED 4
42
; STANDARD PRIORITY INTERRUPT INSTRUCTIONS $
57 4 :
| FOUR CHANNEL BLOCK FILL WORDS '
63
84
{ RESERVED '
137
140
{ FOUR DTE20 CONTROL BLOCKS
177

200 | EXECUTIVE PAGE 400
]

T
i

EXECUTIVE PAGE 401

377 } EXECUTIVE PAGE 776 EXECUTIVE PAGE 777

PO e,

| ReszAvED
420

421 | EXECUTIVE ARITHMETIC OVERFLOW TRAP INSTRUCTION

422 | EXECUTIVE STACK OVERFLOW TRAP INSTRUCTION

423 | EXECUTIVE TRAP 3 TRAP INSTRUCTION

424

{ RESERVED
507

510
SN

TIME BASE

512
513

PERFORMANCE ANALYSIS COUNT

514 | INTERVAL COUNTER INTERRUPT INSTRUCTION

91%
RESERVED
577

EXECUTIVE PAGE 1

600 | EXECUTIVE PAGE 0

| |
I | i

EXECUTIVE PAGE 337

760 |
1 RESERVED
777}

e s B e e -

KL10 System Operations 321

Figures 3.1 and 3.2 show the orgamzatmn of the virtual address spaces,
the process tables and the maps for both user and executive. The first
illustration gives the correspondence between the various parts of the ad-
dress spaces and the corresponding parts of the page maps. The second
illustration lists the detailed configuration of the process tables as deter-
mined by the hardware. Any table locations not used are reserved for fu-
ture use by the hardware or for use by the Monitor for software functions.
Note that the numbers in the half locations in the page map are the virtual
pages for which the half words give the physical substitutions. Hence loca-
tion 217 in the user page map contains the physical page n_mberg for
virtual pages 436 and 437.

Although the virtual space is always 256K by virtue of the addressing
- capability of the instruction format, the Monitor usually limits the actual
address space for a given program by defining only certain pages as accessi-
ble.!® The Monitor also specifies whether each page is public or not, writ-
able or not, and cacheable or not. The cache bit has an effect only if cache
use is enabled as the current cache strategy (§3.2); in this case a 1 in the
cache bit allows loading the cache for the physical page when referenced as
this particular virtual page, whereas a 0 limits cache use to look but do not
~ load. Each word in the page map has this format to supply the necessary
information for two virtual pages.

DATA FOR EVEN VIRTUAL PAGE DATA FOR ODD VIRTUAL PAGE
PHYSICAL PAGE PHYSICAL PAGE
LAEMSiCi ADDRESS BITS 14-16 IAiPlW‘ SJd ADDRESS BITS 13-26 J
0 1!@ 23 45 - . 171819202122 23 . 35

Bits 5-17 and 23-35 contain the physical page numbers for the even and
odd fumbered virtual pages corresponding to the map location that holds
the word. The properties represented by 1s in the remaining “page use” bits
are as follows.

_ Bit Meaning of a 1 in the Bit

A Access allowed

P Public

w Writable (not write-protected)

S Software (not interpreted by the hardware)
C Cacheable

Page Table. If the complete mépping procedure described above were
actually carried out in every instance, the processor would require two
memory references for every reference by the program. To avoid this, the

1€ There is no requirement that the accessible space be continuous — it can be scattered
pages. The convention however is for the accessible space to be in two continucus virtual
areas, low and high, begmmng respectively at locations 0 and 400000. The low part is
generally unique to a given user and can be used in any way he wishes. The (perhaps
nuil) high part is a reentrant area, which is shared by several users and is therefore
write-protected.

322 KLlO System Operations

pager contains a page table, in which it keeps a large assortment of map-
pings for both the executive and the current user. In a2 manner analogous to
the way the cache is organized to handle word groups of four; the pager
handles mappings in sets of eight. A page set is .eight consecutively
numbered pages beginning with one whose number is a multiple of 10s.
Each page set consists of those pages whose mappings are contained in a
single word group-in the page map. The 512 locations in the page table are
contained in sixty-four lines, each of eight locations holding the mappings
for the eight pages of a set. The lines are identified by the possible page-set
numbers in an address space, 0~77, and the individual locations are ac-
cessed by means of the virtual page numbers, 0-777. Each location has a
parity bit and the complete mapping (i.e. map half word) for the virtual
- page that identifies it, including the physical page number and the five
page use bits. Associated with each line are a bit that indicates whether the

specified page set is in the user or executive address space, and a bit that.

_ indicates whether the set of mappings is valid or not (it is not suitable to
clear a line as zero is a perfectly valid mapping, albeit for an inaccessible
page). The user and validity bits for all lines collectively constitute the
page table directory.

When the program references a page contained in a page set whose
' mapping entry is tagged as valid and in the program address space, the 13-
bit physical number from the mapping location for the virtual page is used
as the left thirteen bits in the physical address for the memory reference
(provided of course that the reference is allowable according to the A, P and
W bits). If however the mapping set is invalid or is not for the correct
address space, the pager makes a memory reference (referred to as a "page
refill cycle™) to get the word group containing the mapping for the specified
virtual page from the page map. Even when there is no cache, all eight
mappings from the word group are entered into the page table, filling and
validating the line for the page set. This means the mappings will also be in
the table for subsequent references to pages in the same set, although some
may require a trap to the Monitor to make them accessible.

Note that all the mappings in an entire line of the page table are for a
single space, user or executive. Since most programs are written beginning
at page O (and often page 400 for a pure part), a mechanism is built into the
table to avoid excessive refills due to switching between user and executive.
In the numbers actually used to select lines in the table, the value of ad-
dress bit 19 is inverted in user address space. For a given page number, this
causes a difference of 200 in the line selection number for user space as
against executive space. Suppose the executive uses pages 0-37 and
400437, and also uses the per-process area, pages 340-377. Then if the
user is limited to pages 0~137, 240-577 and 640-777, no CODﬂlCt will ever
occur between them in the page table.

Page Failure

When for any reason the pager is unable to make a desired memory refer-
ence, an event knowt as a “page failure” occurs. For this the pager termi-
nates the instruction immediately, without disturbing PC or storing any

KL10 System Operations

3-23

results in memory or the accumulators, and executes a page fail trap.’” The
trap operation makes use of three locations in the user process table: it
places a page fail word in location 500, identifies the failed state of the
processor by placing the current PC word in location 501, and sets up the
flags and PC according to a new PC word in location 502. The processor
then resumes operation in the new state at the location now addressed by
PC. The page fail word supplies this information.

FAILURE '
Eﬂl AILUY ! !Vlf [l VIRTUAL ADDRESS l

t s 67 8 . 18 ’ 35

[OfAMSITIPIC] HaVe mhis FoRmaT
1 2345 67

- Whether the violation occurred in user or executive address space is indi-
cated respectively by a Lor 0 inbit0;andalor Oinbit 8 indicates whether
or not a virtual address was given for the reference. If bit 1 is 1, bits 6 and 7
are indeterminate, and the number in bits 1-5 (= 20) indicates the type of

-“hard” failure as follows.

21 Proprietary violation — an instruction in a public page has attempted
" to reference a concealed page, or a public program has attempted to
fetch an instruction from a concealed page at an illegal entry point
(one not containing a PORTAL). The failure for an illegal entry
(which forces bit 8 to 0) occurs at the next reference, after the instruc-

tion is decoded, so the fail address is meaningless.

22 Page refill failure — this is a hardware malfunction. The pager found
no mapping for the virtual page in the page table, so it refilled the
line from the page map but still could not find it.

23 Address failure — this is caused by the satisfaction of an address
condition selected by the program. It is used for debugging purposes,
such as to find an instruction that is maliciously wiping out a memory
location, and is explained in §3.5 with the description of the DATAO
APR, instruction that sets it up. Bit 8 is forced to 0 by this failure.

25 Page table parity error — the pager has encountered a page table
' mapping with incorrect parity.

36 AR parity error — the processor has detected incorrect parity in a

word read into AR from a storage module, the cache, or the E bus, and

" has saved the word with correct parity in AC 0, block 7. When the

source is a storage module, the MB Parity Error flag is also set (CONI
APR, bit 27). : '

17 A page failure that occurs during an interrupt instruction does not act this way. Instead
it places a page fail word in AC 2, block 7, and sets the In-out Page Failure flag (CONI
APR, bit 26), requesting an interrupt on the level assigned to the processor.

3-24 KL10 System Operations

37 ARX parity error — the processor has detected incorrect parity in a
word read into ARX from a storage module or the cache, and has
saved the word with correct parity in AC 1, block 7. When the source
is a storage module, the MB Parity Error flag is also set (CONI APR,
bit 27).

If the failure is not one of these, then bits 1-7 have the format shown
above, where A, W, S, P and C are simply the corresponding bits taken from
the mapping for the page specified by bits 18-26, and T indicates the type
of reference in which the failure occurred — 0 for a read-only reference, 1
for any reference involving writing. The type of reference per se implies
nothing about the cause of failure — it indicates only the reason the failed
‘reference was being made. Of course T being 1 in conjunction with W being
0 certainly implies the cause of failure.

For a page fail trap, the new PC word is set up by the Monitor to
transfer control to kernel mode. After rectifying the situation, the Monitor
" returns to the interrupted instruction, which starts over again from the
beginning or from the stopping position in a multipart instruction. Even a
two-part instruction that has been stopped by a failure in the second part is
redone properly, provided the Monitor restores First Part Done. The mecha-
-nism for making a correct return and the effects it produces on a BLT are
the same as for an interrupt, and are described under the special consid-
" erations given at the end of §3.1.

' Note that a soft failure!® seldom implies that anything is “wrong” —
. unless a program has attempted to write in a truly write-protected area.
Consider a typical case where the Monitor has, for example, ten or twenty
pages of a user program in core; these would be the virtual pages indicated
as accessible. When the user attempts to gain access to a page that is not
there (a virtual page indicated in its mapping as inaccessible), the Monitor

-would respond to the page failure by bringing in the needed page from the
disk, either adding to the user space or swapping out a page the user no
longer needs.

The same situation exists for writability. When bringing in a user
" program, the Monitor would ordinarily indicate as writable only the buffer
area and other pages that will definitely be altered, distinguishing those
that must be revised on the disk at the end from those that can be thrown
away by setting the software bit. Then in response to a write failure, the
Monitor makes the page writable and sets the software bit to indicate to
itself that that page has in fact been altered and must be saved. When the
user is done, the Monitor need write back onto the disk only those pages for
which both W and S are set.

18 In a soft page failure or page table parity error, the line containing the mapping for the
page is invalidated on the assumption the Monitor will change it. When the instruction is
restarted, the pager must go to the page map to get new information for the table.

KL10 System Operations

3-25

The Map Instruction

It is often helpful for the Monitor or a debugging package to. be able to
determine how the pager would respond to a particular reference without
actually chancing a page failure. It may also be useful to determine where
a particular virtual page is in physical memory, e.g. to set up a channel
command list. For such purposes the processor has this instruction, which
unlike all other instructions described in this chapter, is not an IO instruc-
tion even though it is subject to the same restrictions.

MAP Mapt an Address
[257 | 4 [x | Y]
0 89 121314 1718 as

If the pager is on and the processor is in kernel or user IO mode, map the
page number of the virtual effective address E and place the resulting
physical address and other map data in AC. The information loaded into
AC for a true mapping is of the form '

iU OHWiS ol PIC ll 00 PHYSICAL ADDRESS]

.0 1234546 7 89 . 13 14 3s

where bits 14-26 are the physical page number the pager supplies for E, bit
0 is 1 or 0 depending on whether the paging is done in user or executive
address space, and A, W, S, P and C are the page use bits from the mapping
as explained above. If however there is a parity error in the page table
entry, or the paging is done in user mode public but the page, while accessi-
ble, is private, AC receives :

M—';IA.;;_‘L’J:(P IP‘d II 00 l PHYSICAL ADDRESS }

01 56 7 89 1314 35

The failure code can be only 21 or 25 for a proprietary or parity error,
where in the latter case those bits supplied by the mapping, 6, 7 and 14-35,
are meaningless. _ ,

This instruction cannot be performed in a user program unless User In-
out is set, nor in a supervisor program. Instead of mapping the address, it
executes as an MUUO. If the pager is off, the result is undefined.

Notes. The instruction itself cannot fail because it does not actually
reference memory: it just translates the address and gets other mapping
data. However the effective address calculation could fail, and getting the

mapping may require a refill, in which a hard failure could occur.

3-26 KL10 System Operations

In order properly to manage memory, the kernel program must select the
kind of paging and the cache strategy, set up process tables and page maps
for itself and the various users, oversee the operation of the page table, and
select the fast memory block to be used by each program (usually block 0
for itself). At any given time, accumulator, index register and fast memory
references are made to that AC block that is assigned as “current.” Given a
particular processor mode (user or executive, public or private) and an ap-
propriate process table and page map, the Monitor effectively defines the
address space for a process (which may be itself) by specifying the base
address for the process table and selecting the current AC block.

- When a user program calls the Monitor it is usually to request some
activity, which may often require the executive to gain access to the user
address space. To facilitate the crossover from one address space to another,
the same instruction through which the Monitor assigns its own current
AC block also ‘allows assignment of an AC block and section for the “previ-
ous context” — i.e. the context of the process that made the call. These
quantities, together with flags that indicate the mode of the caller, allow
execution of instructions in the previous context (more about this subject

KL10 System Operations

343

" later). At any point in time, the previous context is essentially the circum-
stances in which the previous process was running. Note that the previous
context need not be the user; the same techniques can be exploited follow-
ing a call from one level of the Monitor to another.

For initial setup, the kernel program must be cognizant of certain fun-
damental characteristics that can vary from one system to another. For this
purpose the instructions for basic management include not only those that
address the pager, but also one that addresses the processor to discover
what those characteristics are.

The device code for the pager is 010, mnemonic PAG.%

Iy

APRID . Arithmetic Procesor ldentification
nl 70000 M x | Y }
4] . 121314 17 18 35

Read the microcode version number, the processor serial number, and a
listing of the fundamental characteristics of the system into location E as
- shown.

. MICROCODE OPTIONS ' MICROCOOE VERSION NUMBER
TOPS-20 EXTENDED, EXOTIC
PAGING |A0DRESS | CODE |] L1]] | 1 | | |] |]
0. 1] 4 5 1 g 7 8 3 10 L 13 14 ' 15 16 7
+ HAROWARE OPTIONS. PROCESSOR SERIAL NUMBER
EXTENDED MASTER .
50Mz | CACHE |[CHAWKEL] XLIQ | 0OSC |) | .]] | | i | | | |

18 19 20 ' o2t 22 23 24 s 26) 21 28 29 ! 30 31 32 13 34 35

-0 The microcode implements paging for the TOPS-20 Monitor; 0 indi-
cates TOPS-10 paging. :

1 The microcode handles extended addresses.
The microcode differs in some way from the standard version.
18 Line power frequency is 50 Hz rather than the standard 60 Hz.

21 The processor is an extended KL10; 0 indicates a single-section KL10.
The microcode options must of course be consistent with the processor

" type. . :
22 The system has a master oscillator, which is available as an external

clock source. In a system containing MOS memory, the software must
select this source (CPU clock source 2) from the PDP-11.

33 BLKI PAG, is unassigned and executes as an MUUO.

344 KL10 System Operations

CONO PAG, - Conditions Out, Pager

| 70120 1 x| Y]

0 121314 1718 3s

Set up the system-oriented characteristics of the pager according to the
effective conditions £ as shown.

STRATEGY T 20 et EXECUTIVE BASE ADORESS (PAGE NUMBER)

Loox | Loa0 S M T N N RN MR MR N

8 13 20 21 2 20 a4 25 2127 28 290V n 213

Load bits 23-35 into the executive base register to select the executive
process table. If bit 22 is 1 enable overflow trapping and enable the pager
for the type of paging selected by bit 21: 1 TOPS-20, 0 TOPS-10. The
paging selected must be the same as that implemented by the microcode as
indicated by APRID bit 0. A 0 in bit 22 prevents traps and disables paging
so all memory references are to physical locations unpaged.*

CAUTION

Paging can be disabled only for executive mode. A user mode
program will not run correctly unless the pager is turned on.

Select the cache strategy according to bits 0 and 1 as follows:
O0x Disable the cache. o ’

10 Look for all references, but do not load physical references; for virtual - -
references act as directed by the cache bit in the mapping for the
page. . : '

11 Make complete -use of the cache for physical references; for virtual
references act as directed by the cache bit in the mapping for the
page.

Invalidate the entire page table by setting the invalid bits in all lines.

CONI! PAG, Conditions In, Pager

[70124 Il x | ‘ Y R

0 121314 17 18) 35

Read the system sta_;‘.us of the pager into the right half of location E. The
information read is the same as that supplied by a CONO.

34 Note that disab}i{xg the pager does not mean there can be no page failures, as these can be
caused by conditions having nothing to do with paging, i.e. with translating virtual to
physical addresses.

KL10 System Operations

345

DATAO PAG, Data Out, Pager

[70114 bl x | . Y B '.J

1] 121314 17 18 . 35

Set up the process-orientéd elements of the pager according to the contents
of location E as shown. '

SELECT | LOAD . . R
SELECT bkvicus| UStR : EURRENT Ay PREVIQUS CONTEXT
BLOCKS |CONTEXT| BASE C BLOCK AC BLOCK

SECTION {AD0RESS |] ‘ ! ‘ L l

0 1 2 3 4 5 § 7 8 [) 10 1 12 13 14
OSoare . ' USER BASE ADDRESS (PAGE NUMBER)
ACCOUNTY -
| ! ! ! | 1]] ! | | a

18 1@ 20 Vo2t 22 23 | 24 25 26 | 21 28 29 1 30 31 32 |

Bits 0-2 are change indicators for parts of the data word: when a bit is 0,
‘the corresponding part of the word is ignored, and the equivalent value
supplied by a previous DATAO remains in effect. :
" If bit 0 is 1, select as the current and previous context AC blocks those
specified by bits 6-8 and 9-11, respectively. If bit 1 is 1, select as the
previous context section that specified by bits 13-17 (which must be zero in
a single section processor). If bit 2 is 1, perform these functions:

If bit 18 is 0, update the user accounts as explained in §3.6.

Load bits 23-35 into the user base register to select the user process
table. '

Invalidate the entire page table by setting the invalid bits in. all lines.

DATAI PAG, Data In, Pager

{ 701.04 7l x| Y |

0 121314 17 18 3s

Read the process status of the pager into location E. The information read
is in the same format as that supplied by a DATAO (bits 0-2 are 1s and bit
18 is 0). Note however that only the AC block designations and user base

“address are necessarily the same information supplied by a previous
DATAQ. When an MUUO stores its own context as given by the DATAO
that set up the process containing it, it changes the designation of the
previous context section to that in which the program is currently running.
Hence following a call by an MUUO, a DATAI PAG; in the called program
will see as the previous context section that specified by PC at'the time the
MUUQ was performed.

346 KL10 System Operations

CLRPT Clear Page Table Entry

[70110 T x| 2]

0 121314~ 17 18 , 3s
TOPS-20 TOPS-10

Invaiidate the page table map- Invalidate the page table line

ping entry for the page refer- (eight entries) containing the

enced by E. . ' mapping for the page referenced

by E.

At power turnon the contents of the cache and page table are indeter-
minate, the processor is in kernel mode, paging is disabled, the cache is off,
and the current AC block is 0 by default. After the front end loads the
microcode, it then loads the initializing kernel program. This program,
running unpaged in physical memory, should give an APRID to determine
system characteristics and an SWPIA to invalidate the cache. The unpaged
program ends with a CONO PAG, that selects the cache strategy, selects
and enables paging, specifies the executive base address, and invalidates
the page table. From this point the kernel program runs paged and must
set up the first user or users, loading the user process tables and page maps,
bringing in whatever parts of user programs and data that are consistent
with good working-set management, and setting up the timing and ac-
counting meters. Finally the Monitor gives a DATAO PAG, to assign the
base address and current AC block for the first user, and then-transfers
control to the user program via an XJRSTF or JRSTF. The initial DATAO
PAG, should have a 1 in bit 18 to inhibit updating accounts before any user
has run. .

On a call from the user via an MUUO, give a DATAI PAG, to deter-
mine the context of the user, i.e. his AC block and section. Then give a
DATAO PAG, that assigns block 0 as current for the Monitor, assigns the
user AC block and section as previous context for accessing user space, but
leaves the base address alone so the right paging is still available for such
access. To return to the same user, reassign the AC block without changing
the base address. Leaving the base address alone also avoids unnecessary
updating of user accounts. Note that on the transfer to a user program no
previous context values need be given as the user cannot employ PXCTs.
For switching from one user to another, give a DATAQ PAG, that updates
the first user’s accounts in his process table, as specified by the old base
address, and then loads a base address for the new user. The transfer to a
user is done with a JRSTF or XJRSTF; the latter also restores the previous
context section when used to return from a higher to a lower level within
the executive. o

The usual procedure for administering AC blocks is to assign some to
individual user programs on a semipermanent basis for special applications

KL10 System Operations

347

. and to assign block 1 to all other users.® In this way the Monitor need not
store their blocks when the special users are not running, and it need not
store block 1 when it takes control from an ordinary user temporarily. If
the Monitor shared block 0 with any users, it would have to store the user
accumulators even when taking control only temporarily. When switching
from one ordinary user to another, the Monitor usually stores the first
user’s accumulators in his process table or shadow area — this is locations
0-17 in user virtual page 0, an area not generally accessible to the user at
all — and loads the new user’s accumulators from his process table or
shadow area, where they were stored after the last time the new user ran.
On a change from one process to another the entire page table must be
invalidated, but this is done automatically by the instruction that assigns
the new user base address. If the system uses shared or indirect pointers, or
several virtual page numbers point to the same physical page, then the
table must be invalidated whenever a page is removed from memory or a
_.pointer is removed from a user section table or page map. On the other
hand deletion of a page with a unique mapping requires only that a CLRPT
be given to invalidate the line containing it. In multiprocessor operation all
page tables must be cleared whenever one is. CST entries can be used to
communicate paging information from one processor to another.

' Previous Context Execute

Ordinarily an instruction in a user program is performed entirely in user
address space, and an instruction in the executive program is performed
entirely in executive address space. But to facilitate communication be-
tween Monitor and users, the executive can execute instructions in which
selected references cross over the boundary between user and executive
address spaces. This feature is implemented by the previous context exe-
cute, or PXCT, instruction. The mnemonic PXCT is for convenience only
and has no meaning to the assembler; it is used simply to indicate an XCT
. with nonzero A bits. A PXCT is an XCT. Although the PXCT is given by a
program in the current context, some of the references made by the exe-
“cuted instruction can be in the previous context. A PXCT can be given only
in executive mode, but the previous context may be the user, as following a
call to the Monitor by the user. The previous context can however be the
executive, to allow communication between one level of the executive pro-
gram and another, as when the Monitor gives an MUUO to itself. (Note: it
is not intended that PXCT be used by the Monitor for unsolicited references
to a user program.) .

It is very important to understand just which operations are affected by
a PXCT and which are not. The only difference between an instruction
executed by a PXCT and an instruction performed in normal circumstances
is in the way certain of its memory and index register references are made.
To work.as a PXCT, an XCT must be given in executive mode, and the bits
in its A field (9-12) must not all be 0 (in user mode A is ignored. But there
is otherwise no difference in the way the XCT itself is performed: every-
thing in the PXCT is done in the current (executive) context, and the in-

35 It may be worthwhile to assign a separate AC block for the sole use of interrupt routines.

348 KL10 System Operations

struction to be executed by the XCT is fetched in the current context. More-
over in the executed instruction, all accumulator references (specified by
bits 9-12 of the instruction word) are in the current context. (Remember
that the executive can always access a user accumulator simply by address-
ing it as a fast memory location.) If the instruction makes no memory

- operand references, as in a shift or immediate mode instruction, and it has
no indexing or indirection (i.e. the instruction word gives E directly), then
its execution differs in no way from the normal case. The only difference is
in memory and index reglster references.

The previous context is specified by four quantities. Following a call by
an MUUQ, the section in which the calling program was running (its PC
section) a.nd the fast memory block assigned to it appear as the previous
context section and current context AC block in the word read by a DATAI
PAG,. For the called program, these two quantities can then be assigned as
the previous context by a DATAOQ PAG,. The current AC block of the call-
ing program also appears in the process context word supplied by the

- MUUO. Various levels of the Monitor may all use fast memory block 0; or a
separate block may be assigned to that part of the Monitor that uses PXCTs
in handling MUUO calls from other parts of the Monitor.

" Just as the current mode is indicated by the User and Public flags, the
mode in which the calling program was running is indicated by Previous
Context User and Previous Context Public.® At a call these flags may be
set up automatically or they may be set up by a flag-PC doubleword or a PC
word. Note that the restrictions on references made in the previous context
are those of the previous context — not those of the context in which the
PXCT is given — with the single exceptibn that if the current program is
running in section'0, the previous context is also limited to section 0. Sup-

pose the executive executes an instruction that references the concealed -

user area. Such a reference would fail if Previous Context Public were set.

Which references:in the executed instruction are made in the previous
context is deterrmned by 1s in the A portion of the PXCT instruction word
as follows.

Bit References Made in Previous Context if Bit is I

9 Effective address calculation of instruction, including both instruc-
tion words in EXTEND (index registers, address words by indirec-
tion); also EXTEND effective address calculation of source pointer if
bit 11 is 1 and of destination pointer if bit 12is 1

10 Memory operands specified by E, whether fetch or store (e.g. PUSH
source, POP or BLT destination); byte pointer; second instruction
word in EXTEND

11 Effective address calculation of by‘te pointer; source in EXTEND; ef-
fective addréss calculation of EXTEND source pointer if bit 9 is 1

36 Previous Context User and Previous Context Public are in the same flag bits that are
used for User In-out and Overflow in user mode. The former has no meaning in executive
mode, and the latter is not really necessary as the executive program is not ordinarily
interested in performing extensive mathematical procedures.

KL10 System Operations

349

12 Byte data; stack in PUSH or POP; source in BLT; destination in
EXTEND; effective address calculation of EXTEND destination
pointer if bit 9 is 1 -

Previous context referencing is useful and reasonable in some instruc-
tions but inapplicable to others. There is no trap of any kind, and the effect
of using the feature with an instruction to which it does not apply is simply
undefined.’ '

Applicable ' - Inapplicable

Move, XMOVEI LUUO, MUUO
EXCH, BLT, XBLT AOBJN, AOBJP
Half word, XHLLI JUMP, AOJ, SOJ
Arithmetic JSR, JSP, JSA, JRA, JRST
Boolean PUSHJ, POPJ

- Double move XCT, PXCT
CAI, CAM Shift-rotate
SKIP, AOS, SOS String (except MOVSLJ
Logical test 10 .
PUSH, POP, ADJSP
Byte
MOVSLJ (extended KL10 only)
MAP

Note that no jumps can use previous context referencing. Even among
the instructions to which such referencing is applicable, only a limited
number of the sixteen possible bit combinations is useful or meaningful.
Doing an effective address calculation in the previous context (selected by
bit 9 or 11) makes sense only if the corresponding data access is also in the
previous context (as selected by bit 10 or 12 except 11 or 12 in EXTEND).
Only these combinations are permitted.

- Instructions 9 10 .11 12 References in Previous Context

General 0 1 0 o k Data
1 1 0 0 E, Data
Immediate 1 0 0 O E
NOTE

An A of 1000 is the “correct” configuration for a PXCT of an immediate
mode instruction, but it inadvertently allows use of the current context
section rather than the previous context as would be desired in say the
PXCT of an XHLLIL To get the previous context section in the extended
KL10, use 1100 instead.

Source

Destination -
Source, destination
E, destination

E, source, destination

BLT

HH.OOO
e =)
OO OoQ
OO

3-50 KL10 System Operations

XBLT Source
Destination

Source, destination

Stack

Memory data

Memory data, stack
E, memory data

E, memory data, stack

Stack

Data
Pointer E, data
Pointer, pointer E, data

E, pointer, pointer E, data

Byte

MOVSLJ
(extended KL10 only)

Destination

E (= Y), destination pointer, destination
Source

E (= Y), source pointer, source

Source, destination

E (= 1), pointers, source, destination

P‘OHOH‘O HOOO HEHLOOO OOC_)
<>ooodo O Q HHD—‘D—;O Lo B v R
bt et i = O QO O OO0 ~ O
2 4 O O el e MO O O

Execution of a BLT by a PXCT is limited to these three cases:
Where all operations, regardless of context, are in section 0.

Where the previous context fast memory block is being saved in or
- restored from the current context, which may be any section. (But re-
member that regardless of context a BLT-given in-section address in the
range 0—-17 always refers to fast memory. Hence an AC block can never
be saved in or restored from the first sixteen storage locations in an
- section.) ‘

Where all operations are confined to a single section in the previous
context, as would be the case when clearing a user page.

In all other circumstances XBLT must be used instead.
Address Debugging

The address failure, or address break, feature of the pager implements the
traditional program debugging technique of catching a particular type of
memory reference to a selected location (it does not catch fast memory
references). It may be used to determine whether a given program is modi-
fying a particular location, is executing a particular piece of code, or is
simply using a particular block of data. This instruction uses the processor
device code to specify the circumstances in which a break shall occur.

DATAO APR, Data Out, Arithmetic Processor

| 70014 T x | %]
o 121314 17 18 o s
Select the break address and the break conditions according to bits 9-35 of

location E as shown (a 1 in a condition bit selects the condition indicated, a
0 makes no reference selection or selects the opposite address space).

KL10 System Operations

REFERENCE TYPE |- USER
FETCH| READ | wriTE| SPACE

o9 10 1 12/
\\ ,'
\\ //
) r
r RESERVED iCOND!TIOl';IS* BREAK ADDRESS l
: 9 1213 35

The break conditions selected by 1s in bits 9-12 are as follows.

9 A normal fetch of an instruction in the program under control of PC.
10 Any reference that reads except the normal fetch of an instruction.
: This includes retrieval of operands, address words in an effective ad-

dress calculation, or an instruction to be executed by an XCT or user
LUUO.) '

11 Any reference that writes.

12 A reference made in user virtual address space (0 selects executive
space). The break mechanism operates only for virtual address space.

It does not catch microcode physical references, such as to the process
tables.

Whenever the processor attempts one of the selected types of reference
to the location specified by the break address in the selected virtual address
space, a page failure results® unless the Address Failure Inhibit flag is set.
This flag, which is bit 8 of the program flags and can be set only by an
instruction that restores them, prevents an address failure during the next
instruction — the completion of the next instruction automatically clears
_ it. If an interrupt or trap intervenes, the flag has no effect and is saved and
cleared if the flags are saved with PC. If it is not saved, it affects the
instruction following the interrupt or trap. Otherwise it affects the instruc-
tion following a return in which it is restored with PC. Using the inhibit
flag, the Monitor can return to a user instruction that caused an address
failure and “get by it.”

