
TECHNICAL SUMMARY ~D~DDmD

DECsystem

The information in this document is subject to change without notice and should
not be construed as a commitment by Digital Equipment Corporation. Digital
Equipment Corporation assumes no responsibility for any errors that may appear
in this document.

Digital Equipment Corporation makes no representation that the interconnection
of its products in the manner described herein will not infringe on existing or future
patent rights, nor do the descriptions contained herein imply the granting of li­
cense to make, use, or sell equipment constructed in accordance with its
description.

The software described in this document is furnished under a license for use only
on a single computer system and can be copied only with the inclusion of
DIGITAL's copyright notice. This software, or any other copies thereof, may not
be provided or otherwise made available to any other person except for use on
such system and to one who agrees to these license terms. Title to and owner­
ship of this software shall at all times remain in Digital Equipment Corporation.

Digital Equipment Corporation assumes no responsibility for the use or reliability
of its software on equipment that is not supplied by DIGITAL.

DEC, DECnet. DECsystem-10, DECSYSTEM-20, DECtape,
DECUS, DECwriter, DIBOL, Digital logo, lAS, MASSBUS, OMNIBUS,

PDP, PDT, RSTS, RSX, SBI, UNIBUS, VAX, VMS, VT
are trademarks of

Digital Equipment Corporation

Copyright (C;;, 1981, Digital Equipment Corporation
All rights reserved.

Marlborough, Massachusetts 01752

INTRODUCTION

2 SYSTEM OVERVIEW
Components . . 2-1
Processors. .2-1
The Operating System . 2-2
RELIABILITY. . 2-4
System Availability. . 2-4
Availability Reporting. . 2-5
System Integrity . .2-5
System Recovery . 2-6
Error Reporting. .2-6

3 THE USERS
THE APPLICATION PROGRAMMER. .3-1
The Programming Languages. .3-1
Application Tools. .3-1
Database Management. .3-1
Data Definition . .3-2
Data Manipulation .3-2
Data Base Utilities . .3-2
Message Control System (MCS-10). .3-2
THE SYSTEM PROGRAMMER. .3-3
THE SYSTEM MANAGER .3-3
User Authorization . .3-3
Privileges .3-3
Allocating Disk Storage Quotas . .3-4
Controlling Resources .3-4
Scheduler Controls. . 3-4
Resource Accounting Statistics. . 3-4
Performance Analysis Statistics. . 3-4
THE SYSTEM OPERATOR. . 3-4
Operator Interface . .3-5
Controlling Batch Streams .3-5
System Recovery .3-5
System Backup .3-5
USER UTILITIES. .3-5

4 THE OPERATING SYSTEM
INTERACTIVE TIMESHARING . .4-1
BATCH PROCESSING. . 4-2
The Input Spooler .4-3
The Batch Scheduler. .4-3
The Queue Manager. .4-3
The Output Spooler . 4-3
Flexibility. . 4-3
Job Dependency. .4-3
Error Recovery. .4-3
Operator Intervention. .4-4
REAL-TIME: COMPUTING . .4-4

5

The
Contents

Locking Jobs. .4-4
Real-Time Devices. .4-4
High-Priority Run Queues. .4-5
COMMAND LANGUAGE . .4-5
THE FILE SYSTEM .4-6
File Handling . .4-6
File Structures . .4-7
File Protection . .4-8
Disk Quotas . .4-8
File Operations. .4-8
Disk Storage Management . .4-8
THE SCHEDULER. .4-8
SMP Scheduling . .4-9
THE SWAPPER . 4-10
THE UUO HANDLER. 4-10
THE INPUT/OUTPUT ROUTINES. 4-11
MEMORY MANAGEMENT. 4-12
Virtual Memory. 4-12
INTER-PROCESS COMMUNICATION FACILITY (lPCF). 4-13
COMMUNICATION SOFTWARE. . 4-13
CONSOLE FRONT-END PROCESSOR AND SOFTWARE4-13
Console Functions . 4-14
Command Terminal Functions 4-14
Peripheral Interface 4-14
Diagnostic Maintenance Functions 4-14

THE KL 10 CENTRAL PROCESSOR
SYSTEM ARCHITECTURE. .5-1
Execution Box (E-Box) . .5-4
Instruction Set . .5-5
Instruction Format . .5-5
Half-Word Data Transmission . .5-6
Full-word Data Transmission .5-6
Byte Manipulation .5-6
Logic Instructions .5-6
Fixed-Point Arithmetic .5-6
Floating-Point Arithmetic .5-6
Fixed-Floating-Point Conversion. .5-6
Arithmetic Testing .5-6
Logical Testing, Modification, and Skip .5-6
Program Control . .5-6
Input/Output Operations .5-6
Unimplemented User Operations (UUOs) .5-7
Business Instruction Set .5-7
Trap Handling . .5-7
Fast Register Blocks . .5-7
Programmable Address Break .5-7
Meters. .5-7
Priority Interrupt System .5-7
Multiplexed I/O Bus .5-8

Memory Subsystem . .
Physical Memory. ..
External Memory KL 10-0
Internal Memory KL 1 O-E .
MOS Memory .
Cache Memory. .. .
Organization.. .. .
System Control of Cache .
Memory Mapping on the KL 10
Front-End Subsystem
Input/Output Subsystem
Multiplexed I/O Bus . .
Multiplexed Memory Bus Subsystem
MASSBUS.
UNIBUS.

6 THE KS10 CENTRAL PROCESSOR
SYSTEM ARCHITECTURE.
KS10 Technology ..
The KS10 Central Processing Unit
Cache Memory. .
General Registers
Microstore .
Instruction Set .
Half-Word Data Transmission.
Full-Word Data Transmission .
Byte Manipulation
Logic Instructions
Fixed-Point Arithmetic
Fixed-Floating Conversion
Arithmetic Testing
Logical Testing, Modification,and Skip.
Program Control.
Business Instruction Set
Trap Handling .
Fast Register Blocks.
Processor Modes
Memory.
Memory Address Mapping
TOPS-10 Paging
MOS Memory.
MS10 Reliability, Availability, Maintainability, and

Performance Features
Console Subsystem

7 THE PERIPHERALS
COMPONENTS .
Processor I/O Subsystems
Mass Storage Peripherals
Disks ..
RM03 Disk Pack Subsystem (KS system only).
RP06 Disk Pack Subsystem (KS and KL systems).
RTP20 Disk Subsystem (KL systems only)
Tape Devices
TU72 Series Magnetic Tape System
TU77 Magnetic Tape System.
Unit-Record Peripherals
LP20-A and -B Lineprinters
LP20-C and -0 Lineprinters .
LP100 Lineprinters (1090 systems only) .
LP200 Lineprinters (1091 systems only) .
Card Readers .
PC10/20 Paper Tape Reader/Punch
Terminals and Interfaces.
LA 120 Hard-Copy Terminal.
LA38 Hard-Copy Terminal
VT100 VIDEO TERMINAL
COMMUNICATION HARDWARE.
DZ11 Terminal Line Interface (KS and DN25 systems) .

. 5--8

.5--8

. 5-9

.5-9
5-10
5-10
5-11
5-12
5-12
5-13
5-14
5-15
5-15
5-15

. 5-16

. 6-1

. 6-1

.6-1

.6-2

.6-2

. 6-3

.6-3

. 6-3

. 6-3

. 6-3

.6-3

. 6-3

.6-3

. 6-3

.6-3

.6-3

. 6-4

.6-4

.6-4

.6-4

.6-4

. 6-4

. 6-5

. 6-5

.6-5

. 6-6

. 7-1

. 7-1

. 7-1

. 7-1

.7-1

.7-2

. 7-2

.7-2

.7-3

.7-3

.7-4

.7-4

.7-5

.7-5

.7-5

.7-6

.7-6

.7-6

.7-7

.7-8

.7-8

.7-9

.7-9

iv

DL 11 Serial line Asynchronous Interfaces .
DUP11 Single Synchronous line Interface

(KS systems only).
KMC11-A AUXILIARY PROCESSOR (KS system only)
DN20 Communications Front End.
DN200 Remote Station.

8 THE LANGUAGES
TOP8-1 0 Assembler.
FORTRAN ...
Language Extensions.
Optimization .
Debugging Tools.
COBOL.
Data Types ..
String Manipulations
Interactive COBOL Execution.
File Organization .
LIBRARY Facility .
CALL Facility.
On-line Debugger
Source Program Input
RERUN .
COBOL-68 and COBOL-74
BASIC-10 .
ALGOL-10 .
Block Structure .
Procedures
Compiler and System Features .
OWN Variables
Switches .
String Constants .
Object-Time System
APL .
Data Structures
Interacting with APL
System Commands and I-Beam Functions
Statements
APL Statement Execution .
Debugging Tools .
Works paces .
File Organization.
Error Analysis and Recovery
Conversion Package .
BLlSS-36 .
Compiling.
Debugging
File Organization .
Compatibility with Other Languages .
CPL .
Immediate Mode.
Program Creation
Debugging .

9 DATA MANAGEMENT AND APPLICATION PRODUCTS

.7-9

.7-9

.7-9
7-10
7-10

.8-1

.8-1

.8-2

.8-2

.8-2

.8-3

.8-3

.8-3

.8-3

.8-4

.8-4

.8-4

.8-4

.8-4

.8-4

.8-4

.8-5

.8-5

.8-6

.8-6

.8-6

.8-6

.8-6

.8-6

.8-6

.8-7

.8-7

.8-7

.8-7

.8-8

.8-8

.8-8

.8-8

.8-8

.8-8

.8-8

.8-8

.8-9

.8-9

.8-9

.8-9

.8-9

.8-9

.8-9
8-10

DBMS. .9-1
CODASYL Compliance. . 9-1
Data Description Process. . 9-1
Data Manipulation Process . . 9-1
DBMS Modules . 9-1
DBMS Utilities . . 9-1
IQL . .9-2
Interactive Mode . . 9-2
Deferred Mode. . 9-3
IQL Statements . 9-3
DBMS Files . . 9-3
Report Formatting . 9-3
SORT/MERGE. .9-3
COG0-10. .9-3
PCS-10 . .9-4

10 COMMUNICATIONS
Network Concepts . .
Data Transmission Techniques.
Serial Data Transmission. . .
Asynchronous Transmission
Synchronous Communications
TOPS-1 0 Network Protocols .
COMMUNICATIONS PRODUCTS
TOPS-10 Networks . . .
TOPS-10 2780/3780 ET .
DECnet-10

11 SUPPORT SERVICES
Installation.
Software Services . . .
Software Warranty. . .
Software Product Services
Professional Services.
Educational Services .
Course Options . .
TOP8-1 0 Courses.
Hardware Services .
Customer Financing
Accessories and Supplies Group
Computer Supplies.
Customer Spares
DECUS

THE GLOSSARY

INDEX

FIGURES
Interrelationship of TOPS-10 Modules.
GALAXY Batch Software. . . .
KL 10-0 Central Processing Unit . . .

10-1
10-2
10-2
10-2
10-2
10-2
10-2
10-3
10-3
10-5

11-1
11-1
11-1
11-1
11-2
11-2
11-2
11-3
11-4
11-4
11-5
11-5
11-5
11-5

. 2-5

. 4-2

.5-1

v

KL 1 0-E Central Processor Unit. . .
KL 1 0-D/E Mechanical Configuration
Instruction Formats.
External Memory.
Internal Memory
MH10 Memory Interleaving Concept.
Internal Memory Systems Configuration .
Cache Organization
Cache Page Structure
Cache Entry.
Memory Mapping. . .
Front-end Subsystem.
KL 10 Input/Output Bus Architecture.
Multiplexed 1/0 Bus Architecture
KL 10-0 Memory Bus Structure .
MASSBUS Interface
UNIBUS Interface
KL 10-0 Unibus and 1/0 Bus Peripheral Devices.
KL 1 0-E Unibus and 1/0 Bus Peripheral Devices.
KS10 System Architecture
KS10 Instruction Format
KS10 Console Subsystem
TOPS-10 Communication Products.
Sample NETWORKITOPOLOGY Command.
Complex Topology.
TOPS-10 Courses.

TABLES
File Protection Scheme.
Processor Modes . . .
External Memory System MH10.
Internal Memory Systems.
Disk Devices.
Tape Devices
COBOL-74 Support Levels .
IQL Ad Hoc Reporting . . .

.5-2

.5-3

.5-6

.5-8

.5-8

.5-9
5-10
5-11
5-11
5-12
5-12
5-13
5-14
5-15
5-15
5-16
5-17
5-18
5-18
.6-2
.6-3
.6-6
10-1
10-1
10-4
11-3

.4-6

.5-5

.5-9
5-10
.7-1
.7-3
.8-4
.9-2

1
Introduction

The DECsystem-10 Technical Summary introduces the characteristic features
and capabilities of the DECsystem-10 to computer analysts and system pro­
grammers. Application programmers, system managers, and system opera­
tors may also use this summary as a tool to become familiar with the
components, services, and operations of the DECsystem-10.

This technical summary is a detailed introduction to all
aspects of the DECsystem-10 system - from the
DECsystem-10 processors and peripherals devices to
the TOPS-10 operating system and DIGITAL's sup­
port services. The technical summary is primarily in­
tended for the system programmer and computer
system specialists who are already familiar with com­
puter hardware and software. However, it contains
useful information for application programmers, sys­
tem managers, and system operators.

You are encouraged to read this technical summary
selectively. Many of the system's concepts and fea­
tures are repeated throughout the text in different con­
texts. You might first skim through the summaries to
find those topics that interest you most, perhaps by
reading just the abstracts that appear at the beginning
of each section. You can then start with the sections of
interest, knowing which section to refer to when you

. come across references to concepts discussed
elsewhere.

If you are familiar with computer industry terminology

1-1

and simply want an overview of the DECsystem-10
features, you should read THE SYSTEM section. This
section briefly describes the DECsystem-10 charac­
teristics and introduces features of the system that are
described in detail throughout the remainder of the
technical summary.

Some people may find it more helpful to begin with
THE USERS section. This section introduces many of
the aspects of the system that support application pro­
gramming, application tools, system progamming,
system management, and operator control.

If you are an application programmer, you will find the
sections on high-level languages, data management,
and application products provide an in-depth discus­
sion on the system's characteristics and capabilities.

Finally, if you are considering obtaining a
DECsystem-10 or have a system now, you should
read the SUPPORT SERVICES section to become fa­
miliar with the kinds of services DIGITAL makes avail­
able to its computer system users.

2
System Overview

The DECsystem-10 is a multipurpose system. It provides a wide range of
computing versatility and power combined with exceptional reliability and effi­
ciency. The system has built-in protection mechanisms in both the hardware
and software to ensure data integrity and system availability. On-line diagnos­
tics and error detection and logging verify system integrity. Many hardware
and software features provide rapid diagnosis and automatic recovery should
the power, hardware, or software fail.

The central processor is based on a 36-bit architecture. The processor's in­
struction set is implemented in microcode. All instructions are capable of di­
rectly addressing 256K words of memory without resorting to base registers,
displacement addressing, or indirect addressing. The instruction set includes
a large number of operation codes. These codes designate the operation to
be performed and allow for a full range of operating system functions.

The operating system that runs on the DECsystem-10 is called TOPS-10.
TOPS-10 is easy to use, and provides a highly reliable virtual memory, multi­
purpose operating system. TOPS-10 contains the features to support full­
language timesharing for program development and various types of
interactive and terminal-oriented applications, plus a full capability, multipro­
gram batch system.

TOPS-10 is both flexible and extendable. Virtual memory features enable the
programmer to write large programs that can execute in both small and large
memory configurations without requiring the programmer to define overlays or
later modify the program to take advantage of the additional memory.

The DECsystem-10 is a state-of-the-art hardware and software system. It
serves interactive timesharing users and performs multiprogramming batch
processing simultaneously. Because of the DECsystem-10 versatility, it can
be used for a variety of applications, such as:

• Commercial applications, which require decimal arithmetic, variable length
fields, and editing capabilities along with data integrity, system operation,
and high throughput

• Scientific applications, which require larger storage capacity and high­
speed computational capabilities

• Communications, which require a large number of communication terminals
and fast response

The design of the DECsystem-10 is open-ended. This design permits the
DECsystem-10 to be easily expanded to incorporate new features, devices,
and technology.

The DECsystem-10 offers system compatability. This characteristic permits
programs that run on one version of the TOPS-10 operating system to oper­
ate on subsequent versions of the operating system without any program
changes.

The DECsystem-10 allows for a variety of 1/0 devices to be connected to the
system. The hardware features integrated high-speed data channels and
mass storage controllers for disk drives and magnetic tapes.

COMPONENTS
The following are the components that make up the
DECsystem-10:

• Processors - includes two models of CPUs that
run the TOPS-10 operating system; the KS10 and
the KL ~ O. Both processors use the same instruction
set and support MOS memory.

• Peripherals - includes a wide variety of small and
large capacity disk drives, magnetic tape systems,
hard copy and video terminals, line printers, card
readers, a paper-tape-punch/reader, and a plotter.

• Operating System - includes a virtual memory
manager, command interpreter, scheduler,
swapper, monitor call handler, file handler, system
services, device drivers, and operator's and system
manager's tools.

• Languages - includes DECsystem-10 MACRO as­
sembly language and optionally FORTRAI\I-10,
COBOL-68 and -74, ALGOL-10, APL-10, CPL,
BLlSS-36, and BASIC. Development tools for pro­
grams include editors, linkers, and debuggers.

• Data Management Tools - includes DBMS soft­
ware and IQL software.

• Communications - includes DECnet-10 network
software, ANF-10 software, and 2780/3780 emula­
tion and termination.

Processors
The KL 10 and KS 10 CPUs form the basis of the
DECsystem-10 computer systems. Both CPUs pro­
vide 36-bit addressing, eight sets of 16 general pur­
pose registers, and seven priority interrupt levels" Both
CPUs feature a microprogrammed instruction set ca­
pable of directly addressing 256K words.

The KL 10 and KS10 CPUs support cache memory.
The cache memory implementation for the KL 10 is
2048 words. The cache memory implementation for
the KS10 is 512 words. Cache memory is used to
provide a faster effective memory access time.

Both the KL 10 and KS10 support KLiNIK, which is the
remote diagnosis capability. DIGITAL Field Service
Engineers can examine memory without interfering
with the normal operation of the system.

The KL 10 has a PDP-11 based Console/Diagnostic
Front-End processor. The front-end processor plays a
key role in the operation and maintenance of the KL 10
processor. The front-end processor provides all con­
sole functions for the KL 10 and the TOPS-10 opera­
ting system.

The KS10 has an 8-bit microprocessor for a console.
The KS 10 console is an extremely important subsys­
tem because it performs all console and diagnostic

2-1

functions. To allow programming of the console, an 8K
Programmable Read-Only Memory (PROM) and 1 K of
Random Access Memory (RAM) are provided.

Two KL 10 processors can be configured as a
Symmetric Multi-Processor System. Symmetric Multi­
Processing (SMP) provides improved system availa­
bility and performance over other types of dual­
processor systems. SMP configurations may have up
to 175 active jobs and 512 dedicated application ter­
minals. With SMP, input/output devices can be con­
nected to both CPUs; thus, if one CPU fails, the
system can dynamically reconfigure to the opera­
tional CPU.

SMP systems, fully supported by the TOPS-10 opera­
ting system, offer attractive, economical solutions for
increased reliability, availability, and performance. In
these configurations, two processors share the work­
load on an almost equal basis. The processor on
which the monitor is loaded is called the "boot" or
"policy" CPU. This CPU has slightly more responsibil­
ity than the other CPU because it performs command
decoding, swapping decisions, and a small number of
other tasks. In all other respects, each CPU in a mul­
tiprocessing system is equivalent to the other. This
symmetry includes processing operating system calls
and performing I/O.

In an SMP configuration, it is possible for any CPU in
the system, including the policy CPU, to fail without
causing the system as a whole to fail. If the policy
CPU fails, the other CPU notices that it has failed, and
automatically assumes the responsibility of the policy
CPU. If the CPU failure is corrected, the CPU can be
restarted without the necessity of reloading the entire
system. In addition, if the peripheral devices are ap­
propriately dual-ported, portions of the system can be

logically and physically removed for preventive main­
tenance. It should be noted that multiprocessor sys­
tems offer much more than a performance increase.
They also offer significant advantages in the areas of
increased reliability and availability.

The Operating System
TOPS-10 allows a large number of users to be en­
gaged in diverse applications involving many different
programs and languages. The TOPS-10 operating
system is designed for many applications, including
computation, data, transaction, and batch processing.

TOPS-10 is designed for timesharing and concurrent
batch, real-time, and remote communications in either
a single or SMP configurations. TOPS-10 services in­
teractive users, operates local and remote batch sta­
tions, and performs data acquisitions and control
functions for on-line applications and other real-time
projects. By dynamically adjusting system operation,
TOPS-10 provides many features for each class of
user and is therefore able to meet a large variety of
computational requirements.

The TOPS-10 operating system allows interactive
users to take maximum advantage of the timesharing
environment. The system allows many independent
users to share the facilities of the system simulta­
neously. Because of the interactive, conversational,
and rapid response nature of timesharing, a wide
range of tasks, from solving simple mathematical
problems to implementing complete and complex in­
formation gathering and network processing, can be
performed by the user. The number of users allowed
on the system at anyone time depends on the system
config u ration.

By allowing resources to be shared among users, the
timesharing environment utilizes processor time and
system resources that are wasted in single-user sys­
tems. Users are not restricted to a small set of system
resources, but instead are provided with a full variety
of facilities. By interacting with a terminal, the user has
on-line access to most of the system's features. This
on-line access is available through the operating sys­
tem's command language, which is the means by
which the timesharing user communicates with the
computer system.

Through the command language, users control the
running of their jobs to achieve the results they desire.
Users can create, edit, and delete their files; start, sus­
pend, and terminate their jobs; compile, execute, and
debug their programs. In addition, since multiprogram­
ming batch software accepts the same command lan­
guage as the timesharing software, any user can enter
a job into the batch run queue. Thus, any timesharing
terminal can act as a remote job entry terminal.

2-2

Timesharing under TOPS-10 is designed in such a
way that the command language, input/output pro­
cessing, file structures, and job scheduling are inde­
pendent of the programming language being used. In
addition, standard software interfaces make it easy for
the user to develop his own special language or sys­
tems. The general purpose approach is demonstrated
by the many programming languages implemented by
DECsystem-10 customers.

TOPS-10 provides a flexible, easy-to-use, and power­
ful batch processing system. The batch system in­
cludes input spoolers, batch-stream controllers, queue
manager, scheduler, and output spoolers. Batch jobs
can be initiated and monitored from any terminal, or
they can be automatically submitted by the system at
a specific time.

The TOPS-10 batch software employs many of the
system's features in order to operate with maximum
efficiency. Because memory is not partitioned
between batch and timesharing jobs, batch jobs can
occupy any available memory. Fast throughput for
high-priority batch jobs is accomplished by the same
swapping technique used for rapid response to in­
teractive users. When available memory is not large
enough for a high-priority batch job, TOPS-10 trans­
fers lower priority jobs to secondary storage in order to
make room for the high-priority job. Batch jobs can be
designated as "background batch" so they become a
lower priority than any other jobs on the system. If any
other job needs memory occupied by a background
batch job, TOPS-10 transfers the background batch
job to secondary storage. This input/output transfer is
done at the same time the processor is working on
another job. Thus, processing can be overlapped to
utilize time that would otherwise be wasted. Batch
jobs can also share programs with timesharing and,
other batch jobs. Only one copy of a sharable program
need be in memory to service any number of batch
and timesharing jobs at the same time.

Although batch jobs are entered sequentially into the
batch system, they are not necessarily run in the order
that they are read because of priorities, either set by
the user or computed by the system when determining
the scheduling of jobs. Occasionally, the user may
wish to submit jobs that must be executed in a particu­
lar order; in other words, the execution of one job is
dependent on another. To ensure that jobs are exe­
cuted in the proper order, the user must specify an
initial dependency count for any job that is dependent
upon another submission to the batch system. During
the execution of the job on which the dependent job4
depends, the dependency count may be modifieo
When the dependency count equals zero, the depen­
dent job is executed.

Programs in the batch system require little or no oper­
ator intervention. However, the operator can exercise
a great deal of control if necessary. He can specify the
number of system resources to be dedicated lto batch
processing by limiting the number of programs and
both the memory and processor time for individual
programs. He can stop, continue, abort, cancel, re­
queue, and modify its priority at any point. By examin­
ing the system queues, he can determine the status of
all batch jobs.

The TOPS-10 Inter-Process Communication Facility
(IPCF) provides the capability for jobs to communicate
with one another. For example, if several programs
are involved in processing or maintaining a data base,
it is possible that one program might want to inform
other programs of any modifications it made to the
data. A job using the IPCF facility cannot make any
changes to another job, so protection is in no way
sacrificed when using this facility.

TOPS-10 allows for simultaneous operation of multi­
ple remote stations. Software provisions are incorpo­
rated into the operating system to differentiate one
remote station from another. By utilizing peripheral de­
vices at various stations, the user is provided with in­
creased capabilities. For example, data can be
collected from various remote stations, compilled and
processed at the central computer, and then the re­
sults of the processing can be sent back to the remote
stations.

Remote station use of the central computer is essen­
tially the same as local use. All sharable programs and
peripherals available to local users at the central com­
puter are also available to remote users. The remote
user specifies the resources he wants to use and, if
available, these resources are then allocated to the
remote user in the same manner as to a local user. In
addition to utilizing the peripheral devices at the cen­
tral computer, the remote user can access devices
located at his location or at another remote station.
Local users can also make use of the peripheral de­
vices at remote stations. Therefore, by specifying the
station number in appropriate commands to
TOPS-10, each user is given considerable flexibility in
allocating system facilities and in directing input and
output to the station of his choice.

The TOPS-1 0 operating system is made up of a num­
ber of separate, independent, yet interrelated mod­
ules. Some of these routines are cyclical in nature and
are repeated at every system clock interrupt to ensure
that every user of the computing system is receiving
the requested services in a timely fashion. These cy­
clic routines are:

2-3

• The Command Processor

• The Scheduler

• The Swapper

The Command Processor is the communications link
between the user and the operating system. Because
all requests for system resources are initiated through
the Command Processor, it is the most visible part of
the system to the user. When the user gives com­
mands from an interactive terminal or from a batch
control file, the characters are stored in an input buffer
in the operating system. The Command Processor ex­
amines these characters in the buffer, checks them for
correct syntax, and invokes the resource as specified
by the command.

The Scheduler is responsible for deciding which user
(or users in a dual-CPU SMP configuration) job(s)
should run at any given time. In addition, the
Scheduler allocates shareable system resources, and
saves and restores conditions needed to restart a pro­
gram that has been previously suspended.

The TOPS-10 operating system employs a technique
whereby jobs can exist on a secondary storage de­
vice, such as disk, as well as in memory. Therefore
the scheduler decides not only what job is to be run
next, but also notifies the Swap per when a job is to be
swapped out onto disk.

All jobs in the system are retained in ordered groups
called queues. These queues have various priorities
that reflect the status of each job at any given
moment. The queue in which a job is placed depends
on the system resource for which it is waiting; and,
because a job can wait for only one resource at a
time, it can be in only one queue at a time.

The Swapper is responsible for keeping the jobs'most
likely to be run in memory. It determines if a job should
be in memory by scanning the various queues in
which a job may be. If the Swap per decides a job
should be brought into memory, it may have to take
another job already in memory and transfer it to sec­
ondary storage. Therefore the Swapper is not only re­
sponsible for bringing the job(s) into memory, but is
responsible for selecting the job(s) to be swapped out
of memory.

The noncyclic routines of the TOPS-1 0 operating sys­
tem are invoked only by user programs or TOPS-10
monitor requirements and are responsible for provid­
ing these programs with the services available through
the operating system. The noncyclic routines are:

• The UUO handler

• The Input/Output routines

• The file handler

The UUO handler (A UUO is an operating system call
for I/O or other services) is the means by which a
program communicates with the operating system in
order to have a service performed. Because of the
multitask design of TOPS-10, there are certain func­
tions that can only be performed by the operating sys­
tem to prevent user conflict and provide significant
advantages in the ease of I/O programming. Commu­
nication between the user and the operating system is
by way of these programmed operators (UUOs) con­
tained in the user program which, when encountered,
transfer control to the operating system for
processing.

The Input/Output routines are the modules responsi­
ble for directing data transfers between peripheral de­
vices and user programs in memory. Since all I/O is
performed by the operating system (except in special
real-time applications), the user is freed from the re­
sponsibility of fully understanding the detailed opera­
tion of a given device, and must only conform to a
data and command protocol within the operating
system.

The file handler adds permanent user storage to the
computing system by allowing users to store programs
and data as named files. To access these files, the
user need only specify the file name and user identifi­
cation. The operating system is responsible for all
physical placement of these files. The user never
need know where on the storage media these files are
located.

These operating system modules interface and com­
municate to one another through a precisely defined
scheme of hardware and software interrupts, and
monitor traps. Figure 2-1 provides a broad overview
of the interrelationships between the various modules
of the TOPS-10 operating system.

Users of TOPS-1 0 have a wide selection of communi­
cations capabilities to enhance or facilitate their com­
puting needs. Communications functionality has
always been an integral part of the TOPS-10 opera­
ting system. With its emphasis on interactive, mUlti­
mode computing, user access to the features and
functionality of the operating system has always been
an important design consideration of any
implementation.

Within the multitask environment of TOPS-10, the fol­
lowing functionality exist:

• Asynchronous communication - for interactive
timesharing, program development and debugging,
data entry, and others

• Synchronous communication - for connection of
remote batch, remote terminal concentration, and
computer-to-computer links

2-4

Within the TOPS-10 environment, the operating sys­
tem, not the user, handles the communications house­
keeping, and all communication functions are fully
supported within the operating system itself. Appropri­
ate synchronous line protocols, DIGITAL's own
DDCMP, for interfacing to other DIGITAL products,
and BISYNC for interfacing to non-DIGITAL products
are supported.

Users may configure networks with simple or complex
topologies utilizing several families of communications
front-end processors, remote batch stations, remote
terminal concentrators, and combination remote
batch/terminal concentration products. These prod­
ucts feature functionality throughout a wide spectrum
of communication needs.

Additional details concerning TOPS-10-based com­
munication products are discussed in Section 10 of
this document.

RELIABILITY
Built-in reliability features for both hardware and soft­
ware provide data integrity, increased uptime, and fast
system recovery from power, hardware, or software
failures. Some of the reliability features are discussed
in the following paragraphs.

System Availability
The TOPS-10 operating system allows the hardware
system to continue running even though some of the
hardware components have failed. The system auto­
matically determines the presence of peripheral de­
vices on the system when the system is started. If the
usual system bootstrap device is unavailable, the sys­
tem can be bootstrapped from another disk drive or
from magnetic tape. If memory units are defective,
memory is configured so that defective modules are
not referenced. Software spooling allows output to be
generated even if the normal output devices are not
available.

The system operator can perform software mainte­
nance activities without bringing the system down for
stand-alone use. The operator can perform disk
backup and restore procedures for all files on the sys­
tem or for just a single file concurrent with normal
activities .

The TOPS-10 operating system supports on-line pe­
ripheral diagnostics. TOPS-10 performs on-line log­
ging of CPU errors, peripheral device errors, and I

software failures. The operator or field service engi­
neer can examine and analyze the error log file while
the system is in operation.

r
I

~ - - -

OTHEH
DEVICES

FILE

- - -....,

~INPUT-OUTPUT
ROUTINES

I

I

.J

t-------1 HANDLER

.- - - -

VIRTUAL
MEMORY
SERVICE
ROUTINE

....,

I
CYCLIC

r-- ROUTINES

I

I

L __________ _ ___________ ..J

MR-S-1226-81

Figure 2-1
Interrelationship of TOPS-10 Modules

Availability Reporting
The TOPS-10 operating system maintains a disk file
containing the times and reasons for system reloads.
A program can be run periodically to read this file and
generate reports on system availability. These reports
provide information pertaining to the overall system
availabilty and probability of completing jobs of certain
duration.

System Integrity
If system power fails, a power failure detection circuit
senses the condition and causes an interrupt. The in­
terrupt triggers the operating system to save all valu­
able registers so that the system can be restarted in a
minimum amount of time.

2-5

On the KL 10, through the PDP-11 console computer,
an automatic restart capability has been added to re­
sume normal operations in the event of a power fail­
ure. All three phases of AC power are monitored. Low
voltage on any phase initiates a sequence of power­
down operations. A program-selectable automatic re­
start capability is provided to allow resumption of
operations when power returns. Alternatively, a man­
ual restart may be used.

Temperature sensors strategically placed within the
system, detect high-temperature conditions and cause
power shutdown. This, in turn, initiates the power fail­
ure interrupt.

System Recovery
Automatic system restart facilities attempt to bring up
the system without operator intervention after a sys­
tem failure caused by a power interruption, a machine
check hardware malfunction, or a fatal software error.
TOPS-10 automatically performs machine checks
and internal software conSistency checks during sys­
tem operation.

TOPS-10 remote diagnosis allows DIGITAL Field Ser­
vice Engineers to run diagnostics, examine memory
locations, and diagnose problems from a remote ter­
minal. The field service engineer who goes to the site
is prepared in advance to correct any problems that
might have occurred.

Error Reporting
TOPS-10 provides an extensive error detection and
recovery package to ensure maximum system availa­
bility to the user. It also provides complete error re­
porting facilities for DIGITAL Field Service and
Software Support personnel, and the customer's oper­
ation staff.

2-6

When an error is detected, TOPS-10 gathers all perti­
nent hardware and software information, including
whether the error is recoverable, invokes the recovery
procedure, and adds this information to a disk file for
storage. Later, a program (SYSERR) may be run to
read this file and generate reports concerning the en­
tire system or individual items. Additionally, significant
operational events, such as system reloads and
changes in the system configuration, are recorded to
assist the operation staff in monitoring system
performance.

On a periodic basis field service engineers gather
summary information from the error log file and can
detect indications of potential problems. Detailed re­
ports about specific errors frequently allow diagnosis
of a problem without having to run exhaustive diag­
nostics in stand-alone mode.

The error file can be backed-up on magnetic tape to
provide a complete history of system operation and
quickly pinpoint slowly degrading portions of the sys­
tem long before serious problems occur.

3
The Users

;~

The DECsystem-10 consists of hardware and software that allows the user to
run a variety of programs efficiently and conveniently. The system as a whole
is designed to execute many different kinds of jobs concurrently.

The DECsystem-10 provides a complete program development environment.
In addition to the native assembly language, it offers optional high-level pro­
gramming languages commonly used in developing scientific and commercial
applications. It also offers the implementation language BLlSS-36 for system
programming applications. The DECsystem-10 provides the tools necessary
to write, assemble, or compile and link programs, as well as build libraries of
source and object modules.

The system's users are those people who interact with applications or system
jobs at an on-line terminal, or who benifit from production batch jobs. These
users can control the operation of the system through the TOPS-10 Opera­
ting System command language. This command language is used by system
programmers to develop application software, by operators to monitor the
system, and by system managers to control resources of the system.

The TOPS-10 operating system takes maximum advantage of system
throughput capabilities, allowing many independent users to share system
facilities simultaneously. Its rapid-response nature makes it particularly well
suited for a wide range of tasks.

This section looks at the system from four different usage perspectives:

• Application Programmers
• System Programmers
• System Managers
• System Operators

THE APPLICATION PROGRAMMER
The application programmer can write, compile, edit,
and test programs both interactively and in batch
mode. As an interactive user, the application program­
mer can control the running of a program; create, edit,
and delete data; compile, execute, and debug pro­
grams; request assignment of peripheral devices such
as magnetic tapes; and make use of all system fea­
tures from a terminal. As a batch user, the application
programmer can submit a job into the system using a
card deck that contains control cards defining the
command options and error recovery procedures for
the job; or, using a terminal, the user can create and
submit a control file which is then interpreted by the
batch system and processed in exactly the same man­
ner as the job submitted on cards.

Programmers can use the system for development
while other user jobs are in progress. Programmers
can interact with the system on-line, execute com­
mand procedures, or submit command procedures as
batch jobs.

All DECsystem-10 languages and compilers are
shared and reentrant, allowing many programmers to
work simultaneously using the same copy of various
compilers.

The Programming Languages
The following is a list of languages offered by
DIGITAL.

• COBOL is the recognized "big machine" business
language. DECsystem-10 COBOL provides exten­
sive data processing capabilities for commercial ap-

3-1

plications. TOPS-10 COBOL is written to the ANSI
68 and 74 specification, so it is compatible with the
COBOL used on most general purpose systems.
Both COBOL-68 and COBOL-74 provide an in­
teractive debugger, a source copy library utility,
ISAM utility, and a report writer facility as standard
tools.

• FORTRAN is the standard scientific language.
DECsystem-10 FORTRAN-10 consists of a globally
optimizing compiler and runtime system with in­
teractive debugger providing fast program develop­
ment and execution.

• ALGOL is a sophisticated scientific programming
language. ALGOL-10 is a one-pass, single-phase
compiler that generates optimized object code.

• APL (A Programming Language) is a concise pro­
gramming language suitable for manipulating nu­
meric and character-oriented array-structured data.
It includes procedural operators for array calcula­
tions and its own editing and debugging facilities.

• CPL (Conversational Programming Language) is an
interpreter supporting a subset of the ANSI PL/1
language.

• BASIC is a problem-solving language that is easy to
learn because of its conversational nature. It is par­
ticulary well suited to a timesharing environment be­
cause of the ease of interaction between the user
and the computer. BASIC can be used to solve
problems with varying degrees of complexity, and
thus has a wide application in the educational, busi­
ness, and scientific markets.

• BLlSS-36 is DIGITAL's implementation language
for system development. BLlSS-36 is an optimiz­
ing, high-level systems implementation language for
the DECsystem-10. It is specifically designed for
building compiliers, real-time processors, utilities,
and operating system software. BLISS encourages
the writing of highly structured programs that are
easy to maintain.

Application Tools
The following are just a few of the tools available to
the application programmer.

Database Management
The TOPS-10 Data Base Management System
(DBMS) satisfies the need for high-performance, large
volume data management. Conceptually, DBMS-10
provides four capabilities:

• CODASYL implementation

• Centralized data definition

• Multithreaded data manipulation

• Utilities for effective maintenance and
administration

Data Definition
The central definition of the data base allows access
by many applications written in different languages.
Using the Data Definition Language (DDL), the data
base administrator defines the logical and physical
characteristics of the data base files and data base
records. BY controlling the placement of records on
the physical storage medium, the administrator can
assure both data security and high-speed data
retrieval.

Records can be put together in logical groups called
"sets". Sets are used to model the real-world relation­
ships among objects; instead of storing extra data
about relationships, DBMS-10 links related records in
logical chains.

The data base definitions reside in a central location in
the Schema. User programs can access these defini­
tions through SUb-Schemas. A Sub-Schema is a sub­
set of the schema that is defined by the administrator
to satisfy the needs of related groups of programs. By
restricting the scope of the Sub-Schema, the adminis­
trator can prevent certain classes of users from ac­
cessing portions of the data base, from the level of
files down to the level of data items. This feature pro­
vides one of the inherent security checks of
DBMS-10.

Data Manipulation
Data base retrieval and updating is performed by the
Data Manipulation Language (DML). The programmer
includes DML statements in a COBOL or FORTRAN
program. These two languages are called the "host
languages" for the DML.

The first DML statement a program contains is the
INVOKE statement. This statement provides the pro­
gram with the definitions from the Sub-Schema, in a
form suitable for the host compiler. No further data
declarations are needed in order to access the data
base items; the centrally defined data base structures
are mapped directly into the host program.

DBMS-10 provides multithreaded simultaneous up­
date. Many users can access the data base at the
same time. Each program is protected by a system of
locks that are controlled in the Schema. The data base
administrator can grant exclusive control to one pro­
gram, or distribute control among many programs.
When a large number of programs are using the data
base, each one locks the resources it is using until it
completes its transaction.

