
TOPS-10/TOPS-20
COBOL-68

Language Manual
AA-SOS7B-TK

August 1981

This manual reflects the software of Version 12B of the
COBOl-68 compiler, Version 12B of LlBOl, and Version 4C
of SORT.

This manual replaces the document of the order numbers
AA-505? A-TK, AD-505? A-T1, and AD-5057 A-T2

OPERATING SYSTEM: TOPS-10, Version 7.01
TOPS-20, Version 4

SOFTWARE VERSION: COBOl-68, Version 12B
LlBOl, Version 12B

Software and manuals should be ordered by title and order number. In the United States, send orders to the nearest
distribution center. Outside the United States, orders should be directed to the nearest DIGITAL Field Sales Office
or representative.

NORTHEAST/MID-ATLANTIC REGION

Technical Documentation Center
Cotton Road
Nashua, N H 03060
Telephone: (800) 258-1710
New Hampshire residents: (603) 884-6660

CENTRAL REGION

Technical Documentation Center
1050 East Remington Road
Schaumburg, Illinois 60195
Telephone: (312) 640-5612

WESTERN REGION

Technical Documentation Center
2525 Augustine Drive
Santa Clara, California 95051
Telephone: (408) 984-0200

digital equipment corporation • marlboro, massachusetts

First Printing, August 1969
Updated, May 1979

January 1980
Revised, August 1981

The information in this document is subject to change without notice
and should not be construed as a commitment by Digital Equipment
Corporation. Digital Equipment Corporation assumes no responsibility
for any errors that may appear in this document.

The software described in this dopument is furnished under a license
and may only be used or copied in accordance with the terms of such
license.

No responsibility is assumed for the use or reliability of software on
equipment that is not supplied by DIGITAL or its affiliated companies.

Copyright ~, 1969, 1979, 1980, 1981, Digital Equipment Corporation.
All Rig~ts Reserved.

The postage-prepaid READER'S COMMENTS form on the last
document requests the user's critical evaluation
preparing future documentation.

page of this
to assist us in

The following are trademarks of Digital Equipment Corporation:

DEC
DECUS
Digital Logo
PDP
UNIBUS
VAX

DECnet
DECsystem-10
DECSYSTEM-20
DECwriter
DIBOL
EduSystem

lAS
MASSBUS
PDT
RSTS
RSX
VMS
VT

CHAPTER 1

1.1
1.1.1
1.1.2
1.2
1.2.1
1.2.2
1.2.3
1.2.3.1
1.2.3.2
1.2.4
1.2.4.1
1.2.4.2
1.2.5
1.3
1.3.1
1.3.2
1.3.2.1
1.3.2.2
1.4
1.4.1

CHAPTER 2

CHAPTER 3

3.1
3.1.1
3.1.2
3.1.3
3.2
3.2.1
3.2.1.1
3.2.1.2
3.2.1.3
3.2.1.4
3.2.1.5
3.2.1.6
3.2.1.7
3.2.1.8
3.2.1.9
3.2.1.10
3.2.2

CHAPTER 4

4.1
4.2

CONTENTS

INTRODUCTION TO COBOL-68 LANGUAGE

SYMBOLS AND TERMS
Symbols
COBOL Terms

ELEMENTS OF COBOL LANGUAGE
Program Structure
Character Set
Words
COBOL Reserved Words
User-Created Words
Literals
Numeric Literals
Alphanumeric Literals
Punctuation

SOURCE PROGRAM FORMAT
Card-Type Format
Terminal-Type Format
With Line Numbers
without Line Numbers

THE COBOL LIBRARY FACILITY
The COPY Statement

THE IDENTIFICATION DIVISION

THE ENVIRONMENT DIVISION

CONFIGURATION SECTION
SOURCE-COrvIPUTER
OBJECT-COMPUTER
SPECIAL-NAMES

INPUT-OUTPUT SECTION
FILE-CONTROL
SELECT
FOR MULTIPLE
RESERVE
FILE-LIMIT
ACCESS MODE
PROCESSING MODE
ACTUAL KEY
SYMBOLIC KEY
RECORDING MODE/DENSITY/PARITY
FILE STATUS
I-O-CONTROL

THE DATA DIVISION

FILE SECTION
SCHEMA SECTION

iii

Page

1-1

1-1
1-1
1-2
1-3
1-3
1-3
1-4
1-4
1-6
1-7
1-7
1-8
1-8
1-9
1-10
1-11
1-11
1-12
1-15
1-15

2-1

3-1

3-2
3-3
3-4
3-6
3-9
3-10
3-12
3-14
3-15
3-16
3-18
3-20
3-21
3-22
3-23
3-27
3-35

4-1

4-2
4-2

4.3
4.4
4.5
4.6
4.7
4.7.1
4.7.2
4.7.3
4.8
4.9
4.10
4.10.1
4.10.2
4.10.3
4.10.4
4.10.5
4.10.6
4.10.7
4.10.8

4.11
4.11.1
4.11.2
4.11.2.1
4.11.2.2
4.11.2.3
4.11.2.4
4.11.2.5
4.11.2.6
4.11.2.7
4.11.2.8
4.11.2.9
4.11.2.10
4.11.2.11
4.11.2.12
4.12
4.12.1
4.12.1.1
4.12.1.2
4.12.1.3
4.12.2
4.12.2.1
4.12.2.2
4.12.2.3
4.12.2.4
4.12.2.5
4.12.2.6
4.12.2.7
4.12.2.8

CHAPTER 5

5.1

5.1.1
5.1.2

CONTENTS (CONT.)

COMMUNICATION SECTION
WORKING-STORAGE SECTION
LINKAGE SECTION
REPORT SECTION
DATA DESCRIPTIONS

Elementary Items and Group Items
Level Numbers
Records and Files

QUALIFICATION
SUBSCRIPTING AND INDEXING
FILE DESCRIPTION (FD)

BLOCK CONTAINS
DATA RECORD
FD file-name
LABEL RECORD
RECORD CONTAINS
REPORT
SD file-name
VALUE OF
IDENTIFICATION/DATE-WRITTEN/USER-NUMBER

RECORD DESCRIPTIONS
Record Concepts
DATA DESCRIPTION ENTRY
BLANK WHEN ZERO
Condition-name (level-88)
data-name/FILLER
JUSTIFIED
level-number
OCCURS
PICTURE
REDEFINES
RENAMES (level-66)
SYNCHRONIZED
USAGE
VALUE

REPORT SECTION
Report Description (RD)
CODE
CONTROL(S)
PAGE LIMIT
Report Group Description
COLUMN
GROUP INDICATE
LINE NUMBER
NEXT GROUP
RESET
SOURCE
SUM
TYPE

THE PROCEDURE DIVISION

SYNTACTIC FORMAT OF THE PROCEDURE
DIVISION

Statements and Sentences
Sentences

iv

Page

4-3
4-3
4-3
4-4
4-5
4-5
4-5
4-6
4-6
4-7
4-11
4-13
4-14
4-15
4-16
4-18
4-19
4-20

4-21
4-24
4-24
4-25
4-27
4-28
4-30
4-31
4-33
4-34
4-36
4-49
4-51
4-53
4-55
4-62
4-64
4-66
4-68
4-69
4-70
4-72
4-75
4-76
4-77
4-79
4-80
4-81
4-82
4-83

5-1

5-2
5-2
5-3

5.1.3
5.1.4
5.2
5.3

5.4
5.4.1
5.4.2
5.5
5.5.1
5.5.1.1
5.5.1.2
5.5.1.3
5.5.1.4
5.5.2
5.5.2.1
5.5.2.2
5.5.2.3
5.5.2.4
5.5.3
5.5.3.1
5.5.4
5.5.4.1
5.5.5
5.5.5.1
5.5.6
5.5.7
5.5.8
5.6

5.6.1
5.7
5.8

5.9
5.9.1
5.9.2
5.9.3
5.9.4
5.9.5
5.9.6
5.9.7
5.9.8
5.9.9
5.9.10
5.9.11
5.9.12
5.9.13
5.9.14
5.9.15
5.9.16
5.9.17
5.9.18
5.9.19
5.9.20
5.9.21

CONTENTS (CONT.)

Paragraphs
Sections

SEQUENCE OF EXECUTION
SEGMENTATION AND SECTION-NAME PRIORITY
NUMBERS
ARITHMETIC EXPRESSIONS

Arithmetic Operators
Formation and Evaluation Rules

CONDITIONAL EXPRESSIONS
Relation Condition
Format of a Relation-Condition
Relational Operators
Comparison of Numeric Items
Comparison of Alphanumeric Items
Class Condition
Format of a Class Condition
Restrictions
The ALPHABETIC Test
The NUMERIC Test
Condition-Name Condition
Format of a Condition-Name
Switch-status Condition
Format of a Switch-Status Condition
Sign Condition
Format of a Sign Condition
Logical Operators
Formation and Evaluation Rules
Abbreviations in Relation Conditions

COMMON OPTIONS ASSOCIATED WITH THE
ARITHMETIC VERBS

The ON SIZE ERROR Option
THE CORRESPONDING OPTION
DETERMINATION OF USAGE IN ARITHMETIC
COMPUTATIONS
PROCEDURE DIVISION VERB FORMATS

ACCEPT
ADD
ALTER
CALL
CANCEL
CLOSE
COMPUTE
DELETE
DISPLAY
DIVIDE
ENTER
ENTRY
EXAMINE
EXIT
EXIT PROGRAM
FREE
GENERATE
GO TO
GOBACK
IF
INITIATE

v

Page

5-4
5-4
5-5

5-5
5-6
5-6
5-6
5-7
5-7
5-8
5-8
5-8
5-9
5-9
5-10
5-10
5-10
5-10
5-10
5-10
5-11
5-11
5-11
5-12
5-12
5-12
5-15

5-16
5-16
5-17

5-17
5-19
5-20
5-22
5-24
5-25
5-27
5-28
5-31
5-32
5-33
5-34
5-36
5-37
5-38
5-40
5-41
5-42
5-45
5-47
5-48
5-49
5-51

5.9.22
5.9.23
5.9.24
5.9.25
5.9.26
5.9.27
5.9.28
5.9.29
5.9.30
5.9.31
5.9.32
5.9.33
5.9.34
5.9.35
5.9.36
5.9.37
5.9.38
5.9.39
5.9.40
5.9.41
5.9.42
5.9.43
5.9.44
5.9.45

CHAPTER 6

CHAPTER 7

7.1

7.1.1
7.1.2
7.1.3
7 .1. 4
7.1.5

7.1.6
7.1.7
7 .1. 8
7.1.9
7.1.10
7.2

7.2.1
7.2.2
7.2.3
7.2.4
7.2.5
7.2.6
7.2.6.1
7.2.6.2
7.2.6.3
7.3

7.3.1

CONTENTS (CONT •)

MERGE
MOVE
MULTIPLY
NOTE
OPEN
PERFORM
READ
RELEASE
RETAIN
RETURN
REWRITE
SEARCH
SEEK
SET
SORT
STOP
STRING
SUBTRACT
SUPPRESS
TERMINATE
TRACE
UNSTRING
USE
WRITE

COMPILING COBOL-68 PROGRAMS

COBOL UTILITY PROGRAMS

ISAM - INDEXED-SEQUENTIAL FILE
MAINTENANCE PROGRAM

Building An Indexed-Sequential File
Maintaining An Indexed-Sequential File
Packing An Indexed-Sequential File
Ignoring Errors
Reading And Writing Magnetic Tape
Labels
Renaming An Indexed-Sequential File
Checking An Indexed-Sequential File
Producing Blocking Data With ISAM
Indirect Commands
using Indexed-Sequential Files

LIBARY - PROGRAM TO CREATE AND MAINTAIN
SOURCE LIBRARIES

Library File Format
Invoking The Library utility
Command String Defaults
LIBARY Switches
Running LIBARY
LIBARY Commands
Group Mode Commands
LIBRARY-Directing Commands
Example of Command Usage

COBDDT - PROGRAM FOR DEBUGGING COBOL
PROGRAMS

Loading And Starting COBDDT

vi

Page

5-52
5-54
5-56
5-58
5-59
5-64
5-69
5-71
5-72
5-78
5-79
5-80
5-83
5-84
5-85
5-88
5-89
5-94
5-96
5-97
5-98
5-100
5-109
5-113

6-1

7-1

7-2
7-3
7-8
7-11
7-12

7-13
7-15
7-16
7-17
7-18
7-19

7-21
7-21
7-21
7-23
7-24
7-25
7-25
7-25
7-26
7-27

7-28
7-28

7.3.2
7.3.3

7.3.3.1
7.3.3.2
7.3.3.3
7.3.3.4
7.3.3.5
7.4

7.4.1
7.4.2

CHAPTER 8

8.1
8.1.1
8.1.2
8.1.3
8.1.4
8.2
8.2.1
8.2.2
8.2.3
8.2.4
8.2.5
8.2.6
8.2.6.1
8.2.6.2
8.2.6.3
8.3
8.4
8.5
8.5.1
8.5.2
8.6
8.6.1
8.6.2

CHAPTER 9

9.1
9.1.1
9.1.2
9.1.3
9.1.4
9.1.4.1
9.1.4.2
9.1.4.3
9.1.4.4
9.1.5
9.1.6

CHAPTER 10

CHAPTER 11

CONTENTS (CONT.)

coaDDT Commands
Obtaining Histograms Of Program
Behavior
Initializing the Histogram Table
Starting the Histogram
Stopping the Histogram
Obtaining the Histogram Listing
Using the Histogram Feature

RERUN - PROGRAM TO RESTART COBOL
PROGRAMS

Operating RERUN
Examples Of Using RERUN

FILE FORMATS

RECORDING MODES
ASCII Recording Mode
SIXBIT Recording Mode
EBCDIC Recording Mode
BINARY Recording Mode

FILE FORMATS
Fixed-Length ASCII
Variable-Length ASCII
Fixed-Length SIXBIT .
Variable-Len~th SIXBIT
EBCDIC File Formats
BINARY File Formats
COBOL ASCII Mixed-Mode Binary
COBOL SIXBIT Mixed-Mode Binary
COBOL EBCDIC Mixed-Mode Binary

FILE ORGANIZATION AND ACCESS
SEQUENTIAL FILES
RANDOM FILES

Sequential Access Of Random Files
Random Access Of Random Files

INDEXED-SEQUENTIAL FILES
Indexed Data File
Index File

SIMULTANEOUS UPDATE

PROGRAMMING CONSIDERATIONS
The OPEN Statement
The RETAIN Statement
The FREE Statement
Accessing Sequential Files
Basic Reading
Basic writing
Basic Updating
Access to Sequential File Strategies
Accessing Random Files
Accessing Indexed-Sequential Files

REPORT WRITER

PROGRAM SEGMENTS, SUBPROGRAMS, AND
OVERLAYS

vii

Page

7-30

7-38
7-38
7-39
7-39
7-40
7-42

7-42
7-43
7-44

8-1

8-1
8-1
8-2
8-2
8-3
8-3
8-4
8-5
8-8
8-10
8-12
8-21
8-22
8-24
8-25
8-27
8-27
8-27
8-28
8-29
8-30
8-31
8-32

9-1

9-3
9-4
9-7
9-10
9-11
9-11
9-12
9-12
9-12
9-15
9-16

10-1

11-1

11.1
11.1.1
11.1.2
11.2
11.2.1
11.2.1.1
11.2.1.2
11.2.2
11.2.3
11.2.4
11.3
11.3.1
11.3.2
11.3.3
11.3.4
11.3.5
11.3.6

CHAPTER 12

12.1
12.2

CHAPTER 13

13.1
13.1.1
13.1.2
13.1.3
13.1.4
13.1.5
13.2
13.2.1
13.2.1.1
13.2.1.2
13.2.1.3
13.2.1.4
13.3
13.3.1
13.3.2
13.3.3
13.3.4
13.3.5
13.4
13.4.1
13.4.2
13.4.3
13.5
13.5.1
13.5.2
13.5.3
13.5.4
13.5.5
13.5.6

CONTENTS (CONT.)

PROGRAM SEGMENTS
Section-Names And Segment Numbers
Examples

SUBPROGRAMS
Inter-Program Communication
The Calling Program
The Called Subprogram
Loading A Subprogram Structure
Object Libraries And Searches
Examples

OVERLAYS
When To Use Overlays
Over1ayab1e COBOL Programs
Defining Overlays
The /SPACE Switch To LINK
The CANCEL Statement
Examples

CALLING NON-COBOL SUBPROGRAMS

CALLING FORTRAN SUBPROGRAMS
CALLING MACRO SUBPROGRAMS

IMPROVING PERFORMANCE OF COBOL-68
PROGRAMS

HOW TO PROCEED WITH PROGRAM OPTIMIZATION
Where To Begin
What Tools Are Available
What Method Or Procedure To Use
Evaluating Performance
Documentation

LISTING THE TOOLS
COBDDT
The ENTRIES Column
The CPU Column
ELAPSED Column
OVERHEAD

USING THE CORRECT DATA TYPE
DISPLAY Data Types
EBCDIC
ASCII
SIXBIT
COMPUTATIONAL

DATA EFFICIENCIES
Counter, Indexes, Subscripts
File Storage
Blocking Data

EFFICIENT CODING CONVENTIONS
Alignment
Use Of Subscripts
Incrementing Counters
The PERFORM Statement
Use Of The EXAMINE Statement
Data Movement

viii

Page

11-1
11-1
11-2
11-3
11-4
11-4
11-5
11-6
11-6
11-7
11-8
11-8
11-9
11-9
11-11
11-14
11-14

12-1

12-2
12-3

13-1

13-3
13-3
13-3
13-4
13-5
13-5
13-6
13-6
13-7
13-7
13-8
13-8
13-8
13-8
13-8
13-9
13-10
13-10
13-10
13-11
13-11
13-11
13-12
13-12
13-12
13-13
13-13
13-14
13-14

13.5.7
13.5.8

APPENDIX A

APPENDIX B

APPENDIX C

APPENDIX D

APPENDIX E

GLOSSARY

INDEX

FIGURE

E.l
E.l.l
E.l.2
E.l.3
E.2
E.2.l
E.2.4

E.3
E.3.l
E.3.l.l
E.3.l.2
E.3.2
E.4
E.4.l
E.4.l.l

E.4.l.2
E.4.2

1-1 (a)
l-2(a)
l-3(a)
4-1
4-2
4-3
7-1
8-1
8-2
8-3
8-4
8-5
8-6
8-7
8-8
8-9

CONTENTS (CONT.)

Ordering Statements
Asking The Correct Question

COBOL RESERVED WORDS

COLLATING SEQUENCES AND CONVERSION
TABLES

DEFINING LOGICAL NAMES UNDER TOPS-20

ALTERNATE NUMERIC TEST

TAPE HANDLING

DIRECTIONS AND DEFINITIONS
Definitions
Finding The Right Instructions
Symbols Used In The Text

FACTORS TO CONSIDER WHEN USING TAPES
General Defaults And Restrictions
Converting Tapes Between Labeled And
Unlabeled

USING SYSTEM-UNLABELED TAPES
Tape Has No Labels
Tape Drive Is Available To The User
Tape Drive Is Owned By The System
Tape Has Labels

USING SYSTEM-LABELED TAPES
Tape Has ANSI Labels
Transportable Tapes - F, D, And S
Formats
Undefined-Format Tapes - U-Format
Tape Has EBCDIC Labels

Page

13-15
13-15

A-I

8-1

C-l

D-l

E-l

E-l
E-l
E-2
E-4
E-4
E-4

E-6
E-6
E-7
E-7
E-7
E-8
E-8
E-8

E-9
E-IO
E-ll

Glossary-l

Index-l

FIGURES

Card-Type Format
Terminal-Type Format with Line Numbers
Terminal-Type Format without Line Numbers
Direct Subscripting/Indexing
Relative Subscripting/Indexing
Qualified Direct Subscripting/Indexing
COBOL ISAM File Environment
ASCII Recording Mode
SIXBIT Recording Mode
EBCDIC Recording Mode
EBCDIC Recording Mode - Industry-Compatible
Binary Recording Mode
Fixed-Length ASCII
COBOL Fixed-Length ASCII
Variable-Length
COBOL Variable-Length ASCII

ix

1-10
1-11
1-12
4-9
4-9
4-10
7-3
8-1
8-2
8-2
8-2
8-3
8-4
8-5
8-6
8-8

TABLE

8-10
8-11
8-12
8-13
8-14
8-15
8-16
8-17
8-18
8-19
8-20
8-21

8-22

8-23

8-24

8-25
8-26

8-27
9-1
9-2
9-3
9-4
9-5
9-6
9-7

11-1
13-1

3-1
3-2
3-3
4-1
5-1
5-2
5-3
6-1
B-1

B-2
B-3

FIGURES (Cont.)

Fixed-Length SIXBIT
COBOL Fixed-Length SIXBIT
Variable-Length SIXBIT
COBOL Variable-Length SIXBIT
Fixed-Length EBCDIC
COBOL Fixed-Length EBCDIC
Variable-Length EBCDIC
COBOL Variable-Length EBCDIC
COBOL Blocked Fixed-Length EBCDIC
B~ocked Variable-Length EBCDIC
COBOL Blocked Variable-Length EBCDIC
COBOL Standard Binary and
ASCII Mixed-Mode Binary
COBOL Standard Binary and
SIXBIT Mixed-Mode Binary
COBOL Standard Binary and
EBCDIC Mixed-Mode Binary
Statements Used to Sequentially
Access a Random File
ISAM Data File Structure
Locating a Record in an
Indexed-Sequential File
ISAM Index File Structure
The Problem of Buried Update
The Problem of Deadly Embrace
Declaring Resources For Simultaneous Update
The OPEN Statement
Competing For Program Access to Files
The RETAIN Statement
The FREE Statement
Example of an Overlay Structure
Sample COBDDT Histogram

TABLES

Recording Modes
Monitor File Status Bits
Monitor Error Codes
Standard Label for Nonrandom-Access Media
Procedure Verb and Statement Categories
Types of Segments
CLOSE Options and File Types
COBOL Switch Summary
ASCII and SIXBIT Collating Sequence
and Conversion to EBCDIC
ASCII to SIXBIT Conversion
EBCDIC Collating Sequence and
Conversion to ASCII

x

8-8
8-9
8-10
8-12
8-13
8-13
8-14
8-16
8-18
8-19
8-21

8-23

8-24

8-26

8-30
8-32

8-33
8-34
9-2
9-3
9-4
9-5
9-7
9-8
9-10

11-10
13-6

3-26
3-31
3-32
4-17
5-2
5-5
5-30
6-3

B-1
B-3

8-5

FORWARD

This manual describes COBOL-68 as implemented on both TOPS-IO and
TOPS-20. This manual is a complete manual containing reference
material, user's guide material, and . COBOL utilities. Chapter 1
discusses language elements, conventions used in this manual, and the
structure of a COBOL-68 program. Chapters 2 through 5 describe the
four major divisions of a COBOL-68 program. Chapters 6 through 13
provide the information necessary to use the COBOL-68 system,
including performance improvements, utility programs, file formats,
report writing, and various other useful features of COBOL-68.

Several Appendixes, A through E, plus a Glossary of COBOL terms are
included in this manual. Appendix A contains the COBOL reserved
words, Appendix B contains the character collating sequence, Appendix
C describes how to define logical names under TOPS-20, Appendix D
describes an alternate form of numeric test, and Appendix E describes
Tape Handling.

It is assumed that the reader has a knowledge of the COBOL-68
language. This manual is intended primarily for reference and is not
a tutorial guide for beginning COBOL programmers. Those wishing to
learn the COBOL-68 language are referred to the following books:

Farina, Mario V., COBOL Simplified, New Jersey, Prentice Hall,
Inc., 1968.

McCameron, Fritz A.,
Illinois, Richard D.

COBOL Logic and
Irwin, Inc., 1966.

Programming, Homewood,

McCracken, Daniel D. and Garbassi, Umberto, A Guide to COBOL
Programming, Second Edition, New York, John Wiley and Sons, Inc.,
1970.

xi

TOPS-IO users should read and be familiar with the following manuals:

• TOPS-IO OpeLating System Commands Manual

• TECO Programmer's Reference Manual

• TOPS-IO Monitor Calls Manual

• TOPS-IO Hardware Reference Manual

• TOPS-IO LINK Reference Manual

• TOPS-IO SORT/MERGE User's Guide

TOPS-20 user's should read and be familiar with the following manuals:

• TOPS-20 Commands Reference Manual

• TOPS-20 TV Reference Manual

• TOPS-20 EDIT Reference Manual

• TOPS-20 Monitor Calls Manual

• TOPS-20 Hardware Reference Manual

• TOPS-20 LINK Reference Manual

• TOPS-20 SORT/MERGE User's Guide

xii

ACKNOWLEDGMENT

COBOL is an industry language and is not the property of
or group of companies, or of any organization
organizations.

any company
or group of

No warranty, expressed or implied, is made by any contributor or by
the CODASYL Programming Language Committee as to the accuracy and
functioning of the programming system and language. Moreover, no
responsibility is assumed by any contributor, or by the committee, in
connection therewith.

The authors and copyright holders of the copyrighted material used
herein

• FLOW-MATIC (trademark of Sperry Rand Corporation) ,
Programming for the Univac (R) I and II, Data Automation
Systems copyrighted 1958, 1959, by Sperry Rand Corporation;

• IBM Commercial Translator Form No. F 28-8013, copyrighted
1959 by IBM;

• FACT, DSI 27a5260-2760, copyrighted 1960 by
Minneapolis-Honeywell.

have specifically authorized the user of this material, in whole or in
part, in the COBOL specifications. Such authorization extends to the
reproduction and use of COBOL specifications in programming manuals or
similar publications.

xiii

CHAPTER 1

INTRODUCTION TO COBOL-68 LANGUAGE

This chapter describes the conventions, special terms, language
elements, and formats acceptable to COBOL-68. The source language
statements are discussed in subsequent chapters.

NOTE

For the purposes of this
terms COBOL and
interchangeable.

document,
COBOL-68

the
are

1.1 SYMBOLS AND TERMS

The symbols and terms used in the following chapters of this manual
are necessary to describe the language or-are commonly used COBOL
terms. The single exception of this statement is the term
BIS-compiler. This term refers to compiler implementations that
compile COBOL-68 using the Business Instruction Set (BIS). All users
of TOPS-20 get BIS code. Users of TOPS-IO who have a KS or KL central
processing unit get BIS code as the default, but the compiler can be
installed without the BIS option. TOPS-IO users who have a KI central
processor will usually not get the BIS option on their compilers. The
KI processor will not execute the BIS instructions; however, the KI
will run the compiler which produces BIS code should there be a need
for it. (For more information, see the COBOL-68 Installation
Procedures.) You can tell if your compiler is producing BIS code by
checking a listing of a compiled program. If your compiler is
producing the BIS instructions, the letters BIS will follow the
version and edit numbers on top of the page.

1.1.1 Symbols

The symbology used in this manual to illustrate the various COBOL
statement formats is essentially the same as that used in other COBOL
language manuals and is based on the CODASYL COBOL reference document.

Symbology

Lower-case characters

Meaning

Represent information that must be
supplied by the programmer, such as
values, names, and other parameters.

1-1

INTRODUCTION TO COBOL-68 LANGUAGE

Symbology Meaning

Upper-case characters,
Underscored

Key words in the COBOL lexicon that must
be used when the formats of which they
are a part are used.

Upper-case characters,
not underscored

Other words in the COBOL lexicon that
serve only to make the COBOL statement
more readable. Their use is optional
and has no effect on the meaning of the
formats of which they are a part.

B~aces

Brackets

Ellipsis .•.

Indicate that a choice must be made from
the two or more lines enclosed.

Indicate an optional feature. The
contents of the brackets are used
according to the rules above if the
feature is desired.

Indicate that the information contained
within the preceding pair of braces or
brackets can be repeated at the
programmer's option.

1.1.2 COBOL Terms

The terms block, record, and item have special meanings when used in a
COBOL program.

Term

Block

Record

Item

Meaning

Signifies a logical grouping of records. This term
commonly refers to a logical block of records on some
storage medium.

Signifies a logical unit of information. In relation
to a data file, a record is the largest unit of logical
information that can be accessed and processed at a
time. Records can be subdivided into fields or items.

Signifies a logical field or group of fields within a
record. A group item is one that is further broken
down into subitems (for example, a group item called
TAX might be broken down into subitems called FED-TAX
and STATE-TAX). Subitems can be further broken down
into other subitems. An item that has no subitems is
called an elementary item.

1-2

INTRODUCTION TO COBOL-68 LANGUAGE

1.2 ELEMENTS OF COBOL LANGUAGE

1.2.1 Program Structure

A COBOL program consists of four divisions. Within each division are
the program statements; some are required, others are optional.

Division Meaning

IDENTIFICATION DIVISION Identifies the source program.

ENVIRONMENT DIVISION Describes the computer on which the
source program is to be compiled,
the computer on which the object
program is to run, and certain
relationships between program
elements and hardware devices.

DATA DIVISION Describes the data to be processed
by the object program.

PROCEDURE DIVISION Describes the actions
performed on the data.

NOTE

There is no limit to the number of
source lines the compiler can handle.
However, the largest source line number
that the compiler can generate is 8184.
Beyond that number, the compiler begins
again with 0001. This can cause
confusion when error messages are
issued.