Since this feature is entirely under the control of the above IO instruc-
tion, it can be used quite flexibly for the executive to debug its own
routines, or to debug a single user program without bothering either the
executive or other users. The break conditions in effect at any time can be
ascertained by giving this instruction. '

37 Executive conditions also catch virtual references in interrupt functions, but the page
failure sets the In-out Page Failure flag instead of resulting in a trap for an address
failure.

3-52 KL10 System Operations

DATAI APR, Data In, Arithmetic Processor

70004 7l x Y - "J

121314 1718 35

Read the current break conditions into bits 9-12 of location E. The informa-
tion read is the same as that supplied by the last DATAO. (Note that the
break address cannot be read.)

3.5 Timing and ACCGuudug _
The processor includes a subsystem with elements for keeping track of
time, use of system facilities, and use of individual system features. One
element is a standard 12-bit interval counter that is set up by the program
to interrupt when the count reaches a preset value. The others are meters
for keeping a 59-bit count, wherein only the low order sixteen bits are
implemented in hardware. In each case the actual counting is done in a 16-
bit hardware counter, while the overall count is kept in a doubleword in a
process table. A count is updated from its counter by a procedure that is
- performed periodically by the microcode and whenever appropriate to an
operation requested by the software. In the update procedure the contents
of a.counter are added into the corresponding count and the counter is
cleared. Whenever the microcode checks for interrupt requests it updates
any count whose counter is more than half full, i.e. whose MSB is 1. The
current user accounts are generally updated when the Monitor switches to
a new user.

A doubleword count is a 59-bit unsigned quantity whose format and
relationship to the -hardware counter are as shown here. The entire first
"~ word comprises the high order thirty-six bits, and the low order twenty-

EVEN NUMBERED WORD ODD NUMBERED WORD
[o HIGH ORDER PART OF COUNT 10‘ LOW ORDER PART OF COUNT RESERVED —l
0 . 3501 1 23124 35
] .
36 ' 58,
| L]
1
i COUNTER
43 58

three are in bits 1-23 of the second word.®® Reserving bits for expansion at
the low order end guarantees format compatibility with future machines
that may be much faster (and therefore require bits for counting smaller s
time units). Altogether there are four meters that use this counter-
doubleword format. One is a straightforward time base that counts at 1
MHz. Two keep track of process execution time and number of memory
referenices for purposes for user accounting. Last is a mechanism for analyz-
ing system performance by investigating the use of individual system fea-

38 Remember, it is a property of twos complement arithmetic that the sign can be used as an
extra magnitude bit in an unsigned number. But since the hardware is set up for signed
arithmetic, bit 0 of any lower order word must be skipped.

KL10 System Operations 3-53

tures, either by counting the number of times particular events occur or
measuring the duration of time particular procedures are in progress.

The program controls the various subsystem elements through two sets
of 10 instructions using device codes 20 and 24, mnemonics TIM and
MTR.% In general the meter code is for handling the accounting meters and
the timer code is for the other elements, but the MTR conditions are for
both. Data instructions read updated doubleword counts, but affect neither
the countsnor the counters. Condition bits (in a CONO) directly affect only
the 16-bit hardware counters. Of course a counter being enabled does mean
updating of the doubleword count will probably occur. But to reset a count,
the program must not only clear the hardware counter but separately clear
the corresponding pair of locations in the process table.

System Timing

For regular system use, the processor provides a time base and an interval
* counter. The time base is a doubleword count (of the type described above)
kept in locations 510 and 511 of the executive process table. It counts
elapsed time in microseconds (a rate of 1 MHz). Drift is guaranteed to be
less than 5 seconds per day for at least the first six years of use. To main-
‘tain day-to-day accuracy, the Monitor can reset the time base once each day
_ from the line frequency clock in the front end processor (although a line

frequency clock has quite low resolution, it has very high long-term accu-
racy.) ,

The interval counter is a 12-bit hardware counter that counts in 10 ps
increments (100 kHz). It can therefore count, and signal completion of, any
interval from 10 ps to 40.95 ms; and it can also be read at any time to
determine how long some particular operation or procedure has taken. The
counter can be used for any purpose by the software, but it is employed
principally to signal the Monitor should a user tie up the system too long.
Associated with the counter are two flags, Interval Done and Interval Over-
flow. Done sets when the counter reaches the value the program specifies as

its period or reaches its maximum (all 1s); Overflow sets only if the counter
" reaches its maximum without ever matching its period.*® Setting Done re-
quests an interrupt on the level assigned to the counter, and the processor
responds by executing the instruction in location 514 of the executive proc-
ess table.

CONO MTR, Conditions Out, Meters
| 70260 |/ x | Y]
1] 121314 1718 s

Assign the interruptilevel specified by bits 33-35 of the effective conditions
E and perform the functions specified by bits 18-26 as shown.

39 Unassigned instructions using these codes are DATAO TIM,, BLKO MTR, and DATAI
MTR,. They execute as MUUOs. ’

40 Overflow can occur only if at some time during the count, the program changes the period
to a value less than the current counter value.

3-54 KL10 System Operations

3.8 Error and Diagnostic Instructions

The first part of this section explains the instructions through which the
software handles the error flags and identifies the source of a hardware
error. The second part discusses a special instruction the Monitor uses to
set up the memory system and to get diaghostic and configuration informa-
tion directly from: individual memory controllers. The objective of this
treatment is to complete the definition of all KL10 instructions and to give
the programmer what he needs to identify sources of hardware error for
purposes of software recovery. For information on diagnosing equipment
ills, the reader must turn to maintenance documents. Note that this section
does not touch on didgnostic functions the front end can execute in the
KL10 without the KL10 microcode running; that subject is treated in the
maintenance documentation.

Error Monitoring and Investigation

A few hardware errors — specifically a parity error in the page tableorina
word brought into AR or ARX from memory — are detected by the pager
and produce a page failure. Other hardware errors detected in the processor
or on the S bus are indicated by flags that can request an interrupt on a
level assigned to the processor. Several of these flags also lock information
about the bad reference into the error address register ERA. The program
can read this register, and it continues to hold the same information, even
should subsequent errors occur, until the flag that locked it is cleared.
The error conditions are generally regarded as important enough to be
assigned,to the highest priority level. However for conditions that may be
associated with user instructions (a parity error or unanswered memory
reference), the common practice is for the error interrupt to switch over to
the lowest priority level by means of a program-set request. Then the time

KL10 System Operations

3-63

taken to handle the situation, which may well be considerable, cannot in-
terfere with high priority events. ' :

Error flags are handled by two condition 10 instructions that'address
the processor, which has device code 000, mnemonic APR.* These instruc-
tions also handle the sweep flags for the cache (§3.2). The instruction that
reads ERA uses the interrupt device code. . :

- CONO APR, Conditions Out, Processor Flags

B 70020 I x| Y]

Q 121314 1718 35

Assign the interrupt level specified by bits 33-35 of the effective conditions
" E and perform the functions specified by bits 19-31 as shown (a 1 in a bit
produces the indicated function, a 0 has no effect).

CLZSR |ENASLE | OISARE! CLEAR | SET SELECT FLAGS FOR BITS 20~23 PRIORITY

ALL IN-QUT INTERRUPT
lN‘-_OUT SELECTED FLAGS S 8US NQ PAGE L L:] CACHE |ADDRESS| POWER | SWEEP ASSIGNMENT
DEVICES| . | | ERROR | MEMORY | FAILURE | PARITY | DIRCTRY| PARITY |FAILURE | DONE i 1

18- 18 20 |2 22 23 24 25 26 | 21 28 2¢ | 30 3 32 1 33 34 35

A 1.in bit 19 generates the IO reset signal, which clears the control
logic in all of the peripheral equipment (but affects none of the internal
devices, such as the pager or the processor flags). '

Bits 2023 select flag functions: 1s in these bits produce the indicated
effects.on the processor flags selected by 1s in bits 24-31. A 1 in bit 20
enables the setting of any selected flag to request an interrupt on the level
assigned to the processor; a 1 in bit 21 disables the selected flags from
- requesting interrupts. Similarly a 1 in bit 22 or 23 clears or sets the se-
lected flags. The result of putting 1s in both bits 20 and 21 or 22 and 23 is
" indeterminate. .

Notes. Setting flags has of course no relation to what the flags repre-
sent; the function is used only to check out the flag logic.

CONI APR, Conditions In, Processor Flags

[reoze T x v a

0 121314 1718 35

Read the status of the processor error and sweep flags into location E as
shown (asterisks indicate bits that can cause interrupts).

44 The processor device code is also used in several instructions for the pager and the cache.

3-64 KL10 System Operations

FLAGS ENABLED TO INTERRUFT
- | osaus | wo |'MT| we | cacwe | sooress| power | sweep
| | | | ERROR [MEMORY [FAILURE| PARITY| OIRCTRY} PARITY | FAILUAE| GONE | 1 |
0 ! 2 13 4 5 3 7 8 ¢ 10 T 12 13 18 115 16 17
A L 4 * * * * * * *]
Swee? seus [w0 | WUTI M8 ojacTay |S0%RESS | sower | sweep | iNTRuPT «;’;‘;Cam;t'
susy | T ERROR | WEMORT| ¢ (i Famon | PARITY |eRage | PAILURE DORE |REQUEST A|ss:swsr.

“ 18 19 0 |21 22 23 4 25 26 a 28 29 30 3 32 33 34 3%

6-13 A 1 in any of these bits indicates that setting the listed flag will
- request an interrupt on the level assigned to the processor by bits

33-35 of the CONO.
19 The cache is currently undergoing a sweep.

24 A storage controller has 51gnaled the processor that it has detected
: an error in its own operation or in information it has received over
the S bus or from one of its storage modules. If the type of error is
not identified by there also being a 1 in bit 25, 27 or 29, then the
_condition is either an incomplete cycle or a parity error in data sent
to the memory (all data received by memory is written, even if
bad). Controller flags for some of these conditions can be read by
- the diagnostic instruction discussed in the second part of this sec-
tion.

25 The processor attempted to access a memory that dxd not respond
within a preset time. This time is 68 us on an extended KL10, 82 us
on a single-section KL10. The setting of this flag locks information
about the attempted reference into ERA. Since a nonexistent mem-
ory supplies zero data, on read this error should be accompamed by
a 1 in bit 27.

- 26 A page failure has occurred in an interrupt instruction, or a word
with even parity has been received at AR from the E bus (the latter
can be recognized only if the transmitting device generates a parity
bit). An interrupt failure caused by an address break sets this flag
instead of producing an address failure (§3.5).

NOTE

. A page failure in an interrupt instruction is regarded
as a fatal error, and causes an interrupt instead of a
page failure trap. The kernel program is expected to
set up the interrupt instructions so that a software
page failure simply cannot occur.

.27 | The buffer (MB) in memory control has received a word with even
parity. The setting of this flag locks information about the refer-
_ence into ERA.)

28 A physical page number with even parity has been encountered in
the cache directory. The setting of this bit turns off the cache, and
it remains off until the flag is cleared by giving a CONO APR, with
1s in bits 22 and 28.

KL10 System Operations 3-65

29 A storage controller has signaled that it has received an address

‘ with even parity from the processor. The parity check actually en-

compasses both the address and the control signals that accompany

it on the S bus. The setting of this bit locks information about the
attempted reference into ERA. :

30 Ac power has failed. The program should save PC, the flags, mode
information and fast memory in storage, update the accounting
meters, validate the entire cache, and halt the processor. Note that
PC may point to an interrupt routine rather than the main pro-
gram. After power is restored the front end must reboot the system,
and the Monitor must reestablish the operating environment (§3.5).

31 - A cache sweep has been completed.

32 Some processor flag is currently requesting an interrupt, i.e. some
flag in bits 24-31 is set and has been enabled to interrupt as indi-
cated by a 1 in the corresponding position in bits 6-13.

RDERA Read Error Address Register (BLKI PI)

i 70040 U x| Yy |
0 121314 1718 35

Read the contents of the error address register into location E. If No Mem-
~ ory, MB Parity Error or Address Parity Errar is set, ERA contains informa-
tion about the reference corresponding to the first of those flags to be set as
shown.

0 1 2 3 4 s | g 7 8 3 10 THED 13 14

R REFERENCE ICENTIFICATION — 0 o o 0 e s
| SWEEP |CHANNEL] DATA | SOURCE | WRITE | | | ! |
15 6 17

PHYSICAL ADDRESS OF FIRST WORD OF TRANSFER

I NN N TR NN WU SRS (NN MO N NUUN N S

s s 2 ' 21 22 23 ' 24 25 26 ' 2t 28 29 ' 30 3 3R

Bits 0—1 and 14—35 identify the physical location of the reference in which
the error occurred. Bits 14-35 are the address of the specific memory refer-
ence made by the program or whatever. If the reference required only a
‘single transfer, that address is the error address. But if the reference
triggered a group transfer, bits 14-35 are the address of the first reference
chronologically in the group, and bits 0 and 1 give the number of the word
on which the error actually occurred. Note that word numbers are in physi-
cal, not chronological, order.

Information given in bits 2-6 identifies the reference. A 1 in bit 2 or 3
respectively means the reference was made for a cache sweep or a channel
transfer. Bit 6 indicates the memory function being performed for the refer-
ence, where the read and write parts of a read-pause-write are separately

3-66- KLI10 System Operations

indicated by 0 and 1. Bits 4, 5 and 6 together identify the source of the data
for the transfer or attempted transfer (on write the word is always going to
storage). SR

Bits 45 Source with 0 in bit 6 Source with 1 in bit 6
- 00 Storage for any read or read-pause-wTite Channel status
01 Channel data
10 : . AR
11 Cache for channel read or TOPS-10 page Cache writehack
refill

‘ERA retains the same information until the program clears the locking
flags by giving 2 CONO APR,2260P. Of course only flags that are set actu-
ally need be cleared, and the routine that responds to errors should consider
and clear all set flags. To facilitate diagnosis from the front end, the master
reset does not clear ERA. Hence if need be, the front end can give diagnos-
tic functions that reset the KL10 and then read ERA.

The processor includes provision for forcing bad parity to check the
error detection logic. Bits 18-20 of a CONO PI, (§3.1) respectively cause
even parity to be generated for an address sent to memory, a data word
available from AR, and a page number entered into the cache directory.
Where the data error shows up depends on where the word is sent from AR.
Which errors are being forced can be seen by checking the flags in the same
bits-of a CONI PI. .

Programming Cautions. When handling parity error or nonexistent
memory interrupts, the programmer should beware of the following.

e An incorrect word from memory to AR or ARX can result in both a page
failure and an interrupt. In general the page fail trap to the Monitor can be
expected to occur slightly ahead of the interrupt.

e Should an error flag be set while another interrupt request is being
processed, the system would handle the lower priority interrupt before get-
ting to the processor interrupt. This means PC may be pointing to a lower
level interrupt routine rather than the program level at which the error
occurred. Remember that during request processing, the interrupt system
is otherwise static and the program continues.

e Even without inadvertent interference from another level, it is quite
likely the processor will perform one or perhaps two more instructions be-
tween the time the error flag sets and its interrupt starts. Hence even
though PC is at the correct program level, it may well be pointing to the
first or second instruction following the one in which the error occurred.

e A processor error interrupt that switches over to a lower priority level
should not return to the interrupted program, as the error may simply
recur, producing a second processor interrupt before the error-handling in-
terrupt for the first. This could happen because PC is actually pointing to
the offending instruction, but beyond that, one error often begets another

KL10 System Operations

367

- consider the case of PC counting into a nonexistent memory. In any
event, it is generally not worthwhile to return to any program without first
finding out what went wrong. .

S Bus Diagnostic Cycle

Ordinarily the S bus is used for the processor to reference memory. But the
S bus also has a diagnostic cycle that allows the processor to communicate
with the memory controllers rather than to access a particular location.
The diagnostic cycle is initiated by the processor giving a special instruc-
tion that sends a function word to a controller and receives a word of error
and diagnostic information back from it.

SBDIAG S Bus Diagnostic Function ~ (BLKO PI)

70050] x | Y }

9 . 121314 1718 35

Send the contents of location E as a function word over the S bus to the
controller specified by bits 0—4, and read the return word for the function
from that controller into location E+1. Which function a word represents is
indicated by its code in bits 31-35.

3-68 . KL10 Systém Operations

PART 4

603A SCHEDULER/SWAPPER PLM

SCHED

Program Logic Manual for Scheduler and Swapper

Date: February 1978
File: SCHED2,4,6,7.RNO
Version: 1

mhe information in this document is subject to change without notice
and should not be construed as a commitment by Digital Equipment
Corporation. Digital Equipment Corporation assumes no responsibility
for any errors that may appear in this document.

The software described in this document is furnished under a license
and may be wused or copied only in accordance with the terms of such
license.

Digital Equipment Corporation assumes no responsibility for the use or

reliability of its software on eguipment that is not supplied by
DIGITAL.

Copyright @D 1978 by Digital Eguipment Corporation

CHAPTER

CHAPTER

CHAPTER

L

ot b2 = et 2 D Q0 =3 OV UL WD R B

WMo

¢ 8 0 4 8 & 0 4 & s e o s 0

) W L) W) W W W W W W W W W W

[VRyeN]

* - L] L]
e o
W W~ oW

3.20
3.21
3.22
3.23
3.24
3.25
3.26
3.27
3.28
3.29

INTRODUCTION

OPERATION MODES
OBJECTIVES

OVERVIEW OF SCHEDULER OPERATION

PROCESSQOR QUEUES
LONG-TERM WAIT QUEUES

SPECIAL QUEUES
TIME SLICE

pQ2 Time Slice, Round Robin Mode
PQ2 Time Slice, Class Scheduler Mode

PQl Time Slice
BPQ Time Slice

SCHEDULING SCAN AND ASSIGNMENT OF SHARABLE

RESOQURCES

DETAILED bESCRIPTION OF THE SCHEDULER

CHEDULER ASSEMBLY
CALLING T4Z SCHEDULER
NXTJOB TO NXTJBX SECTION
NXTJB1 TQO CKJBCA SECTIOH
CRJIBOA TO CKJB5 SECTION
CXJB5 TO CKJ37 SECTION
CXJB7 TO SCHED SECTION
SCHED TO QREQ SECTION
QREQ TO QCHNG SECTION
SUBROUTINE QCEHNG
SUBROUTINE SETIPT

SUBROUTINES ZERIPT, CLRIPT, CLRIP1
- SUBROUTINE ASICPT

SUBROUTINE TOBACK

SUBROUTINE QARNDT

QXFER TO DICLNK SECTION
SUBROUTINE DICLNK

SUBROUTINE IICLNK

SUBROUTINE DCCLNK

SUBROUTINES ICCLNK AND ICSLNK
SUBROUTINE INOLST

SUBROUTINE DLOLST

SUBROUTINE DLJILS

QSCAN THROUGH FSQFOR SECTION
FSQFOR THROUGH BQFCR SECTION
BQFOR THROUGH ISSFOR SECTION
ISSFOR THROUGHE OSSFOR SECTION
OSSFOR THROUGH ILFOR SEZCTION
ILFOR THROUGH SAVSUM SECTION

page

N I
N N R

T |
<~ OV U B e W R b

I\JNC‘JNI?JNNI\)

w ~
[[}
=

w
[T |

O WD ~J U UL W N

o

[N WR IRV WV R VO VYR PR R VO PR Ve
L]

w
i1

-

oo

3-10
3-10
3-15
3-15
3-15
3-16
3-16
3-1¢
3-1%
3-18
3-17
3-18
3-19
3-20
3-20

CHAPTER

CHAPTER

O Nl o o I I
« 6 o 5 3 © o & 6 8 e o s o

-5

4 e AD 00 < O LR b WD N

N

*
LN

vl

" e s s s e s &
. s
WA

OO0 I U N

[+) (LR N R RV R RV R R NV N) w

* e s e & & o
“ s
wN -

AN OVOYO©

AU W N

CONTENTS (CONT.)

DETAILED DESCRIPTION OF SWAPPER

SWAP TO SWAPl SECTION
SWAP1 TO FININC SECTION
FININC TO INERR SECTION
INERR TO FINOUT SECTION
PINQUT TO SWP1l SECTION
SWPl TO FIT1 SECTION
FIT1 TO OUTERR SECTION
OUTERR TO SWPREC SECTION
SWPREC SUBROUTINE

SWPRC1 SUBROUTINE

ZCKZPN TO SCNJOB SECTION
SCNJOB TO FORCEC SECTION
FORCEQ TO SWAP(Q SECTION
SWAPQO TO NOFIT SECTION
NOFIT TO NOFITZ SECTION
NOFITZ TO ZERFIT SECTION
ZERFIT TO NOFORC SECTION
NOFORC TO SWAP1 SECTION
CHGSWP TO CHGl SECTION
CHGl TO UNSWAP SECTION
UNSWAP TO RTNDSP SECTION
RTNDSP TO GIVBKH SECTION
GIVBKE TO XPAND SECTION
XPAND TO XPANDH SECTION
XPANDH TO SCHED. SECTION

SCHEDULING PARAMETERS

PROCESSOR QUEUE TIME SLICES
PQl Time Slice
PQ2 Time Slice
HPQ Time Slice

SWAPPING AND SCHEDULING FAIRNESS COUNTS

IN~-CORE FAIRNESS FACTOR-

CLASS QUOTAS AND MICROSCHEDULING INTERVAL

BACKGROUND BATCE PARAMETERS
RESPONSE FAIRNESS FACTOR
AVERAGE SWAP TIME

JOB CLASS

CLASS RUNTIME

DETERMINATION OF PARAMETERS FOR SCHEDULER

PROCESSOR QUEUE TIME SLICES
PQl Time Slice
PQ2 Time Slice
HPQ Time Slice

SWAPPING AND SCHEDULING FAIRNESS COUNTS

IN-CORE FAIRNESS FACTOR

CLASS QUOTAS AND MICROSCHEDULING INTERVAL

BACKGROUND BATCH PARAMETERS
RESPONSE FAIRNESS FACTOR
AVERAGE SWAP TIME

iii

Page

=
|
(=

TTT#-I{&&J&-&-
W ~JU U N

& b
R
WO

4-10
4-12
4-13
4-14
4-15
4-15
4=15
4-15
4-16
4-16
4-16
4-16
4-17
4-17

O
[
fo]

mmu‘u-u-tinmw [SIRVINE NV

!
O~V BEWRN H AU S B WWWN e

R
!

[N I U O O T B I |

AN AR RNPTNN

CONTENTS (CONT.)

Page

8.8 JOB CLASS 6-8
6.9 CLASS RUNTIME 6-8

CHAPTER 7 DETAILED DESCRIPTION OF SCHED. MONITOR CALL 7=1
7.1 SCHED. TG SCDQTA SECTION 7=1
7.1.1 Function 0 -1
7.1.2 Function 2 7=1
7.1.3 Function 3 7=2
7.1.4 Function § 7=2
7.1.8 Function 6 7=3
7.1.6 Punction 7 7=3 -
7.1.7 Function 9 7=3
7.1.8 Function 10 7=3
7.1.9 Function 11 7=3
7.1.10 Function 12 7=3
7.1.11 Function 13 7=3
7.1.12 Function 14 T=4
7.1.13 Function 15 7=4
7.1.14 Function 16 7-4
7.1.15 Function 17 7-4
7.1.16 Function 18 T=4
7.1.17 Funct?on 19 7=4
7.1.18 Function 20 7-5
7.1.19 Function 21 7=5
7.1.20 Function 22 7=5
7.1.21 Function 23 ' 7=5
7.1.22 Function 24 7=3
7.2 SCDQTA TO SCDQT7 SECTION 7=5

FIGURES
FIGURE 3-1 In-core Protect Time (.PDIPT) 3=2
TABLES

TABLE 2-1 Wait-State Codes 2=2
2=2 Long-Term Wait Queues 2=3
2-3 Special Queues 2-~4

3=-1 Cnrunnable 3it Settings 3=4
3=-2 Primary and Secondary Scan Tables 3=3
3-3 QBITS TABLE 3-8
3-4 Example of Codes Set For Transfer Tables 3=12
3-35 Possible Codes 3=17
4-1 Important Flags and Data Items 4-1
4-2 Primary and Secondary Scan Swapping Tables 4-6
5-1 Default values of 3Swapping and Scheduling

Fairness Counts 5=-3
-1 In-Core Protect-Time Parameter Values 6=2
6=-2 PQl Quancum Runtime Paramecer Values 6=2
-3 PQ2 Quantum Runtime Parameter Values 6-3

iz

c'l\a\ [< 06)}
|
(V100 Y

-~} N

an
0o

CONTENTS (CONT.)

EPQ Quantum Runtime Parameter Values

Percent of PQl Jobs Blocking to Long-Term Wait
as Function of Time

Example of Effect of Incorrect rParameters
Default Values for Swapping and Scheduling
PairnesC Counts

Bxample of Effe

v

CHAPTER 1

INTRODUCTION

The DECsystem-10 scheduler provides several response levels for
long-term, short-term, and high-priority computing needs. Also,
numerous scheduling parameters and two different modes of operation
provide flexibility in the scheduling policy.

1.1 OPERATION MODES

There are two ways to operate the scheduler: Round Robin ! mode and
Class Scheduler mode. :

Round Robin mode means that each job in the long-term processor gqueue
(called PQ2) receives an equal share of the resources of the system.
In other werds, each job receives the full attention of the system for
a short interval called a time siice. When the time slice allotted to
a job expires, the job goes to the back of the gueue. Then, the £full
gttention of the system turns to the next job in the gqueue.

Round Robin mode gives good turnaround time to small jobs even though
there are large jobs in the system. In addition, it gives each job an
equal chance to use the system resources. Each job recsives its 'fair
share' of the system. Therefore, no job, regardless of its makeup,
can take over the system.

Class Scheduler mode means that each job in PQ2 receives a share of
the resources of the system. However, unlike Round Robin mode, each
of these shares. is not necessarily equal. Instead, each job in PQ2 is
assigned to a class for which the system administrator sets a guota of
system resources. The higher the gquota, the more often the class is
scanned for scheduling and swapping. In Class Scheduler mode, all
jobs in PQ2 are also stored in a set of subqueues by class. As Jobs
expire their time slices, they go to the back of PQ2 and to the back
of the subgueue for their class. This action gives Round Robin
operation within the classes. Alsc, each class is swapped in and
scheduled depending on its class gquota. .

The class quota consists of a primary percentage and a secondary
allocation. The primary percentage is the amount of resources
allotted to the class. The secondary allocation 1is the amount of
leftover resources allotted to the class. Leftover resources occur
when some of the classes do not use all of their primary percentages.

! Kleinrock, L., "Timeshared Systems: B Theoretical Treatment,”
Journal of the ACM, Vol. 14, No. 2, 1967, pages 242-261.

1-1

INTRODUCTION

The system administrator may define any one of the classes as 2
background batch class. Background batch jobs do not run unless there
are no runnable jobs in any of the other classes. Although normally
the background batch c¢lass has a zero primary percentage and a zero
secondary allocation, this is not a restriction. 1In fact, the primary
percentage and the secondary allocation have the same meaning for the
background batch class as for any other class. A nonzero primary
percentage forces background batch jobs to run a certain percentage of
the time. In addition, a nonzero secondary allocaticen gives
background batch jobs a proportion of the leftover time.

1.2 OBJECTIVES

The overall design objectives of the scheduler are 1listed in the
following. :

1. Provide for sharing computer time among jobs with iong-term
computing needs.

2. Provide fast response time for interactive jobs.
3. pProvide very fast response time for real-time jobs.
4. vrovide for efficient use of all of the system resources.

Objective 1 above applies to jobs with long—-term computing needs. For
example, .

& Compilation of FORTRAN, COBOL, ALGOL, and BASIC programs
e Execution of mathematical and statistical programs

8 GExecution of programs for sorting, merging, and/or file
storage and retrieval

Cbjective 2 applies to Jjobs that require £fast response time for
interactive jcbs. For example,

e A user editing a file
e A user updating a database

In this case, each time the user ends a line sending his input to the
system, he expects to receive a response within a matier of seconds
{preferably 1 to 4 seconds).

If the scheduler must complete a full cycle through PQ2 before
responding, it «cannot reliably achieve this optimum l- to 4-second
reponse time. The time required to make 2 complete cycle through PQ2
can depend on the character of the jobs in the queue, and does depend
on the number of jobs in the gueue. On a heavily loaded system, the
response time can easily exceed 10 seconds. Clearly, this response
time 1is unacceptable to the interactive user. Therefore, the
scheduler provides a priority processor gueue called PQl.

Normally, the scheduler selects jobs in PQl before it selects any jobs
in PQ2. In this way, the scheduler can meet the goal of fast response
time without wasting CPU time and witnout allowing those jobs that ado
not require interactive response to suffer.

INTRODUCTION

Jobs enter PQl at the back of the gueus and are assigned a time
interval to remain in the fast-response queue. If a job ends before
i=s time slice is exhausted, it leaves the processor qgueues. If a job
does not finish its task before its time slice is exhausted, it goes
=0 the back of PQ2. Thereafter, until the job ends, it receives the
same attention as any PQ2 job.

Typically, there are more jobs in PQl and PQ2 than can fit in memory
at any one time. Therefore, some of the Jjobs must be stored
temporarily on a high-speed swapping device, such as 2 disk or a drum.
As the Jjobs that are in memory are requeued, they become eligible to
be swapped out. Then, as space becomes available in memory, jobs are
swapped into memory by scanning the processor gueues and swapping in
the highest priority job that is not already in memory. Jobs in PQl
receive priority over jobs in PQ2. This is true both for swap-in and
for allocation of resources once they have been swapped in.

Objective 3 applies to jobs that require very fast response time and
better performance than PQl. For these jobs, the scheduler provides a
final set of processor gueues called high-priority queues. There may
be up to 15 high-priority queues, called HPQl through HPQ1S5.

The kinds of jobs that would use the high-priority éueues are, for
axample, :

e Card-reader and line-printer spoolers
e Real-time data acguisition

These programs must be swapped to disk when the physical devices are
not busy. This action provides more room for other terminal jobs.
When there are cards to read or lines to print, these Jjobs must De
swapped in as soon as possible and remain in memery while in service.
Alsc, these jobs must be able to get CPU attention instantaneously to
£i11 and empty buffers of input and output. The scheduler achieves
very fast swap-in and instantaneous access to the CPU by swapping in
and scheduling resources (such as CPU, and so forth) for all HPQs
ahzad of PQlL and PQ2.

Jobs in high-priority gqueues can require any amount of system
resources up to and including 100% of the system. Whatever resources
remain unused are then available feor jobs in PQl and PQ2. In the
example of the card-reader-stacker and the line-printer-spooler jobs,
a certain amount of memory is dedicated to these jobs when they are
active. Therefore, the amount of user memory area available to all
other jobs is correspondingly reduced.