Two typical DML verbs are FIND and STORE. In
DBMS-10, there are six different ways to find a rec­
ord. A record can be found by traversing a set, by
hashing a data item, by sorted order, by direct ad­
dress, by relative address, or by current program
context.

3-2

When a record is read in from disk, DBMS-10 can
also read in other data base pages containing related
records. This is one of the many ways in which
DBMS-10 takes advantage of the TOPS-1 0 operating
system to maximize the efficiency of your program.

The STORE statement, in addition to placing the rec­
ord in the data base, automatically performs a number
of operations. In accordance with the specifications of
the Schema, a record can be stored next to its logical
group, or it can be distributed randomly across the
data base. In addition, the STORE operation can auto­
matically choose an appropriate set and link the rec­
ord into it immediately.

An important but largely invisible component of
DBMS-10 is the journal. A journal is a record of every­
thing that has happened to the data base. When a
program is using the journal, the program can recover
from any kind of error that affects the data base. The
data base is restored to the state it was in before the
current transaction began. This can be done either
automatically or under program control. The journal is
an important feature that assures data base consis­
tency, integrity, and reliability.

Data Base Utilities
DBMS-10 includes three utility programs that aid in
the design, administration, and maintenance of your
data base.

DBMEND is a utility for repairing your data base if
anything goes wrong. Using the journal, DBMEND can
restore the data base after a system software or hard­
ware failure, or a user error.

DBINFO generates reports about the structure and
contents of the data base. A variety of reports are
available, including maps and dictionaries from the
Schema. Users can also obtain data dumps of single
pages, single sets, single records, or any larger por­
tion of the data base.

The ST ATS utility is a subroutine that can be called by
a data base program. This utility generates complete
statistics about the performance of the data base.
These statistics, relating to buffer management, disk
1/0, lock performance, and DML runtime, allow the
data base administrator to evaluate the data base de­
sign and to fine-tune it for maximum performance.

Message Control System (MCS-10)
The Message Control System (MCS-10) is a facility of
TOPS-10 that allows an installation to control commu­
nications between a network of terminals and applica­
tion programs.

This communication is different from timesharing be­
cause the terminal user never logs onto the system

and never runs his own job. The user simply sends
data and receives an answer. When MCS-10 receives
data from a terminal, it passes the data to a COBOL
program for processing. The program, after it receives
the input data, sends a reply to the terminal through
MCS-10.

The COBOL programs that process the transactions
are called Message-Processing Programs (MPPs).
Each MPP, when processing a transaction, nuns as a
subjob of MCS-10 through a resource called a job
slot. The group of terminals that transmit anal receive
messages is called a network.

When 'MCS-10 receives transactions from the termi­
nal, it stores them in input queues where they wait
until MPP receives them. When the MPPs send trans­
actions back to the terminal, MCS-10 places the
transactions into output queues, which are then ac­
cessed by the terminal.

THE SYSTEM PROGRAMMER
The system programmer uses the system to design
and develop application systems for multiprogram­
ming environments requiring fast response and a high
degree of job interaction and data sharing.

System programmers are provided with a range of
tools for the development of high-level languages,
system utilities, operating systems, and highly sophis­
ticated applications where manipulation of hardware is
required.

System programmers use MACRO, the
DECsystem-10 symbolic assembly language. MACRO
makes machine language programming easier and
faster by translating symbolic operation codes in the
source program into binary machine language instruc­
tions. MACRO relates symbols that are specified by
the user to stored numeric values. It assigns relative
memory addresses to symbolic addresses of program
instrucHons and data.

System programmers may also use BLlSS--36 for
software development. BLlSS-36 is an optimizing
high-level system implementation language. It is spe­
cifically deSigned for building compilers, system utili­
ties, and operating system software.

System programmers applications normally communi­
cate with the system through monitor calls. Monitor
calls are used to request system functions, such as
input/output operations, during execution of the pro­
gram. Support programs, such as the COBOL com­
piler, issue requests to the system through monitor
calls. All monitor calls are reentrant. This maximizes
efficiency by allowing several jobs to be in process at
the same time and maximizes system reliability by iso­
lating monitor call processing from other operating
system processing.

3-3

THE SYSTEM MANAGER
The system manager has the responsibility for plan­
ning data access and protection, granting privileges,
authorizing system use, controlling resource utiliza­
tion, and analyzing the system's accounting and per­
formance information.

User Authorization
The system manager controls use of the system pri­
marily by creating user directories. The user directo­
ries are used to identify the user, supply defaults,
specify privileges, and limit resource usage.

The system manager assigns a Project-Programmer
Number (PPN) and password to each user who
wishes to access the system. When the user logs on
to the system, the system verifies the user's PPN and
password. If either the PPN and/or password are in­
correct, the system refuses the user access to the sys­
tem. This feature prevents unauthorized use of the
system.

Privileges
The system manager can assign specific users spe­
cial privileges. These privileges include interprocess
communications and control, performance control, file
and device access, and system operational control
privileges.

If a user tries to execute a function that requires a
specific privilege, the system checks to see if he is
allowed to use that privilege. If the user does not have
the specific privilege, the system does not execute the
function and notifies the user that he does not have
privileges.

Allocating Disk Storage Quotas
The system manager assigns each directory a specific
number of blocks for both working storage and perma­
nent storage. Working storage refers to the disk space
that a user can have during the time he is logged on
the system. Permanent storage refers to the total disk
space that the user can have to store files after he has
logged off the system.

Storage allocations are strictly enforced. Users cannot
exceed their working storage allocation unless they
have certain privileges. If a user tries to create a file
and he is over his working storage allocation, the sys­
tem does not let him create the file and notifies him
that he is over his working storage allocation.

Controlling Resources
The system manager can make policy decisions that
govern the access to a specific system resource. For
example, TOPS-10 allows a user to assign a device,
log on to the system at any time of day, mount a mag­
netic tape, and mount a disk structure. The access
control feature allows the system manager to restrict
or disallow the use of some of these facilities. The
system manager can allow only certain users at speci­
fied times of day and, perhaps, at specified terminals,
to use certain facilities. By using the access control
mechanism, the system manager can reduce or pre­
vent malicious access to the system resources, and
has an additional means for collecting accounting or
other types of information.

Scheduler Controls
The system manager is provided with a tool that al­
lows him to control or fine-tune the allocation of CPU
time on the basis of classes. This tuning mechanism is
called class scheduling.

Class scheduling allows the system manager to allo­
cate percentages of CPU time to individual classes of
users. Each job in a class receives a portion of the
class percentage. By using the class scheduler, the
system manager can provide a consistent service to
predefined groups of users. The system manager can
also set up a class to include all batch jobs. This al­
lows the system manager to control batch jobs sepa­
rately from interactive jobs.

The system manager can change the percentage of a
specific class while the system is in operation. This
change in percentage remains valid until the system is
reloaded or until another change is made.

Resource Accounting Statistics
The system manager is provided with an accounting
facility that allows him to assign and charge computer
usage to user accounts. This feature provides the sys­
tem manager with the means to add security to the

3-4

system, determine charges for computer usage, and
bill users by account name.

All accounting data is stored in a file and can be used
later for reports and billing. Because the system col­
lects all detail records, system managers can define
their own algorithms for resource usage billing.

Performance Analysis Statistics
The system manager is provided with a program that
collects data about system usage and performance.
This program aids the system manager to tune the
system for maximum performance. Some of the statis­
tics gathered by the program are listed below.

• Monitor Statistics - indicate CPU, disk, memory
utilization, and system performance

• Job Statistics - indicate how much CPU time each
job used, information on each job's use of system
resources, and a summary of statistics collected on
the individual jobs

• System Utilization Statistics - indicate the de­
mands made on the system and the distribution of
system resources

• Disk 1/0 Statistics - indicate the number of seeks,
reads, and writes performed by each disk drive

THE SYSTEM OPERATOR
The system operator has complete control of the sys­
tem. The system operator is responsible for preparing
the system for timesharing and batch work, for re­
sponding quickly to user requests such as magnetic
tape mounts, for taking care of the line printer and the
distribution of printed output, and for recovering the
system when errors occur. The system operator may
be called upon by the system manager to perform a
variety of other functions, both hardware and software
related, to ensure the efficient running of the system.

Operator Interface
The TOPS-10 operator interface is called OPSER
(OPerator SERvice) OPSER facilitates the operations

i of the jobs/system programs that the operator needs
for efficient operation of the system. Under OPSER,
the operator can process auto files, create subjobs,
list the available resources of the system, restrict cer­
tain system resources to operator's use, send mes­
sages to all active terminals, restrict the number of
jobs running on the system or the maximum memory
used by jobs, run system status displays, and receive
messages from users or from the system.

Controlling Batch Streams
The system operator can control the number of batch
job streams can run concurrently. Batch jobs can be
submitted by an interactive user, another batch job, or
any program. When the number of batch jobs exceed
the number of batch streams, the remainder of the
batch jobs are held in a batch input queue. The sys­
tem operator can dynamically start additionall batch
streams when it is required. The operator can also
stop, continue, and shut down batch streams. The op­
erator can send messages to batch streanlS, set
parameters for batch streams, and display status and
parameters of batch streams.

System Recovery
The system operator can select manual or automatic
system recovery following a power interruption or a
hardware or software failure.

Using automatic system recovery after a power inter­
ruption, the system determines whether the contents
of memory are still valid, and, if so , restarts all I/O that
was in progress at the time of interruption and contin­
ues operation from the point of interruption. If the con­
tents of memory are not valid, the system
automatically restarts itself from disk and executes
start-up command procedures.

If the normal system's bootstrap device is unavailable,
the operator can boot the system from several differ­
ent types of devices.

3-5

System Backup
The system operator is provided with a facility that can
be used to save all files or selected files on tape. The
operator can then use this tape to restore all or certain
files back on to disk if needed.

USER UTILITIES
The TOPS-10 operating system provides users with
several utility programs that aid the user in performing
various tasks. The following is a list of the most fre­
quently used utilities.

• CREF program allows the user to make a cross­
reference listing of symbols used in MACRO and
FORTRAN programs.

• FILCOM program allows the user to compare two
files on a line-by-line basis and list the differences.

• BACKUP program allows the user to copy disk files
to magnetic tape for safekeeping and/or to transfer
files between systems. BACKUP also allows a full
range of functionality including incremental saving
of a single file or all files on the system.

• LINK program allows the user to merge indepen­
dently translated program modules and system
modules into a single module that can be executed
by the operating system.

• DDT program allows the user to examine, search,
change, insert breakpoint instructions, and
stop/trace a program at symbolic level.

• PIP program allows the user to transfer files be­
tween standard I/O devices and can be used to per­
form simple editing and magnetic tape control
operations during those transfer operations.

• RUNOFF program allows the user to easily prepare
documents in conjunction with a text editor or batch
system.

• TECO program allows the user to create and modify
character-oriented programs and data files on-line.

• REACT program allows the designing and maintain­
ing administrative control files.

4
The Operating

System

The TOPS-10 operating system provides a highly reliable multipurpose, mul­
tiprogramming, and multiprocessing operating system. As a multipurpose op­
erating system, it serves interactive timesharing and performs multiprogram
batch processing simultaneously. TOPS-10 reacts to inquiries, requests, and
demands from many different users at local and remote stations; it is able to
store, retrieve, and protect large blocks of data; and it also makes optimum
use of the available hardware facilities, while minimizing turnaround time.

TOPS-10 is designed for the concurrent operation of interactive timesharing
multistream batch, real-time, and remote communications in either single or
multiprocessor system configurations. In providing these multifunction capa­
bilities, TOPS-10 services interactive users, operates local and remote batch
stations, handles multiple transaction- oriented terminals, and performs data
acquistions and control functions for on-line laboratories and other real-time
projects. By dynamically adjusting system operation, the TOPS-10 operating
system provides many features for each class of user and is therefore able to
meet a wide variety of computational requirements.

Jobs running under control of TOPS-10 are similarly configured, so that only
active jobs occupy main memory. The remaining jobs stay on mass storage
devices so that the system resources are used with maximum efficiency.
TOPS-10 swaps jobs in and out of main memory dynamically. The job is
always ready when the processor calls for it. Dynamic relocation is handled
jointly by hardware and TOPS-10, and does not require intervention from the
user's program.

The TOPS-10 operating system has been designed to handle a wide variety
of applications in a simple, flexible, and efficient manner. It includes:

• Interactive and batch processing
• Real-time computing
• A flexible file system
• A common command language for both interactive and batch processing

• The scheduler
• The swap per
• The UUO handler
• Input/Output routines

INTERACTIVE TIMESHARING
TOPS-10 takes maximum advantage of the capabili­
ties of the hardware system by allowing many inde­
pendent users to share the facilities of the system
concurrently. Because of the interactive, conversa­
tional, rapid response nature of TOPS-10, a wide
range of tasks - from solving simple mathematical
problems to implementing complete and compl:ex in­
formation gathering and processing networks - can
be performed by many users at the same time, each
with the impression that the entire computer is servic­
ing his needs. The number of users on the system at
anyone time depends on the system configuration
and. the mixture of jobs on the system. TOPS-10
timesharing is designed to support in excess of 175
active users. Interactive terminals can include CRTs,
hard-copy terminals, and other devices that operate at
speeds from 110 to 9600 baud (asynchronous lines).
Terminal users can be located at remote locations

4-1

connected to the computer center by communication
lines using modems.

Timesharing users can spool output to a line printer.
This feature allows the system to optimize use of the
device by sharing it among all users. Timesharing also
allows control over an output file by allowing the user
to specify the characteristics of the device and lets the
system determine which physical device can meet the
users need.

Timesharing under TOPS-10 is designed so that the
command language, input/output processing, file
structures, and job scheduling are independent of the
programming language used. In addition, standard
software interfaces make it easy for the user to de­
velop special languages or systems. This general pur­
pose approach is demonstrated by the variety of
special purpose programming languages implemented
under TOPS-10.

BATCH PROCESSING
The TOPS-1 0 batch subsystem enables users to exe­
cute batch jobs concurrently with timesharing jobs.
The batch user communicates with the system in the
same command language as a timesharing user. Be­
cause TOPS-10 runs batch and interactive process­
ing simultaneously, a user can debug a program
under timesharing and then run the program under
batch, without any additional coding.

THE
SYSTEM
QUEUE

MANAGER

The batch system consists of several components, as
shown in Figure 4-1. They are:

• The input spooler

• The queue manager

• The scheduler

• The output spooler

MR·S·120.j·81

Figure 4-1
GALAXY Batch Software

4-2

The Input Spooler
A user has two methods of submitting a job into the
batch system. The first method is by creating a control
file on a terminal. This control file contains instructions
to the operating system as well as instructions to the
programs to be run by the batch job. The control file
can also contain instructions to the batch controller to
make decisions and possibly jump over instructions.

The second method of submitting a batch job is from
the card reader. In this case, the card deck constitutes
the control file. When cards are used, the input
spooler reads the cards and stores the information in a
control file on disk. The action of reading cards contin­
uously and storing the information onto disk as files
until the system processes the information is called
input spooling. Cards can be read from a card reader
directly attached to the main system, or through a re­
mote job entry station (RJE) attached to the main sys­
tem by a communication line.

Each control file constitutes a job and is placed in a
priority queue. A priority queue is an arrangement of
jobs in an ordered list. The jobs are inserted into the
list according to their priority. The higher the priority of
the job, the higher its position in the run queue.

The Batch Scheduler
When the input spooler queues a job, it notifies the
batch scheduler. The batch scheduler chooses one
job from those that have been spooled to disk. This
choice is made according to the job's priority. Under
TOPS-10, the priority of a batch job is based on the
priority set by the user at the time the job was SUbmit­
ted, the type of batch streams which can process the
job, and the size of the job. Jobs submitted on cards
have a fixed priority, but those submitted from a termi­
nal have assignable priorities. If no special priority is
indicated, all batch jobs have equal priority, which
means that the queues are in a first-in-first-out order.
Only two things can disrupt this order: assignment of a
higher priority, and accumulation of wait time in the
queue due to other jobs moving ahead.

When choosing a job, the batch scheduler must be
sure sufficient memory is available, and must deter­
mine what other resources are needed to start the job.
Several batch jobs may be scheduled simultaneously
depending upon available resources.

The Queue Manager
In TOPS-10 the queues used by the batch scheduler
are built and maintained by the queue manager. When
a job is chosen, the queue manager makes an entry in
the batch controller's input queue based on its priority.
The batch controller then processes the job and noti­
fies the queue manager when it has completed the
job. After the job is completed, the queue manager

4-3

schedules the job for output by placing an entry in the
output queue.

The Output Spooler
When the output spooler receives a request for output,
it performs the output procedure and notifies the
scheduler when it is finished. This output can include a
log file created by the input spooler when the job was
submitted. The log file indicates the time of each sig­
nificant event in the processing of the job. When the
output has been processed, the queue manager de­
letes the entry from the output queue. Interactive
users use this output queue when they give various
commands, such as PRINT, ULiST and others.

Flexibilty
The batch system offers tremendous flexibilty. Card
jobs normally come from the card reader, but can orig­
inate on disk. The latter facility allows the programmer
to develop and debug batch jobs in interactive mode.
In both instances, the batch system preprocesses the
job before it is queued. A batch job can also be en­
tered from an interactive terminal, in which case the
user bypasses the input spooler and creates a control
file directly on disk. The control file contains operating
system and batch commands along with the user pro­
gram commands necessary to run the job. The user
then enters the job into the batch system by way of an
operating system command string. The user can in­
clude switches to define the operation and set the
priorities and limits on memory and processor time.

Job Dependency
Although jobs are entered sequentially into the batch
system, they are not necessarily run in the order that
they are read because of priorities either set by the
user in a control card or operating system command,
or computed by the queue manager when determining
the scheduling of jobs. Occasionally, the user may
wish to submit jobs that must be run in a particular
order. In other words, the execution of one job is de­
pendent on the sucessful execution of a previous job.
To ensure that jobs are executed in the proper se­
quence, the user must specify an initial dependency
count when submitting the dependent job. The depen­
dency count is then part of the input queue entry. A
control command in preliminary job decrements the
count. When the count becomes zero, the dependent
job is executed.

Error Recovery
The user can control system response to error condi­
tions by including commands to the batch controller
which aid in error recovery. With error recovery com­
mands, the user specifies the action to be taken when
his program contains a fatal error. For example, if a
program contains a fatal error, the user may specify

that the batch controller cause a jump to the next pro­
gram or jump to a user-written error-handling routine.
If an error occurs and the user did not include error
recovery conditions in his job, the batch controller initi­
ates a standard dump of the user's program space
and terminates the job. This memory dump provides
the user with the means to debug his program. If the
system fails for some reason and is restarted, the job
continues at a point prespecified by the user.

Although the batch system allows a large number of
parameters to be specified, it is capable of operating
with very few user-specified values. If a parameter is
missing, the batch system supplies a reasonable and
predictable default value. These defaults can be modi­
fied by the individual installation.

Operator Intervention
Normal operating functions performed by a program in
the batch system require little or no operator interven­
tion. However, the operator can exercise a great deal
of control if necessary. The operator can specify the
number of system resources to be dedicated to batch
processing by limiting the number of batch jobs that
can be run on the system simultaneously. He can pre­
vent a job from being processed, then release it from
this hold; stop a job in progress, and then requeue it;
change a job's priorities; or abort a job in progress. By
examining the system queues, he can determine the
status of all batch jobs.

In addition, the programs in the batch system can ex­
change information with the operator. The user's
batch job itself may also communicate with the opera­
tor. All operator intervention occurring during specific
operations causes messages to be written in the
user's log file, as well as in the operator's log file, for
later analysis.

REAL-TIME COMPUTING
For a system to be satisfactory for real-time opera­
tions, two important requirements must be met. The
most important requirement is fast response. Because
real-time devices may not be able to store information
until the computing system is ready to accept it, the
system would be useless for real-time if the response
requirements of a real-time process could not be satis­
fied. The TOPS-1 0 operating system allocates system
resources dynamically in order to satisfy the response
and computational requirements of real-time jobs.

The second requirement is protection. Each user of
the system must be protected from other users, just as
the system itself is protected from all user program
errors. In addition, because real-time systems have
special real-time devices associated with jobs, the
computing system must be protected from software
and hardware failure that could cause a system crash.

4-4

Inherent in the TOPS-10 operating system is the ca­
pability of real-time processing, and it is by way of
monitor calls (UUOs) to the operating system that the
user obtains real-time service. The services obtained
by monitor calls within the user's program include:

• Locking a job in memory

• Connecting a real-time device to the priority inter­
rupt system

• Initiating the execution of FORTRAN or machine
language code on receipt of an interrupt

• Disconnecting a real-time device from the priority
interrupt system

Locking Jobs
Memory space is occupied by the resident TOPS-10
operating system and by a mix of real-time and non­
real-time jobs. The only fixed partition is between the
resident operating system and the remainder of
memory.

To assure that information is not lost when the inter­
rupt is received from a real-time device, and the user
program necessary to service that data is not in main
memory, the job can request that it be locked in mem­
ory. This means that the job is not to be swapped to
secondary storage and guarantees that the job is
available when needed, without waiting for swapping
delay. Because memory is not divided into fixed parti­
tions, but rather dynamically assigned, it can be uti­
lized to a better degree by dynamically allocating more
space to real-time jobs when real-time demands are
high. As real-time demands lessen, more memory can
be made available to regular timesharing and batch
usage by unlocking the real-time jobs from memory­
resident status.

Real-Time Devices
With the KL 10, the real-time user can connect real­
time devices to the priority interrupt system, respond
to these devices at interrupt level, remove the devices
from the interrupt system, and/or change the priority
level on which these devices are assigned. There is
no requirement that the devices be connected at sys­
tem installation time. The user specifies both the
names of the devices generating the interrupts and
the priority levels on which the devices should func­
tion. The operating system links the devices to the
appropriate interrupt level modules within itself.

A user can control the real-time device in one of two
ways: single mode or block mode. In single mode, the
user's interrupt program is run every time the real-time
device interrupts. In block mode, the user's interrupt
program is run after an entire block (defined by the
user) has been read from or written to the real-time
device. When the interrupt occurs from the device in

either single mode or at the end of a block of data in
block mode, the operating system saves the current
state of memory and services to the user's interrupt
routine. The user services his device and then returns
control to the operating system to restore the previous
state of the system and to dismiss the interrupt.

Any number of real-time devices may be placed on
any available priority interrupt channel. When a pre­
specified event occurs, the dormant program is ac­
tivated to process the data. The main memory space
for the real-time job's buffer does not need to be re­
served at system installation time. The hardware,
working in conjunction with the operating system's
memory management facilities, provides optimum
main memory usage.

High-Priority Run Queues
The real-time user can receive faster response by
placing jobs in high-priority run queues. These queues
are examined before all other run queues in the sys­
tem, and any runnable job in a high-priority queue is
executed before jobs in other queues. In addit~on, jobs
in high-priority queues are not swapped to secondary
storage until all other queues have been scanned for a
swappable candidate. When jobs in a high-priority
queue are to be swapped, the lowest priority job is
swapped first and the highest priority job is swapped
last. The highest priority job swapped to secondary
storage is the first job to be brought into memory for
immediate execution. Therefore, in addition to being
scanned before all other queues for job execution, the
high-priority queues are given greater consideration in
the swapping decision.

4-5

COMMAND LANGUAGE
By allowing resources to be shared among users, the
TOPS-10 multitask, multiuser environment is able to
efficiently use valuable system resources that are
wasted or inefficiently used in a single-user system.
Users are not restricted to a small set of system re­
sources, but instead are provided with the full variety
of facilities. By means of an interactive terminal, a user
has on-line access to most of the system features.
This on-line access is available through the operating
system command language. Through the use of this
language, the interactive user communicates with the
operating system. Thus, the user is able to completely
control the running of a task, or job, to achieve the
desired results: create, edit, and delete files; start,
suspend, and terminate a job; compile, execute, de­
bug, and run programs. In addition, because the batch
software system accepts the same command lan­
guage as the interactive software, any user can enter
a program into the batch run queue without complex
control information or JCL. This allows any interactive
terminal to act as a remote job entry terminal.

When a user types commands and/or requests on his
terminal, the characters are stored in an input buffer in
the operating system. The command interpreter exam­
ines these characters, checks them for correct syntax,
and invokes the system program or user program as
specified by the command string.

On each clock interrupt, control is given to the com­
mand interpreter to interpret and process one com­
mand in the input buffer. The command appearing in
the input buffer is matched with the table of valid com­
mands accepted by the operating system. A match
occurs if the command typed matches a command
stored in the system, or if the characters typed match
the beginning characters of only one command (that
is, constitute a unique abbreviation). When this match
is encountered, the legality information (or flags) asso­
ciated with the command is checked to see if the com­
mand can be performed immediately. For instance, a
command must be delayed if the job is swapped out to
secondary storage and the command requires that the
job be resident in main memory; the command is exe­
cuted on a later clock interrupt when the job is back in
memory. If all conditions as specified by the legality
flags are met, control is passed to the appropriate
program.

The user can also request assignment of any periph­
eral device (magnetic tape, DECtape, and private disk
pack) with the command language. When the request
for assignment is received, the operating system veri­
fies that the device is available for the user; and, if so,
the user is granted the device for his private use until
he relinquishes control. In this way, the user can also

have complete control of devices such as card read­
ers and punches, and line printers. This private use
feature is under the complete control of the system
operator. In some installations, sharable peripheral
devices are maintained in an resource "pool" from
which a user requests exclusive use of devices. The
operator then assigns the requested device to the
user.

THE FILE SYSTEM
Under typical TOPS-10 operation, mass storage de­
vices, such as disk, cannot be requested for a user's
exclusive use, but must be shared among all users.
However, if system capacity allows and a user has
proper authorization, TOPS-10 allows a user to mount
and assign a disk structure for private use. Because
many users share the system's mass storage devices,
the operating system must ensure independence
among the users; one user's actions must not affect
another user's activities unless the users want to work
together. To guarantee such independence and secu­
rity, the operating system provides a file system for
disks. Each user's data is organized into groups of
128-word (36-bit) blocks called files. The user gives a
name to each of his files and the list of these names is
kept by the operating system for each user. The oper­
ating system is then responsible for protecting each
user's file storage from intrusion by unauthorized
users.

In addition to allowing independent file storage for
users, the operating system permits users to share
files. For example, programmers working on the same
project can share the same data in order to complete
a project without duplication of effort. TOPS-10 allows
the user to specify access rights (protection codes),
for his own files. These codes designate whether
other users may read the file, and, after access, if the
files can be modified in any way. A facility called File
DAEMON allows the user to specifically permit or
deny access to any file or set of files for specific users.
The user may also create a log of accesses to his files
for later review, proprietary program billing, project
maintenance, and others using this facility.

The TOPS-10 user is not required to preallocate file
storage; rather, the operating system allocates and
deallocates the file storage space dynamically upon
demand. Not only is this convenient for the user be­
cause he never has to calculate necessary storage for
a given program, but this feature also conserves
storage space by preventing large portions of storage
from being waited. However, a large job that needs to
preallocate file storage space for efficiency may do so.

Files are assigned protection levels for each of three
groups of users: owner, users with a common project
number, and all users. Each user group may be as-

4-6

signed a different access privilege. There are eight
levels of protection, in each of the three user groups,
that may be selected. The owner of a file may always
change the file's protection.

File DAEMON is called on all access failures if the
owner's protection is 4, 5, 6, or 7. An access failure
occurs when an unauthorized user attempts to access
a file. With a user-written program, the owner of a file
may determine who attempted this unauthorized
access.

Table 4-1 summarizes this file protection scheme of
TOPS-10.

Table 4-1
File Protection Scheme

Access
Protection Level Code Access Privileges

Greatest Protection 0 No access allowed
Execute

2 Read
3 Allocate
4 Deallocate
5 Append
6 Update
7 Create
10 Supersede
11 Truncates
12 Change attributes
13 Delete
14 Change name

Least Protection 15 Change protection

File Handling
To reference a file, the user does not need to know
where the file is physically located in the system. A
list, or directory, of all files for each user is contained
in a User File Directory (UFO) or Sub-File Directory
(SFD). These directories contain pointers to informa­
tion concerning the file, its protection, its creation date,
and information that is used to locate the file physically
on the file structure. Each logical disk structure is com­
plete; that is, all information necessary to uniquely lo­
cate files on that disk structure is contained within that
structure. The operating system utilizes a user infor­
mation table to determine which of the logical disk
structures contain files for a given user. This SEARCH
LIST may be changed by a user for himself, or by the
operator, when the file structure configuration of the
system changes, for example, a "private pack" is
added to the system for a given user.

A named file is uniquely identified in the system by a
file name and extension, an ordered list of directory
names (UFOs and SFDs) that identify the owner of the

file, and a file structure name that identifies the group
of disk units where the file is stored.

The file handler provides the interface between the
user, operating system, and actual physical disk unit
for storing and retrieving files on the disk.

File Structures
Usually a complete disk system is composed of many
disk units of the same or different types. Therefore,
the disik system consists of one or more file structures.
A file structure is a logical arrangement of files on one
or more disk units of the same type. Because each file
structure is self-contained, file structures can be
added to or removed from the system during operation
without reloading the system. File structures can also
be moved from one DECsystem-10 to another
DECsystem-10.

This method of file storage allows the user to desig­
nate which file system he wishes to use when storing
files. Otherwise, the system refers to the Search List
for the given user in the user administrative informa­
tion tables.

Each file structure is self-contained and is the smallest
section of file storage that can be removed from the
system without disturbing other units in other file struc­
tures. All pointers to areas in a file structure are by

4-7

way of logical block numbers rather than physical disk
addresses; there are no pointers to areas in other file
structures, thereby allowing the entire file structure to
be removed.

A file structure contains two types of files: the data
files that physically contain the stored data or pro­
grams; and the directory files that contain pointers to
the data files. Included in these directory files are mas­
ter file directories, user file directories, and sub-file
directories. Each file structure has one master file di­
rectory (MFD). The MFD is the master list of all users
of the file structure. The entries contained in the MFD
are the names of all the user file directories on the file
structure. Each user with files on the file structure has
a user file directory that contains the names of all his
files on that file structure; therefore, there are typically
many user file directories on each file structure. The
user can create another type of directory file: a sub-file
directory (SFD). The SFD is similar to other types of
directory files because it contains the names of all files
within the sub-directory. This third level of directory
allows groups of files belonging to the same user to be
separate from each other. This is useful when organiz­
ing a large number of files according to function. In
addition, SFDs allow nonconflicting, simultaneous
runs of the same program using the same file names.

As long as the files are in different SFDs, they are
unique. SFDs exist as files pointed to by the user file
directory, and can be nested to the depth specified by
the installation at system installation time.

File Protection
All disk files are composed of two parts: data and in­
formation used to retrieve data. The retrieval part of
the file contains the pointers to the entire file, and is
identically stored in two distinct locations on the struc­
ture and accessed separately from the data. System
reliability is increased with this method because the
probability of destroying the retrieval information is re­
duced; system performance is improved because the
number of positionings needed for random-access
methods is reduced. The storing and retrieval informa­
tion is the same for both sequential and random ac­
cessed files. Thus, a file can be created sequentially
and later read randomly, or vice-versa, without any
data conversion.

One section of the retrieval information is used to
specify the protection associated with the file. This
protection is necessary because disk storage is
shared among all users, each of whom may desire to
share files with, or prevent files from being written,
read, or deleted by other users. As discussed above,
these protection codes are assigned by the user when
the file is created and deSignate the level of user
access to the file.

Disk Quotas
Disk space quotas are associated with each user on
each file structure in order to control the amount of
information that can be stored in the user file directory.
When the user gains access to the system, he auto­
matically begins using his logged-in quota. This quota
is not a guaranteed amount of space, and the user
must compete with other users for it.

When the user logs out of the system, he must be
within his logged-out quota. This quota is the amount
of disk storage space that the user is allowed to main­
tain when he is not using the system. The quota is
enforced by a system program that is used in logging­
out of the system. Quotas are determined by the indi­
vidual installation, set up by the system manager, and
are therefore, used to ration disk resources in a
predetermined manner.

File Operations
Writing files on the disk can be defined by one of five
methods: creating, superseding, updating, appending,
and simultaneous updating. The user is creating a file
if no other file of the same name exists in the user's
file directory on the indicated file structure. If another
file with the same name exists in the directory, the
user is superseding, or replacing, the old file with the

4-8

new file. Other users sharing the old file at the time it
is being superseded continue to use the old file. They
are not affected until they finish using the file and then
try to access it again. At that time, they automatically
read the new file. Thus, it is possible to have one user
superseding the file and multiple users reading the
file. However, if a second user attempts to supersede
the file, the operating system prevents such an up­
date. When a user updates a file, he modifies selected
parts of the file without creating an entirely new ver­
sion of the file. This method eliminates the need to
recopy a file when making only a small number of
changes. If other users try to access a file when it is
being updated, they receive an error message issued
by the system. Many users can update the same file
through the use of a simultaneous update feature in
TOPS-10. This feature allows users to work with the
same data base concurrently. An Enqueue/Dequeue
(ENQ/DEQ) facility is also offered to allow record-level
lock out which eliminates race conditions, where multi­
ple users are attempting to read and/or write the same
record.

Disk Storage Management
File storage is dynamically allocated by the file han­
dier during program operations, so the user does not
need to give initial estimates of file length or the num­
ber of files to be written. Files can be any length, and
users may have as many files as desired, as long as
disk space is available and the user has not exceeded
his logged-in quota. This feature is extremely useful
during program development or debugging when the
final size of the file is still unknown. However, for effi­
cient random access, a user can reserve a contiguous
area on the disk if he desires. When he has completed
processing, he can keep his preallocated file space for
future use or return it so that other users can have
access to it, within the constraints of the user logged­
out disk quota.

THE SCHEDULER
The TOPS-1 ° operating system is a multiprogram­
ming system; that is, it allows several user jobs to
reside in memory simultaneously and to operate con­
currently. The scheduler determines which job should
run at a given time. In addition to the multiprogram­
ming implementation of TOPS-10, a swapping tech­
nique is used whereby active jobs can exist on an
secondary storage device, such as disk, as well as in
memory. The scheduler must therefore determine not
only what job is to be run next, but also when a job is
to be swapped out to secondary storage and later
brought back into memory.

All jobs are retained in ordered groupings called
queues. These queues have various priorities that re­
flect the status of each job at a given moment. The

queue in which a job is placed depends upon the sys­
tem resource for which it is contending for with other
active jobs. Because a job can wait for only one re­
source at a time, the job can only be in one queue at a
time. Several of the possible queues in the system
are:

• Run queues - for jobs waiting for, or jobs in,
execution

• I/O wait queues - for jobs waiting for data transfers
to be completed

• Resource wait queues - for jobs waiting for some
shared system resource

• Null queue - for all job numbers that are! not cur­
rently being used by an active user

The job's position within certain queues determines
the priority of the job with respect to other jobs in the
same queue. For example, if a job is first in the queue
for a sharable device, it has the highest prior~ty for the
device when the device becomes available. However,
if a job is in an I/O wait queue, it remains in tlhe queue
until the I/O is completed. Therefore, in an I/O wait
queue, the job's position has no significance. The
status of a job is changed each time it is placed into a
different queue.

The scheduling of jobs into different run queues is
governed by the system clock. This clock divides the
CPU time into fixed-time quantas. When the clock
ticks, the scheduler decides which job should run dur­
ing the next clock cycle. Each job, when it is assigned
to run, is given a time slice. When the time slice ex­
pires for a job, the clock triggers the scheduler and
scheduling is again performed. The job whose time
slice just expired is moved into another, perhaps lower
priority, run queue, and the scheduler selects another
job to run in the next time slice. If the currently running
job is a null job (a null job runs when no user/system
job is runnable), and a higher priority job (any job),
becomes ready to run before the clock ticks, The
higher priority job is run immediately. If the current
running job is not a null job and a high priority (HPQ
real-time) job becomes runnable, the HPQ is run at
the next clock tick. Finally, if a job just becoming run­
nable is not an HPQ job, but is of higher priority than
the current job, the new job preempts the current job
when the current job's time slice has expired.

Scheduling may be forced before the clock t,icks if the
currently running job reaches a pOint at which it cannot
immediately continue. When an operating system rou­
tine discovers that it cannot complete a function re­
quested by the job, such as waiting for an I/O transfer
to complete or discovering that a job needs a system
resource which it currently does not have, the
scheduler is called so that another job can be

4-9

selected. The job that was stopped is then requeued,
and is scheduled to run when the function it requested
can be completed. For example, when the currently
running job begins reading from a magnetic tape, it is
placed into the I/O wait queue and the input is begun.
A second job is scheduled to run while the input of the
first job proceeds. If the second job then decides to
access a magnetic tape, it is not placed into the I/O
wait queue because the magnetic tape control is busy,
but is placed in the queue for jobs waiting to access
the magnetic tape. A third job is set to run. The input
operation of the first job finishes, freeing the magnetic
tape control for the second job. The I/O operation of
the second job is initiated, and the job is transferred
from the device wait queue to the I/O wait queue. The
first job is then transferred from the I/O wait queue to a
run queue. This permits the first job to preempt the
running of the third job. When the time slice of the first
job becomes zero, it is moved into the second run
queue. The third job runs again until the second job
completes its I/O operation or until the job's time slice
for the second job expires.

This multiple queue design and implementation allows
the operating system, through the scheduler module,
to overlap computation and data transmission. In un­
buffered data modes, the user supplies an address of
a command list containing pointers to locations in his
area to and from which data is to be transferred. When
the transfer is initiated, the job is scheduled into an I/O
wait queue where it remains until the device signals
the scheduler that the entire transfer has been
completed.

In buffered modes, each buffer contains information to
prevent the user and the device from using the same
buffer at the same time. If a user requires a buffer
currently being used by the device, the user's job is
scheduled into an I/O wait queue. When the device
finishes using the buffer, the device calls the
scheduler to reactivate the job.

TOPS-10 provides the ability to tune the scheduler to
specific system loads and user environments. The
System Manager, through privilege granted only to
certain users, can set aside percentages of the CPU
to given classes of timesharing and batch users.
These percentages can be dynamically changed while
the system is running and need not be defined at sys­
tem installation time. This feature facilitates optimal
system usage for a wide variety of system loads.

SMP Scheduling
Scheduling in a multiprocessor system provides more
flexibility than a single-CPU system. TOPS-10 gives
designated jobs and interactive work higher priority
than "normal priority" and compute-bound work.
TOPS-10 attempts to run higher priority and interac-

tive jobs when they request the CPU; other jobs are
run in the "background". Optionally, the system mana­
ger can partition background jobs into classes, and
allocate percentages of CPU time to individual
classes.

With SMP, one CPU processes the high-priority and
interactive jobs. The other CPU looks for normal prior­
ity work first, and processes such jobs as long as they
are available; designated high-priority jobs and in­
teractive jobs are serviced by this CPU only if there is
no other work to do. This "asymmetric scheduling"
has the basic effect that one CPU works on interactive
jobs, while the other CPU runs compute-bound jobs.

An important aspect of scheduling in a multiprocessor
environment is inter-CPU interference. For example, if
both CPUs enter the scheduling routines simulta­
neously, they can compete for accesses to instruc­
tions and data, and, even more significantly, cause
each other to wait for various interlocks (such as the
one to prevent both CPUs from selecting the same job
to run). SMP eliminates this problem by skewing the
clocks on all CPUs to ensure that their clock interrupts
occur at different times. Each CPU receives the same
frequency of timer interrupts, but none occur at the
same time as interrupts on the other CPU. Thus, CPU
clocks in SMP are intentionally skewed to prevent pe­
riodic simultaneous scheduling and servicing
overhead.