1.2.2 Character Set

to be

within a source program statement, all ASCII characters are valid
except:

1. Null, delete, and carriage return (which are ignored);

2. Line feed, vertical tab, form feed, and the printer control
characters (20(8) through 24(8)), which mark the end of a
source line;

3. Control-Z, which marks the end-of-file.

The lower case ASCII characters are translated to upper
characters except when they appear in nonnumeric literals.

case

Of this character set, 37 characters (the digits 0 through 9, the 26
letters of the alphabet, and the hyphen) can be used by the programmer
to form COBOL words, such as data-names, procedure-names, and
identifiers.

1-3

INTRODUCTION TO COBOL-68 LANGUAGE

Punctuation characters include:

(spac-e) II or

(comma)

(semicolon)

(period)

Special editing characters include:

+ (plus sign) *

(minus sign) Z

$ (dollar sign) B

(comma) 0

(decimal point) CR

DB

Special characters used in arithmetic

+ (addition) /

(subtraction) **

* (multiplication)

Special characters used in conditional

(equal) > (greater than)

1.2.3 Words

(quotation mark)

(left parenthesis)

(right parenthesis)

(horizontal tab)

. (check protection symbol)

(zero suppression)

(blank insertion)

(zero insertion)

(credit)

(debit)

expressions include:

(division)

(exponentiation)

(exponentiation)

(IF) statements include:

< (less than)

A COBOL word is composed of not more than 30 characters chosen from
the 37 characters A through Z, 0 through 9, and hyphen. A word is
terminated by a space, period, right parenthesis, comma, semi-colon,
or horizontal tab. A hyphen can not be used as the first or last
character of a word. If the terminator is not a space or horizontal
tab, at least one space or tab must follow the terminator.

Words used in writing COBOL source programs are of two types:
reserved words and user-created words.

COBOL

1.2.3.1 COBOL Reserved Words - COBOL reserved words are those words
that constitute the COBOL lexicon and have a special meaning to the
compiler (for example, DIVISION, PROCEDURE, ADD) ; these words are
listed in Appendix A. They include all the COBOL division, section,
and paragraph names, descriptive clauses, procedure verbs, certain
prepositions, figurative constants, and special registers. Reserved
words must be spelled and used exactly as shown in the formats given
in this manual.

1-4

INTRODUCTION TO COBOL-68 LANGUAGE

Figurative Constants - Figurative constants are reserved words that
specify certain fixed values. When these reserved words are to be
used as figurative constants, they must not be enclosed in quotation
marks; otherwise they are treated by the compiler as alphanumeric
literals.

The figurative constants are given below. Except for
ALL constant), singulai and plural forms are given;
equivalent and can be used interchangeably.

one case (the
these forms are

Figurative
Constant

ZERO
ZEROS
ZEROES

SPACE
SPACES

HIGH-VALUE
HIGH-VALUES

LOW-VALUE
LOW-VALUES

QUOTE
QUOTES

ALL any-literal

Use

Represents the value zero or one or more of
the character 0 depending on context.

Represents one or more blanks or spaces.

For DISPLAY-6, DISPLAY-7, and DISPLAY-9 items
this represents the highest value in the
collating sequence. For COMP and COMP-l
items, this represents the largest number
that can be placed in the machine word(s)
containing the item. For COMP-3 items, this
represents all 9s with the nonprinting plus
sign.

For DISPLAY-6, DISPLAY-7, and DISPLAY-9 items
this represents the lowest value in the
collating sequence. For COMP and COMP-l
items, this represents the smallest number
(most negative) that can be placed in the
machine word(s) containing the item. For
unsigned COMP-3 items, this represents all
zeros with the nonprinting plus sign; for
signed COMP-3 items, this represents all 9s
with a minus sign.

Represents one or more quotation marks (").
It can be used anywhere that the quotation
mark character (") is valid, except to
delimit alphanumeric literals (see Section
1.2.4.2, Alphanumeric Literals). QUOTE(S) is
frequently used where an actual quotation
mark character would erroneously appear to
delimit an alphanumeric literal. For
example, if you wanted your program to type
out the exact character string

MOUNT TAPE LABELLED "MASTER" ON DRIVE 3

you could use the procedure statement

DISPLAY "MOUNT TAPE LABELLED" QUOTE
"MASTER" QUOTE "ON DRIVE 3".

Represents repetitions of the string of
characters that constitute either an
alphanumeric literal or a figurative constant
(other than ALL any-literal) . If a
figurative constant is used, the ALL is
redundant; thus, ZEROS and ALL ZEROS are
equivalent.

1-5

INTRODUCTION TO COBOL-68 LANGUAGE

Figurative constants generate a string of characters whose length is
determined, based on context, by the compiler. For example, if
TOTAL-AMOUNT is a five-character field, the procedure statement MOVE
ALL ZEROS TO TOTAL-AMOUNT moves a string of five zeros to the field
TOTAL-AMOUNT; MOVE ALL "AB" TO TOTAL-AMOUNT moves "ABABA" to
TOTAL-AMOUNT. If the length cannot be determined by context, a single
character (or a single-character sequence, in the case of ALL) is
generated. For example, the procedure statement DISPLAY ALL QUOTES
results in the output of a single quotation mark (") to your terminal.

Examples of Use of Figurative Constants:

DATA DIVISION Usage:

PROCEDURE DIVISION Usage:

02"AMOUNT PICTURE IS 9999.99 VALUE
IS ZERO.
04 MESSAGE PICTURE IS A(lO) VALUE
IS SPACES.

MOVE ZEROS TO AMOUNT.
MOVE SPACES TO MESSAGE.
IF TOTAL IS EQUAL TO ZERO
EXAMINE FLD-A TALLYING LEADING
ZEROS.

Special Registers - In addition to figurative constants,
recognizes two other special reserved-words: TALLY and TODAY.

COBOL

TALLY is the name of a fixed five-digit signed COMPUTATIONAL field.
It is used primarily to hold information produced by the EXAMINE verb.
However, the programmer can use TALLY in any situation where a signed
numeric field is valid (for example, temporary storage of any integer
value of five or fewer digits).

TODAY is a l2-character alphanumeric DISPLAY field that contains the
current date and time. Its format is:

yymmddhhmmss

where yy is the year (last two digits) hh is the hour

mm is the month mm is the minute

dd is the day ss is the second

1.2.3.2 User-Created Words - User-created words are labels for the
various parts of your data (files, records, and fields) and your
procedure (sections and paragraphs). They can contain only the
symbols 0 through 9, A through Z, and the hyphen. With the exception
of procedure names, they cannot be all digits. A user-created word
can neither begin nor end with a hyphen. The maximum number of
user-created words allowed in the program is 4681.

User-created words can be further subdivided into several categories.
To understand the remainder of this manual, you should be familiar
with the following types of words.

data-name

file-name

The user-created name assigned to an item
(field) within a record.

The user-created name assigned to a data
file.

1-6

INTRODUCTION TO COBOL-68 LANGUAGE

record-name

procedure-name

identifier

mnemonic-name

condition-name

index-name

index data-name

1.2.4 Literals

The user-created name assigned to a data
record within a file.

The user-created name assigned to a paragraph
or section in the PROCEDURE DIVISION. When
assigned to a section, it is referred to as a
section-name; and when assigned to a
paragraph, it is referred to as a
paragraph-name.

A user-created name used in PROCEDURE
DIVISION statement formats to indicate a
data-name followed, as required, by the
syntactically correct combination of
qualifiers, and/or subscripts, and/or indexes
necessary to make reference to a unique item
of data.

A user-created name assigned to a hardware
device or a report code.

A user-created name assigned to a value or
range of values of the associated data item.
Condition-name can also be assigned to
console switch settings.

A user-created name defined using the INDEXED
BY clause (see OCCURS in Chapter 4). Its
function is identical to that of an index
data-name (see below).

A user-created name defined with USAGE INDEX.
Its function is identical to that of an
index-name.

A literal is a string of characters, the value of which is identical
to the characters that compose the literal. Literals are of two
types: numeric and nonnumeric.

1.2.4.1 Numeric Literals - A numeric literal is a string of 1 to 18
numeric characters (0 through 9). It cannot contain any alphabetic
characters. It can be preceded by a plus sign (+) or a minus sign
(-); if no sign is used, the literal is assumed to be positive. A
decimal point can appear anywhere in the literal except to the left of
the sign or as the rightmost character. If no decimal point is used,
the literal is assumed to be an integer. A numeric literal is
considered to be of the numeric class; that is, it can be used
legitimately as a value in arithmetic expressions.

Examples of Numeric Literals:

123 -123 +123 1.23456
-.123456789 1234567890.12345678

1-7

.123456789
-1234567890.12345678

INTRODUCTION TO COBOL-68 LANGUAGE

1.2.4.2 Alphanumeric Literals - Alphanumeric literals are character
strings containing from 1 to 120 characters enclosed in single or
double quotation marks. The value of the literal is equal to the
characters, including any spaces, enclosed by the quotation marks.
Note that the compiler accepts either single or double quotation marks
to enclose a literal; however, the opening and closing quotation
marks must be the same type, either single or double. Any ASCII
character except the quotation mark, null, delete, carriage return,
and printer control can appear within a literal.

Alphanumeric literals cannot be used as values in arithmetic
operations, and numeric editing cannot be performed on them. If a
literal conforms to the rules for formation of a numeric literal, but
is enclosed in quotation marks, it is considered to be an alphanumeric
literal. That is, "120.45" is not equivalent to 120.45.

Examples of Nonnumeric Literals:

II A" 'THIS ACCOUNT HAS A CREDIT BALANCE' IRE'rURN"
"-125.50" 'DEDUCT 10% IF PAID BEFORE JAN.3lST'

1.2.5 Punctuation

The punctuation that can be used in source programs includes the
space, comma, semicolon, and period.

The space is used to separate words, phrases and clauses. The comma
and semicolon can be used interchangeably within a program to improve
the appearance of the program. However, both the comma and the
semicolon are treated as spaces by the compiler; they can be used any
place in the program where a space is expected.

The period is used to terminate a division name, a section name, and a
paragraph name. It is also used in the PROCEDURE DIVISION to
terminate sentences. Paragraphs and sections are terminated by the
period ending the last sentence of the paragraph or section. In the
DATA DIVISION, a period must be placed after the description of a data
item. Examples of the use of periods are:

PROCEDURE DIVISION.

INPUT SECrION.

READ INFIL AT END GO TO ENDER.
DATA DIVISION.
FILE SECTION.

01 MYDATA PICTURE IS X(lO).

1-8

INTRODUCTION TO COBOL-68 LANGUAGE

1.3 SOURCE PROGRAM FORMAT

There are two basic types of source program formats in which you can
write your COBOL-68 programs. These two types arise from the methods
of entering the source program into the system. The first is
conventional card-type format. You should use this type if you wish
your COBOL-68 program to be compatible with other compilers. The
second is the standard DEC format which is designed for easy use on
terminals. This format is the one to use for those programs that are
to be entered into the system through a terminal using a text editor.
The compiler assumes that the source program is written in
terminal-type format unless the /S switch is included in the command
string to the compiler (refer to Chapter 6).

Certain margins which begin the areas used for writing COBOL-68
statements are standard for source programs. The standard names for
these margins are Margins L, A, B, and R. As you might expect,
Margins Land R are the left and right margins of the line,
respectively. Margins A and B mark the beginning of two areas, Areas
A and B. Area A is where all division-names, section-names,
paragraph-names, and FD (File Description) entries must begin. All
other entries must begin in Area B. Although the actual character
position which marks each of these margins changes from format to
format, the function of each area is the same; in other words, you
must begin your division-names at Margin A no matter what format you
use, no matter where Margin A happens to be placed in that format.

NOTE

These rules agree with the 1968 ANSI
standard for source program formats.
Programs written according to the rules
are more readable and transportable.
The COBOL-68 compiler, however, does not
do complete syntax checking to determine
if you have followed all rules, and does
not always issue an error message if you
violate them. Thus, you are encouraged
to conform to the rules to avoid
unpredictable results.

Some of the rules for using source program formats remain constant
regardless of which format you use. These rules are given below.
Refer to them for all types of formats.

1. Continuation Area - If you wish to split a word or literal
across two lines, you must use this area to indicate your
wish to the compiler. To do this, write the first line up to
the point at which you wish to split it, then place a hyphen
(-) in the continuation area of the next line and continue
the second line beginning at or after Margin A. If you are
splitting a word or numeric literal you can leave spaces
between the last character in the first line and the end of
the source statement area. (This area ends at the
identification area, when it exists; otherwise it ends at
Margin R.) However, if you wish to split an alphanumeric
literal you must not leave spaces after the last character of
the first line, since the compiler assumes that those spaces
are part of the literal. If you wish only to continue a
sentence on the next line without splitting any words, you
can simply write the first line, then continue on the next
line; do not use the continuation column for this purpose.

1-9

INTRODUCTION TO COBOL-68 LANGUAGE

2. Comment Lines - You can insert comment lines into your
COBOL-68 program by using the continuation area. If the
compiler finds an asterisk (*) in that area it lists the
remainder of the line as a comment on the next line. If
there is a slash (/) instead of an asterisk a new page is
started and the comment is listed at the top of the new page.

NOTE

All formats can be used with any input
medium. The· names of the types of
formats refer to their origins, not
their uses.

1.3.1 Card-Type Format

You should use card-type format if you wish to compile your program
under an operating system other than TOPS-IO or TOPS-20. Your program
can be punched on an off-line card punch or created with an on-line
text editor. This format uses card sequence numbers which must be
created by you. The layout of a line in this format is shown in
Figure 1-1 (a) . The numbers refer to card columns or character
positions.

CARD-TYPE FORMAT

6 7 8 12

~J
73 80

t 1 r,.... ."

L C A B I MR-S-965-81

Figure l-l(a) Card-Type Format

In this format, Margin L is to the left of position 1 and Margin R is
to the right of position 80. Margin A is betw~en positions 7 and 8
and begins the area labeled A in the figure. Margin B is between
positions 11 and 12 and begins the area labeled B.

The following rules pertain to the use of this source format:

1. Line Numbers - These are placed in area L (positions 1
through 6) by you when creating the file on a terminal or a
card punch.

2. Identification Area - This area is marked I in the figure
(positions 73 through 80). These eight character positions
can hold identifying information which can be composed of any
eight characters. This information is printed on the source
listing, and can be used to identify the card deck (if the
source code is in fact on cards).

1-10

INTRODUCTION TO COBOL-68 LANGUAGE

NOTE

The card sequence numbers are not the
same as the line numbers created by a
line editor. The numbers supplied by an
editor are not acceptable to COBOL-68
when you specify card-type format.

The example in Figure 1-1 (b) illustrate these rules. The first two
lines are simple statements, with a line number in area L, COBOL-68
statements in areas A and B, and the identification area containing
the name of the program. The third line shows how the continuation
column is used to split a word across two lines. Note that the word
can be written right up to the end of area B.

1.3.2 Terminal-Type Format

If you are writing your program using a text editor and a terminal to
input the source code, terminal-type format is your best choice.
There are two types of terminal-oriented formats,one with line
numbers and one without. Layouts and examples of each type are shown
in the figures which follow.

1.3.2.1 with Line Numbers - This format is suitable if you use a
line-oriented editor such as EDIT or 50S. The format is shown in
Figure 1-2 (a) •

TERMINAL·TYPE FORMAT . WITH LINE NUMBERS

6 7 8 12 122
~------------r-~-.----------~------------~/

~--~I~I~--~--~/i~1 ______ ~
L Z C A B

Figure 1-2(a) Terminal-Type Format with Line Numbers

In this format, margin L is to the left of position 1 and margin R is
to the right of position 122. Margin A is between positions 7 and 8
and begins the area labeled A. Margin B is between positions 11 and
12 and begins the area labeled B. Therefore, areas A and B can
contain a maximum of 114 characters.

1-11

INTRODUCTION TO COBOL-68 LANGUAGE

The following rules pertain to the use of this source format:

1. Line Numbers - These are placed in area L (positions 1
through 5) either by the line editor or by you. If you are
using an editor which supplies line numbers you must not add
numbers yourself - one set is enough.

2. position 6 - This position (marked Z in the figure) remains
blank. The editor can insert a tab here for purposes of
making your text more readable: if so, the compiler reads
the tab as a space.

3. Continuation Area - To use the continuation area, type -, *,
, or / as the first character of the line. However, if you
do not wish to use the continuation area, you can ignore it
altogether - you do not need to type a space at the beginning
of the line. If you do type a space as the first character
of a line, the compiler assumes that you meant the space to
be part of the line.

The example in Figure l-2(b) illustrate the use of this format. The
first two lines are simple COBOL-68 statements with the five-character
line number in area L and areas Z and C blank. The third line shows
how a word is split across two lines. Note that you can leave spaces
between the last letter of the word and margin R without confusing the
compiler.

1.3.2.2 without Line Numbers - If you 'decide to use a terminal to
enter your program but your editor (such as TECO or TV) does not
supply line numbers (or you requested that the editor remove them when
you finished editing), this is the simplest format to use. The format
is shown in Figure l-3(a).

TERMINAL-TYPE FORMAT - NO LINE NUMBERS

a 5 122
~~--------~~--------------~I ,~(----------------~

Figure l-3(a) Terminal-Type Format without Line Numbers

In this format, margin L is to the left of position 0, if it exists,
or position 1, if position 0 does not exist. Margin R is to the right
of position 122. Margin A is to the left of position 1 and begins the
area labeled A. Margin B is between positions 4 and 5 and begins the
area labeled B. Therefore, areas A and B can contain a maximum of 114
characters.

1-12

INTRODUCTION TO COBOL-68 LANGUAGE

The following rule pertains to the use of this source format:

Continuation Area - If you wish to use the continuation area,
type the character you wish to enter (-, *, /) as the first
character of the continued line. If the compiler finds one
of these characters at the beginning of a line it assumes
that the line has a position 0 in other words, a
continuation area. Otherwise, each line starts in position 1
and there is no position o.

The example in Figure 1-3{b) show this format's simplicity. The first
two lines are the same simple COBOL-68 sentences as above. Note that
the paragraph-name starts in the very first character position. The
third line shows how to tell the compiler that the line you enter is a
continuation (or a comment) line. The first half of the line is
entered beginning in the first position of Area B, while the second
half begins with a hyphen and continues from the second position.

1-13

7

00 1 0 00 PR OC ES
00 1 0 1 0 IMO

00 1 0 20 ST
00 1 0 30 SP
00 1 0 40- lAY

plR OC ES <;-IliA Ix.
IMn ~E TH IS

Sl R I NG I~ 0
- 1- RE clE I~ T

00 10P PR ~C ES
00 110 MO

00 120 ST
00 1 3 Q - AC

S- TA X.
VE TH IS -P ER 10 OS -T AX TO 1A X- p~ 10.

RI NG f'J0 Sl -R EC EN IT - MO N1 H, SP AC E , II _ II SP PC E, MO SiT -R EC EN T- OA Y , ,
lAC E , II _ II SP IA C E , t10 ST -IR EC EN T- YE IllR DE LI M I TE ~Y S I ZE IN TO 01 SP ,
-0 AT E.

Figure 1-1 (b)

-p IE R I'" IDle; -11 Alx 1110 11 P X- PiA Ie.

S -R EC EI~ 1- tJlc Nil H, ISlp Ale E , II _ II SP Alc E, Mlc Sil -B EC EN 1 - OA Y , SP ACE II _ II ,
-I~ EA R DIE 11 tJ I TIE [Islv SI Iz E IN TO Ie I SP IL Jl Iv - CP TE.

Figure 1-2 (b)

S- TA X.
VE TH IS -P ER 10 O~ -T AX ~~ ~A X- pll\ 10.

RI NG IMO ST -R EC EN T- MO Nrr ,S PA CE II - II , S PIA CE ,M OS T- RL- CE NT r--O ~~ ,~ PA ,
E, MO SiT -R EC EN T- YE IAR DE 1M IT ED BY S I ZE IN TO 01 SP AY -0 ~IT r-r- •

Figure 1-3 (b)

71 80
Till XA C~ T~
Till XA CC TG

Till XA CC TG
LT ~X AC CTG

MR-S-968-81

slF A C E tJOS

MR-S-969-81

CE II - II ,SP ,

MR-S-970-81

H
Z
t-3
~ o
o
c
(')
t-3
H
o
Z

t-3 o
(')

o
OJ
o
t"i
I

0"1
00

INTRODUCTION TO COBOL-68 LANGUAGE

1.4 THE COBOL LIBRARY FACILITY

You can use the COBOL Library Facility to copy part of your program
from a COBOL source library at compile time. This can be useful if,
for example, you need to describe a complex file to be used in several
different programs, and you wish to write the file description only
once. You can insert the file description into the library (for
directions and further description see the COBOL-68 Usage Material,
Part 3 of this manual), and whenever the description is needed you can
simply copy it from the library into the program you are writing. The
following statement is used to accomplish this.

NOTE

The COpy facility for COBOL-68 is the
enhanced version from the ANSI-74
standard, and not the original one from
the ANSI-68 standard.

1.4.1 The COPY Statement

Function

The COpy statement incorporates text from a COBOL library into a COBOL
source program. (For a complete description of COBOL libraries, see
the COBOL-68 Usage Material, Part 3 of this manual.) The COpy
statement can also be used to replace specified text in the source
text being copied.

General Format

COpy text-name [I~l library-name]

REPLACING {I ~~~~~~~~;~:~t-l== I
.;..;.;:;;;.;....;;.;...;...;;..;;...;.;;.;;;;. llteral-l

word-l

BY j ~~~~m~~;:~t-2== I}
-) literal-2 .•. -

~ word-2

Technical Notes

MR-S-971-81

NOTE

In the technical notes which follow, the
term string-l is used to denote the
character string which is used in place
of the following: pseudo-text-l,
identifier-I, literal-I, or word-I. The
term string-2 is similarly used.

1-15

INTRODUCTION TO COBOL-68 LANGUAGE

1. If more than one COBOL library is available during
compilation, text-name must be qualified by the library-name
identifying the COBOL library in which the text associated
with text-name resides.

Within one COBOL library, each text-name must be unique.

2. The COpy statement must be preceded by a space and terminated
by the separator period. The entire statement, including the
period, is removed when the text is copied from the library.

3. String-l must not be null, nor can it.consist solely of the
character space(s), nor can it consist solely of comment
lines.

4. String-2 can be null.

5. Character-strings within string-l and
continued. However, both characters
delimiter must be on the same line.

string-2 can be
of a pseudo-text

6. A COpy statement can occur in the source program anywhere a
character-st~ing or a separator can occur except that a COpy
statement must not occur within another COpy statement.

7. The effect of processing a COpy statement is that the library
text associated with text-name is copied into the source
program, logically replacing the entire COpy statement,
beginning with the reserved word COpy and ending with the
punctuation character period, inclusive. The compilation of
a source program containing COpy statements is logically
equivalent to processing all COpy statements prior to the
processing of the resulting source program. For clarity, use
the double equal sign (==) around string-l and string-2 to
designate clearly the string that is being replaced and the
string that is replacing that text. See Note 10 for an
example of the use of the double equal sign.

8. If the REPLACING phrase is not specified, the library text is
copied unchanged. If the REPLACING ~hrase is specified, the
library text is copied and each properly matched occurrence
of string-l in the library text is replaced by the
corresponding string-2.

9. The comparison operation to determine text replacement occurs
as follows:

a. Any separator comma, semicolon, and/or space(s) preceding
the leftmost library text-word is copied into the source
program. Starting with the leftmost library text-word
and the first string-l that was specified in the
REPLACING phrase, the entire REPLACING phrase operand
that precedes the reserved word BY is compared to an
equivalent number of contiguous library text-words.

b. String-l matches the library text if, and only if, the
ordered sequence of text-words that forms -string-l is
equal, character for character, to the ordered sequence
of library text-words. For purposes of matching, each
occurrence of a separator comma or semicolon in string-l
or in the library text is considered to be a single space
except when string-l consists solely of either a
separator comma or semicolon, in which case it
participates in the match as a text-word. Each sequence

1-16

INTRODUCTION TO COBOL-68 LANGUAGE

of one or more space separators is considered to be a
single space.

c. If no match occurs, the comparison is repeated with each
next successive string-I, if any, in the REPLACING phrase
until either a match is found or there is no next
successive REPLACING operand.

d. When all the REPLACING phrase operands have been compared
and no match has occurred, the leftmost library text-word
is copied into the source program. The next successive
library text-word is then considered as the leftmost
library text-word, and the comparison cycle starts again
with the first string-l specified in the REPLACING
phrase.

e. Whenever a match occurs between string-l and the library
text, the corresponding string-2 is placed into the
source program. The library text-word immediately
following the rightmost text-word that participated in
the match is then considered as the leftmost library
text-word. The comparison cycle starts again with the
first string-l specified in the REPLACING phrase.

f. The comparison operation continues until the rightmost
text-word 'in the library text has either participated in
a match or been considered as a leftmost library
text-word and participated in a complete comparison
cycle.

10. When you use the REPLACING phrase, you must treat any picture
strings in the library text as complete pieces of text. That
is, if you wish to replace XIS in the picture string

EXAMPLE-ITEM PICTURE IS XXX.

with 9's, you must replace the entire PICTURE clause, not
just the three XIS, with the form shown below:

COpy EXAMPLE-TEXT FROM LIBARY REPLACING
XXX== BY ==PICTURE IS 999==.

==PICTURE IS

11. For purposes of matching, a comment line which occurs in the
library text and string-l is interpreted as a single space.
Comment lines which appear in string-2 and library text are
copied into the source program unchanged.

12. The text produced as a result of the complete processing of a
COPY statement must not contain a COpy statement.

13. The syntactic correctness of the library text cannot be
independently determined. The syntactic correctness of the
entire COBOL source program cannot be determined until all
COPY statements have been completely processed.

14. Library text must conform to the rules for COBOL source
program format. (See Section 1.3.) You can copy text from a
library without worrying about what format your program is
in, however.

15. For purposes of compilation, text-words after replacement are
placed in the source program according to the rules for
source program format.

1-17

CHAPTER 2

THE IDENTIFICATION DIVISION

The IDENTIFICATION DIVISION is required in every source program and
identifies the source program and the output from compilation. In
addition, you can include other documentary information such as the
name of the program's author, the name of the installation, the dates
on which the program was written and compiled, any special security
restrictions, and any miscellaneous remarks.

General Structure

{ t£ EN T I F I CAT ION} D I V I S I ON. I
[PROGRAM-ID. [program-name] [comment paragraph] ..!...]

[AUTHOR. comment paragraph ..!...]

[INSTALLATION. comment paragraph ..!...]

[DATE-WRITTEN. comment paragraph ..!...]

[DATE-COMPILED. comment paragraph ..!...]

[SECURITY. comment paragraph ..!...]

[REMARKS. comment paragraph ..!...] MR-S-972-81

Technical Notes

1. The Identification Division must begin with the reserved I
words IDENTIFICATION DIVISION (or ID DIVISION) followed by a
period and a space. ID is the equivalent to IDENTIFICATION.

2-1

THE IDENTIFICATION DIVISION

2. The PROGRAM-ID paragraph contains the name identifying the
program. The program-name can have up to six characters, and
must contain only letters, digits, and the hyphen. It can be
enclosed in quotation marks. The program-name cannot be a
reserved word and must be unique. It cannot be the same as a
section, paragraph, file, data or subprogram name. This
paragraph is optional. If it is not present, the name MAIN
is assigned to the program.

3. The remaining paragraphs are optional and, if used, can
appear in any combination and in any order. A comment
paragraph consists of any combination of characters from the
COBOL character set organized to conform to COBOL sentence
and paragraph format. All text appears as written on the
output listing except the DATE-COMPILED paragraph. The first
line in this paragraph is deleted and replaced by the current
date. Any remaining text in the DATE-COMPILED paragraph is
treated as comments. Reserved words can be used in any
comment paragraph.

2-2

CHAPTER 3

THE ENVIRONMENT DIVISION

The Environment Division allows you to describe the particular
computer configurations to be used for program compilation and
execution. In this division you also specify the files and devices
you will use for input and output. The Environment Division consists
of the division header (ENVIRONMENT DIVISION.) followed by one or more
of the following sections:

CONFIGURATION SECTION.

INPUT-OUTPUT SECTION.

(See Section 3.1)

(See Section 3.2)

3-1

THE ENVIRONMENT DIVISION

CONFIGURATION SECTION

3.1 CONFIGURATION SECTION

The CONFIGURATION SECTION allows you to describe the computers used
for program compilation and execution, and to assign mnemonlc-names
for input/output devices. The Configuration Section consists of the
section name (CONFIGURATION SECTION.) followed by one or more of the
following paragraphs.

SOURCE-COMPUTER.

OBJECT-COMPUTER.

SPECIAL-NAMES.

Technical Notes

(See Section 3.1.1)

(See Section 3.1.2)

(See Section 3.1.3)

1. This section is optional.

2. All commas and semicolons are optional. A period must
terminate the entire entry in each of the three paragraphs.

3-2

THE ENVIRONMENT DIVISION

SOURCE-COMPUTER

3.1.1 SOURCE-COMPUTER

Function

The SOURCE-COMPUTER paragraph describes the computer on which the
program is to be compiled.

General Format

[SOURCE-COMPUTER. computer-name.J
MR·S·973·81

Technical Notes

1. This paragraph is optional.

2. You must use one of the following terms for computer-name:

Example

DECsystem-IO
PDP-IO
DECSYSTEM-20
DECsystem-IOnn

where nn is a 2-digit integer in the range from 00 to 99.

SOURCE-COMPUTER. DECSYSTEM-I055.

3-3

I

•

THE ENVIRONMENT DIVISION

OBJECT-COMPUTER

3.1.2 OBJECT-COMPUTER

Function

The OBJECT-COMPUTER paragraph describes the computer on which the
program is to be executed.