As far as CPU time is concerned, jobs in high-priority gqueues are 1I/0
pouné and, therefore, use very little. Because of this, most of the
CPU (over 95%) is availapbie for other user jobs.

Objective 4 applies to all jecos. The scheduler runs the system as
efficientlvy as possible within the constraints imposed by the first
three objectives, including .

e Balancing the percentage of CPU versus I/0 jobs in core memory
so that multiprogramming is most effective

e Balancing the percentage of PQl versus PQ2 joos in memery soO

that a good compromise 1is achieved between throughput and
short-term response

1-3

CHAPTER 2

OVERVIEW OF SCHEDULER OPERATION

All jobs in the system are maintained in a master set of gueues. Each
job is in one and only one of the gqueues. For convenience, the master
set 1is divided into two logical groups: processor gueues and
long-term wait queues.

2.1 PROCESSOR QUEUES

The processor gusues are the high=-priority queues (HPQs), PQl, and
PQ2. Each of these is described in the following. :

BPQs (Up to 13 levels, called HPQl through HPQlS5) contain Jjobs
that reguire real-time response, such as the
line-printer-spocler and the card-reader-stacker programs.

PQ1L Contains jobs that require fast response, such as those
that conversationally interact with the user.

PQ2 ‘Contains jobs that require long-term computing, such as
those that compile PFORTRAN, COBOL, ALGOL, and BASIC
pregrams. For the class scheduler, all jobs in PQ2 are
also in the class subgueues.

Jobs in the processor queues either are ready to execute on the
processor or are in various short-term wait states (such as waiting
for disk 1/0 or I/0 from other high-speed devices). These short-term
wait states are too small to warrant regueueing the job, because it
would then lose its position in the processor gueues and be marked for
swap-out. A wait-state code indicates which jobs are runnable and
which are waiting. Table 2-1 lists the wait-state codes.

2-1

QVERVIEW OF SCZEDULER OPERATION

Table 2-1
Wait-State Codes

Code Meaning

oW 1/0 wait for unit record, reader, printer, and soc forth.
DICW Disk I/0 wait (RP02, RPO3, RP04, and so forth).

AU Wwaiting for system interlock to clear to alter UFD on

£ile structure.

MQ Waiting for monitor buffer (to read file retrieval
peinters, for example).

DA Waiting for system interlock to <clear to access SAT
table to get an allocation of disk blocks on the file
system.

CB’ Waiting for system interlock to <clear to access core

block allocation routine (to get space for a DDB or file
access table from the core block pool, for example).

pl,n2 Waiting for DECtape controller.
DC Data controller wait.

Ca Core allocation (lock) wait.
PICW Paging I/0 wait.

PS Paging I/Q satisfied.

E€ Execute virtual-memory wait.
NAP Short-term sleep.

2.2 LONG~-TERM WAIT QUEUES

Table 2-2 lists the long=-term wailt gqueues.

OVERVIEW OF SCEEDULER CPERATIOR

Table 2-2
Long-Term Wait Queues

Queue) Meaning

CMQ command Wait Queue. You have typed & monitor command that
cannot be executed until the job is in memory, and the job
is not in memory. This produces a nigher priority
swap-in, then regqueues to PQl. '

TIOWQ Teletype I/0 Wait Queue., Waiting for vou to type in or
waiting for the device to print output already sent to it.
This includes pseudoteletypes.

SLPQ Sleep Queue. The job has executed the SLEEP monitor call
and requested to sleep for some interval, or it has
executed the HIBER monitor call and requested to sleep
until the WAKE monitor call is executed by another job, or
some specified condition has been satisfied.

JDCQ DAEMON Wait Queue. The job is waiting for service by
DAEMON (for example, to record accounting data or to
perform error logging).

STOPQ Stop Queue. The user has typed a CTRL/C, for example, to
stop his job.

NULQ Null Queue. 11 job slots must be accounted £or in the
Queue structure. This gueue contains the numbers of the
job slots not currently in use (including jobs that have
CORE zeroed). ‘ :

EWQ BEvent Wait Queue. Waiting for a magnetic tape controller,
for example.

Within priority wait queues, the jobs are ordered by priority.

The first job in the queue has the highest priority. In the long-term
wait queues, the order of the jobs is immaterial.

The master gueues (including the subgueues) are each separated 1into
two mutually exclusive lists: one for jobs that have core (JBTADR #
0) and one for jobs that do not have core. This significantly reduces
overhead, because various scans use only one set of queues. FOr
example, the scheduling scans do not look at jobs that do not have
core,

2.3 SPECIAL QUEUES

A number of special queues are used to improve communication between
the scheduler and the swapper, and to properly handle background batch
jobs. Jobs in the special gueues are also in the master gueues.

QVERVIEW OF SCHEEDULER OPERATION

Table 2-3
Special Queues

Queue Meaning

JIL Queue of PQ2 jobs that have just been swapped in, that is,
those Jjobs that have not yet expired 1 time slice since
they were swapped in. The queue 1is divided into two
lists: one for timesharing jobs and one for background
batch jobs. . :

QLS Queue of PQ2 jobs that are eligible to be swapped out.
That is, those jobs that have expired at least 1 time
slice. The gqueue is divided into two chains: one for
timesharing jobs and one for background batch jobs.

2.4 TIME SLICE

The time slice controls the movement of Jjobs within the processor
queues. The time slice 1is defined as two separate parameters:
quantum runtime and in-core protect time. Quantum runtime is
decremented as the Jjob uses the processor. In-core protect time is
decremented whether or not the job uses the processor, as long as the
job has been scanned by the scheduler.

CPU-bound jobs generally expire guantum runtime. I/0-bound 3obs
generally expire in-core protect time. When either parameter expires,
the job is considered to nave ended its time slice.

The time slice i1s assigned when a job 1is swapped in or when it
initially begins to run. It is reassigned whenever 2 job 1is regqueusd
t2 a new position in the processor gueues. :

Within its time slice, a job may enter and leave various short-term
wait states without Dbeing requeued to a new position in the gueues.
Requeues in and out of short-term waif involve only 2 change in the
wait-state code; no gqueue transfer takes place.

Jobs that block to any long-term wait state are physically requeued to
one of the long-term wait gqueues. They lose their place in their
current processor queues and are not eligible to be swapped in or
scheduyled until they leave the long-~term wait state. However, their
positions in the long-term wait gueues are immaterial. Jobs become
runnable and leave the long-term wait queues according to tneir
individual job characteristics. Most jobs are requeued to the back of
PQl.

Jobs in the processor gqueues that expire their time slices are
requeued to the Dback of the processor gueues. Primarily, the gueue
that the job is currently in determines its destination and the gqueue
assignment of a new time slice.

2.4.1 ©PQ2 Time Slice, Round Robin ¥ode

In Rouné Robin mede, the 2Q2 tin
an egual oppor:tunity to use =zih

OVERVIEW OF SCEEDULER OPERATION

PQ2 jobs are kept in two chains. Jobs that are in memory are in the
in=-core chain, Jobs that have been swapped out are in the out-core
chain. Both chains are ordered lists, with the highest priority Jjobs
at the front of the chain.

When the jobs are swapped in, they are assigned a time slice and are
linked <to the back of the in-core chain. As jobs are scheduled and
expire their time slices, they are requeued to the back of the in-core
chain. At this point, they become eligible to be swapped out. Jobs
that have been swapped out go to the back of the out-core chain. Jobs
that have been swapped in come from the front of the out-core chain.
This action allows proper Round Robin cycling between the two chains.

Jobs that have not yet expired 1 time slice are kept in a special list
in the order in which they were swapped in. They are scheduled to run
ahead of jobs waiting to be swapped out. This is consistent with the
Round Robin algorithm, and provides the best short-term response time.

Jobs are swapped out in the order in which they expire their first
time slices. As they expire, they are placed in the swap-out list and
are removed from the just-swapped-in list.

While the jobs are waiting to be swapped out, they cycle around the
in-core chain 1in Round Robin fashion. The jobs are assigned a time
slice and, as they expire it, they are requeued to the back of the
in-core chain. When there is no demand for swapping, core scheduling
around the in-core chain results.

»

2.4.2 PQ2 Time Slice, Class Scheduler Xode

In the Class Schedular mode, the jobs in PQ2 are given zn opportunity
to use system resources in proportion to the size of their class
quotas. The time slice ailows Round Robin cycling within a class.

All Jjobs in PQ2 are also stored in a set of subgueues by <class. The
subgueuves are ordered lists, with the jobs of the highest priority at
the front of the subgqueue. Like PQ2,.the subgueues have in-core and
out-core chains.

When jobs are swapped in, they are assigned a time slice. As jobs are
scheduled and expire their time slices, they are requeued to the back
of the PQ2 in-core chain, and to the back of the in-core chain oZ the
subqueue for their class. They are then eligible to be swapped out.

Jobs that have been swapped out go to the back of the PQ2 out-core
chain and to the back of the out-ceore subgueue chain for their class.
Jobs that have been swapped in come from the front of the subgueue
out-core chain. This allows Round Robin cycling within the subgqueues.

The order in which the subgueues are scanned for swap-in dJdepends on
the primary percentage and the secondary allocations defined by the
system administrator. The swapper operates with a 100-interval swap
cycle. At each interval, one of the classes (that is, subgueues) is
the first one scanned for swap-in. The number of times a class is
scanned first depends on the size of its primary percentage. That is,
a2 class with a primary percentage of 10% will be the first one scanned
in 10 out of 100 intervals.

OVERVIEW OF SCHEEDULER OPERATION

If no jobs are eligible to be swapped in from the primary class, the
swapper selects one from a secondary class. The choice of secondary
class depends on the size of the class's secondary allocations. The
larger a class's secondary allocation, the higher its probability of
selection. If the sescondary class selected also has no jobs, another
selection 1is made from the remaining secondary classes. If no jobs
are found in the primary and secondary classes, the swapper considers
a background batch job scan. .

Background batch jobs can only be swapped in at a certain rate to
prevent thrashing. The system administratcr specifies this rate
through the SCDSET program. (See Section §.3.)

If jobs exist in sufficient numbers in all classes, the swapping
algorithm £ills memory with Jjobs in proportion to their primary
percentages. This allows the scheduler to schedule accurately while
still achieving good short-term response times.

Jobs that have not yet expired 1 time slice are kept in a special
queue in' the order in which they were swapped in. To guarantee a
minimum level of short-term respcnse, the list of jobs just swapped in
must be scanned for scheduling a certain percentage of the time. The
response fairness factor determines the amouant of time that the list
of jobs just swapped in is scanned. The system administrator sats the
response fairness factor with the SCDSET progran.

The class scheduling scan is made up of 100 intervals. The
microscheduling parameters define the length of these intervals. The
system administrator sets the microscheduling parameters with the
SCDSET program.

Sach time that the microscheduling interval expires, the scheduler
moves to the next class in the primary scan table. The table contains
100 entries, each representing the primary class Zor <chat iaterval.
The scneduler builds a complete subqueue scan table with all classes
by starting with the primary class and selecting the second, tkird,
..., nth class, depending on the size of the secondary allccatlons.
The scan table determines the order in which the subgueues are scanned
throughout the current microscheduling interval.

Jobs are swapped out in the order in which they expire their £irst
time slice. As they expire, they are placed in the swap-in list and
are removed from the just-swapped-in list.

While waiting to be swapped out, the jobs cycle around the in-core
chain for their subqueue in a Round Robin fashion. They are assigned
a time slice and, as they expire it, they are requeued to tae back ©of
their subgueue in-core chain. When tnere is no demand for swapping,
this results in class core scheduling.

2.4.3 PQl Time Slice

PQl jobs that expire their time slices are requeued to the back of
PQ2. They are reassigned the normal PQ2 guantud runtime and taey

retain whatever in-core protect time they have remaining. They are
not marked *o° be swapped out. This allows Jobs in PQl to have very
good response for & short period of time. Thereafter, 1f they

-~

continue to run, they may remain in core at least &s long zs a 7Q2
job.

2-6

OVERVIEW OF SCTEEDULER OPERATION

PQl jobs are ahead of PQ2 jobs in the normal swap-in and scheduling
scans. To prevent PQl jobs from totally taking over the system, there
is a set of swapping and scheduling fairness counts. This means that.
when a PQl job has been selected a certain number of times in a row,
the fairness counts force PQZ to be scanned first.

2.4.4 EHPQ Time Slice

HEPQ jobs that expire their time slices are regueued to the back of the
corresponding HPQ. If they expire their gquantum runtimes, they are
assigned new guantum runtimes and retain whatever in-core protect
times they 'have remaining. If they expire their in-core protect
times, they are assigned new gquantum runtimes and in-core protect
times. They are then eligible to be swapped out. .

The HPQ time slice defines how quickly the system can switch from one
BEPQ job to another. HPQ quantum runtime is, therefore, a very small
number of ticks. HPQ in-core protect time is not very meaningful
because only another EPQ job can force an HPQ job to be swapped out.
It is unlikely that any installation would have more HPQ Jjobs in
execution at once than could £it in memory.

2.5 SCHEDULING SCAN AND ASSIGNMENT OF SHARABLE RESOURCES

The scheduling scan s2arches the processor gueues (in the order of
pricrity) for a job to run. Then, it selects the first runnable job
i+ finds in the scan. Jo2s with a zerc short-term wait-state code are
runnable. So re Jjobs waiting for sharable resources, 1if the
resources are currently available. Tc assign - a resource, the
scheduler c¢lesars the Jjob's short-term wait-state code and marks the
resource in use. This procedure causes sharable resources to be
assigned to the job with the highest priority.

If a high-priority job needs z resource held by a low-priority job,
the scheduler will attempt to run the lower priority job until it
gives up the resource. This feature is especially important 1in the
class scheduler,

Refer to Chapter 3 for a detailed description of the scheduler.

CHAPTER 3

DETAILED DESCRIPTION Q

]
3
1
]
wn
2]
2]
]
[w]
]
-
5]
]

This chapter describes the scheduler at the level of the macro code.
If you require only general knowledge cf the scheduler, it is not
necessary that you read this chapter. The labels referenced in this
chapter are in the scheduler monitor module, SCHEDIL.

This chapter discusses the following issues.

e Jobs that perform GETSEGs release their high segments with
their low segments still in memory. The swap—-in scan must
search the in-core chains to link to the new high segments.

® The class scheduler can swap and schedule £fixed classes by
naving a zsro secondary allocation. The class scheduler can
also perform fixed swapping with nonfixed scheduling.

e 3ackground batch imposes some complexities on the swap-in,
swap-out, and scheduling scans.

e The swap-out scan selects jobs in the long-term wait Queues
ahead of jobs in the processor gueues.

® The scheduling scan has a number of <fairness counts that
control the way in wnich the master gueues and special gueues
are scanned.

3.1 SCHEDULER ASSEMBLY

The system administrator assembles the scheduler in one of two modes,
depending on the value of the assembly switch FTNSCHED. When the
system administrator sets PTNSCHED to 90, the Round Robin mode
scheduler is assembled.

In Round Robin mode, there are no scheduler classes and there 1is no
SCHED. monitor call. When the system administrator sets FTNSCHED to

-1, the Class Scheduler mode scheduler is assembled, which includes
the code for the SCHED. .

3.2 CALLING THE SCHEDULER
The scheduler is called intoc action when one of the following occurs:

1. The clock ticks (an interval of 1/60th of a second has
elapsed).

DETAILED DESCRIPTION OF THE SCEEDULER

2. The current 3job becomes unrunnable for any reason (for
example, long-term wait, short-term wait, or error).

3. The null job is running and some job becomes runnable (Zor
example, finished with disk I1/0).

4. An HPQ job of higher priority than the current job Dbecomes
runnable,.

5. A job that has been chosen to be swapped out has just
released all disk~sharable resources.

The entry points for tne scheduler are NXTJO8 for C20Q, and NXTJBl for
CpUL.

3.3 NXTJOB TQO NXTJBX SECTION

This section of code decrements the in-core protect times and requeues
jobs when their in-core protect times expire.

In-core protect times are amaintained only when there are enough
runnable Jjobs to regquire some Of them to be swapped cut. Whenever a
specified period of time (SCDCOR) elapses during which no runnable
jobs are swapped out, the scheduler assumes that core is not scarce
and stops making decisions based on core use.

In-core protect time is stored in the PDB word labeled .PDIPT. (See
Figure 3-1.)

in-core | quantunm
.PDIPT PDMSWP Drotect | runtime
0 19 17 13 35

Figure 3-1 In-core Protect Time ({(.PDIPT)

PDMSWP is the sign bit of the same word, which may be 0 or 1 as
defined below.

PDMSWP = 0 The job may not be swapped.
PDMSWP = 1 The job may be swapped.

In-core protect times are decremented every other clock tick unless 2o
runnable Jjobs are being swapped out. This is done only on the odd
ticks to save overhead. When core is not scarce, in-core protect
times are not decremented at all (again, to save overhead). The
core-is-scarce timer (CORSCP) is decremented at this time. The
parameters for assigning in-core protect time and CORSCD are scaled in
units of 2 ticks.

Jobs in the processor gueues are not decremented unless they have been
scanned by the scheduler. This prevents jobs from being swapped in
and then swapped out again without having a chance to run. This would
occur if a job were swapped in when one or two neavy CPU-odound jobs of
higher priority were already in core. In tnis case, although the
newly swapped job woulé be in core, it would not get a chance td run
until these jobs had completed their time slices.

DETAILED DESCRIPTION OF THE SCBEDULER

The table DCSCAN defines the set of queues to be scanned. This table
contains an entry for each gueue that is allowed to retain its in-core
protect time. These gueues are listed below.

EWQ SLPQ PQ2 PQl HPQs

The queues are scanned from the back so ~ that Jjobs being requeued
cannot be regueued twice. PQ2 is scanned ahead of PQl for the same
reason. :

At NXTJOB, if the clock has not ticked, go to NXTJEL. On the even
tick, go to NXTJBX. On the odd tick, set up to scan the gueues to be
decremented. On every clock tick, decrement CORSCD, which is the
in-core protect time.

At NXTJBL, if there are no more queues to be scanned, go to NXTJIBX.
Otherwise, if there are no jobs in the next queue to be scanned, go to
NXTJIBG.

At NXTJBA, remember the successor to the job being scanned in case of
regueue,

If the job being scanned is in a processor gqueue but has not already
been scanneé, go to NXTJBF. Otherwise, clear the scanned-by-scheduler
bit {(JS.SCN) and decrement the in-core protect time CORSCD.

If the 1in-core protect time 1is no longer positive, set the
job-is-swappable bit (PDMSWP). If the job is in command wait (CMWB=l)
or is waizing for requeue (JRQ=1}, go to NXTJBD. Ctherwise, assign a
new in-core protect time $o the job will cycle. Then, if the job is
in a processor gueue, requeue it with subroutine QXFER using transfer
table QTIME. Finally, go to NXTJBF.

A* NXTJBD, the in-core protect time is set to a zero. At NXTJBE,
deposit a new in-core protect time.

At HXTJIBF, pick up the remembered link tc the next job. If <the 1link
is a Jjob, go to NXTJBA. If the link is a queue header, go to NXIJ3L
and scan the next gqueue.

At NXTJIBX, in Class Scheduler mode, execute the subroutine SCDQTA to
check for the end of the microscheduling interval. .

3.4 NXTJBl TO CKJBOA SECTION

This section of code determines wnether or not the current Jjob has
become unrunnable ané checks for the end of the time slice when the
quantum runtime has expired.

If the current job is the null job, exit to CKJBl to requeue all Jobs
with JRQ set. 1If the current job has executed an HPQ monitor call, if
it is waiting for DAEMON (JDC=l1 or Js.DEP=1l), or if it has oeen
requeued out of the processor gueues, exit to CXJ80A to resgueue the
current job. '

£ the current job is runnable, check the in-core protsct and guantua
runtime £for expiration and regueue the job £or time-slice expiration
(subroutine QARNDT), if reguired. Then, go to CKJBI.

[
1
w

DETAILED DESCRIPTION OF THE STHEDULER

If the current job is unrunnable, go to CKJBO to determine if the
current Jjob needs requeuing. Unrunnable is defined as any of the bit
settings (in JBTSTS) listed in Table 3-1.

Table 3-1
Unrunnable Bit Settings

Bit Setting - Meaning

RUN = 0 Job does not want to run

JNA = 0 Job number not assigned
JXPN = 1 Job expanding
JERR = 1 Monitor detected error

SEF = 1 Waiting to shuffle or shuffling
SWP = 1 waiting to swap or swapped out
Wait-state code # 0 Job in wait state
JRQ a1 Requeue requested

At CXJBO, mask out JXPN, SHF, and SWP. If the Jjob does nat need
requeuing, exit to CXJBl. Otherwise, if the job does need regueuing,
jump to CRJIBOA.

3.5 CRJBOA TO CXJBS SECTION

This section of code requeues the current jcb and/or all jobs ia the
system with JRQ egual tc 1.

CXJIBOA is entered if the current job needs regueuing. 1If the requeus
bit is not set for the current job (JRQ = 0), go to CXJIB3.

At CRJIBl, if entered by the slave processor, go to CKJBS. Otherwise,
requeue all jobs in the regueue chain. The requeue chain is a
last-in-first-out linked list (JBTJRQ). The zero word is the header.
Each entry contains the Jjob number of the next job in the list. A
zero entry indicates the end of the list. Note that the entries are
deleted from the list before JRQ is cleared, which prevents entering
the same job in the list twice.

At CRJB3, the actual requeue is done by subroutine QREQ. Loop back to
CXJBl to regqueue any remaining jobs.

3.6 CXJBS5 TO CXJB7 SECTION

This section 0f code checks to see if exec virtual memory has Dbecome
available (EVAVAL # -1), and if so, cle=ars the wait-state code for any
jobs waiting for it. The EV rescurce is reguired for all I/0 devices
that 4dc¢ not have data channels and, therzfore, raguire that the
monitor service rcutines De able to address user core with the EXEC
page map. The resource being allocated is the EXEC page map slots.

At CRJIBS, if entered from the slave, go to SCHED.

3-4

DETAILED DESCRIPTION OF THE SCHEDULER

3.7 CRJB7 TO SCEHED SECTION
This section of code determines whether or not SWAP/LOCK 1s called.

SWAP/LOCK is called only on CPUO, and only if one or more of the
following conditions is true:

1. An HPQ job on disk became runnable.

2. The current job is the null job.

ki Tha ~lack +#
S L0808 CL0CK T

3.8 SCHED TO QREQ SECTION

This section of code selects the next job to run. It assigns sharable
resources as required, and unwinds them from other jobs if necessary.

At SCHED, clear the potentially lost time flag and go to the
processor-dependent scheduler,

For a single processor, go to SCHEDJ.

For a dual-processor entered by the master, go to MSCEED in CPLSER.
For a dual-processor entered by the slave, go to SSCHED in CPlSER.
MSCHED selects a joo from the - slave waiting for a monitor call.
Biternatively, if <nere are no such jobs or if the fairness count
{.COUFC) is greater than UFCO, it selects a job by +<he normal scan at
SCHEDJ. S3CEED is a call to SCHEDJ.

At SCBEDJ, determine which scheduling scan table is to be used. If
the scheduling scan did not reach the last gueue in the scan recently
enough (.CPSFC greater than or equal MFC), use the secondary scan
table rather than the primary scan table. Table 3-2 contains the
primary and secondary scan tables (in-core chains only).

Table 3=~2
Primary and Secondary Scan Tables

Primary Scan Table Secondary Scan Table
{SSCaN) (SSCaNl)
Queue Routine Queue Routine
HPQs IQFOR BP2s IQFOR
PQ1 IQFOR PQ2 IRRFOR (Round Robin mode)
PQ2 IRRFOR (Round PQ2 ISSFCR (Class Scheduler mode)
Robin mode)
PQ2 ISSFOR (Class 21 IQFOR
Scheduler mode)
P22 IRBFOR (Class PQ2 IBBFOR {Class Scheduler mode)

Scheduler mode)

For the slave processor, the primary and secondary scan tables are
interchanged.

DETAILED DESCRIPTION OF THE SCEEDULER

If the swapper has selected a Jjob to force out that has a2
disk-sharable resource (FORCEF not equal to 0), try to run that job
until it gives up all resources, regardless of the job's actual queue
position. (The disk~sharable resources are: AU, CB, DA, and
MQ.) Otherwise, at SCHBJl call QSCAN to scan the processor queues in
the order specified by the previously selected scan table. Jobs
returned by the scan are processed by the following code from SCHEDS
0 SCHD1.

At SCHEDB, call DXRUN to see if a job is runnable on the calling CPU.
If not, loop to scan for the next job (JRST (T2)).

Set the scan bit (JS.SCN) to 1. If the job has a zero wait-state code
(meaning RUN), go to SCHEDC. The code from this point to SCHEDC
assigns and unwinds sharable resources. (They are also assigned in
CLOCRl if available the instant a job asks for them.) The sharable
resources involved are: AU, MQ, Da, CB, D1, D2, DC, and CA.

Sharable resources are not assigned to Jjobs that are swapped out
(SWP=1) , shuffling (SHF=1), expanding (JXPN=1), or need to be requeued
(JRQ=1) .

If the job needs a resource (identified by a wait-state code) and it
is available (AVTBMQ#0), go to SCHEDA ané assign the resource. If the
resource is not available, try to unwind it.

The code from UNWND1 to SCHEDA unwinds sharable resources £rom lower
priority jobs so that they are available to higher priority jobs. The
unwind process is to look for a job that has the resource that is
desired and, 1if runnable, tc run the Jjob until it gives up the
resource.

If the job holding the desired resource is not runnable because it
also is waiting for a resource then:

1. If that resource is available, assign it and run that job.

2. TIf that resource is not available, look for the job that hnas
that resource and repeat the unwind process (repeating to a
maximum depth of 10, with an expected maximum of 3).

MQ represents a special problem because there is usually more than one
monitor buffer. This means that there 1is more than one path to
success. The routine investigates all paths and chooses the shortest.
A path to success always ends with a job that is runnable. By running
that job until it gives up all resources and by repeating the process
for each Jjob in the path, the original objective of freeing a given
resource for a higher priority job is eventually achieved.

At SCHEDA, 2 job being forced out that had a disk-sharable resource
(FORCEF=J) will not be given anyv new sharable resources after it has
given up the resources that prevented it from being swapped (assessed
by calling FLSDR). Otherwise, if you know that the job is runnavdle,
go to SCHEDE and assign the resource.

At SCHEDE, assign the resource by clearing the wait-state code for the
job. Also, do bookkeeping on AVTBMQ and USTSMQ.

DETAILED DESCRIPTION OF THE SCHEEDULER

At SCHEDC, the job being scanned is checked to be sure it is runnable
{normal definition). 1In addition, if the job scanned is being forced
out with a disk-sharable resource, it is considered unrunnable if it
has given up the rescurce., If it has not given up the rescurce, the
JXPN bit is ignored (as far as the job being runnable) Decause some
other job mavy have expanded a high segment being shared.

If the job is runnable, it 1is selected to run. The scheduling
fairness counts are updated depending on the gueue the job is in. The
selected job number is in AC J. The scheduler exits to CLOCKL.

If no runnablie job is found by the scan, at SCHDlI scan the out-core
chains of the processor gueues until the lost-time flag is set (.CPPLT

0) or there are no more. jobs to scan. This allows computation of
lost time, using a small amount of processor time that otherwise would
not be used. Set J to the NULJOB and exit to CLOCKXL.

3.9 QREQ TO QCHNG SECTION

This section of code determines if a requeue requires a physical queue
transfer, and if so, sets up the right half of AC U to the desired
transfer table address (either directly or by indexing the QBITS table
with the wait-state coe). If no physical gueue transfer is required,
it performs the necessary bookkeeping for the reguens.

At QREQ, if CMWB, JDC, ané JS.DEP are not all zero, go 'to QREQL.
Otherwise, 1f +the run bit is off at QRZQ0, gc %o QSTOPT. If none of
the above special cases apply, call MSQRT to maintain dual-processer
monitor call counts, Dispatch to one of =sight different transfer
routines using the left half of +the QBITS table indexed by the
wait-state code.

At QREQL, if the command wait bit (CMWB) is set to 1 and the Jjob |is
swapped out (SWP=l) or expanding (JXPN=1), set AC U to transfer table
QCMW, and go to QXFER.

At QREQ2, if the job is reguesting service £rom DAEMON (JBC=l or
JS.DEP=1) and the job does not have a disk-sharable resource, set AC U
to the state code JDCQ and go to QJDCT. Otherwise, 5o to QREQC.

The QBITS table has one entry for each wait-state code. (See Table
3-3.) The 1left half of each entry is the address of the transfer
routine. The right half contains either the acddress of a transfer
table {(to be wused by QXFER) or -1 if no physical gueue &transifer is
required.

The content of QBITS depends on the value of the assembly parameters.
Tabie 3-3 is a typical configuration.

3-7

DETAILED DESCRIPTION QF THE SCHEDULER

Table 3-3
QBITS TAEBLE

Left Half Right Hdalf
QRNT QRNW
QWST -1
QTST QTSW
QDST =1
QPST -1
QAUT =1
QMQT -1
QDAT -1
QCBT -1
QDT =1
QD2T -1
QDCT -1
QEVT -1
QIOWT -1
QTIOWT QTICWW
QDIOWT -1
QPIOWT -1
QSLPT QSLPW
QEWT QEWW
QNAPT -1
QNULT QNOLW
QJDCT QJDCW
QSTQOPT QSTOPW

The following six routines perform bookkeeping and, where required,

set up the right half of AC U to the desired transfer table address.

QRNT:

QPST:
QWST:

QDST:

QTST:

Entry for jobs with zero wait state = runtime.

If the job is in PQ2 and is being requeued Dbecause it

is changing subgueues (JS.CSQ = 1), go to CREQX.
QOtherwise, go to QREQ3.

Entry paging satisfied.
Entry I/0 wait satisfied.
Entry disk 1/0 wait satisfied.

This routine checks to see if the job is in a processor
gqueue, and if not, regueues it into PQl (QCHNG). It
then clears the wait-state code and gces to QREQX.
Entry for teletype I/C wait satisfied.

This routine clears the wait-state code

QREQ3.

and dgoes to

Entry for jobs entering sleep.

Entry jobs entering event wait.

Common eatry, various requeue procedures.

DETAILED DESCRIPTION OF THE SCHEDULER

This routine sets up AC U from the right half of QBITS
{cransfer <table address) and calls the gueue transfer
routine {QXFER). It then goes to QRECX.

QSTOPT: Entry for jobs that 4o not have run bit set.

This routine sets U to STOPQ unless the wait-state code
(in U) 1is NULG. Go to QREQZ.

QNULT: Entry for jobs going to NULQ.