Under SMP scheduling, the queued I/O protocol en­
sures that I/O requests are handled properly, regard­
less of which CPU executes a job or where the job's
files and devices are physically located in the system.

THE SWAPPER
The swapper is responsible for keeping the job most
likely to run in main memory. It determines if a job
should be in memory by scanning the queue in which
the job may resides at a given moment. If the swapper
determines that a job should be brought into memory,
it may have to take another job already in memory and
transfer it to secondary storage. Therefore, the
swapper is not only responsible for bringing jobs into
memory, but is also responsible for selecting the job
that is to be swapped out to secondary storage.

A job is swapped out to secondary storage for one of
two reasons:

• A job that is more eligible to run needs to be
swapped in, and there is not enough room in mem­
ory for both jobs and the job being swapped to sec­
ondary storage is blocked.

• The job needs to expand its memory size and there
is not enough room in memory to do so, because
other jobs are currently resident.

4-10

If the latter case is true, the job must be swapped out
to secondary storage and then later swapped in to
memory with a new allocation of memory.

The swapper periodically checks to see if any jobs
should be swapped into memory. If there is no such
job, then the swapper checks to see if a job is request­
ing more memory. If there is no job wishing to expand
its size, then the swapper does nothing further and
relinquishes control of the processor until the next
clock interrupt.

THE UUO HANDLER
The UUO handler is responsible for accepting re­
quests for services available from the operating sys­
tem. These requests are made by the user program
with special instructions known as programmed opera­
tors or UUOs. When a programmed operator is en­
countered in the user program, the hardware does not
execute the instruction, but rather "calls" the operating
system. The operating system then examines the in­
struction, determines the function that the user pro­
gram requires, and either initiates the operation (such
as an I/O operation), or, if the desired resource is in
use, places the request in the appropriate queue. The
operating system then calls the scheduler, which in
turn selects another job to run.

The services obtainable by the user program through
UUOs include:

• Communicating with I/O devices on the system, in­
cluding connecting and responding to any special
real-time devices

• Receiving or changing information concerning ei­
ther the system as a whole or the individual
program

• Altering the operation of the system, such as con­
trolling execution of a job, by trapping or suspend­
ing (for example, debugging purposes) or
controlling memory by locking a job in memory (if
the user has the appropriate locking privileges)

• Communicating, and transferring control between
user programs

The UUO handler is the only means by which a user
program can return control to the operating system in
order to have a service performed. After the hardware
has given control to the operating system and the
function has been completed (often requiring a wait
operation), control is returned to the user program at
the instruction immediately following the UUO instruc­
tion, or some other location under certain error
conditions .

In this way, the software supplements the hardware by
providing services that are invoked through the execu­
tion of a single memory location, just as the hardware

services are invoked for a single instruction execution.
This concept provides for efficient user programming
and frees the user from any contention or complexity
inherent in multitask, multiuser systems.

THE INPUT/OUTPUT ROUTINES
I/O programming under TOPS-1 0 is highly convenient
for the user because all the burdensome details of
programming are performed by the operating system.
The user informs the operating system of I/O require­
ments by means of UUOs contained in the pmgram.
The input/output routines needed are called by the
UUO handler.

Because the operating system channels comll1unica­
tion between the user program and the device, the
user does not need to know all the peculiarities of
each device on the system. In fact,similar user pro­
grams can be written for all similar devices. Without
returning an error message, the operating system ig­
nores operations that are not pertinent to the! device
being used. Thus, a terminal and a disk file can be
processed identically by the user program. In addition,
user programs can be written to be independent of
any particular device. The operating system allows the
user program to specify a logical device name, which
can be associated with any physical device at the time
the program is executed. Because of this feature, a
program that is coded to use a specific device need
not be changed at all, if the device is unavailable. The
device can be designated by a logical device name
and assigned to an available physical device with one
command, given at run time, to the operating system.

Data is transmitted between the device and the user
program in one of two modes: unbuffered or buffered.
With unbuffered data modes, the user in his program
supplies the device with an address which is the be­
ginning of a command list. Essentially, this command
list contains pointers specifying areas in the user's al­
located program space (which is located in memory)
to or from which data is to be transferred. The user
program then waits until the operating system signals
that the entire command list has been processed.
Therefore, during the data transfer, the user program
is idle, waiting for the entire transfer to be completed.

Data transfers in buffered mode utilize a ring of buffers
set up in the user's memory area. Buffered transfers
allow the user program and the operating system's I/O
routines to operate asynchronously. As the user pro­
gram uses one buffer, the operating system processes
another one by filling or emptying it as interrupts occur
from a physical device. To prevent the user and the
operating system from using the same buffer at the
same time, each buffer has a use bit that designates
who is using the buffer. Buffered data transfers are
more efficient because the user program and the op-

4-11

erating system can be working together in processing
the data.

Several steps must be followed by the user program in
order for TOPS-10 to have the information needed to
control data transfers. Each step is indicated to the
operating system with one programmed operator
(UUO). In the first step, the specific device to be used
in the data transfer must be selected and linked to the
user program with one of the software I/O channels
available to the user's job (the OPEN or INITialize pro­
grammed operators). This device remains associated
with the software I/O channel until it is disassociated
from it (via a programmed operator) or a second de­
vice is associated with the same channel. In addition
to specifying the I/O channel and the device name, the
user program can supply the initial file status, which
includes the type of data transfer to be used with the
device (such as ASCII, binarY,etc.), and the location of
the headers to be used in buffered data transfers. The
operating system stores information in these headers
when the user program executes programmmed oper­
ators. The user program obtains from these headers
all the information needed to fill empty buffers.

Another set of programmed operators (INBUF and
OUTBUF) establishes the actual buffers to be used for
input and output. This procedure is not necessary if
the user is satisfied to accept the default buffers auto­
matically set up for him by the operating system.

The next step is to select the file that the user program
is using when reading or writing data. This group of
programmed operators (LOOKUP and ENTER) is not
required for the devices that are not file-structured
(such as card reader, magnetic tape, line printer, etc.).
However, if used, they are ignored, thus allowing file­
structured devices to be substituted for nonfile­
structured devices without the user rewriting the
program.

The third step is to perform the data transmission be­
tween the user program and the file (IN, INPUT, OUT,
and OUTPUT). When the data has been transmitted
to either the user program on input or the file on out­
put, the file must be closed (CLOSE, "fourth step")
and the device released from the channel (RELEASE,
"fifth step"). The FILOP.UUO combines OPEN,
INBUF, LOOKUP, and ENTER into one operation for
efficiency in programming. This same sequence of
programmed operators is performed for all devices;
therefore, the I/O system is truly device-independent,
because the user program does not have to be
changed every time a different device is used.

In addition to reading from or writing data to the stan­
dard I/O devices, provisions are included in the opera­
ting system for using the terminal for I/O during
execution of the user program. This capability is also

obtained through programmed operators. As the user
program is running, it can pause to accept input from
or to type output to the terminal. The operating system
does all buffering for the user, thus saving program­
ming time. This method of terminal I/O provides the
user with a convenient way of interacting with a run­
ning program.

MEMORY MANAGEMENT
TOPS-10 is a multiprogramming operating system,
that is, it allows multiple independent user programs to
reside simultaneously in memory and run concur­
rently. This technique of sharing memory and proces­
sor time enhances the efficient operation of the
system, for example, by switching the processor from
one program that is temporarily stopped because of
I/O activity to a program that is executable. When
memory and the processor are shared in this manner,
each user's program has a memory area distinct from
the area of other users. Any attempt to read or change
information outside of the area a user can access,
stops the program immediately and notifies the user.
This protection is controlled by the TOPS-10 opera­
ting system and the hardware on which the operating
system is running.

Because available memory can contain only a limited
number of programs at anyone time, the system em­
ploys a secondary storage unit, a disk, allowing pro­
grams to be swapped to less expensive and higher
capacity secondary storage devices. User programs
exist on this secondary storage device and are moved
into memory for execution, as described above in the
paragraph on the Swapper. Because this swapping
takes place directly between main memory and sec­
ondary storage, the CPU can be executing a user pro­
gram in one part of memory while swapping of another
user program is taking place in another part of mem­
ory. This independent, overlapped operation greatly
improves system utilization by increasing the number
of users that can be accommodated at the same time.

To further increase the utilization of memory, the oper­
ating system allows users to share the same copy of a
program or data segment. This prevents the excessive
memory usage that results when a program is dupli­
cated for each of several users. A program that can be
shared is called a reentrant program and is divided
into two segments. One segment contains the code
that is not modified during execution and can be used
by any number of users. The other segment contains
nonreentrant code and data. The operating system
provides protection for shared segments to quarantee
that they are not accidentlly modified. Available lan­
guage compilers, which operate under TOPS-10, are
themselves reentrant; and many generate reentrant
code.

4-12

Another important feature of the reentrant implemen­
tation is that a sharable segment of code needs to be
swapped out to secondary storage only once. Be­
cause this segment cannot be modified, a copy is
available on the secondary storage device, and can
be swapped into memory as required. When the
swapper determines that a sharable segment must be
swapped out to make room for another user program,
the operating system need only note that the memory
segments previously occupied by the reentrant seg­
ment are available.

To efficiently manage memory, main memory is logi­
cally divided into 512-word pages. All systems running
TOPS-10 support hardware page tables. Hardware
page tables allow programs to be noncontiguous in
main memory. During a swap- in operation, the opera­
ting system places a given user's program throughout
memory, and loads the appropriate hardware page
table pointing to these physical memory locations.
This eliminates the need for memory "shuffling" and
increases efficiency.

Virtual Memory
The TOPS-10 virtual memory option permits a user
program to execute with an address space greater
than the physical memory allocated to that program
during execution. User programs are swapped, as de­
scribed in the section on the Swapper. However, the
entire program may not necessarily be in main mem­
ory during execution. Programs are divided into
pages, each of which is 512-words long. Some of
these pages may remain on secondary storage while
the program executes. When a virtual memory job at­
tempts to access a page that is not in memory, a page
fault occurs. The page fault handler determines which
page or pages to remove from memory and which
pages to bring in from secondary storage.

Unlike virtual memory implementation on other sys­
tems, TOPS-10 provides this feature as an option.
The system manager grants the privilege for using vir­
tual memory only to those users who truly need its
capabilities. Those users who are granted the privi­
lege of using virtual memory may elect to invoke the
feature for only those programs that could not execute
without the virtual memory capability.

The virtual memory users may elect to use the system
page fault handler to decide which pages are brought
into memory when apage fault occurs; or they may
use a handler they write themselves that is more
tailored to the particular application or program behav­
ior. Finally, it is important to point out that only those
users actually using the virtual memory feature are
affected by any additional overhead associated with a
demand-paging system. Nonvirtual memory users ex­
ecute their jobs as they would in a nonvirtual memory

system with no discernable difference in performance,
except possibly for the additional system overhead re­
quired for swapping and file channel access incited by
the virtual job or jobs.

INTER-PROCESS COMMUNICATION FACILITY
(IPCF)
IPCF provides the capability for independent jobs to
communicate with one another. For example, if sev­
eral programs or progamming systems are involved in
processing or maintaining a data base, it is possible
that one program might want to inform the others of
any modifications it makes to the data. A job using the
IPCF cannot make any changes to another job, so
protection is in no way sacrificed when using the IPCF
feature.

In order to use the IPCF, each participating job that
wishes to receive communication from another job
must request a unique process identifier (PID) from
the system. The transmitting job then may send a
"packet" of information to another job. In addition to
the information, the system automatically provides a
"return address" so that the receiving program can
respond to the sender.

The operating system maintains a linear qUtaue (the
"mailbox") for each job using IPCF. The packet, or
packets, are kept in the mailbox until the receiving job
retrieves it. This queue is not created until a job sends
an IPCF packet, and it does not occupy any space
until such time. The maximum number of packets al­
lowed in a queue at anyone time is determined by a
"receive" quota that may be set at each installation for
each user by the System Manager. If no quota is set,
the system default is used. The system default is five.

On systems with the virtual memory option, the packet
could be an entire page. In this case, the operating
system takes advantage of the page-mapping hard­
ware of the CPU to transmit the page without actually
copying the page. This procedure is called "page
passing".

COMMUNICATION SOFTWARE
TOPS-10 provides a wide selection of communica­
tions capabilities to enhance or facilitate the user's
compuNng needs. Communications functionality has
always been an integral part of the TOPS-10 opera­
ting system. With its long heritage of interactive, multi­
mode computing, user access to the features and
functionality of the operating system has always been
an important design consideration of any implementa­
tion of the operating system.

Within the multitask environment of TOPS-10, func­
tionality exists for:

4-13

• Asynchronous communication - the typical method
for interactive timesharing, transaction processing,
program development and debugging, and data
entry

• Synchronous communications - for connection of
remote batch stations, remote terminal comcentra­
tion, and computer-to-computer links

The TOPS-10 operating system handles the commu­
nications housekeeping, and all communication func­
tions are fully supported within the operating system.
Appropriate synchronous line protocols for interfacing
to non-DIGITAL products are supported.

Networks with simple or complex topologies can be
configured utilizing various families of front-end pro­
cessors, communications processors, remote batch
stations, remote terminal concentrators, and a combi­
nation of remote batch station and remote terminal
concentrator products. These products feature func­
tionality throughout a wide spectrum of communication
needs.

Additional details concerning TOPS-10 based com­
munication products can be found in Section 10 of this
document.

CONSOLE FRONT-END PROCESSOR AND
SOFTWARE
On the DECsystem-10, the console front-end proces­
sor and software reduce the central processor's partic­
ipation in I/O operations and serve as a powerful
diagnostic/maintenance tool for service personnel.

Specifically, the console front-end processor is re­
sponsible for providing:

• Console functions

• Interface for command terminals

• Interface for unit record peripherals

• Diagnostic and maintenance functions

Console Functions
Two major functions of the front-end are system initial­
ization and communication between the system and
operator. The user need only push a button and type
in data to initiate the following automatic program se­
quence. The console front-end processor loads and
verifies the microcode, configures and interleaves
memory, and loads and starts execution of the central
processor bootstrap program from a device specified
by the user.

The user can request a memory configuration listing
that indicates which memory controller is online, what
the highest memory address configured is, and how
the memory is interleaved.

All normal console capabilities, such as the ability to
examine and change registers, start, stop, reset, and
load, are provided by the console front-end processor.
An operator command language is provided with the
system.

Command Terminal Functions
The console front-end processor serves as an intelli­
gent data link and buffer for the interactive terminals,
relieving the central processor of this overhead. The
console front-end processor buffers the characters
received and interrupts the central processor, either
upon receipt of a clock signal or in the event it has a
group of characters to send. The central processor
also sends groups of characters for terminal output to
the console front-end processor, further enhancing ef­
ficiency. Programmable terminal speed-setting cap a-

4-14

bility is provided, enabling terminal speeds to be
changed dynamically. On dialup terminal lines, the
monitor will automatically select the appropriate rate
for 110, 150, 300, or 1,200 baud lines when the user
types RETURN or CTRL C. Thus, line speeds need
not be associated with phone numbers.

Peripheral Interface
The unit record-spooling programs in TOPS-10 com­
municate with the console front-end processor, using
the same buffering mechanism described for the com­
mand terminal functions. Both the central processor
and the console front-end processor maintain buffers
for data. They interrupt only once per buffer transmis­
sion, increasing the amount of useful work each pro­
cessor can do.

Diagnostic Maintenance Functions
Remote diagnosis capability reduces mean time to re­
pair (MTTR) and increases system availability to the
user. It also allows DIGITAL's service engineers to
determine the causes of most system failures before
leaving the local office. By running diagnostic tests
using telephone dialup facilities, the Field Service en­
gineer can give the customer better service because it
is easier to select which spares and test equipment
should be taken on the call. Certain tests can be run
during general timesharing. Even if the main CPU is
inoperative, the console front-end processor can
access all buses and major registers.

Total system security is maintained because the on­
site system operator must activate the communica­
tions link, and only the onsite personnel know the
specific password to the system each time remote di­
agnosis is employed. Time limits for system access
can also be imposed, and the remote link cannot oper­
ate at a higher privilege level than that specified by the
local console terminal. All input and output to the diag­
nostic link is copied to the local terminal, giving onsite
personnel a record of all steps taken.

5
The I(L 1 0 Centra I

Processor

The Kl1 0 central processing unit is the heart of DIGITAL's large scale com­
puter systems and has provided the basis for the popular and successful
I)ECsystem-10 computer family.

lne KL 1 O-E version of the Kl1 0 is the central processing unit of the
DECsystem-1 091. The Kl1 0-0 version of the Kl1 0 is the central processing
;mi[of the DECsystem-1090.

hnponant features of the Kl1 0 central processing unit are:

.~ ~~98 logically-grouped microprogrammed instructions, including byte and
~;tring manipulation, double-precision fixed and floating-point, and character
DOlting and conversion
An architecture that allows modular expansion without component replace­
ment or complex reconfiguration

~J!\n integrated PDP-11 front-end processor for diagnostic functions, console
{unctions, and handling low-speed peripheral devices
F:xtensive error-detecting circuitry for maintainability and availability
Inteqrated high-speed data channels/controllers for disks and tapes for im­
proved reliability and price/performance

~ state-of-the-art memory management hardware that allows virtual memory
operation

.~ Four-word memory fetch capability for increased bandwidth and
performance

~ Hiqh-speed cache memory with state-of-the-art design. Typical on-line pro­
qfamming results in a 90% cache "hit" rate for efficiency and high
periormance
A full line of high-efficiency, high performance UNIBUS and MASSBUS pe­
npheral devices to meet individual user needs
~ tiqh-speed ECl logic implementation
:.;fJht sets of general purpose registers which can be used as accumula­

index registers, or the first 16 locations of main memory, and which
h:}\/B an access time of 160 nanoseconds

--------~---------------------,

r -

TERMINAL

KLiNIK

I I
I I

I I
I I

II

I I

1140

I'" --
I

- --- -

MUl TIPlEXED
1'0 BUS

ECl
PROCESSOR

CACHE AND
MEMORY CONTROL

CHANNELS

MASSBUS
PERIPHERALS

UP
TO
8

MR-S-1209-81

Figure 5-1
KL 10-0 Central Processing Unit

SYSTEM ARCHITECTURE
The internal architecture of the KL 10 central process­
ing unit may be considered a collection of "special
purpose" processors connected through high-speed
internal buses. Four major subsystems constitute the
OECsystem-10 architecture for purposes of this
discussion:

• The Execution Box (E-Box) and associated buses,
which execute machine instructions and provide
control for other subsystems

• The main memory subsystem, which consists of a
memory control unit (M-Box), associated buses,
and internal memory, and/or MOS memory or exter­
nal core memory, depending upon the physical
main memory configuration

• The front-end diagnostic and console POP-11 sub-

5-1

system, which also supports UNIBUS unit-record
equipment

• The 110 subsystem, which consists of integrated
channel/controllers, a multiplexed I/O bus (on some
models), and POP-11-based communications
subsystems

Figure 5-"1 illustrates a fully configured KL 10-0 based
OECsystem-10. Key elements of the packaging and
implementation of the KL 10-0 processor are External
Memory Buses terminating in the OMA interface, a
Multiplexed 110 Bus terminating in the OIA interface,
MASSBUS for high-speed peripherals (disks, tapes)
terminating in RH20 integrated channels and control­
lers, and a UNIBUS for low-speed peripherals (unit­
record and POP-11-based communications)
terminating in the OTE interface. (The DTE is dis­
cussed later in this section.)

Figure 5-2 illustrates a fully configured KL 1 O-E-based
DECsystem-l0. Key elements of this packaging and
implementation of the processor are internal memory,
an optional multiplexed liD bus terminating in the DIB
interface, a MASSBUS for high-speed peripherals
(disks, tapes, etc.) terminating in RH20 integrated
channels and controllers, and a UNIBUS for low­
speed peripherals (unit-record and PDP-11-based
communications interfaces) terminating in the DTE
interface.

These two figures point out the important differences
in the two versions of the KL 10 CPU. The KL 1 O-E
supports internal memory for TOPS-10 and may in­
clude a DIB liD bus interface (if required for certain
peripherals); the liD bus is standardly configured in
the KL 10-0.
Figure 5-3 further defines the KL 10-0 and KL 1 O-E
from a packaging standpoint. The KL 10-0 is pack­
aged in 72" cabinets; the KL 10-E utilizes DIGITAL
Corporate 60" "high-boy" cabinets.

---------------------~

11 40

leTY ~~
r

I DF01

!
TERMINAL

I KLiNIK

Q)

, I ~
I I g

o

-5 - DL11 c
I I ~

«
I I

I I

I I

I I

I I

I I
I" - - - -

UNIBUS
PERIPHERALS

MULTIPLEXED
110 BUS
OPTIONAL

Figure 5-2
KL 1 O-E Central Processor Unit

5-2

ECl
PROCESSOR

CACHE AND
MEMORY CONTROL

CHANNELS

R
H
2
o

MASSBUS
PERIPHERALS

UP
TO
8

INT
MEM

MR·S·1207·81

FRONT­
END
SUB­
SYSTEM J...--..----I

I
(f)

=>
(Q

~

I
(f)

=>
(Q

z
=>

I
(f)
ill
(f)

=>
(Q
(f)

~
::2:

INTERNAL
MEMORY

KL 10-E MECHANICAL CONFIGURATION

I

I I
(f) (f) (f)
ill => =>
(f) (Q (Q

~ 9 Z
~ =>
ill
::2:
~ x
ill

I

I
(f)
ill
(f)

=>
(Q
(f)
(f)
«
::2:

FRONT­
END
SUB­
SYSTEM

KL10-D MECHANICAL CONFIGURATION

Figure 5-3
KL 1 O-D/IE Mechanical Configuration

5-3

MR-S-1231-81

Execution Box (E-Box)
The execution box (E-Box) is the element of the pro­
cessor that actually executes instructions and per­
forms various control functions for overall CPU
operation. The KL 10 features 398 microprogrammed
instructions. Each instruction is a series of microin­
structions that performs various logical functions like
processor state control, data path control, and the ac­
tual implementation of each instruction. This is import­
ant to the overall flexibility of the KL 10 central
processor. Through the use of microcode (as opposed
to "hard-wired" instruction implementation), a ma­
chine instruction executes one or more microstore in­
structions. To execute a given machine instruction, the
microinstruction sequence associated with that in­
struction performs the data movement, operations on
data, or control steps that are needed to execute in­
structions. The microprogrammed KL 10 central pro­
cessor offers several important advantages:

• The CPU executes TOPS-10 paging (memory
management) and monitor call interface.

• Engineering changes or central processor improve­
ments can often be implemented by microstore

5-4

(firmware) changes, rather than by wiring changes,
since the microstore is loaded by the PDP-11 front
end during system boot program.

• Cache and virtual memory operations are enhanced
by using microprogramming.

• The packaging technology of microcoded hardware
permits smaller size and greater flexibility in
instructions.

• Architectural extensions can often be made using
microprogramming, which eliminates the need for
extensive engineering change orders (as, for exam­
ple, in the support of new peripheral subsystems).

The microstore is actually implemented with 2,048 75-
bit words. The E-Box also has a 512-word instruction
dispatch table that rapidly decodes instructions and
dispatches operations to the appropriate microstore
sequence to implement the instruction. Besides per­
forming the basic functions of decoding and imple­
menting control store steps for the implementation of
each instruction in the KL 10 set, the microcontroller
executes the more fundamental operations of
sequencing the program and processing interrupts.

The E-Box also contains eight sets of 16 general pur­
pose registers, four timing and accounting meters, and
an interface to the low-speed 110 devices (DTE for
UNIBUS equipment and DIAIDIB for multiplexed 110
bus devices). The interface to the low-speed control
devices is controlled by the E-Box's microcode and
performs the required data and control transfers by
stealing microcode cycles between the execution of
CPU instructions.

Instruction Set
The KL 10 has 398 microprogrammed instructions, (an
extremely large repertoire), which provides the flexibil­
ity required for specialized computing problems. Since
the set provides so wide a selection of instructions
from which to choose, few are typically required to
perform a given function. Programs can therefore be
shorter than those of other computers. The large in­
struction set also simplifies the monitor (operating sys-

, tem), language processors, and utility programs.

In addition to the 398 instructions, the KL 10 provides
64 programmable operators of which 33 trap to the
monitor and 31 trap to the user's call area. Tt"le re­
maining instruction codes are unimplemented and re­
serve for future expansion. An attempt to execute one
of the unimplemented instructions results in a trap to
the monitor.

Despite its size, the instruction set is easy to learn.
The set is logically grouped into families of instruc­
tions, and the mnemonic codes are constructed modu­
larly. All instructions are capable of directly addressing
a full 256K (K 1,024) 36-bit words of memory without
resorting to base registers, displacement addressing,
or indirect addressing. Instructions can, however, use
indirect addressing with indexing to any level. Most
. instruction classes, including floating point, allow im­
mediate mode data. The result of this is effective ad­
dress calculation used directly as an operand to save
storage and speed execution.

The processor mode concept has been a keystone in
DIGITAL's timesharing or multitasking systems for
over a decade, and it is central to the KL 10 implemen­
tation. Instructions are executed in either user mode
or executive mode. In a multitask environment, a user
must not execute instructions that would jeopardize
other users. On the KL 10, attempted execution of
such an instruction simply traps to the operating sys·,
tem, which analyzes the instruction and takes appro­
priate action.

In executive mode operation, any implemented in­
struction is legal. The monitor operating in executive

,mode is able to control all system resources and the
state of the processor. Executive and user modes are
further divided into two submodes each. Table 5-1
defines the processor mode implementation.

5-5

User Mode

Public Submode

• User programs

Table 5-1
Processor Modes

• 256K word address
• All instructions permitted unless they compromise integrity

of the system or other users
• Can transfer to concealed submode only at entry points

Concealed Submode
• Proprietary programs
• Can READ, WRITE, EXECUTE, or TRANSFER to any

location labeled public

Executive Mode (monitor)

Supervisor Submode
• General management of system
• Those functions that affect only one user at a time
• Executes in virtual address space labeled public
Kernel Submode

• I/O for system
• Those functions that affect all users

Instruction Format
In all but inputloutput instructions, the nine high-order
bits (0-8) specify the operation; and bits 9-12 usually
address an accumulator (but are sometimes used for
special control purposes, such as addressing flags).
The rest of the instruction word always supplies infor­
mation for calculating the effective address, which is
used for immediate mode data, or is the actual ad­
dress used to fetch the operand or alter program flow.
The effective address is referred to throughout this
document as the user (or operating system) virtual ad­
dress. Memory-mapping andlor paging hardware can
"map" this effective address into a very different
"physical" address within main memory. But the pro­
grammer need only be concerned with an effective
user address space that can be up to 256K words. Bit
13 specifies the type of addressing (direct or indirect).
Bits 14-17 specify an index register for use in address
modification (zero indicates no indexing), and the re­
maining eighteen bits (18-35) contain a memory ad­
dress which is used as the basis for effective address
calculation or as an actual operand in immediate
mode format.

All input/output instructions are designated by "ones"
in bits 0-2. Bits 3-9 address the device to be used,
and bits 10-12 specify the operation. Bits 13-35 are
the same as non-li~ instructions. They are used in
calculating an effective address for the data to be
transferred.

Figure 5-4 illustrates the two instruction formats for
the KL 10.

ACCUMULATOR
ADDRESS

ADDRESS TYPE INDEX
REGISTER
ADDRESS

INSTRUCTION
CODE MEMORY ADDRESS

o 2 3

8 9 12 13 14 17 18

ADDRESS TYPE

INDEX
REGISTER
ADDRESS

MEMORY ADDRESS

9 10 1213 14 17 18

Figure 5-4
Instruction Formats

Half-Word Data Transmission

35

35

MR-S-1217-81

Half-word data transmission instructions move a half
word and can modify the contents of the other half of
the destination location. The 16 instructions differ in
the direction they move the chosen half word and in
the way they modify the other half of the destination
location.

Full-word Data Transmission
Full-word data transmission instructions move one or
more full words of data from one place to another. The
instructions can perform minor arithmetic operations,
such as calculating the negative or the magnitude of
the word being processed.

Byte Manipulation
Five byte manipulation instructions pack or unpack
bytes of any length anywhere within a word.

Logic Instructions
Logic instructions shift, rotate, and execute the 16
Boolean operations on two variables.

Fixed-Point Arithmetic
The KL 10 is a 2s' complement machine in which zero
is represented by a word containing all zeros. As in
comparable implementations, the KL 10 logic does not
keep track of a binary point. The programmer must
adopt a point convention and shift the magnitude of
the result to conform to the convention used. Two
common conventions are to regard a number as an
integer (binary point to the right) or as a proper frac­
tion (binary point to the left). In these cases the range
of numbers represented by a single KL 10 word is _235

to 23
5-1 (binary point to the right) or -1 to 1_235 (binary

5-6

point to the left). Since multiplication and division use
double-length numbers, there are special instructions
with integral operands for these operations.

The format for double-length fixed-point numbers is an
extension of the single-length format. The magnitude
(or its 2s' complement) is the 70-bit string in bits 1-35
of the high- and low-order words. Bit 0 of the high­
order word is the sign; bit 0 of the low-order word is
ignored. The range for double-length integer and
proper fractions is thus _270 to 27

0-1 (binary point as­
sumed at the right) or -1 to 1_270 (binary point as­
sumed at the left).

Floating-Point Arithmetic
The KL 10 processors have instructions to scale,
negate, add, subtract, multiply, and divide in single­
and double-precision floating-point format. In the
Single-precision floating-point format, one bit is used
for the sign, eight bits for the exponent, and 27 bits for
the fraction.

In double-precision floating-point format, one bit is
used for the sign, eight bits for the exponent, and 62
bits for the fraction. This results in a precision in the
fraction of 1 part in 4.6 x 1018 and an exponent of 2 in
the range from -128 to + 127.

Normalized single-precision floating-point numbers
have a fraction that can range in magnitude from 1/2
to 1 _(2-27). Increasing the length of a number to two
words does not significantly change the range, but in­
creases the precision. In any format the magnitude
range of the normalized fraction is from 1/2 to 1 less
the value of the least significant bit. In all formats the
exponent range is from 2-128 to 2127.

Fixed-Floating-Point Conversion
Special instructions convert between fixed- and
floating-point formats. Two sets of conversion instruc­
tions are provided, one optimized for FORTRAN, the
other for ALGOL.

Arithmetic Testing
An arithmetic testing instruction can jump or skip, de­
pending upon the result of an arithmetic test that the
instruction can first perform on a test word.

Logical Testing, Modification, and Skip
These instructions modify and/or test using a mask
and/or skip n selected bits in an accumulator.

Program Control
Program control instructions include several types of
jump instructions and subroutine calls including calls
that save the return address on a pushdown stack.

Input/Output Operations
Input/Output (I/O) instructions govern all direct trans-

ters of status to and from the peripheral equipment.
They also perform many operations within the proces­
sor. Block transfer instructions handle bulk data trans­
fers to and from medium-speed 1/0 bus devices. High­
speed devices transfer data directly to memory
through internal channels.

Unimplemented User Operations (UUOs)
Many of the codes not assigned as specific instruc­
tions are executed as unimplemented user operations;
the word given as an instruction is trapped and must
be interpreted by a routine included for this purpose
either by the programmer or by the monitor. UUOs
reserved for the monitor are called monitor UUOs
(MUUOs). User UUOs are called local UUOs
(LUUOs). Instructions that are illegal in user mode
also trap in the same manner as MUUOs.

Business Instruction Set
There are five classes of instructions in the Business
Instruction Set in the KL 10 central processor. Four of
these are arithmetic instructions to add, subtract, mul­
tiply, and divide using double-precision fixed-point
operands. The STRING instruction in the fifth class
can perform nine separate string functions.

These functions include an edit capability, decimal-to­
binary and binary-to-decimal conversion in both offset
and translated modes, move string in both offset and
translated modes, and compare-string in both offset
and translated modes. Offset mode is byte modifica­
tion by addition of the effective address of the string
instruction. Besides providing the translation function,
these instructions can control AC flags and can detect
special characters in the source string.

The Business Instruction Set provides faster process­
ing because there are special instructions for a wide
variety of string operations. These instructions can be
used on a variety of code types such as ASCII and
EBCDIC. The Business Instruction Set exemplifies a
microprogrammed processor's advantages in meeting
special user needs.

Trap Handling
The execution of programmed trap instructions per­
mits the KL 10 to directly handle arithmetic overflows
and underflows and pushdown list overflows.

F'ast Register Blocks
Eight sets of 16 general purpose registers (accumula­
tors) are provided in the KL 10 architecture. They can
be used as accumulators, index registers, or as the
first 16 locations in main memory. Since register ad­
dressing is included in the basic instruction format, no
special instructions are needed to access these regis­
ters. Different register blocks are used for the opera­
ting system and for individual users, eliminating the

5-7

need for storing register contents when switching from
user mode to executive mode.

Programmable Address Break
When a specified location is properly referenced, a
programmable address break suspends a user pro­
gram and traps to the operating system. This facility is
particularly useful in program development and
debugging.

Meters
Four meters built into the KL 10 provide a number of
timing and counting functions, including an interval
timer, time base, accounting meter, and a perform­
ance analysis counter.

The meters are controlled by 110 instructions to inter­
nal devices. Many of the timing functions use a micro­
second pulse source originating in the basic 30-
megacycle machine clock. Designed with a tolerance
of 0.05 percent, this pulse source results in a less than
a five-second drift in 24 hours.

The Interval Timer provides a programmable source of
interrupts with a one microsecond resolution. The In­
terval Timer used for real-time applications and for
page management by the monitor. The Interval Timer
is designed so that a real-time schedule with varying
deadlines can be implemented.

The Time Base provides a 60-bit, one-microsecond
resolution counter that can be used to generate a
source of elapsed time. This 60-bit register provides
more than 9,000 years maximum time before
wrap-arou nd.

The Accounting Meters provide an accurate measure­
ment of the amount of processor resources used by a
job.

The Performance Analysis Counter provides a tool for
studying hardware and software performance.
Through its ability to measure both the number and
duration of certain events, it may be used to measure
such events as cache hit rate,interrupts, and channel
activity.

Priority Interrupt System
The KL 10 has been designed and implemented with a
powerful, flexible priority interrupt system. It permits
overlapped, concurrent, asynchronous operation of
the central processor, peripheral controllers and de­
vices, and software service routines.

Devices are assigned under program control to one of
seven priority levels through dynamic loading of a 3-bit
register within the device. Each of the seven levels
has a number of programmable sublevels that enable
the operating system to change the priority level of

any device or disconnect the device from the system
and later reinstate it at any, or the same, level. Simi­
larly, the operating system can set, enable, or disable
all (or any combination of) levels with a single instruc­
tion. The operating system can assign some or all de­
vices to the same level.

The system can also generate interrupts through soft­
ware, so real-time hardware can operate on a high­
priority level while related computations, particularly if
they are lengthy, can be performed on a lower level.

The program-assignable priority interrupt system pro­
vides much greater flexibility than permanently hard­
wired systems, which require a large number of levels,
often operate with an extremely high overhead, and
cannot change device priorities without system shut­
down and rewiring.

In conjunction with the priority interrupt system, a set
of instructions (BLOCK-IN/BLOCK-OUT) allow blocks
of information to be transferred between a device and
memory in a single operation. When an interrupt oc­
curs, the KL 10 will trap to a predetermined location.
The BLOCK-IN/BLOCK-OUT instruction identifies the
source of the interrupt, transfers a word in or out, up­
dates word count and data address, and dismisses
the interrupt. When the word count is zero, a different
action occurs that allows the program to either pro­
cess the block of information that has been transferred
or to move on to other activities.

Multiplexed I/O Bus
A multiplexed I/O Bus, which provides a 36-bit full­
word parallel path between memory and an I/O device
for purposes of control or low-speed data transfer, is
standard on the KL 1 0-0 and optional on the KL 1 O-E.
To initiate such data transmission, a control word is
first transferred over the I/O buffer of the device con­
troller. Then, on command, data words or data blocks
are moved directly to or from memory using the
BLOCK-IN or BLOCK-OUT instruction as explained
above.

The I/O bus can also be used as a control and data
path to and from a large number of low-speed I/O de­
vices. Transfer is performed in 36-bit words in parallel.
Thus, each data transmission instruction moves one
word of data between memory and the buffer of the
device controller. When block input or output instruc­
tions are used, entire blocks of data ar~ moved to or
from the device with a single instruction.

Memory Subsystem
Central to the KL 10 architecture is the control all mem­
ory through a discrete memory controller (M-Box).
The M-Box is responsible for all memory requests
from the E-Box and from integrated channel/control­
lers for high-speed peripherals (disks and tapes). The

5-8

M-Box does paging (address translation) for memory
management and contains the cache memory for the
CPUs.

Physical Memory
Through the OMA External Memory Controller, the
KL 10-0 supports external memory modules as illus­
trated in Figure 5-5; the KL 1 o-E supports internal
MOS (Metal-Oxide-Semiconducter) memory as illus­
trated in Figure 5-6.

KL10-D

I E-BOX

t
CACHE

INTERNAL
M-BOX CHANNELS

t S-BUS

DMA I
MUL TIPLEXED
MEMORY
BUSES

EXTERNAL
MEMORY

MR-S-1206-81

Figure 5-5
External Memory

KL 10-E

E-BOX

CACHE

_ INTERNAL
CHANNELS M-BOX

X-BUS

INTERNAL
MEMORY

Figure 5-6
Internal Memory

MR-S-1205-81

External Memory KL 10-0
To meet the requirements of large systems using the
TOPS-10 operating system, the KL 10-0 supports up
to 16 external memory modules providing a maximum
of 4,096K directly addressable 36-bit words. The DMA
supports four memory buses, allowing interrleaving
and multiple word fetches from separate memory
modules. The interleaving is used to increase the
bandwidth of TOPS-10-based hardware configura­
tions with external memory. The KL 10 reads or writes
four words concurrently from memory. These four logi­
cally successive memory locations (obtained from four
physicailly separate memory modules) are placed in
the Cache Memory. In typical programs, another
memory reference need not be initiated until the four
instructions or data words have been processed.

Each memory module provides switches that allow a
particular module to represent any module of its size
in the physically addressable memory space. Thus,
one module can replace another without rewiring. The
switches also provide for memory interleaving. Table
5-2 lists the features of the external memory system
supported by the KL 10-0 under TOPS-1 O. The MH1 0
is currently the only new-build memory of this type
offered by DIGITAL.

Table 5-2
External Memory System MH10

Feature MH10

Word Size
Minimum Memory Size*
Maximum Memory Size
Read Access Time**

Cycle Time**
Interleaving

Average
Maximum

Minimum memory unit
that can be disabled

* Within CPU Cabinet
**Measured at Memory

36 bits plus parity
64K words
4096K words

735 ns
745 ns
1200 ns
1-, 2- or 4-way

64K

Figure 5-7 illustrates the connection and operation of
MH10 memory in four-bus/four-way interleaved mode.
As an example, assume the E-Box requests at mem­
ory reference which is not already in Cache Memory.
The KL 10-0 memory interface (DMA), initiates a four­
word memory request to the external memory mod­
ules. If properly configured, the request for "word-1"
will be recognized by MH1 0#1; the request for "word-
2" will also be recognized by MH1 0#1, but will be
contained in a separate internal module within the
MH10 (the MH10 modules are two-way interleaved,
internally, and equipped with two sets of read/write
electronics so that each MH10 behaves as if ~t were

5-9

two "separate" memory modules); the request for
"word-3" will be recognized by MH10#2; as will the
request for "word-4". Four separate sets of read/write
electronics will then begin a read cycle of the four re­
quested words; and, 745 nanoseconds later (maxi­
mum), all four words will be placed on the memory
buses and sent to the DMA. The DMA will then for­
ward the words to the M-Box where they will be con­
tiguously placed in Cache Memory.