General Format

OBJECT-COMPUTER {computer- name}

[MEMORY SIZE i nteger-l
j CHARACTE RS }]

WORDS t MODULES

[SEGMENT-LIMIT IS integer-2]

{
DISPLAY- 61

DISPLAY IS DISPLAY-7
DISPLAY-9

MR-S-974-81

Technical Notes

1. This paragraph is optional.

2. You must use one of the following terms for computer-name:

3.

DECsystem-lO
PDP-IO
DECSYSTEM-20
DECsystem-lOnn

where nn is a 2-digit integer in the range 00 to 99.

The MEMORY SIZE clause is optional. If it is omitted,
262,144 WORDS are assumed. If it appears, the following
ranges are applicable.

CHARACTERS

WORDS

MODULES

Up to 1,572,864 (262,144 words x 6
characters/word)

Up to 262,144

Up to 256 (1 module equals 1024
words)

3-4

THE ENVIRONMENT DIVISION

OBJECT-COMPUTER (Cont.)

COBOL-68 ignores the MEMORY SIZE clause. SORT uses its
default algorithms to determine the amount of memory needed
to execute a sort. (Refer to the TOPS-IO and the TOPS-20
SORT User's Guides for more information.)

4. If the SEGMENT-LIMIT clause is -given, only those segments
having segment numbers from 0 up to, but not including, the
value of integer-2 are considered as resident segments of the
program. Integer-2 must be a positive integer in the range 1
to 49.

If the SEGMENT-LIMIT clause is omitted, segments having
segment numbers from 0 through 49 are considered as resident
segments of the program (that is, SEGMENT-LIMIT IS 50 is
assumed). More on segmentation can be found in Chapter 5.

5. The DISPLAY IS clause is optional. If you specify DISPLAY
IS, then all data-items described as DISPLAY defaults to the
specified DISPLAY type. Using the DISPLAY IS clause also
causes the recording mode for external files to default to
the specified DISPLAY type.

Example

OBJECT-COMPUTER. DECSYSTEM-l077
MEMORY 50000 WORDS.

3-5

THE ENVIRONMENT DIVISION

SPECIAL-NAMES

3.1.3 SPECIAL-NAMES

Function

THE SPECIAL-NAMES paragraph provides a means of assigning mnemonic
names to input/output devices.

General Format

SPECIAL-NAMES. [CONSOLE IS mnemonic-name-l]

[CHANNEL (m) IS mnemonic-name-2]

[CHANNEL (n) IS mnemonic-name-3 ...]

IS mnemonic-name-4 [ON STATUS IS condition-name-l]

[OFF STATUS IS cond it i on-name-2]

ON STATUS IS condition-name-l
SWITCH (m)

[OFF STATUS IS condition-name-2]

OFF STATUS IS condition-name-2

[ON STATUS IS condition-name-lJ

[SWITCH (n) ...] ...

[literal-l IS mnemonic-name-5]

[CURRENCY SIGN IS literal-2]

[DECIMAL-POINT IS COMMA] ...:..

MR-S-975-B1

3-6

THE ENVIRONMENT DIVISION

SPECIAL-NAMES (Cont.)

Technical Notes

1. This paragraph is optional.

2. The reserved word CONSOLE refers to your terminal. The
assigned mnemonic-name can be used with the ACCEPT and
DISPLAY verbs in the PROCEDURE DIVISION to input data from
and output data to the terminal.

3. The name CHANNEL refers to a channel on the line-printer
control tape. m and n represent any integer from 1 to 8 and
refer to anyone of the eight channels on the tape. Control
tape channels can be referred to in the ADVANCING clause of
the WRITE verb in the PROCEDURE DIVISION to advance the paper
form to the desired channel position. (Refer to the Hardware
Reference Manual for a description of printer control
tapes.) For example, if the entry

CHANNEL (1) IS TOP-OF-PAGE

is included in
statement prints
next page.

this
the

paragraph, the following procedure
line and then skip to the top of the

IF LINE-COUNT IS GREATER THAN 50 WRITE PRINT-RECORD
BEFORE ADVANCING TOP-OF-PAGE.

4. The reserved word SWITCH is provided for compatibility with
other manufacturers' COBOL compilers. The use of the SWITCH
feature is discouraged in a time-sharing environment. If
provided, the name SWITCH refers to the hardware switches on
the KA-10 or KI-10 console. The letters m and n in the
general format represent any integer from 0 to 35 and refer
to the corresponding console switches.

The mnemonic-name can be used in conditional expressions in
the PROCEDURE DIVISION. For example, if the entry

SWITCH (4) IS INPUT-l

is included in this paragraph, the following condition is
considered to be true if switch (4) is on.

IF INPUT-l IS ON .•.•

If a condition-name is specified for the ON or OFF STATUS of
a switch, that condition-name can be used in a conditional
expression. For example, if the entry

SWITCH (4) IS INPUT-Ii OFF STATUS IS NO-INPUT

is included in this paragraph, the following procedure
statements are functionally equivalent.

IF INPUT-l IS OFF ••..

IF NO-INPUT •.••

3-7

THE ENVIRONMENT DIVISION

SPECIAL-NAMES (Cent.)

5. The clause literal-l IS mnemonic-name-5 specifies the CODE
value for a particular report (refer to the CODE clause in
Chapter 4). Literal-l must be a nonnumeric literal enclosed
in quotation marks, and can be from 1 through 120 characters
in length.

6. If you use the CURRENCY SIGN clause in the SPECIAL NAMES
paragraph, then the literal you specify replaces the standard
$ character functions for PICTURE clauses in. the DATA
DIVISION.

This literal is limited to a single printable character and
must not be one of the following characters:

digits 0 through 9

alphabetic characters A, B, C, D, P, R, S, V, X, Z

special characters * + - , . , () II

7. If you use the DECIMAL-POINT IS COMMA clause then the
functions of the comma and period are interchanged for all
PICTURE clauses and numeric literals.

Example

SPECIAL-NAMES. CONSOLE IS MYTERM
CHANNEL (1) IS TOP-OF-PAGE
SWITCH (10) IS LOOPER.

3-8

THE ENVIRONMENT DIVISION

INPUT-OUTPUT SECTION

3.2 INPUT-OUTPUT SECTION

The INPUT-OUTPUT SECTION names the files and external media required
by the object program and provides information required for
transmission and handling of data during execution of the object
program. This section consists of the section header (INPUT-OUTPUT
SECTION.) followed by one or more of the following paragraphs:

FILE-CONTROL

I-O-CONTROL

(See Section 3.2.1)

(See Section 3.2.2)

Technical Notes

1. This section is optional.

2. All semicolons and commas are optional.
statement in the FILE-CONTROL paragraph
period. The entire entry in the I-O-CONTROL
end with a period.

3-9

Each SELECT
must end with a

paragraph must

THE ENVIRONMENT DIVISION

FILE-CONTROL

3.2.1 FILE-CONTROL

Function

The FILE-CONTROL paragraph names each file, identifies the file
medium, and allows logical hardware assignments.

General Format

FILE-CONTROL.SELECT OPTIONAL file-name

ASSIGN TO device-name-l [,device-name-2]

[FOR MULTIPLE {~~i~ lJ

[RESERVE {~~tege r-l l AL TERNATE [AREA J J AREAS

[

(FILE LIMIT IS)
) FILE-LIMIT IS (
) FILE-L IMITS ARE,
{ FILE LI MITS ARE J

[{ data-name-ll THRU]
literal-l (

[{ data-name-3} THRU
, "literal-3 { data-name-4 l]

literal-4 (

{
d a t a - n ame - 2 }
literal-2

---J

{

SEQUENTIAL [WITH CHECKPOINT OUTPUT [EVERY
RJI,NDm~

ACCESS MODE IS
-- INDEXED IwITH{CHECKPOINT OUTPUT [EVERY L DEFERRED OUTPUT

integer-l

i nteger-l

PROCESSING MODE IS SEQUENTIAL
ACTUAL KEY IS data-name-5

3-10

RECORDS] J)
RECORDS]]

MR-S-976-81

THE ENVIRONMENT DIVISION

FILE-CONTROL (Cont.)

[{ SYMBOL IC} KEY IS data-name-6 RECORD KEY IS data-n ame-7] NOMI NAL ' -.:.=..;::::...::..:....=.

RECORDING MODE IS

ASCII
SfXBfT
BINARY
£.
.'::L.
STANDARD-ASCI I
STANDARD ASCII

[
FILE-STATUS IS data-name-8 [,data-name-9 [,data-name-lO
FILE STATUS

[,data-name-ll [,data-name-12 [,data-name-13

[, data-name-14 [,data-name-15]]]]]]]]

[SELECT •••• J ...
MR-S-977-81

Technical Notes

1. This paragraph is optional.

2. All semicolons and commas are optional. Each SELECT clause
must end with a period.

3. The SELECT and ASSIGN clauses must appear before any other
clause shown, and the SELECT clause must precede the ASSIGN
clause. Every file described in the Data Division must be
named in a SELECT clause in the Environment Division.
Therefore, a SELECT filename ASSIGN TO device-name clause
must be specified for every file. The other clauses can be
in any order.

4. The individual clauses are described on the following pages
in the order shown above.

3-11

THE ENVIRONMENT DIVISION

SELECT

3.2.1.1 SELECT

Function

The SELECT statement names each file that is to be described in the
DATA DIVISION, and assigns each file to a particular device.

General Format

SELECT [OPTIONAL] file-name ~ TO {
1 i te ra 1-1 }
device-name-l [

,literal-2 J
, d ev i ce - n a me- 2 MR-S~9;8~81

Technical Notes

1. Each file described in the DATA DIVISION must be named once
and only once as a file-name in a SELECT, statement.
Conversely, each file named in a SELECT statement must have a
File Description entry in the DATA DIVISION. Each file-name
must be unique within a program.

2. The key word OPTIONAL is required for input files that are
not necessarily present each time the object program is run.
When an OPEN statement is executed for a file that has been
declared OPTIONAL, the question IS file-name PRESENT? is
typed and the operator responds with YES or NO. If the
response is YES, the file is processed normally; if the
response is NO, the first READ statement executed for that
file immediately takes the AT END or INVALID KEY path. ISAM
files can not be optional. They must be present at program
start-up, even if only as dummies.

3. The ASSIGN
Device-names
device-names.

clause specifies the device for a file.
can be either physical device-names or logical

Physical device-names are fixed mnemonic-names that are
associated with specific peripheral devices. When specified
in an ASSIGN clause, a physical device-name assigns the
associated file to that device. Physical device-names are
described in the Operating System Commands manual.

Logical device-names are names created by the programmer.
They can contain up to six characters, consisting of any
combination of letters and digits. At object execution time,
each logical device-name must be assigned to a physical
device by means of the TOPS-IO ASSIGN command or the TOPS-20
DEFINE command.

3-12

THE ENVIRONMENT DIVISION

SELECT (Cont.)

4. The use of literals with the ASSIGN clause allows you to use
COBOL reserved words as legal device names. The literal name
must follow the same conventions as the device-name:
literals can contain up to six characters, consisting of any
combination of letters and digits. At object execution time,
each literal must be assigned to a physical device by means
of the TOPS-IO/TOPS-20 ASSIGN command or the TOPS-20 DEFINE
command.

5. More·than one device can' be assigned to a file to avoid delay
when switching from one reel or unit to the next. When more
than one device is specified, the object program
automatically uses the next device, in a cyclic manner, when
an end-of-reel condition is detected, or when a CLOSE REEL
statement is executed. This automatic switching occurs only
for tapes, SORT, and ISAM files. It is unconditional for
tapes. For SORT/MERGE, you can assign any number of devices.
If the devices are all generic disk (i.e. DSK), SORT/MERGE
uses its internal optimal algorithm to determine which
physical devices to use. For any other devices, all devices
specified are used in a round-robin fashion. You can assign
only two devices when you use ISAM.

6. If the access mode is INDEXED, and two devices are assigned,
the first device is assumed to contain the index portion of
the file and the second to contain the data portion of the
file. If one device is specified, it is assumed to contain
both the index portion and the data portion of the file.

7. For ISAM and random files, the devices must be random-access.

Examples

SELECT INFIL ASSIGN TO DTAI.

SELECT SRTFIL ASSIGN TO DSK, DSK, DSK.

3-13

THE ENVIRONMENT DIVISION

FOR MULTIPLE

3.2.1.2 FOR MULTIPLE

Function

THE FOR MULTIPLE clause specifies that a tape-file occupies more reels
than the number of devices assigned. The FOR MULTIPLE clause does
nothing when your program is compiled. It is merely used for
documentation purposes only.

General Format

[FOR MULTIPLE {~m}]
MR·S·979·B1

Example

SELECT OUTFIL ASSIGN TO MTA
FOR MULTIPLE REEL.

3 14

THE ENVIRONMENT DIVISION

RESERVE

3.2.1.3 RESERVE

Function

The RESERVE clause allows y-ou to specify an addi tional number of
input/output buffer areas to be allocated by the compiler to this
file.

General Format

[RESERVE I ~~teger-l } ALTERNATE [AREA]]
AREAS

MR-S-980-81

Technical Notes

1. If the access mode is RANDOM or INDEXED, this clause is
ignored and only one buffer area is assigned.

2. If the NO option is used, only one buffer area is allocated.

3. If the integer-l option is used, the integer specifies the
number of buffer areas to be assigned in addition to the two
areas always assigned by the compiler. If integer-l is less
than 0, only one buffer area is assigned.

4. You can specify a maximum of 62 areas for integer-l.

Example

However, the optimal number of areas you can specify is
between 5 and 10. If you specify the number of areas to be
greater than 62, a warning message is generated. If you
specify a large (but legal) number of areas, you might run
out of available memory. Specifying a large number of areas
might also cause your program to run more slowly, since your
program is that much bigger.

SELECT INFIL ASSIGN TO DSK
RESERVE 1 ALTERNATE AREA.

3-15

THE ENVIRONMENT DIVISION

FILE-LIMIT

3.2.1.4 FILE-LIMIT

Function

The FILE-LIMIT clause is used to define the logical limits of a file
whose access mode is RANDOM.

General Format

data-name-l
literal-l }

THRU] {d~ta-name-2}
-- llteral-2

[. { m:~~~~~-3} THRU {
data-name-4 }]
literal-4

Technical Notes
] MRS,",,,

1. The FILE-LIMIT clause is required only for files whose access
mode is RANDOM; it is optional for files with SEQUENTIAL
access mode residing on mass-storage devices. It is ignored
in all other cases.

2. The words FILE and LIMIT (or LIMITS) can be separated with
the space or hyphen.

3. Every data-name used in this clause must be defined as USAGE
COMP or INDEX and must be an integer of 10 digits or less.

4. Each pair of operands represents a
file. If the first operand of
specified, it is assumed to be 1.

logical portion
the first pair

of the
is not

5. The operands represent logical record numbers relative to the
beginning of the file. The first record is considered to be
1.

6. The logical beginning and end of a random-access file are the
records specified by the first and last operands,
respectively, of the FILE-LIMIT clause.

7. The values of data items specified in this clause are used by
the object-time system only when the file is opened by an
OPEN statement.

8. tf a file whose access mode is RANDOM is processed
sequentially, the FILE-LIMIT clause is ignored. Thus, you
can create records with keys higher than the upper
FILE-LIMIT.

3-16

THE ENVIRONMENT DIVISION

;Example

SELECT INFIL ASSIGN TO DSK
F~LE LIMIT IS 3000.

3-17

FILE-LIMIT (Cont.)

THE ENVIRONMENT DIVISION

ACCESS MODE

3.2.1.5 ACCESS MODE

Function

The ACCESS MODE clause specifies the way in which a file is accessed.

General Format

ACCESS MODE IS
{

SEQUENTIAL [WITH CHECKPOINT OUTPUT [EVERY integer-l Rp.NDm1

INDEXED ~ITH{CHECKPOINT OUTPUT [EVERY integer-l

RECORDS] J}
RECORDS]] L DEFERRED OUTPUT

MR-S-982-81

Technical Notes

1. The ACCESS MODE clause is
indexed-sequential files.
files.

required
It is

for random-access and
ignored for sequential

2. If ACCESS MODE IS SEQUENTIAL and the file is on a
random-access device, the random-access records are obtained
or placed sequentially. That is, the next logical record is
made available from the file on a READ statement execution,
and an output record is placed into the next available area
on a WRITE statement execution. Thus sequential access
processing on a random-access device is functionally similar
to the processing of a magnetic tape file.

3. If ACCESS MODE IS RANDOM, the contents of the data item
associated with the ACTUAL KEY specifies which record,
relative to the beginning of the file, is made available by a
READ statement, or where the record is to be placed by a
WRITE statement.

4. If ACCESS MODE IS INDEXED, the contents of the data item
associated with the SYMBOLIC KEY specifies which record is
made available by a READ statement, or where the record is to
be placed by a WRITE statement, or which, record is to be
deleted by a DELETE statement, or which record is replaced by
a REWRITE statement.

5. The DEFERRED OUTPUT option of the INDEXED ACCESS MODE causes
the object-time system to output a block of an indexed
sequential file only when another block must be brought into
core. Normally, to ensure security for the file, a block is
output every time a record is written, even if records are
written successively in the same block. When a file is
opened for simultaneous update, the DEFERRED OUTPUT clause is
ignored. Refer to the OPEN statement in Chapter 5.

3-18

THE ENVIRONMENT DIVISION

ACCESS MODE (Cont.)

6. If you are using ISAM files sequentially, DEFERRED OUTPUT
provides the advantage of running faster. However, it is
also more easily damaged if the system crashes. Thus, its
use is advantageous if file integrity is not important.

7. Specifying the CHECKPOINT OUTPUT phrase causes a checkpoint
FILOP. UUO to occur after every physical output. For
sequential files, every output may not coincide with each
WRITE. For ISAM files, the CHECKPOINT OUTPUT causes the
FILOP. UUO to occur after every output. For ISAM files,
every output coincides with each WRITE.

Using the CHECKPOINT OUTPUT phrase has the same effect as if
you were to use a CLOSE followed by an OPEN. However, the
CHECKPOINT OUTPUT phrase performs the action much faster than
the OPEN and CLOSE verbs. Using the CHECKPOINT OUTPUT phrase
increases the reliability of your ISAM files, but it slows
down the overall performance of your program.

8. If integer-l is zero, or if you do not specify the EVERY
integer-l RECORDS clause, the checkpointing actions occurs
after every physical write.

Example

SELECT INFIL ASSIGN TO DSK, DSK
ACCESS MODE IS INDEXED WITH DEFERRED OUTPUT.

3-19

THE ENVIRONMENT DIVISION

PROCESSING MODE

3.2.1.6 PROCESSING MODE

Function

The PROCESSING MODE clause specifies that the file is to be processed
sequentially.

General Format

[PROCESSING MODE IS SEQUENTIAL]
MR-S-983-81

Technical Notes

This clause is for documentation only; records are always
processed in the order in which they are accessed.

Example

SELECT INFIL ASSIGN TO MTAl
ACCESS MODE IS SEQUENTIAL
PROCESSING MODE IS SEQUENTIAL.

3-20

THE ENVIRONMENT DIVISION

ACTUAL KEY

3.2.1.7 ACTUAL KEY

Function

The ACTUAL KEY clause specifies which record is read or written in a
random-access file.

General Format

[ACTUAL KEY IS data-name]
MR-S-984-81

Technical Notes

1. The ACTUAL KEY clause is valid only for files whose access
mode is RANDOM; it must be specified for those files. This
clause cannot be used for files whose access modes are
INDEXED or SEQUENTIAL.

2. The ACTUAL KEY data-name must be defined in the DATA DIVISION
as a COMPUTATIONAL item of ten or fewer digits. The PICTURE
can contain only the characters 8 and 9 or their equivalent,
for example 89(10).

Example

SELECT INFIL ASSIGN TO D8K
ACCESS MODE IS RANDOM
ACTUAL KEY IS RKEY.

3-21

THE ENVIRONMENT DIVISION

SYMBOLIC KEY

3.2.1.8 SYMBOLIC KEY

Function

The SYMBOLIC KEY clause specifies the record in an indexed-sequential
file that is to be read, written, deleted or rewritten.

General Format

[I SYMBOLIC I KEY
NOMINAL IS d'ata-name-l, RECORD KEY IS data-name-2']

MR-S-985-81

Technical Notes

1. NOMINAL KEY is completely equivalent to SYMBOLIC KEY.

2. The SYMBOLIC KEY clause is valid only for files whose access
mode is INDEXED; it must be specified for those files (refer
to the READ statement in Chapter 5).

3. The SYMBOLIC KEY data-item must be defined in the DATA
DIVISION, and must not appear in the record area of the file
to which it pertains. It must agree with the description of
the RECORD KEY data item in class, usage, size, and number of
decimal places.

4. The RECORD KEY data-item must be defined as an item in the
record area of the file to which it pertains. Though the
RECORD KEY is described in only one of the records, it is
assumed to occupy the same position in all records for that
file.

5. The RECORD KEY is required to describe the location in the
record area of the key for the file. The contents of the
RECORD KEY data-item must be unique for each record in the
file, and cannot be equal to LOW-VALUES (refer to the READ,
WRITE, REWRITE, and DELETE statements in Chapter 5).

Example

SELECT INFIL ASSIGN TO DSK, DSK
ACCESS MODE IS INDEXED
SYMBOLIC KEY IS SYMKEY, RECORD KEY IS RECKEY.

3-22

THE ENVIRONMENT DIVISION

RECORDING MODE/DENSITY/PARITY

3.2.1.9 RECORDING MODE/DENSITY/PARITY

Function

The RECORDING MODE clause specifies the r-ecording mode, tape density,
and parity for a magnetic tape file.

General Format

RECORDING ~ODE IS [BYTE MODE]

{
A.S..W }]

S I XB IT
BINARY

fTANDARD-ASCII
STANDARD ASCII

[DENSITY IS tm} 1 [URill IS (~~~N lJ
MR-S-986-81

Technical Notes

1. The RECORDING MODE clause allows you to record data on the
device in a format other than that used in memory. The
following recording modes are acceptable.

ASCII - The file is read/written as ASCII
7-bit characters per 36-bit word.
rightmost bit) is ignored.

records, five
Bit 35 (the

SIXBIT - The file is read/written
6-bit characters per
headers.

as SIXBIT records, six
36-bit word with record

BINARY - The file is read/written as binary records, 36 bits
per word.

F The file is read/written as fixed-length EBCDIC
records, four 9-bit characters per 36-bit word for
everything but industry-compatible magnetic tape.
For industry-compatible magnetic tape (9-track, with
800, 1600, and 6250 bpi density), the file is
read/written with four 8-bit characters per 36-bit
word. If more than one record description is given
in the FD entry, the record length must be the same
for all records in the entry.

3-23

THE ENVIRONMENT DIVISION

RECORDING MODE/DENSITY/PARITY (Cent.)

V - The file is read/written as variable-length EBCDIC
records, four 9-bit characters per 36-bit word with
record and block headers. However, for
industry-compatible magnetic tape (9-track, with
800, 1600, or 6250 bpi density), the file is
read/written with four 8-bit characters per 36-bit
word. If a file whose recording mode is V is open
for INPUT-OUTPUT and you overwrite a record, the
record being written must be the same size as the
overwritten record. A file whose recording mode is
V cannot be opened for simultaneous update.

STANDARD-ASCII (STANDARD ASCII)

The five 7-bit bytes in each word in core are
transferred to five 8-bit bytes on the tape and bit
35 is stored in bit 0 of the fifth byte on tape.
The character set and the character encodings are
the same as those of ASCII recording mode. This
enables interchanges with other manufacturers' ASCII
data files.

The format of records for each recording mode is given in
Section 4.11.2.11.

2. The recording mode of a file is determined by a number of
factors besides the recording mode specified in the RECORDING
MODE clause. These factors are:

a. If the device can only accept ASCII data (For example,
Line Printer), the object-time system always uses ASCII
as the recording mode no matter what recording mode is
specified.

b. If the ADVANCING or POSITIONING clause is included in the
WRITE statement, the object-time system always uses ASCII
as the recording mode no matter what recording mode is
specified.

c. If the file descriptor (FD) has a REPORT clause, the
object-time system always uses ASCII as the recording
mode no matter what recording mode is specified.

d. The recording mode specified in the RECORDING MODE clause
is compared to the USAGE clause for the record. The
recording mode is determined in the following sequence:

1. The recording mode that is specified is used.

2. If the recording mode is not specified, the default
recording mode depends on the usage mode that is
specified.

3. If neither the recording mode nor the usage mode is
specified, the default recording mode depends on the
display mode.

3-24

THE ENVIRONMENT DIVISION

RECORDING MODE/PARITY/DENSITY (Cont.)

4. If none of the above has been specified, the default
recording mode is SIXBIT, unless the /X switch is
included in the command string to the compiler or the
DISPLAY is DISPLAY-6/7/9. If the /X switch is
included, the default recording mode is F. If the
DISPLAY is DISPLAY-6/7/9, then the default recording
mode is SIXBIT/ASCII/F.

When the recording mode is not declared, it is inferred from
the usage mode for the record according to the rules given
above. However, the reverse is not true. That is, when the
recording mode is declared and no usage mode is given for a
record, the presence of the- RECORDING MODE clause serves only
to specify the recording mode of the file. The usage mode of
the records in the file can default to another character set,
with undesirable results (see the USAGE clause in Chapter 4).
Table 3-1 shows the resulting recording mode when the
recording mode declared in, the RECORDING MODE clause is
compared to the usage mode declared in the USAGE clause.

3. The DENSITY and PARITY clauses are valid only for magnetic
tape, and are ignored for all other devices. If the DENSITY
clause is hot present, tapes are recorded in the density
standard for the installation. The density for a job can be
modified by the SET DENSITY command, which is described in
the TOPS-IO Operating Systems Manual and the TOPS-20 User's
Guide. A density of 1600 or 6250 bpi can be specified only
for tapes being read/written to or from magnetic tape drives
that can use that density. If the PARITY clause is omitted,
ODD is assumed. Care must be taken when using even parity.
If nulls are written into a file that is recorded in even
parity, the file cannot be read properly. Nulls can be
written into a file without you being aware of them; that
is, when SYNCHRONIZED data items appear in an item, the word
preceding the word in which the item is synchronized could
contain nulls.

4. If BYTE MODE is used, the exact number of bytes is written on
the tape. BYTE MODE truncates; it does not round up to word
boundary. This occurs only on magnetic tape. BYTE MODE
applies only to users of TOPS-IO and only to sequential
files. Its purpose is to enable interchanges with other
manufacturers' equipment.

Example

SELECT INFIL ASSIGN TO MTAI
RECORDING MODE IS V
DENSITY IS 800
PARITY IS ODD.

3-25

THE ENVIRONMENT DIVISION

RECORDING MODE/DENSITY/PARITY (Cont.)

Table 3-1
Recording Modes

RECORDING MODE Recording Mode
Clause USAGE Clause actually used

none DISPLAY-6 SIXBIT

none DISPLAY-7 ASCII

none DISPLAY-9 EBCDIC

none none SIXBIT (no IX)
or DISPLAY-6

none none EBCDIC (IX)
or DISPLAY-9

none none ASCII (DISPLAY-7)

SIXBIT DISPLAY-6 SIXBIT

SIXBIT DISPLAY-7 SIXBIT

SIXBIT DISPLAY-9 SIXBIT

ASCII DISPLAY-6 ASCII

ASCII DISPLAY-7 ASCII

ASCII DISPLAY-9 ASCII

F or V DISPLAY-6 EBCDIC

F or V DISPLAY-7 EBCDIC

F or V DISPLAY-9 EBCDIC

BINARY DISPLAY-6 BINARY

BINARY DISPLAY-7 BINARY

BINARY DISPLAY-9 BINARY

NOTE

Conversions necessary to make the
recording mode conform to the usage mode
of the records are made automatically by
the object-time system. (These
conversions can cause your program to
run more slowly.)

3-26

THE ENVIRONMENT DIVISION

FILE STATUS

3.2.1.10 FILE STATUS

Function

The FILE STATUS clause specifies data-items into which LIBOL places
values when an I/O error or warning message occurs on the file
specified by the SELECT clause. A user-written USE procedure can then
examine and alter these values as part of a recovery process.

General Format

{FILE-STATUS} [FILE STATUS IS data-name-l ,data-name-2 [,data-name-3 [,data-name-4

[, data- name- 5 [, data- name-6 [, data-n ame-7 [, dat a-name-8]]]]] lJ
MR-S-987-81

Technical Notes

1. Data-name-l is required if this clause is specified; but
data-name-2 through data-name-8 are optional. If fewer than
eight data-names are specified, the compiler assumes that the
data-names are specified starting with data-name-l and
continuing in order. Therefore, if data-name-8 is specified,
data-name-l through data-name-7 must also be specified.

3-27

I

THE ENVIRONMENT DIVISION

FILE STATUS (Cont.)

2. The data-names must be defined in the WORKING STORAGE SECTION
of the DATA DIVISION in the following form:

data-name-l
data-name-2
data-name-3
data-name-4
data-name-5
data-name-6
data-name-7
data-name-8

PIC 9(2).
PIC 9 (10) .
USAGE INDEX.
PIC X(9).
USAGE INDEX.
USAGE INDEX.
PIC X(30).
USAGE INDEX.

3. After a fatal I/O error, the FILE STATUS items contain the
following values:

data-name-l contains the file status.
data-name-2 contains a ten digit error number.
data-name-3 contains the action code, which is set to zero.
data-name-4 contains the VALUE OF ID.
data-name-5 contains the current block number.
data-name-6 contains the current record number.
data-name-7 contains the file name.
data-name-8 contains the file-table pointer.