Trrryy fAr AAatnAa A NDADMON
o piel geihg O ¥

QTIOWT: Entry for jobs going to TTY wait gueue.
QREQZ: ‘Common entry point.

This routine sets PDMSWP, indicating that the job ' may
be swapped.

Go to QREQ3 (to finish regueue}.

QREQ6 : Common entry point, not labeled as such but includes
; NAP, all sharable resource waits, and all I/0 waits
except TTY.

This subrcutine checks 20 see 1f the Job is in a
processor gueue, and if not regueues it to PQl (QCHNG),
then goes to QREQX.

QREQX: Exit for all requeue subroutines.

I£f the Jjcb being regueued is changing subgueues
(JS.CSQ=1) and is still in PQ2, regueue it to the back
of the appropriate subqueue with subroutine TOBACK.

Exit from QREQ.

3.10 SUBROUTINE QCENG

Regueue a job to the back of PQl. This subroutine is used to transfer
a Jjob 1intc the processor gueues if it is in some otner queue (STOPQ,
for example). It is required because the regueue logic for short-term
wait states assumes that the job is already in the processor gqueues;
however, in a few cases it is not. For example, a user types CTRL/C
while in I/0 wait and then later continues the job.

3.11 SUBROUTINE SETIPT

The SETIPT subroutine sets in-core protect time £or the Jjob to the
minimuem value, which 1s used after tne expiration of the first time
siice. (This may be different from values assigned at swap~in because
initial quantaz reflect the difficulty of swapping in large jobs. 1In
this czse, no swag-in has occurred.)

The value for minimum in-core protect time is installation dependent.
4 reasonéble ranges is from 0.5 second to 5 seconds.

DETAILED DESCRIPTION OF THE SCHEDULER

3.12 SUBROUTINES ZERIPT, CLRIPT, CLRIPI

Set PDMSWP to indicate that the job is eligible for swap-out.

3.13 SUBROUTINE ASICPT

Compute and store the in-core protect time based on the size of the
job.

G In
r

obably

No in-core protect time is assigned if C
this case, it is assumed to be unneces
sufficient core for all running jobs.

b

ORSCD is less tha zer
sary because there is p

3.14 SUBROUTINE TOBACX

Requeue jobs to the back of PQ2 and the subqueue.

3.15 SUBROUTINE QARNDT
Requeue the job because the time slice has expired.

1f the job is currently in PQl, requeue it to the back of PQ2, and
then assign a new gquantum runtime.

If the job is currently in PQ2, requeue it &0 the back of PQ2, and
then assign 2 new quantum runtime and in-core protect time. rFinally,
mark the job eligible for swap—-out.

If the job is in HPQ, requeue it to the back of the same 22Q, and then
assign a new gquantum runtime.

3.16 QXFER TO DICLNK SECTION

This routine performs all of the physical queue transfers. It is
called with a job number in AC J and the address of a transfer table
in AC U.

Transfer tables occur in two formats (depending on the right half of
the first word).

1. Fixed-destination gqueue.

POSITION OPTION QFIX

QUANTUM OPTICN NUMBER OF DESTINATION QUEUE

2. Destination gqueue determined by source queue, quantum runtime
detarmineé by job size.

3-10

DETAILED DESCRIPTION OF THE SCEEDULER

POSITICN OPTION QLNKZ

QUANTUM OPTION ADDRESS OF TABLE FOR DESTINATION QUEUE

Position Option:
¢ = Reqgueue to beginning of gueue
40000C = Requeue to end of gueue

Quantum Option: .

If negative = Do not assign quantum runtime

If positive = Format 1, address of word containing amount
of guantum runtime to assign.
Format 2, quantum runtime is to be computed
(within QLNKZ routine).

QFIX/QLNKZ Name of regueue routine.

At QLNKZ, the destination queue is determined by indexing into the
specified destination gqueue table. At present, only one such taole
exists (QRQTBL in COMMON): it contains one entry f£or each processor
gueue.

INDEX) DESTINATION
HPQ Same HPQ
PQL 2Q2
PQ2 ~ Q2

f the transfer table requests computation of gquantum runtime, it is
alculated in routine CMPQRT as shown in the fcllowing.

min (QMX,QAD+K*QML)
guantum runtime =

QRANGE

oMX is taken from table QMXTAB by the destination gueue;
it is the largest quantum runtime permitted for that
queue.

QAD is taken from table QADTAB by the . destination gueue;
it is the base gquantum runtime for all joos.

K is the size of the job in K (1024 words).

QML igs taken from table QMLTAB by the destination gueue;

it is a multiplier factor wused to modify gquantum
runtime by job size.

QRANGE is used to scale the multiplier factor.

3-11

DETAILED DESCRIPTION OF THE SCHEDULER

The Eables QMXTAB, QADTAB, QMLTAB, and QRQTAB each have one entry perl
processor gqueue, This makes it easier to assign quantum runtimes
differently for the processor gueues (that is, HPQs, PQl, and PQ2).

At QFIX, the destination gueue is specified by the indicated transfer
rable. However, if the destination is a processor queue and the job's
current HPQ indication {pointed to by HPQPNT) is nonzero, the job will
be placed in that HPQ.

In transfer tables, the codes could be set as shown in Table 3-4.

m

-
Bxample of Codes

(11}

almla 2
Set For Transfer Tables
Label Content Description

QNULW: 400000, ,QFIX Transfer to back of NULQ.

-1, ,-NULQ Do not assign gquantum runtime.
QSTOP:
QSTOPW: 400000, ,QFIX Transfer to back of STOPQ.

-1,,=-STOPQ Do not assign quantum runtime.
QJDCW: 400000, ,QFIX Transfer to pack of JDCQ.

-1,,-JDCQ Cc not assign quantum runtime.
QCHMW: 400000, ,QFIX Transfer to back of CTMQ.

-1,,-CMQ Do not assign gquantum runtime.
QTSW:
QRNW: 400000, ,QFIX Transfer to back of PQl.

QADTAB,,-PQl Assign quantum runtime oy QADTAB.
QRNWL: 400000, ,QFIX Transfer to back of PQl.

-1,,-PQl Do not assign quantum runtime.
QTIOWW: 400000, ,QFPIX Transfer to back ¢f TTY I/0 wait.

-1,,-TIOWQ Do not assign gquantum runtime.
QSLPW: 400000, ,QFIX Transfer to back of sleep Qqueue.

-1,.-SLPQ Do not assign gquantum runtime.
QTIME: 400000, ,QLNRKZ Transfer to queue specified by

QRQTBL.

0,,QRQTBL Compute quantum runtime in QLNXZ.
QEWW: 400000, ,QFTX Transfer to back of EWQ.

-1,,-EWQ Do not assign gquantum runtime.

QRNW2: 400000, ,QFIX Transfer to back of PQ2.
-1,,-2Q2 Do not assign quantum runtime.

Table JBTCQ contains all the master gueues. Tke table has one entry
for each job and two entries £for each master gueue. Each master queue
requires two entries because the master gqueues are divided Dbetween
jobs withn core and jobs with no core. These entries are referred ©o
as queue headers. The gueue headers are defined in the negative
direction from JBTCQ.

DETAILED DESCRIPTION CF THE SCEEDULER

If there are n master gueues, the first n entries above JBTCQ in the
negative direction are the in-core headers and the next n entries in
the negative direction are the out-core headers. Each gueue has an
associated gqueue number. The location of the in-core header for a
gueue is JBTCQ minus the gusue number. The location ¢f the out-core
header for a gqueue is JBTCQ minus the number of master gueues minus
the queue number., The entry for each job is located at JBTCQ plus the
iob number. The zero entry of JBTCQ, which would correspond to the
null job, is not used.

Each entry in the table contains a pointer to the previous entry in
the left half and a pointer to the next entry in the right half.
Therefore, the gueue headers contain a pointer to the last job in the
left half and a pointer to the first job in the right half. The last
job in the gueue has a pointer back to the gqueue header (that is, a
negative number) in the right half. Similarly, the left half of the
first job in the gueue points to the header. If a gqueue 1is empty,
both pointers in the gqueue header point to itself.

For example, assume gqueue 2 contains jobs 1,4,2 in core and jobs 5,7,3
not in core. Queue 2 could be represented in JBTCQ as follows:

-MXQUE-2 3 5 . gueue header for section of gqueue
with no core
~uxQuE-1
-MXQUE
-3
-2 2 1 queue header for section of gqueue
. with core
-1
JBTCQ
1 -2 4 entry for job 1
2 4 -2 entry for job 2
3 7 ~MXQUE-2 entry for job 3
4 1 2 entry for job 4
5| -MXQUE=-2 7 entry for job S
6
7 5 3 entry for job 7

In Class Scneduler mode, all jobs in PQ2 also have an entry in the
table JBTCSQ. This table has headers that correspond to scheduler
classes, also referred to as subgueues. Each subgqueue has one header
for jobs with core and one for jobs with no core.

The location of the in-core header for a subguesue is JBTCSQ minus one
minus the class number. The location of the out-core header is JBTCSQ
minus the number of classes minus one minus the class number.

DETAILED DESCRIPTION OF TEE SCEEDULER

Entries in JBTCSQ consist of a forward pointer and a backward pointer
as in the master gueues. Only the entries corresponding to headers or
jobs in PQ2 have valid pointers.

For example, suppose class 0 contains jobs 1,4,2 in core and job 3 not
in core, and class 1 contains no jobs in core and jobs 7,3 not in
core. Subqueues 0 and 1 could be represented in JBTCSQ as follows:

-M.CLSN=-2 3 7 gueue header for class 1 with no
core
) -M.CLSN=-1 5 S queue header for class 0 with no
core
-M.CLSN
-3
=2 -2 -2 queue header for class 1 with
core
-1 2 1 queue header for class 9 with
core
JBTCSQ
1 -1 4 entry for job 1
2 4 -1 entry £or job 2
3 7 -M.CLSN~2 entry Eor job 3
4 1 2 ‘jentry for job 4
5 -¥.CLSN-1 | =M.CLSN-1!entry for joo 5
6
7 -M.CLSN-2 3 entry for job 7

in addition, jobs in PQ2 that have core will also have an entry in
either an input list (JBTJIL) or an output list (JBTOLS). The input
list gives the order in which jobs with in-core protect time entered
PQ2. The output list gives the order in which jobs were requeued to
PQ2 after expiring in-core protect time. In Class Scheduler mode,
each of these queues is subdivided into normal jobs and background
batch jobs.

For example, suppose the just-swappad-in list contains jobs 1,4,2 in
the reqular <chain and jeb 3 in the background batch chain, and the
output 1ist contains jobs 7,3 in the regular chain and no jobs in the

background batch chain. The gueues would be as follows:

-3BQ 5 3 gueue header for background batch
just-swapper-in list

-JIQ 2 1 queue header for regular
just-swapped-in list

DETAILED DESCRIPTION OF THE SCHEEDULER

JBTJIL -
1 - =JIQ 4 entry for job 1
2 4 -JIQ entry for job 2
3
4 1 2 entry for job 4
5 -BBQ -BBQ entry for job S
-0BQ -0BQ -0BQ queue header for background batch
output }ist
-0LQ 3 7 gueue header for regular
output list
JBTOLS
1
2
3 7 -0LQ entry for job 3
4
5
6
7 -0LQ 3 antry for job 7

3.17 SUBROUTIKE DICLNK

The DICLNK subroutine moves a job from the 1in-core gqueues to the
corresponding out-core gqueues. This subroutine is called wnen a job
gives up core.

2.18 SUBROUTINE IICLNK

The IICLNK subroutine moves a job from the out-core gueues to the
corresponding in-core gueues. This subroutine is called when core is
assigned to a job.

3.19 SUBROUTINE DCCLNK

The DCCLNK subroutine is used by DICLNK and IICLNK to delete a Jjob
from its current master queue and from its subqueue in tne class
scheduler. The scheduler is locked while the linked lists are oeing
updated.

DETAILED CESCRIPTION OF TEE SCHEDULER

3.20 SUBROUTINES ICCLNRK AND ICSLNK

-Mhe ICCLNX and ICSLNK subroutines are used by DICLNXK and IICLNK to
insert a job into its proper master gqueue and subgueue.

3.21 SUBROUTINE INOLST

The INOLST subroutine inserts a job in the output list if it has core
and is eligible to be swapped out. If the job is already in the
output list, it leaves the job in its current position. alse, this
subroutine inserts background batch jobs in the background batch chain
and other jobs in the regular chain. INOLST is called when a Jjob is

requeued to PQ2.

3.22 SUBROUTINE DLOLST
The DLOLST subroutine deletes a job from the output list if it is in
one. This 'subroutine 1is called when a job is requeued unless it is

going from PQl to PQ2. It is also called when a job is swapped in or
out. :

3.23 SUBRCUTINE DLJILS
The DLJILS subroutine deletes a job £from the Jjust-swapped-in list.

This subroutine is called when a job is regqueued frem PQ2 and when it
is swapped out. .

3.24 (QSCAN THROUGE FSQFOR SECTION
QSCAN scans the qQueues as specified by a scan table. It returns the
job number of the next job in AC J. 1If the calling routine wishes to
reject a2 job and continue the scan it must JRST (T2). The calling
sequence is shown below. :

MOVEI U, address of scan table

JSP T1, QSCax

Return here when no more jobs.
Return here with next job.

The format of the scan table is shown below.

SCANTAB: XWD Ql,CODEL

. »

XWD Qn,CODEn
2 {2erc terminates %table)

In this case, CCDE specifies the routine used for scanniag. Table 3-5
lists the possible codes and their meanings.

DETAILED DESCRIPTION OF THE SCHEDULER

Table 3-5
Possible Codes

Code Meaning
QFOR Scans whole queue forward. First scans the in-core
chain, then the ocut-core chain.
QBAK Scans whole gqueue backward. First scans the out-core
chain, then the in-core chain.
IQFOR Scans in-core gueue forward.
IQBAK Scans in-core queue backward.
IQFOR1 Scans in-core gueue for first member.
IQBAK] Scans in-core gqueue backward (all but first member).
OQFOR Scans out-core gueue forward.
CQBAK Scans out-core gueue backward.
OQFOR1 Scans ocut-core gueue for first member.
0QBAKL Scans out-core queue backward (all but first member).
SQFOR Scans ocut-core subgueues (PQ2 class swap-in scan).
BQFOR . Scans out-core background batch subqueue (PQ2 class
swap-in scan).
ISSFOR Scans in-core subgueues (PQ2 class scheduling scan).
IBBFOR Scans in-core background batch subgueuwe (PQ2 class
scheduling scan).
OSSFOR Scans out-core subgueues (PQ2 class lost-time scan).
IRRFOR Scans just-swapped-in gueue, then PQ2 in-core gueue

(PQ2 Round Robin scheduling scan).

IGFOR Scans just-swapped-in gqueue and jobs waiting for a
high segment as a result of a GETSEG UUO a certain
percentage of the time (PQ2 swap-in scan).

OLFCR Scans background batch output gueue, then background
batch - just-swapped-in gqueue, then regular output
gueue, then PQ2 in-core queue backward (PQ2 output
scan) .

3.25 FSQFOR THROUGH BQFOR SECTION

e SQFOR routine is used by the class scheduler for the PQ2 swap-in
can. First, it scans the primary class. Second, it scans any
clazses with nonzero secondary allocations. :

At FSQFOR, set the SWPFAR flag to indicate that +the swapper reached
fair territory.

DETAILED DESCRIPTION OF THE SCHEDULER

If in Round Robin mode (RRFLAG = 0), go to OQFOR to scan the PQ2
out-core gqueue. Then, subtract one from SQCNT, and if it reaches
zero, call SQINI to reinitialize the primary scan pointer. Finally,
load the class number of the current primary subqueue into AC J.

At SQFORA, scan the out-core subgueue for that class.

From SQFOR1 to SQFOR2, build the secondary scan table SQSCAN. The
primary class and any classes with no jobs in the out-ccre chain are
rejected for efficiency. Any class with the (fixed swap-in bit set
{bit 0 of CLSSTS = 1) is also rejected, because this class is allowed
te swap only when it is the primary class. All other <classes with
secondary allocations (CLSQTA>Q) are stored in the SQSCAN ctable in the
form XWD -CLASS-1l,secondary allocation. The sum of the secondary
allocations$ of all classes entered into the table is accumulated in
SQSUM.

At SQFOR3, select a random integer in the range 0 to SQSUM-1. This
integer determines which class will be selected next for the secondary
scan. The secondary allocations of each entry in SQSCAN are
successively subtracted from the random integer until it goes
negative. The class that causes it to go negative is selected as the
next class to scan, Therefore, the probability of any given class
being selected is equal to its secondary allocation divided by SQSUM.

gliminate the selected class from the SQSCAN table by moving the top
entry down on top of it and subtracting its secondary allocation from
SQsuM.

At SQFOR3, scan the out-core subgueue for the selected class. If no
job is selected by the scan, decrement the count of classes left in
SQSCAN. TIf anv classes remain, go to SQFCR3 to select ancther class, .
otherwise go to the SQFOR rcutine.

3.26 BQFOR THROUGE ISSFOR SECTICN

The BQFOR routine 1is used by the Class Scheduler to scan for
- background batch swap-in.

If in Round Robin mode (RRFLAG = Q), exit from the BQFOR routine. If
no background batch class is defined (BBSUBQ<0) or not enough time has
elapsed since the.last background batch swap-in (UPTIMEKSCNBBS), exit
from the BQFOR routine. Otherwise, scan the out-cors subgueue for the
background batch class in BBFOR2. While scanning background batch,
set BBFLAG to -1.

The SQINI routine i3z used to initialize the swapper's primary scan
pointer. The counter SQCNT is initialized to 100 and indicates the
aumber of entries left in this pass through the table. The Dbyte
pointer SQPNT is initialized to point to the imaginary byte preceding
the first entry in PSQTAS.

The routine SQTEST is used to control the advancing of the primary
scan pointer. The SQFCR routine advances the primary scan pointer to
the current class. If no job is actually selected to be swapped in,
the scan pointer is reset by SQTEST so that the same class iz scanned
for a2 time 1interval that approximates the average swap-in time
({SCDSWP) .

If in Round Robin mode, exi: from the SQTEST routine. Then, add one

to the count of how many ticks the current primary class has been
scanned (SCNSWP). If this class nhas been scanned often enough

3-18

DETAILED DESCRIPTION OF THEE SCHEDULER

(SCNSWP>SCDSWP) , clear SCNSWP and allow the primary scan pointer to
advance to the next class. Otherwise, reset the primary scan pointer
sc tnat the same class will be scanned on the naxt tick. Then, add
one to the count of primary classes left (SQCNT), and decrement the
byte pointer (SQPNT) so it will point tc the current class whan
incremented.

The routine RAND returns a random integer less than 2(17) in index T2.
The algorithm is multiplicative modulo 2(35).

Multiply the current seed by 377775 octal. Store the 1low=-order 35
bitse as the new seed. Out of these, extract the leftmost 17 bits as
the current random number,

3.27 ISSFOR THROUGE OSSFOR SECTION

The ISSFOR routine is used by the Class Scheduler mode for its PQ2
scheduling scan. The subgueues are scanned in the order specified by
the subqueue scheduling scan table (SSSCAN for CPU0 and SSSCNl for
CPUL) .

The scan table is built at the beginning of each micreoscheduling
interval by the routine SCDQTA. &2ach entry in the table is of the
form ~CLASS-l1. The firsc entry in the table is the primary class.
The percentage of time that each class is selected as the primary
class is determined by the primary percentage for that class. The
remaining entries in the scan tadle are the secondary classes. SCDQTA
uses probability to determine the order of the secondary classes, and
uses the secondary allocation of sach class to determine its relative
priority.

To ensure a minimum level of response and to prevent core from
becoming clogged with jobs that come from classes with low primary
percentages, a portion of each microscheduling interval is dedicated
to running Jjobs in the order in which they were swapped in. The
resgonse fairness factor (SCDJIL) controls the percentage of time that
this special scan is in effect.

The code for ISSFOR is as follows.

1f in Round Robin mode (RRFLAG = 0), go to IRRFOR to scan PQ2 forward.
If response fairness is in effect (UPTIMEKSCNJIL), scan the
just-swapped-in gqueue at SJFORA. If response <fairness 1is not in
effect or no runnable job is found in the just-swapped-in gueue, scan
the subgqueues in the order specified by the subgueue scheduling scan
table. Then, set AC M to the base address of the table. At SSFORI,
if the word pointed to by M is zero, go to SSFOR2 because the end of
the table has been reached. Otherwise, scan the in-core subgueue for
the class pointed £o by M. If no runnable job is found, add one to M
and go to SSFOR1l to scan the next class in the scan tabple.

At SSFOR2, the primary and all secondary subgueues have been scanned.
Iif the just-swapped=-in gueue was not scanned previously
(UPTIME>SCNJIL), go to ILFORl and scan it now.

The only jobs that would be scanned by this final scan of JBIJIQ are
jobs that are 1in a class with no secondary ailocation that nave not
yet expired 1 time slice. Because these jobs will be scanned at the
beginning of the next microscheduling interval (when UPTIMEKSCNJIL),
chey can be scheduled now because no other PQ2 timesharing Jobs are

runnabile.

DETAILED DESCRIPTION OF THE SCEEDULER

The routine IBBFOR is used by the Class Scheduler mode to schedule
background basch jobs.

If in Round Robin mode (RRFLAG =), exit from IBBFOR. To indicate
that the background batch is being scanned, set BBFLAG to =-l1. Then,
scan the background batch just-swapped-in queue (JBTSBEQ)} at BBFORA.
This action schedules any background batch Jjob taat has not yet
expired one time slice ahead of those that have expired their time
slices. Finally, scan the in-core subqueue for the backdround batch
class at BBFORB. Zero BBFLAG and exit IBBFOR if no runnable Jjob has
been found. : :

3.28 OQSSFOR THROUGE ILFOR SECTION

The routine OSSFOR is used for the Class-Scheduler-mode PQ2 lost-time
scan.

Set M to the base address of the scan table. For each entry in the
table, scan the out-core subgueue for that class at SSFORB. When all
classes in the scan table have been processed, scan the out-core
subgueue for the background batch class at OBBFOR.

The Round Robin scheduler uses the routine IRRFOR for its PQ2
scheduling scan. For best response, all PQ2 jobs that have not yet
expired 1 time slice are scheduled ahead of those that have expired at
least 1 time slice.

Scan the just-swapped-in gqueue (JBTJIQ) at RJFORA. Then, go to IQFOR
to scan the full PQ2 in-core gueue.

3.29 ILFOR THROUGH SAVSUM SECTION

The swapper uses routine ILFOR to scan for ?Q2 Jjobs that have done
GETSEGs and need to be linked up to their high segments. The in-core
fairness factor (SCDIOF) controls how often these Jobs are scanned
ahead of regular PQ2 jobs. .

ILFOR generates a random number in the range 0 to 99. If this number
is greater than or equal to SCDIOF, exit the ILFOR routine.
Otherwise, scan the just-swapped-in queue at ILFORA (ignore jobs with
JS.BENG = 1}.

The swapper uses routine OLFOR to scan PQ2 for output.

The swapper also saves SUMCOR in the temporary variable SAVSUM and
performs the following tasks:

1. Scans the background batch output gqueue at QOLFORA.

2. Scans the background batch just-swapped-in queue at OLFORS3.
3. Scans the regular output gueue at CLFORC.

4. Resets SUMCOR tc SAVSUM

S. Scans the PQ2 in-core gueue backward at IQSAX.

It is necessary to reset SUMCOR because some jobs will Dbe scanned
twice, once by OLFOR and cnce by IQBAK.

-20

[¥3)

DETAILED DESCRIPTION OF TEE SCEEDULER

Note that all background@ batch jobs are swapped out anead of any PQ2
timesharing jebs. If the system administrator wishes ¢to give
background batch jobs that have not expired 1 time slice a higher
priority for remaining in core than timesharing jobs that have expired

their time slices, the QLFCRB ¢ode should be moved below the OLFORC
code.

CHAPTER 4

The swapper code is dependent on a number of assembly switches. This
discussion assumes a Kilo processor (FTKI10 = -1), with the
virtual-memory option (PTVM = -1) and the high-availability option
(FTDHIA = -1), which does not swap PDBs (FTPDBS = 0).

The swapper is entered at the label SWAP. It determines whether or
not any jobs require swap-in or swap-out, and if so sets up the
reguired swap control information in tables for VMSER and SWPSER. The
actual swap (ané any virtual-memcry paging) is performed at interrupt
level in VMSER and SWPSER.

Most operations started by the swapper require several clock ticks to
run to completior, A number of flags are used to remember previous
starts. Table 4-1 is a list of the important <£lags and datz items
used by the swapper.

Table 4-1
Important Flags and Data Items

Code Meaning
FIT Job chosen by QSCAN to be swapped in.
. FORCE Job chosen to be swapped out,
FORCEF Job being forced out but waiting to give up disk
resource,
SWPIN Job number associated with higﬁ segment being swapped
in.
SWPOUT fobtnumber associated with high segment swapped out
last.
LASIN Last segment swapped in.
LASOCT Last segment swapped out.
SWPERC LE=number swap errors. RH=number pages lost -- bits
18-23=err flags.
MAXJBN Job number of job to swap cut.
SUMCOR Total amcunt core found so far of eligible jobs to
swap out.

DETAILED DESCRIPTION OF SWAPPER

Table 4~-1 (Cont.)
Important Flags and Data Items

Code Meaning

INFLG NOFIT flag -- same job waiting to be swapped in for
360 ticks.

INFLGJ Frustrated job waiting to be swapped in.

INFLGC Time frustrated job started waiting.

SPRCNT Number swap operations in progress.

SWPCNT Number jobs finished with data transmission, waiting

for cleanup.
The overall operation of the swapper is described in tne £ollowing.

The next job to be swapped in is selected by the input scan and stored
in the item FIT. If the job will fit in available free core (unused),
it is immediately swapped in. If the job will not fit, out would f£fit
if the idle and dormant high segments were deleted from core, enough
are deleted until the job will fit. The job is taen swapped in.

£ the job would not fit even if all idle and dormant high segments
were deleted, the swapper checks to see if the job would fit if all
jobs eligible to swap were swapped out. If no, the swapper exits and
checks again each clock tick. 1If ves, jobs are sequentially selected
by the output scan and put in the item FORCE to ba Zorced out.

when all I/0 has stopped and all sharable d&isk resources have been
given up, the 3ob is swappad out. While waiting for I/0 to stop or
resources to de given up, =th swapgper exits and recheckz on <the
occurrence of each clock tick.

After each job is swapped out, control returns to checking whether the
job will fit after all idle and dormant segments have been deleted.
When the job will f£it, the high segments are deleted and the job is
swapped in.

The following sections provide a description of the swapper at the

level of the macro code. The labels referenced are in the last half
of the module SCHEDL.

4.1 SWAP TO SWAP1l SECTION
This section provides improved swapping response for HPQ jobs..

If FIT is zero, go to SWAPQA (equivalent to SWAPl); otherwise, <check
(SKIPG J,.CPRTF(P4)) to see if an HPQ job wants to be swapped in. IEZ

no, go to SWAPOA. If yes, and this job is of higher priority than tihe
job ia FIT, reset the job curreatly in FIT unless the job being fit
has a high segment that is already in core, in which case, 3o to

swarga.

DETAILED DESCRIPTION OF SWAPPER

4.2 SWAPl1 TO FININO SECTION

This section determines if swapping input or output has just finished,
and if so, branches tc the zppropriate wrap-up routine.

at swarl, if no swapping regquests have just finished (SWPCNT = C), go
to SWP2 ancé bypass swapping wrap-up. Otherwise, at FININN test
whether the swap just completed was swap-in (IO = Q) or swap~out
(IC = 1}. For swap-out, go to FINOUT. For swap~in, check for swap
read error (sign bit of s = 1) and if yes, go to INERR. Otherwise, go
to FININO.

4.3 PININO TO INERR SECTION
This section does the wrap-up after a segment has been swapped in.

At PININO, if the segment just swapped in is a high segment (3job
number greater than JOBMAX), go to FININH. Otherwise, for low segment
return swapper space and delete SWPLST entry (at GIVBAK), then go to
FININS (which jumps to FININ1).

At PININH, get the job number of low segment associated with this high
segment (from SWPIN). If this job 1is migrating to a new device
(SWPIN = MIGRAT), clear the high-segment swapping space (at ZERSWP) so
that it will be swapped out to a different unit and £all through at
FININI. .

At FININ1, using FININ subroutine at SEGCON:

1. If a2 low segment was just swapped in and the associated high
"segment is in transit, check to see if thers is another swap
list entry completed (subroutine NXTSLE). If yes, go to
FININN to process it. 1If no, exit from the swapper (POPJ).

2. If 2 low segment was just swapped in and it has an associated
high segment that is not in core, set AC J to the associated
high-segment number, and go to FININ2 to initiate swap-in.

3. 1If there is no high segment, or it is already swapped in, or
we just swapped it in, then go to FININ3 to wrap-up job
swap-in with J = low~-segment 3job number. (Nocte that 1in
virtual-memory systems nonsharable high segments are treated

as part of the low segment.)

At FININ2, go to PIT1 to initiate swap-in for high segment (job slot
indicated by aAC J).

At FININ3, both segments are now in memory. Do a wrap-up for the job
just swapped in. At this peoint, J = low-segment number, ragardless of
the order in which the jobs segments are actually swapped in.

Use IMGIN and IMGOUT to determine if the job size has decreased. 1£
so, add the amount of decrease to the counter for the amount of
virtual memory available (VIRTAL).

Call subroutine UNSWAP for housekeeping on variocus swapper flags, to
give back disk space, and to mark the Jjob as swapped in
(Sswp = 0, SHEF = 0).

Clear the job scaznned by the scheduler (JS.SCN}, the job could not be
forced out flag (JS.HNG), ané the job forced out by timer (JS.TFQO) for
the just-swapped-in job. ’

DETAILED DESCRIPTION OF SWAPPER

If the just-swapped-in job is migrating (MIGRAT = JOB #) or is not in
a processor queue or command wait gueue, flag the job as eligible to
swap-out (PDMSWP = 1) and go to FININT. This procedure is needed for
jobs that are reqgueued out of the queue they were in when they were
selected for swap-in (usually by command decoder). Otherwise, the job
can be marked as not eligible for swap-out (PDMSWP = 0) and can be in
a queue that is not decremented for in-core protect time.

If the swap-in was caused by a GETSEG (JS.NNQ = 1), go to FININT.
This .avoids reassigning time slices, which would allow jecbs doing
GETSEGs £0 take over the system.

Assign in-core protsct time (subroutine ASICPT) for just-swapped-in
jop (bits 1 to 17 im .PDIPT). Then, mark the job not to be swapped
(PDMSWP = 0). 1If the job is in a processor gqueue, assign a gquantum
runtime depending on which queue the job is in. If the job is on the
swap-out list, delete it from the list {subroutine DLOLST).