CACHE

1 2 3 4

'1
MH10 2
#1

3

MH10
#2

4

MR-S-1218-81

Figure 5-7
MH10 Memory Interleaving Concept

Internal Memory KL 1 O-E
The internal memory implementation of the KL 1 O-E
offers improved reliability and lower cost per word
than external memories due to its simplified design
and, because long bus interfaces are not required, a
lower component count. Besides MF20 memory (see
MOS memory below), MB20 memory is available for
the KL 1 O-E. This memory (Table 5-3) can be config­
ured to contain up to 128K words per package with a
single set of read/write electronics. Multiple 128K­
word modules can be included in the system package.
Each module operates independently of any other.
This permits memory references to overlap. MB20 is a
single-port memory module. No external direct-to­
memory devices are supported on the KL 1 O-E. (All
memory requests are directed through and arbitrated
by the M-Box in the CPU.) The various memory con­
trollers are interfaced directly to the M-Box through
the S-Box. Figure 5-8 illustrates internal memory
implementation.

Table 5-3
internal Memory Systems

Feature

Word Size

Minimum Memory Size*
Maximum Memory Size*
Read Access Time**
Read Cycle Time**

Interleaving

1-word
4-word

Minimum memory unit
that can be disabled

* Within CPU Cabinet
**Measured at Memory

SECTION 1

IS-BUS

MEMORY CONTROL
(M-Boxl

MF20(MOS)

36 bits plus 7
error-correcting bits
256K words
2048K words
467 ns

667 ns
1267 ns
4-way

64K

I
I SECTION 2

I
INTERNAL
MEMORY

I
I

C
A
C
H
E

EXECUTE
BOX
(E-Box)

Figure 5-8

MR-S-1221-81

ilnternal Memory Systems Configuration

MOS Memory
The KL 1 O-E is offered with MOS (Metal-Oxide Semi­
conductor) memory. This memory has a word length
of 44 bits (36 data bits, seven error detection and cor­
rection bits, and one spare bit). This implementation
allows hardware detection and correction of a single
bit data error and hardware detection of a double-bit
error. MOS memory is available in 265K word incre­
ments to a maximum of 3 megawords.

If a correctable (single-bit) error is detected, the data
word will be automatically corrected by the hardware
and the CPU notified (with a flag) of the event. This
design allows the program to continue without consid­
eration of such memory deterioration while, at the
same time, it allows the operating system to gather
statistics concerning possible failing areas of memory.

5-10

If a detectable but noncorrectable (double-bit) error is
encountered, the memory controller signals the CPU,
sets a noncorrectable error flag, and provides certain
other data on the first error detected. The operating
system will mark the page containing this location and
will not reuse it.

The spare bit can be substituted (upon software com­
mand) for failing bits, significantly enhanCing the mean
time between failure (MTBF) for this type of memory.

Cache Memory
The purpose of cache memory is to decrease instruc­
tion execution time by substantially speeding the aver­
age memory reference. This is accomplished by
placing a high-speed semiconductor memory (the
"cache") inside the M-Box. The cache can hold up to
2K words from memory. Whenever the program
accesses a word held in cache, the request is satisfied
in 133 nanoseconds, compared to 867 nanoseconds
or more for a memory reference (measured at the
E-Box).

The success of this scheme depends on the quality of
the algorithm used to decide which 2K from memory is
cached. Cached locations change constantly with
varying system demands, but the algorithm is based
on the assumption that memory references tend to be
somewhat localized. In a typical program the flow of
control is linear within a narrow scope. If an instruction
has just been executed from location N, there is a high
probability that there will soon be an instruction exe­
cuted from location N + 1.

The "hit rate" of the KL 10 cache memory usually ex­
ceeds 90 percent.

There are several unique design features of the KL 10
cache memory:

• KL 10 cache is not a write-through cache. If the
E-Box instructs the M-Box to write a given location,
the location is modified only in cache. The corre­
sponding physical location will be updated only
when the monitor instructs the M-Box to sweep
cache, or when a quadword (four adjacent 36-bit
words) must be emptied to make room for new data.

• The cache is organized to handle physical ad­
dresses. The cache scheme used on some other
large systems, however, is oriented toward virtual
addresses. The algorithm used in the KL 10 was de­
veloped by Stanford University, and its modeling
demonstrates that the use of physical addresses in
the cache algorithm is more efficient than the use of
virtual addresses.

• The hardware's use of the cache is dependent upon
the M-Box microcode, which is normally set up to
support all four cache pages. However, if desired,

some or all of the cache can be turned off. This
option is exercised when the front end is initializing
the KL 10 at system start-up.

Organization
The cache can hold up to 2048 words from memory. It
is organized as four separate pages which olPerate in
parallel, each containing 512 words.

3

2

a
MR-S-1223-81

Figure 5-9
Cache Organization

For simplicity, let us consider one of these four pages
and the format of the data stored within it. The struc­
ture is !identical for each of the pages.

Each cache page has a directory associated with it.
The directory consists of 128 entries, each entry being
13 bits wide. A single directory entry contains informa­
tion concerning four words of data within the cache
page.

This results in a structure similar to that of Figure
5-10.

A single entry in the cache is represented by Figure
5-11.

A four-word cell described by a single directory entry
is called a "quadword." The 13-bit directory entry for a
quadword contains the physical page number of the
page in memory that originated the quadword. In turn,
the position of a word within a cache page is always
the same as the position of the word in its original
page of memory.

Consider a simple example. Assume that we have
only one page of cache and its associated directory,
rather than the four that are actually provided in the
hardware. Suppose that the E-Box has requested the
contents of physical address 14707002 (addresses
are in octal notation), a 22-bit address. The M-Box
must determine if it must read memory location
14707002, or, if that location is already in cache. The
first step is to split the physical address into a 13-bit
physical page number, in this case 14707 octal, and a
9-bit index into the page 002 octal In other words, we

5-11

are concerned with the 002nd word of physical page
14707. If this word is already cached, then the only
place it could be in our single cache page would be in
word 002 (because "the position of a word within a
cache page is always the same as the position of the
word in its original page"). The M-Box must examine
the 13-bit directory entry corresponding to the 002nd
word of the page and compare it to the desired physi­
cal page number of 14707. If the directory entry holds
14707, then the 002nd cache page word is indeed the
word we are looking for. If the comparison fails, then
we have no choice but to read physical memory.

Since there is exactly one directory entry for each
quadword, it follows that all four words in the quad­
word must come from the same physical page. More­
over, a word must have the same position in the cache
page that it had in the physical memory page. These
facts imply that the four words in a single quadword
are physically contiguous in memory as well as in
cache. This concept is key to the KL 10 cache design.

The previous example was simplified by the omission
of three-fourths of the cache pages. In a real system
with four pages (2K) of cache, a given physical word

(f)
UJ
0:
I­
Z
UJ
(Xl
C\J

4 DATA WORDS

L_
13 BIT DIRECTORY

Figure 5-10
Cache Page Structure

-I

MR-S-1222-81

.....-----VALID BIT

.-----WRITTEN BIT

xxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxx

13-BIT
PHYSICAL
PAGE NUMBER

~
36-BIT
DATA WORD

MR-S-1224-B1

Figure 5-11
Cache Entry

might actually reside in anyone of the four pages of
cache. For instance, if we need physical address
14707002, we have to keep in mind the physical page
number (14707) and the index into that page (002). If
the word resides in any of the four cache pages, we
know it has to be in word 002 of whichever page holds
it, just as we earlier knew that it had to be in word 002
of the single cache page. The M-Box has to compare
the desired physical page number of 14707 to the con­
tents of four directory entries, one for word 002 of
each of the four cache pages. If a match is found for
anyone, then the data is taken from the proper page.
Otherwise physical memory must be read.

The algorithm that determines the order in which the
cache pages are filled uses tables in RAM storage.
Therefore, by rewriting the tables it is possible, under
program control, to "shut down" part or all of the
cache.

System Control of Cache
There are three different operations to which the moni­
tor can subject the cache: invalidation, validation, and
unloading. These operations can be performed on the
entire cache or on entries belonging to a single mem­
ory page.

To invalidate a location means to clear its valid and
written bits, which empties the location. Validation of a
location means that, if an entry has been written since
it was brought in from memory, then the modified con­
tents must be written back into physical memory. This
happens because the cache is not a write-through
cache. The unloading of a location requires the
M-Box to validate the location and then to invalidate it.

Memory Mapping on the KL 10
The KL 10 provides a hardware implementation of
memory address mapping from a program's memory
address space (effective address or virtual address) to
the physical memory address space. The mapping
substitutes the most significant bits of the memory ad­
dress. Mapping provides access to the entire physical
memory space, which can be up to 16 times larger
than the maximum user address space. The user's
effective address space is 256K words addressed with

5-12

18-bit addresses. The physical address space is
4,096K words addressed with 22-bit addresses
(4,096K is equivalent to 4,194,304 decimal). Provi­
sions exist in the KL 10 to allow user address space
larger than 256K words.

The memory-mapping process uses the nine most sig­
nificant bits of the virtual address as an index into the
appropriate user or executive page map. The data lo­
cated by the index provides 13 bits that are appended
to the nine least significant bits of the virtual address
in order to form the 22-bit physical address. Also pro­
vided are three bits that indicate what type of memory
requests are allowed to the page in question (for ex­
ample, none, read-only, proprietary). Figure 5-12 illus­
trates this mapping via the page table.

9

512 {
WORDS PAGE

EFFECTIVE ADDRESS

13

TABLE

18 BITS = { 256K WORDS
512 PAGES

22 BITS _{4096K WORDS
- 8192 PAGES

MR-S-122S-81

Figure 5-12
Memory Mapping

If the address is in the range 0-17 (octal), inclusive,
the hardware fast register blocks are referenced, in­
stead of the main memory system. The user mode bit
and the nine high-order bits of the virtual address are
used to do a "table look-up" in the hardware page
table. If a page table entry exists, the contents of the

entry supply the 13-bit m,ost significant part of the phy­
sical memory address and also supply three bits
which indicate types of memory references allowed to
this page. If the memory request is consistent with the
request type allowed, the physical address used con­
sists of the 13 bits from the related page table entry as
the most significant bits of the physical add~ess and
the nine least significant bits of the effective address
as the least significant bits of the physical address.

When the relocation data for a referenced page does
not exist in the hardware page table, the microcode
reads the relocation data from the page table in mem­
ory, stores it in the hardware page table of the KL 10,
and proceeds.

The operating system assigns the memory area for
each user by loading the various in-memory page ta­
bles, setting up the trap locations in the user page
map, and responding appropriately when a trap oc­
curs. The monitor provides memory protection for it­
self and for each user by filling only the page tables
with entries that are allowed to be accessed. This
makes it impossible for a user to infringe on another
user's physical memory area.

The major benefits of this paging capability are:

• Full memory protection of one user from another
through hardware and microcode

• Freedom to scatter the pages of a user virtual mem­
ory area throughout physical memory (programs do
not have to be physically contiguous), thus eliminat­
ing memory shuffling and complex memory man­
agement even though a user program grows during
execution

• The opportunity to execute a program when all of its
pages are not in physical memory (that is, a virtual
memory capability)

'KL10-E

KL
CENTRAL
PROCESSOR PDP-11 RH11

DUAL-PORTED
DISK

Front-End Subsystem
A key element in the operation and maintenance of
the KL 10 is the PDP-11-based console/diagnostic
front-end computer. This minicomputer provides all
console functions for the KL 10 and the TOPS-10 op­
erating system.

The PDP-11 interfaces to the KL 10 through a dedi­
cated Digital Ten-to-Eleven (DTE) interface with a full
capability UNIBUS. The DTE, under control of both
the KL 10 and the front-end PDP-11, can examine or
deposit words into memory and can provide two-way
data transfers. Asynchronous communications lines
for the console terminal and a dedicated line for
remote/local diagnostic functions (KLINIK) connect the
user to the operating system by means of the console
front end.

In addition to the DTE link, both the KL 10 (through an
RH20) and the PDP-11 (through an RH11) are inter­
faced to separate ports of an RP06 Disk Drive. Figure
5-13 illustrates these interconnections.

FLOPPY
DISK
OR
DECTAPE

DL11

CONSOLE
TERMINAL

DL11 INE CARD
PRINTER READER'

LOCAL
OR REMOTE
KLiNIK TERMINAL

Figure 5-13
Front-end Subsystem

MR-S-1208-81

5-13

In addition to the console and diagnostic functions, the
KL 1 O-E allows unit record and asynchronous commu­
nications equipment support by means of the front­
end console/diagnostic PDP-11 . These devices
operate identically (from the user standpoint) to those
interfaced to the DECsystem-10s I/O bus. They are
explained in detail in the section below on I/O devices.

All KL 1 O-based systems rely on the front end for at
least two basic functions. First, the PDP-11 allows the
initiation of CPU operations from a dead stop. This
process involves setting up KL 10 status, loading mi­
crocode, configuring memory, and starting the monitor
bootstrap. These operations are conducted primarily
across a diagnostic bus that connects the front end to
both the E-Box and the M-Box by means of the soft­
ware. The second important function of the PDP-11 is
to support the console terminal with which an operator
can control the system. It is this terminal that governs
the operating system and the tasks running under it.
The terminal can also be used as a normal user termi­
nal. Implementation of these functions is accom­
plished by means of a special operating system that
runs in the PDP-11 with supporting code for
TOPS-tO.

The PDP-11-based operating system varies some­
what between various system models, but is built
around Digital's RSX (real-time system) software. This
software allows concurrent operation of multiple tasks.
One task is the "command parser," the program that
recognizes commands typed on the console terminal
and passes appropriate messages (through the DTE)
to the KL 1 O-resident operating system (TOPS-1 0).
Other tasks include KLiNIT, which oversees initializa­
tion of the KL 10 processor, and KLiNIK, which pro­
vides a diagnostic environment that permits diagnosis
and control of the KL 10 to privileged users from either
local or remote locations.

Devices associated with this front end which support
console and diagnostic operations, but which can not
be used as peripheral devices, include the RH11 disk
controller and either a floppy disk drive or DECtape
drive. Either can be used as an alternate bootstrap
device if, for some reason, the RP06 disk cannot be
used or contains incorrect information.

Front-end operations require that the dual-ported
RP06 be available for normal operations. The RP06 is
connected to both the KL 10 and the PDP-11 through
dual-ported hardware. The disk used is KL 10-
formatted. There are both hardware and software in­
terlocks to prevent the KL 10 and PDP-11 from
interfering with one another. The PDP-11 disk area is
not available for user storage.

KL 10 systems can support up to four PDP-11s; how­
ever, only one of these can be the controlling front

5-14

end. In order to prevent conflicts between different
PDP-11 s, the operations described in this section can
only be accomplished through a "privileged" hard­
ware- and software-selectable DTE.

More about DTE operations is included in the next
section

Input/Output Subsystem
The KL 10 input/output subsystem provides standard
interfaces and control logic to allow the KL 10 to be
connected to a wide range of peripheral and commu­
nications equipment. These peripherals include disks,
magnetic tapes, card readers, line printers, plotters
and, through PDP-11-based communications subsys­
tems, synchronous and asynchronous lines. Details of
the operation and the specifications of these periph­
eral devices are available from your Digital sales
representative.

To standardize the interface and permit the connec­
tion of a wide range of peripheral devices, Digital has
long used a "bus" architecture. Three external buses
(see Figure 5-14) are available to communicate with
the KL 10 CPU:

• Multiplexed I/O bus

• MASSBUS

• UNIBUS

Each is discussed in detail in the following
paragraphs.

KL10
CENTRAL
PROCESSOR

OMA II (KL 1 O-D Only)

MULTIPLEXED
MEMORY BUSES
(4)

MULTIPLEXED

DIAIB
1/0 BUS

DTE
UNIBUS

~- - - -
~- - - -

RH20
MASSBUS

~- - - -
~- - - -
- - - -

~- - - -
- - - -

~- - - -

Figure 5-14 MR·S·1216·81

KL 10 Input/Output Bus Architecture

Multiplexed I/O Bus
A multiplexed I/O bus is provided on all KL 1 O-Ds and
is optional on KL 1 D-Es. The KL 10 I/O bus is sup­
ported by the TOPS-10 operating system. The I/O
bus provides control and a character-by-character,
interrupt-driven interface for low-speed devices. Under
TOPS-10, line printers, card readers, etc., are sup­
ported through the I/O bus. Figure 5-15 illustrates the
hardware associated with the KL 10 I/O bus.

Multiplexed Memory Bus Subsystem
An external memory bus system is supported on the
KL 10-0 CPU, allowing external memory to be con­
nected to the processor. The KL 1 O-E does not pro­
vide external memory because its memory is internal.
The DMA-10 (shown in Figure 5-16) allows up to six­
teen external memory modules and up to 4,096K
words of external memory. The memory bus system
operates completely asynchronously allowing support
of differing memory speeds. Four buses are provided
allowing four-word concurrent fetch on four-way in­
terleaved memory systems. These externall memory
modulles may also be interfaced to external direct-to­
memory channels and controllers, for tapes and com­
munication subsystems.

MASSBUS
DIGITAL's MASSBUS allows connection of a wide
range of DIGITAL-supplied disks and magnf3tic tapes
to the KL 10 central processor. (See Section 7 for infor­
mation about MASSBUS peripheral devices.) Each
MASSBUS can interface as many as eight peripheral
device controllers to a single RH20 MASSBUS con­
troller. Each RH20 interfaces to the E-Box via the E
Bus and to one of eight data channels located in the
M-Box via the channel bus. (See Figure 5-'17.)

CI)
W
...J
::)
o
o
::2:

o
I-
a..
::)

-

~

~

-
-

--

KL10-D
CENTRAL
PROCESSOR

l M-BOX I
I CACHE I

DMA

I I I I I

MR 5·1211·81

Figure 5-16
KL 10-0 Memory Bus Structure

E-BOX

KL10
CENTRAL
PROCESSOR

*DIA-standard on KL 1 a-D.

DIA'B*

DIS-optional with TOPS-10 operating KL 1 a-E.

[

HARD COPY
CONTROL

MULTIPLEXED 10 BUS

Figure 5-15
Multiplexed I/O Bus Architecture

5-15

MR·S·1210·81

E-BUS

E-BOX

RH20
C MASSBUS (Up to 8 Devices)
A C-BUS RH20

M-BOX C - -' H
1 1 ___

E 1- -I
I ,- --
I 1- -_~
- -I(Up to 8)
I - ----I
I 1- ---,

IDISK
I

ITAPE
I

MR-S-1212-81

Figure 5-17
MASSBUS Interface

The channel also includes a series of multiple-word
channel buffers to support high-speed 1/0 between the
KL 10 memory controller and individual MASSBUS de­
vices. Up to eight RH20s can be installed in the KL 10.
For each device, the channel provides a 15-word data
buffer, a channel command word register, and a con­
trol command word pointer that serves as a program
counter. The channels transfer data (independently of
the KL 10 execution logic) by executing channel pro­
grams placed in memory by device service routines (in
the operating system) that use memory cycles.

The RH20 integrated controllers are interfaced to the
memory control unit (M-Box) of the KL 10 CPU via a
channel bus. The bus is a physically short high-speed
data transfer path designed for peak 1/0 bandwidth of
six million words per second (well in excess of that
encountered in any existing memory or peripheral
units) between the memory control unit and the
MASSBUS controllers (RH20s). Operating in synchro­
nous time-division multiplexed mode, the channel bus
allows the connection of multiple RH20s in memory.

Each RH20 terminates in a MASSBUS. This high­
speed data path connects the RH20 integrated con­
trollers and mass storage devices such as disk or
tape. Operating either asynchronously or synchro­
nously, the MASSBUS transfers control and status in­
formation or blocks of data between devices and
controllers.

5-16

DIGITAL-supplied disks and tapes connect directly to
the MASSBUS, providing an integrated high-speed
subsystem for mass storage.

UNIBUS
DIGITAL's UNIBUS provides the third path between
external devices and the KL 10 CPU. As illustrated in
Figure 5-18, this interface utilizes the DTE interface.
The DTE provides:

• The ability to examine or deposit words in PDP-11
memory and specified areas of KL 10 memory (un­
der the control of a PDP-11 processor connected to
the DTE-terminated UNIBUS or the KL 10 CPU).

• High-speed simultaneous two-way transfer of data
between PDP-11 and KL 10 memory. This transfer
operates in a PDP-11 "byte" mode and transfers
eight- or 16-bit bytes under the control of either the
PDP-11 or KL 10 processors.

• Doorbell interrupts. The PDP-11 can cause an in­
terrupt to the KL 10 processor and vice versa.

The DTE's two operating modes, restricted and privi­
leged, are controlled by a hardware switch on the
DTE. The privileged DTE is used only for the
console/front-end PDP-11. Only the restricted DTE,
which is used to control peripheral devices and com­
munications equipment, is described here.

OTE UNIBUS

E-BOX I I
POP-11

POP-11

I
MEMORY

M-BOX

MR-S-1213-81

Figure 5-18
UNIBUS Interface

There are two ways in which the DTE allows a
PDP-11 to communicate with KL 10 memory. First, the
PDP-11 can use an examine/deposit feature that per­
mits the PDP-11 to read or write a single KL 10 word.
The other method is with byte transfers in which the
DTE is responsible for transferring a string of data to
or from KL 10 memory. It is important to note that the
PDP-11 memory is itself a UNIBUS device, and the
DTE can directly access it. For KL 10 accesses, the
DTE interfaces to the E-Box of the KL 10 processor.
Of course, the DTE is totally inoperative unless a
PDP-11 is connected to the DTE and the appropriate
program is running in the PDP-11.

Examines and deposits by the PDP-11 can always be
made to any address within windows defined in KL 10
memory. The windows are specified by the operating
system executive process table. There are two win­
dows, the "to-10" area and the "to-11" area. These
differ in their availability to the two processors as
follows:

to -10 area
to -11 area

Can -10 write?
Yes
Yes

Can -11 write?
Yes
No

A rest~icted DTE cannot examine or deposit outside of
the windows established by the operating system.
This enables the KL 10 to protect itself from a malfunc­
tioning PDP-11. However, a privileged front-end (one
used only for the console/front-end processor) can ex­
amine and deposit anywhere in KL 10 memory, allow­
ing for diagnostic functions.

5-17

The other transfer mechanism, byte transfer, permits
transfers to or from anywhere in KL 10 memory. Byte
size can be 8 or 16 bits at the program's option, and
byte transfer supports concurrent "to-11" and "to-10"
transfers.

Once a transfer has been initiated, the DTE handles it
without further intervention from either CPU at the pro­
gram level; the operating system will not be inter­
rupted until the entire transfer is complete. The DTE
recognizes the end of the transfer by the expiration of
a byte counter. Transfer completion results in an inter­
rupt on the assigned priority interrupt level. On the
KL 10 side, actual implementation of a byte or word
transfer is by microcode. Thus, during transfers
through the DTE, cycles stolen from the microcode
incur some of CPU overhead.

As indicated earlier, DTE operation requires a
PDP-11 processor. While service routines are integral
to the operating system, it is the PDP-11 program that
actually handles peripheral equipment and the control
of its operation. Card readers and lineprinters are sup­
ported on the console/front-end processor, as are a
limited number of asynchronous communications
lines. Figures 5-19 and 5-20 illustrate UNIBUS and
I/O bus peripheral devices.

Additional information on any peripheral or communi­
cations subsystem is available from your DIGITAL
representative.

KL10-D

DIA

DTE'

DTE I­

DIE

DMA I fRH20l DTE .

'Privileged DTE

tFor upgrade situations only

(i]OPTIONAL

J
.:

HARD
COPY
CONTROL

I
CARD
READER

I
PDP-11

I
PDP-11
(running
comm
software)

I
MEMORY
MODULE

I
LINE
PRINTER

I
PDP-11
MEMORY

I
ASYN.
LINES

I
LINE
PRINTER

UNIBUS

I
CONSOLE

J
$YN ..
LINES:

I
MEMORY,
MODULE

Figure 5-19

I
: ~;

,:: .. ~ '.

DECT~Pf.;
'. "',

I
RH11

KLiNIK

DISK

KL 1 O-D Unibus and I/O Bus Peripheral Devices

018
~. ' .. I I I

~ARD
LINE DECTAPE POpy .

KL10-E PONTROL PRINTER

I I
CARD LINE
A,EADER PRINTER

UNIBUS
DTE'

I I I I I I [;rr,E.,' ~~.
I

.D11;·. PDP-11 cARtY" PDP-11 CONSOLE KLiNIK LINE

~
MEMORY ~E~9EF:t- PRINTER

DJE.···.

I I I
F'OP+1-1
(running ASYN. SYN.
comm LINES LINES
software)'

'Privileged DTE

DOPTIONAL

Figure 5-20
KL 1 O-E Unibus and I/O Bus Peripheral Devices

5-18

I

MR·S-1214-81

I
I RH11 I

ASYN. I LINES I DISK I

MR-S-1215-81

6
The 1(51 0 Centra I

Processor
~ ..:- ::>. , ,

The KS10 central processing unit (CPU) forms the basis of the
DECSYSTEM-2020.

The KS10 has changed mainframe computing. People constrained by
budgets to settle for something less than a mainframe can now install a
KS10-based DECSYSTEM-2020 with full assurance that software-compatible
growth is easy, cost-effective, and straight-forward.

The DECSYSTEM-2020 comprises a number of major units or subsystems
that communicate with each other. The minimum system has five subsys­
tems: processor, MOS memory, console, a UNIBUS adapter to handle the
disk system, and a UNIBUS adapter to handle all other peripheral devices.

rhe console, which is based on a microprocessor, boots the system from
disk and handles interaction of the operator or a remote diagnostic link with
other subsystems.

SYSTEM ARCHITECTURE
The KS 1 0 central processor forms the basis fior the
DECSYSTEM-2020 computer system. The
DECSYSTEM-2020 consists of four major
subsystems:

• KS10 CPU and memory

• Console and diagnostic microprocessor

• UNIBUS adapters

• Peripheral controllers

KS10 Technology
To meet its goal of full TOPS-10 functionality at low
cost, the KS10 was designed as a microprogrammed
central processor using low-power Schottky TTL and
featuring 4-bit data path slice microprocessor.

Microprogramming technology used in the KS'10 de­
sign relied heavily on experience gained in the design
and imp!lementation of the successful KL 10 central
processor and several of DIGITAL's mini/midi central
processors. Microcoded machine instructions are im­
plemented by one or more microstore instructions;
that is, to accomplish a given machine instruction, the
microinstruction sequence associated with the instruc­
tion moves or operates on data or controls steps nec­
essary to achieve the desired effect of the instruction.

Microprogramming implementation of the KS 10 cen­
tral processor provides several important advantages:

• Engineering changes or central processor improve­
ments can often be microstore (firmware) changes
rather than wiring changes.

• The packaging technology of microcoded hardware
reduces machine size and increases flexibility of
machine instructions.

• Virtual-address cache and virtual memory control
operations are speeded by microprogramming.

In addition to the microprogramming implementation
of the KS10, the 4-bit-slice technology allows the
KS10 to be reliable, low in cost, flexible, and compact.
Chip technology has progressed to the point where an
entire data path, including data registers, data opera­
tions, and testing and control functions for 4 bits, is
available on a single chip. Thus, to implement a 36-bit
KS10 central processor, nine 4-bit data path slice
chips are used (plus a tenth 4-bit data path slice chip
for "extra" control bits). Control lines from each are
connected to the microstore logic so the microcode
can dictate function, control, and data flow throughout
the system.

The KS10 Central Processing Unit
The KS10 central processing unit consists of four ex­
tended hex modules:

6-1

• Data Path Executive (OPE) Module - contains
data path, registers, cache, PI system, and
Dispatch ROM (Read-Only-Memory).

• Data Path Memory (DPM) Module - contains bus
interface, processor status flags, paging, cache di­
rectory, and shift counter.

• Control RAM (Random Access Memory) Address
(CRA) Module - contains next microcode address
logic, microcode leading hardware, and 2K x 36 bits
of microcode.

• Control RAM Memory (CRM) Module - contains
2K x 60 bits of microcode.

The heart of the KS 10 is an internal backplane bus.
Called the KS 10 bus, it provides a control and data
path between the processor, memory, console, and
peripheral devices.

Figure 6-1 illustrates the interconnection of the KS 10
central processor, memory, UNIBUS Adapters, and
console via the KS 10 bus.

This bus is a multiplexed two-cycle bus over which
command and address information is transmitted from
one bus device to another during a bus cycle. Data is
then transferred between the addressed device during
the following bus cycle. The bus operates in a bus
requestlbus grant mode with a bus cycle of 150
nanoseconds.

The KS10 bus is a synchronous backplane bus inter­
nal to the KS 10 processor. The bus can accommodate
up to eight devices (including CPU, memory, and con­
sole) and performs several major functions:

• Transfers data to and from MOS memory via the
memory controller under control of the CPU, con­
sole, or a UNIBUS Adapter.

• Transfers data to and from 1/0 device registers un­
der control of the CPU or console. (Any device ex­
ternal to the CPU is considered an 1/0 device.)

• Transmits priority interrupt requests generated by
the UNIBUS Adapters, and upon CPU request, pro­
vides device numbers and interrupt vectors from the
interrupting device to the CPU.

• Provides a continuous clock train that is used by all
devices to sequence logic and to synchronize oper­
ation with the rest of the system.

• Allows the console to reset the system, perform di­
agnostic functions, and to signal AC power failure to
the devices on the bus.

The KS10 bus data path is 36 bits wide. Additionally
there are two parity bits associated with the data lines:
one for data lines 0-17, and a second for data lines
18-35. Each device checks for correct (even) parity

36 BIT KS10 BUS

MICRO­
PROCESSOR

REMOTE
DIAGNOSIS--......
LINK

18 BIT UNIBUS

MASSBUS

FIRST
UNIBUS
ADAPTER

MASSBUS
ADAPTER

KS10
CPU MEMORY

SECOND
UNIBUS
ADAPTER

MASSBUS
ADAPTER

18 BIT UNIBUS

(OTHER
PERIPHERALS)

MR-S-1232-S1

Figure 6-1
KS 1 0 System Arch itectu re

when it receives information over the bus. If bad parity
is detected, the CPU clock is stopped.

Command/address information is transmitted over the
bus during a command/address cycle. Then, during
the following bus cycle, the same bus wires are used
to transmit the 36-bit data word during the data cycle.

Before any device can transfer information over the
KS 10 bus, it must first request and be granted the bus.
There is a bus request line and a corresponding grant
line for each device. The bus arbitrator on the console
module monitors all requests, resolves priority, and,
when the bus is free, grants the bus by asserting the
grant line for the highest-priority requesting device.
The bus arbitrator can handle up to eight devices.

Cache Memory
The KS10 cache memory implementation includes

6-2

512 words of high-speed memory. Cache memory
provides faster effective memory access time than the
slower main memory. On typical in-line programs the
desired memory reference is found already in cache
approximately 80 percent of the time, eliminating a
gOO-nanosecond main memory access. With a cache
access time of 300 nanoseconds and the typical
cache hit rate of 80 percent, the effective memory
access time for the KS 10 is 420 nanoseconds. The
cache memory is located on the Data Path Executive
(OPE) module in the KS10.

General Registers
The general registers consist of eight accumulator
(AC) blocks of 16 words each, located on the Data
Path Executive (OPE) Module. The eight sets of regis­
ters can be used as accumulators, index registers, or
the first sixteen locations in memory. How the regis­
ters are used depends upon how they are addressed

in the instruction word. Access time to general regis­
ters is 300 nanoseconds.

Microstore
The microstore is located on the Control RAM
Address (CRA) and Control RAM Memory (CRM)
Modules. 2048 96-bit words are provided. The micro­
code and microstore are considered integral to the
hardware and are not available for operating system
or user program use.

Instruction Set
The KS10 central processing unit features ,396 mi­
croprogrammed instructions. Each instruction is a se­
ries of microinstructions that performs various logical
functions, such as processor state control, data path
control, and actual implementation of each im~truction
in the KS 1 O's set. Since the instruction set provides so
many instructions, fewer instructions are typically re­
quired to perform a given function. However, the in­
structions are logically classed and consistent in
mode, making their use straightforward.

All instructions are capable of directly addressing
256K words without resorting to base registers, dis­
placement addressing, or indirect addressing. Instruc­
tions can use indirect addressing with indexing to any
level. Many instruction classes, including floating
point, allow immediate mode addressing where the re­
sult of the effective address calculation is used directly
as an operand to save storage and speed execution.

In all instructions the nine high-order bits specify the
operation and bits 9-12 usually address an accumula­
tor (but are sometimes used for special control pur­
poses such as addressing flags). The rest of the
instruction word always supplies information for calcu­
lating the effective address. The effective address can
be used as an operand (immediate mode) or as the
actual (virtual) address to fetch an operand or alter
program flow. Bit 13 specifies the type of addressing
(direct or indirect); bits 14-17 specify an index register
used for address modification (zero indicates no in­
dexing). The remaining eighteen bits (18-35) contain
a memory address.

Figure 6-2 illustrates the instruction format of the
KS10.

ACCUMULATOR
ADDRESS

INSTRUCTION
CODE

ADDRESS TYPE INDEX
REGISTER
ADDRESS

MEMORY ADDRESS

35
MR·S·'227·8'

Figure 6-2
KS10 Instruction Format

6-3

Half-Word Data Transmission
Half-word data transmission instructions move a half­
word and can modify the contents of the other half of
the destination location. These 16 instructions differ in
the direction they move the chosen half-word and in
the way they modify the other half of the destination
location.

Full-Word Data Transmission
Full-word data transmission instructions move one or
more full words of data from one place to another.
These instructions can perform minor arithmetic oper­
ations such as calculating the negative or the magni­
tude of the word being processed.

Byte Manipulation
Five byte manipulation instructions pack or unpack
bytes of any length anywhere within a word.

Logic Instructions
Logic instructions shift, rotate, and execute the 16
Boolean operations on two variables.

Fixed-Point Arithmetic
The KS10 is a 2s' complement machine in which zero
is represented by a word containing all zeros. There
are instructions to scale, negate, add, subtract, multi­
ply, and divide in single- and double-precision floating­
point format. In the single-precision floating-point
format, one bit is used for the sign, eight bits for the
exponent, and 27 bits for the fraction. In double­
precision floating-point format, one bit is used for the
sign, eight bits for the exponent, and 62 bits for the
fraction.

Fixed-Floating Conversion
Special KS 10 instructions provide the capability of
converting fixed-point formats to or from floating-point
formats. Two sets of instructions are provided to per­
form this function, one set optimized for FORTRAN
and a second set optimized for ALGOL.

Arithmetic Testing
The arithmetic testing instructions can cause a pro­
gram jump or no jump, or a program skip or no skip,
depending on the result of an arithmetic test, and may
first operate arithmetically on the test word.

Logical Testing, Modification, and Skip
A group of instructions modify and/or test using a
mask, and they cause a program skip or no skip, de­
pending upon selected bits in an accumulator.

Pro~Jram Control
ProgJram control instructions include several types of
program jump instructions and subroutine control in­
structions which jump as well as save or restore infor­
mation on a stack.

Within the KS10 instruction set there is a group of
operation codes that are used as monitor calls. If
these instructions are executed by a user program,
the program will not execute the instruction, but rather
will trap to the operating system. The operating sys­
tem can then examine the instruction and take appro­
priate action. This monitor call implementation is basic
to the operation of TOPS-10. In a multitask environ­
ment, the operating system must control certain oper­
ations. This is fully possible through the monitor call
(or processor trap) instruction classes.

Business Instuction Set
There are five classes of instructions in the Business
Instruction Set of the KS10 central processor. Four of
these are arithmetic instructions to add, subtract, mUl­
tiply, and divide using double-precision fixed-point
operands. The STRING instruction is the fifth class,
and can perform nine separate string functions.

These functions include an edit capability, decimal-to­
binary and binary-to-decimal conversion in both offset
and translated mode, move-string in both offset and
translated mode, and compare-string in both offset
and translated mode. Offset mode is byte modification
by addition of the effective address of the string in­
struction. Besides providing the translation function,
these instructions can control AC flags and can detect
special characters in the source string.

The Business Instruction Set provides faster process­
ing because there are special instructions for a wide
variety of string operations. These instructions can be
used on a variety of code types, such as ASCII and
EBCDIC.

Trap Handling
The KS 10 provides programmed trap instructions to
directly handle arithmetic overflows and underflows,
pushdown list overflows, and page failures. This trap
capability avoids recourse to the program interrupt
system.

Fast Register Blocks
Eight sets of 16 fast, general purpose register blocks
(accumulators) are provided in the KS10 architecture.
They can be used as accumulators, index registers, or
as the first 16 locations of memory. Since register ad­
dressing is included in the basic instruction format, no
special instructions are needed to access these regis­
ters. Different register blocks are used for the opera­
ting system and individual users, eliminating the need
for storing register contents when switching from User
Mode to Executive Mode.

Processor Modes
Instructions are executed in one of two modes de­
pending on the state of the mode bit. Programs oper-

6-4

ate in either User Mode or Executive Mode. In
Executive Mode operations, all implemented instruc­
tions are legal. The monitor operates in Executive
Mode and is able to control all system resources and
the state of the processor. In User Mode operations,
certain instructions such as direct 1/0, are illegal,
causing a trap to the monitor. Users are required to
issue monitor calls for system services such as 1/0.

Memory
The KS10 central processor implementation supports
a hierarchical memory system consisting of fast regis­
ter blocks, high-speed cache memory, main (MOS)
memory, and mass memory subsystems such as
disks. The fast register blocks, cache memory, and
main (MOS) memory are directly controlled by the
KS10 hardware and firmware; accessing is microstore
controlled. Disk memory access is controlled by the
operating system.

Memory Address Mapping
The memory address hardware was developed in con­
junction with the software so that memory manage­
ment is totally transparent to the user. Physical
memory is divided into 512-word segments called
pages. All addresses, both monitor and user, are
translated from the program's virtual address space to
the physical memory address space. This facilitates
protection of the monitor and allows efficient use of
physical memory. For example, only a portion of the
monitor need be permanently resident in memory, re­
sulting in more memory available to the user.

The high-order nine bits of an 18-bit virtual address
constitute the virtual page number, and are used to
index into a hardware page map. If the 13-bit physical
page number is found in the hardware page map, then
the low-order nine bits of the virtual address are ap­
pended to the 13-bit physical page number to form the
complete physical memory address. If the entry in the
hardware page map does not exist, the memory pro­
cessor gets the entry from the individual page map in
memory, and updates the hardware page map.

There is a page map in memory for the monitor and
one for each user. These maps contain storage ad­
dress pointers which identify a page either in memory
or on disk. The system is capable of interpreting three
types of address pointers. The first is called a
"private"pointer and contains a physical storage ad­
dress. If this is a memory address, the system loads
the hardware page table with the information and
complete: the requested reference. If it is any other
address, the system initiates a trap to the monitor for
appropriate action. The second type of address
pointer is called a "shared" pointer, and contains an
index into a system table at a fixed location. This sys­
tem table is called the Shared Page Table (SPT) and

contains the physical storage address of the shared
page. This table which is addressed through a hard­
ware ~egister, enables the software memory manage­
ment routines to maintain just one pointer to a page no
matter how many processes are sharing the page.
The third type of address pointer is called an "indirect"
pointer and contains a page number and SPT index.
The SPT index is used to index the SPT table to pick
up an address of a page table. This page table is
indexed by a page number given in the indirect pointer
to obtain the physical storage address. This pOinter
allows one page to be exactly equivalent to another
page in a separate address space.

Information pertaining to how long a page has been in
memory and the number of processes sharing it is
also stored by the hardware into the Core Status
Table to aid the monitor in memory management.

TOP5-10 Paging
The TOPS-10 operating system utilizes the page
maps to create one- or two-segment programs in
roughly the same fashion as was accomplished by
protection and relocation registers in earlier proces­
sors. However, the KS10 has the advantages IOf allow­
ing smaller units of memory (512 words instead of the
1024 words in earlier processor designs) the 'freedom
to scatter the pages of a segment randomly in memory
to avoid fragmentation and overhead of repacking
memory, and the opportunity to execute a program
when all of its pages are not in physical memory (i.e.,
a demand-paged virtual memory capability).