The file status, which is stored in data-name-l, is set to one of the
following 2-character codes.

00 The I/O was successful.
10 No next logical record; that is, there is no next record

in the file. The AT END path is taken.
22 Duplicate key; that is, an attempt was made to write a

record into a record position that is already occupied.
The INVALID KEY path is taken.

23 No record found on READ, REWRITE, DELETE; that is, when.
an indexed sequential file was accessed, an empty record
position was found. The INVALID KEY path is taken.

24 Boundary violation, that is, the random file's actual key
violated the file limits. The INVALID KEY path is taken.

30 Permanent error; that is, a successful hardware
operation cannot be done without a hardware error signal.

34 Permanent error; . that is, more space on the media cannot
be obtained to extend the file for output operations.

The 10-character error number stored in data-name-2 has the form:

ABCDEFGHIJ

where the code has the meanings shown below.

AB contains a value indicating the COBOL verb that caused the error.

o No COBOL verb error
1 OPEN
2 CLOSE
3 WRITE
4 REWRITE
5 DELETE
6 READ
7 RETAIN

3-28

THE ENVIRONMENT DIVISION

FILE STATUS (Cont.)

CD contains a value indicating the monitor call (UUO) that caused the
error.

o No UUO error
1 INPUT
2 OUTPUT
3 LOOKUP
4 ENTER
5 RENAME
6 INIT
7 FILOP
8 TAPOP

EF contains a value indicating the type of file being accessed when
the error occurred.

o None of the following
1 ISAM index file
2 ISAM data file
3 A sequential file
4 A random file

G contains a value indicating the ISAM block type that was being
accessed when the error occurred.

o None of the following
1 ISAM statistics block
2 ISAM SAT block
3 ISAM index block
4 ISAM data block

HIJ contains a value indicating an error number on INPUT or OUTPUT.

If CD is set to 0, HIJ contains an error number. The numbers and
their meanings are listed below. Note that these are the same as the
messages issued by LIBOL after an error or warning occurs.

o None of the following.
1 SYMBOLIC-KEY must not equal low-values.
2 No more index levels available.
3 Insufficient core while attempting to split the top index

block.
4 Version number discrepancy.
5 Allocation failure - all blocks are in use.
6 The maximum record size may not be exceeded.
7 Cannot expand core while SORT is in progress.
8 Insufficient core for buffer requirements.
9 Blocking-factor differs between index file and file-table.

10 File cannot be opened, already open.
11 Locked file cannot be opened.
12 File cannot be opened shares buffer area with opened file.
13 File cannot be opened device is not available to this job.
14 File cannot be opened device is assigned to another file.
15 File cannot be opened device cannot input/output.
16 File cannot be opened device cannot input.
17 File cannot be opened device cannot output.
18 File cannot be opened device is not a device.
19 File cannot be opened directory device must have standard

labels.
20 File cannot be closed because it is not open.

3-29

I

THE ENVIRONMENT DIVISION

FILE STATUS (Cont.)

21 File cannot be closed.
The CLOSE "REEL" option may not be used with a
multi-file-tape.

22 File is not open for output.
23 Zero length records are illegal.

File cannot do output.
24 "AT END" path has been taken.

File cannot do input.
25 Encountered an "EOF" in the middle of a record.

File cannot do input.
26 RECORD-SEQUENCE-NUMBER n should be m.

File cannot do input.
27 file-name on device-name should be reorganized, the top index

block was just split.
28 Not used.
29 Either the ISAM file does not exist or the VALUE OF ID

changed during the program.
30 Attempt to do I/O fro~ a subroutine called by a non resident

subroutine. File cannot be opened.
31 I/O cannot be done from an overlay. File cannot be opened.
32 Read an "EOF" instead of a label.
33 CLOSE REEL is legal only for magnetic tape.
34 File is not open for input.
35 Not enough free core between .JBFF and overlay area.
36 Not enough free core between .JBFF and overlay area.

Insufficient core while attempting to split the top index
block.

37 Standard ASCII recording mode and density of 1600 BPI require
the device to be a TU70.

38 TAPOP. Failed - Unable to set STANDARD-ASCII mode.
39 Got an EOF in middle of BLOCK/RECORD descriptor word.
40 Block descriptor word byte count is less than five.
41 ERROR - Got another buffer instead of "EOF".
42 ERROR - Record extends beyond the end of the logical block.
43 It is illegal to change the record size of an EBCDIC 10

record.
44 The two low order bytes of RDW/BDW must be zero, spanned

EBCDIC not supported.
45 TAPOP. failed - Unable to set HARDWARE DATA MODE.
46 Unable to get mag tape status information.
47 Cannot set requested density.
48 TAPOP. failed - unable to get/set label type/information.
52 Improper tape label format for indicated recording mode.
53 Improper default hardware data mode for ASCII system-labeled

tape.
54 ANSI-labeled "S" and "D" mag tape not supported.
55 Program can not have OPEN I/O and OPEN EXTEND for same file

FD.
56 TAPOP. failed, unable to switch mag tape reels.

If CD is set to 1 or 2, HIJ contains the number of an I/O error status
bit. The I/O error status bits, their mnemonics, and their meanings,
are shown in Table 3-2.

3-30

THE ENVIRONMENT DIVISION

FILE STATUS (Cont.)

Table 3-2
Monitor File .Status Bits

Bit Mnemonic Meaning

18 IO.IMP Improper Mode. Attempt to write on a software

19 IO.DER

20 IO.DTE

21 IO.BKT

22 IO.EOF

23 IO.ACT

29 IO.WHD

30 IO.SYN

31 IO.UWC

32-35 IO.MOD

write-locked file structure, or a software
redundancy failure occurred. This bit is
usually set by the monitor. You cannot set this
bit.

Hardware
error,
However,
disk is
set this

devife error. The disk unit is in
rather than the data on the disk.
data read into core or written on the
probably incorrect. You do not usually
bit.

Hard data error. The data read or written has
incorrect parity as detected by the hardware.
Your data is probably unrecoverable even after
the device has been fixed. This bit is usually
not set by you.

Block too large. A disk data block is too large
to fit into the buffer; or a block number is
too large for the disk unit; or DSK has been
filled; or your quota on the file structure has
been exceeded. This bit is usually not set by
you. This error is also returned when you try
to close a file that has open locks associated
with it (using Enqueue/Dequeue).

End-of-file. Your program has requested
beyond the last block of the file with an
INPUT call; or USETI has specified a
beyond the last data block of the file.
IO.EOF is set, no data has been read into
buffer.

data
IN or
block

When
the

I/O Active. The disk is actively transmitting
or receiving data. This bit is always set by
the monitor.

write disk pack headers. This is used in
conjunction with the SUSET. monitor call to
format a disk pack.

Synchronous mode I/O. stop disk after every
buffer is read or written.

User word count, supplied by you in each buffer.

Data mode of the device.

3-31

THE ENVIRONMENT DIVISION

FILE STATUS (Cont.)

For the file status for each device, refer to the Monitor Calls
Manual.

If CD is set to 3, 4, 5, or 7, HIJ contains the error code for LOOKUP,
ENTER, RENAME, or FILOP errors. Table 3-3 gives these codes and their
meanings.

Code

o

1

2

3

4

5

Table 3-3
Monitor Error Codes

Explanation

File not found, illegal filename (0,*),
filenames do not match, or RENAME after a LOOKUP
failed.

UFD does not exist.on specified file structures.
(Incorrect project-programmer number.)

Protection failure or directory full on DTA.

File being modified.

Already existing filename (RENAME) or different
filename (ENTER after LOOKUP) or supersede (on a
non-superseding ENTER) ..

Illegal sequence of UUOs (RENAME with neither
LOOKUP nor ENTER, or LOOKUP after ENTER).

6 1. Transmission, device, or data error.
2. Hardware-detected device or data error

detected while reading the UFD RIB or UFD
data block.

3. Software-detected data inconsistency error
detected while reading the UFD RIB or file
RIB.

7 Not a saved file.

10 Not enough core.

11 Device not available.

12 No such device.

13 No 2-register relocation capability.

14 No room on this file structure or quota exceeded
(overdrawn quota not considered).

15 write-lock error.
structure.

Cannot write on file

16 Not enough table space in free core of monitor.

3-32

Code

17

20

21

22

23

24

THE ENVIRONMENT DIVISION

FILE STATUS (Cont.)

Table 3-3 (Cont.)
Monitor Error Codes

Explanation

Partial allocation only.

Block not free on allocated position.

Cannot supersede an existing directory.

Cannot delete a non-empty directory.

Sub-directory not found (some SFD
specified path was not found).

in the

Search list empty (LOOKUP or ENTER was performed
on generic device DSK and the search list is
empty) .

25 Cannot create a SFD nested deeper than the
maximum allowed level of nesting.

26 No file structure in the job's search list has
both the no-create bit and the write-lock bit
equal to zero and has the UFD or SFD specified
by the default or explicit path (ENTER on
generic device DSK only).

27 GETSEG from a locked low segment to a high
segment which is not a dormant, active, or idle
segment. (Segment not on the swapping space.)

30 Cannot update file.

31 Low segment overlaps high segment.

32 Not logged in.

4. The FILE STATUS items are the communications paths between
LIBOL and a USE procedure. A USE procedure specifies a
recovery process executed when an error or warning occurs
during an I/O operation. A USE procedure determines the
error or warning type from the error-number placed into
data-name-2 by LIBOL. Control returns to LIBOL at the
conclusion of the USE procedure. The contents of the
action-code placed into data-name-3 by the USE procedure and
the error-number determine the subsequent LIBOL action. If
the action-code is set to 1, LIBOL ignores the error and
continues the run. If the action-code is left set to 0,
LIBOL issues an error message and terminates the run. If the
error-number is 17, LIBOL continues the run independent of
the action-code setting. If the action-code is not 0 or 1,
the LIBOL action is undefined.

3-33

THE ENVIRONMENT DIVISION

FILE STATUS (Cant.)

When the program comes to a normal termination and you
requested that errors be ignored, LIBOL issues the following
message:

%n ERRORS IGNORED

5. Refer to the USE statement in Chapter 5 for details of
writing USE procedures.

6. If the FILE STATUS statement is not specified, I/O error
recovery processing cannot be performed. If the FILE STATUS
statement is specified with only data-name-l included, you
can examine the status of the file, but you cannot specify
that LIBOL ignore the error because you cannot set the action
code (data-name-3). You also cannot examine the error number
(data-name-2) .

Example

SELECT INFIL ASSIGN DSK, DSK
ACCESS MODE IS INDEXED
SYMBOLIC KEY IS SYMKEY, RECORD KEY IS RECKEY
RECORDING MODE IS ASCII
FILE STATUS IS FILSTAT, ERRNUM, ACTCODE, VID,
BLKNUM, RECNUM, FILNAM, FILPNTR.

DATA DIVISION.

WORKING-STORAGE SECTION.
77 SYMKEY PIC X(lO).
77 FILSTAT PIC 9(2).
77 ERRNUM PIC 9(10).
77 ACT CODE INDEX.
77 VID PIC X(9).
77 BLKNUM INDEX.
77 RECNUM INDEX.
77 FILNAM PIC X(30).
77 FILPNTR INDEX.

3-34

THE ENVIRONM~NT DIVISION

I-O-CONTROL

3.2.2 I-O-CONTROL

Function

The I-O-CONTROL paragraph specifies the points at which a rerun dump
is to be performed, the memory area that is to be shared by different
files, and the location of files on a multiple-file reel.

General Format

I-O-CONTROL.

I END OF I ~ I I 1 EVERY. UNIT. OF file-narne-l
lnteger-l RECORDS

~6~~RD I J AREA FOR fi 1 e- name- 2, f i 1 e- name-3 [,f i 1 e - n arne -4] ... J

[MULTIPLE FILE TAPE CONTAINS file-name-5 [POSITION integer-2]

[,fil e-name-6 [POS ITI ON i nteger- 3]] ...] ... -'.

MR-S-988-81

Technical Notes

1. This paragraph is optional.

2. The RERUN clause specifies when a rerun dump is to be
performed.

The dump is always written onto a disk file, using the
program's low segment name as the filename, and an extension
of CKP. If the program has no filename because it was never
SAVEd, the program name (from the PROGRAM-ID paragraph in the
IDENTIFICATION DIVISION) is used as a filename, with the
extension CKP.

If the END OF UNIT option is used, a rerun dump is taken at
the end of each input or output reel of the specified REEL
file.

3-35

THE ENVIRONMENT DIVISION

I-O-CONTROL (Cont.)

If the integer-l RECORDS option is used, a rerun dump is
taken whenever a number of logical records equal to a
multiple of integer-l is either read or written for the file.

A rerun dump is not taken if any file is open on a device
other than magnetic tape, disk, or terminal. Also, RERUN
cannot be used if overlays are used or if files are open for
simultaneous update. Do not attempt to have a rerun dump
taken while a sort is in progress.

3. The SAME AREA clause specifies that two or more files are to
use the same area during processing; this includes all
buffer areas and the record area. However, unless the RECORD
option is used, only one of the named files can be open at
one time.

If the RECORD option is specified, the files share only the
record area (that is, the area in which the current logical
record is processed). If files sharing a record area are
open at the same time but their records do not have the same
usage mode, no conversion automatically takes place.

The SORT option is used for sort files. However, this option
need not be specified because all sort files always use the
same sort area.

4. The MULTIPLE FILE clause is required when more than one file
shares the same physical reel of tape. This clause is
invalid for media other than magnetic tape.

Example

Regardless of the number of files on a single reel, only
those files defined in the program can be listed. If all
files residing on the tape are listed in consecutive order,
the POSITION option need not be given. If any file on the
tape is not listed, the POSITION option must be included;
integer-2, integer-3, and so forth, specify position of the
file relative to the beginning of the tape. All files on the
same reel of tape must be ASSIGNed to the same device in the
FILE-CONTROL paragraph.

Not more than one file on the same reel of tape can be open
at one time.

I-O-CONTROL.
RERUN EVERY 300 RECORDS OF INFIL
SAME RECORD AREA FOR INFIL, OUTFIL
MULTIPLE FILE TAPE CONTAINS INFIL POSITION 4.

3-36

CHAPTER 4

THE DATA DIVISION

The Data Division, required in every COBOL program, describes the
characteristics of the data to be processed by the object program.

This data can be divided into six major types:

1. Data contained in files, both input and output.

2. Data contained in a database and accessed through the Data
Base Management System (DBMS).

3. Data to be sent to or received from the Message Control
System (MCS).

4. Data initially stored as part of the program, as variables or
constants. This can include constant data such as messages,
tables of fixed values, and the like, or data developed
during processing, that is, intermediate information such as
partial arithmetic results.

5. Data in a subprogram that is passed from the program calling
it.

6. Data to be printed in a report, and the format used to print
such data.

To handle these types of data, the Data Division consists of the
following sections:

1. The FILE SECTION, which describes the characteristics and the
data formats for each file processed by the object program.

2. The SCHEMA SECTION, which names the sub-schema and schema
that link a program or subprogram to the Data Base Management
System (DBMS).

3. The COMMUNICATION SECTION, which
items that link a program or
Control System (MCS).

defines the
subprogram

special data
to the Message

4. The WORKING-STORAGE SECTION, which contains any fixed values
and the working areas in which intermediate data can be
stored.

5. The LINKAGE SECTION, which describes the data in a subprogram
that is available from the calling program.

6. The REPORT SECTION, which describes the data and format of a
report.

4-1

THE DATA DIVISION

Unused sections of the Data Division can be omitted.
sections included must be in the following order:

FILE SECTION.
SCHEMA SECTION.
COMMUNICATION SECTION.
WORKING-STORAGE SECTION.
LINKAGE SECTION.
REPORT SECTION.

4.1 FILE SECTION

However, the

In the File Section, the characteristics of each file to be processed
are described by two types of entries.

The first type of entry, the file description, describes the physical
aspects of the file. These aspects include:

1. How the logical data records of the file are physically
grouped into blocks on the file medium.

2. The maximum length of a logical record, which cannot exceed
4095 characters.

3. Whether or not the file contains header and trailer labels
and, if so, whether the format of these labels is standard or
nonstandard.

4. The names of the records contained in the file.

5. The names of any reports in the file.

The second type of entry, the data description, describes the data
formats of the logical records in the files.

The File Section begins with the section-header FILE SECTION. If
present, it must be the first section in the DATA DIVISION.

4.2 SCHEMA SECTION

In the Schema Section, the names of the sub-schema and schema to be
processed are specified by either an INVOKE statement or an ACCESS
statement.

The Schema Section begins with the section-header (SCHEMA SECTION.)
and must follow the File Section, if present.

If the installation does not include DBMS, the Schema Section cannot
be used.

A description of the contents of the Schema Section can be found in
the Data Base System Programmer's Procedures Manual.

4-2

THE DATA DIVISION

4.3 COMMUNICATION SECTION

In the Communication Section, input
communication-description entries are defined.

and output

CD entries define records, called CD records, that contain special
data items used to link the program to the Message Control System
(MCS-lO) •

The Communication Section begins with the section-header COMMUNICATION
SECTION. and must fol19w the File Section and precede the Report
Section. The Communication Section must also follow the Schema
Section if both are present.

If the installation does not include MCS, the Communication Section
cannot be used.

Details of the Communication Section entries can be found in the
Message Control System Programmer's Procedures Manual.

4.4 WORKING-STORAGE SECTION

The Working-Storage Section defines (1) data that is stored when the
object program is loaded, and (2) areas used for intermediate results.
The Working-Storage Section is similar to the File Section, except
that the Working-Storage Section can contain level-77 items and cannot
contain FD, SD, or RD entries.

The Working-Storage Section
WORKING-STORAGE SECTION.

begins with the section-header

The ma*imum size of a data item in WORKING STORAGE is 262,143
characters.

4.5 LINKAGE SECTION

The Linkage Section describes data available from a calling program
and can appear only in a subprogram. The structure is the same as
that of the Working-Storage Section with the following restrictions:

1. The VALUE clauses can only be used in condition-name entries.

2. The data-names used in the VALUE OF IDENTIFICATION (or ID),
the VALUE OF DATE-WRITTEN, and the VALUE OF USER' NUMBER
cannot appear in this section.

3. The OCCURS clause with the DEPENDING phrase cannot be defined
in this section.

4. The SYMBOLIC KEY and ACTUAL KEY data items cannot be defined
in this section.

5. The data items in the FILE-LIMITS clause cannot be defined in
this section.

Data described in the Linkage Section of a subprogram is not allocated
storage space. Instead, at link-time, the link program sequentially
equates the Linkage Section identifiers (listed in the USING clause of
the ENTRY statement within the subprogram or in the USING clause of
the PROCEDURE DIVISION header within the subprogram) to the calling

4-3

THE DATA DIVISION

program identifiers (listed in the USING clause of the CALL statement
within the calling program). Thus, when the Procedure Division of a
subprogram executes, references to the Linkage Section data refer
instead to the calling program data.

Thus:

CALLING PROGRAM

DATA DIVISION.
FILE SECTION.
FD ...
01 MAIN .•.
02 MAINl •.•
02 MAIN2 ...

PROCEDURE DIVISION.

CALL ENTRPT USING MAIN.

CALLED PROGRAM

DATA DIVISION.
FILE SECTION.
LINKAGE SECTION
01 SUB .. .
02 SUBl .. .
02 SUB2 .. .

PROCEDURE DIVISION.
ENTRY ENTRPT USING SUB.

EXIT PROGRAM.

The identifier MAIN is defined in the File Section of the calling
program; the identifier SUB is defined in the Linkage Section of the
called program. When the Procedure Division of the called program
executes, references to SUB refer instead to MAIN. See the COBOL-68
User's Guide for more information about subprograms.

Each 01- or 77-level item in the Linkage Section must have a unique
name because it cannot be qualified. Also, each 01- and 77-level item
must correspond to a word-aligned item of the same size or larger in
the calling program. Word-aligned items start at the beginning of a
computer word. All 01- and 77-level items fulfill this requirement;
items that do not, can be made to do so by the SYNCHRONIZED LEFT
statement.

4.6 REPORT SECTION

The Report Section defines reports by describing the physical
appearance of the particular format and data rather than by specifying
the procedure used to produce the report.

The data for a report can be read from a file or another part of the
program or can be summed within the Report Section. The format of the
report is given in the record description and report group entries in
the Report Section.

The Report Section begins with the section-header REPORT SECTION., and
must follow the File Section, the Working-Storage Section and the
Linkage Section.

4-4

THE DATA DIVISION

4.7 DATA DESCRIPTIONS

4.7.1 Elementary Items and Group Items

The basic user-defined datum in a COBOL program is called an
elementary item; it can be referenced directly only as a unit. An
elementary item can be associated with contiguous elementary items to
form sets of data items called group items. Group items can be
associated with other group items and/or elementary items to form more
inclusive group items. Thus, an elementary item can be contained
within one or more group items, and a group item can contain more than
one elementary item.

4.7.2 Level Numbers

Level numbers indicate a hierarchy in which data items are ranged.
The highest level is 01, which signifies that the data item is a
record within a file named in an FD clause (or is a contiguous area in
the WORKING-STORAGE SECTION). Level numbers of 02 through 49 indicate
items that are subordinate to a Ol-level data item. For example, an
employee record can be described in the following manner.

01 EMPLOYEE-RECORD.
02 NAME.

03 FIRST-NAME PICTURE IS A(6).
03 MIDDLE-INITIA~ PICTURE IS A.
03 LAST-NAME PICTURE IS A(20) .

02 BADGE-NUMBER PICTURE IS X(5).
02 SALARY-CLASS PICTURE IS X(2).

Within a record description, the level numbers indicate which items
are contained within higher-level items. That is, in the above
example, the items that have a 03 level are subordinate to NAME, which
has a 02 level, which is in turn subordinate to EMPLOYEE-RECORD, which
has a 01 level. The example also shows elementary items (those that
contain PICTURE clauses) contained within group items. In this
example, EMPLOYEE-RECORD is a group item, NAME is a group item
contained within a group item, and FIRST-NAME is an elementary item
contained within the group item NAME. An item at a 01 level can be an
elementary item as well as a group item as long as it is referenced as
a unit. For example:

01 EMPLOYEE-RECORD PICTURE IS A(34) .

shows the same record as above, but in this case the record is always
operated on as a single entity.

Three other level numbers are available to the COBOL programmer: 77,
66, and 88.

Items with a level number of 77 are noncontiguous elementary items
that are written only in the WORKING-STORAGE SECTION to define
constant values and to store intermediate results.

Level-66 data items are those items that contain an explicitly
specified portion of a record, or even the whole record. A data item
at a level of 66 is used in a RENAMES clause to regroup items within a

4-5

THE DATA DIVISION

record. After a record is described, a level-66 item RENAMES a
portion of that record. The level-66 data item can be a regrouping of
the whole record, a group within the record, or a combination of group
and elementary items. For example:

01 EMPLOYEE-RECORD
02 NAME

03 FIRST-NAME ...
03 MIDDLE-INITIAL ...
03 LAST-NAME ...

02 BADGE-NO ...
02 SALARY-CLASS ...
66 PERSONNEL-REC RENAMES NAME THRU BADGE-NO.
66 PAY-REC RENAMES LAST-NAME THRU SALARY-CLASS.

When the level-66 item PAY-REC is referenced, the items LAST-NAME,
BADGE-NO., and SALARY-CLASS are referenced as a unit. The programmer
can thus regroup portions of a record for differing purposes.

Level-88 items are condition-names that cause a value or a range of
values to be associated with a data item. The condition-name can then
be used in place of the relation condition in conditional expressions
in the PROCEDURE DIVISION. For example:

03 BADGE-NO ...
88 FIRST-BADGE VALUE IS "AOOOl".
88 LAST-BADGE VALUE IS "Z9999".

In a comparison, the following statements would then be equivalent:

Conditional Variable

IF BADGE-NO IS EQUAL TO "AOOOl" .. .
IF BADGE-NO IS EQUAL TO "Z9999" .. .

4.7.3 Records and Files

Condition-Name

IF FIRST-BADGE ...
IF LAST-BADGE •..

Records can be divided into two categories; those associated with a
file and those not associated with a file. A file is the highest
level of data organization in COBOL; it represents a collection of
data records held on some external medium, that is, not wholly in real
or virtual memory. Records not associated with a file are those
values stored in the WORKING-STORAGE and LINKAGE SECTIONS or sum
counters in the REPORT SECTION.

4.8 QUALIFICATION

Any data item that is to be referenced must be uniquely identified.
This unique identification can be achieved by the assignment of a
unique name to each item. However, in many applications this is
tedious and inconvenient (1) because of the large number of names
required, and (2) because items containing the same type of
information in different records would have different names.
Therefore, qualification is introduced to allow similar items and
certain records to have identical names.

4-6

THE DATA DIVISION

Qualification means giving enough information about the item to
specify it uniquely. In COBOL, this information is the name of the
group items containing it, in order of increasing inclusiveness. It
is not necessary to name each group containing it, but only enough
groups so that no other item with the same name as the original item
could be identically qualified. It is also unnecessary to name each
successively higher group containing the item until a unique
qualification is made. Any set of names that uniquely describe the
item can be used.

Example:

01
02

RECORD-I. 01
ITEM-I.

SUB-ITEM. 03
04 FIELD PIC X.

RECORD-2.
02 ITEM-2.

03 SUB-ITEM.
04 FIELD PIC X.

FIELD in the left-hand example can be referenced uniquely in any of
the following ways:

FIELD OF SUB-ITEM OF ITEM-l IN RECORD-I.
FIELD OF SUB-ITEM OF ITEM-I.
FIELD OF SUB-ITEM IN RECORD-I.
FIELD IN ITEM-l OF RECORD-I.
FIELD IN RECORD-I.
FIELD IN ITEM-I.

The connectives OF and IN are equivalent
interchangeably.

and can be used

The only data items which need have unique names are level-77 items
and records not associated with files, since they are not contained in
any higher level data structure. Records associated with files can be
qualified by the file name, as can any item contained within the
record. File names must be unique.

Level-66 items can be qualified only (1) by the name of the record
with which they are associated and (2) by the name of any file with
which that record is associated.

4.9 SUBSCRIPTING AND INDEXING

It can sometimes be more convenient for you to specify a set of data
values as a table rather than assigning a name to each element of the
set. A table (or array) is a set of homogeneous items stored together
in memory for use by the program. You define the table elements in
the program by specifying an OCCURS clause in the description of a
data item. The data item thus defined represents not one item but a
set of items having the identical format. Subscripting and indexing
are used to refer to one of the elements of the set. In DIGITAL
COBOL-68, subscripting and indexing are identical in'use and can be
used interchangeably. However, the manner in which they are defined
differs.

4-7

THE DATA DIVISION

Subscripting is defined simply by the fact that an item has an OCCURS
clause in its description. For example,

01 RATE-TABLE.
02 VOLUME OCCURS 25 TIMES.

describes VOLUME as 25 elements of RATE-TABLE. If you wish to refer
to one of the elements of this set, you must qualify the data-name
with a subscript. Thus, VOLUME(lO) is the tenth element (or
occurrence) of VOLUME. A subscript can be either an integer or a
data-name to which an integer value has been assigned. Thus, when
DIST has been assigned to value 10, VOLUME (DIST) is the same as
VOLUME (10) .

To specify indexing you must add the INDEXED BY option to the OCCURS
clause. Thus,

01 RATE-TABLE.
02 VOLUME OCCURS 25 TIMES INDEXED BY IND.

defines VOLUME as 25 elements of the table and defines IND as the
index by which each element of the table can be indexed; that is,
VOLUME (IND) is an element in the table. The index-name IND is
treated exactly like the data-name DIST because the compiler
recognizes an index-name as being exactly the same as a data-name. An
item defined as an index in an OCCURS clause has an implicit usage of
INDEX, and is equivalent to a data item that is declared USAGE INDEX.
However, this usage is included in DIGITAL COBOL for compatibility
with other compilers because an item whose usage is INDEX (implicit or
explicit) is treated as if its usage were COMPUTATIONAL. In fact, a
data-name that is used as a subscript can be explicitly declared as
USAGE INDEX; it can be treated as a COMPUTATIONAL data item by the
compiler.

COBOL-68 tables can be one, two, or three dimensions. The number of
dimensions is defined by the number of subscripts or indexes required
to refer to an individual item. For example:

C(1,3)

represents the item located in the first row and third column of a
2-dimensional table which is defined by the DATA DIVISION entries:

01 TABLEA.
02 ROW OCCURS 20 TIMES.

03 COLUMN OCCURS 5 TIMES.

The subscript/index must be enclosed in parentheses and must appear in
the PROCEDURE DIVISION statement where the subscripted/indexed data
name is used. The subscript/index must appear after the data-name. A
space between the data-name and the parentheses is optional. Multiple
subscripts/indexes are separated by a comma or by a space. No spaces
can appear immediately following the left parenthesis or immediately
preceding the right parenthesis. When referring to elements in
multi-dimensional tables, subscript/indexes are written from left to
right in the order of major (subscript/index varying least rapidly),
intermediate, and minor (subscript/index varying most rapidly). The
major index corresponds to the item written with the smallest
level-number, that is, the most inclusive item.

4-8

THE DATA DIVISION

As an illustration, consider a table having a major element occurring
ten times, an intermediate element occurring five times within each
occurrence of the major element, and a minor element occurring three
times within each intermediate element. The last major element of the
table has a subscript of (10,1,1), while the final element of the
table has a subscr ipt of (10,5,3).