If the just-swapped-in joo was not background batch, go to FINING.
Otherwise, set the background batch bit (JS.BBJ) to 1, put the job in
the just-swapped-in background batch queue, and go to FININT.

At FINING, clear the background batch bit (JS.BBJ = 0}. If che job is
in PQ2, put it in the just-swapped-in timesharing queue.

At FININ7, clear the no-new-quanta bit (JS.NNQ = 0). Clz2zar the
background batch £fit flag (BBFIT). Clear the frustration indicators
INFLG, INFLGJ, and INFLGC. Clear the flag that FIT was zerced Dy an
E®PQ job (.PDHZF), and go to SWPl.

4.4 INERR TO FINOUT SECTION
This saction processes input swap read erroars.

ac INERR, if the sagment is 2 high segment, go to INERRZ. Qtherwise,
call SWPREC to record errors, clear JACCT, call ZAPUSR to clear all
0DBs and I/0 cnannels, and call CLRJOB to clear the protected part of
the job data area. Then, £all through to INERR2.

At INERRZ, save the segment number (PUSE ?,J), and call SEGERR.

for low segments, SEGERR returns immediately (202J P,s). For high
segments, SEGERR sets the high-segment error £lag (SERR) to 1, clears
JBTNAM, and returns the virtual swapping space for the nigh segment if
thnis 1is the first time the high segment had the error (SERR was equal
to). SEGERR returns with J = associated low segment.

Restore segment number (POP P,J). If the segment was nét user pade
map, go to FININO. Otherwise, call GVPAGS and give tcack core for the
page map and segment, delete the SWPLST entry, clear CBTADR, J3TUPH,
and JB3TSWP. 1If the jopo has a nonsharable high segment, clear JBTSGN.
Ccall XILIGH to remove the high segment from tne address space, and go
to UNSWaPr.

DETAILZED DESCRIPTION OF SWAPPER

4.5 PINOUT TO SWPL SECTION

This section does the wrap-up after a segment has been swapped out.

f" Fh

8]

(1]

LA "]
23

%

have occurred (RE of AC S # 0}, go to OUTERR.
tne SWPLST entry (atc DLTSLE).

O
..‘.D‘:

obs ars aig

ja]
o

g or the segment Jjust swapped was a higa
2 Otherwise, <check tc see 1iI tie job has
the job as completed

»
>

LY ¥ (¥

PGOFT), and if sc, mark

3 W.

s Q ® in
n 83\
+d H
el

¢ o

At FINOU2, set R to the sase addéress for segment and <call RCOREL to
return core. .

At FINOUGQ, call FINOT and:
Return + 1 with J set to low—segment number if the segment

just swapped was a high segment and there is a low
segment yet =0 swap. GO to FORCEL to swap out low

segment.
Return + 2 if just swapped a low segment and swapping is all
finished for this user. Fall through to SWPL.

4,8 SWPlL TO FIT1 SECTION

Tais section contains much of the overall control code of the swapper,
rlus the code fzr the swapping input scan. (See Tabkle 4-2.)

At SWPl clear the FINISE flag (iargely meaningless for irtual-memory
svstens) . At SWP2, 1f =here is a2 job to be forced o"* (PORCE = job
aumber # 0), g 2o FORCELl and try tco swap it out. Otherwise, go %o

FIT0.

At FITO, if ¢ rs swaps in 2rogress (SPRCNT#0), go =o <CEKXPN.

Otherwise, 1 swap nas compleied {SWPCNTFQ), go to SWASPl. II there
is a job waiting o swap in (FIT = job number ¢ G}, go to FITL.
therwise, input scan by performing the following tasks.

1. Zero BBFLAG =0 indicate &that Dbpackground batch is not
currently being scanned.

2. Zero SWPFAR <0 indicate that the swap-in scan did not yet
reach fa2ir territory (PQ2).

3. Set U to the proper scan table dJepending on <the swapper
fairness count.

4-5

DETAILZD DESCRIPTION QOF SWAPPER

Table 4-=2
Primary and Secondary Scan Swapping Tables
Primary Scan Secondary Scan
ISCAN IsSCaNl
Queue Routine Queue Routine
BFQs QFOR H2PQs QéOR
cMQ QF0OR CMQ QFOR
PQl IQFOR PQ2 'OQFOR (Round
Robin mode)
BQ2 ILFOR 2Q2 SQFOR (Class
Scheduler mode)
gl OQFOR BQl QQFOR
PQ2 QQPFOR (Rcund . P2Q2 ILFOR
Robin mode) :
PQ2 SQFOR (Class PQL IQFOR
' Scheduler aode)
PQ2 IQFOR 8Q2 IQFCR
2Q2 IQFCR (Class Q2 3QFOR (Class
Scheduler mode) Schedulzar mode)

I£ the number of jcobs in PQl swappeé in a row is less than tne aaxinum
allowed (SWPITC less thanm MAXIFC), use the primary scan. Otasrwise,
use the secondary scan. -

Ak FITBRM, call QSCAN to do an iaput scan. At Rekurn <+ 1, 1i1£ all
queues have Dobeen saarched, go =0 ICKXEN (10 joos waitiang 0 swap ia
were Sound). At Return + 2 and following, crocess joos racurnad from

scan (code belaow) .

IZ the job is expanding (J¥PN = 1 or J5.XPN = 1), or Lf all of =tae
job's sagments ars in core (SWP =) £for low segment, or 1I the aigh
segment is expanding (determined oy CRYPN), reject tae job and rasguest
the next job from QJSCAN (JRST (T2)).

Qtherwise, select job as next job to swap in (set FIT = job number).
If the job iz FIT was selacted in the background basch scan, remember
the job number in 3BFIT.

Otherwise, clear the SCNSWP counter (used to control the advance of
the swapper primary scan pointer when there are no jobs to be swapped
in).

1f the swap—-in scan resached fair territory (that is, the job selactad
<4as in ?Q2), <clear the <counter f£fcr &the aumber of unfair scans
(SWPIFC). GCtherwise, add one =0 the number of unfai: scans (SWPITC),
and ¢o to FITIA.

Only one 05 2t 2 time is 2ntared into :Re swassiag tables Ior
inzerrust iavel croutines T3 3Srocsess. Tois is secauss jsts Dec
unruanacls (SWP = 1) as scon as tney are snzarsd i thse zaglas an
tnis would rasult in £co much cors memory selag tiad up wita Sos zaz
ars nce runnagle., The only sexcegpcticn is jedbs that arz exsaending,
which =ay B2 stacksd into the swaggpiag :tanlss Ssaczuse thay 258 0T
runneable in zany case.

DETAILED DESCRIPTION QOF SWAPPER

4.7 PIT1 TC CUTERR SECTION

This section controls the swan-ln process so that it proceeds in an
optimum manner. :

—
h
'
e
'™
3
[i7
q

IZ the job in PIT wil
SWaAPL) .

ailable free <cors, swap it in (at

therwise, 1f the job wi
segments have Dpeen del
and swap the job ia at §

£it when z number of idls or dormant hish
¢, then delste znhat number of high segmencs

Qtherwise, go to SCNOUT to see if enough space is awvailable to swap
the 3job in. If there is not enough space, SCNOUT will exit and FITL
will be reentered next tick - for a reevaluation. If enough space
axists, SCNOUT will put the next job to swap out into FORCE to force
it out.. » -

detail, the logic of this saction is as follows:

At PIT1, save the job number in FIT because it may Jjust have been
selected for swap-in (if entered from PININ2).

Check {(at CKXPN) to see if this is a low segment £Sor which the
associated bhigh segment is expanding (perhaps by some other job that
is snaring iz). 1If ves, go to NCOFITZ £o deselect this job (set FIT w2
0) and exit the swapper. (The input scan will not select such 3 job.
The output scan will swap cut and expand the nigh segment. Only %<hen
may any of the jobs swap in again.) If ne, Zall :nrough to FITIA.

AL FITla, put the size of the lew segmerb plus the size of the page
map {UPMPSZ) in 21 in 9r=parat’cn for calling FITSIZ. In special
casss whers low segment is already im cors (JBTADR(J)=C}, set 21 ¢
zaro.

Cz2ll zhe routine FITSIZ is to determine if the R 1

core plus the space cccupied Dby idle man: segments. (Idle
segments are high segments <hat are linked =« low sagments on the
swapper Dbut Qnot ¢ any low segments in core. Dormant high segments
are nct connectad te any low segments, either e¢n the swapper or in
core.) FITSIZ determines if the 3Job will £it by testing Zor the
axistence of a high segment, and if required, by adéing its size %o
the total job size in Pl, The total job size (Pl) is =hen compared
with free + dormant + idle space (CORTAL). Returns from FITSIZ are as
£ollows:

= in free

Return + 1 Job will not £iz, go to SCNOUT (to ¢&try *to swap
jobs out).
Return + 2 Job will £it, go %to FIT1B (swap into free cors, or

delete high segments as recguired; then swap ia).

At FITLB, the job being swapped is known < fic in
free + dormant + idle core. If the job will £it in £ree cors (job
size less than or sgual to 3IGHOL), ¢o tc SWAPL and swap the Job iz,
(Cn RAlOs, BIGEOL is the largest ccoatiguous block of available memory,
not all of fres cora. To get & f£it, Xalds may need o shufil pe)
increase 3IGEOL.) If the job will not £it, use sutreutine FRECRL o
delete idie or <dormant s=gments. {(Ffor XAllds, <=his impiiss 2
preference £ delete idls or dormant segmenss selfore shuiffling.)

TRECRL searches for dormant and zhen idls high segmen:ts o delete. It
will not delete 2 high sagment that is needed dbv the job being swapped
in. Returns ares as follows:

DETAILED DESCRIPTION CF SWAPPER

Return + 1 High segment selected has no <Opy on swapper, sO
iz must bte swapped out. Go to FORIDL (high:
segment was just associated by get segment, or feor
non=virtual-memory systenms high segment was
nonsharabla).

Return += 2 One idle or dormant sagment has been deleted, go
to PIT1BR and see if job now fits.

Return + 3 all idle and dormant segments nave Dbeen delsted.
Job still did not £it; execute code starting at
SEFPAT.

At SHFPAT, check to see if there are any holes in wmemory Gthat the
shuffler could eliminate (BOLEF # 0). If no (always no for XI1l0 and
KL10), go to SCNQUT to try to swap some jobs out. I£f yes, call the
shuffler and successively move jobs (only for ZXalls).

4.3 OQUTERR TO SWPREC SECTION
This section processas swap-outb 2rrors.

At QUTERR,
Ctherwise,

e error was caused by the disk system, So to 0QJUTERL,
tarough %o the code described delow.

for memeory parity errors (reaé from memory oy the swapciag channel)
record the error flags and the numcer of swap errars (SWPRCL). Then,

call 3GESWE =0 take ac=ion if the secment being swapged out was 2 high
segment.

Returns from 3GESWE ars 3as Zollows:

Return + 1 Job was a high segment, the 3wap-Qut 2=rror mMessage
has seen sent o a2ll low segments acztached o tals
high segment. Name of hign segment is clzarad so
ne others can connect to it (CLANAM). GO to
CUTERO.

Return + 2 Job was a low segment. fall through ts code
described telow. ’

for low segments, if the esrror was in a protected part of the job data
area, return the swap space (CEGSWP), and clear ail user oo8s ané I/C
channels (ZAPUSR) .

Print error message and stdg job (3WOMES), and clear the swap error
(SL.ERR and SL.CEN) in swap tables (SWPLST (Pl)).

Reentser :=he swapPer o start a new operation (at SWAPL).

At OUTERL, kne swap~-oult error is xnown to be 2 device errorc. call
SWPREC to record the errors, raset the mac at MAPBAX, and try to swap
out 2g2ia in a &ifferent place {at 3WA?0). Tne old copy is left on
disk sc¢ =nat cthe 2ad ar=a will not Se used again.

4-3

DETAILED DESCRIPTION OF SWAPPER

4.9 SWPREC SUBROUTINE

This subroutine reccrds the amount ¢f swapping space lost because of
swap errors {(in and out}). It Zalls through to the SWPRCl subroutine
that counts the number OL Swap errors.

adé amoun% of virtual core lost o error-count register (RE SWPERC).

If the segment lost is not a high segment, add %the page map size
(UPMPSZ) to the amount ¢I space lost (Tl), and decrezse the amount of
virsual eore (VIRTAL) by amount lest {Tl). Fall threugh to SWPRCI.

4.10 SWPRC1l SUBROUTINE g)
This subroutine stores the error £lags in swésac from bits 18 through
23 in S and adds 1 to the number of swap errors (LE SWPERC).

4.11 ZCKIPN TO SCNJOB SECTION

This section is entered at ZCKXPN if the swap input scan found no jobs
g0 swap in. It checks for and forces ocut expanding jobs. It is also
antered a2t SCNOUT if jobs must be swapped out to makse reom £or the
next job coming in,

At ZCRXX2PN, clear the swapper fairness count. Ia the Class Scheduler
mode, call SQTEST to maintain the primary scan pointer. At CRRXPN, if
there ares no expanding Jjobs (XJ0B = Q0), go to <CHKMIG (check for
migracting jobs, then exit swapper). Othsrwise, clear the control £flag
(SCNJ3s) , and go to SC30CU0. :

(S8CN38S) to =-l1. If a job has alrezdy

At SCNOUT set the control flag
(FORCE # 0), go to SCNOUL.

been selected for swap-out

IS there are no jobs waiting to expaaé (XJOB = C), go to SCNJOE.
Ctherwise, £fall <through to c¢ode below. (Note, entry from ZICEKXPN
implies existence of sxpanding jot to be swapped. Such entr never
causes ncnexpanding jobs to be swapped.)

Loop through bit map (XPNMAP) looking fcr -expanding jobs. If an
expanding job is found with JS.ENG = 0 or no longer has active devices
(ANYDEV) , exit to SCNOR with J = jab number. If no expanding jobs are
found, execute STOPCD XTH, because there should have been a2t least one
expanding job (because XJOB # 0). If all expanding jobs have JS.ENG
set, go to CHKMIG if sSCNJ3S = 0, or to SCNJOB if SCNJBS = 0.

At SCNOR, if the expanding job has core assigned (J3TADR (J) # 0}, go
to FORCEQ &£c force the job out. Otherwise, decrement the count of
expanding jobs (XJOB), clear the expand bit for the job {(JXPN), and go
to FORCEQ to try o swap the job ocut. (The purpose of this code is to
keep the expand dit set until tzhe expanding job has been placed in the
nterrupt level swzp tables, when the swag dit is set.)

N

At CHRMIG, if there are swaps in progress (SPRCNT # 0) or & swap was
just completed (SWPCNT # Q), go %o FLGNUL 2né exit the swapper.

If there are no migrating jobs (MIGRAT = (), g0 to FLGNUL and exit the
swapper.

I we have checked all jobs for migration (J greater ESIGEJ8) at
CERMIl, go &to MIGDON. Otherwise, for all jobs that are not swappaed

4-9

DETAILED DESCRIPTION OF SWAPPER

(SWP = Q) , check to see if the job has any pages on ¢t unit going

‘down (subroutine BGOFF), and if so, put the job number in MIGRAT and
go to FORCEQ %o try to swap the job cut. If the job is swapped and
has not already =migratad (JS.MIG = 0) and is not currently being
swapped, set MIGRAT = J, and go to FITL.

Clear the migraticn £lag (sec MIGRAT to Q) at MIGDON, and exit the
swapper.

IS SCNOUL is reached, FORCE was alresady set on & previous cleck tick.
If the job being forced had a2 sharable rasource assigned the las: time
the swapper tried to swap it out (FORCEF = J = job we want to swap
out), go to FORCZ1 to see if Jjob has gJiven up all resources.
Qtherwise, go to FORIDL and make sure swap indicator is. set for job
(swp = 1).

The reason for not setting SWP for 2 job with a sharable resource 1is
that the job must be run until it gives up all resources before it can
be swapped ocut and the SWP bi: prevents jobs from being selectad =o
run by the scheduliag s<an.

4,12 SCMJOB TO PORCZ0 SECTION

This secticn is entered if the job teing swapping in will not £
free and dormant and idle cors, and all expanding jobs nave 2
been swapped out. Some jobs that are not expanding _Aust De swapped
out to create more space. Swap-out Segins wnen a sufficient number of
jobs are eligible to se swapped (FDMSWP = 1), so taat enough space
will be availzble for the job coming in. No jobs are swapped befors
thig t=ime, so that runnable jobs will be Kkept ia <core as long as
gossibla.

sec =0 &he amount of space (in

he routir 1
ob in (30 that Soth ssegments are izn).

ne 1 ich AC P
sages) needed t 3
At SCNJOB, sat SUMCOR to amount of
pages). Clear indicator for first

ree and idle a2nd dormant spaces (in
ion found to swap Sut (MAXIZN;.

4. tn

Set J to segment number being swapped (from FIT) and call FITHPQ to
set J = asscciated low segment if :the sagment Deing swapped was 2 2iga
segment.

Save low-segmeni number in FITLOW.

Set AC T4 to the job's high-priority queue number. (L1 not zero, this
"will be used later to give praference :o HPQ jobs that you want to
swap in.) If the job in FIT was forced out by the timer (JS.TFO = 1)
set T4 =0 O (this prevents swapper thrashing when zn 2PQ job and
another job both want to run and will not fit ia core simultaneously).

Set STW ;ﬂ SO output scan will s2op at gueue of job sein swapzed in
(when not forced by timer).

QSCAN susroutina
ams: =S

Yol — 7 ,“"\\J

-
PR b4 -y .

e 40
n O

Set AC U ko output scan table
selsct Lthe a2xt et ts s
shown in the £ollowiag:

4-10

DETAILZD DESCRIPTION OF SWAPPER

0SCaN
QUEUE . ROUTINE-
STOPQ IQFOR
SL2Q IQFOR
EWQ IQFOR
JDCQ IQBAKL
TIOWQ IQFOR
sgocg IQFORL y
Q2 OLFOR)
PQL IQBAK
cMQ IQBaK
8PQs IQBAK
The returns Ifrom QSCAN are:
Return + 1 All gqueues have been scanned, job still will not

fic. Go to NOFIT to sarvice timer and exit from
the swapver.

Return + 2 Returns next job in AC J, to be processed by code
described below.

I£f the jeob being scaznned for swap=-out is from a gueue bdeyonéd the end
of the scan limit (U greater than SCNST?), the routine has scanned all
jcbs of lower priority <han the job trying to swap in. If <he <timer
nas eaxpired (6§ seconds have elapsed since the low segment in FITLOW
was selected), then allow ocutput scan Lo search all gueues =o¢
completion (JRST .+2) so that the job being swapped in can replace
jobs of higher priority if it has been waiting too long. Qtherwise,
ge to NOFIT to service &timer and exit from the swapper.

Reject the job being scanned Zor output (JRST (T2)) if it is the Jjob
being swapped in (that 1is, the low segment associatad with a high
segment deing swapped in), or if the job does not have core assigned
(JBTADR (J)) = 0).

Set AC W to the address of PD3., If there is no PDB, go to SCNJB1 and
ignore the in-core protect time check. Also, go to SCNJI31 if the job
nas the swap bit (SWP) set t3 1, or if <che Jjob geing out 1is in
backgreound sasch and the job coming in is not.

£ 53QNJBG, if the jcb's in-core protect time has expirsd (PDMSWP = 1)
anéd &=he job may be swapped (NSWP = 0), f£all througn to code described
in the next paragragh., Otherwise, if the in-core protect time has not

expired, resject <the Job 1if the job coming in is not #PQ (JUMPE T4,
(T2)}. 1I£f the job coming in is in EPQ, test to see 1I the joo can Dbe
swapped (NSWP = 0). Reject the Joz i iz cannot Se swappadé (JRST
(T2)).

DETAILED DESCRIPTION OF SWAPPER

Reject the job if it is in a processor gueue (other #han bacekground
patch) and the job ceming in is backgtcund match.

At SCNJB32Z, if the job has JS.ENG equal to 0, go to SCNJ33. Otherwise,
call aNYDEV &to see if the job still nas active I/Q0. If yes, rejsct
iob for swap-out. If no, £all through ec SCNJ33.

it SCNJ33, execute special code to prevent system hang in rare
circumstances. '

Reject the selectad job (JUMPN F, (T2)) if it is in the 32rocess 2f
swap-in and status indicaters hnave a0t yet Seen oroperly set up
(avoids instant swap-out).

Set F to the size of job (IMGIN) »2lus the size of the page map
(UPMPSZ) . Call subroutine FORSIZ 1in SEGCCN to estimate the
high-sagment size. :

If the selected job has a high segment, anéd it is in ccre, the
subroutine FORSIZ adds to AC 7 an estimate of the aigh-sagment size
according o the following formula:

Istimatad Size = (High~-Segment Size/In-Cora Count)+l

If a job nas teen selectad for swap-ous, go to FORCZI2. Otherwise, 1if
a job is running on the sl=ve, set SWOJCB = job numdber and rejact the
sob (thae slave will stop running the job at next ogporzunizy). I a
3ob nas a real aigh segment with a SAVE in progress (ANISAV), rejecs
the job for swap-out. Otherwise, set MAXJ3N to Jicb number of <che
first job Found in the scar that is eligible Zar swap-out.

At FORCZ2, add zae size of this job to the total feund so Zar
(SUMCOR) . If zae job being swapped ia still «will not iz (P> SJWCVR
go back ané see if there are morz jobs eliginle tc swap cut {JRS
{(T2)). Quherwisa, 211 zhrcugh =2 the code Eescrizaed 2elcw.

In =he Class Scheduler mede, if a backgrouad 2atch job is teiag it
(BBFIT # 8}, clear ;~NSNP and 2llow txe Dorimary scan pointsr TO
advance on the next swap- in scan. Also, calculace zhe time at walch
tae next backgreund batch joo is allowed to swap ia (UPTIME - SCD8ass)

Set J =o MAXJSN, tae first job found in aqutput scan, 2nd therefsre ths
lowest priority joo. IZ the timer has axpxted (INFLG # 0) and =he Zob
is in a processor gueue, then set the jot forced out Dy timer flag
(5S.T70) .

Fall thrcough to FORCOQ with J = job t3 be forced out.

4,13 PFORC2C TO swWaP0 SECTION

7his section dezsrmines whetier a job can de swapped out, or Lf it
Aaust waiz Sor I/0 o fiaisa or £or sharaple reascurces 0 Se given up.
At TORCJJ, if zae ico szelactad ZIor swap out (J = Job numcer) L3 naot
runnabls wizh resgect o CACHE, 2xitz o TLGNUL. IZ it nas a 3aVE in
sragress, exit the swapper (JRST (72)) without sezting TORCZ s50 taas
anccher i0o will se selacted next zick. Thais s Aeaaiagiul i1I it is
snzarad Iram SONOUT for expanding icgs. This has alrzzady sSean checxad
if iz was =2nz=srzd Irom 3QNHCTE accve.

DETAILED DESCRIPTION OF SWAPPER

If the segment being swapped is a high segment (JI>JOBMAX), go to
FORCEA.

If the segment being swapped is a low segment, and the Jjob was hung
with 1/0 active (JS.HNG}, go to SWAPO. (The remaining checks were
already made before the hung indicator was set). If the job 1is not
marked, hung check for disk-sharable resources at FLSDR. From FLSDR,
retyurns are:

Return + 1 No disk-sharable resources. Go to FORCEA.

Return + 2 Job currently assigned one or more disk~-sharable
resources. Execute code described below.

Save the job number of the segment being swapped (set FORCE egqgual to
J) . Also, store an indicator that job is being forced with sharable
resources (FORCEF = job number). Go to FLGNUL to exit the swapper
without swapping a job this tick. The scheduler will then run the job
at highest priority until it gives up all sharable disk resources so
it can be swapped.

At FORCEA, check (FORHGE) to see if there is a high segment that can
be swapped before this segment. True if this is a2 low segment that
has a high segment in core (SWP = 0) that is not expanding, has a core
count ©of one (this low segment), and is not associated with the job
being swapped in. 1If yes, return the high-segment number in J. If
no, return low-segment number in J, and set the shuffle bit (SHF) to 1
so that I/9Q will stop after the buffer full.

At PORIDL, set swap bit (SWP) to 1.

At FORCEL, save the job number of the segment o be swzapped out iato
the force-out indicator {FORCE).

At FORCEl (entered from SWP2 at the clock tick), see if the Jjob can
now be swapped, as well as from above. If not forcing job with a
-disk-sharable resource (FORCEF = 0}, go to FORCEB. Otherwise, chneck
to s2e if the Job still has resources (FLSDR). If yes, exit the
swapper at FLGNUL and check again next tick. 1If no, clear FPORCEF .and
go back £o FORCEA to complete steps that were delaved while waiting
for job to give up resources.

At FORCEB, if the job has no core assigned (JBTADR (J) = 0), go to
SWAPO and swap out the next job (it cannot have any active devices).
Otherwise, check to see if the job is the current 3job (J = .COJOB).
I£ yes, exit the swapper at NOFORC and wait for scheduler to context
switch out of the job. 1If no, check for active devices or for the
current job on the slave processor (ANYDEV). 1If yes, exit the swapper
at NOFORC. 1If no, fall through to SWAPO and swap out the job.

4.14 SWAPO TO NOFIT SECTION

This section puts the swap-out information in the SWPLST ctables and
calls the interrupt-level routines.

At SWAPG, clear the output timer., If the segment being swapped is a
low segment, delete the job from the output 1list and the
just-swapped-in list. Clear J5.XPN, JS.BNG, and JS.NNQ. Save the job
number of the last job swapped out (set LASOUT egqual to J), and clear
the force flag (set FORCE equal tc 0). Clear the SW0JOB flag. If the
job has zero core (JBTADR(J) = 0), go to SWPl +to s=art a new
operation, because there is nc need to swap out the job. Otherwise,
continue below.

4-13

DETAILED DESCRIPTION OF SWAPPER

Set AC U to job input size (IMGIN). TIf the segment is a low segment
(J less than or equal to JOBMAX), set the shuffle bit (SHF) to 1 to
indicate that a swap=-out is in progress.

Set the segment output size (IMGCUT) from the input s%ze (IMGIN, as

stored in U above), unless the job expanded (IMGOUT # 0), then leave
it as set by the expand routine and set U to new segment { IMGOUT) .

If the seqgment is a2 low segment, add the user page map size (UPMPSZ)
to AC U (to be used in call to SWPSPC). .

Save IMGOUT (in AC F), set to zero for call :to SWPSPC. Call 3WPSEC.
If there is no space, go to SWAPO3 (to exit swapper and try again next
tick). Otherwise, get device storage space and restore IMGOUT to the
saved value (AC F).

Save J, build SWPLST entry (at BOSLST), add one to the number of swap
operations in progress (SPRCNT), start I/0 if it is not already going
(at SQOUT), and restores J.

If the job that was just swapped was 2a low segment that expanded,
decrement the count of expanding jobs (XJOB), clear the entry in the
bit table (XPNCLR), clear the table expand bit (JXPN), and go to
CHKXPN to swap out the expanding jobs, and when there are no more,
exit from the swapper.

At SWAPQ3, set IMGOUT to QO unless it 1is different from IMGIN, set
FORCE to the job number, and go to FLGNUL.

4.13 NOFIT TO NOFITZ SECTION

This secticn is entered every clock ticx that the jcb in FIT cannot te
swapped in, ©Because there is not enough space even if all idle and
dormant segments are deleted and all jobs that are eligicle to bte
swapoed out are swapped out. Recall that eligible zc be swapped out
implies that the jobs nave expired their in-core protect time and ars
of lower priority in the swap-out scan than the job being swappsad in.
4 timer keeps track of how many ticks the job nas waited to swap ia.
After 6 seconds, the timer expires and sets a flag to indicate that
the swap~out scan routine (SCNJOB) may now ignore the gqueue position
and swap Jjobs out with expired in-core protect, even if they are of
" higher priority.

This timer is needed only for very special cases. For example, if an
EPQ job and a very large job both want to run and cannot fit in core
simultaneously, then the large job will not displace thae 8PQ job until
the timer expires, because the HPQ job is alwavs higher in the gqueue.
Ho known special cases exist for PQl anéd PQ2, because of the orderly
operation of the Round Robin algorithm,

At NOFIT, if the job selected for swap-in was a background batch joo,
deselect it (set FIT and BBFIT to 0), reset the scan pointer as thougn
no job were swapped in (at subroutine SQTEST), and go to FLGNUL.

At NOFIT1, if the job being swapped in was preempted by an HPFQ Job,
restore the timer to the value it neld wiken the job was preempted and
goc to NOFIT7.

DETAILED DESCRIPTION OF SWAPPER

At NOFIT3, if the frustrated job is the same as last time
(PITLOW - INFLGJ), go to NOFIT?. Otherwise, start the frustration
timer for :this job and go to FLGNUL.

At NOFIT7, if the job being timed has been waiting € seconds, set the
frustration flag (INFLG) to -1 and go to FLGNUL.

4,16 NOFITZ TC ZERFIT SECTION

This section clears the FIT and BBFIT indicator if a job were selected
to FIT and then the high segment it was connected to was expanded by
some other job that is sharing it. ({See Section 4.7.)

4.17 3ZERFIT TO NOFORC SECTION

This section clears the PIT and BBFIT indicator if an EPQ wants €0
swap in and certain conditions have been met. (See Section 4.1.) It
also stores the frustration time for the job being preempted in the
PDB for that job (.PDHZF).

4.18 NOPORC TO SWAPl SECTION

This section is entered every clock tick that the job in FORCE cannot
be swapped out because it has active I/0 or is the current job on some
CPU. A cimer keeps track of how many ticks the job has been selected
for swap-out. After 3 seconds, the timer expires. The job is
deseléected for swap-out, and is marked hung as far as swap-out 1is
concerned.

At NOFORC, if the job being swapped out is a high segment, exit =©o
FLGNUL. 1f this Jjob is the same as the previous job being timed
(J = OUFLGJ), go to NOFORI1. therwise, start the timer for this Job
and go to FLGNUL.

At NOFORl, if the job being timed has been waiting for 3 seconds, set
JS.ENG (so that the swapper will not select this job for swap-out
again until I/0 is no longer active). Clear FORCE, FORCEF, and
OUFLGJ.

On non-virtual-memory systems, if the selected job was expanding
(JS.XPN = 1), set JXPN to 1 anéd reenter the job in the table of

expanding jobs (this is done because non-virtual-memory systems clear
JXPN as soon as the job is selectedé for swap-out).

4.19 CHGSWP TO CBGl SECTION
This section changes disk-swapping space allocations {(VIRTAL).

At CHGSWP, save the present input size (IMGIN) in T2, If the new core
assignment is zero (Tl =), go to CHGl; otherwise, continue below.