MOS Memory
The main memory subsystem of the KS10 central pro­
cessor consists of MOS (metal-oxide silicon) memory
which is connected to the KS 10 bus via a memory
controller. The MS10 memory is available in 64K word
increments up to a maximum of 512K words. The
memory word length is 43 bits: 36 data bits and seven
error detection and correction bits. Memory interleav­
ing is not required.

Semiconductor memory offers the advantage of higher
speed than core memories. It also offers ease of inter­
facing to control "outside-world" electronics. The pro­
cesses used to construct the storage elements within
the memory array itself can also be used for address­
ing and decoding electronics and for output buffering
on a single chip. Fewer connections mean higher reli­
ability and lower cost.

In the MOS memory implementation, the storage ele­
ment takes the form of an MOS "cell" or transistor. In
an elementary operation, data bits are stored by
charging or not charging the effective capacitance of
each storage cell. Reading entails senSing the pres­
ence or absence of charge. Only a few hundred

6-5

electrons of charge differentiate the storage of a "1"
and a "a."

Because there is capacitive leakage, this charge must
be periodicaly renewed or refreshed. The required fre­
quency of the refresh cycle depends on leakage of the
circuit, which increases with temperature. The 128
rows of KS 10 MOS memory are automatically re­
freshed by the memory hardware, one row every 15
microseconds.

All iinformation stored in MOS memory is lost if power
is mmoved from the memory circuitry.

The~ MS 10 is a single-port memory using MOS
random-access memory (RAM). The MS10 subsys­
tem provides for single-bit error correction and double­
bit E~rror detection. If the memory control logic detects
a correctable error on a memory read cycle, the fol­
lowing occurs:

• If the error is in one of the 36 data bits, the error bit
and the parity bit are automatically corrected.

• If the error is in one of the seven check bits, no
correction is required; an error flag is raised; and
the address of the failing memory is held in a
register.

• A flag is raised indicating that the logic has cor­
mcted an error.

• Tlhe memory control logic saves a 20-bit address
(for a read or read-pause-write request) and the
ECC code for the first error detected to allow soft­
ware monitoring of memory condition.

MS10 Reliability, Availability, Maintainability, and
Performance Features
High reliability is a primary goal of the MS10 memory.
The following summarizes MS 10 reliability, availability,
maintainability, and performance (RAMP) features.

• Single-bit error detection and correction and double­
bit error detection are implemented in the memory
control logic.

• Power supply is a high efficiency switching regulator
for low internal power diSSipation.

• Storage array component layout facilitates airflow
over the module.

• Extensive airflow and temperature profile measure­
mlents have' been taken.

• Modules are "burned in" prior to installation by
manufacturing.

• Isolation of fault to board level.

• Correctable read errors are automatically handled
by the hardware. So, correct data is always sent to
th(~ CPU, and notification of the (corrected) error is
provided.

Console Subsystem
The console is an extremely important subsystem in
the implementation of the KS 10 central processor be­
cause it controls all console and diagnostic functions.
The console is housed on a single extended hex mod­
ule and uses an eight-bit microprocessor. To program
the microprocessor, an 8K programmable read-only
memory (PROM) and 1 K random- access memory
(RAM) are provided. Two universal
synchronous/asynchronous receiver/transmitter
(USART) interfaces are provided, one for console op­
eration and one for remote diagnosis link operation.
The remote diagnosis link and the microprocessor
code make possible remote diagnosis of the system.

The console is interfaced to the KS 10 bus for data and
control functions. In addition, direct connections to
other KS10 CPU modules are provided to allow the
console to perform test and housekeeping functions.

The local operator controls the KS 10 with a set of
commands typed at the console terminal (CTY). The
CTY connects directly to the microprocessor-based
console hardware over a serial line interface
(USART). A second serial line operating in parallel
with the first can also be connected to the console
hardware, allowing the KS 10 to be controlled by a re­
mote diagnosis link.

Commands typed at the CTY or entered from the re­
mote diagnosis link are implemented by a program
running in the console's microprocessor. This pro­
gram, resident in PROM, automatically runs when
power is turned ON. The console program resident in
PROM is not destroyed by powering down the system.

Figure 6-3 illustrates the console subsystem.

6-6

8K PROM
1K RAM

KS10 BUS

10
REG.

Figure 6-3

jJ.P

KS10 Console Subsystem

The CTY and remote diagnosis link can be operated in
either user mode or console mode. Commands are
the same in either local or remote CTY cases, except
that the remote link repertoire is restricted. In user
mode, the CTY is a user terminal, and commands are
passed to and from the KS10 CPU under control of
the console program. An exception is typing a CTRL \
which causes the console program to switch the CTY
from user mode to console mode. All other commands
performed in user mode are a function of the operating
system.

In console mode, commands are directed to an execu­
tive by the microprocessor console hardware. An op­
erator can perform the following features:
• Reset and bootstrap the system

• Load and check the KS 10 microcode

• Deposit and examine memory

• Read and write I/O device registers

• Transmit to and receive from KS 10 (backplane) bus

• Start and stop CPU clock

• Single-step the CPU clock

• Execute a given instruction

• Halt the machine

• Start the machine at a given location

The console program initializes the CTY to console
mode at power up. When in console mode, either
starting execution, continuing execution, or typing a
CTRL Z will cause the CTY to switch to user mode. A
CTRL \ in user mode causes a return to console
mode. Also, an error which lights the fault indicator
causes a return to console mode, as does any KS10
processor halt instruction.

7
The Peripherals

DECsystem-10s support a family of peripheral devices that includes disks,
magnetic tapes, terminals and terminal interfaces, lineprinters, card readers,
and a paper tape punch/reader.

The wide selection of peripheral devices reduces the storage burden on disks
and provides convenient media for archiving files. Programs or data files that
are infrequently used can be stored on magnetic tape which can be easily
transported and accessed. TOPS-10 supports multiple card readers and
paper-tape-punches/readers. Production of hard-copy output can be improved
by using multiple lineprinters with different characteristics.

The terminals supported by the DECsystem-10 are the hard-copy LA37,
LA38, LA 120 and the VT100 video terminals.

A DN20 communications processor that support synchronous communica­
tions is available for DECsystem-10s.

The DN200 remote station is discussed under the heading Remote Job Entry
Stations in Section 10, Communications.

COMPONENTS
DECsystem-10s support four types of peripheral
systems:

• Mass storage peripherals - disks and magnetic
tapes

• Unit-record peripherals - lineprinters, card readers
and paper tape devices

• Terminals and terminal line interfaces

• Communication front-end processors

Processor I/O Subsystems
The KS10 (DECSYSTEM-2020) processor's periph­
eral devices are UNIBUS and MASSBUS devices (see
Section 6) that interface to the system through
UNIBUS adapters (UBAs). The UBA is a single ex­
tended hex module connecting to both the KS 10 back­
plane bus and a UNIBUS. Two UBAs are standard in
the DECSYSTEM-2020. One UBA and UNIBUS are
reserved for disks. The second UBA and UN,IBUS are
used for all other devices: tape, lineprinter, and syn­
chronous and asynchronous communications lines.

Details of the KL 1 O-E I/O subsystem can be 'found in
Section 5 under Input/Output Subsystem.

Mass Storage Peripherals
The DECsystem-10 mass storage peripherals are
moving-head disk drives and magnetic tape
transports.

Disks
The disk subsystems provide high performance and
reliabHity. Disk features include accurate servo posi­
tioning, error correction, and offset positioning recov­
ery. Table 7-1 summarizes the capacities and speeds
of the disk devices.

To support the performance and reliability features of
the system's disk devices, the operating system's disk
device drivers provide comprehensive error recovery
algorithms (for example, ECC and offset recovery for
disk) and log all device errors.

Disk controllers allow several drives to perform simUl­
taneous seek operations. Since the controller is not
busy during seek operations, data transfers on one
drive can overlap seeks in progress on other drives. If
more than one drive is on the same controller, over­
lapped seeks will accelerate processing for the disks
on that controller. Overlapped seeks increase through­
put by decreasing the effective access time.

RM03 Disk Pack Subsystem (KS system only)
The RM03 is a top-loading, free-standing disk drive
housed in a dedicated cabinet. Subsystems are ex­
pandable to eight disk drives or 536 Mb.

Table 7-1

Disk Type

RM03 Removable
RP06 Removable
RP20 Non-removable

'Two spindles per drive
K = 1,024; M = 1,000,000

Capacity
(Mbyte)

67 Mb
176 Mb
967 Mb

Disk Devices

Peak Transfe'r
Rate (Kbytes Average Seek
per second) Time (ms)

1200 30
806 28

1200 25

7-1

Maximum
Average Rotational Drives
Latency (ms) Interface per Controller

8.30 MASSBUS 8
8.33 MASSBUS 8
8.33 MASSBUS 4*

The RM03 has a formatted capacity of 67 megabytes
and an average access time of 38 milliseconds. Its
maximum data transfer rate is 250,000 36-bit words
per second. The RM03 disk does 18-bit NPR data
transfers over a UNIBUS and 36-bit NPR data trans­
fers over the KS10 backplane bus (see Section 6).

RP06 Disk Pack Subsystem (KS and KL systems)
The RP06 is a large capacity disk drive. This disk of­
fers both high performance and a low price per mega­
byte of storage. It uses a removable disk pack. and has
a wide variety of large disk features.

RM03 and RP06 disk drives can be mixed on the
same RH11 controller on a KS10; however, they can
not be mixed within the same logical file structure.

RTP20 Disk Subsystem (KL systems only)
The RTP20 is the highest capacity disk offered by
DIGITAL. The RTP20 consists of an RP20 disk drive
and controller. The RP20 is a dual-spindle device with
a formatted capacity of 967 megabytes. Master
Subsystems are packaged to include an RH20/DX20
Channel, RTP20 Controller, and RP20 Master Disk.
When additional capacity is required, the susbsystem
can be expanded to include up to three add-on drives
(1200 megabytes unformatted).

Each RP20 data module has fifteen recording sur­
faces with two read/write heads per surface and a
transfer rate of 1.2 megabytes per second with a 25
ms average access time. Each data module may
transfer data independently with the optional dual-port
feature.

7-2

Tape Devices
DECSYSTEM-2020s are available with TU77 mag­
netic tape drives. Other DECsystem-l0s are available
with this drive plus the TU70 series tape subsystems.
These provide capacities and speeds needed for the
wide range of DECsystem-10 applications.

All tape devices use a mylar-base, oxide-coated mag­
netic tape with reflecting marker strips to indicate
Beginning of Tape and End of Tape. Adjacent files are
separated by formatted interrecord gaps. In addition,
the use of industry-compatible formats facilitates data

Table 7-2
Tape Devices

Recording
Capacity Column Density

Tape Type Size (Mbytes) Buffering (p1)

TU72 9-track 10.5" reel 40 Vacuum 1600,6250

TUn 9-track 10.5" reel 40 Vacuum 800, 1600*

* Program-selectable
K = 1,024; M = 1 ,000,000

transfer among computers and reduces hardware
costs.

Several common features ensure data integrity and
reliability, optimize performance, and facilitate
maintenance.

All tape devices provide a write-protect capability to
protect the integrity of data that is read and written
onto the tape. An industry-standard write-protect ring
is located on the tape reel. The tape drive can sense
write-protection and prohibit data writing.

Accurate data recording and retrieval is ensured on all
tape systems with read-atter-write checks. This check
verifies that proper data is written on the tape, thus
eliminating the chance of data being written on worn
or damaged sections of tape. If an error is detected in
the read-atter-write check, a message is sent to the
processor.

Parity checks and longitudinal and cyclic redundancy
checking further ensure the accurate transfer of data
in all magnetic tape systems. Parity is checked char­
acter by character when reading and writing on tape at
6250(GCR) and 1600(PE) bits-per-inch. 800(NRZI)
bits-per-inch operation also includes a cyclic redun­
dancy check (CRC) character and longitudinal redun­
dancy check (LRC) character. CRC and LRC
characters are calculated when a block is written and
checked when the block is read. If an error is de­
tected, an indication is made to the host computer.

All magnetic tape systems minimize bad-tape-error
problems through a runaway timer that allows the sys­
tem to recover from bad tape sections on the reel.

Magnetic tape controller/formatters all perform similar
operations. These include:

• Moving the tape to new pOSitions in forward or
reverse

• Monitoring tape operation

• Fetching, formatting, and sending data

• Handling error conditions and drive servicing
requirements

Max. Data
Transfer Rewind Maximum

Read-Write Rate (K Speed per
Speed (Ips) char/sec) (Ips) Interface Controller

125
125

7-3

750 500 MASSBUS 8
200 440 MASSBUS 4

TU72 Series
Magnetic Tape System
The TU70 series tape subsystem consists of fully inte­
grated, high performance magnetic tape storage sys­
tems that are specifically designed to operate on a
DECsystem-1 O. The TU70 series tape drives provide
high quality handling of ANSI standard 12.7 mm mag­
netic tape at up to 750,000 characters per second.
The subsystem consists of one or more TU72-E
(9-track, 125 inch per second, and recording densities
of 1600 and 6250 bits-per-inch) tape drives, and a
maximum of eight drives, a TX02 tape control unit,
and a DX20 data channel. With the TU72, the tape
control unit connects to each drive with radial cabling,
and the DX20 data channel connects directly to the
internal data channel of the DECsystem-10. In addi­
tion, two optional switches are available, the TX03 and
TX05. The TX03 allows the user to interface between
two data channels, one control unit and up to eight
drives. The TX05 allows interface operations between
two data channels, two control units and up to sixteen
drives.

When reading and writing in PE mode, the accuracy of
data transfer is confirmed with character-by-character
parity checking. Error correction for single-track drop­
out is made on-the-fly. The GCR mode uses a polyno­
mial error detection scheme on data blocks within
each record. Data reliability is increased with a self­
clocking feature that is independent of tape skew.

TU77 Magnetic Tape System
The TU77 is a high-performance tape storage system
that is also suitable for many high duty-cycle applica­
tions, such as disk-to-tape backup and transaction
processing. Design considerations, such as the elimi­
nation of mechanical relays and incandescent lamps
on the drive and the use of air bearings and ceramic
guides for reduced media wear, ensure its reliability. A
tape interlock disables tape motion if there is a pres­
sure loss in the vacuum system. This feature reduces
the chance of accidental tape damage.

The TU77 is a fully integrated system that is packaged
with its associated interface and power supply in a
dedicated cabinet. The TU77 subsystem consists of a

TU77 tape drive, a dual-density TM03 tape formatter,
and a MASSBUS controller that mounts in the proces­
sor chassis. Each subsystem can include up to four
tape drives with a total maximum of 16 drives per
DECsystem-10.

Automatic tape threading maximizes operator conven­
ience and minimizes tape handling. Smaller reels of
tape can be threaded automatically when tape is
placed manually in the loading slot. If a tape fails to
load on the first attempt, the TU77 will detect the
misfeed and reload without operator intervention
(10.5" reels only).

The TU77 subsystem also provides data integrity
through automatic correction of Single-track errors. In
PE mode, this error correction is done automatically
by the hardware. In NRZI mode, error correction is
performed under software control.

The TU77 reads in both forward and reverse direc­
tions and uses the industry-standard data format.

Unit-Record Peripherals
The DECsystem-10 supports a full line of unit-record
peripherals including lineprinters and card and paper­
tape devices.

LP2Q-A and -8 Lineprinters
The LP20-A and -B lineprinter systems have two
hardware components: an LP05 lineprinter and an
LP20 lineprinter controller and data source interface.

The LP05 lineprinter is a medium duty-cycle drum line
printer. It is designed for data processing environ­
ments that require good print quality and medium print

7-4

volumes. The LP05 is an impact-shaped (whole) char­
acter, 132-column lineprinter. It prints 300 lines per
minute using a 64-character set, or 230 lines per min­
ute using a 96-character set. It performs a single­
forms (paper) step in 45 milliseconds (maximum) and,
when formatting vertically, slews forms at up to 67.8
cm per second.

Up to 132 characters can be stored in a print line
buffer and, upon command from the data source, the
LP05 prints the contents of the buffer and advances
the forms as specified by the command. It signals the
data source when it is ready for the next line of print
data or forms motion command.

The LP05 uses a rotating drum containing all the char­
acters in front of the forms and ribbons. Fifty-eight
print hammers behind the forms are time-shared be­
tween 132 data columns to produce inked characters
and carbon transfer characters on multicopy forms.

The LP05 contains a 12-channel programmable verti­
cal format unit (PVFU). It uses a format memory that is
loaded from the data source, so no format tape is
installed by the operator and there is no risk of running
a job with the wrong format tape. The PVFU can be
loaded any time data is requested by the printer. For­
mat memory data and control codes are transmitted to
the printer via the normal data lines using the standard
demand/strobe communications. The PVFU can con­
trol the vertical movement of forms having eight to 143
lines.

The LP05 lineprinter has a panel with switches and
indicators for operation and operator-level mainte­
nance. The printer can be dynamically tested with its

self-test module. When the print TEST/ON-LINE
switch is set to TEST, the self-test module operates as
a built-in data source; the printer communicates with
the self-test module on a demand/strobe basis, stores
the data received in the line buffers and paper motion
registers, as appropriate, and processes the data.
After the line of data has been printed and the paper
moved, the printer resumes the data exchange com­
munication with the self-test module in a continuous
cycle.

A long line interface provides the LP05 with differential
receivers and drivers so that it can be located up to
30.5 meters from the data source. A standard 7.6
meter device cable is supplied when specified.

LP20-C and -0 Lineprinters
The LP20-C and LP20-D consist of two hardware
components: an LP14 lineprinter and an LP20 line
printer controller and data source interface.

The LP14 lineprinter is a medium-duty cycle drum
lineprinter. It is designed for use in data processing
environments that require good print quality and me­
dium print volumes. The LP14 is an impact type,
shaped (whole) character, 132-column lineprinter. It
prints 890 lines per minute using a 64-character set or
650 lines per minute using a 96-character set. It per­
forms a single-forms (paper) step in 20ms and slews
forms at up to 76.2cm (30 inches) per second when
formatting vertically.

The LP14 stores a stream of up to 132 characters in a
print line buffer and, upon command from the data
source, prints the contents of the buffer and advances
the forms as specified by the command. It signals the
data source when it is ready for the next line of print
data or forms motion command.

The LP14 uses a rotating drum containing all charac­
ters in front of the forms and ribbon and 132 print
hammers, which are behind the forms, to produce
inked characters on the front of the forms and carbon
transfer characters on internal pages if multiple-copy
forms are being used.

The LP14 contains a 12-channel Direct Access
Vertical Format Unit (DAVFU). The DAVFU uses a
format memory that is loaded from the data source.
This relieves the operator from having to install a for­
mat tape and eliminates the risk of running a. print job
with the incorrect format. The DA VFU may be loaded
any time data is requested by the printer. Format
memory data and control codes are transmitt:ed to the
printer through the normal data lines using the stan­
dard Demand/Strobe communications. The DAVFU
can control the vertical movement of forms having a
minimum of 8 lines and a maximum of 143 lines.

7-5

The LP14 comprises an operation/maintenance panel
that mounts switches and indicators to operate the line
printer and perform operator-level maintenance. A
self-test module allows the LP14 to be tested under
dynamic conditions. When the printer's
TEST/ON-LINE switch is set to test, the self-test mod­
ule operates as a built-in data source; that is, the
printer communicates with the self-test module on a
Demand/Strobe basis, stores the data received in the
line buffers and paper motion registers as appropriate,
and processes the data. After the line of data has
been printed and paper moved, the printer resumes
the data exchange communication with the self-test
module in a continuos cycle.

LP100 Lineprinters (1090 systems only)
The LP100 lineprinter series currently offers three op­
tion type variations. The LP100-8 consist of an LP07
lineprinter and a LP100 controller; the LP100-D/E
consist of an LP05 lineprinter and a LP100 controller;
the LP100-F/H consist of an LP14 lineprinter and an
LP100 controller. For a description of the LP05 and
LP14 lineprinters read the two previous sections. For
a description of the LP07, read the following section.

LP200 Lineprinters (1091 systems only)
The LP200 lineprinter system has two hardware com­
ponents: an LP07 lineprinter and an LP20 lineprinter
controller and data source interface.

The LP07 is a high-performance horizontal font motion
lineprinter. It is designed for data processing environ­
ments that require high-grade print quality, heavy print
volumes, and high reliability.

The LP07 is an impact type, shaped (whole) character
132-column lineprinter. It prints 990 or 1220 lines per
minute using a 64-character set and 715 or 905 lines
per minute with a 96-character set. Print speed is op­
erator selectable. The LP07 does a single-forms paper
step in 12.5 milliseconds and slews forms at up to
152.4 cm (60 in.) per second when formatting
vertically.

Up to 132 characters can be stored in a print line
buffer and, upon command from the data source, the
LP07 prints the contents of the buffer and advances
the forms as specified by the command. It signals the
data source when it is ready for the next line of print
data or forms motion command.

The LP07 uses a Charaband (Charaband is a trade­
mark of Dataproducts Corporation) as the horizontal
font carries in front of the forms. The 132 print
hammers behind the forms and the ribbon produce the
inked characters and carbon transfer characters on
multicopy forms. The Charaband has the advantages
of train printers but minimizes the problems of charac­
ter set rigidity, friction, and wear associated with other
horizontal font techniques.

The Charaband has two complete character sets, one
on each side. A one-minute manual operation
switches the sets.

The LP07 lineprinter contains a direct-access vertical
form unit (DAVFU) that provides the same benefits as
the PVFU discussed in the LP20 section, above. The
DAVFU also permits six or eight lines/inch print den­
sity under program control.

The LP07 contains a self-test unit similar in function to
the unit discussed in the LP20 section, above.

A long line interface provides the LP05 with differential
receivers and drivers so that it can be located up to
152 meters from the data sou rce. A standard 7.6
meter device cable is normally supplied.

Card Readers
The CD20 card readers interpret encoded, punched
information using the American National Standard 8-
bit card code and use a special punch outside the data
representation to indicate end-of-file. The card readers
use the industry-standard EIA card that has 80 col­
umns and 12 zones, or rows.

The card readers are designed to meet different
throughput requirements. CD20 card reader is avail­
able in both table (CD20-A) and console (CD20-C)
models. CD20-A can process 285 punched cards per
minute, and the CD20-C, 1200 cards per minute.

The CD20-A table top unit has an input hopper capac­
ity of 1000 cards. The CD20-C has a capacity of 2250
cards.

Card reader design helps prevent card jams and
keeps card wear to a minimum. Readers also have a
high tolerance to cards that have been nicked,
warped, bent, or subjected to high humidity. Readers
use a short card path, with only one card in the track
at a time. They all use a vacuum pick mechanism that
keeps cards from sticking together by blowing a
stream of air through the bottom half-inch of cards in
the input hopper.

The CD20-C console card reader has a single piece
read station with infrared light-emitting diode emitters
and phototransistor detectors. No adjustments are re­
quired in the ten-year life expectancy of the diodes.

The console model also provides high data integrity
with a "resync/error detection" feature. The data
strobe can be resynchronized for each data column.
The reader will either correctly read a misregistered
card or reject the card by halting with a "read check"
indication.

Cards can be loaded or unloaded while the console
model is operating. A switch can be set to provide

7-6

either blower shutdown or continued running after the
last card has been read. Automatic shutdown reduces
computer room noise levels and can also signal the
operator that the card hopper is empty.

PC10/20 Paper Tape Reader/Punch
The PC10/20 (PC10 is used on 1090 systems and the
PC20 is used on 1091 systems) reads eight-channel
paper tape at 300 lines per second and punches 50
lines per second in either alphanumeric or binary. It
automatically fan-folds the paper tape.

The PC10/20 contains a photoelectric paper tape
reader and an electromechanical punch. A set of pho­
todiodes translates the presence or absence of holes
in the tape to the logic level of 1 s and Os.

The device operates in either alphanumeric or binary
mode. In alphanumeric mode, a single tape-moving
command reads all eight channels from the first line
encountered. In binary mode, the device reads six
channels from the first six lines in which hole 8 is
punched and assembles the information into a 36-bit
word. The PC10/20 interface contains a 36-word
buffer from which all data is retrieved by the
processor.

At 300 lines per second the reader takes 3.33 mil­
liseconds per alphanumeric character and 20 mil­
liseconds per contiguous binary character.

The punch perforates up to 50 lines of tape per sec­
ond in alphanumeric or binary mode.

Terminals and Interfaces
A KS system can handle a maximum of 32 local and
remote line interfaces. A KL system can handle up to

512 local and remote lines. Programs can control ter­
minal operations through the terminal driver. The ter­
minal driver receives and services interrupts, initiates
1/0 operations, cancels in-progress 1/0 operations,
and performs other device-specific functions. A pro­
gram can perform the following functions:

• Get data from an open terminal without stalling the
program execution. The program does not have to
wait tor incoming data to be available in the terminal
input buffer.

• Through echo control mode, a full-duplex terminal
can be used to simulate the operations of a block­
mode terminal. Input data from the termina~ is pro­
cessed a field at a time, without affect~ng the
displayed output in other fields on the screen.

• Translate, interpret, and transmit ESCAPE
sequences.

In addition, pseudoterminals can be used for jobs that
do not require operator intervention (such as batch
jobs). A pseudoterminal is a nonphysical device that
has the characteristics of a terminal but has no physi­
cal device attached with it. Like a terminal, a pseudo­
terminal has both input and output buffers to which
user programs send input and from which they extract
output. By using pseudoterminals, one job can control
other jobs on the system.

Terminal characteristics are initially established in a
command file during software installation. However,
system users also can modify the characteristics of
their particular terminal. A few of the settable terminal
characteristics users can modify are:

• Set the width of the print line between 1 and 254
columns. As a result, the system automatically gen­
erates a carriage return and line feed sequence
after the specified number of characters have been
typed or printed.

• Control transmission of uppercase and lowercase
characters.

• Allow the computer to interrupt transmission of
characters from the terminal (XOFF) or instruct the
terminal to resume transmission of characters
(XON). The terminal hardware must be present to
respond to XOFF and XON characters.

• Set the rate at which the terminal's interface can
accept or pass characters.

• Set even, odd, or no parity checking.

A line entered on a command terminal is terminated
by any of several special characters. The RIETURN
key, for example, is one of the most common means
of transmitting a command to the host. A program
reading from a terminal can optionally specify a partic­
ular line terminator for read requests.

7-7

LA 120 Hard-Copy Terminal
The LA 120 is a hard copy terminal with high through­
put and a number of advanced keyboard-selectable
formatting and communication features. It uses a con­
toured, typewriter-style keyboard and includes an ad­
ditional numeric keypad and a LED display for
terminal characteristics.

Several features give the LA 120 its high throughput:

• 180-character-per-second print speed

• 14 data transmission speeds ranging up to 9600
baud

• 1024-character buffer to equalize differences be­
tween transmission speeds and print speeds

• Smart and bidirectional printing, so that printhead
always takes shortest path to next print position

• High-speed horizontal and vertical skipping over
white space

In addition to its throughput, the LA 120 is distin­
guished by its printing features. The terminal offers
eight font sizes, ranging from expanded (five charac­
ters per inch (cpi)) to compressed (16.5 characters per
inch). Hence a user could, for example, select a font
size of 16.5 cpi and print 132 columns on an 8/4-inch­
wide sheet. Other print features include six line spac­
ings ranging from 2 to 12 lines per inch, user­
selectable form lengths up to 14 inches, left/right and
toplbottom margins, and horizontal and vertical tabs.

The LA 120 is designed for easy use. Terminal charac­
teristics are selected by clearly labelled keys and sim­
ple mnemonic commands. Once the selections have
been made, the operator can check his settings by
depressing the STATUS key. The terminal will then
print a listing of the selected settings.

LA38 Hard-Copy Terminal
The LA38 DECwriter IV is a low cost, desktop,
microprocessor-driven terminal capable of processing
data at a rate of up to 30 characters per second. The
LA38 includes a universal power supply, a standard
EIA interface and EIA null modem cable, an 18-key
numeric keypad, paper-out switch, paper-feed tractor,
and user-assistance documentation package.

Features such as horizontal tabs, horizontal margins,
and a choice of four character sizes and six line spac­
ings can be set and changed by the host computer or
by the user. The LA38 has a permanently stored for­
mat for a computer printout. When the terminal is
powered up it automatically assumes a 10 characters
per inch character pitch, 6 lines per inch vertical spac­
ing, tab stops every 8 spaces, left margin set at col­
umn 1, and right margin at column 132.

The LA38 operates at 300 baud and can print at burst
speeds up to 45 characters per second. An alternate
speed of 110 baud and 10 characters per second can
be selected from the keyboard. The desktop configu­
ration and sculptured typewriter-like keyboard are so
similar to standard typewriters that the transition from
typewriter to terminal is natural.

The terminal's basic design contributes to its reliability
and maintainability. A single logic/power amplifier
board with custom LSI reduces the component count
and increases circuit reliability.

The LA38 senses printhead jams instantly. When a
printhead jam occurs the power is removed from the
printhead drive until the jam is corrected and the termi­
nal restarted. This action prevents motor overloads
and blown fuses. The highly reliable printhead has
been designed and tested to print over 100 million
characters. The printhead can be adjusted to adapt to
various forms thicknesses. A paper-out sensor gen­
erates a signal if there is no longer any paper in the
underside slot. Users may define any of four actions to
be taken if a paper fault condition occurs; or, if de­
sired, the paper-out sensor may be disabled.

Although the LA38 has been designed to operate reli­
ably without scheduled preventive maintenance, if a
problem occurs, the unit disassembles simply and
quickly for easy access to all components. Printing
self-test diagnostics allows quick and accurate identifi­
cation of any faulty components. In addition, with the
new snap-in style ribbon cartridge, users can change
ribbons quickly and easily.

Wherever possible, ANSI standard escape sequences
are used. These same escape sequences are also
implemented on DIGITAL's LA120 and VT100, ensur­
ing compatibility among DIGITAL's terminal products.

7-8

VT100 VIDEO TERMINAL
The VT100 video terminal is an uppercase/lowercase
ASCII terminal that offers a variety of user-controllable
character and screen attributes. The VT100 features a
typewriter-like detachable keyboard that includes a
standard numeric/function keypad for data entry appli­
cations. Also featured are seven LEDs, four of which
are program-controlled, that can be used as operator
information and diagnostic aids.

The VT100 offers a number of advanced features.The
most important of these are:

• Ability to select either of two screen sizes: 24 lines
by 80 columns or 14 lines by 132 columns

• Ability of programs to select on a line-by-line basis
either double-width/single-height characters or
double-width/double-height characters

• Smooth scrolling and split screen capability

• Ability to set baud rates, tabs, and Answer Back
messages from the keyboard and to store these in
RAM (Random Access Memory)

• Special line drawing graphic characters which pro­
vide the ability to display simple graphics for busi­
ness or laboratory applications

• Ability to select black-on-white characters or white­
on-black characters on a full screen basis

In addition, several options further extend the capabili­
ties of the VT100. These include the advanced video
option that adds selectable blinking, underline, and
dual-intensity characters to the existing reverse video
attribute, and additional RAM allowing 24 lines of 132
characters.

COMMUNICATION HARDWARE
The following sections describe the communication
hardware supported by DIGITAL.

DZ11 Terminal Line Interface
(KS and DN25 systems)
The DZ11 is a serial line multiplexer whose character
formats and operating speeds are programmable on a
per line basis. A DZ11 connects the UNIBUS with a
maximum of 8 asynchronous serial lines. Each line
can run at any of 15 speeds.

Local operation with EIA terminals is possible at
speeds up to 9600 baud. The DZ11 may be used with
dial-up, full-duplex terminals that operate ttlrough
most industry-standard modems that run at 300 or
1200 bits per second. The DZ11 optionally generates
parity on output and checks parity on input. Incoming
characters are buffered using a 64-character silo
buffer. Outgoing characters are processed on a pro­
grammed interrupt request basis.

As many as 16 DH11 s may be placed on a single
processor, creating a total capacity of 128 lines.

DL 11 Serial Line Asynchronous Interfaces
The DL 11 is an interface between a single, asynchro­
nous, serial communication channel and the proce_s­
sor. It performs serial-to-parallel and parallel-to-serial
conversion of serial start/stop data with a double­
character buffered MOS/LSI circuit called a UART
(Universal Asynchronous Receiver-Transmitter). This
40-pin, dual in-line package includes all of the circuitry
necessary to double-buffer characters in and out,
serialize/deserialize data, provide selection of charac­
ter length and stop code configuration, and present
status information about the unit and each character.

With a DL 11 interface, a DECsystem-10 can commu­
nicate with a local terminal such as a console tele­
printer, with a remote terminal via data sets and
private line or public switched telephone facilities.

Users can order the data rate from a selection of 13
standard rates up to 9600 bits per second, or they can
order a nonstandard rate device. With most of the
standard rates, the interface can offer split-speed op­
eration for faster, more efficient handling of computer
output. In addition, character size is strap- or switch­
selectable, and parity checking (even, odd, or none)
and stop code length (1, 1.5, or 2 bits) are selectable.

DUP11 Single Synchronous Line Interface
(KS systems only)

The DUP11 is a character-buffered, synchronous
serial-line interface capable of two-way simultaneous
communications. The DUP11 translates between se­
rial data and parallel data. Output characters are

7-9

transferred in parallel from the PDP-11 UNIBUS into
the DUP11, where they are serially shifted to the com­
munication line. Input characters from the resident
modem are shifted into the DUP11 and made avail­
able to the processor on an interrupt basis.

The self-contained unit is capable of handling a wide
variety of protocols including byte-oriented protocols
such as DDCMP and BSC, and bit-oriented protocols
such as SDLC, HDLC and ADCCP. Signals needed to
establish communications with the Bell Series 200
synchronous modems are resident in the DUP11 's
Receive Status Register. The DUP11 can transmit
data at up to 9600 bits per second (limited by modem
and data set interface level converters).

Its capabilities make the DUP11 well suited for remote
batch, remote data collection, remote concentration,
and network applications. In addition, multiple
DUP11 s can be used in applications requiring several
synchronous lines.

KMC11-A AUXILIARY PROCESSOR
(KS system only)
The KMC11-A is an auxiliary processor, complete
with memory, that interfaces to the UNIBUS. The
KMC11 improves the performance of the
DECsystem-10 computer systems by performing time­
consuming system functions in parallel with the host
CPU, thereby off-loading it. It is especially suited to
controlling I/O operations, such as data communica­
tions and analog I/O, that require extensive
intelligence.

The KMC11 is a high-speed MSI microprocessor (300
nsec instruction time), uses 16-bit microinstructions,
and operates on 8-bit data paths. Its 1024 16-bit word
writable control memory contains the microprogram
and is loaded by the host processor. A 1024 8-bit byte
data memory stores frequently used information for
high-speed access by the microprogram. NPR
UNIBUS interface provides access to control, status,
and data registers of one or more peripherals on the
UNIBUS. This enables low cost programmed-I/O de­
vices to operate as if they had an intelligent DMA
capability.

An external connector allows the KMC 11 to be con­
nected directly to a high-speed peripheral such as a
DMC11 synchronous line unit. The full-duplex 8-bit
parallel interface is well suited to custom designed
interfacing.

The KMC11 is complete on a single printed circuit
module and includesr the microprocessor, control
memory, data memory, UNIBUS interface, and exter­
nal connector.

7-10

DN20 Communications Front End
The DN20 is designed to handle all network communi­
cations functions. The DN20 is referred to as a com­
munication front-end in order to distinguish it from the
console front-end that controls the local command ter­
minals and unit-record peripherals. The DN20 and
console front-end processor communicate with the KL
processor through the DTE hardware interface. The
DTE resolves the differences in word size between the
KL (36-bit words) and the DN20 (16-bit words). In the
case of the KS 10 processor, there is no separate com­
munications front-end and the communications soft­
ware resides entirely in the KS10 processor.

ON200 Remote Station
The DN200 Remote Station provides remote job entry
and/or remote concentration of terminal data for high­
speed sychronous transmission in DECsystem-10 net­
works. Features include down-line loading of system
software and diagnostics, easy expandability from a
remote job entry terminal or remote concentrator to a
fully expanded remote station, support capabilities of
up to 32 asychronous lines, 2 sychronous lines, a card
reader, and a line printer.

8
The Languages

In addition to assembly language (MACRO), the TOPS-10 system software
supports many optional high-level programming languages: FORTRAN,
COBOL, ALGOL, BASIC, APL, BLISS, and CPL. This variety permits the
user to use the most effective or familiar programming solution to match the
problem.

FORTRAN-10 is a globally optimizing compiler and a run-time system with
an interactive debugger. Both have been designed to simplify the program­
mer's job, provide superior compile-time and run-time diagnostics, facilitate
debugging, and produce error-free and fast running programs.

COBOL-68 and COBOL-74 are a high-level language implementation de­
signed specifically for business data processing. COBOL can be used to cre­
ate on-line terminal applications or to write batch applications.

Although BASIC is an ideal language for novice programmers who need a
fast, easy way to solve problems, it is also a powerful and efficient language
suitable for sophisticated applications. BASIC is a compiler that produces
fast-running programs, yet it retains the highly interactive immediate mode
feature of primitive BASICs.

ALGOL-10 is a scientific language designed for describing computation pro­
cessing (algorithms). It is a problem-solving language in which the problem is
expressed as complete and precise statements of a procedure.

Two levels of the popular APL language are available. Both levels are full
APL implementations with significant extensions. The basic version suits
users who do not require the file I/O or the advanced APL function. The ex­
tended version of APL, APL-SF, has all of the features the basic version has,
plus advanced features that substantially increase the range of applications
for which it can be used.

BLlSS-36 is DIGITAL's implementation language for software development. It
contains many of the features of a modern high-level language, yet it also
provides the flexibility and access to hardware of assembly language.

CPL (conversational programming language) is a PLlI-like interpreter. It is a
well documented and easy-to-Iearn subset of ANSI-1976 PLiI.

TOPS-10 Assembler
MACRO is the DECsystem-10 symbolic assembly lan­
guage. It makes machine language programming eas­
ier and faster for the user by:

• Translating symbolic operation codes in the source
program into the binary codes needed in machine
language instructions

• Relating symbols specified by the user to stored ad­
dresses or numeric values

• Assigning relative memory addresses to symbolic
addresses of program instructions and data

• Providing a sequentially numbered listing with sym­
bols cross-referenced to show where they are de­
fined and where they are used

MACRO programs consist of a series of free format
statements that can be prepared on the user's termi­
nal with one of the system's editing programs. The
elements in each statement can be entered in free
format. The assembler interprets and processes these
statements, generates binary instructions or data
words, and produces a listing which can contain
cross-reference symbols for ease in debugging the
program. MACRO is a device-independent program; it
allows the user to select, at run time, standard periph­
eral devices for input and output files. For example,
input of the source program can come from the user's
terminal, and output of the program listing can go to
the lineprinter. More commonly, the source program
input and binary output are disk files.

The MACRO assembler contains powerful macro ca­
pabilities that allow the user to create new language
elements. This is useful when a sequence of code is
used several times with only certain arguments
changed. The code sequence is defined with dummy
arguments as a macro instruction. Thus, a. single
statement in the source program referring to the
macro by name, along with a list of the real argu­
ments, generates the entire sequence needed. This
capability permits the expansion and adaptation of the
assembler in order to perform specialized functions for
each programming job. In addition, by chang~ng just
the macro definition, the programmer changes the def­
inition for every call.

FORTRAN
FORTRAN-10 is a globally optimizing compiler and a
run-time system with an interactive debugger. Both
have been designed to simplify the programmer's job,
provide superior compile-time and run-time di:agnos­
tics, facilitate debugging, and produce error-free and
fast running programs.