There are two forms of subscripting/indexing: direct and relative.
Direct subscripting/indexing means that the subscript/index refers
directly to the desired element. Relative subscripting/indexing means
that the element of the table is referred to indirectly. by a
subscript/index to a data name to which an integer is added or
subtracted. The form for direct subscript/indexing is shown in Figure
4-1.

data-name ({ ~ubscript ~ [{ ,~ubscript }]
lndex I ,lndex . ..)

MR-S-581-80

Figure 4-1 Direct Subscripting/Indexing

In relative subscripting/indexing, the subscript/index is followed by
the operator plus (+) or minus (-) followed by an unsigned integer
numeric literal. The operator plus (+) or minus (-) must be delimited
by spaces. The subscript/index, the operator, and the numeric literal
must follow the data-name and must be enclosed in parentheses. The
form for relative subscripting/indexing is shown in Figure 4-2.

data-name ({ ~UbScriPt} J+}
wdex \ - integer [

J,sUbscriPt} J+}
I , index \ - integer] . ..)

MR-S-582-80

Figure 4-2 Relative Subscripting/Indexing

When you use relative subscripting/indexing, the element of the table
that you refer to is not the one to which the subscript/index refers,
but the element to which the subscript/index plus or minus the integer
refers. That is, if the item

VOLUME (IND + 2)

is specified, and IND is set at 3, the fifth occurrence of VOLUME is
referred to, not the third. However, the value of the subscript/index
is not changed by relative subscripting/indexing; the value of IND
remains 3.

You can also combine direct subscripting/indexing and relative
subscripting in the same statement. For example, if you specify the
following statement

TABLE(IND, VOL + 3)

the first subscript value is the value of IND an~ the second subscript
value is the value of VOL + 3.

4-9

THE DATA DIVISION

When you need to qualify a table element for uniqueness, you should
use the format for direct subscripting/indexing shown in Figure 4-3.

data-name [{ ~~ } dat a-n ame-l] ({ ~ubscr;Pt} [{ t~ubscr;pt t]
lndex . ,lndex f ...)

MR·S·583·80

Figure 4-3 Qualified Direct Subscripting/Indexing

For example, to refer to ANAME in the following example:

01 ARECI.
02 AGROUPI OCCURS 5.

03 ASUBGROUPI OCCURS 10.
04 ANAME PIC X(5) OCCURS 20.

you could specify the following:

ANAME (I, J , 4)

NOTE

Subscripts can not be subscripted.

4-10

THE DATA DIVISION

FILE DESCRIPTION (FD)

4.10 FILE DESCRIPTION (FD)

Function

The File Description (FD) furnishes information concerning the
physical structure, identification, and record names pertaining to a
given file.

General Format

FD fi le-name

[BLOCK CONTAINS [i nteger-l o] i nteger-2 JRECORD(S) I]
\ CHARACTERS

[RECORO CONTAINS [integer-3 TO] integer-4 CHARACTERS J

[LABEL
RECORD IS
RECORDS ARE 1 {

STANDARD
OMITTED
record-n ame-l [, record-name-21

[
J REPORT IS
\ REPORTS ARE

report-name-l [,report-name-2 ...]]

[VALUE OF [I tllENTIFICATION
I S fda t a - name - 2 1]

\ literal-l

[DATE-WRITTEN IS I m:~~~~~-21]

... }]

[USER-NUMBER IS f data-n ame- 3 1]]
\ literal-3,literal-4

[
f RECORD IS 1 DATA \ RECORDs ARE record-name-3 [,record-name-4] '"]

MR-S-989-81

4-11

THE DATA DIVISION

FILE DESCRIPTION (FD) (Cont.)

RECORDING MODE IS

ASCII
SIXBIT
BINARY
£
V
STANDARD-ASCII
STANDARD ASCII

MR-S-l000-81

The clauses shown in the General Format appear in alphabetical order
on the following pages.

Technical Notes

1. An FD entry must be present for each file-name selected in
the FILE-CONTROL paragraph of the Environment Division.

2. All semicolon and commas are optional. The entire FD entry
must terminate with a period.

3. The clauses can appear in any order within the File
Description entry.

4. The ability to place the RECORDING MODE clause in the FD has
been provided for compatibility with other manufacturers. If
you place the RECORDING MODE clause for a file in the FD, you
cannot also place it in the FILE-CONTROL paragraph for that
file in the ENVIRONMENT DIVISION. Also, if you wish to use
the RECORDING DENSITY and RECORDING PARITY clauses, you must
put them in the FILE-CONTROL paragraph in the ENVIRONMENT
DIVISION, even if the RECORDING MODE clause is in the FD.
The description of the RECORDING MODE clause can be found in
Chapter 3 with the full description of the ENVIRONMENT
DIVISION.

5. The maximum number of files that can be open at one time is
16.

NOTE

ISAM files count as two files: one index (.IDX) file
and one data (.IDA) file.

4-12

THE DATA DIVISION

BLOCK CONTAINS

4.10.1 BLOCK CONTAINS

Function

The BLOCK CONTAINS clause specifies the size of a logical block.

General Format

[BLOCK CONTAINS [integer-l TO] integer-2 R E COR 0 (S) I]
CHARACTERS

MR-S-1001-81

Technical Notes

1. You must specify the BLOCK CONTAINS clause if you want the
file to be organized into logical blocks. If you do not
specify this clause, or if you specify integer-2 to be 0,
then all records are packed in the file with no empty space
between the records. The file is then considered to be
"unblocked" or "blocked zero". However, if you use magnetic
tape and have used the RECORDING MODE clause to specify that
the recording mode as V or F, or standard ASCII, the default
is a blocked file with a blocking factor of one.

2. If the CHARACTERS option is used, the logical block size is
specified in terms of the number of character positions
required to contain the record. If the recording mode is
ASCII (that is, all records for the file are described,
explicitly or implicitly, as USAGE DISPLAY-7), it is assumed
that the size is specified in terms of DISPLAY-7 characters.
If the recording mode is SIXBIT (that is, the records for the
file are all described, explicitly or implicitly, as
DISPLAY-6) it is assumed that the size is specified in terms
of SIXBIT characters. If the recording mode is F or V (that
is, the data is recorded on the medium as EBCDIC characters),
it is assumed that the size is specified in terms of EBCDIC
characters, either fixed- or variable-length. When
variable-length EBCDIC records are used (i.e., the recording
mode is V), the number of records in a block is also
variable. If the blocking factor is not zero, the number of
records in a block is determined by dividing the block size
in characters by the number of characters in the longest
record as specified by the FD statement. For example, if the
FD statement specifies a maximum record length of 248
characters and the BLOCK CONTAINS 2400 CHARACTERS clause is
used, the number of records in a block are 9.

3. Integer-l and integer-2 must be positive integers. If only

4.

integer-2 is specified, it represents the exact size of the
logical' block. If both integer-l and integer-2 are given,
integer-l is ignored and integer-2 is used as the blocking
factor.

Files whose access modes are RANDOM or INDEXED must
nonzero blocking factor. Files whose access
sequential and opened for I/O should have a nonzero
factor. If not, the compiler will calculate one.

4-13

have a
mode is
blocking I

THE DATA DIVISIO~

DATA RECORD

4.10.2 DATA RECORD

Function

The DATA RECORD clause cross references the record-name with its
associated file.

General Format

{ RECORD IS } [] DATA RECORDs ARE record-name-l srecord-name-2 ...
MR-S-1002-81

Technical Notes

1. This clause is optional because all records not associated
with a LABEL RECORDS clause are assumed to be data records.

2. Both record-name-l and record-name-2 must be the names given
in Ol-level data entries subordinate to this FD. The
presence of more than one such record-name indicates that the
file contains more than one type of data record. These
records can have different descriptions. The order in which
they are listed is not significant.

3. All records within a file share the same area.

4-14

THE DATA DIVISION

FD file-name

4.10.3 FD file-name

Function

The FD file-name clause identifies the file to which this file
description entry and the subsequent record descriptions relate.

General Format

FD file-name

Technical Notes

1. This entry must begin each file description.

2. The file-name must appear in a SELECT statement in the
FILE-CONTROL paragraph of the ENVIRONMENT DIVISION.

4-15

THE DATA DIVISION

LABEL RECORD

4.10.4 LABEL RECORD

Function

The LABEL RECORD clause specifies whether or not labels are present on
the file and, if so, identifies the format of the labels.

General Format

[{
RECORD IS

LABEL RfCoRos ARE } {
Technical Notes

OMITTED
STANDARD
record-narne-l [,record-name-Z] ... }]

MR-S-1003-81

1. If the clause is omitted, LABEL· RECORDS ARE STANDARD is
assumed.

2. The OMITTED option is used when the file has no header or
trailer labels.

3. The STANDARD option is used when the file has header and
trailer labels that conform to the DECsystem-lO standard
format. If this clause is used for files on disk or DECtape,
LABEL RECORDS ARE STANDARD must be specified. See the VALUE
OF IDENTIFICATION clause for the association between the
label and the filename on disk or DECtape.

The standard label for DECtape and random-access devices is
the directory block used by the monitor. For magnetic tape,
if the file is recorded in SIXBIT, the standard label is 78
SIXBIT characters in length and is written in a separate
physical record from the data, with the same recording mode
as the data. If the recording mode is ASCII, the label
contains 78 ASCII characters, plus carriage return and line
feed, for a total of 80 characters. Table 4-1 shows the
contents of each character in a standard label for
nonrandom-access devices.

Magnetic tapes are the only devices with ending labels. Each
ending label is preceded by and followed by an end-of-file
mark.

4. The record-name option is used when the file labels do not
conform to the system standard format. The record-names must
appear as the names of record description (level-Ol)
subordinate to this FD; the record-names must not appear in
a DATA RECORDS clause. When a file is opened, the beginning
non-standard label is read (as input) or written (as output)
automatically by the 1-0 routines. If the file is being
opened for output, the data for the record must be supplied
by a USE procedure in the DECLARATIVES (see Chapter 5). If
the file is being opened for input, no checks are made by the
1-0 routines to determine the validity of the label; you can
program any checks in a USE procedure.

4-16

THE DATA DIVISION

LABEL RECORD (Cont.)

The presense of TOPS-IO or TOPS-20 system labels on a
magnetic tape causes the system to handle tape volume
processing normally done by.LIBOL and overrides the COBOL
labeling described above. Thus, a magnetic tape only has
TOPS-IO or TOPS-20 system labels or LIBOL created labels, but
never both.

5. Files whose recording mod~ is F or V (fixed- or variable­
length EBCDIC), must have LABELS RECORDS ARE OMITTED if they
are on magnetic tape. If they are on disk or DECtape, they
are assumed to have DECsystem-10 standard labels. The
record-name option cannot be used for EBCDIC files.

Characters

1-4

5-13

14-21

22-27

28-31

32-41

42-47

48-78

79-80

Table 4-1
Standard Label for Nonrandom-Access Media

Contents

HDRl = Beginning File.
EOFI = Ending file.
EOVI = Ending reel.

Value of identification.

Always spaces.

Not used.

Reel number. The first reel is always 0001.

Not used.

Creation date; two characters each for the
year, month, and day, respectively.

Not used.

Carriage-return/line-feed if file is ASCII.
(Note that this is on the label only; it is not
kept internally.)

4-17

•

I

THE DATA DIVISION

RECORD CONTAINS

4.10.5 RECORD CONTAINS

Function

The RECORD CONTAINS clause specifies the size of the data records in
this file.

General Format

[RECORD CONTAINS [integer-l TO] integer-2 CHARACTERS]
MR·S·1004·81

Technical Notes

1. Because the size of each data record is completely defined by
its record description entry, this clause is never required.
However, if you use it, it replaces the record description
entry in setting the size of the record, and the following
rules must be observed.

2. Integer-l and integer-2 must be positive integers. Integer-2
can not be less than the size of the largest record but
cannot exceed 4095, which is the limit on the size of a
record.

3. The data record size is specified in terms of the number of
character positions required to contain the record.

4. The maximum size of a record in an FD is 4095 characters.

5. This clause is ignored if the FD contains a REPORT clause and
there is no data record description. In this case, the
record size defaults to 132 characters.

4-18

THE DATA DIVISION

REPORT

4.10.6 REPORT

Function

The REPORT clause specifies the name of each report that is associated
with the file.

General Format

[I REPORT IS I report-name-l
REPORTS ARE [,report-name-2] ...]

MA·S·1005·B1

Technical Notes

1. This clause is optional; it is used only when Report-Writer
statements cause output to be written on the file.

2. Repor~-name-l and report-name-2 must be the names of Report
Descriptor items in the REPORT SECTION.

3. If this clause is used, the data record description can be
omitted because the name of the data record is not referred
to directly in the PROCEDURE DIVISION. When the data record
description is omitted, the compiler automatically assumes a
132-character record.

4-19

THE DATA DIVISION

SO file-name

4.10.7 SO file-name

Function

The SO file-name clause identifies the sort to which this file
description entry and the subsequent record description relate.

General Format

. [{ RECORD IS} []] SD f,le-name DATA RECORDS ARE record-name-l ,record-name-2 ...

[RECORD CONTAINS [integer-~ TO] integer-2 CHARACTERS] ~-S-1006-81

Technical Notes

1. The SO entry must begin each sort file description.

2. The file-name must appear in a SELECT statement in the
FILE-CONTROL paragraph of the ENVIRONMENT DIVISION.

3. The DATA RECORD and RECORD CONTAINS clauses are the only
descriptive clauses allowed.

4-20
•

THE DATA DIVISION

VALUE OF IDENTIFICATION

4.10.8 VALUE OF IDENfIFICATION/DATE-WRITTEN/USER-NUMBER

Function

The VALUE OF IDENTIFICATION clause provides specific data for an item
within the label records associated with a file.

General Format

[VALUE OF [{t.gENTI FI CATION} IS Hn:~~f~~-l}]

[
DATA-WRITTEN IS {d?ta-name-2}]

11 tera 1- 2

[USER-NUMBER IS {~~i:;~t~~iiteral-4}]]
MR·S-1007-81

Technical Notes

1. The VALUE OF IDENTIFICATION clause is required only if label
records are standard; it is ignored in all other cases. The
VALUE OF DATE-WRITTEN and the VALUE OF USER-NUMBER are always
optional.

2. The three clauses can be written in any order, but only one
of each can be specified for a file.

3. IDENTIFICATION represents the file-name and extension of a
file with standard labels. If a data-name is specified, it
must be associated with a DISPLAY-6, DISPLAY-7, or DISPLAY-9
data item nine characters in length. If a literal is
specified, it must be a alphanumeric literal nine characters
in length. The first six characters are taken as the
file-name, and last three characters are taken as the
extension. The programmer must provide spaces as required to
conform to this convention. The literal cannot consist
exclusively of spaces. The period which the system prints
between the file-name and the extension must not be included
in the VALUE OF IDENTIFICATION clause.

Examples:

a. VALUE OF IDENTIFICATION IS "COST TST"

b. VALUE OF IDENTIFICATION IS FILE-I-NAME

(WORKING-STORAGE SECTION.)

77 FILE-I-NAME PICTURE IS X(9).

4-21

THE DATA DIVISION

VALUE OF IDENTIFICATION (Cent.)

4. DATE-WRITTEN represents the date that a magnetic tape file
(with STANDARD labels) was written. If a data-name is
specified, it must be associated with a DISPLAY-6, DISPLAY-7
or DISPLAY-9 data item six characters in length. If a
literal is specified, it must be a alphanumeric literal six
characters in length. The first two characters are taken as
year, the next two as month, and the last two as day. The
DATE-WRITTEN clause is ignored when the file is OPENed for
output; instead, the current date is used.

Examples:

a. VALUE OF IDENTIFICATION IS "RANDOMXYZ", DATE-WRITTEN IS
760112

b. VALUE OF IDENTIFICATION IS "DATA
FILE-I-DATE

(WORKING-STORAGE SECTION.)
77 FILE-I-DATE PICTURE IS 9(6).

" DATE-WRITTEN IS

5. USER-NUMBER represents the project-programmer number of the
owner of a disk file; it is ignored for all other devices.
Data-name-3 must be a COMPUTATIONAL item of 10 or fewer
digits in which the project-programmer number is stored.
Literal-3 and literal-4 are numeric literals of six or fewer
digits that are treated as octal. Literal-3 is the project
number and literal-4 is the programmer number.

6. For input files the VALUEs specified are checked against the
file when it is opened. ISAM files are checked as soon as
your program is run. For output files, the VALUE OF
IDENTIFICATION is written when the file is opened. If the
specified values do not match a file on the selected medium,
a run-time error message is issued.

7. If the access mode is INDEXED and data-name-l is used in the
VALUE OF IDENTIFICATION clause, data-name-l must contain the
filename and extension of the index-file for the indexed
sequential file being referenced. The contents of
data-name-l can not be altered during program execution. You
need not specify the identification for the data file of an
indexed sequential file because this identification is stored
in the index file.

8. If data-name-3 is used to represent the project-programmer
number, you must be aware that the value of data-name-3 is
treated as decimal, even though the project-programmer number
is octal. The data-name-3 value is translated from decimal
to binary by the COBOL conversion routine. Thus, the
project-programmer is not accurate unless you provide a
conversion routine in your program to convert your octal
project-programme~ number to its decimal equivalent so that
it is converted to the correct binary number. The following
example is a suggested method for performing the conversion.

4-22

77
77
77
77
01

THE DATA DIVISION

VALUE OF IDENTIFICATION (Cont.)

ERR-FLAG PIC 9, USAGE COMP.
HALF-NUM, PIC S9 (7) , USAGE COMP.
OCTAL-PPN, PIC S9 (10) , USAGE COMP.
DIGIT, PIC 9.
PP-NUMBER.
02 PROJ-NUMBER, PIC 9 (6) .
02 PROG-NUMBER, PIC 9 (6) ..
02 EITHER-NUM, PIC 9(6).
02 X REDEFINES EITHER-NUM.

03 PP-DIGIT, PIC 9, OCCURS 6 TIMES, INDEXED BY I.

ACCEPT PROJ-NUMBER, PROG-NUMBER.
SET ERR-FLAG TO ZERO.
MOVE PROJ-NUMBER TO EITHER-NUM.
MOVE ZERO TO HALF-NUM.
PERFORM CONVERT VARYING I FROM 1 BY 1 UNTIL 1>6.
IF ERR-FLAG IS NOT = 0 GO TO OCTAL-ERROR.
COMPUTE OCTAL-PPN = HALF-NUM * 262144.
MOVE PROG-NUMBER-TO EITHER-NUM.
MOVE ZERO TO HALF-NUM.
PERFORM CONVERT VARYING I FROM 1 BY 1 UNTIL 1>6.
IF ERR-FLAG IS NOT = 0 GO TO OCTAL-ERROR.
COMPUTE OCTAL-PPN = OCTAL-PPN + HALF-NUM.

CONVERT.

IF PP-DIGIT (I) = 8 OR 9, SET ERR-FLAG UP BY 1.
COMPUTE HALF-NUM = 8 *HALF-NUM + PP-DIGIT (I).

* THIS ROUTINE INVALID FOR PROJECT NUMBERS LARGER THAN
77777.

If the access mode is INDEXED and data-name-3 is used to
represent the project-programmer number, the following rules
must be observed:

a. Data-name-3 must have a value that is the decimal
equivalent of an octal project-programmer number, and
that project-programmer number must contain a file with
the name used in the VALUE OF IDENTIFICATION clause.

b. Data-name-3 can be altered during program execution only
if all files referenced have identical parameters.

c. If several files are read through the same File
Description, data-name-3 should point to the file with
the largest number of levels of index (this is usually
the largest file).

9. None of the data-names in the VALUE clauses can appear in the
LINKAGE SECTION.

4-23

THE DATA DIVISION

RECORD DESCRIPTIONS

4.11 RECORD DESCRIPTIONS

Following the FD for a file, a record description is given for each
different record format in the file. A record description begins with
a level-Ol entry:

01 data-name

A complete record description can be as simple as

01 data-name PICTURE picture-string.

or it can be more complex, where the aI-level is followed by a long
series of data description entries of varying hierarchies that
describe various portions and subportions of the record. A aI-level
data-name in the File Section cannot be explicitly redefined (using
the REDEFINES clause). However, because a file has only one record
area, if more than one data-name is specified, they implicitly
redefine the first data-name. Also, if the additional data-names have
usages different from that of the first data-name, the last usage
given is used as the usage in determining the usage mode of the file
if it is necessary to use a default.

4.11.1 Record Concepts

A record description consists of a set of data description entries
which describe a particular logical record. Each data description
entry consists of a level-number followed by a data-name (or FILLER)
which is followed, as required, by a series of descriptive clauses.

The general format of a data description entry follows.

4-24

THE DATA DIVISION

DATA DESCRIPTION ENTRY

4.11.2 DATA DESCRIPTION ENTRY

Function

A data description entry describes a particular item of data.

General Format

1eve 1-number {~:~~E~ame-l} [REDEFINES data-name-2J [tm.TURE} IS pi cture-string]

COMPUTATIONAL
CQM£
COMPUTATIONAL-l
~
COMPUTATIONAL-3
~
DISPLAY
pISPLAY-6
PISPLAV-7
DISPLAY-9
INDEX
DATABASE-KEY
DBKEY

[{ SYNCHRONIZED} {LEFT }]
SYNC RIGHT

[OCCURS [integer-l TO J integer-2 TIMES [DEPENDING ON data-name-l J

[gm~~mG} KEY IS data-name-2 [,data-name-3J ...] ...

[INDEXED BY index-name-l [, i ndex-name-2] . i.J]_.

66 data-name-l RENAMES data-name-2 [THRU data-name-3J!....

88 condition-name {~SI~RE} literal-l [THRU literal-2]

[,litera 1-3 [I!:!Rl.! 1 i tera 1-4 J] . :~s'oo:"

4-25

THE DATA DIVISION

DATA DESCRIPTION ENTRY (Cont.)

The clauses shown in the General Format appear in alphabetical order
on the following pages.

Technical Notes

1. Each data description entry must be terminated by a period.
All semicolons and commas are optional.

2. The clauses can appear in any order, with one exception: the
REDEFINES clause, when used, must immediately follow the
data-name being redefined.

3. The VALUE clause must not appear in a data description entry
which also contains an OCCURS clause, or in an entry which is
subordinate to an entry containing an OCCURS clause. The
latter part of this rule does not apply to condition-name
(level-88) entries.

4. The PICTURE clause must be specified for every elementary
item, except a USAGE INDEX, COMP-l, DATABASE-KEY, or DBKEY.

5. The clauses SYNCHRONIZED, PICTURE, JUSTIFIED, and BLANK WHEN
ZERO can be specified only at the elementary level.

4-26

THE DATA DIVISION

BLANK WHEN ZERO

4.11.2.1 BLANK WHEN ZERO

Function

The BLANK WHEN ZERO clause causes the blanking of an item when its
value is zero.

General Format

[BLANK WHEN ZERO]

MR-S-1009-81

Technical Notes

1. When the BLANK WHEN ZERO option is used and the item is zero,
the item is set to blanks.

2. BLANK WHEN ZERO can be specified only at the elementary level
and only for numeric or numeric-edited items whose usage is
DISPLAY-6, DISPLAY-7, or DISPLAY-9.

3. More comprehensive editing features are available in the
PICTURE clause. For example, if a PICTURE clause appears in
the same data description entry and contains the zero
suppression symbol * (zero suppress and replace with *), the
field is replaced with * when the item is given a zero value
(see Section 4.11.2.7, PICTURE). The only exception is
fields containing a decimal point, in which case the decimal
point is not replaced.

4-27

THE DATA DIVISION

Condition-name (Ievel-SS)

4.11.2.2 Condition-name (level-88)

Function

To assign a name to a value or range of values of the associated data
item.

General Format

88 condition-name

[,literal-3

Technical Notes

f VALUE IS)
1 VAUJEs ARE literal-l

[THRU literal-4]]
MR-S-1010-81

[THRU literal-2]

1. Each condition-name requires a separate level-88 entry. This
entry contains the name assigned to the condition, and the
value or values associated with that condition.
Condition-name entries must immediately follow the data
description entry with which the condition-name is to be
associated.

2. A condition-name entry can be associated with an elementary
or group item except:

a. another condition-name entry, or

b. a level-66 item.

3. Some examples of possible level-88 entries are given below:

a. 05 B-FIELD PICTURE IS 99.
88 Bl VALUE IS 3.
88 B2 VALUES ARE 50 THRU 69.
88 B3 VALUES ARE 20, 25, 28, 31 THRU 37.
88 B4 VALUES ARE 70 THRU 75, 80 THRU 85, 90 THRU 95.

b. 02 C-FIELD PICTURE IS xxx.
88 C-YES VALUE IS "YES".
88 C-NO VALUE IS "NO ".

4. The data item with which the condition~name is associated is
called a conditional variable. A conditional variable can be
used to qualify any of its condition-names. If references to
a conditional variable require indexing, subscripting, or
qualification, then reference to its associated
condition-names also require the same combination of
indexing, subcripting, or qualification.

4-28

THE DATA DIVISION

,Condition-name (Ievel-SS) (Cont.)

5. A condition-name is used in conditional expressions as an
abbreviation for the related condition. Thus, if the above
DATA DIVISION entries (NOTE c) are used, the statements in
each pair below are functionally equivalent.

Relational Expression

a. IF B-FIELD IS EQUAL TO 3 ••••

b. IF B-FIELD IS GREATER THAN
49 AND LESS THAN 70 •.•.

c. IF B-FIELD IS EQUAL TO 20 OR
EQUAL TO 25 OR EQUAL TO 28
OR GREATER THAN 30 AND
LESS THAN 38 .•..

d. IF B-FIELD IS GREATER THAN 69
AND LESS THAN 76 OR GREATER
THAN 79 AND LESS THAN 86 OR
GREATER THAN 89 AND LESS
THAN 96 •.••

e. IF C-FIELD IS EQUAL TO "YES" ••

Condition-Name

IF Bl .•••

IF B2

IF B3

IF B4 ..•.

IF C-YES

6. Literal-l must always be less than literal-2, and literal-3
less than literal-4. The values given must always be within
the range allowed by the format given for the conditional
variable. For example, any condition-name values given for a
conditional variable with a PICTURE of PP999 must be in the
range of .00000 to .00999. (See Note 10 under PICTURE in
this chapter for the meaning of P in a picture-string.)

4-29

THE DATA DIVISION

data-name/FILLER

4.11.2.3 data-name/FILLER

Function

A data-name specifies the name of the data being described. The word
FILLER specifies an unreferenced portion of the logical record.

General Format

leve l-number
I

data-name 1
FILLER

MR-S-1011-81

Technical Notes

1. A data-name or the word FILLER must immediately follow the
level-number in each data description entry.

2. A data-name must be composed of a combination of the
characters A through Z, 0 through 9, and the hyphen. It must
contain at least 1 alphabetic character and must not exceed
30 characters in length. It must not duplicate a COBOL
reserved word. Refer to Section 1.2.3.2, User-Created Words,
for further information.

3. The key word FILLER is used to name an unreferenced item in a
record (that is, an item to which the programmer has no
reason for assigning a unique name). A FILLER item cannot,
under any circumstances, be referenced directly in a
PROCEDURE DIVISION statement. However, it can be indirectly
referenced by referring to a group-level item of which the
FILLER item is a part. FILLER can be used at any level,
including the 01 level.

4-30

THE DATA DIVISION

JUSTIFIED

4.11.2.4 JUSTIFIED

Function

The JUSTIFIED clause specifies nonstandard positioning of data within
a receiving data item.

General Format

[I JUSTIFIED)
JUST I RIGHT)]

LEFT
MR-S-1012-81

Technical Notes

1. The JUSTIFIED clause cannot be specified at a group level or
for numeric edited items.

2. If neither RIGHT nor LEFT is specified, RIGHT is assumed.

3. An item subordinate to one containing a VALUE clause cannot
be JUSTIFIED.

4. DISPLAY-6, DISPLAY-7 and DISPLAY-9 items can be JUSTIFIED.

5. The standard rules for positioning data within an elementary
data item are as follows:

a. Receiving data item described as numeric or
numeric-edited (see definition in Notes 6 and 9 under
PICTURE in this chapter). A numeric or numeric-edited
item is justified according to the following rules, thus
the JUSTIFIED clause cannot be used.

The data is aligned by decimal point and is moved to the
receiving character positions with zero fill or
truncation on either end as required.

If an assumed decimal point is not explicitly specified,
the data item is treated as if it had an assumed decimal
point immediately following its rightmost character, and
the sending data is aligned according to this decimal
point.

b. Receiving data item described as alphanumeric (other than
numeric edited) or alphabetic (see definition in Notes 5
and 7 under PICTURE in this chapter).

The data is moved to the receiving character positions
and aligned at the leftmost character position with space
fill or truncation at the right end as required.

4-31

THE DATA DIVISION

JUSTIFIED (Cont.)

6. When a receiving item is described as JUSTIFIED LEFT,
positioning occurs as in 4a above.

7. When a receiving data item is described with the JUSTIFIED
RIGHT clause and is larger than the sending data item, the
data is aligned at the rightmost character position in the
receiving item with space fill at the left end.

When a receiving data item is described with the JUSTIFIED
RIGHT clause and is smaller than the sending data item, the
data is aligned at the right most character position in the
receiving item with truncation at the left end.