Convert the new core assignment pages, store them in IMGIN, and save
AC J..

4-15

DETAILED DESCRIPTION OF SWAPPER

Compute the change to the system's virtual address space and update
the indicator (VIRTAL).

Restore AC J and exit.

4.20 CHGl TO UNSWAP SECTION

This section calls the subr

space.

[7]]

utine (GIVBKH) to give back physical disk

At CHGl, if the segment has no space on disk (T2 = 0), go to ZZRSWP.
Otherwise, increment VIRTAL by T2 (plus size of page map if it is a
low, segment).

At ZERSWP, save AC U, and if.the disk output size is 0 (IMGOUT = 0),
go to CEG10. Otherwise, set up Tl and call ZERSWH.

From ZERSWH, the returns are:

Return + 1 Call GIVBKH, low segment or no error in high
segment (gives back disk space).

Return + 2 Restore U, error in high segment or £all through
from zbove. Fall through to UNSWAP.

4.21 UONSWAP TO RTNDSP SZCTION

This section housekeeps job and swapper £lags after a segment has oJdeen
swapped in,

At UNSWAP, clear the swap and shuffle bits (SWP and SHF).

If the job just swapped was being forced (J = FORCE), clear FORCE and
FORCEF.

At UNSWPl, set the disk output size to 0 (IMGOUT). For low segments,
clear LE JBTSWP(J). .

Exit (PCPJ P.) .-

4.22 RTNDSP TO GIVBRE SECTION

This sectzion returns disk space.

4.23 GIVBKE TO XPAND SECTION

This section clears the SWPLST entry and calls RTNDSP to return
ohysical disk space.

4-1%

DETAILED DESCRIPTICH OF SWAPPER

4.24 XPAND TO XPANDE SECTION

This section gets mor-e core for a job by swapping it out and then
swapping it back in again. :

4.25 XPANDE TO SCHED. SECTION

This section stops a job and swaps it out if it has 3just been
connected to a sharable high segment that is on disk or is being
swapped in or out. The job remains stopped until the high segment is
in core.

4-17

CHAPTER 5

SCEEDULING PARAMETERS .

The scheduler contains a variety of control parameters that may be set
by an installation to suit its particular needs. The non-class
scheduler provides a basic set of parameters. The class scheduler
provides a number of additional parameters.

This chapter describes the location of the parameters and the default
values assigned at start up. The default values may be modified by an
installation as desired. Also, in the class scheduler, any parameter
may be modified dynamically with a SCHED. monitor call (using the
SCDSET program) .

5.1 PROCESSOR QUEUE TIME SLICES

The processor gueue time sljices are made up of two parts: in=-core
prctect time and quantum runtime.

One of the following formulas determines the in-core project time (in
ticks) for all processor queues.

-

1. At swap in, in-core protect is
min (PRCTM,JOBSIZ*PROT+PROT0O+8333) /16667

2. When regueued to back of PQ2 because of time-slice
expiration, in-core protect time is

PROT1

The indicated ONCMOD tables indexed by the primary swapping device
determine the default values for the in-core protect-time parameters.
However, the indicated SCHED. monitor <call may dynamically modify
them. ‘

Scheduling ONCMOD SCHED.
Parameter Table Monitor Call
PROT PROTT3 PROT

PROTO PRTOTB PROTO

PROTM PRTMTR PROTM

PROT1 PRTCQTR PROTI

SCHEDULING PARAMETERS

To compute quantum runtimes, use the fellowing formula:

guantum run = min %[QMX, QAD + (size of job in K)*QML]/QRANGE}

where QMX, QAD, and QML come from tables QMXTAB, QADTAB, and QMLTAB
indexed by processor gueue, with index 0 for PQl, 1 for PQ2, and 2 and
following for HPCs.

For PQl, the default values are set in COMMON and modified oy
SCEED. monitor calls as indicated.

Scheduling COMMON SCHED.
Parameter Parameter Monitor Call
QADTAB (0) QQRUN1 TIME BASE
QMLTAB (0) 0 TIME MULTIPLIER
QMXTAB (0) QQRUN1 TIME MAXIMOM

For PQ2, the default values are set from ONCMOD tables indexed by the
primary swapping device and modified by SCHED. monitor calls as
indicated.

Scheduling ONCMCD SCHED.
Parameter Table Monitor Call
QADTAB (1) ADDTAB TIME BASE
QMLTAB (1) MULTAB TIME MULTIPLIER
QMXTAS (1) MAXTARB TIME MAXIMUM

For BPQs, the quantum runtimes are defined by macras at the location
of Q2aDTAB, QMLTAB, and QMXTAB in COMMON. Tha values generatad depend
on the number of BEPQs. SCHEED. monitor calls cannot change HPQ guantum
runtimes. All processcr queues use QRANGE. It is set to the default
value of 45K directly in <COMMON, and may be modified by a Time
Multiplier subfunction of the SCHED. monitor call.

In-core protect and gquantum runtimes have a different meaning for each
of the processor gqueues.

5.1.1 PQl Time Slice

For BPQl jobs, quantum runtime is a measure of the amount of time that
the Jjob receives exceptional (PQl 1level) attention for scheduling
after it is swapped in. When this time expires, the job 1is regqueued
to the back of PQ2 (without being marked for swap-out) and is assigned
the PQ2 gquantum runtime. A PQl Jjob 1is assigned the same in=-core
protect time as PQ2 jobs when it is swapped in. On requeue to PQ2, it
retains any leftover in-core protect time.

This procedure gives fast scheduling response to PQl jobs that require
very 1little CPU time, and reduces swappiang for PQLl jobs that ccntinue
to run after expiring the PQl guantum runtime. (Once a Jjob is
swaoped, it is allowed &tc run at least z2s long as the PQ2 time slice,
if it does not go iato long-term wait.)

SCHEDULING PARAMETERS

5,1.2 PQ2 Time Slice

For PQ2 jobs, the parazmeters for in-core protect and gquantum runtime
sontrol the bias of the scheduler for throughput versus response and
for 1/0 versus CPU.

Throughput versus response is controlled by increasing - eor decreasing
the magnitude of both parameters. As the parameters are increased,
jobs expire their time slices more slowly, swapping rate decreases,
and throughput is improved (less core 1is tied up in swapping).
Response is correspondingly degraded because jobs wait longer to swap
in. When you decrease both parameters the effect is reversed.

1/0 versus CPU response is controlled by changing the ratio of in-core
protect to quantum runtime. Increasing only gquantum runtime favors
CPU jobs. 1Increasing only in-core protect favors 1I/0 jobs, while
reducing it tends to favor CPU~-bound jobs.

5.1.3 HPQ Time Slice

For HPQ jobs, quantum runtime is set to a very small value so that if
more than one HPQ job wants to run, the scheduler will context switch
between jobs fregquently.

The value of in-cere protect time for HPQ jobs is the same as for PQ2
jobs. Normally, this is not significant because HPQ jobs can only pe
swapped out by other HPQ Jjobs. (It would be significant if an
instailation wanted to allow two HPQ jobs that did not fit to be in
memory simultaneously.)

PQl and PQ2 jobs do not normally replace H#PQ Jjobs, Decause the
swapping output scan does not swap out a job of higher priority than
the job coming in (even if the job in core has expired its in-core
protect time). The only exception is 1f the é6-second fairness timer
expires.

5.2 SWAPPING AND SCHEDULING FAIRNESS COUNTS

The PQl versus PQ2 swapping and scheduling fairness counts are defined
in COMMON with the default values listed in Table 5~1. They may De
modified with the indicated functions to the SCHED. monitor call.

Table 5-1
pefault values of Swapping and Scheduling Fairness Counts

Parameter Description Default SCHED. Monitor Call
IFCC Swapping Threshold 5 Swapper rairness
SFCC Scheduling Threshold (CPUQ) 20 Scheduler Fairness
SFC1 Scheduling Threshold (CPUl) 20 Scheduler Fairness

Note that the SCHED. monitor call sets both 'CPUs to the same
scheduling fairness thresholé in a dual-processor system.

5-3

SCHEDULING PARAMETERS

The scheduling and swapping fairness counts are a measure of the
nunber of consecutive times the scheduling/swapping scan has selected
a PQl job. After a specified threshold has besn reached, a PQ2 job is
selected, if available, by scanning with an alternate scan table that
has PQ2 ahead of PQl. Small threshold values favor PQ2. Large values
favor PQl. ’

5.3 IN-CORE FAIRNESS FACTOR

The in-core fairness factor, SCDICOF, is set to an initial value of 350%
in SYSINI. It may be modified with the -Incore Fairness subfunction of
the SCHED. menitor call.

The in-core fairness factor determines the percentage of time that PQ2
jobs that have done a GETSEG and have not yet expired 1 time slice are
scanned for swap-in ahead of regular PQ2 jobs.

This is the last of "the scheduling parameters for the non-class
scheduler, The following parameters apply to the class scheduler
only.

5.4 CLASS QUOTAS AND MICROSCHEDULING INTERVAL

The class guotas are made up of the £following three sets of
parameters:

1. Primary percentages.
2. Secondary allocations.
3. Fixed swapping indicators.

The table CL3STS stores the primary percentages as well as the fixed
swapping indicators. The packad table PSQTAB, nowever, only stores
the primary percentages. The initial values of both of these tables
are zero at start ugp. The primary percentages and fixed swapping
indicators are modified with the Primary Percentage subfunction of the
SCHED. monitor c¢all.

The table CLSQTA stores the secondary allocations. The initial value
of this table is zero. The secondary allocations are modified with
the Secondary Allocation subfunction ¢f the SCHED. moniter call.

Item SCDINIT stores the micrescheduling interval. The initial wvalue
is =zero. £ is modified by the Micro Scheduling Interval subfunction
of the SCHED. monitor call.

The default values of zero for the above parameters cause the system
to start up in Round Robin mode. To enter Class Scheduler mode, the
parameters must be set with the SCDSET program.

The system enters Class Scheduler mode whenever the following
conditions are met:

1. The primary percentages add to 100%.
2. The microscheduling interval is nonzzaro,

Conversely, the svstem enters Round Robin mode if either of the above
conditions is not met.

SCEEDULING PARAMETERS

The primary percentages define the amount of system resources granted
to each class. The secondary allocations define the proportion of
leftover rescurces allocated to each class. Leftover resources occur
when some of the classes do not use all of their primary percentages.

1f a class has a zero primary percentage, it is not guaranteed any
portion of the machine. If it has a nonzero secondary allocation, it
will get a share of leftover resources; if not, it will not be
swapped or scheduled at all.

If a class has a nonzero primary percentage and a zero. secondary
allocation, it will be swapped and scheduled only a fixed amount of
time. In other words, it will get exactly its primary percentage and
no more.

The fixed swapping indicator causes a class to be swapped at a fixed
rate, but scheduled as though it were nonfixed. This assumes that the
class has a nonzero primary percentage and a nonzerc secondary
allocation. The c¢lass is swapped using only the primary percentage,
ignoring the secondary allocation as though it were zero. Scheduling
uses both the primary percentage and the secondary allocation.

mhis feature defines classes that will be treated as fixed classes as
long as there are other classes swapping in and out. When there are
no other classes to force them out, the £fixed swapping class will
remain in memory and be scheduled ahead of background batch.

5.5 BACKGROUND BATCE PARAMETERS

Background batch is controlled by two parameters: background batch
class and background batch swap time.

Background batch class is stored in parameter BBSUBQ. The initial
value of -1 is set in SYSINI. It may be modified with the Background
" Batch Class subfunction of the SCHED. monitor call.)

Background batch swap time is stored in éarameter SCDBBS. Tne initial
value of zero 1is defined in <COMMON. It may be modified with the
Background Batch Swap Time subfunction of the SCEED. monitor call.

Any class may be designated as the background Datch class. In
general, it has a zero primary percentage and a zero secondary
allocation, but this is not a restriction. If background batch has a
primary percentage, it is guaranteed a certain level of response. II
it has a secondary allocation, it is allowed a share of 1leftover
resources. In any event, it is aiso scanned whenever there are no
other classes to run. The negative initial value implies there is no
defined background batch class.

The background batch swap time defines the rate 1in ticks at which
background batch Jjobs <can be swapped. In situations where the
timesharing load fluctuates between existence and nonexistence of
timesharing jobs, it can be used to prevent thrashing.

5.6 RESPONSE FAIRNESS FACTOR
The response fairness factor 1is stored 1in parameter SCDJIL. The

initial wvalue of 10% is set in SYSINI. It may be modified with the
Response Fairness subfunction of the SCHED. monitor call.

5-5

SCEEDULING PARAMETERS

The response fairness factor defines the percentage of time that Jobs
are scheduled in the order in which they were swapped in versus
scheduling by the class scheduling scan. (A& list of jobs just swapped
in is maintained for all jobs that have not yet expired 1 time slice.)

A value of 100% gives the best possible short-term response with
reduced accuracy when jobs do not exist on the swapper in sufficient
numbers to satisfy the desired primary percentages.

A value of 1% gives the best possible accuracy with reduced response
when many jobs in memory are in classes that are rarely scheduled.

The range of acceptable values £or response fairhess factor are £rom
1% to 100s%. values of 10% and above are recommended for acceptable
short-term response. A zero value is not allowed.

S.7 AVERAGE SWAP TIME

The average swap time is stored in wvariable SCDSWP. It may be
modified with the Average Swap Time subfunction of the SCHED. monitor
call. The initial value is calculated in ONCMOD by multiplying the
time it takes to swap one page by the specified average job size,
PAVISP, and adding in the swapper latency time. The time required to
swap one page depends on the speed of the installation's swapping
device,

The default value for PAVISP is 20 pages, or 1lO0XK.

The average swap time is used to calculate when the swapper should
advance to the next class in the primary table when there are no jcbs
in the system to swap. This parameter is required to achieve correct
swap-in rates for <fixed classes when there are no jobs in any other
classes. Fixed classes have no secondary allocations. In fact, taey
can only swap in when the primary percentage pcinter has been advanced
to an entry for their class.

5.8 JOB CLASS

The class to which each job belongs is stored by job number in bits 14
through 17 of the table JBTSCD. The initial value at system start up
is all zeros.

The job’s class is set by LCGIN using the Job Class subfunction of the
SCHED. monitor call. It can also be set by the SCDSET program.

5.3 CLASS RONTIME

The class runtimes are set by the moniter and are read by the Runtime
subfunction c¢f the SCIED. monitor <c¢all through the SCDSET program.
The values are reset to zero whenever the primary percentages are
changed.

CHAPTER §

DETERMINATION OF PARAMETERS FOR SCEEDULER

This chapter uses the scheduler as an example of how the default
scheduling parameters are determined. This chapter also discusses the
rationale behind a2 choice of parameters for a specific system.

The Western Michigan University (WMU) computer system is a KI10 with
160K of memory, six RP02 disk drives, and two RP03 disk drives {(on one
channel), and two RD10 swapping disks (onr a second channel), anéd two
TU20 tape drives (on the I/O BUS). The system is configured for 74
jobs. The monitor is 6.02A with virtual-memory option (the swapper
and scheduler are modified to be eguivalent to the WMU class scheduler
in 6.03).

The job mix is made up of a wide variety of programs. Compilations
are primarily BASIC and FORTRAN with a fair amount of COBOL, MACRO,
and ALGOL. User programs and system library prograas cover many areas
including simulation, mathematics, statistics, engineering, chemistry,
physics, management, and so forth.

_Most activity is terminal oriented. O0f +the 74 3job slots, 3 are
allocated for BATCE. The maximum user core is 35K during prime time.
The average job size is 10K. The majority of Jjobs are relatively
small anéd conversaticnally oriented (that is, TECC, LINED, and small
student programs). There are a fair number of large Jjobs that make
heavy use of the CPU and/or disk I/O (large compilations, STATPACK,
and virtual-memory jobs).

The overall performance objectives are:
1. To provide good response to conversational jobs (PQl).

2. To maintain a reasonable 1level of system throughput for
system and I/Q users.

3. To provide a good balance of CPU versus I/0C jobs in core so
that multiprogramming is effective over a wide range of job
mixes.

The discussion of specific parameter values in this chapter parallels
the general discussion in Chapter 5. For each section in Chapter 5,
there is a corresponding section in this chapter describing how the
parameters are determined for the scheduler.

DETERMINATION OF PARAMETERS FOR SCHEDULER

6.1 PROCESSOR QUEUE TIME SLICES

Por in-core protect time and guantum runtime, the ONCMOD tables are
indexed by an RD10 as a primary swapping device. The values
referenced in ONCMOD zables and the values transferred to scheduling
tables are indicated in the following.

Table 6-1 lists the parameter values for in-core protect time.

Table 6-1
In-Core Protect-Time Parameter Values

L 4
Scheduling Parameter ONCMOD Parameter
Name Value Units Name Value Units
PROT ' 0 microseconds PROTTSB 0 microseconds
PROTO 30000400 microseconds PRTOTSB 30000040 microseconds
PROTM 3000000 microseconds PRTMTB 3000000 microseconds
PROTL 1380 ticks PRTUTB 30000900 microseconds

These values imply a f£ixed 3-second in-cotre protect time for all jobs,
regardless of job size, both at swap-in and when requested for
time-slice expiration.

If desired, PROTTS could be set nonzero &to vary the assignment at
swap-in bv job size. PRTMTB would need to be modified aiso to define
the maximum allowed value.

Takble 6-2 lists the quantum runtime parameter values <Zeor PQLl, which
are generated directly in the scheduling tables in COMMON.

Table 6-=2
PQl Quantum Runtime Parameter Values

Scheduling Parameter COMMON Parameter
Name Value Onits Name Talue Units
QADTAB(0) 8 ticks QORON1 8 ticks
QMLTAB (0} 2 ticks Q ticks
QMXTAS (0) 3 ticks QQRUN1 8 ticks

These values imply a fixed 8 ticks for all PQl jobs, regardless of job
size.

These values may be changed oy inserting the new values directly in
COMMON, or by inserting code in ONCMOD to set up the values.

DETERMINATION OF PARAMETERS FOR SCHEDULER
Table 6-3 lists the gquantum runtime parameter values for PQ2.

Table 6-3
PQ2 Quantum Runtime Parameter Values

Scheduling Parameter ONCMOD Parameter

Name Yalue Units Name Valus Units
QADTAB (1) 45 " ticks ADDTAB 750000 micrcseconds
QMLTAB (1) 45 ticks MULTAS 750000 microseconds
QMXTAB (1) 90 ticks MAXTAB 1500000 microseconds

The value of QRANGE in COMMON is 45K.

The values imply a base quantum runtime of 0.75 second for a 1K job.
This grows one tick per K of job core size to a maximum of 1.5 seconds
for a 45K jcb. Thereafter, it is a fixed 1.5 seconds. Because the
average Jjob size at WMO is about 10K, the average PQ2 guantum runtime
is approximately 1 second.

Table &-4 lists the guantum runtime parameter values for &PQs, which
are generated directly in the scheduling tables in COMMON.

Table 6-4
HPQ Quantum Runtime Parameter Values

Name value Units
QADTAB (2) 2 ticks
QMLTAB (2) 0 ticks
QMXTAB (2} 2 ticks

This implies a fixed guantum runtime of 2 ticks for all HPQ = jobs,
regardless of size,

The rationale for each of the oprocessor gqueue time slices is as
follows.

6.1.1 PQl Time Slice

In PQl, the gquantum runtime of 8 ticks allows very fast response for a

very short period of time. In-core protect time is a constant 3
secends. B

At WMU, most PQl jobs finish processing and return to long-term wait
within the 8 ticks allowed by the PQl Quantum runtime. Table 6-5
lists the number of PQl jobs blocking to long-term wait as a function
of time.

DETERMINATION OF PARAMETERS FOR SCEEDULER

Table 6-5
percent of PQl Jobs Blocking to Long-Term Wait as Function of Time

Percent .. CPU Ticks Used
Blocking
50% Less than 6 ticks (1/10 second)
80% Less than 20 ticks (1/3 second)
95% Less than 50 ticks (5/6 second)

PQl jobs that do run long encugh to expire their time slices are
requeued to PQ2, assigned a PQ2 amount of quantum runtime, and retain
their remaining in-core protect time. This reduces their response
priority to the level of PQ2, but allows the job to compute at least
as long as a PQ2 time slice.

As Table 6-5 shows, less than 5% of the PQl jobs compute long enough
to use the additional PQ2 time slice. For those that do, a small
reduction in swapping rate is achieved with little impact on the other
jobs in PQ2.

6.1.2 PQ2 Time Slice

For PQ2 jobs, the quantum runtime is 0.75 second to 1.50 seconds,
depending on Jjod size. In-core protect is a fixed 2 seconds. These
values give good respense, low overnead, and optimum balance beltween
CPU and I/0-bound jobs.

Good response is achieved when the PQ2 time slice is small encugh S0
that jobs swapping in can finé sufficlent space in memory to come in
{(free space or jobs with expired time slices). One measure of good
response is that the swapper can achieve full speed during pericds of
neavy demand for short-term response. Ancther measurs is the averade
‘swap time required to swap in a PQl job, that is, the time from waen
the job enters PQL to the time it is swapped in.

The scheduler overhead increases as time-slice parameters are made
smaller. also, the PQ2 swapping rate goes up, making less swapper
capacity available to PQl jobs.

The goal is to make the PQ2 time slice small enough to allow good
response, and large enough to achieve low overhead and low PQ2
swapping rate. ’

A second goal is to make the ratio of in-core protect to gquantum
runtime such that an optimum balance is achieved between CPU and 1/0
jobs. This can be measured by looking at percent CPU utilization
versus utilization of the disk system. Disk rates are measured in
terms of the number of disk blocks transferrsd.

CPYU utcilization, disk rates, swapper rate, swap times, overhead, 291
swap cate, and FPFQ2 swap rate can be monitored with the system
per formance analysis package. This nas been done to ensure that
optimum values acfe 1in use. A reevaluation is done gperiodically,
because the system load characteristics change cver time.

To illustrate the importance of a proper ratio of in-core protec:t time
versus guantum runtime, a test was run with simulated jobs ©o show th

DETERMINATION OF PARAMETERS FOR SCHEDULER

effect of incorrect parameters. The job mix contains an equal number
of CPU ard 1I/0-bound Jjobs. The same joeb mix was run with two
different monitors, one with WMU standard parameters (approximately 3
te 1), ané one withk incorrect parameters (approximately 1.5 to 1).

The test results are zabled beélow:

Table 6-6
Example of Effect of Incorrect Parameters

Monitor CPO Disk Blocks/Minute
Standard Parameters 94% 3184
Incorrect Parameters 92% 2219

The standard parameters produced better I/0 rate with no decrease in
CPU utilization.

Note that the PQ2 time slice is sufficient to slow the PQ2 swapping
rate, but is not sufficient to bring the PQ2 swapping rate up to a
minimum level. To accomplish this, the swapping and scheduling
fairness counts are necessary. This is discussed in Section 6.1.3.

§.1.3 BPQ Time Slice

HPQ jobs are assigned gquantum runtimes of 2 ticks and in-core protect
times of 3 seconds. The extremely small quantum runtimes allow very
fast alternation between EPQ Jjobs. The in-core protect times are
immaterial, because WMU never has more HPQ jobs than can £it in core
at once.

6.2 SWAPPING AND SCHEDULING FAIRNESS COUNTS
Table 6-7 1lists the default values for swapping and scheduling
fairness counts that are used at WMU.

Table 6-7
Default Values for Swapping and Scheduling Fairness Counts

Parameter Description Value
IrCo Swapping fairness 5
SFCO Scheduling fairness (CPUO) 20
SFC1 Schecduling fairness (CPUl) 20

The swapping and scheduling fairnmess counts prevent PQl Jjobs £rom
taking over the system. PQl jobs are swapped in and scheduled ahead
of PQ2 jobs. If they exist in sufficient numbers, they <can £ill
memory ané take over the system. The fairness counts allow PQl jobs
to have the highest priority up to a limit. After that, PQ2 jobs have
priority.)

6-5

DETERMINATION OF PARAMETERS FOR SCZEDULER

For good response, PQl should get the majority of swapper capacity.
Assuming the swapper is operating at 100% capacity, a good goal is 80%
for PQl jobs and 20% for PQ2 jobs. This allows good response for PQl
jobs and provides good system throughput for PQ2 jobs.

If PQl jobs are not restricted by fairness counts, system throughput
will be severely degraded during periods of heavy demand for
short-term response. This 1is because PQl typically blocks to
long-term wait very quickly after swap-in. Without restraint, memory
becomes filled with jobs that are not runnable. The swapper cannot
sWwap them out as fast as they expire. 1In this case, CPU utilizazion
goes down and lost time goes up.

There are two direct measures of fairness. First, PQ2 jobs should get
at least a certain minimum of swapping capacity whenever there are
sufficient numbers of PQ2 jobs in the system. Second, the machine
should not be filled with unrunnable jobs (that is, jobs in long-term
wait, which are generally expired PQl jobs). Both of these variables
can be measured with the system performance analysis package.

At WMU, the PQ2 swapping rate is approximately 20% when sufficient
jobs exist and the swapper is operating at capacity. The average °
amount of core occupied by unrunnable jobs is approximately 20 pages
{(10K) out of a total user area of S51XK.

To illustrate the effect of fairness counts on the #WMU system, a set
of simulated jobs was created containing a mix of PQl and PQ2 jobs
similar to that seen on the real system. Performance was measured for
a wide range of swapping fairness counts. (See Table 6-8.)

Table 6-8
Example of Effect of Fairness Councs

Numker of PQl Jobs MNumber of FQ2 Jobs

Swapping c2u Swapped in Swapped in
Fairness Utilization per Minute per Minute

30 29.9 101.2 3.4

is 37.7 98.9 6.2

9 48.7 96.2 10.7

5 8§1.7 96.1 19.1

3 72.2 88.5 29.6

1 91.1 64.9 64.3

The data shows that as more PQ2 Jjcbs are swapped in (fairness
threshold is lowered), the CPU utilization is increased. At the same
time, the PQl swapping rate 1is decreased, showing a corresponding
impact on short-term response.

The value of 3 for swapping fairness was chosen at WMU because it
produces good PQ2 throughput with very little impact on short-term
response (PQl swapping rate). Scheduling fairness was arbicrarily sat
to 20. In most cases this has little effect, because PQl jobs
typically expire so fast that PQ2 jods run without the need for
scheduling fairness,

DETERMINATION OF PARAMETERS FOR SCHEDULER

6.3 IN-CORE FAIRNESS FACTOR

WMU uses the default value of 50% for the in-core £fairness £factor.
This gives good response %o jobs that do GETSEGs without allowing them
to take over the swapping.

Values below 50% are not recommended becazuse t00 many low segments
would exist in memory in an unrunnable state.

6.4 CLASS QUOTAS AND MICROSCEEDULING INTERVAL

The WMU class scheduler comes up to Round Robin mode. The SCDSET
program is run shortly after start up with an OPSER.ATO file to place
the scheduler in Class Scheduler mode. The £file defines primary
percentages of 95% for class 0, and 5% for classes 1 and 2. Secondary
allocations and fixed swapping bits are set in a variety of
permutations to test the response and accuracy of the class scheduler.

The microscheduling interval is set to 30 ticks or 0.5 second.

WMU tested values for the microscheduling interval in the range 1 to
60 ticks. The smaller values gave the best accuracy and smoothest
response. In this range, there was no measurable dJdifference in
scheduler overhead.

6.5 BACKGROUND BATCH PARAMETERS

The WMU system starts up with the defaul:t wvalue -1 £or background
batch class &nd 0 for background batch swap time. The SCDSET program,
which runs at start up, defines class 15 as the backgroundé batch class
with a backgrouné batch swap time of 120 ticks, or 2 seconds. Primary
percentage and secondary allocation are both 0.

Values of 60 through 180 ticks were tried in 1live operation under
various system lecads. The value of 120 ticks appears t¢ adeguately
prevent thrashing.

.

6.6 RESPONSE FAIRNESS FACTOR

The WMU system is assembled with the default value of 10% as the
response <fairness factor. This is overridden at start up by the
SCDSET program to a value of 100%, which produces the best possible
response at all times.

WMU has tried a range of values from 1% to 100% on the 1live system
under a wide variety of loads. A value of 1l0% gives good response
with very good accuracy. Values below 10% produce poor response, and
are not recommended. Values above 10% did not noticeaoly improve
response, but did reduce accuracy.

The present value of 100% 1is arbitrary. WMU 1s ©presently more
concerned with response than accuracy.

DETERMINATICN OF PARAMETERS FOR SCHEDULER

6.7 AVERAGE SWAP TIME

The WMU system is assembled with the average job size, PAVJISP, set Lo
the default value of 20 pages, or l10K. With the WMU orimary swapping
device, an RD10, this yields an average swap time of 9 ticks.

This value of the parameter gives very accurate allocation of time to
fixed classes during periods when no other classes are present.

6.8 JOB CLASS
The WMU system begins operation with all job classes set to default

values of 0. Jobs are placed in the appropriate class as they log in.
WM uses classes 0, 1, 2, and 15.

6.9 CLASS RUNTIME

WMU class runtimes are set to the default values of 0 at start up.

CHAPTER 7
DETAILED DESCRIPTION OF SCHED. MONITOR CALL

This section describes the macro code for the SCHED. monitor calls.
This code is included in the class scheduler only.

7.1 SCHED. TO SCDQTA SECTION

The scheduling parameters are defined by the system administrator
through the SCDSET program, which uses the SCHED. monitor calls to
store the parameters in the monitor data base. The SCHED. moenitor
calls store most parameters and retrieve all parameters. A
description of the detailed code for each of the SCEED. monitor calls-
follows.

At SCHED. the argument bplock £for the SCEED. moniteor call is
interpreted and <checked £or legality. 2 dispatch is made to the
appropriate read or write routine based orn the Zfunction code.
Functions 1, 4, and 8 are not used in the WMU class scheduler.

7.1.1 Function 0
Routine SCHRSI reads the microscheduling interval (SCDINT).

Routine SCHWSI writes SCDINT. It also <forces a new scheduling
interval to begin. If the microscheduling interval goes to zero, the
scheduler is placed in Round Robin mode by clearing RRFLAG.

7.1.2 Punction 2

Routine SCHRQT reads the primary percentages for each class up to the
class specified in the argument block. First, check the ¢lass number
for legality. Then, for each <c¢lass up to that number, 1load the
primary percentage and status bits from table CLSSTS, and store thenm
in the user-specified area.

Routine SCHWQT stores the primary percentages for any number of
classes. The <first argument specifies the number of classes to be
stored. Each folliowing argument contains the class number and status
bits in the left half, and the primary percentage in the rignt half.
First, check the class number for legality. Then, store the primary
percentage and status bits in table CLSSTS. After all of the
arguments have been processed, zero the table of runtimes by <class
(CLSRTM) .