The FORTRAN language is based on the 1966
American National Standard FORTRAN Language

8-1

and has many extensions to that standard. It also in­
cludes many features from the ANSI 1977 standard
FORTRAN. Both the compiler and object-time system
are reentrant (sharable). FORTRAN features include:

• Accepted and powerful features for handling a wide
range of technically-oriented users

• Computational features matched by full-scale data
handling and data management facilities

• Global optimization

• PARAMETER statements providing symbolic speci­
fication of compile-time constraints

• INCLUDE statements allowing users to include in
the compilation of a given program unit source code
that resides in a file other than the primary source
file

• n-dimensional arrays

• Ability to generate array bounds checking

• Direct-access I/O capabilities

• FORTRAN debugger that permits examination and
modification of program data, statement-by­
statement program tracing, and setting pauses on
any statement or routine

• OPEN and CLOSE statements for file specification
and control

• ENCODEIDECODE statements

• Boolean operators, including equivalence and ex­
clusive OR, in addition to OR, AND, and NOT

• NAMELIST statement and list-directed 1/0 that pro­
vide format-free input and output operations

• Implied DO loops allowed in 1/0 and data
statements

• Full mixed-mode arithmetic in expressions

• Octal constants

• Full-word masking operations allowed for all logic
functions (rather than a result of just true or false)

• Relational operators

• Error-handling capabilities in 1/0 statements

• Device independence

• Multistatement lines

• Remarks in statement fields

The FORTRAN object-time system (FOROTS)
controls the input/output, format interpretation, and nu­
merical conversion for programs compiled by the
FORTRAN compiler. The FORTRAN user can refer­
ence any mass storage, unit record, or terminal de­
vice. All special editing, conversion, and file
structuring tasks are handled by the object-time sys­
tem. Devices are normally specified by logical assign­
ment so that physical device selection need not be
made until run time. The devices corresponding to the
specific 1/0 statements READ, PRINT, PUNCH,
ACCEPT, and TYPE are also assignable at run time.

Language Extensions
Powerful FORTRAN extensions simplify program cod­
ing. Some of the enhancements are:

• Array subscripts - any arithmetic expression can
be used as an array subscript. If the value of the
expression is not an integer, it is converted to inte­
ger type.

• Alphanumeric literals - strings of characters
bounded by apostrophes can be used in place of
Hollerith constants.

• Mixed-mode expressions - mixed-mode expres­
sions can contain any data type, including complex
and byte.

• End of line comments - any FORTRAN statement
can be followed on the same line by a comment that
begins with an exclamation point.

• Readlwrite end-of-file or error condition transfer -
the specifications END = n and ERR = n (where n
is a statement number) can be included in any
READ or WRITE statement to transfer control to the
specified statement upon detection of an end-of-file
or error condition. The ERR = n option is also per­
mitted in the ENCODE and DECODE statements,
allowing program control of data format errors.

• General expression DO and GO TO parameters -
general expressions are permitted for the initial
value, increment, and limit parameters in the DO
statement and as the control parameter in the com­
puted GO TO statement.

• DO increment parameter - the value of the DO
statement increment parameter can be negative.

8-2

• Optional statement label list - the statement label
list in an assigned GO TO is optional.

• Default FORMAT widths - the FORTRAN IV pro­
grammer can specify input or output formatting by
type and default width and precision values will be
supplied.

• Additional 1/0 statements - these include file con­
trol and attribute definitions; list-directed (free for­
mat) 1/0; device-oriented 1/0; memory-to-memory
formatting; and unformatted direct access 1/0,
which allows the FORTRAN programmer to read
and write files written in any format.

• Logical operations on INTEGER data - the logical
operators .AND., .OR., .NOT., .XOR., and .EQV.
may be applied to integer data to perform bit mask­
ing and manipulation.

Optimization
The FORTRAN-10 compiler performs many optimiza­
tions during compilation. The purpose of the optimizer
is to prepare a more efficient object program that pro­
duces the same results as the original unoptimized
program, but takes significantly less execution time.
The output of the lexical and syntactic analysis phase
of the compiler is developed into an optimized source
program equivalent, in results, to the original program.
The optimized program is then processed by the stan­
dard compiler code generation phase.

Debugging Tools
Two debugging facilities are available to the
FORTRAN programmer: the FORTRAN Object-Time
System and the use of a "0" in Column 1 of a
FORTRAN statement.

The FORTRAN Object Time System (FOROTS) pro­
vides a traceback feature for fatal run-time errors. This
feature locates the actual program unit and line num­
ber of a run-time error. Immediately following the error
message, the error handler lists the line number and
program unit name in which the error occurred. If the
program unit is a subroutine or function subprogram,
the error handler traces back to the calling program
unit and displays the name of that program unit and
the line number where the call occurred. This process
continues until the calling sequence is traced back to a
specific line number in the main program. The trace­
back feature lets the programmer determine the exact
location of an error, even if it occurs in a deeply
nested subroutine.

A "0" in Column 1 of a FORTRAN statement allows
that statement to be conditionally compiled. These
statements are considered comment lines by the com­
piler unless the appropriate debugging line switch is
issued in the compiler command string.

Liberal use of the PAUSE statement and selective
variable printing provide programmers with a rnethod
of monitoring program execution. This feature allows
the inclusion of debugging aids that can be compiled
in the early program testing stages and latelr elimi­
nated without source program modification.

COBOL
COBOL-68 and COBOL-74 are optional high-level
languages designed specifically for business data pro­
cessing. COBOL can be used to create on-line termi­
nal applications or to write batch applications. Under
control of the multistream batch processor, program
and data decks can be loaded into the card reader for
spooling operations. However, using the same com­
mand language, the operation can be done 'from an
interactive terminal.

COBOL features include:

• ANSI-standard compliance

• Quick, efficient program development

• Simple, interactive user application interface

• Efficier.t operation in both batch and on-line
operation

• Programming tools with powerful yet easily used
data editing, sorting, updating, and reporting
features

• Remote access from on-line terminals or from re­
mote stations

• Complete program and device independence for ef­
ficiency and reliability

• Ability to call subroutines written COBOL,
FORTRAN, or MACRO

8-3

Listings produced by the compiler contain many docu­
mentation and debugging aids. English diagnostic
messages are embedded in the source listing at the
point of error. In addition, the listing can also include at
the user's discretion a complete map of the object pro­
gram and an easy-to-read listing of the compiled code.
The latter is presented in the form used by the
MACRO assembler. All object code is expanded to list
the machine mnemonics and user-defined names in
addition to the binary machine code (in octal). An im­
plementation of the COBOL REPORT WRITER state­
ment is provided.

Data Types
COBOL supports all the common COBOL data types,
including packed decimal (COMP-3). COBOL sup­
ports the following data types:

• Numeric COMP-3, packed decimal data

• Numeric COMPUTATIONAL (COMP), binary data

• Numeric COMPUTATIONAL-1 (COMP-1), floating­
point data

• Alphanumeric DISPLAY data (ASCII, EBCDIC, or
SIXBIT)

• Numeric DISPLAY data (ASCII, EBCDIC, or
SIXBIT)

These data types are required in a variety of applica­
tions and are provided for flexibility in specification
and design.

String Manipulation
COBOL provides INSPECT, STRING, and
UNSTRING verbs for character string handling. These
verbs let programmers search for embedded charac­
ter strings with TALLY and REPLACE, and they offer
the ability to join or isolate separate strings with vari­
ous delimiters.

Interactive COBOL Execution
The ACCEPT and DISPLAY statements of the
PROCEDURE DIVISION allow easy terminal-oriented
interaction between a COBOL program and the pro­
gram user.

The program can receive user input lines with the
ACCEPT statement. The ACCEPT statement can also
retrieve the current date or time from the system.

The DISPLAY statement transfers data from a speci­
fied literal or data item to a specified device, normally
the user's terminal. The statement can be modified by
a special WITH NO ADVANCING phrase (without au­
tomatic appending of carriage return and line feed)
that allows the COBOL program to control the format
of the message sent. The WITH NO ADVANCING
phrase causes the device to remain positioned on the

same line and the same character position following
the last character displayed. This is especially useful
when typing prompting messages on the terminal.

The ACCEPT and DISPLAY statements are intended
primarily for use with keyboard devices. However,
COBOL also allows the ACCEPT statement to accept
cards from a card reader and the DISPLAY statement
to display data on a line printer.

File Organization
The sequential 1/0, relative 110, and indexed 1/0 mod­
ules meet the ANSI-74 high-level standards (with the
exception indicated in Table 8-1) and include all the
COBOL verbs.

A complete index sequential-access mode (ISAM)
package is included in the COBOL object-time sys­
tem, allowing the user to access data either sequen­
tially or randomly by key value on random-access
devices. The time required to access a file is minimally
affected by the number of additions made to the file.
The technique of "chaining" records is not used. In­
stead, the index to the file is updated to minimize the
number of accesses necessary to retrieve records.

LIBRARY Facility
With COBOL, programmers have a full ANSI-74 high­
level library facility that includes high-level extensions
(COPY ... REPLACING). Frequently used data descrip­
tions and program text sections can be held in library
files that are available to all programs. These files can
then be copied at compile time to reduce program
preparation time and to eliminate a common source of
errors.

CALL Facility
The CALL statement allows COBOL programs to in­
voke separately compiled subprograms, passing argu­
ments in the process. These subprograms can be
written in COBOL, FORTRAN, or MACRO. The CALL
facility:

• Provides flexibility through modular development of
application systems

• Permits functional separation of small, well-defined
source modules

• Gives the programmer access to operating system­
dependent features via subroutines written in
MACRO

On-line Debugger
The on-line COBDDT debugging package permits
user interaction during the execution of a program. No
modifications are required to a source program .
When the user wants to use COBDDT, the package is
simply loaded with the object program when execution
starts. The user can specify the pOints within the pro-

8-4

gram at which to pause during execution. During
these pauses, the user can examine and modify the
contents of data items before proceeding. All refer­
ences to data and procedure items are made by using
the name in the source program. The user talks to the
debugging package using familiar names rather than
truncated or substituted names.

Source Program Input
The disk-resident compiler can accept source program
input from all supported input devices, including input
from source text library files stored on disks.

COBOL accepts source programs that are coded us­
ing either the conventional 80-column card reference
format or the short, easy-to-enter terminal format.

• Terminal format is used with context editors con­
trolled from an on-line terminal keyboard. It elimi­
nates the line number and identification fields and
allows horizontal tab characters and short lines.
These capabilities offer potential savings in disk
space and allow easier interactive input of source
programs.

• Conventional format produces source programs
that are compatible with the reference format of
other COBOL compilers throughout the industry.

RERUN
The RERUN feature allows the user to periodically
save the status of a job. In the event of a later disrup­
tion the job can be restarted from the point of the last
status saved instead of from the beginning.

COBOL-68 and COBOL-74
COBOL on DECsystem-10s is available in two ver­
sions: COBOL-68 and COBOL-74.

Table 8-1
COBOL-74 Support Levels

FIBS PUB21-1
Level Supported Requirements

ANS--74 Module by COBOL-74 for "High-level"

Nucleus 2 2
Table Handling 2 2
Sequential 110 2 2
Relative I/O 2 2
Indexed I/O 2 2
Segmentation 2 2
Library 2 2
Debug 2**2 2
I nterprog ram
communication 2 2
SORT/MERGE 2 2
Communication **3 2
Report Writer **4 2

**2 Debug module is functionally replaced by COBDDT
**3 Not supported
**4 ANSI-66 report writer syntax plus SUPPRESS statement

COBOL -68 is an implementation of the COBOL lan­
guage based on the ANSI COBOL X3.23-1968 stan­
dard. COBOL-74 is an implementation of the COBOL
language based on the ANSI COBOL XX3.23-1974
standard. COBOL-74 meets the high-level require­
ments of FIPS PUB 21-1 as tested by the FCCTS
(Federal COBOL Compiler Testing Service), with the
exceptions noted in Table 8-1.

BASIC-10
BASIC (Beginner's All-purpose Symbolic Instruction
Code) is a problem-solving language that is easy to
learn because of its conversational nature. It is parti­
culary suited to a timesharing environment because of
the ease of interaction between the user and the com­
puter. This language can be used to solve problems
with varying degrees of complexity, and U1US has a
wide application in the educational, business, and sci­
entific markets.

BASIC is one the simplest programming compilier lan­
guages available because a small number of clearly
understandable and readily learned statements are re­
quired for solving almost any problem. The BASIC lan­
guage can be divided into two sections: one section of
elementary statements that the user must know in
order to write simple programs, and a second section
of advanced techniques for more powerful programs.

The BASIC user types computational procedures as a
series of numbered statements that are composed of
common English terms and standard mathematical
notation. After the statements are entered, a run-type
command initiates the execution of the program and
returns the results.

Extended features of BASIC-10 include:

• The PRINT USING statement - includes the lead­
ing asterisk, floating dollar sign, and imbedded
comma

• Sequential-access file handling - for both data and
text

• Random-access capability - for numeric and string
files

• Simultaneous opening of up to nine files

• String handling ability - a full package which in­
cludes concatenation and other string functions

• Subroutine CHAIN features to other BASIC pro­
grams - includes restart capability at a specified
program line

• I/O from/to any supported device, such as card
reader, lineprinter, magnetic tape

• CRT support at multiple line speeds

8-5

ALGOL-10
ALGOL -10 is a scientific language designed for de­
scribing computation processing, or algorithms. It is a
problem-solving language in which the problem is ex­
pressed as complete and precise statements of a
procedure.

The TOPS-10 interactive editors and an integrated
ALGOL debugger make it easy to code, test, and de­
bug programs. Program modularity is available
through block structure, subprograms, and separately
compiled procedures.

ALGOL-10 is an implementation of the ALGOL-60
language. The compiler consists of a reentrant (shar­
able) segment and a data segment which varies in
size depending on the size of the program to be com­
piled. The one-pass, Single-phase compiler produces
diagnostics and generates optimized object code.

ALGOL-10 language features include:

• Long real scalars, arrays, and procedures giving 62-
bit mantissa using the double preciSion hardware

• String scalars, arrays, procedures, and byte manip­
ulation allowing users to generate, manipulate, and
input or output strings or individual bytes ranging in
size from one to 36 bits

• Assignments within expressions

• Remainder operator

• Unique implementation of dynamic arrays

• Octal Boolean constants and integer/Boolean and
Boolean/integer conversion functions

• WHILE statement and a convenient abbreviated
form of the FOR statement

• Ability to call FORTRAN language subroutines and
functions

• Identifiers up to 64 characters long

Block Structure
The ALGOL program structure is somewhat more
complicated than high-level languages such as
FORTRAN or BASIC, but offers compensating bene­
fits. An ALGOL program has a number of hierarchi­
cally arranged blocks. A block consists of declarations
and statements enclosed by the words BEGIN and
END. Scope rules and declarations determine what
variables are global or local to a block.

Block structure offers many advantages including eas­
ier implementation of top-down application design,
code modularity, easy-to-read and understand pro­
grams, and increased protection from side effects.

Procedures
Algol procedures are subprograms that are useful in
writing highly structured and easy-to-read programs.
Code segments that are used more than once, and/or
that can be viewed as a module of the larger program,
can be separated into procedures. To aid top-down
program development, procedures can be written, de­
bugged, and compiled separately from the main pro­
gram. Large structured programs frequently consist of
a series of procedure calls.

Parameters can be passed to a procedure by value or
by name. When an expression in a procedure call (an
actual parameter or argument) is passed by value, a
copy of its value is made available as a local, formal
parameter (dummy variable) within the procedure.
This is an efficient way to pass many expressions and
to protect the calling block from side effects.

When an argument is passed to a procedure by name,
any changes made to the value of the formal parame­
ter in the procedure also changes the actual parame­
ter as if it instead of the dummy appeared in the
procedure body. Passing an array or a string argu­
ment by name instead of value saves memory space
and allows the procedure to treat the argument as a
global variable.

ALGOL supports recursive procedures; procedures
can call themselves directly or indirectly to a depth
limited only by the user's available memory space.

Compiler and System Features
The ALGOL compiler reports all source program er­
rors on the user's terminal or on a listing device. The
ALGOL-10 compiler adds these extensions to
ALGOL-60:

• Long real type equivalent to FORTRAN's double­
precision for more accurate real computations.

8-6

• External procedure can be compiled independently
of main program.

• Convenience in loop implementation with WHILE
and abbreviated FOR statements.

• Programmer can manipulate strings of various size
bytes and can individually manipulate the bytes
within a string via byte subscripting.

• Integer remainder function.

• Delimiter words can be represented in either re­
served word format or as non reserved words.

• Constants of type real can be expressed as an inte­
ger part or as a decimal part only.

OWN Variables
Special integer, real, long real, Boolean, and string
variables called OWN variables have these properties:

• They follow the normal scope rules within a block.

• When control passes outside the block, the values
are retained and still available when the block is
reentered.

• Their values are initialized to zero, false, or null.

Switches
Switches provide the function of the CASE statement:
program control jumps to various locations depending
on the value of an expression. Switches automatically
detect when the evaluated expression is out of range.

String Constants
String constants allow the user to refer to a string of
ASCII characters within a program by using a variable
name. The length of the string is limited only by avail­
able memory. String constants are typically used to
convey messages to the program users or to assign
value to string variables.

Object-Time System
The ALGOL-10 object-time system (ALGOTS) pro­
vides a basic input/output system so that the user can
communicate with directoried and nondirectoried de­
vices in ASCII and binary nodes. At run time, ALGOTS
provides I/O processing, storage management, and
debugging facilities. The object-time system includes a
library of routines which can be incorporated in a
user's program. Some of the routines are:

• A set of mathematical functions, including both
single- and double- precision functions

• Maxima and minima functions

• String manipulation routines

• Bit field manipulation routines

• FORTRAN subprogram interface routines

The run-time facilities include:

• I/O with directory and nondirectory devices in both
ASCII and binary modes - up to sixteen internal
logic channels plus default terminal I/O channels
are available.

• Storage management of the heap and stack - en­
ables the program to borrow a temporary buffer for
I/O, OWN arrays, and dynamically created byte
strings. It also provides memory expansi()n when
needed.

• ALGOL dynamic debugger - allows interruption of
program execution, setting and clearing of break­
points, examination and alteration of ALGOL vari­
ables that are in scope, examination of various
system parameters, automatic typing of ALGOL var­
iables after a breakpoint, examination of the code
generated, and continued program execution from
both a halt and an appropriate label.

APL
Two levels of this popular language are available.
Both levels are full APL implementations with signifi­
cant extensions. The basic version suits users who do
not require the file I/O or the advanced APL functions.
The extended version of APL, APL-SF, has all of the
features of the basic version plus advanced features
that substantially increase the range of applications for
which it can be used. Both levels of APL feature:

• Full implementation with significant extensions

• Fast execution

• System functions/variables

• Four-way error trapping

• Error analysis and recovery

• Support of highly interactive applications

• Double precision arithmetic

• Integrated debugging features

• Workspace interchange features

APL-SF permits the user to obtain canonical string
representations, create local functions, erase and
classify names from a workspace, and perform vari­
ous me I/O operations including ENQ/DEQ. APL-SF
features:

• System variables with which the programmer can
set tolerances and index origins and store account­
ing information

• File I/O that makes it easy to structure program data
and interchange data files between other
DECSYSTEM-20 languages such as FORTRAN
and COBOL

• Input and output system commands with which the
programmer can redirect terminal input and output
to any file

8-7

• An operator that can solve linear equations, take
the inverse of a matrix, or solve an overdetermined
set of linear equations using a least-squares fit

• An operator to convert numeric data to a character
string and enable the programmer to write user­
defined functions to perform special output format­
ting and function editing

• An operator that makes it efficient to find the indices
in a vectorfor which a particular boolean expression
is true

• An operator that permits a character to be executed
as an APL statement

• A convenient and efficient mechanism for formatting
output data; for example, a entire table with associ­
ated text can be formatted in a single operation or a
large matrix can be formatted with alphanumerics

APL uses one of the most concise, consistent, and
powerful character sets ever devised. APL is espe­
cially suited for handling array-structured alphanu­
meric data. It is also used as a general data
processing language and a mathematical tool.

APL allows programmer-defined functions and primi­
tive language functions to be expressed with the same
syntax. Thus, programmers can expand the capabili­
ties of the language to handle the requirements of any
application.

Data Structures
APL supports a variety of numeric and character data
structures. They are:

• Scalars - a single numeric or character value with
no dimensions

• Vectors - a one-dimensional array or character
string consisting of any number of values

• Matrices - a two-dimensional array consisting of
rows and columns

• Arrays with three to 16 dimensions

Interacting with APL
Programmers interact with APL using a hardcopy or
video terminal. DIGITAL's LA37 hardcopy terminal in­
cludes an APLIASCIl dual character set. The LA37's
keyboard is designed specifically for use with APL.
For ASCII and console terminals, special APL charac­
ters can be represented by keyboard mnemonics.

System Commands and I-Beam Functions
Programmers can change system parameters, deter­
mine hardware or operational characteristics, and
modify workspace parameters through system com­
mands and I-beam functions. System commands con­
trol the operational environment in which an APL

session is conducted by allowing programmers to ex­
amine or change the state of the system. I-beams are
APL functions used to communicate with the APL sys­
tem to change user workspace characteristics and to
report statistics about the workspace and the APL
system.

Statements
A program consists of one or more lines called state­
ments. There are two types of APL statements: as­
signment statements and branch statements.
Assignment statements include calculation and
input/output operations. Branch statements are used
to restart a function or to handle the transfer of control
from one part of a program to another. Branch state­
ments are relevant only to programmer-defined
functions.

An APL statement can contain:

.. Identifiers

.. Constants

" APL primitive functions

• User-defined functions

APl Statement Execution
APL language statements operate in either of two
modes:

11 Immediate or execution mode - in this desk­
calculator mode, APL statements and expressions
entered by the user are executed immediately.

.ijj Function-definition mode - in this mode, APL pro­
grams and functions are developed, edited, named,
and saved for later use.

Programmers can shift from one mode to the other.
The syntax of the APL language is identical in both
modes.

Oebugging Tools
Function execution is suspended if an error occurs or
if a stop vector is set. When execution is suspended,
the name of the suspended function and the line num­
ber of the statement that would have been executed
next are displayed. APL then awaits input in immedi­
ate mode. Programmers can perform any other APL
operations at this time. The programmer can resume
execution after fixing the problem and can observe
function nesting. Programmers can also obtain an au­
tomatic display of the intermediate results of function
execution. As a program traCing aid, the values com­
puted by one or more function statements can be out­
put each time those statements are executed.

APL allows programmers to suspend execution of a
function from within the function itself. A stop control
vector with a syntax similar to that of the trace vector

8-8

suspends function execution just before execution of
one or more specified statements.

Workspaces
An APL workspace is a buffer in the programmer's
memory area that stores the functions, variables, val­
ues, and temporary results obtained while executing
APL statements. Using APL system commands, work­
spaces can be saved, retrieved, and erased. They can
be stored on a variety of devices, including disk, mag­
netic tape, and flexible diskettes.

A workspace can be saved in either memory-image or
ASCII format. Workspaces saved in ASCII form can
be created and edited with any DIGITAL-supplied
editor.

File Organization
The APL file system allows the APL programmer to
access data and program files on a variety of system
devices. The file system is implemented as an integral
part of the APL language and provides an interface to
the TOPS-10 operating system.

The APL file system support is provided by:

• System commands for assigning, creating, closing,
reading, writing, and renaming files

• File operators for byte pointer, input, and output
functions

APL supports ASCII sequential and random access
files. ASCII sequential data files can be read and writ­
ten sequentially by any TOPS-1 0 language processor
(e.g., BASIC, FORTRAN, MACRO). The system treats
random-access files as random access memory. Pro­
grammers can directly access any byte in the file by
specifying the individual byte or value to be read or
written.

Error Analysis and Recovery
Instead of stopping execution, APL-SF error analysis
and recovery permits the program to take remedial
action. Error trapping features permit computer­
assisted-instruction applications. A programmer can,
for example, write a program that lets a student write a
problem solution. The controlling program can inter­
cept a student error.

Conversion Package
A complete package is available to convert IBM
APLlSV workspaces and data files into APL -SF work­
spaces and data files. The package is written mostly in
APL and is easy to adapt for use with other APL sys­
tems. The package is written according to the work­
space interchange standard.

BLlSS-36
BLlSS-36 is DIGITAL's implementation language for

software development. BLISS is an optimizing, high­
level systems-implementation language for the
DECSYSTEM-20. It is specifically designed for build­
ing compilers, real-time processors, utilities, and oper­
ating system software. BLISS encourages the writing
of highly structured programs that are easy to
maintain.

BLISS has the features of a modern, structured high­
level language combined with the flexibility of assem­
bly language. BLISS can help systems programmers
be more productive, shorten project development
time, and lower maintenance cost.

The key features of BLISS are:

• State-of-the-art optimization technique to generate
highly-optimized programs

• A full set of structured programming constructs in­
cluding IF-THEN-ELSE, CASE, DO-WHILE,
SELECT, and DECR statements

• Sophisticated macroprocessing capabilities

• Access to machine-dependent features including
PSECTS, hardware registers, and machine­
instructions (including UUO and JSYS)

• A linkage declaration that supports user-selected
register conventions. Users can rebuild the object
time system to support nonstandard register
conventions.

• Precompiled source libraries similar to UNV
MONINT, MONSYM, and UUOSYM

Compiling
The compiler can display a listing of errors and warn­
ing flags on the programmer's terminal, or can gen­
erate a listing with the errors and flags embedded.
Listing can be printed as needed, and most syntactic
errors are labelled as such.

Debugging
An interactive symbolic debugger supportin9 BLlSS­
style expression evaluation is used.

File Organization
Any file organization can be accessed using BLISS.

Compatibility with Other Languages
BLISS is not intended to replace the other high level
languages such as COBOL, FORTRAN, or BASIC. In­
stead, it complements them. Programs written in other
languages can call BLISS routines through the stan­
dard operating system calling sequence. BLISS pro­
grams can call routines written in a variety of other
languages and use several linkage conventions.

CPL
CPL (conversational programming language) is a PLiI

8-9

subset interpreter. It is a well-documented and easy to
learn subset of ANSI-1976 PLiI.

At the user's option, statements are executed immedi­
ately or saved for deferred execution. A beginning pro­
grammer can start by executing simple computational
statements and proceed to building programs.

Since CPL is an interpreter, a user can track his pro­
gram very closely. Debugging features are included,
such as source level breakpoints and program
modification.

CPL includes the following features:

• ANS PLiI statements ALLOCATE, ASSIGNMENT,
BEGIN, CALL, CLOSE, DECLARE, DEFAULT,
DELETE, DO, END, FORMAT, FREE, GET, GOTO,
IF, NULL, ON, OPEN, PROCEDURE, PUT, READ,
RETURN, REVERT, SIGNAL, STOP, and WRITE

• Data types FIXED, FLOAT, CHARACTER,
CHARACTER VARYING, BIT, BIT VARYING,
POINTER, and arrays of these types

• Storage classes AUTOMATIC, STATIC,
CONTROLLED, and BASED

• Recursive procedure support

• Almost all ANS PLiI arithmetic, mathematical,
string-handling, array, and storage control built-in
functions

• STRING, SUBSTR and UNSPEC pseudovariables

Immediate Mode
The CPL immediate or desk calculator mode is inte­
grated into the system so that the user can easily
move between programming and calculating.

Almost any CPL PLiI language statement can be
typed without a line number for immediate mode or
with a line number for deferred execution as part of a
program. A user can do simple computations to get
immediate answers, and can even assign intermediate
results to variables and use the variables in further
computations. Immediate mode is thus a useful for
debugging.

Program Creation
The user does not need any editor or utility to create a
CPL program. Program statements are typed to CPL;
insertions, changes, or deletions are done easily.

CPL' provides automatic syntax checking of state­
ments. When a statement is typed, CPL immediately
checks for syntax errors. If there is an error, CPL tells
where the error occurred. The user then has the op­
portunity to correct the statement and go on. This
means that a user gets immediate feedback on syntax
errors rather than waiting for a compilation to provide
a list of errors. Of course, a user need not use the CPL

program editing facility. Any editor or file manipulation
facilities can be used to create or modify a program.
The file can then be loaded into CPL and any errone­
ous statement will be listed with an error message that
indicates the problem.

Debugging
CPL is the only PUI language processor available that
provides true source-level program debugging. A pro­
grammer can use these steps to debug a program:

1. The programmer loads the program, sets break­
pOints on any statement, and executes the
program.

8-10

2. The program stops on an error, a breakpoint, or at
programmer command.

3. The programmer uses CPL statements in immedi­
ate mode to isolate problems. Variables can be
examined or changed. liD can be done. New vari­
ables can be created to store intermediate results.

4. The programmer makes source modifications to
the program. Statements can be added, deleted,
or modified, and breakpoints can be set or
cleared.

5. The programmer continues execution, starting
after the current halt in execution.

9
Data Management

and Application
Products

In addition to the standard file management facilities included with TOPS-10,
optional data management and application products are available.

DBMS is a CODASYL compliant data base management system that lets
users organize and maintain data in customized data bases and provides
rapid and convenient access to the data. IQL is an interactive query language
for information retrieval and report writing. IQL can access DBMS files.
SORT/MERGE is a -10 sort utility that operates stand-alone or with COBOL
or FORTRAN programs to reorder the records of files into new sequences or
to merge sorted files into a single sorted file.

fwo application products, COGO-10 and PCS-10, are discussed. COGO-10
jncludes a geometric language for solving problems in plane coordinate ge­
ometry. PCS-10 is a project control system that analyzes critical patch or
procedure networks and generates a number of resource, cost, and critical
path reports.

COMPONENTS
n,e data management products detailed in this section are:

• DBMS - a CODASYL data base management system
• iQL - a interactive query language for information retrieval and report

writing

• SORT/MERGE - a sorting and merging utility for TOPS-10 files

rhe optional application products discussed below are:

• COGO-10 - a tool for solving problems in plane coordinate geometry us­
Ing a geometric language.

• PCS-10 - a project control system that analyzes critical path or proce­
dure networks

fhe comprehensive data management system that is part of TOPS-10 and
inciuded with all DECsystem-10s is discussed in Section 4 of this technical
summary under the headline The File System. Access to data files from vari­
ous programming languages is described in Section 8.

DBMS
DBMS is an optional TOPS-·10 CODASYL compliant
data base management system that lets users organ­
ize and maintain data in customized data bases and
provides rapid and convenient access to the data.

DBMS integrates related processes and data structure
and is used when traditional file management tech­
niques would be difficult, costly, inadequate, and/or
error prone. DBMS features:

• COBOL and FORTRAN interfaces

• English-language interface for inquiry and report
generation through the IQL package (see below)

• Easy SCHEMA/SUBSCHEMA definition and update

• Full journaling and data base recovery capability

• Protection against unauthorized data base access
with centralized control of privacy

• High throughput

CODASYL Compliance
DBMS provides software to define, access, and main­
tain data in the network structures of an integrated
data base. DBMS is based on the CODASYL. Data
Base Task Group Report of April 1971.

Data De:scription Process
Data structures can be established in either a hierar­
chical fonm or in networks with multilevel relationships.

9-1

Relationships can exist within files or between one or
more files (areas) with no fixed limit on the length of
chains (the TOPS-10 file system is used to construct
data base areas). The number of relationships in
which any record can participate and the size of the
record is normally limited only by the design cons­
traints of the application.

Data Manipulation Process
Data base records can be referenced through a set of
data manipulation statements included in COBOL or
FORTRAN application programs. These statements
include the ability to store, mOdify, and delete fields
and records that are of specific interest to an author­
ized application user. Also included is the ability to
insert and remove records within structural relation­
ships. It is possible (by the data definition process) to
directly access specific records by symbolic keys or by
movement through structural relationships.

DBMS Modules
TOPS-10 DBMS includes these elements:

• DDL (Data Description Language), including DMCL
and subschema DDL - used by a data base ad­
ministrator to create and maintain procedure­
language-level descriptions, records, areas (data
files), and sets (interrecord relationships). The data
base descriptions (schema/subschema) are estab­
lished and maintained by the DDL compiler,
SCHEMA.

• DML (Data Manipulation Language) - used by an
application programmer writing in COBOL or
FORTRAN to store, retrieve, modify, or delete data
and to insert and remove interrecord data relation­
ships. The DML comprises an extended verb set
which is added to the COBOL host language and to
a preprocessor for FORTRAN programs. COBOL
programs which include Data Manipulation
Language statements are processed directly by the
COBOL compiler.

• DBCS (Data Base Control System) - a run-time
interface between a COBOL or FORTRAN program
and the TOPS-10 operating system. The DBCS ex­
ists in a specific module within the COBOL object­
time system (LiBOL) and the FORTRAN object-time
system (FOROTS). Recovery of failed DML updates
is via the journaling facility.

DBMS Utilities
The DBMS utilities help the data base manager run
and maintain the data base. The utilities include:

• DBMEND - a recovery utility that provides rollback
and rollforward of selected data base transaction.

• DBINFO - a utility that selectively dumps informa­
tion from a data base. It can also be used to gen­
erate statistics about the data base, a DDL cross

reference listing, and other descriptive information
about the DDL program.

• ST ATS - a component with DBCS used to obtain
run-time information about each DML verb and
statistics about data base page reads and writes.

IQL
IQL is an optional TOPS-10 interactive query lan­
guage for information retrieval and report writing. It
takes query requests written in English, such as for­
mats, reads one or more input files, and process the
data according to the request. IQL queries are groups
of easily written report generation commands. IQL can
access TOPS-10 files and interface to DBMS for a
powerful, fully-integrated data base management sys­
tem. IQL can interface to the operating system's file
management system and to DBMS. With them IQL is
a fully integrated data base management system that
can quickly satisfy data retrieval and report generation
requirements.

IQL features:

• Multiple input files (DBMS, ISAM, SEQUENTIAL).

• Extensive record selection.

• Sorting.

• Conditional processing and/or conditions can be
strung together; parentheses can be nested nine
deep.

• Built-in summary statements.

• Complete report formatting capabilities, including
multiple across labels and special forms.

• Multiple reports up to nine, standard, and
expandable.

• Files output in original or new format.

• Matrix reporting by manipulation of summaries or
individual items.

• Powerful computation capabilities.

• Built-in summary statements for tallies, totals, and
averages.

• Update capability.

• Dictionary pre-sorting of file, record, and item infor­
mation, including printing column titles and pictures.

• Default automatic formatting of reports, including
field alignment, dates, paging, and column.

• Interactive or batch modes of operation.

• Exits to user-written modules.

Traditionally, data manipulation and reporting has
been left to programs written in COBOL, FORTRAN,
or assembly language. This method incurs high pro­
gramming costs and delays in obtaining report infor­
mation. IQL, however, is an inquiry system that can
quickly extract, summarize, reorganize, report and
copy file information. The accompanying table illus­
trates the use of IQL ad-hoc inquiry and reporting.

Interactive Mode

In interactive mode, IQL operates under control of ter­
minal front-end modules that permit the terminal
user to:

Table 9-1

Customer Name

Manfredini Violin Co.
Globalex
Lakeside Homes Inc.
Farfield Motors
Hubert Oil Company
Bee Drill Service
Investment Inc.
Energy Resources Inc.
Geo Bank Fisheries
Merrimack Valley Sales
Apple Orchard Inc.
Craig Publishing

Final Summaries
Y-T-D Total: $44,859.92
Sales Total: $49,345.90
Difference Total: $ 4,485.88
End query execution

IQL Ad Hoc Reporting

Y-T-D Purchases

$1,233.67
$2,500.00
$1,211.00
$9,000.00
$ 600.00
$1,000.00
$ 364.75
$8,000.00
$9,164.00
$6,000.00
$ 671.00
$5,115.50

9-2

Sales Difference

$ 1,357.03 $123.36
$ 2,750.00 $250.00
$ 1,332.10 $121.10
$ 9,900.00 $900.00
$ 660.00 $ 60.00
$ 1,100.00 $100.00
$ 401.22 $ 36.47
$ 8,800.00 $800.00
$10,080.40 $916.40
$ 6,600.00 $600.00
$ 738.10 $ 67.10
$ 5,627.05 $511.55

• Write, store, retrieve, or change queries

• Define and interrogate dictionaries

• Define dictionaries reflecting SCHEMA files for
DBMS data bases

• Browse or update sequential or indexed sequential
input files

• Create sequential output files

• Accept raw data input

• Operate other IQL system modules

• Display snapshot reports on the terminal

Deferred Mode
In deferred mode the IQL system provides powerful
retrieval selection, report formating, sorting, computa­
tion, summarization, and data file writing capabilities.
Up to three input files can be read. The input files can
be DBMS data bases, sequential or index sequential.
They can contain fixed or variable length records, and
one or more record types. Input data files are queried
in their original format and can be in SIXBIT or ASCII
mode. All standard data item types are permitted.
Only sequential or index sequential input files can be
updated; DBMS databases can not. Sequentia.l output
files can be generated that either "mirror" the format
of the primary input data file or assume a new format
as specified by the query.

Queries can be stored in text files or in executable
form for later reuse.

IQL Statements
An IQL selection statement can combine many condi­
tional tests connected by AND and OR logical opera­
tors and clarified with parentheses. An IQL
computational statement can include addition, sub­
traction, multiplication, and division with parentheses.
Built-in summary statements for tally, total, average,
maximum, and minimum calculation can be controlled
by data item breaks. A random number variable is
built in.

DBMS Files
IQL accesses data files under control of a data diction­
ary that describes the format of the file and the loca­
tion, default display pictures, and column titles of each
item in the data record(s). For DBMS data bases the
dictionary also includes pertinent information about
record names, set name, and area names. Password
protection can be applied to individual data items or
groups of items.

Use of DBMS data base files requires that the
SCHEMA file be present as well as the data base files.
Additional security for DBMS data bases can be pro­
vided with privacy locks. 101's queries operate in
stages delimited by SORT statements. IQL ca.n sort

9-3

mixed ascending or descending on data items or cal­
culated fields.

Report Formating
IQL report formatting can be automatic, or the user
can specify custom report formats. Data item place­
ment in a report is specified by the user. Both multiple
print lines per input data record and multiple input data
records per print line are permitted. Special-form re­
ports such as mailing labels and checks can be pro­
duced easily. Up to 99 multiple reports can be
generated at one time.

SORT/MERGE
SORT/MERGE is an optional TOPS-10 sort utility that
operates stand-alone or with COBOL or FORTRAN
programs.

SORT/MERGE reorders the records of: EBCDIC files,
ASCII files, SIXBIT files, and Binary files produced by
COBOL or FORTRAN in a sequence determined by
the sorting parameters specified by the user.

SORT/MERGE automatically controls the use and al­
location of disk workspace and memory work space.
The user can also specify memory limits.
SORT/MERGE provides error diagnostics and statis­
tics upon completion.

The MERGE capability permits the merging of sorted
files into a single sorted file. This function can be used
either stand-alone or with COBOL.

COGO-10
COGO-10 is an optional TOPS-10 tool, including a
geometric language, for solving problems in plane
coordinate geometry. It is used in such fields as land
surveying, highway design, right-of-way surveys,
bridge geometry, and subdivision work.

The COG a language is the part of the tool that the
user works with directly. Most of the COGO-10 com­
mand names and command codes are identical with
those of SELLS COGO.

The language consists of common engineering terms,
and no computer experience is required to use it.
Problem definitions can be stored in a file of com­
mands and executed at a later time, or can be entered
using a terminal keyboard interactively. The com­
mands are identical either way.

COG a has commands for:

• Starting and ending a COGO job or changing the
I/O device

• Maintaining tables (lists of related pOints such as
road alignments or property lines)

• Intersecting existing lines or figures to calculate a
new point

• Calculating and/or storing one or more points

• "Locating" in traverse work

• Alignment and spiral functions

• Maintaining compatibility with the previous COGO
so that existing input can be used

• Outputting information generated by COGO

PCS-10
PCS-10 is an optional TOPS-10 project control sys­
tem that analyzes critical patch or procedure networks
and generates a number of resource, cost, and critical
path reports.