Examples are given below:

03 ITEM-A PICTURE IS
X(8) VALUE IS IIABCDEFGHII.

03 ITEM-B PICTURE IS
X(4) VALUE IS IIWXYZIl.

03 ITEM-C PICTURE IS X(6).

03 ITEM-D PICTURE IS X(6).
JUSTIFIED RIGHT.

MOVE ITEM-A TO ITEM-C.

MOVE ITEM-A TO ITEM-D.

MOVE ITEM-B TO ITEM-C.

MOVE ITEM-B TO ITEM-D.

4-32

Contents of Receiving Field

ABC D E F

C D E F G H

w X Y Z

W X Y Z

THE DATA DIVISION

level-number

4.11.2.5 level-number

Function

The level-number shows the hierarchy of data within a logical record.
In addition, special level-numbers are used for condition-names
(level-SS), noncontiguous WORKING-STORAGE items (level-77), and the
RENAMES clause (level-66).

General Format

level-number J data-name)
\ FILLER

MR-S-1013-81

Technical Notes

1. A level-number is required as the first element in each data
description entry.

2. Level-numbers can be ~laced anywhere on the source line, at
or after margin A.

3. Level-number 88 is desc~ibed under "condition-name
(level-88)", and level-number 66 is described under "RENAMES
(level-66)", both in this section.

4. A further description of level-numbers and data hierarchy can
be found in the introduction to this chapter.

4-33

THE DATA DIVISION

OCCURS

4.11.2.6 OCCURS

Function

The OCCURS clause eliminates the need for separate entries for
repeated data, and supplies information required for the application
of subscripts and indexes.

General Format

{ i nteger-l
integer-3

TO integer-2
TIMES

TIMES DEPENDING ON data-name-l}

[{ ASCENDING} KEY IS
DES CEN Dr NG data-name-2 [,data-name-3] ..•]

[INDEXED BY index-name-I [, index -name- 2] . .•]] M"S"""

Technical Notes

1. This clause cannot be specif~ed in a data description entry
that has a 66 or 88 level-number, or in one that contains a
VALUE clause.

2. The OCCURS clause is used
homogeneous sets of repeated
used, the associated data-name
must always be subscripted
PROCEDURE DIVISION statements.

to define tables or other
data. Whenever this clause is
and any subordinate data-names
or indexed when used in all

3. All clauses given in a data description that includes an
OCCURS clause apply to each repetition of the item.

4. The integers must be positive. If integer-l is specified, it
must have a value less than integer-2. No value of a
subscript can exceed integer-2; in addition, if the
DEPENDING option is specified, no subscript can exceed the
value of data-name-l at the time of subscripting.

5. The value of data-name-l is the count of the number of
occurrences of the item described by the OCCURS clause; its
value must not exceed integer-2.

6. If the DEPENDING option is specified, the integer-l TO
integer-2 phrase must be included. Data-name-l must be USAGE
INDEX or USAGE COMP of 10 digits or less with no scaling or
decimal places. It cannot be subscripted or appear in the
LINKAGE SECTION.

4-34

THE DATA DIVISION

OCCURS (Cont.)

7. The KEY IS option indicates that the repeated data has been
sorted by you into either ascending or descending order
according to the values associated with data-name-2,
data-name-3, and so forth. The data-names are listed in
order of decreasing significance.

8. Data-name-2 must be either the name of the entry containing
the OCCURS clause, or the name of an entry subordinate to the
entry containing the OCCURS clause. Data-name-3, etc., must
be the name of an entry subordinate to the group item that is
the subject of this entry.

9. An index-name defined in a OCCURS clause must not be defined
elsewhere; its appearance in the INDEXED option is its only
definition. There can be no items of the same name defined
elsewhere. The USAGE of each index-name is assumed to be
INDEX.

10. Subscripting and indexing are described in the introduction
to this chapter.

11. The maximum number of OCCURS for a single data item is
32,767.

4-35

THE DATA DIVISION

PICTURE

4.11.2.7 PICTURE

Function

The PICTURE clause describes the general characteristics and editing
requirements of an elementary item.

General Format

[(~TURE I I S pi cture-s tr i ng]

MR-S-1015-81

Technical Notes

1. A PICTURE clause can be used only at the elementary level.
It . can not be used with an item described as USAGE INDEX or
CaMP-I.

2. A picture-string consists of certain allowable combinations
of characters in the COBOL character set used as symbols.
These symbols are as follows:

a. Symbols representing data characters

9 represents a numeric character (0 through 9)
A represents an alphabetic character (A through Z, and

the space)
X represents an alphanumeric character (any allowable

character)

b. Symbols representing arithmetic signs and assumed decimal
point positioning

V represents the position of the assumed decimal point
P represents an assumed decimal point scaling position
S represents the presence of an arithmetic sign

c. Symbols representing zero suppression operations

Z represents standard zero suppression (replacement of
leading zeros by spaces)

* represents check protection (replacement of leading
zeros by asterisks)

4-36

THE DATA DIVISION

PICTURE (Cant.)

d. Symbols representing insertion characters

$ represents a dollar sign (this sign floats from left
to right and replaces the rightmost leading zero when
more than one $ apears) 1

, represents an insertion comma 2

• represents an actual decimal point 2

B represents an insertion blank
o represents an insertion zero

e. Symbols representing editing sign-control symbols

+ represents an editing plus sign
- represents an editing minus sign
CR represents an editing Credit symbol
DB represents an editing Debit symbol

The plus and minus signs (+ and -) float when more than
one appear, and replace the rightmost leading zeroes.

f. Consecutive repetitions of a picture-symbol can be
abbreviated to the symbol followed by (n), where n
indicates the number of occurrences.

3. A maximum number of 30 symbols can appear in a
picture-string. Note that the number of symbols in a
picture-string and size of the item represented are not
necessar ily the same. There are 'two reasons for this
discrepancy. First, the abbreviated form for indicating
consecutive repetitions of a symbol can result in fewer
symbols in the picture-string than character positions in the
item being described. For example, a data item having 40
alphanumeric character positions can be described by a
picture-string of only 5 symbols:

PICTURE IS X(40).

The second reason is that some symbols are not counted when
calculating the size of the data item being described. These
symbols include the V (assumed decimal point), P (decimal
point scaling position), and S (arithmetic sign); these
symbols do not represent actual physical character positions
within the data item. For example, the character-string

S999V99

represents a 5-position data item.

Other size restrictions for numeric and numeric edited items
are given under the appropriate headings below.

If the CURRENCY SIGN IS clause appears in the SPECIAL-NAMES
paragraph, the symbol specified by the literal must be used in all
instances in place of the $.

2 If the DECIMAL-POINT IS COMMA clause appears in the SPECIAL-NAMES
paragraph, the functions of the comma and decimal point are reversed.

4-37

THE DATA DIVISION

PICTURE (Cont.)

4. There are five categories of data that can be described with
a PICTURE clause: alphabetic, numeric, alphanumeric,
alphanumeric edited, and numeric edited. A description of
each category is given in the notes below.

5. Definition of an Alphabetic Item

a. Its picture-string can contain only the symbol A.

b. It can contain only the 26 letters of the alphabet and
the space.

6. Definition of a Numeric Item

7 •

a. Its picture-string can contain only the symbols 9, P, S,
and V. It must contain at least one 9.

The picture-string must have from 1 to 18 digit
positions.

b. It can contain only the digits 0 through 9 and an
operational sign.

Definition of an Alphanumeric Item

a. Its picture-string can consist of all Xs, or a
combination of the symbols A, X, and 9 (except all 9s or
all As). The item is treated as if the character-string
contained all xs.

b. Its contents can be any combination of characters from
the complete character set (see Section 1.2.2.2).

8. Definition of an Alphanumeric Edited Item

a. Its picture-string can consist of any combination of As,
Xs, or 9s (it must contain at least one A or one X), plus
at least one of the symbols B or O.

b. Its contents can be any combination of characters from
the complete character set.

9. Definition of a Numeric Edited Item

a. Its picture-string must contain at least one of the
following editing symbols:

, . * + - 0 B CR DB $

It can also contain the symbols 9, V, or P.

The allowable sequences are determined by certain editing
rules for each symbol and can be found in Note 10.

The picture-string must have from 1 to
positions.

18 digit

b. The contents can be any combination of the digits 0
through 9 and the editing characters.

4-38

THE DATA DIVISION

PICTURE (Cont.)

10. The symbols used to define the category of an elementary item
and their functions are as follows.

A Each A in the pict~re-string represents a character
position which can contain only a letter of the alphabet
or a space.

B Each B in the picture-string represents a character
position into which a space character is inserted during
editing.

Examples: (A-FLD contains the value 092469)

B-FLD picture-string

MOVE A-FLD TO B-FLD 99B99B99

MOVE A-FLD TO B-FLD 9999BBBB

Also see Note 14, "Simple Insertion Editing".

Result

10191612141616191

10191214161616161

PEach P in the picture-string indicates an assumed decimal
point scaling position and is used to specify the
location of an assumed decimal point when the point is
outside the positions defined for the item. Ps are not
counted in the size of the data item. They are counted
in determining the maximum number of digit positions (18)
allowed in numeric edited items or numeric items. Ps can
appear only to the left or right of the picture-string
and must appear together. The assumed decimal point is
assumed to be to the lett of the string of Ps it the Ps
are at the left end of the picture-string and to the
right of the string of Ps if the Ps are at the right end
of the picture-string. If the V symbol is used in this
case, it must appear in either of those positions; it is
redundant.

Examples:

PPP9999 (or VPPP9999) defines a data item of four character
positions whose contents is treated as .000nnnn during any
decimal point alignment operation (such as in a MOVE or ADD).
9PPP (or 9PPPV) defines a data item of one character position
whose contents is treated as nOOO during any decimal point
alignment operation.

S An S in a picture-string indicates that the item has an
operational sign and retains the sign of any data stored
in it. The S must be written as the leftmost character
in the picture-string. If S is not included, all data is
stored in the item as an absolute value and is treated as
positive in all operations. The S symbol is not counted
in the size of the data item.

4-39

THE OATA OIVISION

PICTURE (Cont.)

V A V in a picture-string indicates the location of the
assumed decimal point and can appear only once in a
picture-string. The V does not represent a physical
character position and is not counted in the size of the
data item. If the assumed decimal point position is at
the right of the rightmost character position of the
item, the V is redundant (that is, 9999 is functionally
equivalent to 9999V).

X Each X in a picture-string represents a character
position which can contain any allowable character from
the complete character set.

Z Each Z in a picture-string represents the leftmost
leading numeric character positions in which leading
zeros are to be replaced by spaces. Each Z is counted in
the size of the item.

* Each * in a picture-string represents the leftmost
leading numeric character positions in which leading
zeros are to be replaced by *. Each * is counted in the
size of the item.

Examples: (A-FLO contains the value 00305)

B-FLO picture-string Result

MOVE A-FLO TO B-FLO 999999 10101013 01 5
1

MOVE A-FLO TO B-FLO ZZ9999 16 16 101
3 01 5

1

MOVE A-FLO TO B-FLO ZZZZZZ
1
6

1
6

1
6 13 01 5

1

MOVE A-FLO TO B-FLO ZZZZ.ZZ 16 1310151. 01 0 I
Also see Note 18, "Zero Suppression Editing".

9 Each 9 in a picture-string represents a character
position which can contain a digit. Each 9 is counted in
the size of the item.

o Each 0 in a picture-string represents a character
position into which a zero is inserted. It is counted in
the size of the item. The 0 symbol works in the same
manner as the B symbol.

Each , in a picture-string represents a
position into which a comma is inserted.

character

Examples: (A-FLO contains 362577)

B-FLO picture-string Result

MOVE A-FLO TO B-FLO 9,999,999

MOVE A-FLO TO B-FLO Z,ZZZ,ZZZ 13 16 1 2·1 ' 15 171 7 I

4-40

THE DATA DIVISION

PICTURE (Cont.)

Also see Note 14, "Simple Insertion Editing".

A • (dot or period) in a picture-string is an editing
symbol that represents an actual decimal point. It is
used for decimal point alignment and also indicates where
a point (.) is to be inserted. This symbol is counted in
the size of the item. Only one can lappear in a
picture-string.

Examples: (A-FLO contains 3S2~9)1

B-FLO picture-string Result

MOVE A-FLO TO B-FLO 99,999.99 10131,1512161.19191
MOVE A-FLO TO B-BLO zz,zzz.zz 16131 ' 1512161 .1 919 I
MOVE A-FLO TO B-FLO 99999.9999 1 0131s12161·19191 ol~

See Note 4 under MOVE in Chapter S for a clarification of the
rule governing the third example.

Also see Note IS, "Special Insertion Editing".

+ I Each of these symbols is used as an editing sign-control
symbol. When used, they represent the character

CR position(s) into which the editing sign-control symbol
OB is placed. Only one of these symbols can appear in a

character-string.

The + and - symbols can appear either at the beginning or at the
end of a picture-string. The CR and OB symbols can appear only
at the end of a picture-string.

+ The character position containing this symbol contains a
+ if the sending field either was unsigned (absolute) or
had a positive operational sign; it contains a - if the
sending field had a negative operational sign.

CR}
OB

The character position containing this symbol contains a
space if the sending field either was unsigned (absolute)
or had a positive operational sign; it contains a if
the sending field had a negative operational sign.

Each of these symbols requires two character positions.
The character positions containing either of these
symbols contains spaces if the sending field either was
unsigned (absolute) or had a positive operational sign;
they contain the symbol specified if the sending field
had a negative operational sign.

1 The caret (~) symbol is used to indicate the location of the
assumed decimal point.

4-41

THE DATA DIVISION

PICTURE (Cont.)

Examples: (A-FLD contains 345~5, B-FLD contains -345~5) 1

C-FLD picture-string Result

MOVE A-FLD TO C-FLD 9999.99BCR 31 4 51 6 1.1 2 51~1~1~1
MOVE B-FLD TO C-FLD 9999.99BCR 31 4 51 6 1.1 2 51~1 CIR I
MOVE A-FLD TO C-FLD +9999.99 1+ 31 4 5161· 2 51

MOVE B-FLD TO C-FLD +9999.99 1- 3 4 5 6 · 2 51

MOVE A-FLD TO C-FLD -9999.99 1~13 4 5 6 · 2 51

MOVE B-FLO TO C-FLO -9999.99 1-13 4 5 6 · 2151

MOVE A-FLO TO C-FLD 9999.990B 13 4 5 6 · 2151~1~1
MOVE B-FLO TO C-FLO 9999.990B

1
3 4 5 6 · 2151 0 lBI

MOVE B-FLO TO C-FLD $9999.99+ 1$1 3 4 5 6 · 21 5 1-\

Also see Note 16, IIFixed Inserting Editingll.

The + and - can also be used to perform floating insertion
editing, a combination of zero suppression and symbol insertion.
Floating insertion editing is indicated by the occurrence of two
or more consecutive + or symbols at the beginning of the
picture-string. The total number of significant positions in the
editing field must be at least one greater than the number of
significant digits in the data to be edited. The floating + or -
moves from left to right through any high-order zeros until a
decimal point or the picture character 9 is encountered.

Examples: (A-FLO contains 005~5i B-FLO contains -005~5)

C-FLO picture-string Result

MOVE A-FLO TO C-FLO ++999.99 1~1+1015161·12151
MOVE B-FLO TO C-FLD ++++9.99 1~1~1-15161·12151

MOVE ZERO TO C-FLD ++999.99 I~I +1 01 0 10 1.1 0 10 I
MOVE ZERO TO C-FLO +++++.++ I~I~I~I~I~I~I~I~I

1 The caret (A) symbol is used to indicate the location of the
assumed decimal point.

4-42

THE DATA DIVISION

PICTURE (Cont.)

(In order for floating to go past decimal point, all numeric
positions of item must be represented by the floating insertion
symbol)

MOVE A-FLO TO C-FLO --999.99 I~I~I 01 5 16 1.1 2 15 1
MOVE B-FLD TO C-FLD --999.99 I~ I-I 01 5 16 1.1 2 15 1

MOVE ZERO TO C-FLD ---99.99 I ~ I ~ I~ I 0 I 0 I· I 0 I 0 I
MOVE ZERO TO C-FLD ------- I~I~I~I~I~I~I~I~I

Also see Note 15, "Floating Insertion Editing".

Note that the + and symbols are distinct from the S
(operational sign) symbol. Normally, the + and - symbols are
used to describe display items that are to appear on some printed
report; they provide visual sign indication and cannot be used
with items appearing as operands in arithmetic statements.

$ A $ (or the symbol specified by the CURRENCY SIGN clause
in the SPECIAL-NAMES paragraph) represents the character
position into which a $ (or the currency symbol) is to be
placed. This symbol is counted in the size of the item.

Example: (A-FLO contains 345~5)

B-FLO character-string Result

MOVE A-FLO TO B-FLD $9,999.99 1$131,1415161.17151

MOVE A-FLO TO B-FLD $999,999.99 1 $1010131,1415161.17151

Also see Note 16, "Fixed Insertion Editing".

The $ symbol can also be used to perform floating insertion
editing. Floating insertion editing is indicated by the
occurrence of two or more consecutive $ symbols at the beginning
of the character string. The total number of significant
positions in the editing field must be at least one greater than
the number of significant digits in the data to be'edited. The
floating $ symbol floats from left to right through any
high-order zeros until a decimal point or the picture character 9
is encountered.

Examples: (A-FLO contains 005~5)

B-FLO picture-string Result

MOVE A-FLO TO B-FLO $$9,999.99 I ~ 1$1 0 I, 10 15 16 1·J2bJ

MOVE A-FLO TO B-FLO $$$,$$$.99 I ~ I~ I~I~I $1 5 16 1.1 2 151

MOVE ZERO TO B-FLO $$$,999.99 I ~ I~ I~I $1 0 10 10 I· 10 10 1

MOVE ZERO TO B-FLO $$$,$$$.$$ 1~1~1~161~1~1~1~1~1~1

4-43

THE DATA DIVISION

PICTURE (Cant.)

Also see Note 17, "Floating Insertion Editing".

11. There are two general methods of performing editing in the
PICTURE clause:

a. insertion, or

b. suppression and replacement.

There are four types of insertion editing available:

a. Simple insertion

b. Special insertion

c. Fixed insertion

d. Floating insertion

There are two types of suppression and replacement editing:

a. Zero suppression and replacement with spaces

b. Zero suppression and replacement with asterisks

12. The type of editing that can be performed upon an item
depends on the category to which the item belongs.

Category Type of Editing Allowed

Alphabetic None

Numeric None

Alphanumeric None

Alphanumeric edited Simple insertion: 0 and B

Numeric Edited All (except for the restriction given in
Note 13)

13. Floating insertion editing and zero suppression/replacement
editing are mutually exclusive in a PICTURE clause. Only one
type of replacement can be used with zero suppression in a
PICTURE clause.

14. Simple Insertion Editing (, B 0)

The , (comma), B (space), and 0 (zero) constitute those
editing symbols used in simple insertion editing. These
insertion characters represent the character position in the
item into which the character is inserted. These symbols are
counted in the size of the item ..

4-44

THE DATA DIVISION

PICTURE (Cent.)

15. Special Insertion Editing (.)

The • (decimal point) symbol is used in special insertion
editing. In addition to its use as an insertion character,
it also represents the position of the decimal point for
decimal point alignment. This symbol is counted in the size
of the item. The symbols . and V (assumed decimal point) are
mutually exclusive in a PICTURE clause. If the . is the last
symbol in the character-string, it must be immediately
followed by one of the punctuation characters (semicolon or
period). .

16. Fixed Insertion Editing ($ + - CR DB)

The currency symbol ($) and the editing sign control
characters (+ CR DB) constitute the characters used in
fixed insertion editing. Only one $ and one of the editing
sign control characters can be used in a PICTURE
character-string. When the symbols CR or DB are used, they
represent two character positions in determining the size of
the item. The symbols + or - when used must be the leftmost
or rightmost character positions to be counted in the size of
the item. The $ when used must be the leftmost character
position to be counted in the size of the item, except that
it can be preceded by a + or· - symbol. A fixed insertion
editing character appears in the same character position in
the edited item as it occupied in the PICTURE
character-string.

When the $ is used as a floiting insertion editing character,
the picture string must contain at least one $ more than the
maximum number of significant digits in the item to be
edited. If you use a comma and the $ simultaneously for
editing, there must always be at least two $ to the left of
the comma because one $ is always printed; there is no place
for a significant digit to the left of the comma if you have
used only one $. (If the i tern has a picture of $, $$$ then no
digit ever appears to the left of the comma; a $ is always
there.) A comma is omitted only when what appears to its
left consists only of zeroes. (With the picture string $,$$$
the comma is never omitted.)

Editing sign control symbols produce the following results
depending on the value of the data being edited.

Editing Symbol in Result
PICTURE character-string Data positive Data Negative

+ + -

- space -

CR 2 spaces CR

DB 2 spaces DB

4-45

THE DATA DIVISION

PICTURE (Cont.)

17. Floating Insertion Editing ($$ ++ --)

The $ and the editing sign control symbols + and
floating insertion editing characters and are
exclusive in a given PICTURE string.

are the
mutually

Floating insertion editing is indicated in a PICTURE
character-string by using a string of at least two of the
allowable insertion characters to represent the leftmost
numeric character positions into which the insertion
characters can be floated. Any of the simple insertion
characters embedded in the string of floating insertion
characters or to the immediate right of this string are part
of the floating string.

In a PICTURE character-string, there are only two ways of
representing floating insertion editing.

a. Represent any two or more of the leading numeric
character positions on the left of the decimal point by
the insertion character. The result is that a single
insertion character is placed in the character position
immediately preceding the leftmost nonzero digit of the
data being edited or in the character position
immediately preceding the decimal point, or in the
character position represented by the rightmost insertion
character, whichever is encountered first.

b. Represent all numeric character positions in the
character-string by the insertion character. If the
value is not zero, the result is the same as when the
insertion character appears only to the left of the
decimal point. If the value is zero, the entire item is
set to spaces.

A picture-string containing floating insertion characters
must contain at least one more floating insertion
character than the maximum number of significant digits
in the item to be edited. For example, a data field
containing five significant digit positions requires an
editing field of at least six significant positions.

All floating insertion characters are counted in the size
of the item.

18. Zero suppression Editing (Z *)

The suppression of leading zeros and commas in a data field
is indicated by the use of the Z or the * symbol in a
picture-string. These symbols are mutually exclusive in a
given picture-string. Each suppression symbol is counted in
the size of the item. If a Z is used, the replacement
character is a space. If an * is used, the replacement
character is an *. Zero suppression and replacement is
indicated by a string of one or more Zs or *s to represent
the leading numeric-character positions which are to be
replaced when the associated character position in the data
contains a leading zero. Any of the simple insertion
characters embedded in this string of zero suppression
symbols or to the immediate right of this string are part of
the string.

4-46

19.

20.

THE DATA DIVISION

PICTURE (Cont.)

If the zero suppression symbols appear only to the left of
the decimal point, any leading zero in the data that
corresponds to a zero suppression symbol in the string is
replaced by the replacement character.

Suppression terminates at the first nonzero digit in the data
represented by the suppression symbol in the string or at the
decimal point, whichever is encountered first.

If all numeric character positions in the picture-string are
represented by the suppression symbol and the value of the
data is not zero, the result is the same as if the
suppression characters were only to the left of the decimal
point. If the value is zero, the entire item (including any
sign) is set to the replacement character (with the exception
of the decimal point if the suppresson symbol is an *).

When the * is used and the clause BLANK WHEN ZERO appears in
the same entry and zeros are moved to the field, all
character positions with the exception of the decimal point
are replaced by *

The symbols + - * Z and $ when used as floating replacement
a given characters are mutually exclusive within

picture-string.

The following chart shows the order of
various picture-string symbols. Each
indicates that the symbol in the top row
precede the symbol at the left of the
appears.

precedence of the
"y" on the chart

directly above can
row in which the "y"

{} indicate that the symbols are mutually exclusive.

The P and the fixed insertion + and - appear twice.

P9, +9, and -9 represent the case where these symbols appear
to the left of any numeric positions in the string.

9P, 9+, and 9- represent the case where these symbols appear
to the right of any numeric positions in the string.

The Z, *, and the floating ++, --, and $$ also appear twice.

Z., *., $$., and --. represent the case where these symbols
appear before the decimal point position .

. Z, . *, . $$, . ++, and . -- represent the case where these
symbols appear following the decimal point position.

4-47

THE DATA DIVISION

PICTURE (Cont.)

FIXED INSERTION

z
o
j::
0:::
UJ
V1

Z

a
UJ

x
u:

0:::
UJ
:r:
t-
O

B

0

,

+9)
-9

19~} 9-

~~
$
A
X

P9

9P

S

V

~;:J

[;}
9

t~)
t~
$$.

.$$

B 0 ,

Y Y Y

y y y

y y y

y y y

Y Y Y

Y Y Y

Y Y

Y Y Y

Y Y Y

y y y

y y y

Y Y Y

y y y

y y y

y y y

y y y

(+~ ~' {~:} A
-~ 9~ $

X
P9 9P S

Y Y Y Y Y

y y y y y

y y y y

y y y

Y

Y Y Y Y

Y Y Y Y

Y Y

Y

Y Y Y Y

Y Y Y Y Y Y

Y Y Y Y Y Y

y y

y y y y

Y Y Y Y Y Y

y

y y y

y

y y y

4-48

OTHER

{;,} [;} f++.} I:~~} V 9 $$. .$$
\ --.

Y Y Y y y y y y

y. y y y y y y y

y y y y y y y y

y y y y

Y

Y Y Y Y Y Y

Y Y Y Y Y Y

Y

Y

Y

Y Y Y Y

Y Y Y Y

y

y y y

Y Y Y Y Y

y

y y y

y

y y y

MR-S-1016-81

· THE DATA DIVISION

REDEFINES

4.11.2.8 REDEFINES

Function

The REDEFINES clause allows the same memory area to be allocated to
two or more data items.

General Format

level-number data-name-l REDEFINES data-name-2

Technical Notes

1. The REDEFINES clause, when used, must immediately follow
data-name-l.

2. The level-numbers of the data-name-l and data-name-2 entries
must be identical.

3. This clause must not be used for level-number 66 or 88 items.
Also, it must not be used for level-Ol entries in the FILE
SECTION; implicit redefinition is provided by specifying
more than one data-name in the DATA RECORDS ARE clause in the
FD.

4. When the level-number of the data-names is other than
level-aI, the storage area for data-name-2 should be of the
same size or shorter than data-name-l. FILLER items can be
used to comply with this rule.

S. The REDEFINES entry must immediately follow the entries
describing data-name-2 •.

6. The REDEFINES entry cannot. be a subordinate to the OCCURS I
clause.

7. The redefinition entries cannot contain VALUE clauses.

8. Data-name-2 must not be qualified.

4-49

THE DATA DIVISION

REDEFINES (Cont.)

9. The following example illustrates the use of the REDEFINES
entry. The entries shown cause AREA-A and AREA-B to occupy
the same area in memory.

03 AREA-A USAGE DISPLAY-6.
04 FIELD-l PICTURE IS X(7).
04 FIELD-2 PICTURE IS A(13) .
04 FIELD-3.

05 SUBFIELD-l PICTURE IS
S999V99 USAGE IS CaMP.

05 SUBFIELD-2 PICTURE IS
S999V99 USAGE IS CaMP.

03 AREA-B REDEFINES AREA-A USAGE DISPLAY-6.
04 FIELD-A PICTURE IS X(22).
04 FIELD-B PICTURE IS X(5).
04 FILLER PICTURE IS X(9).

Note how the length of each area is calculated so that AREA-B
can be defined so that its size is equal to that of AREA-A.

AREA-A: FIELD-l 7 6-bit characters (DISPLAY-6
assumed)

FIELD-2 13 6-bit characters (DISPLAY-6
assumed)

4 6-bit characters (not used
because CaMP items must start
at a new word boundary)

SUBFIELD-l 6 6-bit characters (CaMP items
occupy one word, or six 6-bit
character positions)

SUBFIELD-l 6 6-bit characters (CaMP items
occupy one word, or six 6-bit
character positions)

Total 6-bit characters 36

AREA-B: FIELD-A 22 6-bit characters (DISPLAY-6
assumed)

FIELD-B 5 6-bit characters (DISPLAY-6
assumed)

FILLER 9 6-bit characters (needed to
make AREA-B size equal to
AREA-A)

Total 6-bit characters 36

4-50

THE DATA DIVISION

RENAMES (level-66)

4.11.2.9 RENAMES (level-66)

Function

The RENAMES clause permits alternate, possible overlapping, groupings
of elementary items.

General Format

66 data-name-l RENAMES data-name-2 [THRU data-name-3]

Technical Notes

1. All RENAMES entries associated with items in a given record
must immediately follow the last data description entry for
that record.

2.

01 data-name-a

(data description entries)

(level-66 entries associated with this logical record)
01 data-name-b.

Data-name-l cannot
qualified only by
associated with it.

be used as a qualifier, and can be
the names of the level-Ol or FD entries

3. Data-name-2 and data-name-3 must be the names of items in the
assoicated logical record and cannot be the same data-name.

Neither data-name-2 nor data-name-3 can have a level-number
of 01, 66, 77, or 88. Neither of these data-names can have
an OCCURS clause in its data description entry, nor be
subordinate to an item that has an OCCURS clause in its data
description entry.

Data-name-2 must precede data-name-3 in the record
description, and data-name-3 cannot be subordinate to
data-name-2. If there is any associated redefinition
(REDEFINES), the ending point of data-name-3 must logically
follow the beginning point of data-name-2. When data-name-3
is specified, data-name-l is a group item that includes all
elementary items starting with data-name-2 (if data-name-2 is
an elementary item) or the first elementary item in
data-name-2 (if data-name-2 is a group item) and concluding
with data-name-3 (or the last elementary item in
data-name-3) •

4-51

THE DATA DIVISION

RENAMES (level-66) (Cont.)