7-1

DETAILED DESCRIPTION OF SCHED. MONITOR CALL

At SCHWQ2, build a table of all classes with positive primary
percentages in SQSCAN. Each entry in the table is of the form XWD O,
class number. Store the total number of classes with primary
percentages in CNTSTS. If no classes have a primary .percentage or the

percentages do not add to 100%, place the scheduler in Round Robin
mode by clearing RRFLAG, and leave SCHWQT. .

At SCEWQ6, pick the next class to be entered into the primary scan
table PSQTAB. If there is only one class, go to SCEWQY9 to store that
class. Otherwise, determine which class is most overdue to be picked
at SCHWQ7. For each class in SQSCAN, add its primary percentage to
the relative priority, which is stored in the left half of the SQSCaAN
table. Weight the relative priority by aultiplying by the class
primary percentage, and if the product is the largest seen so far, set
AC Pl to point to this class. Repeat from SCEWQ7 until all classes
have been tested.

At SCHWQ9, store the selected class as the next entry in PSQTAB.
Also, subtract 100% from its relative priority to reflect the fact
that it is no longer overdue to be selected. Repeat from SCHWQ6 until
all 100 entries have been stored in PSQTAB. Set entry 10l to entry 1
for use by CPUl.

This algorithm guarantees that each class will be selected the number
of times specified by its primary percentage. Also, this algorithm
spaces the entries optimally if each percentage is 2 multiple of tan,
and does a very good job on meost other cases.

7.1.3 PFunction 3]
Routine SCHRTS reads the base guantum runtimes for either PQL or P2Q2.

Routine SCHWTS stores the base quantum runtimes £or 2Ql or ?Q2 in <the
QADTAB table. The first word in the argument block speciiies the
number of arguments to follow. A code 1 in the left half of tae
argument specifies PQlL, and a code of 2 in the left half of the
argument specifies PQ2. The right half of the argument contzains the
new value for the base guantum runtime.

1

7.1.4 Punction 5

Routine SCHRJC reads the class numbers for all jobs in the system up
to the job specified in the argument block. First, check the jeb
number for legality. Then, for all jobs up to that job number, load
the job's class from table JBTSCD and store it in the user—-specified
area.

Routine SCHWJC places any number of jobs into their propers scheduler
classes. The first argument specifies the number of jobs to be
reclassified. Each following argument contains the job number in the
left half and the new class number in the right half. First, make
sure that the job number is valid and that the job is logged in.
Then, check the <class numcer for legality and store the new class
aumber in table JBTSCD. 1If the job is in PQ2, set the changing
subgueue bit (JS.CSQ) and requeue the job.

7-2

DETAILED DESCRIPTION OF SCHED. MONITOR CALL

7.1.5 Punction 6

Routine SCHRMC reads the constant added to in-core protect time
{PROTO) . '

Routine SCEWMC writes PROTO.

7.1.6 Punction 7
Routine SCHRCT reads the runtime used by each c¢lass up ©o0 the <lass
specified in the argument block. First, check the class number for
legality. Then, for each class up to that number, load the runtime
used by that class £from table CLSRTM and store it in the
user-specified area. Runtimes are stored in ticks and represent the

CPU time used in PQ2 since the primary percentages were last changed.
The write option is illegal for function 7. : ’

7.1.7 Punction 9

Routine SCHRPF reads the multiplier used to calculate in-core protect
£ime (PROT).

Routine SCHEWPF writes PROT.

7.1.8 Punction 10

Routine SCERCD reads the default class for a new job (DEFCLS).

Routine SCHWCD sets DEFCLS.

7.1.9 PFunction 11

untine SCERRC reads the constant used for assigning in-core protect
cime on regueue because of time-slice expiration (PROTL).

Routine SCHWRC writes PROTL.

7.1.10 Function 12

Routine SCHRPM reads the maximum value of in-core protect time
(PROTHM) .

Routine SCHWPM writes PROTM.
7.1.11 Punction 13

Routine SCHRPM reads the in-core protect time constant (PROTO).

Routine SCAWRC writes PROTO.

7-3

DETAILED DESCRIPTION OF SCHED. MONITOR CALL

7.1.12 Punction 14

Routine SCHRML reads the quantum multipliers for either PQl or PQ2, or
the scale factor used in calculating gquantum runtime (QRANGE).

Routine SCHWML stores the quantum multipliers for PQl or 2Q2 into the
QMLTAB table. As in function 3, a code of 1 specifies PQl and a code
of 2 specifies PQ2. A code of 3 specifies a new value for QRANGE.

7.1.13 Punctiocn 15

Routine SCHRMX reads the maximum gquantum runtimes for either PQl or
PQ2.

Routine SCHWMX stores the maximum gquantum runtimes for PQl or PQ2 inko
the QMXTAB table. A code of 1 specifies PQl and a code of 2 specifies
PQ2.

7.1.14 Punction 16

Routine SCHRSQ reads the secondary allocations for each class up to
the <class specified in the argument block. First, check the class
number <or legality. Then, for each class up tc that number, loaé the
secondary allocation from table <CLSQTA and store it in the
user-~-specified area.

Routine SCHWSQ stores the secondary allocations £or any number of
classes. The (first argument specifies the number of classes to be
stored. Each following argument contains the class pumcer in the left
half and contains the secondary allocation in the right half. First,
check the class number for lecality. Then, store the secondary
allocation of the class in the takle CL3QTA. after all arguments have
been processed, store the number of the highest class with a2 positive
secondary allocation in MAXQTA.

7.1.15 Punction 17
Reoutine SCERIQ reads the respense fairness factor (SCOJIL).

Routine SCHWIQ writes SCDJIL. The value is a percentage and must De
positive. .

7.1.16 PFunction 18
Routine SCHRSS reads the average swap~time estimate (SCDSWP).

Routine SCHWSS writes SCDSWP. The value is specified in ticks.

7.1.17 Punction 19
Routine SCHRBB reads the background batch class (38SUBQ).
Routine SCHWEB writes BBSUBQ. The value must be a legal class number

or =1 if no background batch is desired.

7-4

DETAILED DESCRIPTION OF SCEED. MONITOR CALL

7.1.18 Punction 20
Routine SCHRBS reads the background batch swap-time interval (SCDBBS).

Routine SCHWRS writes SCDBRBS. The value is specified in ticks.

7.1.19 PFunction 21
Routine SCHRSF reads the scheduler fairness factor for CPUO.
Routine SCHWSF writes the scheduler fairness factor for CPUC. The

same value 1is stored for CPUl if it exists. The value must be
positive, ; .

7.1.20 Punction 22
Routine SCHRSW reads the swapper fairness factor (MAXIFC).

Routine SCHWSW writes MAXIFC. The value must be positive.

7.1.21 Punction 23
Routine SCHRIO reads the in-core fairness factor (SCDIQF).

Routine SCHWIO writes SCDIOF. The value is a percentage and must be
positive. :

7.1.22 Punction 24

Routine SCHRCS reads the core scheduling interval {SCDCOR). The value
is converted to seconds before being returned to the user. SCDCOR is
used to determine whether in-core protect times are used in
scheduling.

Routine SCHWCS converts the user argument from seconds to tick-pairs,
and stores the result in SCDCOR.

7.2 SCDQTA TO SCDQT7 SECTION

This section checks for the enéd of the microscheduling interval and
performs 2all necessary functions when the interval expires. Routine
SCDQTA is called once every tick.

If no microscheduling interval is defined (SCDINT=0), or noc primary
classes are defined (CNTSTS=0), return immediately because the
scheduler is cperating in Round Robin mode. Otherwise, set RRFLAG
nonzero to cause the scheduler to operate in Class Scheduling mode.

If the current microscheduling interwval is not yet over
(UPTIMEKSCDTIM), return. Otherwise, store the end of the new
microscheduling interval in SCDTIM. Store the time at which response
fairness is no longer in effect in SCNJIL.

DETAILED DESCRIPTION OF SCHED. MOMITOR CALL

Advance .the primary scan peinters to the next class for both CPUs.
For sach CPU, load the primary class into AC Tl and the address of the
subqueue scheduling scan table into T4, and call SCDSST to build the
scan table.

At SCDSST, set the first entry in the scan table to the primary class.
8uild the secondary scan table in the remaining lccations of the scan
cable. All classes with sscondary allocations except the primary
class are entered into the tablas in the form: XWD class, secondary
allocation. The sum of &the secondary allocations of all classes
entered into the seccndary scan table is accumulated in S3SSUM.

At SCDOT4 select a random integer in the range G to 1l SSsuM-1. This
integer determines which class will be selected next for insertion
into the subgueue scheduling scan table for, the microscheduling
interval. The secondary allocations of each entry in the secondary
scan table are successively subtracted from the random integer until
it goes negative. The class that causes it to go negative is selected
as the next class to insert into the subgueue scan table. Thus, the
probability of any given class being selected is equal to its
secondary allocation divided by the total of all remaining secondary
classes (SSSUM). :

gliminate the selected class from further consideration &y moving the
bottom entry up on top of it, and Dby subtracting its secondary
allocation from SSSUM. Store the selected class as the next entry in
the scan table. Repeat frem SCDQT4 until all entries in tne secondéary
scan table have been incorporated into the subgueue scheduling scan
table. A zero terminates the table:

PART 5

DISK I/O PROCESSING

Disk I/O Processing

File: DISKIO.RNO
Date: April 1978
Edition: 1

The information in this document is subject to change without notice
and should not be construed as a commitment by Digital Equipment
Corporation. Digital Equipment Corporation assumes no responsibility
for any errors that may appear in this document.

The software described in this document is furnished under a license
and may be used or copied only in accordance with the terms of such
license.

Digital Equipment Corporation assumes no responsibility for the use or

reliability of 1its software on equipment that is not supplied by
DIGITAL.

Copyright()lQ?S‘by Digital Equipment Corporation

CONTENTS

Page
1.0 GENERAL DISK I/0 FLOW 2
2.0 DUAL PORT HANDLING 4
3.0 EXCEPTION CONDITIONS 4
3.1 Data Transfer Errors 4
3.1.1 ECC Correctable Error 4
3.1.2 Non-data Error 5
3.1.3 Data Error 5
3.2 Seek and Status Errors 6
3.2.1 Medium~-on-line = 0 6
3.2.2 Drive Powered Up 6
3.2.3 Seek Incomplete 6
3.2.4 Hung Device [
3.2.5 Rib Errors 6
3.3 RAE Errors 6
4.0 BAT BLOCKS 7
5.0 DSKRAT 7

INDEX . Index-1

1.0 GENERAL DISK I/0O FLOW

This discussion assumes that the disk regquest has been processed to
the point that an I/O list has been built and the initial sector
address is known. The disk is not necessarily on the correct
cylinder. The following flow dJescribes the general processing;
subsequent text will describe it more fully.

1~ Calculate reguired cylinder.

2~ If seek required then

3- If data transfer in progress
(non-massbuss device or massbuss
device with active transfer on this unit)

4- Queue request to this unit
5- Exit

6- Else

7- Start seek

8- Exit

9~ Else

10~ If data transfer in progress then
11~ Queue request for channel
12- Exit

13- Else

14- Disable attention interrupts
15~ Start transfer

16- Exit

17- End

18- On interrupt

19- Read drive number and register # from RH

20~ Read attention summary register

21- For each on-bit in summary register do

22- If corresponding drive was not transferring

23- If seek complete then gueue request for channel
24~ Else process status (eg. drive coming on line)

25~ If data transfer complete then

26- If hardware detected error then

27~ Perform error recovery

28~ Compare channel termination with predicted termination
29~ If software detected error .
30- Perform error recovery

31- For each unit with gueued requests do

32- Select next seek and start it

33- If channel queue (already positioned drives) is not empty then
34- Select best transfer and start it

35~ Restore register # and drive # to RH

36~ Dismiss interrupt

The correct cylinder is determined by dividing the sector number by
the number of sectors per cylinder. To determine if a seek is needed,
(2) the cylinder number is compared with the current cylinder number,
which 1is remembered from the last transfer. (There are some limited
conditions under which the drive will not be on the cylinder which is
recorded in the software. In these cases, the implied seek of the
drive will be used). The system can only start a seek if the drive is
idle (for non-MASSBUS drives, both the drive and the controller must
be idle). Therefore, if there is a data transfer in progress, the
request is queued for the unit and will be started at a later time at
interrupt level (4). If the drive is free, a seek will be started.
If the drive is already on the correct cylinder, the seek logic 1is
bypassed. If the drive and channel are not already busy, then th-

transfer 1is started; otherwise, the request is added to a queue for
the regquired channel to be started at interrupt level at a later time.
A transfer may range in size from a single word (128 words) to a whole
cylinder; TOPS10 attempts to perform the longest possible transfer in
order to maximize I/0 throughtput. The system never attempts an
implied seek in the middle of a transfer. Such a user reguest would
be broken into two or more transfers with explicit intermediate seeks.
Also, in order to simplify the code considerably, attention interrupts
are disabled while doing a data transfer.

When an interrupt occurs, the system may or may not have just
~ 3 wara Aicahlad
g

~ramml a - Aatra erameafa Cimeman abramtianm

rad
compieted a dGata transier. oince acttentction 1in S wWere <isada.cd

= v

during the data transfer, there may be a number of outstanding
attention conditions when the interrupt is actually honored. First,
the system reads the attention summary register. Each drive (except
the one which was completing a transfer) is checked for an attention
bit on. If there is an attention bit on, and 1if there 1is a seek
complete, the transfer request is added to the channel gueue to be
started for I/0. 1If there was no seek in progress, then the drive has
just come on line or powered up (see later discussion for these
conditions). .

Once all outstanding seeks are processed, the data transfer completion
is handled. If there was no error or after error correction (see
error recovery later), the channel termination word is compared to the
predicted channel termination word. If the check fails, then error
recovery 1is started. After completing the processing for the
interrupt, any outstanding seeks are started. For each drive, the
closest (shortest) seek is the one selected for startup (a fairness
count will cause the system to select the oldest transfer every 'n'th
time). After seeks are started, the channel queue 1is checked for
positioned drives and the transfer with the shortest latency is
started (again unless the fairness count says otherwise). SWAPPER
requests receive preference over file I/0 ({unless fairness count
expires).

There is some special processing for interrupts on a MASSBUS device
caused by the fact that the system may be attempting some operation
using the device registers at UUO level at the time of the interrupt.
When the interrupt occurs, the system reads RHxx and saves the drive
and register number to which the RH was pointing. Before dismissing
the interrupt, a DATAO 1is done to restore the drive number and
register number. The need for reading the register from the RH at
interrupt and restoring them before dismissing the interrupt is made
worse by the fact that the system must wait 3 microseconds after the
DATAO specifying what data is wanted before the DATAI can read the
data.

There are other special considerations with the front end disk unit.
In general, both the front end and TOPS10 may attempt to use the disk
at the same time. The most fregquent conflict occurs at system startup
when the front end is using the disk at the same time that TOPS10 is
running INITIA on all lines {there is a count of the times that TOPS10
tried to get the disk and found it busy; this normally rises quickly
at system startup to about 40 and seldom changes thereafter. It is
possible to do an assembly on the front end while timesharing
continues on the -10 which might generate considerable conflict).

When the -10 attempts to get the disk and finds that it is in use by
the front end, the requests is delayed (with considerable trickery to
upper level code) and restarted when the drive can be gotten. Since
TOPS10 may complete a seek for the front end drive and have the front
end grab the disk and move it before the data transfer is started, it
is possible that the drive will not be on the correct cylinder when
TOPS10 tries to start the transfer. 1In this case, implied seek will
be used since TOPS10 will not realize that the disk has been moved.
This would also happen if TOPS10 got two different requests for the
same cylinder and would decide that nc seek is necessary when in fact,
the front end had moved the heads.

-

2.0 DUAL PORT HANDLING

The dual port handling is very simple. It occurs only when the system
attempts a data transfer on one channel and finds it busy. It then
tries the other port. At no other time is the dual port facility
used. '

At system startup, the system reads the drive type and serial number
from each drive on all channels. When the same serial number, drive
type is found on two different channels, the disk is determined to be
dual ported. One path (the first one found) is then the primary path
and the second is the alternate path. When starting a transfer, the
system will attempt to use the primary path. If that path is busy, it
will then check for the alternate path; 1if that 1is available, the
transfer is started. Otherwise, the request is placed in the channel
queue for the primary channel.

3.0 EXCEPTION CONDITIONS

There are a number of possible error conditions that can occur while
TOPS10 attempts to operate the disks. This section will attempt to
list the error conditions, the circumstances under which = they occur,
and the action taken by the system. t will not attempt to show the
'flow diagram' of the error handling in the normal code. In general,
the error processing is called as soon as possible after the error is
detected.

3.1 Data Transfer Errors

These errors are detected on the completion interrupt for a data
transfer (either read or write). These do not include the software
detected error of the channel termination word not agreeing with the
predicted channel termination word.

3.1.1 ECC Correctable Error - When a transfer terminates with an ECC
correctable error the transfer stops after the sector in error. The
software will reconstruct the data and restart the transfer at the
sector following the sector in error. -

3.1.2 Non-data Error - When a transfer completes that is not a data
error (for example, a header error) the software will attempt to retry
the transfer a number of times before recording the error as a hard
error. The retry sequence is:

Retry 10 times
Recalibrate
Seek

Retry 10 times
Recalibrate
Seek

Retry 10 times

If after 30 tries the transfer still fails, the error 1is considered
hard and an error is returned to the user. The data is recorded in
SYSERR and a count of hard errors for this device is incremented.

1f the count of hard errors reaches a system default (not 25), a
message .is given to the operator saying that there has been an
excessive number of hard errors and the count is =zeroed. The
expectation is that the operator may want to set some hardware offline
or call his field service rep to run a few diagnostics.

3.1.3 Data Error - If a data error (including header compare error)
occurs which is not ECC correctable, then the system will retry the
transfer and will use the offset register to vary the head position on
each side of the track centerline. The retry seguence is:

Retry 16 times on centerline

Offset head to +200 microinches

Retry 2 times

Offset head to -200 microinches

Retry 2 times .

Offset head to +400 microinches

Retry 2 times

Offset head to -400 microinches

Retry 2 times

Offset head to +600 microinches

Retry 2 times

Offset head to -600 microinches

Retry 2 times

Return to centerline

Retry disabling stop on error

Retry (every retry except the next to last is done
with stop on error enabled, this enables the recording
of the maximum of information in SYSERR).

For an RP04 the offset distances are twice the above. If the transfer
is recovered at the offset position, the drive is left positioned at
offset. If the next transfer on that drive is for that cylinder, it
is first to be attempted at the same offset. If that fails, the head
is returned to centerline and the entire above sequence is tried. If
any seek is done, the heads will be on centerline (including transfers
which cause the head to return to the cylinder on which an error was
recovered at offset). If the device is not an RP04 or RPO6 (MASSBUS
drive), the error recovery is 10 retries of the sequence: read/write
10 times, recalibrate, seek.

On a hard non-recoverable error, an error is returned to the user and
the system remembers the block number in error. When the file 1is
subsequently closed, the system checks for a remembered block number.
It starts reading from the bad block number+l until it finds a good

sector (or 1000 sectors whichever is smaller). This gives the extent
of the error region, which is then recorded in both the RIB of the
file and the BAT block. If the program does not close the file after
the error, but continues processing and hits a second error, the
second error is lost.

3.2 Seek and Status Errors

In the attention summary register, on an interrupt, there may be
attention interrupts for drives that were not transferring or seeking.

r
In this case, the drive is going through some sort of status ¢

such as coming on line or going down.

3.2.1 Medium-on-line = 0 - If medium-on-line is 0, the drive has just
powered down. It is marked as such in the monitor tables.

3.2.2 Drive Powered Up - If medium-on-line (MOL)=1 and volume valid
(VW) =0 then the drive has just powered up. The monitor will read the
home blocks and check that the pack 1is the expected pack on that
drive.

3.2.3 Seek Incomplete - On all seek errors, the error is counted and
ignored. This will cause the data transfer to use the implied seek
facility to perform the actual seek. If that implied seek fails, the
data transfer will return an error and the appropriate retry sequence
will be started(4.1.2).

3.2.4 Hung Device - Any time a seek or data transfer is started, the
monitor starts an independent 'hung timer'® that will fire in 7 seconds
if the device has not responded with a completion interrupt for the
operation.

If the failing request was a seek, then it is retried. If it was a
data transfer, the monitor does a CONO to clear BUSY and set DONE.
After this, the appropriate retry sequence for a data error is
started. If 8 hung retries in a row fail, then the monitor will set
the drive offline and tell the operator that it is offline (message is
Inconsistent Status for Drive x).

3.2.3 Rib Errors - Every RIB error detected (along with every ‘n'
hard errors) is reported to the operator.

3.3 RAE Errors

On an RH10, Register Access Error (RAE) is ignored. The hardware will
set the Selected Drive RAE at which point error recovery is started.

On the RH20, after every DATRO, a CONSZ on RAE is done, if there was
an RAE, then it is cleared and the DATAO is retried. There is also a
system count of RAE's per controller for the RH20's.

4.0 BAT BLOCRS

The BAT blocks provide a record of up to 63 errors on the disk. After
each detected error ({actually when the file is closed), the monitoer
will update the BAT blocks with the blocks in error and the type of
error. It is possible that the BAT blocks will be filled to
overflowing and there will be no room for additional entries. The
system will leave bad blocks marked as allocated in the SAT table and
thus avoid reallocating them. SYSERR will also complain when there
are less than 5 entries remaining in the BAT block.

In general, there are some pathological cases where the total damage
to" a disk is unknown, but a reasonable PM of disks which includes
checking SYSERR and DSKRAT and saving, refreshing (or replacing), and
restoring packs with many bad spots will avoid difficulties.

5.0 DSKRAT

DSKRAT is a program which can be run to check for RIB errors and the
disk space allocated as reported in the SAT table with the allocation
as reported by the RIB's of the files on the pack. In general, it
will find four kinds of errors:

1. RIB errors - A RIB is not consistent in format with a valid
RIB. Lost blocks - These are blocks which are marked as
allocated in the SAT but are not a part of any file.

2. Free blocks - These are blocks which are owned by some file
on the system but are not marked as allocated in the SAT
table. If one of these files is deleted, the system will get
a BAZ STOPCD.

3. Multiply Defined blocks — These are blocks which are marked
as owned in two or more files.

The safest procedure when a disk has significant problems in terms of
free or multiply defined blocks is to BACKUP the pack, refresh it, and
restore it.

PART 6

LABS

DECsystem=10 MONITOR INTERNALS COURSE
LAB 1

The goal of the student in this lab 1is to object patch the command
written during week i and successfully load and run the monitor.,

PROCEDURE

1.

2.

3.
4,
Se

6.

Te

g,

Copy LIB:SYSTEM,EXE to your own disk érea as SYSTEM.EXE -

Run FILDDT (.R FILDDT), in patch mode(/?), to insert your patch
into SYSTEM,.EXE,

Enter your routine in the PAT area as described in the CRASH

ANALYSIS handbook chapter 9, Be sure- to redefine PAT as
. described,

Overlay the COMTAB and DISP entries_for the CORE c¢ommand with

the sixbit c¢ommand value, dispatch bits and dispatch address,
The dispatch address will be the first location in vour routine
in the patch area,

Update CONFIG and SYSDAT -to refle:t a new version of the
monitor, ’ :

Terminate the patching session by entering a ébﬁtrol Z to
FILDDT, _

If vyou did not define any new symbols or delete any existing
symbols do” a fillcom o¢on the original SYSTEM.EXE verses the
patched SYSTEM.EXE and justify each word that 1Is different,

Load and run the monitor verifying that the command works as
expected,

DECsystem=10 MONITGR INTERNALS CGOURSE

FILDDT Lab session # 2 : examining ihe running monitor

This lab session requires you to examine portions of the data base of
the currently running monitor, particularly the JOB TABLES data base.

To begin, simply type .R FDSYS, and when FILDDT asks "File:", vyou
should respond with /M (crlf), Thereafter, regular DDT commands apply.

Use FILDDT and the Monltor Table Déscriptions tec answer all the
following questions, (note: answers should consist of the table name
and word label plus the data)

I, Job tables

A, There is a job running under [75,3]., Learn the following:

1, What program is it running? What ppn is 1its high segment
from? : _ ,

2. How much core is it running in? Where in core is it?
3, Yhat is its walt state code?

B, Find the PDB for this job.

i, How much run time has it accumulated? Kilo=-core ticks?

2. What is its MCU? 1Is it swappable?

Decsystem-io.ﬁonitdr Internals Course
Lab3 ,

FILDDT Session To Begin Crash Analysis

The purpose of this lab description 1s to guide vyou
through the preliminary steps in crash analysis, The
crash analysis worksheet will be the basis £for all
further labs, Prior to conmpleting the worksheet for
this lab do the activities 1listed below,

After completing the worksheet you should be able
to describe what part of the monitor data base was
sabotaged to produce this crash and 1list the correct
data base value,

i, Before you start FILDDT, it will be very helpful
if you get a SYSTAT of the crash, Type the Monitor
command(s) needed to cause SYSTAT to examine the
status of LIB:SERO0L1.EXE and write the output in
your disk area as file SYSTAT,TXT,

2, Print SYSTAT.TXT on the hardcopy terminal iIin the

lab and retrieve the resulting listing., - Keep this

. listing next to your terminal for further reference
while you are using FILDDT. ’

3. Run SYS:FILDDT.EXE. Make a monitor specific
© FILDDT by typing the FILDDT command(s) needed to
lcad the symbols from LIB:SYSTEM,EXE, Type the
monitor command(s) needed to save the resulting
monitor specific FILDDT in your disk area as
FD.EXE, :

4. Run the FD.EXE you just created, Type the FILDDT
command(s) needed to examine SEROO01,EXE,

S, Complete the crash analysis worksheet for this

" c¢rash particular crash, note the c¢rash dump
worksheet supplement which explains how to obtain
the data necessary to complete the worksheet,

Se

6.

IITIAL CRASH DUMP #ORKSHEET

CRASH FILEmeecceceeceeemeneeSERIAL #oecamccma=ePROCESSORecan=-

WHAT INTERRUPT LEVELS WERE IN PROGRESS: PISTS weew= ———————

ﬁARDwARE STATUS AT TIWE OF CRASH

UPTSTSceoeeeae EPTSTScececmmes APR STATUScmaamea=

UPMP w oo EPMPoomoccooee CURRENT AC BLOCK mmemmmas

WHAT CAUSED THE CRASH DUMP?

STOP CODEmnce= NON-ZERO IN 30ncee= 407 RESTART----- OTHER mamw=
IF THE STOP CODE WAS YOUR ANSWER TO 5, ANSWER THE FOLLOWING:
STOPCODE NAMEwwewmwmwe STOPCODE MODULEcmcewmw« '

STOPCODE TYPE? .
HALTewwem STOPeaaaw JOB----- DEBUGuwowme 0THERwee==

EXPECTED VALUEcmememesmeeccccenaeeee ACTUAL VALUEnewewacnecanancas

CURRENT JOBe-eecce PPNammemee PROGRAY cmmmmes

KQAT CYCLE DETECTED OR EXPERIENCED THE ERROR?

Ul mma—- ﬁGNIIOK----- DEVICE INTERRUPTmwces OTHERamww=

"9, WHICH HAJOR PROCESS XITHIN 'THE CYCLE?
IF uugs

PRE~DISPATCHawe= COHMUN 1/0 CODEwmua SPECIFIC CODEwwma= POST DISPATC
IF \DVITOR‘
TIME ACCOUNTINGaan TIMING REQUESTSeaa HUNG CHECK--- REQUEVUE g
SWAPPINGmww SCHEDULINGamaa
IF DEVICE IWTERRPUT:

10. LAST 10 STACK ENTRIES:

TGP

11,

OF STACK

VALUE

- a0 R uE .

mhmmowm

T A0 ED G0 YR AN Gp SN uD 4P wn 0N o

ROUTINE

ANALYSIS OF THE CAUSE OF THE CRASH,

- P O S D G S S S S e OF G5 P AR T G S W A G D G P D T WS P D S M G R N G G WP AP SR W W S G EP WS WS D

- e G N D SR Y e D W S G S G A e A @5 GF WP G5 U G WD G AP G GY G G G0 S0 w90 G0 WD U @ U8 M SR W S G 4D W TR W =S ..

CINITIAL CRASH DUMP WORKSHEET SUPPLEMENT

THE WORKSHEET wAS DESIGNED FOR INSTRUCTIONAL USE IN ELEMENTARY CRASH ANALYSIS
THE PURPUSE OF THE INITIAL CRASH DUNP WORKSHEET IS TO STRUCTURE THE

DATA CGLLECTION PROCEDURE .NECESSARY TO ANALYZE THE CAUSE OF A SPECIFIC
MONITOR CRASH, THE INFORMATION TO BE RECORDED ON THIS WORKSHEET IS

JUST A SMALL SUBSET OF ALL -THE INFORMATICON AVAILABLE IN A CRASH DUMP.

THE éURPDSE OF THIS SUPPLEMENT TO THE DUMP WORKSHEET IS TO EXPLAIN
WHERE THE ITEMS IN THE WORKSHEET MAY BE FOUND IN A CRASH DUMP AS

e i Em M M ameh e emriem A M SRS LY PN ad

XELL AS HOW TO INTERPERT THEIR CONTENTS.

1), THE CRASH FILE NAME IS JUST THE NAME OF THE CRASH DUMP, IE
SER001%, EXE

THE PROCESSOR SERIAL NUMBER MAY BE FOUND IN +COASH
FOR CPUO AND ,Ci1ASN FOR CPU1, .

THE PROCESSOR TYPE MAY BE DETERMINED FROM THE SERIAL NUMBER ACCORDING
TO THE FOLLOWING SERIAL NUMBER (IN DECIMAL) ASSIGNMENTS:
. "KA-< 513
" 512 < KI < 1025
1024 < KL < 4097
4096 < KS

DEPENDING ON PROCESSOR TYPE FILDDT SHOULD BE SET UP TO
MAP ADDRESSES,

2) THE CRASH DATE AND TIME MAY BE FOUND IN LOCATIONS: .
’ LOCYER, LOCHON, LOCDAY, LOCHOR, LOCMIN, LOCSEC IN DECIMAL,
THIS IS USEFUL FOR CORRELATION WITH OTHER EVENTS THAT 0CCURED
- AT THE TIME OF THE CRASH, IE HARDWARE FAILURES ETIC,

3); FOR STOP CODE CRASHES PISTS WILL CONTAIN THE RESULTS OF A
CONI PI, BITS 21527 DESCRIBE THE INTERRUPT IN PROGRESS AS
DESCRIBED. IN THE HARDWARE REFERENCE MANUAL SECTION 3.2,

4), THE HARDWARE STATUS MAY BE FOUND AS FOLLOWS:
UPKP= UPTSTS XL BITS 23-35
EUBSTS KI BITS 5=-17
EPMP= EPTSTS KL B8ITS 23=-35
EUBSTS KI BITS 23=3S

CURRENT AC BLGCCK= UPTSTS KL BITS 6-8
S EUBSTS KI BITS 1-2

APR STATUS = APRSIS
‘ INTERPERTATION OF THE BITS IN APRSTS INDICATE VARIOUS
PROCESSOR ERRORS AS DESCRIBED IN THE HARDWARE REFERENCE
MANUAL .