PCS-10 can process data for any critical path network
developed an an IJ, CPM, or precedence technique.
The fixed format input can be entered on a variety of
media. The system includes a terminal-oriented editor
for input from a CRT or hard-copy terminal.

PCS-10 has the following features:

• The time required to perform a work item can be
expressed in seven different time units.

• Seven different days can be designated as the
starting day of the work week associated with each
work item.

• The work week of each work item can be one to
seven days.

• Anyone of three distinct calendars can be used for
each work item.

• The actual dates can be specified for each work
item.

• One of five types of "scheduled" dates can be spec­
ified for the start and completion of each work item.

9-4

• Two "early" and two "late" dates can be computed
for each work item.

• Two types of duration can be specified for each
work item.

• Two types of percent complete can be specified for
each work item.

• Two kinds of "float" can be computed for each work
item.

• Three different kinds of codes can be specified to
be associated with each work item.

• Three kinds of costs can be specified for each work
item.

• An IJ/CPM or a precedence network can be ac­
cepted for processing.

• An IJ/CPM network is internally converted into a
precedence network for processing.

• Three different relationships can be specified be­
tween any two work itmes when using precedence
input.

• Loops are detected and identified.

• A time delay can be specified that becomes an in­
trinsic part of the relationship between two work
items.

• All network calculations are based primarily on
three calculation dates.

• 240 "milestones" can be specified.

• Fourteen different types of output reports can be
produced on request, including four different kind of
system runs that can be specified, and a network
that can extend over a period of 2911 calendar
days, slightly less than eight years.

10
Communications

TOPS-10 communications products are a unique combination of hardware
and software providing flexible networking capabilities to numerous user com­
munities. These products distribute computing power over various network to­
pologies and can use several network protocols.

TOPS-10 communications software (TOPS-10 Networks), remote concentra­
tors (DN200s), IBM-protocol emulator/terminators (TOPS-10 2780/3780 ETs),
and TOPS-10-distributed processing software (DECnet-10) comprise
TOPS-10 communications products. These products let TOPS-10 hosts
communicate with other TOPS-1 0 hosts, other non-TOPS-1 0 DIGITAL com­
puter systems, TOPS-10 remote stations, and IBM computer systems, both
host mainframe and IBM-like remote job entry stations.

Network Concepts
Independent of their communications link, users in a
TOPS-10 network can access a central site or !remote
site with ease and efficiency. Remote users employ
the same commands and facilities as users at the host
sites and can communicate readily with multiple hosts
and other remote stations.

SET HOST command. The user can also choose a
remote node for output with the LOCATE command,
and view the status of network nodes with the
NETWORK command. The NETWORK/TOPOLOGY
command lets the user view the topology of the net­
work. The WHERE command finds the network node
where a specified device exists. The user can commu­
nicate with other network users or transfer files across
the network with system utilities such as PIP.

Where the network contains more than one TOPS-10
host, the user can choose which host to access with a

TOPS-10
HOST

pcp
FRONT
END

RSX-11M

TOPS-10
COMM.
FRONT
END -0 ~

REMOTE
CONCEN-

r----z......---_ M _ TRATOR

-0 EMULATOR/
TERMINATOR
FRONT
END -EJ I'B~ TYPE

RJE

7

M=MODEM

Figure 10-1
TOPS-10 Communication Products

.netm

Node KL1028 (28) RZ124A KL 1028/1042 10-29-80
Node COMET (70) DN200 l.l22 (148) 10-Sept-80
Node ENCORE (32) DN87S l.)22 (148) 10-Sept-80
Node CTCH22 (22) DN82 l.l22 (148) 10-Sept-80
Node K12102 (20)
Node JIN}{ (134) DN20 l.)22 (148) 20-June-80
Node NOl.)A (31) DN87S l.)22 (148) 10-Sept-80

.net/topo m

Node COMET (70) 32(10)
Node ENCORE (32) 28(10) 70(10) 31 (10)
Node CTCH22 (22) 134(10)
Node JIN>< (134) 28(10) 22(10) 31 (10)
Node NOl.)A (31) 28(10) 134(10)

Figure 10-2
Sample NETWORK/TOPOLOGY Command

10-1

} TTYs

MR-S-1229-81

A user at a remote site can enter programs, text, or
data at a remote terminal, store the data at the central
site, and later print it at the local station. The remotely
located user can further communicate with other non­
central hosts, and with other users at other remote
sites. This facilitates user communication with the cen­
tral location and enhances the capabilities of the re­
mote site. These capabilities are made possible by the
use of standardized data transmission techniques,
asynchronous and synchronous communications, and
specialized protocols.

Data Transmission Techniques
The transmission of coded information between termi­
nals and computers, or between computers, is the key
capability inherent in all communications and com­
puter network systems. There are several transmis­
sion techniques used to move data from place to
place. The technique used by the DECsystem-10 is
serial data transmission. Serial data transmission has
two basic forms: synchronous and asynchronous.

Serial Data Transmission
Serial data transmission moves data in a serial stream
of bits, one bit following the other. Serial transmission
can move data character-by-character or in blocks.
Serial data transmission can be either synchronous or
asynchronous. With synchronous communications,
characters are framed with a pair of mutually synchro­
nized clocks; one in the transmitter and the other in
the receiver. With asynchronous communications,
character framing is alone with start and stop bits.

Asynchronous Transmission
Asynchronous transmission is used for connecting in­
teractive terminals to the DECsystem-10 host and its
remote stations. Asynchronous communications pro­
vides for a low cost connection when the line usage is
intermittent. This is typical of terminals that are being
used by interactively.

The DECsystem-10 supports a variety of ASCII termi­
nals, both hard copy and display. Typical supported
terminals include the LA-38 , DECwriter-1i1 and
VT-100 display terminals. A variety of other ASCII ter­
minals can also be used.

Terminals can be connected to line interfaces at­
tached to the DECsystem-10 using either current-loop
or EIA connections. For terminals that are remote from
the host, two options are available. A remote terminal
concentrator can be provided for services several
nearby terminals, or dial-up lines with modems can be
used. Dial-up lines can also be connected to a remote
station.

TOPS-10 supports full duplex operation of asynchro­
nous lines. This means that the operator of a terminal

10-2

on a TOPS-10 system can type on his terminal at the
same time that the system is sending data. Thus,
skilled operator need not wait for prompts when typing
large amounts of data or a long sequence of
commands.

Synchronous Communications
Synchronous communications is used by the network­
ing software to provide high speed data transmission
over local, leased or switched lines. Synchronous
communications is always done with some type of
clocking modem, which improves transmission effi­
ciency by eliminating the need for start and stop bits.
In TOPS-10 networks, synchronous lines are used for
connecting hosts and remote stations together.

TOPS-10 Network Protocols
TOPS-10 implements a set of protocols that are
known collectively as the TOPS-10 Network
Protocols, or ANF-1 O. These protocols are layered to
provide various network services.

TOPS-10 uses the DDCMP (DIGITAL Data
Communications Message Protocol) protocol for data
transmission over synchronous lines. DDCMP pro­
vides for error detection, correction and re­
transmission to provide error-free communications
over imperfect communications lines. Protocols, such
as DDCMP, that are used over a single physical link
are called data link protocols.

TOPS-10 uses NCL (Network Command Language)
for both device control and routing. NCL is a protocol
that is layered on top of a data link protocol, such as
DDCMP.

NCL device control provides support for line printers,
card readers terminals and task-to-task. Terminal sup­
port allows terminals connected to a TOPS-1 0 host to
"set host" to any TOPS-10 system connected to the
network, giving the terminal the characteristics of a
locally connected terminal. Line printer and card
reader support allows a TOPS-10 host (or hosts) to
use a remote line printer or card reader as though it
were a local device. The task-to-task device allows
two cooperating programs to communicate with each
other.

NCL routing provides a startup protocol to allow nodes
to be connected and disconnected from the network
dynamically. It provides routing services to allow
nonadjacent nodes to communicate with each other.
NCL routing also provides error recovery code to
resend messages that get lost during transmission be­
tween intermediate nodes.

COMMUNICATIONS PRODUCTS
TOPS-10 communications software (TOPS-10

Networks) and remote concentrators (DN200s) use
Network Control Language (NCL) and DDCMP
(DIGITAL Communications Message Protocol) to cre­
ate the common network structure in which users
communicate. The IBM-protocol emulator/terminator
(TOPS-10 2780/3780 ET) uses IBM's binary synchro­
nous protocol to communicate with IBM-type remote
job entry stations and with remote IBM hosts. When
communicating with an IBM 360 or 370 host, the
2780/3780 software is in emulation mode; when com­
municating with a remote job entry station, the
2780/3780 software is in termination mode.

With the DECnet-10 product, DIGITAL Network
Architecture (DNA) provides the background on which
the software is built. The architecture is completely
modular and designed to handle a broad range of ap­
plication requirements. With DNA, a network node can
operate as a transfer station, as a front end, as a ter­
minal concentrator, or as a host.

TOPS-10 Networks
Advanced Network Features (ANF-10) can be built
upon TOPS-10 systems linked with remote terminal
concentrators and remote job entry stations.

Independent of their communications link, users in a
TOPS-10 network can access any DECsystem-10 or
remote station with ease and efficiency. Remote users
employ the same commands and facilities as users at
host sites and can communicate readily with multiple
hosts and other remote stations.

A network contains both local and remote sites and
can link together data collections stations, remote con­
trol stations, remote concentrators, remote terminals,
and remote job entry stations with line printers and
card readers.

Communication software in the TOPS-10 system is
an integral part of the system. The software enlarges
and enhances the capabilities of the system, extend­
ing the system's reach and providing remote links to
the most distant users. The TOPS-10 interface to the
user is completely transparent. No matter where the
user is on the network when connected to a TOPS-1 0
system, the system looks the same. The user can his
entire effort into developing whatever application is re­
quired at the local site; the TOPS-1 0 communications
products take care of all the communications needs
and activities.

TOPS-10 synchronous communications can extend
the capabilities of the DECsystem-10 through the use
of remote stations. Remote stations and
DECsystem-10s can be connected by simple and/or
complex topologies, with up to a maximum of 63
nodes. These remote stations can include a line
printer, a card reader, a console terminal, and, de-

10-3

pending on the type of remote station, up to 32 asyn­
chronous command terminals. Use of peripheral
devices at various stations provides the user with in­
creased capabilities. For example, data can be col­
lected from the various remote stations, compiled and
processed at the central site, and the results of the
processing can be sent to all contributors of the data.

TOPS-10 synchronous communication provides
error-correcting, high-speed paths among TOPS-10
systems and remote stations. The high-speed syn­
chronous transmission is message-by-message, not
character-by-character, as in lower speed, asynchro­
nous transmission. Transmission errors are detected
using cyclic redundancy checks (CRC-16). Data er­
rors are corrected through retransmission of the dam­
aged block. With TOPS-10 network software and
supplementary TSKSER software, the homogeneous
TOPS-10 network supports file transfer and network
command terminals, as well as remote stations.

ANF-10 has many features for increased network
availability and flexibility. These features include multi­
pathing (the ability to have several paths between two
points), dynamic reconfiguration (automatic redefini­
tion of network topology and rewriting of messages if a
node fails), and route through (the ability to send mes­
sages by means of intermediate nodes).

TOPS-10 2780/3780 ET
TOPS-10 provides communication with IBM systems
and remote stations that use IBM's 2780 and 3780
protocols. The TOPS-10 2780/3780 software product
is well suited to performing batch-mode bisynch oper­
ations. At a remote job entry station, the TOPS-10
2780/3780 software supports a card reader for input
and a printer for output.

The TOPS-10 2780/3780 ET emulates and/or termi­
nates Model 76 DATA 100 units with 2780/3780 fea­
tures. Equivalent units can also be utilitized, but it is
the customer's responsibility to prove equivalency.
The software enables a DECsystem-10 equipped with
a DN20 front end to:

• Send 2780/3780-type remote entry jobs to an IBM
360/370

• Process jobs submitted from 2780/3780-type
terminals

In emulation mode, the DECsystem-1 0 connects to an
IBM 360 or 370. The DECsystem-10 appears to the
IBM system to be a DATA 100 emulating an IBM 2780
or 3780 remote job entry station. In emulation mode,
the IBM host acts as the host. The IBM host must be
running one of the allowed operating systems:

NODE ONE

TOPS-10
HOST

NODE FIVE

TOPS-10
HOST

NODE TWO

DN20

RSX-11M

Figure 10-3
Complex Topology

10-4

RJE

RJE
CONC.

RSX-11M

REMOTE
TTYs

REMOTE
TTYs

MR·S·1230·81

• OS/VS2 (SVS) HASP II, Version 4.0

• OS/VS2 (MVS) JES2

• OS/MVT HASP II, Version 3.1

• OS/MVT ASP Version 3.1

• OS/VS2 (SVS), Version 3.2

A DECsystem-10 user can submit a disk file contain­
ing IBM JCL and ASCII data to the IBM sys1tem as a
batch job. The software translates the data to EBCDIC
before transmitting the job to the IBM system. Any
output data returned to the DECsystem-10 is trans­
lated to ASCII and printed. In emulation mode, the
software does not handle special forms.

In termination mode, the DECsystem-10 acts as the
host. The TOPS-10 system connects to a Model 76
DATA 100 running either 2780 or 3780 sof1tware, or
equivalent units. The 2780/3780 remote station user
submits a DECsystem-10 batch control file on cards.
The log file from the batch job is automatically re­
turned to the remote station for printing. Other job out­
put in printed form can also be routed back to the
remote station printer.

DECnet-10
The DECnet-Compatible Port (DCP) is a software
product that allows a suitably configured
DECsystem-10 or DECsystem-10 network to commu­
nicate with PDP-11 systems running DECnet-11 M.

The DCP offers task-to-task communications with
RSX over synchronous communication lines. It oper-

10-5

ates by translating between subsets of the TOPS-10
Network Control Language (NCL) protocol and the
Phase II DIGITAL Network Architecture (DNA) proto­
cols. The DCP communicates only with DECnet-11 M.

User programs access the DCP through the TOPS-1 0
network interface. TOPS-10 user programs written in
languages that support device specifications (for ex­
ample, FORTRAN, COBOL, and MACRO) can access
the network. The DCP provides task-to-task communi­
cations facilities only. With the DCP, a TOPS-1 0 user
program can exchange messages with a cooperating
user program an adjacent DECnet-11 M system.

The messages sent and received by the two user pro­
grams can be in any data format mutually acceptable
to the two user programs. To TOPS-10 user pro­
grams, the DECnet-11 M node appears to be a
TOPS-10 Network node; to the remote DECnet-11
system user programs, the TOPS-1 0 system appears
as part of the physical link.

The DCP supports the DIGITAL Data Communication
Message Protocol (DDCMP) for full-duplex transmis­
sion in point-to-point operation using serial synchro­
nous facilities. DDCMP provides error detection, error
correction, and physical link management capabilities.

A DECsystem-10 typically supports a network of front
ends and remote stations employing the TOPS-10
network native protocol. The DCP is an adjunct to that
network, providing communication with one or more
DECnet-11 M systems.

11
Support Services

DIGITAL offers comprehensive support services to help customers before,
during, and after system installation. DIGITAL's sales force is the primary
contact for all products and services.

The support DIGITAL provides customers is apparent from the first. Our
sales representatives work closely with customers. They study the application
with the customer and determine specific computing needs. Software and
hardware speCialists are available to supplement the sales rep's product
knowledge. These specialists, trained to design systems using DIG IT AL's
standard and special products, can be called in to answer specific questions.

Once the exact system requirements have been determined the sales rep
helps the customer select a system configuration. Site requirements such as
adequate floor space, electrical capacity, air conditioning, and humidity con­
trol are reviewed. Customers can choose among various Field Service and
Software Service maintenance plans to suit individual needs and budgets.

If the application is complex, the customer and DIGITAL's Software Service
organization can prepare a Customer Support Plan (CSP). The CSP can con­
sist of Software Product Services, Educational Services courses, hardware
maintenance requirements, and software consulting services. The CSP identi­
fies the customer's needs; the purposes, benefits, and details of the services
recommended; how the services will be delivered; and how much they will
cost.

Even before the DECsystem-10 arrives, customers can train their personnel
through DIGITAL's comprehensive educational programs. When a system is
purchased customers obtain training credits that they can apply to the cost of
courses.

When a system is delivered, DIGITAL's hardware Field Service and Software
Support organizations are on hand to ensure smooth installation. Specialists
install hardware and software and run tests to determine that the system has
been installed correctly and performs properly.

Following installation, DIGITAL's support organizations are available to help
with special needs that may arise both during and after the warranty period.

Installation
Upon system delivery DIGITAL's Field Service ac­
count representative schedules installation of the
hardware components. During installation Field
Service engineers supervise the uncrating and place­
ment of equipment, cable connection, and power-up of
components. They test the hardware by running a di­
agnostic package and, once hardware reliability is
confirmed, they coordinate with software support per­
sonnel to install and test the operating system.

Finally, DIGITAL Field Service and Software Services
complete forms that certify successful installation, and
the customer acknowledges system acceptance by
signing the Field Service Labor Accounting and
Reporting System form.

Software Services
DIGITAL's Software Services organization specialists
are committed to maintaining a high level of support
for TOPS-1 0 software. They have the knowledge and
experience necessary to analyze the user's needs and
to identify and deliver the DIGITAL services that will
help satisfy those needs. In addition to local software
specialists, backup support from regional and corpo­
rate levels is available when necessary. DIGITAL's to­
tal software resources and expertise are available to
support the TOPS-10 and its various dependent
products.

Software Warranty
TOPS-10 is a DIGITAL-supported software product. A
DIGITAL-supported software product is engineered
according to corporate quality standards, operates in
accordance with a Software Product Description
(SPD), and carries DIGITAL's commitment to provide

11-1

support services for the product. TOPS-10 is a
DIGITAL-installed product that must be installed by a
qualified DIGITAL representative to qualify for soft­
ware support.

DIGITAL-supported software products receive a 90-
day warranty period following installation. If, during the
90 days of warranty, a problem with the software is
encountered that DIGITAL determines to be caused
by a defect in the current unaltered release of the
product, the following remedial services are provided:

• If the software is inoperable, DIGITAL will apply a
temporary correction or make a reasonable attempt
to develop an emergency by-pass.

• DIG IT AL will help the customer prepare a Software
Performance Report (SPR). With an SPR, users
can report problems with, or suggest enhancements
to, DIGITAL's software or documentation.

After the initial purchase of a DIGITAL-supported
product license, additional copies may be purchased.
These can include support services or can be pur­
chased as a "License-to-Copy only," in which case
neither media nor support services are included.

TOPS-10 includes standard services as defined in the
TOPS-10 SPD. See your sales representative for
these details.

Software Product Services
After the 90-day warranty period two levels of
Software Product Services are available to provide
continued software support and maintenance. De­
signed to complement DIGITAL hardware services,
these Software Product Services offer the most com­
prehensive post-warranty support in the industry:

• Software Product Updates. This service is for cus­
tomers who install their own software. It includes
Software Updates on the user's choice of available

media and the most recent documentation. No sup­
port services are provided but are available upon
request.

• Self-Maintenance Service for Software. This con­
tractual service includes SPR forms, a subscription
to software product and documentation updates,
and a newsletter that provides up-to-date informa­
tion on the software product.

Professional Services
Whenever expert software assistance is needed,
DIGITAL's software consultants are available. These
software specialists are experienced designers and
writers of custom software who can tailor DIGITAL
software to specific needs. Their expertise can be ap­
plied to any phase of an application 'from analysis
through implementation.

Software specialist services are available on a resi­
dent or per-call basis:

• Resident service is for users who need full-time on­
site support. Resident consultants are particularly
useful in new complex installations or in critical,
long-term projects. Residents are available for a
minimum of six months; however, arrangements
can be made to extend the length of service to suit
individual needs.

• Per-call service is for customers with irregular or
infrequent consulting needs. Per-call (hourly) ser­
vices are ordered as needed and generally extend
from a few days to a few weeks.

You can learn more about DIGITAL's software ser­
vices by contacting your local DIGITAL sales office.

11-2

Educational Services
DIGITAL provides comprehensive educational pro­
grams to train users before, during, and after system
installation. Instruction in system management, opera­
tions, hardware, and software is by trained specialists
at DIGITAL's worldwide training centers. Special on­
site training and custom courses can also be
arranged.

Course Options
Courses fall into three general categories:

• Generic Computer Courses. These provide a tech­
nical foundation for personnel who have little com­
puter experience.

• Software Systems Courses. These are designed to
train users, programmers, and operators to effi­
ciently and knowledgeably use DIGITAL's operating
systems, languages, and utilities. Courses are avail­
able for both beginning and advanced users. The
student is assumed to have general computer and
programming knowledge.

• Hardware Courses. These are designed for custom­
ers who intend to service their own equipment or
want a general understanding of the components in
their system. Courses in general hardware familiar­
ization, hardware troubleshooting, and hardware
maintenance are offered.

A generic, software, or hardware course may be a
lecture/lab series, taught at DIGITAL Training Centers
on regularly scheduled bases, an on-site course avail­
able by arrangement, or a packaged course.

• On-site courses. Educational Services can conduct
group training courses at any convenient location,
such as a customer's office or a company's training
center. On-site instruction eliminates travel ex­
penses and allows DIGITAL instructors to empha­
size points of particular value to individual
applications and operations.

• Packaged Courses. Designed for students who
wish to learn computer fundamentals and TOPS-1 0
at a self-paced rate, these packaged courses are
portable, self-contained, and modular in format.
They are available either as audio/visual courses or
self-paced instruction (SPI) workbook courses.

Audiovisual (A/V) courses use a combination of
filmstrip/tape or videotape and workbooks. Among the
A/V courses offered are Introduction to Data
Communications and Introduction to Digital Logic.

Self-paced instruction courses use a workbook with
explanatory text, examples, and exercises. Among the
SPI courses available are DECsystem-10 DBMS
Concepts, DECsystem-l0 Operator Training, and
Programming in FORTRAN.

For users with special needs Educational Services
can create a course tailored to unique applications,
needs, and schedules. These can be completely new
or modifications of existing courses. Custom courses
can be conducted at a DIGITAL Training Center or at
a user's training center. Contact your sales represen­
tative for full details.

TOPS-10 Courses
DIGITAL Educational Services offers a comprehen­
sive software training program designed to address
the needs of all levels of TOPS-1 0 users. The courses
consist of both self-paced and lecture/lab courses that
stress practical job-relevant skills required by
TOPS-10 users, applications programmers, and sys­
tem programmers.

There are 11 TOPS-10 courses. Users' job require­
ments dictate course content, and students can
choose courses from the appropriate sequence.
Figure 11-1 is a course flowchart. The option to com­
bine lecture/lab and self-paced instruction courses
gives students the freedom to learn at their own
speeds, at their job sites, and to benefit from instructor
aid and the practical experience obtained in classroom
and laboratory sessions.

The following are brief descriptions of some of the
'JECsystem-10 courses shown in Figure 11-1.

OPERATOR

SYSTEM MANAGER

SYSTEM PROGRAMMER

ASSEMBLY LANGUAGE
APPLICATION
PROGRAMMER

COBOL APPLICATION
PROGRAMMER

CourMThle

Form8t

TOPS-10 User provides a DECsystem-10 software
and hardware overview and teaches students how to
use the program development features of the system.
Disk file organization, system utilities, command lan­
guage, and the batch system are covered.

TOPS-10 Operator teaches students operator duties
and the basic system procedures: startup, shutdown,
recovery, backup, and file restoration.

TOPS-10 Assembly Language Programming covers
the DECsystem-10 instruction set and the MACRO
Assembler. Students learn to write programs that use
monitor calls and the MACRO library and to use
Dynamic Debugging Technique.

TOPS-10 COBOL teaches how to write COBOL appli­
cations programs under the TOPS-10 operating
system.

TOPS-10 System Programming covers system con­
trols, the accounting package, and advanced system
calls.

TOPS-10 Applications Programming Techniques em­
phasizes the techniques that can be used to take ad­
vantage of system facilities with attention to the best
overall design of an application in the timesharing or
production environment provided by TOPS-10.

MR-S-1245-81

Figure 11-1
TOPS-10 Courses

11-3

TOPS-10 Monitor Structure teaches the structure and
the basic components and functions of the monitor
with emphasis on the batch system, command proces­
sor, and the monitor's allocation and manipulation of
system resources.

TOPS-10 Monitor Internals covers the monitor in
depth, beyond the structural level, for the programmer
responsible for monitor patching and problem detec­
tion. Module organization, monitor data base, and in­
ternal algorithms are stressed.

TOPS-10 Data Base Management System (DBMS)
gives managers, systems programmers, and applica­
tions programmers both the conceptual understanding
and programming skills necessary to implement
DBMS systems.

Hardware Services
DIGITAL's Field Service organization offers a range of
post-warranty hardware maintenance services. Over
10,000 Field Service personnel in more than 400 loca­
tions worldwide are ready to provide the support
needed for continuous productivity.

DECservice is DIGITAL's most comprehensive on-site
maintenance plan. It is designed for customers who
require uninterrupted system performance.
DECservice includes:

• Four-hour response time

• Continuous-effort remedial service

• Priority-problem escalation

• Scheduled preventive maintenance

11-4

• Parts, labor, and materials

• Installation of the latest engineering change orders

• Assigned service representative

• Comprehensive site management guide

Field Service's other on-site maintenance plan is
called Basic Service. Designed for customers who do
not require a fixed response time and continuous
remedial efforts, Basic Service provides:

• Next day response

• Remedial service during coverage hours

• Priority-problem escalation

• Preventive maintenance during coverage hours

• Parts, labor, and materials

• Installation of the latest engineering change orders

• Assigned service representative

• Comprehensive site management guide

Although standard coverage for both on-site service
plans is eight hours a day, five days a week, custom­
ers can opt to extend their service cover age to 12, 16,
or 24 hours, including weekends and holidays.

Hardware maintenance on a per-call time-and­
materials basis is also available.

More information is available on DIGITAL's Field Ser­
vice hardware maintenance offerings from your local
DIGITAL sales representative.

Customer Financing
To simplify the financial considerations involved in ac­
quiring a new computer, DIGITAL provides leasing
and financial counseling. The Customer Finance
Department can help customers acquire a DIGITAL
system through a lease, conditional sale, or similar
financing agreement, rather than an outright cash
purchase.

For commercial businesses or private organizations,
DIGITAL has developed a program known as
DIGITAL Leasing with the U.S. Leasing Corporation of
San Francisco. DIGITAL Leasing, a division of U.S.
Leasing, is committed solely to financing DIGITAL
computers. Representatives are located in or near
many of the DIGITAL District Sales Offices.

Federal, state, and local government agencies have
special contractual needs and, in some cases, can
benefit from special tax privileges. For example, a
state or municipal agency qualifies for special interest
rates on Conditional Sales Agreements, rates that are
significantly lower than those charged to commercial
customers. The interest income is free from federal
and, in some cases, state income taxes.

The following financing is available: Full Payout
Lease, Conditional Sales Agreement, and Federal
Government Lease to Ownership Agreement.

• Full Payout Lease - This is used primarily by com­
mercial customers. It involves a noncancelable
three- to five-year term, usually with a 10 percent
purchase option at the end. No down payment is
required, and title remains with the lessor. Flexible
lease payment schedules can be tailored to specific
needs.

• Conditional Sales Agreement - This type of financ­
ing is used primarily by state and local govern­
ments. It involves a noncancelable one- to five-year
term. Title passes to the customer but DIGITAL re­
tainsa security interest. The customer owns the
equipment free and clear at the end of thE~ term.
Fiscal funding provisions are available for state and
local governments.

• Federal Government Lease to Ownership
Agreement - This is available only to approved
federal government agencies. It involves a one- to
five-year term, cancelable at the end of each fiscal
year for nonappropriation of funds. Ownership
passes to the customer at the end of the term.

DIGITAL's Customer Financing group can provide fi­
nancial counseling to help you decide which arrange­
ment is best for you. For more information, contact
your local DIGITAL sales office.

Accessories and Supplies Group
DIGITAL's Accessories and Supplies Group (A&SG)
maintains Accessories and Supplies Centers (ASCs)
and offers direct factory ordering, the Direct Sales
Catalog, and worldwide support for their products.

ASCs are full-service centers established to fulfill the
needs of DIGITAL customers in major metropolitan ar­
eas. The ASCs hold a local inventory of the most re­
quested accessories, supplies, documentation, and
add-on products for fast delivery. Full order process­
ing capability provides access to A&SG's central in­
ventory in Nashua, New Hampshire. ASCs provide
first-class service and convenience to DIGITAL's
customers.

A&SG maintains a toll-free telephone number for cus­
tomers to use when ordering accessories and sup­
plies. The majority of products are shipped within 48
hours of receipt of order.

A&SG's Direct Sales Catalog offers a broad range of
computer accessory and supply items. These include
small computer systems and their complementary op­
tions, accessories, and operating supplies. The Direct
Sales Catalog also features some DIGITAL hardware
options such as DECwriters, microcomputers, and

11-5

their associated options. Hardware and software do­
cumentation is also offered.

A&SG has a team of worldwide specialists and busi­
ness managers to support sales. This sales force is
located in the United States, Europe, and the General
International Area (GIA).

Computer Supplies
DIGITAL's Computer Supplies group maintains a com­
plete line of supplies specifically designed for use with
DIGITAL systems. These items facilitate reliable and
efficient system operation and include:

• A family of magnetic media such as disk cartridges,
disk packs, and floppy diskettes

• Self-contained disk cartridge cleaners for fast and
efficient cleaning of front- or top-loading magnetic
disk cartridges

• Word processing supplies, such as nylon and mylar
ribbons, a selection of 11 print wheels, and filter
screens for video terminals

• Ribbons for DIGITAL's DECwriter and DECprinter
terminals

The Computer Supplies group also offers computer
cabinetry for maintaining supplies and protecting mag­
netic media not in use. Cabinet interiors can be cus­
tomized with various options to meet individual needs.
Options can be conveniently rearranged or changed at
any time to adapt to future requirements. Also avail­
able are paper baskets, work shelves, terminal tables,
tape racks, paper tape trays, and multipurpose
binders.

Relying on DIGITAL for computing needs means a
savings in time, money, and paperwork. Contact your
sales rep for further information.

Customer Spares
Customer Spares is dedicated to supporting custom­
ers who maintain their own computers. Customer
Spares is organized into three distinct businesses:
self-maintenance products (hardware and documenta­
tion), system accessories, and low-volume LSI-11
products. System accessories include products
geared to the hardware builder. They allow easy ex­
pansion and re-configuration of DIGITAL systems and
options.

Customer Spares sells modules, subassemblies, com­
ponents, tools, and test equipment. Related services
involve providing assistance in selecting the proper
parts and expediting delivery during emergency
situations.

OECUS
DECUS, Digital Equipment Computer Users Society,

is one of the largest and most active user groups in
the computer industry. It is a not-for-profit association
supported and administered by DIGITAL, but actively
controlled by individuals who have purchased, leased,
ordered, or used a DIGITAL computer or who have a
bona fide interest in DECUS. Membership is free and
voluntary.

The goals of DECUS are to:

• Advance the art of computation through mutual edu­
cation and the exchange of ideas and information

• Establish standards and provide channels that ease
the exchange of computer programs

• Provide feedback to DIGITAL on hardware and soft­
ware needs

• Advance the effective use of DIGITAL computers,
peripherals, and software by promoting the inter­
change of information

DECUS headquarters, located in Marlborough,
Massachusetts, administers all international policies
and activities. DECUS is subdivided into four
chapters:

DECUS AUSTRALIAN CHAPTER (Australia, Brunei,
New Zealand, Malaysia, Singapore, Indonesia, PNG):

DECUS Australia
P.O. Box 384
Chatswood
NSW 2067
Australia

DECUS EUROPEAN HEADQUARTERS (Europe,
Middle East, North Africa, Eastern Europe):

DECUS Europe
P.O. Box 510
12, Av. Des Morgines
CH-1213 Petit-Lancy/GE
Switzerland

DECUS CANADIAN CHAPTER:

DECUS Canada
P.O. Box 13000
Kanata, Ontario Canada

11-6

DECUS U.S. CHAPTER (for U.S. and all others):

DECUS International Headquarters
Digital Equipment Corporation
MR2-3/E55
One Iron Way
Marlborough, MA 01752 U.S.A.

To further the goals of the society, DECUS serves its
members by holding symposia; maintaining a program
library; publishing an association newsletter, technical
newsletters and books; and supporting a number of
special user groups for special interests and locations.

• Symposia: These are regularly scheduled meetings
held in each of the four chapters. They provide a
forum in which users of DIGITAL products can meet
with other users and with DIGITAL management,
engineering, and support personnel. Symposia give
users an opportunity to participate in DIGITAL prod­
uct workshops and product planning feedback ses­
sions. Many of the technical papers and
presentations from each symposium are published
as a book, the DECUS Proceedings. Copies of the
Proceedings are supplied to all symposia attendees
and may be purchased by any DECUS member.

• Program Library: A major activity of DECUS is the
Program Library. It contains over 1700 active soft­
ware packages written and submitted by users. A
wide range of software is offered including lan­
guages, editors, numerical functions, utilities, dis­
play routines, games, and other types of application
software. Library catalogs are available for the
DECsystem-10. Catalogs are updated yearly and
contain program descriptions and ordering informa­
tion. The programs are available at nominal service
charges that cover the cost of reproduction and
media.

• Association Newsletter: Each DECUS chapter publ­
ishes and distributes to all chapter members a
newsletter of general DECUS news.

• Special Interest Groups: The focus of these groups
is on operating systems, languages, processors,
and applications. Local User Groups, National User
Groups, and Regional User Groups, which are
formed basically by geographical proximity, may
also share common specific interests. Many of
these subgroups also publish newsletters.

You can obtain a membership form for DECUS by
contacting your sales rep or the appropriate chapter
office.

The
Glossary

Absolute virtual address A fixed location in user
virtual address space that cannot be relocated by the
software. However, it can be translated to a physical
address by the hardware. For example, the high­
speed accumulators on TOPS-10 occupy locations 0
through 17(8) in the user's virtual address space. All
modules that reference the accumulators must refer­
ence these locations. Thus, the addresses 0 through
17(8) are absolute virtual addresses.

Access date The date on which a file on disk was
last read or written. If a file has not been read or writ­
ten since it was created, the creation date and the
access date are the same. The access date is kept in
the Retrieval Information Block (RIB) for the file.

Access privileges Attributes of a file that specify
the class of users allowed to access the file and the
type of access they are allowed.

Access table The table stored in the monitor that
reflects the status of all files open for reading or writing
in addition to the status ot those files recent'y closed.
This information is kept in the monitor in order to de­
crease the time needed to access the files.

Accumulator One of the registers and associated
equipment in the arithmetic unit in which data can be
placed while it is being examined or manipulated (i.e.,
the 16 high-speed registers at address locations 0
through 17(8). The index registers are a subset of the
accumulators 1 through 17.

Address
1. An identification represented by a name, label, or

number for a register, a location in storage, or any
other data source or destination in memory or on
an addressable storage device.

2. The part of an instruction that specifies the loca-
tion of an operand of the instruction.

Address mapping The assignment of user virtual
address space to the physical address space in com­
puter memory. This is automatically performed by the
TOPS-10 monitor and is completely invisible to user
programs.

Alphanumeric The characters which include the let­
ters of the alphabet (A through Z), and the numerals (0
through 9).

Arithmetic unit The portion of the central process­
ing unit in which arithmetic and logical operations are
performed.

ASCII code American Standard Code for
Information Interchange. A 7-bit code in which textual
information is recorded. The ASCII code can repre­
sent 128 distinct characters. These characters are the
upper and lower case letters, numbers, common

G-1

punctuation marks, and special control characters.

Assembly language The machine-oriented sym­
bolic programming language specific to a given com­
puting system. The assembly language for TOPS-10
is MACRO.

Asynchronous
1. Pertaining to the procedure by which the hardware

can begin a second operation before the first oper­
ation is completed.

2. Pertaining to the method of data transmission in
which each character is sent with its own syn­
chronizing information and with no fixed time be­
tween consecutive characters.

Baud A unit of signaling speed equal to the number
of discrete conditions or signal events per second.

Binary code A code that uses two distinct charac­
ters. Usually these characters are 0 and 1.

Bit A binary digit (i.e., 0 or 1) that usually refers to
the smallest unit of information storage, which can be
on or off (i.e., 1 or 0). A word on the TOPS-10 has 36
bits.

Block A set of records, words, characters, or digits
handled as a unit. On the TOPS-10, a 128-word unit
of disk storage allocated by hardware and software;
128 words are always written, adding zeroes as nec­
essary, although fewer than 128 words can be read.

Bootstrap A routine or device designed to bring it­
self into a desired state by means of its own action,
e.g., a machine routine whose first instructions are
sufficient to bring the rest of itself into the computer
from an input device.

Breakpoint A location at which program operation is
suspended in order to examine partial results. Break­
points are used in the debugging process.

Buffer A device or area used temporarily to hold in­
formation being transmitted between two processes,
such as external and internal storage devices or 1/0
devices and internal high-speed storage. A buffer is
often a special register or a deSignated area of internal
storage.

Buffer pointer A position indicator that is located
between two characters in an editing buffer, before the
first character in the buffer, or after the last character
in the buffer.

Byte Any contiguous set of bits within a word.

Call To transfer control to a specified closed
subroutine.

Calling sequence A specified arrangement of in­
structions, pOinters, and data necessary to pass

parameters and control to and return from a given
subroutine.

Card On the TOPS-1 0, a punched card with 80 ver­
tical columns, each containing 12 vertical rows. A card
can also be a unit of computer circuitry.

Card column One of the vertical lines of 12 punch­
ing positions on a punched card.

Card field A fixed number of consecutive card col­
umns assigned to a unit of information.

Card hopper The tray on a card processing ma­
chine that holds the cards to be processed and makes
them available to the card feed mechanism.

Card row One of the horizontal lines of punching
positions on a punched card. A row is 80 columns
long.

Card stacker The tray on a card processing ma­
chine that receives processed cards.

Central processing unit (CPU) The portion of the
computer that contains the arithmetic and logical facili­
ties, control circuits, and basic 1/0 and memory inter­
faces. There can be more than one CPU in a
computing system.

Central site The location of the central computer;
used in conjunction with remote communications to
mean the location of the TOPS-10 central processor,
as distinguished from the location of the remote
station.

Channel
1. A path along which signals can be sent; e.g., out­

put channel.
2. A portion of the TOPS-10 which can overlap 1/0

transmission while computations proceed simulta­
neously (e.g., data channel).

Character One symbol of a set of elementary sym­
bols, such as those corresponding to the keys on a
typewriter. The symbols usually include the decimal
digits 0 through 9, the letters A through Z, punctuation
marks, operation symbols, and any other special sym­
bols which a computer may read, store, or write.

Clear To erase the contents of a location, a block of
memory, or a mass storage device by replacing the
contents with blanks or zeroes.

Command The part of an instruction that causes the
computer to execute a specified operation.

Command List Specifies the area in your area to be
read or written when performing dump 1/0.

Communication link The physical means of con­
necting one device to another for the purpose of

G-2

transmitting and receiving data.

Communication Among Jobs In TOPS-20, data
transmitted and received from and by accomplished
by Inter-Process Communication Facility.

Computer operator A person who manipulates the
controls of a computer and performs all operational
functions that are required in a computing system,
such as adjusting parameters which affect the opera­
tion of the system, loading a tape transport, placing
cards in the input hopper, and removing listings from
the line printer.