If data-name-3 is not specified, data-name-2 can be either a
group or elementary item. Ifit is a group item, data-name-l
is treated as a group item and includes all elementary items
in data-name-2; if data-name-2 is an elementary item,
data-name-l is treated as an elementary item with the same
descriptive clauses.

4. The following examples illustrate the use of the RENAMES
entry.

01 RECORD-NAME.
02 FIRST-PART.

03 PART-A.
04 FIELD-l PICTURE IS
04 FIELD-2 PICTURE IS
04 FIELD-3 PICTURE IS

03 PART-B.
04 FIELD-4 PICTURE IS
04 FIELD-S.

05 FIELD-SA PICTURE IS
05 FIELD-SB PICTURE IS

03 SECOND-PART.
03 PART-C.

04 FIELD-6 PICTURE IS .. .
04 FIELD-7 PICTURE IS .. .

66 SUBPART RENAMES PART-B THRU PART-C.
66 SUBPARTI RENAMES FIELD-3 THRU SECOND-PART.
66 SUBPART2 RENAMES FIELD-SB THRU FIELD-7.
66 AMOUNT RENAMES FIELD-7.

4-52

THE DATA DIVISION

SYNCHRONIZED

4.11.2.10 SYNCHRONIZED

Function

The SYNCHRONIZED clause specifies the positioning of an elementary
item within a computer word (or words).

General Format

[
J SYNCHRONIZED) J LEFT I]
\ SYNC \ RIGHT

MR-S-1017-81

Technical Notes

1. This clause can appear only in the data description of an
elementary item.

2. This clause specifies that the item being defined is to be
placed in an integral number of computer words and that it is
to begin or end at a computer word boundary. No other
adjacent fields are to occupy these words. The unused
positions, however, must be counted when calculating:

a. The size of any group to which this elementary item
belongs, and

b. The computer memory allocation when the item appears as
the object of a REDEFINES clause. However, when a
SYNCHRONIZED item is referenced, the original size of the
item (as indicated by the PICTURE clause) is used in
determining such things as truncation, justification, and
overflow.

3. SYNCHRONIZED LEFT or SYNC LEFT specifies that the item is to
be positioned in such a way that it begins at the left
boundary of a computer word.

SYNCHRONIZED RIGHT or SYNC RIGHT specifies that the item is
to be positioned in such a way that it terminates at the
right boundary of a computer word.

4. When the SYNCHRONIZED clause is specified for an item within
the scope of an OCCURS clause, each occurrence of the item is
SYNCHRONIZED.

5. Any FILLER required to position the item as specified is
automatically generated by the compiler. The content of this
FILLER is indeterminate.

4-53

THE DATA DIVISION

SYNCHRONIZED (Cont.)

6. COMP(UTATIONAL), COMP(UTATIONAL)-l, and INDEX items are
always implicitly SYNCHRONIZEU RIGHT, and therefore cannot be
SYNCHRONIZED LEFT.

7. An item subordinate to one containing a VALUE clause cannot
be SYNCHRONIZED.

8. Only DISPLAY-6, DISPLAY-7, DISPLAY-9, or COMP-3 items can be
SYNCHRONIZED.

4-54

THE DATA DIVISION

USAGE

4.11.2.11 USAGE

Function

The USAGE clause specifies the format of a data item in computer
storage.

General Format

[USAGE IS]

COMPUTATIONAL
COMP
COMPUTATIONAL-l
,~

COMPUTATIONAL-3
COMP-3
DISPLAY
DISPLAY-6
pISPLAY-7
DISPLAY-9
INDEX
DATABASE-KEY
DBKEY

MR-S-1018-81

Technical Notes

1. The USAGE clause can be written at any level. If it is
written at a group level, it applies to each elementary item
in the group. The USAGE clause of an elementary item cannot
contradict the USAGE clause of a group to which the item
belongs.

Note that the recording mode of a file determines how the
data is recorded on the external medium. The recording mode
can be inferred from the usage m~de of the data records, but
the reverse is never true. The usage of a data record is
never inferred from the declared recording mode of the file.

The implied USAGE of a group item is DISPLAY-7 if the first
elementary item subordinate to it is declared as DISPLAY-7,
or DISPLAY-9 if the first elementary item subordinate to it
is declared as either DISPLAY-9 or COMP-3; otherwise, its
USAGE is DISPLAY-6. Howevei~ if the /X switch is included in
the compiler command string, the default USAGE is DISPLAY-9.

USAGES of DISPLAY-6, DISPLAY-7, and DISPLAY-9/COMP-3 cannot
be mixed. However, USAGES of COMP, COMP-l and INDEX can be
mixed with the aforementioned USAGES.

2. This clause specifies the manner in which a data item is
represented within computer memory.

4-55

THE DATA DIVISION

USAGE (Cont.)

3. COMPUTATIONAL (COMP)

a. COMP is equivalent to COMPUTATIONAL.

b. A COMPUTATIONAL item represents a
computations and must be numeric.
contain only the symbols: 9 S
represented as a binary number
point.

value to be used in
Its picture-string can
V P. Its value is

with an assumed decimal

c. If a group item is described as COMPUTATIONAL, the
elementary items in the group are COMPUTATIONAL.
However, the group itself is not COMPUTATIONAL and cannot
be used as an operand in arithmetic computations.

d. COMPUTATIONAL items of 10 or fewer decimal positions are
SYNCHRONIZED RIGHT in one computer word. Computational
items of more than 10 decimal positions are SYNCHRONIZED
RIGHT in two full computer words.

e. The following illustrations give the format of a
COMPUTATIONAL item.

f
sign

I I
0 I

I-WORD COMPUTATIONAL ITEM 35

f
sign

I I
0 I 35

~ nol uscu

0 I
2-WORD COMPUTATIONAL ITEM 35

MR·S·l019·Bl

4-56

THE DATA DIVISION

USAGE (Cont.)

4. COMPUTATIONAL-I (COMP-I)

a. COMP-I is equivalent to COMPUTATIONAL-I.

b. A COMPUTATIONAL-I item can contain a value, in floating
point format, to be used in computations. It must be
numeric. A COMP-I item must not have a PICTURE.

c. If a group item is described as COMPUTATIONAL-I, the
elementary items within the group are COMPUTATIONAL-I.
However, the group item itself is not COMPUTATIONAL-I and
cannot be used as an operand in ar i thmetic comput-ations.

d. COMPUTATIONAL-I items are SYNCHRONIZED in one full
computer word.

e. The ,following illustration gives the format
COMPUTATIONAL-I item.

of

t

I I
0 I

sign

hinary
exponent

9

Illallt issa

4-57

35
MR-S-1020-81

a

THE DATA DIVISION

USAGE (Cont.)

5. COMPUTATIONAL-3 (COMP-3)

a. COMP-3 is equivalent to COMPUTATIONAL-3.

b. A COMP-3 item's picture string can contain only the
symbols 9 S V P. Its value is represented as a packed
decimal number with an assumed decimal point.

c. If a group item is declared as COMP-3 the elementary
items in the group are COMP-3. However, the group item
itself is not COMP-3 and cannot be used as an operand in
arithmetic computations.

d. The maximum size of a COMP-3 item is 18 decimal digits.

e. The following illustration gives the format of a COMP-3
item. Note that bits 0, 9, 18 and 27 of the word are not
used.

I ~ I I
0 4 89 \J 17 18 ")") 2627 31 35

MR-S-1021-81

f. COMP-3 items can be SYNCHRONIZED LEFT or SYNCHRONIZED
RIGHT.

g. COMP-3 items can share a computer word with other COMP-3
items or with DISPLAY-9 items. However, COMP-3 items
always begin at one of the following bit positions in a
word: 1, 10, 19, 28.

h. The actual size of a COMP-3 item in memory is at least
four bits larger and can be nine bits larger than the
number of character positions because the sign is stored
in the last four bits of the item and the item is stored
right justified on a nine-bit byte boundary.

i. The octal values 12, 14, and 16 represent plus signs and
the octal values 13 and 15 represent minus signs. The
octal value 17 represents the non-printing plus sign.
Although octal 12, 14 and 16 rep~esent plus signs, the
sign given to the positive result of any arithmetic
operation is 14. Similarly, the minus sign given to the
negative result of any arithmetic operation is 15.

The non-printing plus sign is actually an absolute value
indicator. Any positive or negative number which is
moved into an item with this sign receives this sign. In
arithmetic computations and numeric editing operations,
items containing the nonprinting plus sign are treated as
positive.

4-58

THE DATA DIVISION

USAGE (Cont.)

6. DISPLAY-6

a. DISPLAY is equivalent to DISPLAY-6 when the IX switch is
not given in the compiler command string.

b. A DISPLAY-6 item represents a string of 6-bit characters.
Its picture-string can contain any picture symbols.
Refer to App~ndix B for the-8IXBIT collating sequence.

c. DISPLAY-6 items can be SYNCHRONIZED LEFT or SYNCHRONIZED
RIGHT, as desired. Otherwise, they can share a computer
word with other DISPLAY-6 items.

d. The illustration below given the format of a DISPLAY-6
word.

o 6 12 18 24 30 35
MR-S-1022-81

e. If the USAGE clause is omitted for an elementary item,
its USAGE is assumed to be DISPLAY-6 if the Ix switch has
not been included in the compiler command string.

7. DISPLAY-7

a. A DISPLAY-7 item represents a string of 7-bit ASCII
picture-string can contain any picture characters. Its

symbols.

b. DISPLAY-7 items can be SYNCHRONIZED LEFT or SYNCHRONIZED
RIGHT, as desired; otherwise, they can share a computer
word with other items. If the item is SYNCHRONIZED
RIGHT, the last character of the item ends in bit 34 of a
computer word.

c. The illustration below gives the format of a DISPLAY-7
word.

o 7 14 21 35
MR-S-1023-81

8. DISPLAY-9

a. DISPLAY is equivalent to DISPLAY-9 when the IX switch is
included in the command string to the compiler.

b. A DISPLAY-9
characters.
symbol.

item represents a string of EBCDIC
Its picture string can contain any picture

4-59

THE DATA DIVISION

USAGE (Cont.)

c. DISPLAY-9 items can be SYNCHRONIZED LEFT or SYNCHRONIZED
RIGHT as desired; otherwise, they can share a computer
word with other DISPLAY-9 OR COMP-3 items. If the item
is SYNCHRONIZED RIGHT, the last character of the item
ends in bit 35 of a computer word.

d. The maximum length of a DISPLAY-9 item
characters.

is 4,096

e. The illustration below gives the format of a DISPLAY-9
item. Note that bits 0, 9, 18, and 27 are not used.

I I I I
o 89 17 18 2627 35

MR-S-1024-B1

f. If the USAGE clause is omitted for an elementary item,
its USAGE is assumed to be DISPLAY-9 if the Ix switch has
been included in the computer command string.

9. INDEX

a. An elementary item described as USAGE INDEX is called an
index data-item. It is treated as a COMP item with
PICTURE S9(5) and can be used as a COMP item.

b. An index data-item must not have a PICTURE.

c. If a group item is described as INDEX, the elementary
items within the group are treated as INDEX. However,
the group item itself is not INDEX and cannot be used as
an operand in arithmetic statements.

d. Index data items and index-names (defined in the OCCURS
clause by the INDEXED BY option) are equivalent.

e. If an index-name is defined in an OCCURS clause, it
cannot be defined elsewhere.

10. DATABASE-KEY

a. DATABASE-KEY and DBKEY are equivalent and
interchangeable.

b. An item described as USAGE DATABASE-KEY is treated as a
COMP item with PICTURE S9(10) and can be used as a COMP
item.

4-60

THE DATA DIVISION

USAGE (Cont.)

c. The item with USAGE DATABASE-KEY must not have a PICTURE.

d. An item with USAGE DATABASE-KEY is primarily used in
programs accessing data bases through the Data Base
Management System (DBMS). This item can be used to store
the value of a data base key. All data base keys are
assigned by DBMS and cannot be changed by you. Refer to
the DBMS Programmer's Procedures Manual for more
information about DBMS.

4-61

THE DATA DIVISION

VALUE

4.11.2.12 VALUE

Function

The VALUE clause defines the initial value of WORKING-STORAGE items,
and the values associated with condition-names (level-88).

General Format

Format 1:

[VALUE IS literal]

Format 2:

[I VALUE
VArnEs

IS)
ARE literal-1 [THRU literal-2]

[,literal-3 [THRU literal-4]] ... J
MR·S·1025·81

Technical Notes

1. Format 2 can be specified only for level-88 items.

2. In the FILE SECTION, the VALUE clause can be used only with
level-88 items. In the WORKING-STORAGE SECTION, it can be
used at all levels, except level-66. It must not be stated
in a data description entry that contains an OCCURS clause or
that is subordinate to an entry containing an OCCURS clause.
Also, it must not be stated in an entry that contains a
REDEFINES clause or that is subordinate to an entry that
contains a REDEFINES clause.

3. If the VALUE clause is used at a group level, the literal
must be a figurative constant or a nonnumeric literal. The
group item is initialized to this value without consideration
for the individual elementary or group items contained within
this group. No VALUE clauses can appear at subordinate
levels within the group.

4. If no VALUE clause appears for a WORKING-STORAGE item, the
initial value of the item is unpredictable.

4-62

THE DATA DIVISION

VALUE (Cont.)

5. More information concerning Format 2 can be found under
"condition-name (Level-88)" in this chapter.

6. The VALUE clause must not conflict with other clauses in the
data description entry or in the data description entries
within the hierarchy of th~ item. The following rules apply:

a. If the category of an item is numeric, all literals in
the VALUE clause must be numeric. All literals in a
VALUE clause must have a value within the range of values
indicated by the PICTURE clause; for example, an item
with PICTURE PPP9 can have only the values in the range
.0000 through .0009.

b. If the category of the item is alphabetic or
alphanumeric, all literals in the VALUE clause must be
alphanumeric literals. The literal is aligned according
to the normal alignment rules (see "JUSTIFIED") except
that the number of characters in the literal must not
exceed the size of the item.

c. If the category of an item is numeric-edited or
alphanumeric-edited, no editing of the value is performed
in the VALUE clause.

d. The USAGE of the literal agrees with the USAGE of the
item. Thus, if the item has USAGE DISPLAY-6, the literal
also has USAGE DISPLAY-6 and its value must contain legal
SIXBIT characters.

7. The figurative constants SPACE(S), ZERO(E) (S), QUOTE(S),
LOW-VALUE(S), and HIGH-VALUE(S) can be substituted for a
literal. If the item is numeric, only ZERO(E) (S),
LOW-VALUE(S), and HIGH-VALUE(S) are allowed.

4-63

THE DATA DIVISION

REPORT SECTION

4.12 REPORT SECTION

The REPORT SECTION contains the descriptions of one or more reports
and the report groups that make up each report.

Report groups are the basic elements of a report. Each report group
is divided into report lines, which are in turn divided into fields.
The report groups that can appear in a report are:

REPORT HEADING Printed once at the beginning

REPORT FOOTING Printed once at the end

PAGE HEADING Printed at the beginning of each page

PAGE FOOTING Printed at the end of each page

DETAIL Printed for each set of report data

CONTROL HEADING Printed at the beginning of each detail
report group when a control break occurs

CONTROL FOOTING Printed at the end of each detail report
group when a control break occurs

The detail report groups contain the data items that constitute the
report. Data items within a detail group can be designated by the
programmer as controls. These control items are in descending order
of rank from FINAL, through major, intermediate, to minor. Each time
a control item changes, a control break is said to occur; the control
footings for the detail group are printed, and control headings for
the next detail group are printed before the next detail group is
printed. A FINAL control break occurs twice during the generation of
a report, before the first detail line is printed and after the last
detail line is printed. The most major control breaks least often and
the most minor control breaks most often. If the most minor control
field breaks, the control footing for that control field is generated,
and the control heading for the next detail group for that control is
generated. If a more major control field breaks, the control footings
for all fields more minor than that which broke are gen~rated,
starting with the most minor and continuing up to the control footing
for the control that broke. The control headings are then printed
starting with the control field that broke and continuing through the
most minor control field. An example of a skeleton report follows.

REPORT HEADING
PAGE HEADING
CONTROL HEADING (FINAL)
CONTROL HEADING (MAJOR)
CONTROL HEADING (MINOR)
DETAIL GROUP

CONTROL FOOTING (MINOR) (control break occurred)
CONTROL HEADING (MINOR)
DETAIL GROUP

4-64

THE DATA DIVISION

REPORT SECTION (Cont.)

CONTROL FOOTING (MINOR)
CONTROL FOOTING (MAJOR) (control break occurred)
CONTROL HEADING (MAJOR)
CONTROL HEADING (MINOR)
DETAIL GROUP

CONTROL FOOTING (MINOR)
CONTROL FOOTING (MAJOR)
CONTROL FOOTING (FINAL) (control break occurred)
PAGE FOOTING
REPORT FOOTING

within a report file, more than one report can be written. If more
than one report is written in a file, the names of all the reports
must be specified in the REPORTS clause of the file description entry,
and a unique code must be specified for each report by means of the
CODE clause in the Report Description fo each report. The code must
also be identified in the SPECIAL-NAMES section of the ENVIRONMENT
DIVISION.

To print one of the reports within a report file, you enter the
filename and the code of the desired report into the queue for the
line-printer spooler, LPTSPL. LPTSPL copies the report lines with the
designated code to the line printer, but does not erase the lines from
the file. The file is entered into the line-printer queue by means of
the PRINT monitor command. The code is specified by the /REPORT
switch in the Queue command string.

PRINT filespec/REPORT:code

Only the first 12 characters of the code are accepted in the PRINT
command string.

Included in the description of a report are the number of lines on a
report page, where headings should begin on the page, where footings
should end, the column on the page where each item in a report group
is to be placed, and the number of lines that are left between report
groups.

To cause a report to be printed, in addition to specifying its format
and data in the DATA DIVISION, you must include certain verbs in the
PROCEDURE DIVISION. These verbs are: INITIATE, which initializes the
report and sets sum counters to zero; GENERATE, which causes report
groups to be generated on specified control breaks; and TERMINATE,
which ends the report. An additional statement, USE BEFORE REPORTING,
causes a programmer-specified procedure to be performed before a
report group is produced.

4-65

THE DATA DIVISION

REPORT DESCRIPTION (RD)

4.12.1 Report Description (RD)

Function

The Report Description furnishes information concerning the physical
structure for a report.

General Format

RD report-name

[CODE mnemonic-name J

[
jCONTROL IS } {identifier-l ,identifier-2 ... }]
lCONTROLS ARE FINAL [,identifier-l [,identifier-2] ... J

[{
LIMIT IS l· {LINES}

PAGE LIMITS AREJ lnteger-l LINES

[HEADING inte ger-2J [FIRST DETAIL integer-3 J

[LAST DETAIL integer-4] [FOOTING integer-5]] -'-

MR-S-1026-81

Technical Notes

1. The order of appearance of the
immaterial.

optional clauses is

2. A fixed data-name PAGE-COUNTER is automatically generated for
each RD entry.

Its function is to contain the current page number of a
report. It is a COMPUTATIONAL item; its size is equal to
the size of the largest field that refers to it in a SOURCE
clause. The contents of the PAGE-COUNTER are set to 1 by the
INITIATE statement.

3. The fixed data-name LINE-COUNTER is automatically generated
for each RD entry. Its function is to contain the current
line number within a report page. It is a COMPUTATIONAL
item; its size is based on the number of lines specified in
the PAGE-LIMIT clause.

4-66

THE DATA DIVISION

REPORT DESCRIPTION (RD) (Cont.)

4. PAGE-COUNTER or LINE-COUNTER can be referenced as if it were
any data-name. It must be qualified by the report-name if
more than one RD entry is present in the program.

S. Each of the above clauses appea~s on the following pages.

4-67

THE DATA DIVISION

CODE

4.12.1.1 CODE

Function

The CODE clause defines a unique string of one or more characters that
is affixed to each line of the report.

General Format

CODE mnemonic-name

Technical Notes

1. This clause is necessary only if more than one report is to
be written in a single file.

2. Mnemonic-name is defined in the SPECIAL-NAMES paragraph of
the ENVIRONMENT DIVISION.

3. The character string represented by mnemonic-name is affixed
to the beginning of each report line, and is used to uniquely
define the lines of separate reports written in one file.

4. The number of characters represented by mnemonic-name must be
the same for the codes of all reports in the same file.

4-68

THE DATA DIVISION

CONTROL(S)

4.12.1.2 CONTROL(S)

Function

The CONTROL clause indicates the identifiers that control the printing
of totals in the report.

General Format

J ~~~i~~ts I~RE) { ~~~~~i~ier-~ . [,identifier-2] } 1 FINAL,ldentlfler-l [,identifier-2] ...
MR-S-1027-81

Technical Notes

1. The CONTROL clause is required when CONTROL HEADING or
CONTROL FOOTING report groups are specified.

2. The identifiers specify the control hierarchy for this
report. They are listed in order from major to minor; FINAL
is the highest level of control, identifier-l is the major
control, identifier-2 is the intermediate control, etc. The
last identifier specified is the minor control.

3. Identifiers must not be defined in the Report Section. I
Identifiers can be qualified, but they cannot be subscripted
or indexed.

4-69

THE DATA DIVISION

PAGE LIMIT

4.12.1.3 PAGE LIMIT

Function

The PAGE LIMIT clause indicates the specific line control to be
maintained within the presentation of a report page.

General Format

[HEADING inte ger-2] [FIRST DETAIL integer-3]

[LAST DETAIL integer-4] [FOOTING integer-s]
MR-S-l028-81

Technical Notes

1. The PAGE LIMIT clause is required when page format must be
controlled by the Report Writer.

2. All integers must have a positive
Integer-2 through integer-5 must
integer-I.

value
not

less than
be greater

512.
than

3. If absolute line spacing is indicated for all report groups
(see the LINE NUMBER and NEXT GROUP clauses Sections 4.12.2.3
and 4.12.2.4 respectively), integer-2 through integer-5 need
not be specified.

4. The integers specify line numbers relative to the beginning
of a page.

5. The HEADING clause specifies the first line of a page to be
used; no line precedes integer-2.

6. The FIRST DETAIL clause specifies the first line of the first
DETAIL or CONTROL print group; no DETAIL or CONTROL group
precedes integer-3.

7. The LAST DETAIL clause specifies the last line of a DETAIL or
CONTROL HEADING report group; no such group extends beyond
integer-4.

8. The FOOTING clause specifies the last line number of the last
CONTROL FOOTING report group; no CONTROL FOOTING group
extends beyond integer-5.

4-70

THE DATA DIVISION

PAGE LIMIT (Cont.)

9. If any optional clause is omitted, a value is assumed for its
integer. The default values are:

integer-2:

integer-3:

integer-4:

integer-5:

Default is 1

Default is the value of integer-2

Default is the value of integer-5 if
specified; if integer-5 is also omitted, the
default is the value of integer-l

Default is the value of integer-4 if
specified; if integer-4 is omitted, the
default is the value of integer-I.

4-71

THE DATA DIVISION

Report Group Description (RD)

4.12.2 Report Group Description

Function

The Report Group Description entry specifies the characteristics and
format of a particular report group.

General Format

Opt ion 1:

01 [data-narne-l]

[{
integer-l }]

LINE NUMBER IS PLUS integer-2
NEXT PAGE

[{
integer-3 }]

NEXT GROUP IS PLUS integer-4
NEXT PAGE

REPORT HEADING
RH
PAGE HEADING

PH ,CONTROL HEADING} {identifier-I}
- lCH FINAL

TYPE IS DETAIL

DE {CONTROL FOOTING} {identifier-2}
- CF FINAL

PAGE FOOTING
PF
REPORT FOOTING
RF

[[USAGE IS] I ~~~~t~~-6Il -- pISPLAY-Z-
DISPLAV-9

MR-S-1029-81

4-72

THE DATA DIVISION

Report Group Description (RD) (Cont.)

Option 2:

level-number [data-name-I]

[BLANK WHEN ZERO]

[COLUMN NUMBER IS integer-I]

[GROUP INDICATE]

[{
integer-2 }]

LINE NUMBER IS PLUS integer-3
NEXT PAGE

[llliTURE I IS character-string]

[RESET ON { identifier-I}]
-- FINAL

{
SOURCE IS identifier-2 }
SUM identifier-3 [,identifier-4] ... [UPON data-name-~
VALUE IS literal-I

[[USAGE IS] I DISPLAY ! 1 DISPLAY-6
DISPLAY-7 ...!....

DISPLAY-9
MR-S-1030-81

4-73

THE DATA DIVISION

Report Group Description (RD) (Cont.)

Technical Notes

1. Except for the data-name, which when present must immediately
follow the level-number, the clauses can be written in any
order.

2. In order for a report group to be referred to by a PROCEDURE
DIVISION statement, it must have a data-name.

3. All elementary items must have a PICTURE clause and one of
the clauses SOURCE, SUM, or VALUE.

4. For a detailed description of the BLANK WHEN ZERO, JUSTIFIED,
PICTURE, VALUE, and USAGE clauses, see the pages following
the Data Description Entry.

5. The data-name need not appear in an entry unless it is
referred to by a GENERATE or USE statement, or reference is
made to the SUM counter.

6. If the Ol-level item is elementary, the clauses in Format 2
can be used in addition to the clauses in Format 1.

7. The remaining clauses are described in detail on the
following pages.

4-74

THE DATA DIVISION

COLUMN

4.12.2.1 COLUMN

Function

The COLUMN NUMBER clause indicates the column on the printed page in
which the high-order (leftmost) character of an item is printed.

General Format

COLUMN NUMBER IS integer

Technical Notes

1. Integer must have a positive value less than 512.

2. This clause is valid only for an elementary item.

3. Within a report group and a particular LINE NUMBER
specification, COLUMN NUMBER entries must be indicated from
left to right.

4. If the COLUMN NUMBER clause is omitted, the elementary item,
though included in the description, is suppressed when the
report group is produced at object time.

4-75

THE DATA DIVISION

GROUP INDICATE

4.12.2.2 GROUP INDICATE

Function

The GROUP INDICATE clause indicates that this elementary item is to be
produced only on the first occurrence of the item after any CONTROL or
PAGE breaks.

General Format

GROUP INDICATE

Technical Notes

1. This clause can only be used at the elementary level within a
TYPE DETAIL report group.

2. A GROUP INDICATEd item is presented in the first detail line
of a report after any control breaks and after any page
breaks; it is suppressed at all other times.

4-76

THE DATA DIVISION

LINE NUMBER

4.12.2.3 LINE NUMBER

Function

The LINE NUMBER clause indicates the absolute or relative line number
entry in reference to the page or the previous entry.

General Format

LINE NUMBER
integer-l }
PLUS integer-2
N'EXf PAGE

MR-S-1031-81

Technical Notes

1. Integer-l and integer-2 must be positive integers with values
less than 512. Integer-l must be within the range specified
by the PAGE LIMITS clause in the RD entry.

2. The LINE NUMBER clause must be given for each report line of
a report group, and must be specified at or before the first
elementary item that contains a COLUMN clause of each report
line. If an item does not contain a COLUMN clause and the
LINE NUMBER clause is specified for it, no printing is done,
but the - LINE NUMBER clause causes vertical spacing to be
done.

3. If a LINE NUMBER clause is specified for an item, all entries
following that item, up to but not including the next item
with a LINE NUMBER clause, are presented on the same line.

4. A LINE NUMBER at a subordinate level can not contradict a
LINE NUMBER at a group level.

5. Integer-l indicates that the current line is to be presented
at that line number.

6. PLUS integer-2 indicates that the LINE-COUNTER is to be
incremented by the value of integer-2, and that the current
line is to be presented on the line specified by the new
value of the LINE-COUNTER.

7. NEXT PAGE is used to indicate an automatic skip to the next
page before the current line is presented. If there is no
PAGE-LIMIT clause, there is only a skip to the top of the
next page. However, if there is a PAGE-LIMIT clause, after
skipping to the next page, the Report writer spaces as
follows:

4-77

THE DATA DIVISION

Type of Line Space To

Detail, control heading, First detail line
control footing

Report heading, report Heading line
footing, page heading

Page footing Footing line

4-78

THE DATA DIVISION

NEXT GROUP

4 • 12 . 2 • 4 N.EXT GROUP

Function

The NEXT GROUP clause specifies the spacing condition following the
last line of the report group.

General Format

NEXT GROUP
integer-l }
PLUS i nteger- 2
NEXT PAGE

MR·S·1032·81

Technical Notes

1. The NEXT GROUP clause can appear only at the 01 level of a
report group.

2. Integer-l and integer-2 must be positive integers with values
less than 512. Integer-l cannot exceed the number of lines
specified by the PAGE LIMIT clause.

3. Integer-l specifies a line number to which the LINE-COUNTER
is set after the group is presented.

4. PLUS integer-2 specifies a relative line number that
increments the LINE-COUNTER by the value of integer-2 after
the group is presented. Integer-2 is the number of lines
skipped following the last line of the report group.

5. NEXT PAGE indicates an automatic skip to the next page after
the group is presented.

4-79

THE DATA DIVISION

RESET

4.12.2.5 RESET

Function

The RESET clause indicates the CONTROL data-item that causes the SUM
counter to be reset to zero on a control break.