5), THE CAUSE OF THE DUMP CAN BE FOUND 8Y EXAMINING THE CONSCOLE OR OPERATOR
LGGS.)

6), THE STCP CODE ITSELF CAN BE FOUHD IN CRSWHY, THE MODULE CONTAINIKG THE
. STOP CODE MAY BE FOUND BY TYPING -“S..XXX?* WHERE XXX IS THE STQP CODE.
- LOOK AT STOPCD.MEM IN THE SOFIwARE NOTEBOOKS OR THE CODE IN THE SOURCE
LISTINGS FOR THE DESCRIPTION OF THE STOP CODE INCLUDING
THE STOP CODE TYPE.

DESCRIBE THE CONDITION THAT CAUSED THE STOP
CODE IE THE SPECIFIC CONDTIONAL TEST MADE INCLUDING THE DATA
‘EXPECTED AND ACTUALLY FOQUND,

EXAMINE THE DATA BASE USED TO MAKE THE DECISION TO CRASH THE
MONITOR, DETERMINE WHETHER ITS VALUE IN CORE GR IN AN AC IS
CORRECT VIA EXAMINING AN UNRUN MONITOR OR MONITOR LISTINGS,

7].‘THE CURRRENT JOB NUMBER IS STORED IN CURJOB AND «C0JOB, THIS -
IS USEFUL FOR SETTING UP PAGING FOR THE PROPER UPMP.,

8), SYMBOLIC INTERPERTATION OF THE CONTENTS OF P YIELDS INFORMATION
"ABOUT wHAT THE MONITOR WAS DOING wrhEN THE ERROR WAS DETECTED,

P PROCESS
TTRULBDL USED BY THE MONITOR CYCLE
370510 - UUQ LEVEL PUSH DOWN STACK, THIS RESIDES

IN THE CURRENT JOBS UPMP SO SET UP PAGING
PRIOR TO REFERENCING THE STACK ITSELF.
C’N’PD1 CHANNEL ‘N’ PUSHDOWN STACK
ERRPDL USED BY THE DIE ROUTIKNE

9), CAN BE DETERMINED BY EXAMINING THE CODE AND
- CORRELATING THE PC TO THE FLOW CHARTS USED IN THE MONITOR
INTERNALS COURSE, "

10), NOTE THE CONTENTS OF THE STACK TO TRACE THE HISTORY OF THE
EVENTS LEADING TO THE CRASH,

11)., NOTE THE. ACTUAL CAUSE OF THE CRASH AFTER ANALYZING
ALL THE INFORMATION COLLECTED UP TO THIS POINT, THIS ANALYSIS
MIGHT DETERMIKE THE EXACT CAUSE AND BUG FIX QR JUST SPECULATION
AS TO wHAT ADDTIONAL INFORMATION NEED BE KNOwN TO COME TO A FINAL
CONCLUSION,

Decsystem=10 Monitor Internals Course
Lab 4 -

Using the crash analysis worksheet as a8 guide analyze
SERQO02,EXE as to why it crashed. You should be able to
£ind the offending instruction. This is a 7ol 1091
crash, Use the same monitor specific FILDDT that was
made for Lab3, remember that this crash dump was
obtained by poking the monitor therefore once you f£ind
the word in error your analysis is complete,

S.

8,

1:ITIAL CRASH DU#P “ORKSHEET

WHAT LEVELS WERE 1N PROGRESS: PISTS ccececmwcmwaascc<=

'c1>°----c2),--u-csJ-m;--c4)-----c5)----;(s>,---;cv)-----

" HARDWARE STATUS AT TIME OF CRASH

UPMP emecceeee EPMPoccaee-=-- CURRENT AC BLOCK cwecwmea=

WHAT CAUSED THE CRASH DUMP? :
STOP CODEmwmea NON=ZERO IN 30mmaaa 407 RESTARTecene O0THERwmaw-

IF THE STOP CODE WAS YOUR ANSWER TO S5, ANSWER THE FOLLOWING:
STOPCODE NAMEwecmmew= STOPCODE MODULEcaccaw- A

STOPCODE TYPE?

DATA ITEM TESTED AND TEST CONDITIONSmccoco-e-mmmmmmmm==<========

EXPECTED VALUE mncemeccecccsccanwe= ACTUAL VALUEwaceccerncccnanew

'CURRENT JO0Bamacmem PPNacoccan PROGRAMaceo——-

WHAT CYCLE DETECTED OR EXPERIENCED THE ERROR?

UUOeeeee MONITORmwmee DEVICE IN

o

TERRUPTucwe= OTHERcaaaa

wWHICH MAJOR PROCESS’%ITHfN THE CYCLE?
IF uuQ0:

PRE-DISPATCH--_- COMMON 1/0D CDDE---- SPECIFIC CODEnwwu= POST DISPATC

9.

IF %“ONITOR:

TIME ACCOUNTINGawe TIMING REQUESTSaaa HUhG CHECKawe REQUEUEaaa
SWAPPINGaww SCHEDULINGama

IF DEVICE IHTERRPUT:

DEVICEacaumes STATUSeacawe= RETRYwewsmw BUFFER CHECKeaaaa

DEVICE START/STOPewcawaas DISHISSeceww

10, LAST 10 STACK ENTRIES:

VALUE ROUTINE

TGP OF STACK

11,

- e we on = W @

- A N TR S5 = an

ANALYSIS OF THE CAUSE OF THE CRASH,

-----_’---’--------d---;—------------------—-—---;-----
---------é----------,------;-----~_--------------------
-----—----i---------;--—--;-——------;-----—-—--------!.
--------—---;----—f--------------—-—-------------------
----------?---—-------------—--—--------------—--------
L e R Ry S eP D AR R TR SPGB B g NS e AR AR R D SR U R O S0 A S G OD S S GN W D G G0 GF @D N SN G R W OF G G . .

DR e S W G D G5 e S5 W AT A SN WS S D G U GF N GF AR G SR SR WP WP G S G S G D P WD CU WP DGR SR WD S My S S A e

INITIAL CRASH DUMP WORKSHEET SUPPLEMENT

THE WORKSHEET wAS DESIGHED FOR INSTRUCTIONAL USE 1IN ELEMENTARY CRASH ANALYSIS
THE PURPOSE OF THE INITIAL CRASH DUNP WORKSHEET IS TO STRUCTURE THE

DATA COLLECTION PRUCEDURE NECESSARY TO ANALYZE THE CAUSE OF A SPECIFIC
MONITOR CRASH., THE INFORMATION TO BE RECORDED ON THIS WORKSHEET IS

JUST A SMALL SUBSET OF ALL THE INFORMATION AVAILABLE IN A CRASH DUMP.

THE PURPOSE OF THIS SUPPLEMENT TO THE DUMP WORKSHEET IS TO EXPLAIN
WHERE THE ITEMS IN THE WORKSHEET MAY BE FOUND IN A CRASH DUMP AS

e - Tt M AN MUITTR AAMMEUTO

WELL AS HOW TU INTERPERT THEIR CONTERIS,

1), THE CRASH FILE NAME IS JUST THE NAME OF THE CRASH DUMP, IE
- SER001L,EXE ‘ ' :

THE PROCESSOR SERIAL NUMBER. MAY BE FOUND IN ,COASN
) FOR‘CPUQ AND ,CL1ASN FOR CPUL,

THE PROCESSOR TYPE MAY BE DETERMINED FROM THE SERIAL NUMBER ACCORDING
TO ‘THE FOLLOWING SERIAL NUMBER (IN DECIMAL) ASSIGNMENTS: '
KA < 513
512 < KI < 1025
1024 < KL < 4097
4096 < KS

DEPENDING ON PROCESSOR TYPE ‘FILDDT SHOULD BE SET UP TQ
MAP ADDRESSES,

2} THE CRASH DATE AND TIME MAY BE FOUKD IN LOCATIONS:
LOCYER, LOCMON, LOCDAY, LOCHOR, LOCMIN, LOCSEC IN DECIMAL,
THIS IS USEFUL.FOR CORRELATION WITH OTHER EVENTS THAT OCCURED
- AT THE TIME OF THE CRASH, IE HARDWARE FAILURES ETC,

3), FOR STOP CODE CRASHES PISTS WILL CONTAIN THE RESULTS OF'A
CONI PI, BITS 21-27 DESCRIBE THE INTERRUPT IN PROGRESS AS
. DESCRIBED IN THE HARDWARE REFERENCE MANUAL SECTION 3,2,

4), THE HARDWARE STATUS MAY BE FOUND AS FOLLOWS:
UP¥P= UPTSTS KL BITS 23-35
EUBSTS KI BITS 5=17
EPMP= EPTSTS KL BITS 23=35
EUBSTS KI BITS 23=3%

CURRENT AC BLGOCK= UPTSTS KL BITS 6=-8
’ ~ EUBSTS KI BITS 1=2

APR STATUS = APRSTS
‘ INTERPERTATION OF THE BITS IN APRSTS INDICATE VARIOUS
PROCESSOR ERRORS AS DESCRIBED IN THE HARDWARE REFERENCE
MANUAL,

S), THE CAUSE CF THE DUMP CAN BE FOUND BY EXAMINING THE CONSOLE OR OPERATOR
LGGS. I ;

&),

7).’

. 83,

93,

"ThE STCGP CDDh'iTSELF CAN BE FOUND 1IN CRSEHY. THE MODULE CONTAINING THE

STGE CODE »AY BE FOUND 'BY TYPIANG "S..XXX?° #HERE XXX IS THE STOP CODE.
LGGK AT STOPCD.MEM IN THE SOFTwAKE NOUTEBOOKS QR THE CODE IN THE SOURCE
LISTInGS FOR. THE DESCRIPTION OF THE STOP CODE IhCLUDIHG

THE STOP CCDE TYPE.

DESCRIBE THE CONDITION THAT CAUSED THE.STOP
CODE IE THE SPECIFIC CONDTIONAL TEST MADE INCLUDING THE DATA
EXPECTED AND ACTUALLY FQUND,

EXAMINE THE DATA BASE USED TO MAKE THE DECISION TO CRASH THE
MONITOR., DETERMINE WHETHER ITS VALUE IN CORE OR IN AN AC IS
CORRECT VIA EXAMINING AN UNRUN MONITOR OR MONITOR LISTINGS.

THE CURRRENT JOB NUMBER IS STORED IN CURJOB AND ,COJOB, THIS
IS USEFUL FOR SETTING UP PAGING FOR THE PROPER UPMP.

SYMBOLIC INTERPERTATION OF THE CONTENTS OF P YIELDS INFORMATION
ABOUT wHAT THE MONITOR WAS DOING WHEN THE ERROR WAS DETECTED,

P PROCESS
“TRuLeoL USED BY THE MONITOR CYCLE
376510 UUGQ LEVEL PUSH DOWN STACK. THIS RESIDES

IN THE CURRENT JOBS UPMP SO SET UP PAGING
- PRIOR TO REFERENCING THE STACK ITSELF. -
C’N’PD1 CHANNEL ‘N’ PUSHDOWN STACK
ERRPDL ' USED BY THE DIE RGOUTINE

CAN-BE DETERMINED BY EXAMINING THE CODE AND

- CORRELATING THE PC TO THE FLOW CHARTS USED IN THE MONITOR

10).

11).

IBTERNALS COURSE.,

NOTE THE CONTENTS OF THE STACK TC TRACE THE HISTORY OF THE
EVENTS LEADING TO THE CRASH,

NOTE THE ACTUAL CAUSE OF THE CRASH AFTER ANALYZING

ALL THE INFORMATION COLLECTED UP TO THIS POINT. THIS AMALYSIS
WIGHT DETERMIKE THE EXACT CAUSE AND BUG FIX OR JUST SPECULATION
AS TO wHAT ACDDTIONAL INFORMATLON NEED BE KNOwN TO COME TO A FINAL
CONCLUSION,

Decsystem=10 HMonitor Internals Course
' Lab 5

Use the. crash analysis worksheet to help iIn analyzing
. SERQO3,EXE, This crash was obtalned by exercising a
bug, . You should be able to determine why the machine

. crashed and after studying what function was being

performed by the monitor you should be able to outline
a general cure for the problem,

3.

- 4'

6.

8,

ISITIAL CRASH DUWNP ¥ORKSHEET

CRASH FILE-_--f--_-;f-----_-SERIAL ¥ reeememaeaPROCESSORcacan=
CRAS& TIME AND DAIE,--,-----------G-------,---,---_----,_---,--u
WHAT INTERRUPT LEVELS WERE IN PROGRESS: PISTS cccocmseccomm=e==
(1)-----cz),----(33----;cé)---;-is)-m-,,cs),,--;c7)-----

ﬁARDWARE STATUS AT TIME OF CRASH

UPTSTS e emonne EPTSTSommmmmmae APR STATUSccacam=

WHAT CAUSED THE CRASH DUMP?
STOP CUDEwnww= NON-ZERO IN 30ceae= 407 RESTART---_- OTHERwaww<

IF THE STOP CODE WAS YOUR ANSWER TO 5, ANSWER THE FOLLOWING:

STOPCODE NAMEwowmeae STOPCODE MODULEamaca—s

STDPCDDE TYPE? .

CURRENT JOBomweeee PPNecaccas PROGRAMcaccamx-

WHAT CYCLE DETECTED OR EXPERIENCED THE ERROR?

"3, WHLCH MAJOR PROCESS dITHIN'
IF uuos
PRE=DISPATCHawwa= COHMDN I/0 COPEacaa SPECIFIC CODEwawa= POST DISPATC

THE CYCLE?

IF MDVITUR'

~TIME ACCOUNTINGa.aa TI%ING REQUESTSaaa hUhG CHECK--- REQUEUEcnw
SHAPPINGaua SChEDULING-_-

IF DEVICE INTERRPUT‘

DEVICEwnanemee STATUSwcaaccew RETRYmmewee BUFFER CHECKecaaa

‘DEVICE START/STOPeceecame DISMISSacces

10, LAST 10 STACK ENTRIES:

ROUTINE

TOR

VALUE

11, ANALYSIS OF THE CAUSE OF THE CRASH,

- e . o - o=
T s B TR D D G D S e W e TR D G S GRS A S S D T ep 4D S0 S0 G0 U 0B @5 VD SN G U WD P N D =5 6D W " . -
----------------------------n--n---------------------'--‘
D O D W GBS O8 CP UR ap G gp 0 NS G5 e S0 YRGS aN S SR U5 GE OF UL G) U6 TE W SN TS G5 U0 GF 6E Er G WS G 45 G GD G AP SN AP O S 4N a5 WS SN G 0
-t ep W S D uD D g S BN G R A S €D a G G G5 N G5 65 S W U OF Sk WD b G5 GF Th AR G D 55 9 WP GF aR TP Er OB G5 AR G5 T . a W

- INITIAL CRASH DUMP WORKSHEET SUPPLEMENT

THE wORKSHEET wAS DESIGWED FOR INSTRUCTIONAL USE IN ELEMENTARY CRASH ANALYSIS
THE PURPOSE OF THE INITIAL CRASH DUMP WORKSHEET IS TO STRUCTURE THE

DATA COLLECTION PROCEDURE NECESSARY TQ ANALYZE THE CAUSE OF A SPECIFIC
MONITOR CRAaSH, THE INFORMATION TO BE RECORDED ON THIS WORKSHEET IS

JUST A SHMALL SUBSET OF ALL THE INFORMATION AVAILABLE IN A CRASH DUMP.

THE PURPOSE OF THIS SUPPLEMENT TO THE DUMP WORKSHEET IS TO EXPLAIN
WHERE THE ITEMS IN THE WORKSHEET MAY BE FOUND IN A CRASH DUMP AS

S E'TY Y A Q 22 N
WELL AS HOW TO INTERPERT THEIR CONTENTS.

1), THE CRASH FILE NAME IS JUST THE NAME OF THE CRASH DUMP, IE
SER001, EXE '

THE PROCESSOR SERIAL NUMBER MAY BE FOUND IN «COASN
FOR CPUO AND ,CiASN FOR CPUL, »

THE PROCESSOR TYPE MAY BE DETERMINED FROM THE SERIAL NUMBER ACPORDING
TO THE FOLLOWING SERIAL NUMBER (IN DECIMAL) ASSIGNMENTS:
"KA-< 513

512 < KI < 1025

1024 < KL < 4097

4096 < Ks
DEPINDING ON PROCESSOR TYPE FILDDT SHOULD BE SET UP TO
RAP ADDRESSES;

2) THE CRASH DATE AND TIME MAY BE FQUhD IN LOCATICNS: .
. LOCYER, LOCMDN,_LOCDAY, LOCHOR, LOCMIN, LOCSEC IN DECIHAL.
THIS IS USEFUL FOR CORRELATION WITH OTHER EVENTS THAT 0CCURED
- AT THE TIME OF THE CRASH,-IE HARDWARE FAILURES ETC,

3]; FOR STOP CODE CRASHES PISTS WILL CONTAIN THE RESULTS OF A
CONI PI, BITS 21527 DESCRIBE THE INTERRUPT IN PROGRESS AS
DESCRIBED. IN THE HARDWARE REFERENCE MANUAL SECTION 3.2,

4), THE HARDWARE STATUS MAY BE FOUND AS FOLLOWS:
UPMP= UPTSTS KL BITS 23=35
© EUBSTS KI - BITS S5=i7
EPMP= EPTSTS KL BITS 23=35
EUBSTS KI BITS 23=35

- CURRENT AC BLCCK= UPTSTS KL BITS 6-8
: : EUBSTS KI BITS 1=2

APR STATUS = APRSTS
‘ INTERPERTATION OF THE BITS IN APRSTS INDICATE VARIOUS
PROCESSOR ERRORS AS DESCRIBED IN THE HARDWARE REFERENCE
MANUAL.

5), THE CAUSE OF THE DUMP CAN BE FOUND BY EXAMINING THE CONSOLE OR OPERATOR
LOGS, .

6). THE STCP CODE ITSELF CAN BE FOUND IN CRSWHY, THE “ODULE CONTAINING THE
. STOP CODE MAY BE FOUND BY TYPING -“S..XXX?’ WHERE XXX IS THE STOP CODE.
" LOGK AT STOPCD.MEM IN THE SOFT#ARE NOUTEBOOKS CR THE CODE IN THE SOURCE
LISTINGS FOR THE DESCRIPTION OF THE STOP CODE INCLUDING
THE STOP CODRE TYPE.

DESCRIBE THE CONDITION THAT CAUSED THE STOP
CODE IE THE SPECIFIC CONDTIONAL TEST MADE INCLUDING THE DATA
‘EXPECTED AND ACTUALLY FQUND,

EXAMIKE THE DATA BASE USED TO MAKE THE DECISION TO CRASH THE

MONITOR, DETERMINE WHETHER ITS VALUE IN CORE OR IN AN AC IS
CORRECT VIA EXAMINING AN UNRUN MONITOR OR MONITOR LISTINGS.

W ATAY e e

7).ATHE CURRRENT JOB NUMBER IS STORED IN CURJOB AND .C0J0OB, THIS -
IS USEFUL FOR SETTING UP PAGING FOR THE PROPER UPMP,

8), SYMBOLIC INTERPERTATION OF THE CONTENTS OF P YIELDS INFORMATION
“ABOUT WHAT THE MONITOR WAS DOING WHEN THE ERROR WAS DETECTE?:_

5
5.

p- PROCESS
TTNULPOL "USED BY THE MONITOR CYCLE |
370510 : UUQ LEVEL PUSH DOWN STACK. THIS RESIDES

IN THE CURRENT JOBS UPMP SO SET UP PAGING
PRIOR TO REFERENCING THE ST%CK ITSELF.
_ C’N’PDY CHANNEL *w’ PUSHDOWN STACK = = ..
ERRPDL USED BY THE DIE ROUTINE

9), CAN BE DETERMINED BY EXAMINING THE CODE AND < e
- CORRELATING THE PC TO THE FLOW CHARTS USED IN THE MGNITGR P
IKTERNALS COURSE-

10), NOTE THE CONTENTS OF THE STACK TO TRACE THE HISTORY DF THE
EVENTS LEADING TO THE CRASH,

RN

11), NOTE THE. ACTUAL CAUSE OF THE CRASH AFTER ANALYZING :
ALL THE INFORMATION COLLECTED UP TO THIS POINT, :THIS ANALYSIS
MIGHT DETERMINE THE EXACT CAUSE_ AND BUG FIX OR JUST SPECULATION
AS TUO wHAT ADDTIONAL IVFDRHATlON NEED BE 'KNOwN TO COME TO A FINAL
CONCLUSION,

" DECsystem=10 MONITOR INTERNALS COURSE

FILDDT Lap session # 6 : examining the running monitor

This lab session reguires you to examine portions of the data base of
the currently running moniter, particularly the FILSER data base,

To begi
t shou

simply type +R FDSYS, and when FILDDT asks "File:", the
studen respgo

?
d respond with /M, Thereafter, regular DDT commands apply.

-3
[EAS A

Use FILDDT and the Honitpr Table Descriptions to answer all the
£ollowing questions, (note: answers should consist ¢f the table name
and word label plus the data) Lo

I. FILSER data base
A. The [75,3] Jjob is reading or writing a file.
' 1. Find the PPB and follow the NMB andé UFB linkages from it,

-2, Find the UFB, what is the disk address of the UFD?

3, Find the NMB and from it £ind the access table for an active
file, (Note: You may encounter many NMB’S but only one will be
active, Inactive NMB’S usually dont point to ACC blocks, they
point back on themselves,) ,

4, what does the access taple think is being done to the file?

8, FIND TEE DDB, (That can be tougn if the JDA is not Iin core. bl
HINT: see PDB,(.PDDVL word) program is using a logical nane
for Disk ca

"t{, wnat mode is being used to read or write the file?
2. Wwhat i{s this DDst logical device name ?
3, wnat relative block numper is being accessed 7

"4, Describe the disk allocation ot the £file from its group
pointer(s). '

II.

gach?

Page 2

Disk file structures, storage allocation, etc;

A, How many file structures are on the system?

1. Their names?

2.. Number of units in each structure and physical unit name

3, Describe the active swapping list, How much swap spaée
each unit? How muech is free on each unit? :

- Be SAT blocks =-

1. How many total SAT blocks for dskb:? Hovw many in core?

2. How much space left in each SAT block?

ot

on

	0001
	0002
	0003
	0004
	01-001
	01-01
	01-02
	01-03
	01-04
	01-05
	01-06
	01-07
	01-08
	01-09
	01-10
	01-11
	01-12
	01-13
	01-14
	02-01
	02-02
	02-03
	02-04
	02-05
	02-06
	02-07
	02-08
	02-09
	02-10
	02-11
	02-12
	03-01
	03-02
	03-03
	03-04
	03-05
	03-06
	03-07
	03-08
	03-09
	03-10
	03-11
	03-12
	03-13
	03-14
	03-15
	03-16
	03-17
	03-18
	03-19
	03-20
	03-21
	03-22
	04-01
	04-02
	04-03
	04-04
	04-05
	04-06
	04-07
	04-08
	04-09
	04-10
	04-11
	04-12
	05-01
	05-02
	05-03
	05-04
	05-05
	05-06
	05-07
	05-08
	05-09
	05-10
	05-11
	05-12
	05-13
	05-14
	05-15
	05-16
	06-01
	06-02
	06-03
	06-04
	06-05
	06-06
	06-07
	06-08
	06-09
	06-10
	06-11
	06-12
	06-13
	06-14
	07-01
	07-02
	07-03
	07-04
	07-05
	07-06
	07-07
	07-08
	07-09
	07-10
	07-11
	07-12
	07-13
	07-14
	07-15
	07-16
	08-01
	08-02
	08-03
	08-04
	08-05
	08-06
	08-07
	08-08
	08-09
	08-10
	08-11
	08-12
	08-13
	08-14
	08-15
	08-16
	08-17
	08-18
	08-19
	08-20
	08-21
	08-22
	09-01
	09-02
	09-03
	09-04
	09-05
	09-06
	09-07
	09-08
	09-09
	09-10
	09-11
	09-12
	09-13
	09-14
	09-15
	09-16
	09-17
	09-18
	09-19
	09-20
	09-21
	09-22
	10-01
	10-02
	10-03
	10-04
	10-05
	10-06
	10-07
	10-08
	10-09
	10-10
	10-11
	10-12
	10-13
	10-14
	10-15
	10-16
	10-17
	10-18
	10-19
	10-20
	10-21
	10-22
	10-23
	10-24
	10-25
	10-26
	10-27
	10-28
	2_KL-0001
	2_KL-0002
	2_KL-0003
	2_KL-0004
	2_KL-001
	2_KL-002
	2_KL-003
	2_KL-004
	2_KL-005
	2_KL-006
	2_KL-007
	2_KL-008
	2_KL-009
	2_KL-010
	2_KL-011
	2_KL-012
	2_KL-013
	2_KL-014
	2_KL-015
	2_KL-016
	2_KL-017
	2_KL-018
	2_KL-019
	2_KL-020
	2_KL-021
	2_KL-022
	2_KL-023
	2_KL-024
	2_KL-025
	2_KL-026
	2_KL-027
	2_KL-028
	2_KL-029
	2_KL-030
	2_KL-031
	2_KL-032
	2_KL-033
	2_KL-034
	2_KL-035
	2_KL-036
	2_KL-037
	2_KL-038
	2_KL-039
	2_KL-040
	2_KL-041
	2_KL-042
	2_KL-043
	2_KL-044
	2_KL-045
	2_KL-046
	2_KL-047
	2_KL-048
	2_KL-049
	2_KL-050
	2_KL-051
	2_KL-052
	2_KL-053
	2_KL-054
	2_KL-055
	2_KL-056
	2_KL-057
	2_KL-058
	2_KL-059
	2_KL-060
	2_KL-061
	2_KL-062
	2_KL-063
	2_KL-064
	2_KL-065
	2_KL-066
	2_KL-A1
	2_KL-IDX1
	2_KL-IDX2
	2_KL-IDX3
	2_KL-IDX4
	3_KL_Oper-001
	3_KL_Oper-3.01
	3_KL_Oper-3.02
	3_KL_Oper-3.03
	3_KL_Oper-3.04
	3_KL_Oper-3.05
	3_KL_Oper-3.06
	3_KL_Oper-3.07
	3_KL_Oper-3.08
	3_KL_Oper-3.09
	3_KL_Oper-3.10
	3_KL_Oper-3.11
	3_KL_Oper-3.12
	3_KL_Oper-3.13
	3_KL_Oper-3.14
	3_KL_Oper-3.15
	3_KL_Oper-3.16
	3_KL_Oper-3.17
	3_KL_Oper-3.18
	3_KL_Oper-3.19
	3_KL_Oper-3.20
	3_KL_Oper-3.21
	3_KL_Oper-3.22
	3_KL_Oper-3.23
	3_KL_Oper-3.24
	3_KL_Oper-3.25
	3_KL_Oper-3.26
	3_KL_Oper-3.43
	3_KL_Oper-3.44
	3_KL_Oper-3.45
	3_KL_Oper-3.46
	3_KL_Oper-3.47
	3_KL_Oper-3.48
	3_KL_Oper-3.49
	3_KL_Oper-3.50
	3_KL_Oper-3.51
	3_KL_Oper-3.52
	3_KL_Oper-3.53
	3_KL_Oper-3.54
	3_KL_Oper-3.63
	3_KL_Oper-3.64
	3_KL_Oper-3.65
	3_KL_Oper-3.66
	3_KL_Oper-3.67
	3_KL_Oper-3.68
	4_scheduler-000
	4_scheduler-001
	4_scheduler-002
	4_scheduler-003
	4_scheduler-004
	4_scheduler-005
	4_scheduler-1.01
	4_scheduler-1.02
	4_scheduler-1.03
	4_scheduler-1.04
	4_scheduler-2.01
	4_scheduler-2.02
	4_scheduler-2.03
	4_scheduler-2.04
	4_scheduler-2.05
	4_scheduler-2.06
	4_scheduler-2.07
	4_scheduler-2.08
	4_scheduler-3.01
	4_scheduler-3.02
	4_scheduler-3.03
	4_scheduler-3.04
	4_scheduler-3.05
	4_scheduler-3.06
	4_scheduler-3.07
	4_scheduler-3.08
	4_scheduler-3.09
	4_scheduler-3.10
	4_scheduler-3.11
	4_scheduler-3.12
	4_scheduler-3.13
	4_scheduler-3.14
	4_scheduler-3.15
	4_scheduler-3.16
	4_scheduler-3.17
	4_scheduler-3.18
	4_scheduler-3.19
	4_scheduler-3.20
	4_scheduler-3.21
	4_scheduler-3.22
	4_scheduler-4.01
	4_scheduler-4.02
	4_scheduler-4.03
	4_scheduler-4.04
	4_scheduler-4.05
	4_scheduler-4.06
	4_scheduler-4.07
	4_scheduler-4.08
	4_scheduler-4.09
	4_scheduler-4.10
	4_scheduler-4.11
	4_scheduler-4.12
	4_scheduler-4.13
	4_scheduler-4.14
	4_scheduler-4.15
	4_scheduler-4.16
	4_scheduler-4.17
	4_scheduler-4.18
	4_scheduler-5.01
	4_scheduler-5.02
	4_scheduler-5.03
	4_scheduler-5.04
	4_scheduler-5.05
	4_scheduler-5.06
	4_scheduler-6.01
	4_scheduler-6.02
	4_scheduler-6.03
	4_scheduler-6.04
	4_scheduler-6.05
	4_scheduler-6.06
	4_scheduler-6.07
	4_scheduler-6.08
	4_scheduler-7.01
	4_scheduler-7.02
	4_scheduler-7.03
	4_scheduler-7.04
	4_scheduler-7.05
	4_scheduler-7.06
	5_diskIO-000
	5_diskIO-001
	5_diskIO-002
	5_diskIO-003
	5_diskIO-004
	5_diskIO-005
	5_diskIO-006
	5_diskIO-007
	5_diskIO-008
	6_labs_001
	6_labs_002
	6_labs_003
	6_labs_004
	6_labs_005
	6_labs_006
	6_labs_007
	6_labs_008
	6_labs_009
	6_labs_010
	6_labs_011
	6_labs_012
	6_labs_013
	6_labs_014
	6_labs_015
	6_labs_016
	6_labs_017
	6_labs_018
	6_labs_019
	6_labs_020