Computer program A series of instructions or state­
ments prepared to achieve a specific result and in­
tended for execution by a computer. A program can be
in either the binary form in which it can be directly
executed by a computer, or a symbolic form which
must be compiled or assembled before it can be
executed.

Concatenation Joining two strings of characters to
produce a longer string, often used to create symbols
in macro definitions.

Console The part of a computer used by the opera­
tor to determine the status of, and to control the opera­
tion of, the computer; also informally used to refer to
the user's terminal.

Context switching Saving sufficient hardware and
software information of a process so that it may be
continued at a later time, and the restoring of similar
information relevant to another process. A common
example of context switching is the temporary suspen­
sion of a user program so that the monitor can exe­
cute a function.

Control character A character whose purpose is to
control an action, such as line spacing on the line
printer, rather than to pass data to a program. An
ASCII control character has an octal representation of
0-37. It is typed by holding down the CTRL key on the
terminal while striking a character key. It can be
punched on a card via the multipunch key.

Controller The device or portion of a device which
controls the operation of connected units. Some con­
trollers can initiate simultaneous positioning com­
mands to some of its units and can then perform a
transfer for one of its units.

Counter A device, such as a register or storage lo­
cation, used to represent the number of occurrences
of a certain event. See program counter.

CPU See central processing unit.

Create To open, write, and close a file for the first
time. Only one user at a time can create a file with a

given name and extension in the same directory or
subdirectory of a file structure.

Customer A customer of Digital Equipment
Corporation who has purchased a TOPS-10, as dis­
tinguished from a user at a terminal who may be pur­
chasing time from a customer.

Cylinder The hardware-defined region of consecu­
tive logical disk blocks which can be read or written
without repositioning. A cylinder usually consists of
tracks in the same physical position on different disk
surfaces.

Data A general term used to denote any or all infor­
mation (facts, numbers, letters, and symbols that refer
to or describe an object, idea, condition, or situation).
It represents basic elements of information which can
be processed by a computer.

Data channel The device which passes data be­
tween the memory system and a controller.

DDT The Dynamic Debugging Technique program;
used for on-line checkout, testing, examination, modi­
fication, and program composition of object programs.

Deadlock Two or more jobs waiting for each other to
complete use of a resource, but neither of the jobs can
obtain a lock on the resource it needs for completion.

Debug To detect, locate, and correct any mistakes
in a computer program.

DECtape A convenient, pocket-sized reel O'f random
access magnetic tape developed by Digital Equipment
Corporation. A standard reel consists of 578 (decimal)
blocks, each capable of storing 128 (decimal) words of
data.

Default directory The directory in which the Monitor
searches when a directory specification has not been
given by the user. Typically, this is the UFD (user-file
directory) corresponding to the user's logged-in
project-programmer number but it may be another
UFD or a SFD (sub-file directory).

Demand paging The operation in which all pages of
a program are not resident in memory during execu­
tion. References to nonresident pages initiate the ac­
tions of moving in additional pages or replacing
inactive pages.

Device routines Routines that perform I/O for spe­
cific hardware devices. They usually translate logical
block numbers to physical addresses for those de­
vices that associate addresses with data. These
routines also handle error recovery and ensure ease
of programming through device independence.

Diagnostic The detection and isolation of a hard­
ware malfunction or bug. A program which tests the

G-3

hardware and isolates any faults.

Digit A symbol that represents one of the nonnega­
tive integers smaller than the base of the system. For
example, in the decimal system, a digit is one of the
characters from 0 to 9.

Direct address An address that specifies the loca­
tion of an operand. Contrast with indirect address.

Directory A file which contains the names and
pointers to other files on the device. The MFD, UFDs,
and SFDs are directory files. The MFD is the directory
containing all the UFDs. The UFD is the directory con­
taining the files existing in a given project-programmer
number area. The SFD is a directory pOinted to by a
UFD or a higher-level SFD. The SFDs exist as files
under the UFD. The DIRECT monitor command lists a
directory.

Directory device A storage retrieval device, such as
disk or DECtape, which contains information describ­
ing the names of files and the layout of stored data
(programs and other files). A directory device is ran­
domlyaccessible.

Directory path (path) The ordered list of directory
names, starting with a UFD name, which uniquely
specifies a directory without regard to a file structure.
A file structure name, a path, and a filename and ex­
tension are needed to uniquely identify a file in the
system.

Disk A form of mass storage device in which infor­
mation is stored on rotating magnetic platters. On
TOPS-10, a disk is a directory device.

Disk address A logical or relative address. Refer­
ences to disk addresses do not refer to any physical
addressing scheme. The basic addressable unit is a
200 (octal) 36-bit word block.

Double precision The use of two computer words
to represent a number.
Dump A listing of variables and their values, or a
listing of the values of locations in memory.

Echoing A method of data transmission in which the
received data is returned to the sending end.

Edit To modify the content or format of a program or
data file (e.g., to insert or delete characters).

Effective address The actual address used; that is,
the specified address, as modified by any indexing or
indirect addressing rules.

Enqueue/Dequeue A facility that ensures that re­
sources (e.g., files) are shared correctly.

Entry pOint A pOint in a subroutine to which control
is transferred when that subroutine is called.

Error Interception The activity of the monitor in an
error condition. When an error occurs, the monitor in­
tercepts control of the program, examines location
.JBINT, and transfers control to an error intercepting
routine.

Execute To interpret an instruction or command and
perform the indicated operation(s).

Executive mode A central processor mode charac­
terized by the lack of memory protection and reloca­
tion and by the normal execution of all defined
operation codes.

External symbol A global symbol which is refer­
enced in one module but defined in another module.
The EXTERN statement in MACRO-10 is used to de­
clare a symbol external. A subroutine name refer­
enced in a CALL statement in a FORTRAN module is
automatically declared external.

File An ordered collection of characters or 36-bit
words containing computer instructions and/or data. A
file is stored on a device, such as disk or magnetic
tape, and can be of any length, limited only by the
available space on the device and the user's maxi­
mum space allotment on that device. A file is uniquely
identified in the system by a file structure name or
directory name, a directory path, and a filename and
extension.

File directory See directory.

File-structure device A device on which data is
given names and arranged into files. The device also
contains directories of these names. It is usually syn­
onymous with directory device.

Filename One to six alphanumeric characters cho­
sen by the user to identify a file.

Filename extension One to three alphanumeric
characters usually chosen by the program to describe
the class of information in a file. The extension is sep­
arated from the filename by a period.

File specification A list of identifiers which uniquely
specifies a particular file. A complete file specification
consists of: the name of the device on which the file is
stored, the name of the file including its extension, and
the name of the directory in which the file is contained.
File specifications are ignored for nonfile-oriented de­
vices, such as cards and paper tape.

File specification area The area of core in which
SCAN stores the result of scanning the user's file
specification. This instructs WILD as to the files to
select.

File status The status of a file set in the file status
word.

G-4

File structure The logical arrangement of blocks
(which are normally 128 words long) on one or more
physical I/O device units of the same type to form a
collection of named files. It is the smallest removable
component in the file system and has its own MFD.

File structure abbreviation An abbreviation of one
or more file structures. This refers to all those struc­
tures in the ALL search list whose names match the
abbreviation. For example, if there were structures
"PRIV."and "PACK:", "P" would refer to both struc­
tures, but "PR:" would mean just "PRIV:".

File structure owner The user whose project­
programmer number is associated with the file struc­
ture in the administrative file STRLST.SYS. The
REACT program is used to enter or delete this project­
programmer number or any of the other information
that is contained in an STRLST.SYS entry.

Flag An indicator that signals the occurrence of
some condition, such as the end of a word.

Global symbol A symbol that is accessible to mod­
ules other than the one in which it is defined. The
value of a global symbol is placed in the loader's
global symbol table when the module containing the
symbol definition is loaded.

Group A contiguous set of disk clusters allocated as
a single unit of storage and described by a single re­
trieval pointer.

Half word A contiguous sequence of bits or charac­
ters which comprises half of a computer word and may
be addressed as a unit. On the TOPS-10, bits 0
through 17 comprise the left half word and bits 18
through 35, the right half word. Each half word is 18
bits long.

Hardware Physical equipment of the computer (e.g.,
magnetic, mechanical, and electronic devices), as
contrasted with the computer program (software) or
method of use.

High segment That portion of the user's addressing
space, usually beginning at virtual address 400000,
which generally is used to contain pure code that can
be shared by other users. This segment is usually
write-protected in order to protect its contents. The
user can place information into a high segment with
the TWOSEG pseudo-op in MACRO-10. Higher-level
languages, such as COBOL and FORTRAN, also
have provisions for loading pure code in the high
segment.

Home block The block written twice on every unit
which identifies the file structure the unit belongs to
and its position on the file structure. This block speci­
fies all the parameters of the file structure along with

the location of the MFD. The home block appears in
the HOME.SYS file.

Host Site See central site.

I/O An abbreviation for input or output, or both; per­
taining to all equipment and activity that transfers in­
formation into or out of a computer.

Idle time That part of uptime in which no job could
run because all jobs were HALTed or waiting for exter­
nal action such as I/O.

Immediate mode addressing The interpretation of
certain instructions in which the effective address of
the instruction is used as the value of an operand
(rather than the address of an operand).

Indexed address An address that is formed by add­
ing the content of an index register to the content of an
address field prior to or during the execution of a com­
puter instruction.

Index register A register whose contents may be
added to the operand address prior to or during the
execution of a computer instruction. On the TOPS-1 0,
accumulators 1 through 17 (octal) may be used as
index registers (accumulator 0 may not be used as
one).

Indirect address An address which indicates a
storage location where the address of the referenced
operand (or another indirect address) is to be found.
Contrast with direct address.

Initialize To set counters, switches, or addresses to
zero or other starting values at prescribed points in the
execution of a computer routine, particularly in prepa­
ration for reexecution of a sequence of code.

Input
1. Pertaining to a device, process, or channel in-

volved in the acquisition of data.
2. Information that is read by a computer.

Instruction A bit pattern which, when interpreted by
the computer, directs the computer to execute a spe­
cific operation. An instruction generally contains the
values or locations of its operands.

Interleaving The process of configuring the memory
addressing so that consecutive addresses are not
stored in the same memory module. This allows the
possibility of increasing memory speed by overlapping
part of the operation of different memory modules.

Internal storage Addressable high speed storage
directly controlled by the central processing unit.

Interrupt A signal which, when activated, causes a
transfer of control to a specific location in memory

G-5

thereby breaking the normal flow of control of the rou­
tine being executed. An interrupt is caused by an ex­
ternal event such as a done condition in a peripheral.
It is distinguished from a trap which is caused by the
execution of a processor instruction.

IPCF The Inter-Process Communications Facility,
which allows communication among jobs and system
processes.
Job The entire sequence of steps from beginning to
end, that the user initiates from his interactive terminal
or batch control file or that the operator initiates from
his operator's console. Thus, it is a specific group of
steps presented as a unit of work for the computer. A
job usually includes all necessary computer programs,
files, linkages and instructions to the operating
system.

Job Data Area (JOBDAT) The first 140 octal loca­
tions of a user's virtual address space. This area pro­
vides storage for certain data items used by both the
Monitor and the user's program.

Label A symbolic name used to identify a statement
or an item of data in a program.

Leader A blank section of tape at the beginning of a
reel of magnetic tape or the beginning or end of a
stack of paper tape.

Library A file containing one or more relocatable bi­
nary modules which may be loaded in Library Search
Mode. MAKLIB is a system utility program which en­
ables users to merge and edit a collection of relocat­
able binary modules into a library file. PIP can also be
used to merge relocatable binary modules into a li­
brary, but it has no facilities for editing libraries.

Library search mode The mode in which a module
(one of many in a library) is loaded only if one or more
of its declared entry pOints satisfy an unresolved
global request.

Library search symbol (entry symbol) A list of
symbols that are matched against unresolved symbols
in order to load the appropriate modules. This list is
used only in library search mode. A library search
symbol is defined by an ENTRY statement in
MACRO-10.

Line A string of characters terminated with a vertical
tab, form feed, or line feed. The terminator belongs to
the line that it terminates.

Line feed
1. The operation that prepares for the next character

to be printed or displayed at the same (current)
position on the next line on a terminal or line
printer.

2. The ASCII character with the octal code 012.

Line printer An electro-mechanical computer pe­
ripheral which accepts a line of characters from the
computer at a high speed and then prints the entire
line in one operation.

Link To combine independently-translated modules
into one module in which all relocation of addresses
has been performed relative to that module and all
external references to symbols have been resolved
based on the definition of internal symbols.

Local peripherals The I/O devices and other data
processing equipment and memory, excluding the
central processor and memory, located at the central
site.

Lock An association between a job and a resource.

Locked job A job in core that is never a candidate
for swapping or shuffling.

Logical device name An alphanumeric name you
choose to represent a physical device. This name can
be used synonymously with the physical device name
in all references to the device. Logical device names
allow device independence in that the most conven­
ient physical device can then be associated with the
logical name at run time. Logical names take preced­
ence over physical names. With the exception of
disks, only one logical name can be associated with a
physical name.

Logical record A collection of related items stored
together. It is possible to have:
• Several logical records stored in a single physical

record.
• Each logical record stored in a single physical

record.
• Each logical record occupy one or more physical

records.
• Logical records span several physical records, and

at the same time, have more than one logical record
in a single physical record.

LOGIN The system program by which the system
users gain access to the computing system.

Low segment The segment of user virtual address
space beginning at zero. It contains the Job Data Area
and 1/0 buffers. The length of the low segment is
stored in location .JBREL of the Job Data Area. When
writing two-segment programs, it is advisable to place
data locations and impure code in the low segment.

MACRO The symbolic assembly program on the
TOPS-10.

Macro A body of text which is substituted for its
name whenever its name is invoked.

Magnetic tape A tape with a magnetic surface on

G-6

which data can be stored by magnetizing selective
portions of the surface.

Mask
1. A combination of bits that is used to control the

retention or elimination of portions of any word,
character, or byte in memory.

2. On half-duplex circuits, the characters typed on
the terminal to make the password unreadable.

Master file directory (MFD) The file created at re­
fresh time which contains the name of all user file
directories including itself.

Memory protection A scheme for preventing read
andlor write access to certain areas of storage.

Metering A technique used to perform performance
analysis.

Mnemonic symbol A symbolic representation for a
computer instruction or other numeric item. All defined
monitor symbols are listed in UUOSYM.MAC.

Mode One of ten modes that can be used when per­
forming 1/0.

MONGEN The monitor generator dialogue program
that enables the system programmer to define the
hardware configuration of his individual installation
and the set of software options that he wishes to se­
lect for his system.

MONGEN time The time at which the monitor soft­
ware configuration is being defined or changed. The
monitor must then be reloaded with the loader.

Monitor
1. The collection of programs which schedules and

controls the operation of user and system pro­
grams, performs overlapped 1/0, provides context
switching, and allocates resources so that the
computer's time is efficiently used.

2. The operating system.

Monitor command An instruction to the monitor to
perform an operation.

Mount count The count of the number of jobs which
have a file structure in their active or passive search
lists (plus 1 if the structure is in the system search list).

Multiprocessing Simultaneous execution of two or
more computer programs (Le., processes) by two or
more processors.

Multiprogramming A technique that allows schedu­
ling in such a way that more than one job is in an
executable state at anyone time. TOPS-10 is a mul­
tiprogramming operating system in which there are
two or more independent instruction streams that are

simultaneously active but are not necessarily simulta­
neously executed.

Named file A named ordered collection of 36-bit
words (instructions andlor data) whose length is lim­
ited only by the available space on the device and the
user's maximum space allotment on that device.

Nondirectory device A device such as a magnetic
tape or paper tape, on the TOPS-10 which does not
contain a file describing the names and layout of data
files.

Octal
1. Pertaining to a characteristic or property in which

there are eight possibilities.
2. Pertaining to the number system with a. radix of

eight.

Operand
1 . The data which is accessed when an operation

(either a machine instruction or a higher level op­
eration) is executed.

2. The symbolic expression representing that data or
the location in which that data is stored, for exam­
ple, the input data or arguments of a pseudo-op or
macro instruction.

Operating system The collection of programs that
administer the operation of the computing system by
scheduling and controlling the operation of user and
system programs, performing 1/0 and various utility
functions, and allocating resources for efficient use of
the hardware. See also monitor.

OPSER The OPerator SERvice program that facili­
tates multiple job control from a single terminal by al­
lowing the operator or user to initiate several jobs from
his terminal.

Output
1 . Pertaining to a device, process, or channel in­

volved in an output process (i.e., the process of
transferring data from memory to a peripheral
device).

2. The data that has been transferred from memory
to a medium readable by a person.

Packet A group of words transmitted via IPCF to
and from jobs andlor system processes.

Pack 10 A 6-character SIXBIT name or number used
to uniquely identify a disk pack.

Page
1. Any number of lines terminated with a form feed

character.
2. The smallest mappable unit of core storage. On

the KL 10 processor, a page is 512 continuous
words in core starting on boundaries which are

G-7

even multiples of 512. It is also the smallest allo­
catable unit of memory. KL 10 operations allow
programs to be composed of up to 512 pages
scattered within core.

3. To selectively remove parts of a user's program
from main memory.

Paper tape A tape on which data is represented by
specific patterns of punched holes.

Parameter A variable that is given a constant value
for a specific purpose or process, for example, an in­
put argument to a subroutine or command, or a value
specifically assigned to a symbol in an assembly in
order to control exactly what code is assembled.

Parity bit A binary digit appended to a group of bits
to make the sum of all the bits always odd (for odd
parity) or always even (for even parity).

Parity check A check that tests whether the number
of ones or zeros in an array of binary digits is correct.
This check helps ensure that the data read has not
been unintentionally altered.

Password The character string assigned to a user,
known only by the user, the installation administration,
and the monitor system. The password is used to ver­
ify that a user is entitled to run a job under a specific
user number (project-programmer number).

PC See program counter.

Peripheral equipment Any unit of equipment, dis­
tinct from the central processing unit, the console, and
the memory, that can provide input to, or accept out­
put from, the computer.

PhYSical address space A set of separate memory
locations where information can actually be stored
(Le., MOS memory) for the purpose of program execu­
tion. Virtual memory addresses may be mapped, relo­
cated, or translated to produce a final memory
address which is sent over the memory bus to hard­
ware memory units. This final address is the physical
address and is 22 bits long on the TOPS-10.

PI See priority interrupt.

PIO A process' packet identifier when using the
Inter-Process Communication Facility.

Pointer
1. A location or register containing an address rather

than data. A pointer may be used in indirect ad­
dressing or in indexing.

2. An instruction indicating the address, position, and
length of a byte of information (Le., a byte pointer).

Priority interrupt An interrupt that usurps control of
the computer from the program or monitor and jumps

to an interrupt service routine if its priority is higher
than the interrupt currently being serviced.

Process A collection of segments that perform a
particular task. A hardware state is associated with a
process: a virtual address space, a processor state, a
stack, etc.

Program
1. The complete plan for the solution of a problem,

more specifically the complete sequence of ma­
chine instructions and routines necessary to solve
a problem.

2. A collection of routines which have been linked
and loaded to produce a saved file or a core im­
age. These routines typically consist of a main
program and a set of subroutines, some of which
may have come from a library.

Program counter (PC) A register that contains the
address from which the next instruction to be exe­
cuted is fetched. At the beginning of each instruction
on the TOPS-10, the PC normally contains an ad­
dress one greater than the location of the previous
instruction.

Programmed operators Instructions which, instead
of performing a hardware operation, cause a jump into
the monitor system or the user area at a predeter­
mined point and perform a software operation. The
monitor (or special user code) interprets these entries
as commands from the user program to perform spec­
ified operations.

Program origin The location assigned by LINK to
relocatable zero of a program.

Program trap One of the nonhardwired operation
codes which, when decoded by the processor, causes
the next instruction to be executed from a specified
address.

Project-programmer number Two octal numbers,
separated by commas, which, when considered as a
unit, identify the user and his file storage area on a file
structure.

Protected location
1. A storage location which cannot be accessed in a

certain context. For example, a write-protected lo­
cation cannot be written into.

2. A storage location reserved for special purposes
in which data cannot be stored without undergoing
a screening procedure to establish suitability for
storage therein.

Protection address The maximum relative address
that the user can reference.

Protection Code Each file has a protection code

G-8

that indicates who may and may not access the file.

Pseudo-op An operation that is not part of the com­
puter's operation repertoire as realized by hardware;
hence, an extension of the set of machine operations.
In MACRO, pseudo-ops are directions for assembly
operations.

Public disk pack A disk pack belonging to the
storage pool and whose storage is available to all
users who have quotas on it.

Quantum time The run time given to each job when
it is assigned to run.

Queue A list of items waiting to be scheduled or pro­
cessed according to system, operator, or user­
assigned priorities. Examples: Batch input queue,
spooling queues, monitor scheduling queues.

Random access A process having the characteris­
tic that the access time is effectively independent of
the location of the data.

Read Input data from a file.

Record A collection of adjacent related items of data
treated as a logical unit.

Record gap An area on a data medium between
consecutive records. It is sometimes used to indicate
the end of a block or record.

Reentrant program A program consisting of shar­
able code which can have several simultaneously in­
dependent users.

Relative address The address before hardware or
software relocation is added.

Relocatable address An address within a module
which is specified as an offset from the first location in
that module.
Relocate
1. To move a routine from one portion of storage to

another and to adjust the necessary address refer­
ences so that the routine can be executed in its
new location.

2. To convert a relocatable binary module to an ab-
solute binary module.

Remote access Pertaining to communication with a
data processing facility by one or more stations that
are distant from that facility.

Remote peripherals The I/O devices and other data
processing equipment, located at the site of the re­
mote Batch terminal.

Resource A entity within the system. The actual def­
inition of a resource is defined by the job using that
resource, not by the system.

Response time The time between the generation of
an inquiry or request and the receipt of the response
or the accomplishment of the requested action.

Routine A set of instructions and data for performing
one or more specific functions.

Run To transfer a save file from a device into mem­
ory and to begin execution.

Secondary storage Low speed magnetic storage
such as disks or drums.

Sector A physical portion of a mass storage device.

Segment An absolute Control Section. A logical col­
lection of data, either program data or code, that is the
building block of a program. The monitor keeps a seg­
ment in core and/or on the swapping device.

Service routine a routine in general support of the
operation of a computer (e"g., an input-output, diag­
nostic, or monitoring routine).

SFD (sub-file directory) A directory pointed to by a
UFO or a higher-level SFD. Each user has a UFO.
Within that, he may have as many SFOs as he wishes.
He may nest the SFOs up to installation maximum.
The installation maximum cannot be greater than 5
SFDs deep.

Sharab1le segment A (high) segment which can be
used by several users at a time.

Sharer's Group A subset of those jobs desiring
shared ownership of a particular resource. Flefer to
Chapter 9.

Simul1pneous Update Allowing more than one co­
operating job to update a file.

Single access The status of a file structure that al­
lows only one particular job to access the file struc­
ture. This job is the one whose project number
matches the project number of the owner of the file
structure.

SIXBIT code A 6-bit code in which textual informa­
tion is recorded. It is a compressed form of the ASCII
character set, and thus not all of the characters in
ASCII are available in SIXBIT, notably the nonprinting
characters and the lower case letters are omitted. The
range of SIXBIT code is 00 to 77 (octal) which is equal
to 40 through 137 (octal) in ASCII.

Skip The process by which an instruction, macro or
subroutine causes control to bypass one instruction
and proceed to the next instruction.

Software Interrrupt System The interruption of the
sequential flow of program execution under a variety
of conditions.

G-9

Spooling The technique by which output to slow­
speed devices is placed into queues on faster devices
(such as disk) to await transmission to the slower de­
vices; this allows more efficient use of the particular
device, memory, and the central processor unit.

Storage Allocation Table A file reflecting the status
of every addressable block on the disk.

String A set of contiguous items of a similar type.
Generally strings are sequences, of variable or arbi­
trary length; of bits, digits, or characters.

Structure A file structure.

Sub-File Directory A continued SFO.

Subroutine A routine designed to be used by other
routines to accomplish a specific task.
Swapping
1. The technique in multiprogramming of running

more jobs than there is physical memory for, by
storing some of the jobs on secondary storage
when they are not executing.

2. The movement, by the monitor, of user programs
between core and secondary storage.

Swapping class A category of swapping units dis­
tinguished from other categories of swapping units ac­
cording to speed.

Swapping device Secondary storage that is suit­
able for swapping, usually a high-speed disk or drum.

Symbol Any identifier used to represent a value that
mayor may not be known at the time of its original use
in a source language program. Symbols appear in
source language statements as lables, addresses, op­
erators, and operands.

Symbolic address An address used to specify a
storage location in the context of a particular program.
Symbolic addresses must then be translated into relo­
catable (or absolute) addresses by the assembler.

Symbol table A table containing entries and binary
values for each symbol defined or used within a mod­
ule. This table generally contains additional informa­
tion about the way in which the symbol was defined in
the module.

Terminal A unit, normally consisting of both a key­
board and printing (or display) mechanism, that is
used to enter information into a computer and to ac­
cept output from a computer. When it is used as a
timesharing terminal, the computer to which it is con­
nected can be very close or many miles away.

Translate To compile or assemble a source pro­
gram into a machine language program, usually in the
form of a (relocatable) object module.

Trap An unprogrammed conditional jump to a known
location, automatically activated by a side effect of ex­
ecuting a processor instruction. The location from
which the jump occurred is then recorded. It is distin­
guished from an interrupt which is caused by an exter­
nal event.

Trap Servicing Routines Routines that allow pro­
grams to handle errors while a program is running.
Some of the errors that can be handled in this manner
are illegal memory references, and pushdown list
overflows.

2's complement A number used to represent the
negative of a given value. This number is obtained by
substituting a zero for each one and a one for each
zero in the bit configuration of the binary number and
adding one to the result.

UFO
1. A file whose entries are the names of files existing

in a given project-programmer number area within
a file structure.

2. The top-level directory for each user. Also, the
top-level directory for the ersatz devices which ap­
pear as one directory.

Unit The smallest portion of a device that can be
positioned independently from all other units. Several
examples of units are: a disk, a disk pack, and a drum.

Update To open a file for reading and writing simUl­
taneously on the same software channel, rewrite one
or more blocks in place, and close the file.

User's program All of the data and code running in
a user virtual address space.

User file directory See UFD.

User I/O mode
1. The central processor mode that allows a user

program to be run with automatic protection and

G-10

relocation in effect, as well as the normal execu­
tion of all defined operation codes (including I/O
instructions) .

2. The monitor mode which allows a job to run with
the I/O mode hardware on.

User library Any user file containing one or more
relocatable binary modules of which some or all can
be loaded in library search mode.

User mode A central processor mode during which
instructions are executed normally except for all I/O
and HALT instructions, which return control to the
monitor. This makes it possible to prevent the user
from interfering with other users or with the operation
of the monitor. Memory protection and relocation are
in effect so that the user can modify only his area of
core.

User virtual address space A set of memory ad­
dresses within the range of a to 256K-1 words. These
addresses are mapped into physical core addresses
by the paging or relocation-protection hardware when
a program is executed.

UUO (Unimplemented User Operations) See
programmed operators.

Variable Any entity that can assume any of a given
set of values. When stored in memory, a variable can
occupy part of a memory location, exactly one mem­
ory location, or more than one memory location.

Word An ordered set of bits which occupies one
storage location and is treated by the computer cir­
cuits as a unit. The word length of the DECsystem-10
is 36 bits. This means that it is possible to store 36 bits
of information at each memory address and to transfer
all 36 bits between memory and the CPU at the same
time.

Working set The collection of pages in physical
core for an active job.

Access
on-line, 4-5
privileges, 4-6

accessories group, 11-5
address mapping, 6-4
ALGOL, 3-1,8-5
ALGOL compiler features, 8-6
ALGOL features, 8-5
ALGOL procedures, 8-6
ALGOL program structure, 8-6
ALGOL string constants, 8-6
ALGOL subprograms, 8-6
ALGOL switches, 8-6
ALGOL system features, 8-6
ALGOTS, 8-6
Allocation Disk Storage, 3-4
ANF-10, 10-2
APL, 3-1, 8-7
APL conversion package, 8-8
APL debugging tools, 8-8
APL file organization, 8-8
APL scalars, 8-7
APL statements, 8-8
APL workspaces, 8-8
APL-SF,8-7
Application Programmer, 3-1
Application Tools, 3-1
Arithmetic Testing instructions, 5-·6, 6-3
assembler, 8-1
Asynchronous communications, 2-4,

4-13
Asynchronous transmission, 10-2
Availability Reporting, 2-5
Availability System, 2-4

backplane bus, 6-1
BASIC, 3-1, 8-5
Batch Flexibility, 4-3
Batch Processing, 4-2
Batch Scheduler, 4-3
Batch Stream Controlling, 3-5
BLlSS-36, 3-1,8-8
BLlSS-36 compatability, 8-9
BLlSS-36 compiler, 8-9
BLlSS-36 debugging, 8-9
BLlSS-36 features, 8-9
BLlSS-36 file organization, 8-9
buffered mode, 4-11
Business Instruction Set, 5-7, 6-4
Byte Manipulation instructions, 5--6, 6-3

cache, 5-10
cache control, 5-12
Cache Memory, 5-10, 6-2
cache organization, 5-11
cache page structure, 5-11
Card Readers, 7-6
COBDDT,8-4
COBOL, 3-1, 8-3
COBOL data types, 8-3
COBOL debugger, 8-4
COBOL execution, 8-3
COBOL features, 8-3
COBOL file organization, 8-4
COBOL library facility, 8-4
COBOL source input, 8-4
COBOL string manipulation, 8-3
COBOL-68, 8-4
COBOL-74, 8-4
COBOL-74 support levels, 8-4
CODAISYL compliance, 9-1
Command Language, 2-2, 4-5
Command Processor, 2-2
Command terminal functions, 4-14
Communication Hardware, 7-9
Communication Products, 10-1, 10-2
Communication Software, 4-13
Communications

Asynchronous, 2-4
Synchronous, 2-4

complex topology, 10-4
Components

peripheral, 7-1
computer supplies, 11-5
concealed submode, 5-5
Console Front-End, 4-13
Console functions, 4-14
console microprocessor, 6-1
console subsystem, 6-6
Controlling Batch Streams, 3-5
ControlHng Resources, 3-4
COGO--10, 9-3
COGO-1 ° commands, 9-3
course options, 11-2
CPL, 3-1, 8-9
CPL debugging, 8-10
CPL desk calculator, 8-9
CPL features, 8-9
CPL immediate mode, 8-9
CPL statements, 8-9
CRM module, 6-1

The
Index

customer financing, 11-4
customer spares, 11-5

Data Base Utilities, 3-2
data description process, 3-2, 9-1
data manipulation process, 3-2, 9-1
Database Management, 3-1
DBINFO, 9-1
DBMEND,9-1
DBMS, 9-1
DBMS modules, 9-1
DBMS utilities, 9-1
DCP, 10-5
DDCMP, 10-2, 10-5
DECnet-10, 10-5
DECUS, 11-5
DECUS goals, 11-6
Devices

Real-Time, 4-4
Diagnostic Maintenance function, 4-14
diagnostic processor, 6-1
Directory

User-File, 4-6
Sub-File, 4-6
Master-File, 4-7

disks, 7-1
Disk I/O Statistics, 3-4
Disk Quota Allocation, 3-4
Disk Quotas, 4-8
Disk Storage Management, 4-8
dispatch table, 5-4
DL 11 interface, 7-9
DN20 front-end, 7-10, 10-3
DN200 remote station, 7-10
DPE module, 6-1
DPM module, 6-1
DTE,5-13
DUP11 interface, 7-9
DX20 controller, 7-2
DZ11 interface, 7-9

E-Box, 5-4
educational services, 11-2
effective address, 5-12
emulation 2780/3780, 10-3
Error Recovery, 4-3
Error Reporting 2-6
Executive Box, 5-1, 5-4
executive mode, 5-5, 6-4
external memory, 5-8, 5-9

fast-register blocks, 5-7, 6-4
File

System, 4-6
Protection, 4-6, 4-8
Handling, 4-6
Structure, 4-7
Operations, 4-8

Fixed-Floating-Point instructions, 5-6,
6-3

Fixed-Point instructions, 5-6, 6-3
Floating-Point instructions, 5-6
FOROTS,8-2
FORTRAN, 3-1, 8-1
FORTRAN debugger, 8-2
FORTRAN extensions, 8-2
FORTRAN optimizer, 8-2
Front-End Subsystem, 5-13
Full-Word instructions, 5-6, 6-3

GALAXY, 4-2
general registers, 6-2

Half-Word instructions, 5-6, 6-3
hardware services, 11-4
High-Priority Queues, 4-5

I-Beam functions, 8-7
1/0 instructions, 5-6
I/O Routines, 2-4, 4-11
1/0 Subsystem, 5-14
1/0 Wait Queues, 4-9
Input Spooler, 4-3
Instruction Format, 5-5, 6-3
Instruction Set, 5-5, 6-3
Inter-Process communication, 4-13
Interactive

Timesharing, 4-1
Terminals, 4-1

Interleaving, 5-9
internal memory, 5-8, 5-9
IPCF,4-13
IQL,9-2
IQL accesses, 9-3
IQL deferred mode, 9-3
IQL features, 9-2
IQL interactive mode, 9-2
IQL report formatting, 9-3
IQL statements, 9-3

Job Dependency, 4-3
Job Locking, 4-4
Job Statistics, 3-4
Job swapping, 4-10

kernal submode, 5-5
KL10-D CPU, 5-1
KL 1 O-E CPU, 5-2
KLiNIK, 5-14
KMC11-A interface, 7-9
KS10, 6-1
KS10 CPU, 6-1
KS10 Technology, 6-1

LA38 terminal, 7-8
LA120 terminal, 7-7
Line printer

LP20-A, 7-4
LP20-B,7-4

LP20-C, 7-5
LP20-D,7-5
LP100, 7-5
LP200, 7-5

Locking Jobs, 4-4
Logic instructions, 5-6, 6-3
Logical instructions, 5-6, 6-3

M-Box, 5-10
MACRO, 8-1
Management

System, 3-3
Disk-Storage, 4-8

mass storage, 7-1
MASSBUS, 5-15
Master-File Directory, 4-7
MCS-10, 3-2
mechanical configurations, 5-3
Memory, 6-4
memory addressing, 6-4
Memory Management, 4-12
memory mapping, 5-12
memory subsystem, 5-8
Message Control System, 3-2
meters, 5-7
MF20 memory, 5-9
MFD,4-7
MH10 memory, 5-9
microprogrammed instructions, 5-4
microstore, 5-4, 6-3
Monitor Statistics, 3-4
MOS memory, 5-9, 5-10, 6-5
MS10, 6-5
MS10 availability, 6-5
MS10 maintainability, 6-5
MS10 performance, 6-5
MS10 reliability, 6-5
multiplexed 1/0, 5-8, 5-15
multiplexed memory, 5-15

NCL, 10-2, 10-5
Network Concepts, 10-1
network protocols, 10-2
network transmission, 10-2
Networks, 10-3
Null Queue, 4-9

Operating System, 2-2
Operator Interface, 3-5
Operator Intervention, 4-4

packet, 4-13
page passing, 4-13
pages, 4-12
Paging, 6-5
Paper-Tape

Reader, 7-6
Punch, 7-6

PCS, 9-4
PCS features, 9-4
PDP-11,5-14
Performance Analysis, 3-4
peripheral interface, 4-14
physical memory, 5-8
PID,4-13
priority interrupts, 5-8
Privileges, 3-3
process ID, 4-13

processor 1/0, 7-1
processor mode, 5-5
Processors, 2-1
professional services, 11-2
Program Control instructions, 5-6, 6-3
programmable address break, 5-7
Programmer

Application, 3-1
System, 3-3

Protection
level,4-6
scheme, 4-6

public submode, 5-5
PVFU,7-4

quadword, 5-11
Queue Manager, 4-3
Queues

High-Priority, 4-5
Batch,4-3

RAM module, 6-1
Real-Time

Computing, 4-4
Devices, 4-4
Processing, 4-4

Reliability, 2-4
Remote Stations, 10-3
Reporting

Availability, 2-5
Error, 2-6

Resource
Accounting, 3-4
Controlling, 3-4
Wait Queues, 4-9

RH11,5-13
RH20, 5-13, 5-15
RM03 disks, 7-1
RP06 disks, 7-2
RP20 disks, 7-2
RTP20 subsystem, 7-2
Run queues, 4-9

Scheduler, 2-2, 4-8
Scheduler Controls, 3-4
self-maintenance service, 11-2
serial transmission, 10-2
SFD,4-6
SMP, 2-1
SMP Scheduling, 4-9
software product services, 11-1
software product updates, 11-1
software services, 11-1
software warranty, 11-1
SORT/MERGE, 9--3
Spooler

Input, 4-3
Output, 4-3

Statistics
Disk 1/0, 3-4
Job, 3-4
Monitor, 3-4
System Utilization, 3-4

STATS, 9-2
Sub-File Directory, 4-6
supervisor submode, 5-5
supplies group, 11-5
Support Services, 11-1

Swapper, 2-2, 4-10
Synchronous communications, 2-4,

4-13, 10-2
System Architecture, 5-1, 6-1
System Availability, 2-4
System Backup, 3-5
System Components, 2-1
system installation, 11-1
System Integrity, 2-5
System Manager, 3-3
System Operator, 3-4
System Recovery, 2-6, 3-5
System Utilization Statistics, 3-4

Tape Devices, 7-2
Terminals, 7-6
termination 2780/3780, 10-3

Timesharing
Interactive, 4-1
Terminals, 4-1
Users, 4-1

TM03 controller, 7-4
TOPS-10 courses, 11-3
TOPS-10 Interrelationship, 2-5
Trap instructions, 5-7, 6-4
TU72 tape drive, 7-3
TUn tape drive, 7-3

UFO,4-6
unbuffered mode, 4-11
UNIBUS, 5-16
Unibus adapters, 6-1
Unit-Record peripherals, 7-4

User
Authorization, 3-3
Utilities, 3-5

user address, 5-12
User File Directory, 4-6
user mode, 5-5, 6-4
User Privileges, 3-3
UUO Handler, 2-4, 4-10
UUOs,5-7

Vectors, 8-7
vertical format unit, 7-4
virtual address, 5-12
Virtual Memory, 4-12
virtual memory option, 4-12
VT100 terminal, 7-8

	001
	002
	003
	004
	005
	006
	01-001
	01-002
	01-01
	02-001
	02-002
	02-01
	02-02
	02-03
	02-04
	02-05
	02-06
	03-001
	03-002
	03-01
	03-02
	03-03
	03-04
	03-05
	03-06
	04-001
	04-002
	04-01
	04-02
	04-03
	04-04
	04-05
	04-06
	04-07
	04-08
	04-09
	04-10
	04-11
	04-12
	04-13
	04-14
	05-001
	05-002
	05-01
	05-02
	05-03
	05-04
	05-05
	05-06
	05-07
	05-08
	05-09
	05-10
	05-11
	05-12
	05-13
	05-14
	05-15
	05-16
	05-17
	05-18
	06-001
	06-002
	06-01
	06-02
	06-03
	06-04
	06-05
	06-06
	07-001
	07-002
	07-01
	07-02
	07-03
	07-04
	07-05
	07-06
	07-07
	07-08
	07-09
	07-10
	08-001
	08-002
	08-01
	08-02
	08-03
	08-04
	08-05
	08-06
	08-07
	08-08
	08-09
	08-10
	09-001
	09-002
	09-01
	09-02
	09-05
	09-06
	10-001
	10-002
	10-01
	10-02
	10-03
	10-04
	10-05
	10-06
	11-001
	11-002
	11-01
	11-02
	11-03
	11-04
	11-05
	11-06
	G-00
	G-01
	G-02
	G-03
	G-04
	G-05
	G-06
	G-07
	G-08
	G-09
	G-10
	index-1
	index-2
	index-3
	index-4