General Format

RESET ON {identifier-l}
-- FINAL

MR-S-1033-61

Technical Notes

1. Identifier-l must be one of the identifiers associated with
the CONTROL clause in the RD entry.

2. The RESET clause can be used only in conjunction with a SUM
clause at a CONTROL FOOTING elementary level.

3. Identifier-l must be a higher level (more major) control
identifier than the control identifier associated with this
report group.

4. After a TYPE CONTROL FOOTING report group is presented, the
sum counters associated with that group are automatically set
to zero, unless an explicit RESET clause directs that the
counter be cleared at a higher level.

4-80

THE DATA DIVISION

SOURCE

4.12.2.6 SOURCE

Function

The SOURCE clause indicates the source of the data for a report item.

General Format

SOURCE IS identifier

Technical Notes

1. The SOURCE clause can only be given at the elementary level.

2. Identifier must indicate an item that appears in the FILE or
WORKING-STORAGE SECTION.

3. When the report group is presented, the contents of this
report item are replaced by the contents of identifier.

4-81

•

THE DATA DIVISION

SUM

4.12.2.7 SUM

Function

The SUM clause indicates the items to be summed to produce the source
of data for a report item.

General Format

SUM identifier-l [,identifier-2] [UPON data-name-l]
MR-S-1034-81

Technical Notes

1. A SUM clause can appear only in a TYPE CONTROL FOOTING report
group.

2. Each identifier must indicate a SOURCE item in a TYPE DETAIL
report group, or a SUM counter in a TYPE CONTROL FOOTING
report group.

3. If the SUM counter is referred to by a PROCEDURE DIVISION or
REPORT SECTION statement, a data-name must be specified for
the item. The data-name then represents the summation
counter automatically generated by the Report Writer; that
data-name does not represent the report group item itself.

4. A summation counter is incremented just before the
presentation of the identifiers. Any editing of the SUM
counters is done only when the sum item is presented; at all
other times it is treated as a numeric item.

5. If higher-level report groups are indicated in the control
hierarchy, each lower level that is figured into the sum is
summed into the higher level before each lower level is
reset, that is, counters are rolled forward prior to the
reset operation. ..

6. The UPON option is required to obtain selective summation for
a particular data item that is named as a SOURCE item in two
or more TYPE DETAIL report groups. Identifier-l and
identifier-2 must be SOURCE data items in data-name-l;
data-name-l must be the name of a TYPE DETAIL report group.

7. When the UPON option is used, summation occurs only when a
GENERATE statement references data-name-l. It does not occur
during summary reporting (refer to the GENERATE statement in
the PROCEDURE DIVISION).

8. The identifiers cannot be subscripted or indexed.

4-82

THE DATA DIVISION

TYPE

4.12.2.8 TYPE

Function

The TYPE clause specifi~s the particula~ type of report group that is
described by this entry and indicates when the report group is
generated.

General Format

REPORT HEADING
RH
PAGE HEADING

E!i {~~NTROL HEADING} {~f~~Ci fier-n }

TYPE IS DETAIL

DE {CONTROL FOOTING} {identifier-n}
- CF FINAL

PAGE FOOTING
PF
REPORT FOOTING
RF

Technical Notes

1. RH is an abbreviation
PH is an abbreviation
CH is an abbreviation
DE is an abbreviation
CF is an abbreviation
PF is an abbreviation
RF is an abbreviation

MR-S-1035-81

for REPORT HEADING;
for PAGE HEADING;
for CONTROL HEADING;
for DETAIL;
for CONTROL FOOTING;
for PAGE FOOTING;
for REPORT FOOTING.

2. If the report group is described as TYPE DETAIL, the GENERATE
statement in the PROCEDURE DIVISION directs the Report Writer
to produce the named report group.

3. The REPORT HEADING entry indicates a report group that is
produced only once at the beginning of a report, during the
execution of the first GENERATE statement. There can be only
one report group of this type in a report.

4. The PAGE HEADING entry indicates a report group that is
automatically produced at the beginning of each page of the
report. There can be only one report group of this type in a
report.

5. The CONTROL HEADING entry indicates a report group that is
produced at the beginning of a control group for a designated
identifier. In the case of FINAL, it is produced once before
the first control group during the execution of the first
GENERATE statement. There can be only one report group of
this type for each identifier and for FINAL.

4-83

THE DATA DIVISION

TYPE (Cont.)

6. The CONTROL FOOTING entry indicates a report group that is
produced at the end of a control group for a designated
identifier, or that is produced only once at the termination
of a report in the case of FINAL. There can be only one
report group of this type for each identifier and for FINAL.
In order to produce any CONTROL FOOTING report groups, a
control break must occur.

7. The PAGE FOOTING entry indicates a report group that is
automatically produced at the bottom of each page of the
report. There can be only one report group of this type in a
report.

8. The REPORT FOOTING entry indicates a report group that is
produced only once, at the termination of a report. There
can be only one report group of this type in a report.

9. Each identifier, as well as FINAL, must be one of the
identifiers associated with the CONTROL clause in the RD
entry.

4-84

CHAPTER 5

THE PROCEDURE DIVISION

The Procedure Division specifies the processing to be performed on the
files and the file data described in the Environment and Data
Divisions. The Procedure Division contains a series of COBOL
procedure statements which describe the processing to be done.
Statements, sentences, paragraphs, and sections are described in
Section 5.1. Sections are optional and permit a group of consecutive
paragraphs to be referenced by a single procedure-name. Sections can
also be used for segmentation purposes (see Section 5.3,
Segmentation). If any section appears in the Procedure Division, then
all paragraphs must appear within a section.

The first entry in the Procedure Division of a source program must be
the division-header. The next en~ry must be either the DECLARATIVES
header (see the USE statement, Section 5.9.42), or a paragraph-name or
section-name.

PROCEDURE DIVISION ~SING data-name-J ~ a t a - n a me - 2 J .. J
[DE CLARA n VES.

{ section-name SECTION [segment-number~ declarative-sentence

~aragraPh-name. [sentence] ...] .. , }

END DECLARATIVES~

{ sect ion-name SECn ON ~egment- n umbe rJ

[!aragraPh-name. [sentence] ...]

Only in a subprogram can USING clauses appear in the PROCEDURE
DIVISION header.

When a program-name is specified in a CALL statement in a calling
program, control is transferred to the beginning of the executable
code in the subprogram (that is, the Procedure Division).

The identifiers in the USING clause indicate those data items in the
called program that can reference data items in the calling program.
The order of identifiers in the CALL statement of the calling program
and in the PROCEDURE DIVISION header of the called program is
critical. The items in the USING clauses are related by their
corresponding positions, not by name. Corresponding identifiers refer
to a single set of data that is available to both the calling and
called programs.

5-1

THE PROCEDURE DIVISION

The number of identifiers in the USING clause in the PROCEDURE
DIVISION header must be less than or equal to the number of
identifiers in the USING clause in the CALL statement in the calling
program.

5.1 SYNTACTIC FORMAT OF THE PROCEDURE DIVISION

The PROCEDURE DIVISION consists of a series of procedure statements
grouped into sentences, paragraphs, and sections. By grouping the
statements in this manner, reference can be made to them by a
procedure-name (that is, a paragraph-name or a section-name). The
order in which procedure-statements are executed can be controlled by
using the sequence-control verbs ALTER, GO TO, and PERFORM.

5.1.1 Statements and Sentences

Statements fall into three categories: imperative, conditional, and
compiler-directing, depending upon the verb used. Verbs, in turn, are
also classified into certain categories. These categories and their
relationship to the three statement categories are given in Table 5-1.

'rable 5-1
Procedure Verb and Statement Categories

Verb Verb Category Statement Category

ADD ARITHMETIC IMPERATIVE
COMPUTE
DIVIDE
MULTIPLY
SUBTRACT

ALTER SEQUENCE-CONTROL IMPERATIVE
CALL
ENTER
ENTRY
EXIT PROGRAM
GOBACK
GO TO
PERFORM
STOP

EXAMINE DATA MOVEMENT IMPERATIVE
MOVE
SET
STRING
UNSTRING

5-2

THE PROCEDURE DIVISION

Table 5-1 (Cont.)
Procedure Verb and Statement Categories

Verb Verb Category Statement Category

CANCEL MISCELLANEOUS IMPERATIVE
EXAMINE
FREE
MERGE
RELEASE
RETAIN
RETURN
SEARCH
SORT
TRACE

GENERATE REPORT IMPERATIVE
INITIATE
SUPPRESS
TERMINATE

ACCEPT I-O IMPERATIVE
CLOSE
DELETE
DISPLAY
OPEN
READ
REWRITE
SEEK
WRITE

IF CONDITIONAL CONDITIONAL

COpy COMPILER-DIRECTING COMPILER-DIRECTING
EXIT
NOTE
USE

5.1.2 Sentences

A statement or sequence of statements terminated by a period forms a
sentence. Sentences are classified into the same three categories as
statements.

An imperative sentence consists solely of one or more imperative
statements. Except for imperative sentences containing one of the
sequence-control verbs, control passes to the next procedural sentence
following execution of the imperative sentence. If a GO TO or STOP
RUN statement is present in an imperative sentence, it must be the
last statement in the sentence.

5-3

I

THE PROCEDURE DIVISION

A conditional sentence performs some test and, on the basis of the
results of that test, determines whether a true or a false path should
be taken. A conditional sentence is one that contains the conditional
verb (IF) or one of the option clauses ON SIZE ERROR (used with
arithmetic verbs), AT END (used with the READ verb), or INVALID KEY
(used with the READ verb for mass storage devices).

A compiler-directing sentence consists of a single compiler-directing
statement. Compiler-directing sentences are used to indicate the end
point of a PERFORM loop (EXIT), insert comments in the PROCEDURE
DIVISION (NOTE), copy library entries (COPY) and specify procedures
for input-output errors and label handling (USE) . Generally,
compiler-directing sentences generate no object program code.

5.1.3 Paragraphs

A single sentence or a group of sequential sentences can be assigned a
paragraph-name for reference. The paragraph-name must begin in Area A
(see Chapter 1) and terminate with a period. The first sentence of
the paragraph can begin after the space following this period or it
can begin on the next line, beginning in Area B.

A paragraph-name must be unique within its section, but need not be
unique within the program. A non-unique paragraph-name must be
qualified by its section-name except when it is referenced from within
its own section.

5.1.4 Sections

A single paragraph or a group of sequential paragraphs can be assigned
a section-name for reference. The section-name must begin in Area A,
be followed by the word SECTION, and optionally, followed by a
priority number, and terminated by a period.

section-name SECTION nne

If the section-name is in the DECLARATIVES portion, it can not have a
priority number. A USE statement can appear following the terminating
space after the period.

The section-name applies to all paragraphs following it until another
section-header is encountered.

All section-names must be unique within a program. Sections are
optional within the PROCEDURE DIVISION, but if a DECLARATIVES portion
is used there must be a named section immediately following the END
DECLARATIVES statement.

When a section-name is referenced, the word SECTION is not allowed in
the reference.

5-4

THE PROCEDURE DIVISION

5.2 SEQUENCE OF EXECUTION

In the absence of sequence-control verbs, sentences are executed
consecutively within paragraphs, paragraphs are executed consecutively
within sections, and sections are executed consecutively within the
PROCEDURE DIVISION (with the exception of sections within the
DECLARATIVES portion, which are executed individually when the related
condition occurs).

5.3 SEGMENTATION AND SECTION-NAME PRIORITY NUMBERS

COBOL source programs can be written to enable certain portions of the
PROCEDURE DIVISION code to share the same memory area at object run
time, thus decreasing the amount of memory required to run the object
program, though not the time. The method used to achieve this
reduction is called segmentation.

Segmentation consists of dividing the PROCEDURE DIVISION sections into
logically related groupings called segments. The programmer defines a
segment by assigning the same priority-number (a priority-number
follows the word SECTION in the section-header, and can be in the
range 00 through 99) to all the sections to be included in that
segment; these sections need not appear consecutively in the source
program.

Segments are classified into three groups, depending upon their
priority-number. These three groups are described in Table 5-2.

Priority Number

None, or 00 up to
SEGMENT-LIMIT
minus I

SEGMENT-LIMIT
up to 49

50 through 99

Table 5-2
Types of Segments

Type Description

Resident This segment is always resi-
Segment dent in memory and is never

overlaid.

Nonresident; These segments are non-
ALTERed GO resident and are brought
TOs retained into memory when needed.

Any ALTERed GO TOs retain
their most recently set
values.

Nonresident; These segments are also non-
ALTERed GO resident and are brought
TOs reset into memory when needed.

Any ALTERed GO TOs do not
retain their latest values,
but are reset to their
original setting each time
the segment is entered from
another segment.

5-5

THE PROCEDURE DIVISION

In addition to the resident segment, all data areas described in the
DATA DIVISION are resident at all times. Thus, memory can be thought
of as being divided into two parts:

1. A resident area, in which reside all data areas and the
resident segment, and

2. A nonresident area, equal to the size of the largest
nonresident segment, into which each nonresident segment is
read when needed. Since each nonresident segment reads into
the same memory area, any previous nonresident segment in
that area is overlaid and must be brought in again when it is
to be executed again.

'rhe resident segment should consist of those sections that constitute
the main portion of the processing. Infrequently-used sections can be
allocated to the nonresident segments.

Non-resident
shareable.

5.4 ARITHMETIC EXPRESSIONS

NOTE

code can never be

An arithmetic expression is an identifier of a numeric elementary
item, or a numeric literal, or such identifiers and literals separated
by arithmetic operators.

Algebraic negation can be indicated by a unary minus symbol.

5.4.1 Arithmetic Operators

There are five arithmetic operators that can be used in arithmetic
expressions. They are represented by specific character symbols that
must be preceded by a space and followed by a space.

Arithmetic Operator

+

*
/
**

Meaning

Addition or unary plus
Subtraction or unary minus
Multiplication
Division
Exponentiation
Exponentiation

5.4.2 Formation and Evaluation Rules

The following rules for information and evaluation apply to arithmetic
expressions.

5-6

THE PROCEDURE DIVISION

1. Parentheses specify the order in which elements within an
arithmetic expression are to be evaluated. Expressions
within parentheses are evaluated first. within a nest of
parentheses, the evaluation proceeds from the elements within
the innermost pair of parentheses to the outermost pair of
parentheses. When parentheses are not used, or parenthesized
expressions are at the same level of inclusiveness, the
following hierarchal order of operations is implied:

First:
then
then

unary +, unary -
** and A (exponentiation)

(multiplication and division)
(addition and subtraction)

* and /
and then + and -

2. When the order of a sequence of operations on the same
hierarchal level (for example, a sequence of + and
operations) is not completely specified by use of
parentheses, the order of operations is from left to right.

3. An arithmetic expression can begin with one of the following:

(- + variable

and can end only with one of the following:

) variable

4. There must be a one-to-one correspondence between left and
right parentheses in an arithmetic expression; each left
parenthesis must precede its corresponding right parenthesis.

5.5 CONDITIONAL EXPRESSIONS

A conditional expression causes the object program to select between
alternate paths (called the true and false paths) of control depending
upon the truth value of a test. Conditional expressions can be used
in conditional (IF) statements and in PERFORM statements (options 3
and 4). A conditional expression can be one of the following types:

Relation condition
Class condition
Condition-name condition
Switch-status condition
Sign condition

(greater than, equal to, less than)
(numeric or alphabetic)
(level-SS conaition-names)
(SPECIAL-NAMES paragraph)
(positive, negative, zero)

Each of these types is discussed below.

5.5.1 Relation Condition

A relation condition causes a comparison of two operands, each of
which can be an identifier, a literal, a figurative constant, or an
arithmetic expression. Comparison of two numeric operands is
permitted regardless of their formats as described by their respective
USAGE clauses. Comparison of two operands is permitted if each is
DISPLAY-6, DISPLAY-7, or DISPLAy-g.

5-7

THE PROCEDURE DIVISION

A numeric-edited operand can not be compared to a numeric operand. An
alphanumeric operand can not be compared to a numeric operand unless
the alphanumeric operand contains no characters other than numeric
digits. For example, the statement:

IF NUH < "2".

is permissible but the statement:

IF NUM < "2.0".

is not.

5.5.1.1 Format of a Relation-Condition - The general format for a
relation condition is

I
identifier-l I I identifier-2 }
li~eral-~ . relational-o erator li~eral-~ .
arlthmetlc-expresslon-l p arlthmetlc-expresslon-2
figurative-constant-l figurative-constant-2

MR-S-1037-81

The first operand is called the subject of the condition; the second
operand is called the object of the condition. Either the subject or
the object must be an identifier or an arithmetic expression.

5.5.1.2 Relational Operators - Relational operators specify the type
of comparison to be made in the relation condition. Relational
operators must be preceded by a space and followed by a space.

Relational Operator Meaning

IS [NOT] GREATER THAN Greater than, not greater than
IS [NOT] > THAN

IS [NOT] LESS THAN Less than, not less than
IS [NOT] < THAN

IS [NOT] EQUAL (EQUALS) TO Equal to, not equal to
IS [NOT] = TO

5.5.1.3 Comparison of Numeric Items - A comparison between two
numeric items determines that the algebraic value of one item is less
than, equal to, or greater than the algebraic value of the other item.
The length of the operands is not significant. Zero is considered a
unique value; +0 and -0 are equal. Unsigned operands are considered
positive. Blanks and tabs are ignored when a numeric item is compared
to zero. Since blanks and tabs make an item alphanumeric, a true zero
condition can be established by an alphanumeric test followed by a
comparison with zero.

5-8

THE PROCEDURE DIVISION

5.5.1.4 Comparison of Alphanumeric Items - For operands whose
category is alphanumeric (or where one operand is numeric and the
other is alphanumeric), a comparison results in the determination that
one of the operands is less than, equal to, or greater than the other
operand with respect to a specified collating sequence of characters
(see Appendix B). The size of an operand is the total number of
characters in the operand. Blanks and tabs are not ignored when an
alphanumeric item is compared to ZERO. The presence of either blanks,
tabs, or both in the operand causes the test result to be NOT EQUAL.

There are three cases to consider: operands of equal length, operands
of unequal length, and operands with differing justification.

1. Operands of equal length - If the operands are of equal
length, characters in corresponding character positions of
the two operands are compared, starting at the higher-order
(leftmost) end and continuing through the low-order end. If
all pairs of characters compare equally through the last
pair, 'the operands are considered to be equal. If they do
not all compare equally, the first pair of unequal characters
encountered is compared to determine their relative position
in the collating sequence. The operand containing the
character that is positioned higher in the collating sequence
is considered to be the greater operand.

2. Operands of unequal length - If the operands are of unequal
length, the comparison of characters proceeds from the
high-order end to the low-order end until either

a. A pair of unequal characters is encountered, or

b. One of the operands has no more characters to compare.

If a pair of unequal characters
comparison is determined in the
equal-sized operands.

is encountered,
manner described

the
for

If the end of one of the operands is encountered before
unequal characters are encountered, this shorter operand is
considered to be less than the longer operand unless the
remaining characters in the longer operand are spaces, in
which case the two operands are considered equal.

3. If one operand is right-justified and the other is
left-justified, they are compared just as they appear in the
record. That is, PICTURE XXX, VALUE IIBII and PICTURE XXX,
VALUE IIBII, JUSTIFIED RIGHT are not equal because the first
appears in the record as B and the second as B.

5.5.2 Class Condition

The class condition tests the contents of an item for being' wholly
alphabetic or wholly numeric.

5-9

THE PROCEDURE DIVISION

5.5.2.1 Format of a Class Condition -

i denti fi er IS [NOT] { ALPHABETI C}
- NUMERIC

MR·S·1038·81

5.5.2.2 Restrictions - The item named by identifier must be
described, implicitly or explicitly, as DISPLAY, DISPLAY-6, DISPLAY-7,
or DISPLAY-9. The NUMERIC test cannot be applied to an item described
as alphabetic. The ALPHABETIC test cannot be applied to an item
described as numeric. A compiler diagnostic results if either of the
two previousl~ mentioned tests are attempted.

5.5.2.3 The ALPHABETIC Test - The ALPHABETIC test result is TRUE when
the item consists of characters from the alphabet (A through Z) and
the space or tab.

5.5.2.4 The NUMERIC Test - The NUMERIC test result is TRUE under th~
following conditions:

1. For alphanumeric and unsigned numeric items, each character
must be a digit (0 through 9). No signs are permitted.
Spaces and tabs cause the test result to be FALSE.

2. For signed numeric items, the sign can have only one of the
three following representations: a leading graphic sign ("+"
or "_"), a trailing graphic sign, or a trailing embedded
sign. All other characters must be digits. Spaces or tabs
cause the test result to be FALSE.

NOTE

An alternative form of NUMERIC test can
be selected by a switch setting during
system installation, which causes
leading and trailing blanks and tabs to
be ignored. This alternative form is
described in Appendix D.

5.5.3 Condition-Name Condition

In a condition-name condition, a conditional variable is tested to
determine whether or not its value is equal to one of the values
associated with a condition-name (level-88).

5.5.3.1 Format of a Condition-Name - The
condition-name is

[NQT] condition-name

general format for a

If the condition-name is associated with a range of values, then the
conditional variable is tested to determine whether or not its value

5-10

THE PROCEDURE DIVISION

falls within this range, including the end values.

The rules for comparing a conditional variable with a condition-name
value are the same as those specified for relation conditions.

The result of the test is true if one of the values associated with
the condition-name equals the value of its associated conditional
variable.

5.5.4 Switch-status Condition

A switch-status condition determines the on or off status of a
hardware switch.

5.5.4.1 Format of a Switch-Status Condition - The general formats for
a switch-status condition are

Format 1:

[NOT] condition-name

Format 2:

mnemoni c-name IS [NOT] {~~F }

Format 3:

SWITCH (integer) IS [NOT] {~~F }
MR-S-1039-81

In format 1, condition-name is associated with a SWITCH IS ON or OFF
STATUS clause in the SPECIAL-NAMES paragraph of the ENVIRONMENT
DIVISION.

In format 2, mnemonic-name is associated with a SWITCH (not an ON or
OFF STATUS) in the SPECIAL-NAMES paragraph of the ENVIRONMENT
DIVISION.

In format 3, integer must be in the range from 0 through 35.

In format 1, the result of the test is true if the switch is [NOT) set
to the position associated with the condition-name.

In formats 2 and 3, the result of the test is true if the switch is
[NOT] set to the position specified in the condition.

5.5.5 Sign Condition

The sign condition determines whether or not the algebraic value of a
numeric operand is less than, greater than, or equal to zero.

5-11

THE PROCEDURE DIVISION

5.5.5.1 Format of a Sign Condition - The general format for a sign
condition is:

{identifier }
arithmetic-expression {

POSITIVE}
IS [HQI] NEGATIVE

z.E.EQ
MR·S·1040-81

The POSITIVE test result is TRUE if the identifier or
arithmetic-expression is algebraically greater than zero. The
NEGATIVE test result is TRUE if the identifier or
arithmetic-expression is algebraically less than zero. The ZERO test
result is TRUE if the identifier or arithmetic-expression is equal to
zero or contains all spaces, all tabs, or a combination of spaces and
tabs. However, any spaces or tabs makes an item alphanumeric.

5.5.6 Logical Operators

The interpretation of any of the above conditions is reversed by
preceding the condition with the logical operator NOT. Any of the
above types of conditions can be combined by either of two logical
operators. A logical operator must be preceded by a space and
followed by a space.

Logical Operator

OR

AND

Meaning

Entire condition is true if either
or both of the simple conditions
are true.

Entire condition is true if both of
the simple conditions are true.

5.5.7 Formation and Evaluation Rules

A conditional expression can be composed of either a simple-condition
or a compound-condition. A simple-condition is one that performs a
single test. A compound-condition is one that contains a string of
simple-conditions connected by the logical operators AND, OR. A
compound-condition can contain any combination of types of conditional
expressions (relational, class, condition-name, switch-status, and
sign) •

The evaluation rules for conditions are analogous to those given for
arithmetic expressions, except that the following hierarchy applies:

arithmetic-expressions
all relational operators
NOT
AND
OR

Parentheses can be used either to improve readability or to override
the hierarchy given above. Each set of conditions within a pair of
parentheses is reduced to a single condition. When this is
accomplished, reductions which cross parentheses are done.

5-12

THE PROCEDURE DIVISION

You can use" parentheses in arithmetic expressions to specify the order
in which elements are to be evaluated. Expressions within parentheses
are evaluated first; within nested parentheses, evaluation proceeds
from the least inclusive set to the most inclusive set. In the
absence of parentheses or when parenthesized expressions are at the
same level of inclusiveness, the following hierarchical order of
execution is implied:

1st - Unary plus and minus
2nd - Exponentiation
3rd - Multiplication and division
4th - Addition and subtraction

Examples:

NOTE

The precedence of unary minus over
exponentiation is different from
algebraic notation, and from some other
programming languages. If the
data-names A and B have the values 3 and
2 respectively, then the COBOL statement

COMPUTE C = - A ** B

yields C as 9 (not -9 as in algebra).

1. Using parentheses for ease of reading.
The following expression

A = B OR C > D AND F < G AND H IS ALPHABETIC OR I IS
NEGATIVE

can be parenthesized for readability without changing its
effect as shown below:

(A = B) OR (C > D AND F < G AND H IS ALPHABETIC) OR (I
IS NEGATIVE)

If all the
parentheses
is true.

conditions within any of the three sets of
are true, then the entire conditional expression

The diagram below illustrates the effect of this statement
and the order of evaluation.

5-13

THE PROCEDURE DIVISION

;>---------------------1"'1 ~~~~

True

2. Using parentheses to override normal order of evaluation.

To illustrate this usage, a compound-conditional is shown in three
forms, each accompanied by a flow diagram showing the result of each.

Fl = F2 AND F3 = F4 OR F5 = F6 AND F7 = Fa

5-14

THE PROCEDURE DIVISION

F1 = F2 AND (F3 = F4 OR F5 = F6 AND F7 = FB)

>--------r---------,--,..r False
Path

False

True True

F1=F2 AND ((F3 = F4 OR F5 = F6) AND F7 = FB)

~----------__.______.__+f ~:~~e

False

MR·S·1043·B1

5.5.8 Abbreviations in Relation Conditions

When· a string of consecutive relation conditions appears in a
statement, abbreviations can be used, in certain cases, for any
relation condition other than the first. The subject, or the subject
and relational operator, or the subject, relational operator and
logical connective can be omitted. In each of these cases, the effect
of the abbreviated relation condition is as if the omitted parts were
the same as those in the nearest preceding complete relation condition
within the same sentence. There are two valid forms of abbreviation.

1. Abbreviation 1
If the subject is identical in a series
conditions, it can be omitted in all
conditions except the first.
Example: A = B OR A < C AND A = D OR A = E

can be abbreviated to
A = B OR < C AND = D OR = E

5-15

of
the

relational
relational

THE PROCEDURE DIVISION

2. Abbreviation 2
If subjects and relational operators are identical in a
series of relational conditions, they can be omitted in all
the relational conditions except the first.
Example: A = B OR A = C AND A = D OR A = E

can be abbreviated to
A = B OR C AND D OR E

5.6 COMMON OPTIONS ASSOCIATED WITH THE ARITHMETIC VERBS

Associated with the five arithmetic verbs (ADD, COMPUTE,
MULTIPLY, and SUBTRACT) are two options: the ROUNDED option,
ON SIZE ERROR option. These two options are described here to
the necessity of including their descriptions with each
arithmetic verbs.

DIVIDE,
and the

avoid
of the

If the ROUNDED option is specified, the absolute value of the item is
increased by 1 if the leftmost truncated digit is greater than or
equal to 5.

Example: value:
resultant-identifier picture:
stored result without
ROUNDED option:
stored result with
ROUNDED option:

567.8756
999V~9

567.87

567.88

When the low-order positions in a resultant-identifier are represented
by the symbol P in the PICTURE associated with the
resultant-identifier, rounding or truncation occurs relative to the
rightmost integer position for which storage is allocated.

Example: value:
resultant-identifier picture:
stored result without
ROUNDED option:
stored result with
ROUNDED option:

5.6.1 The ON SIZE ERROR Option

5388
99PP

53

54

If, after decimal point alignment, the number of significant digits in
the result of an arithmetic operation is greater than the number of
integer positions provided in the result-identifier, a size error
condition occurs. Division by zero always causes a size error
condition. The size error condition applies to both the intermediate
results and the final result of an arithmetic operation. If the
ROUNDED option is specified, rounding takes place before checking for
size error. When such a size error does occur, the subsequent action
depends upon whether or not the ON SIZE ERROR option is specified.

If the ON SIZE ERROR is not specified and a size error condition
occurs, the value of the resultant-identifier is unpredictable, and no
additional action is taken.

5-16

THE PROCEDU~E DIVISION

If ON SIZE ERROR is specified, and a size error condition occurs, then
the values of the resultant-identifier(s) affected by the size errors
are not altered. Values for resultant-identifier(s) for which no size
error condition occurs are unaffected by size errors that occur for
other resultant-identifier(s). After completion of the execution of
the arithmetic operation, the statement(s) after ON SIZE ERROR is
executed.

Example: ADD A TO B ON SIZE ERROR GO TO OVERFLW
A: 954
B: PICTURE IS 999; VALUE 954.
Result: The contents of B are left unchanged and

control is transferred to the paragraph
or section named OVERFLW

5.7 THE CORRESPONDING OPTION

The CORRESPONDING option is
arithmetic verbs (ADD and
verb.

used in the formats of two of the
SUBTRACT) and in the format of the MOVE

For the purpose of this discussion, d(l) and d(2) represent
identifiers that refer to group items. A pair of data items, one from
d(l) and one from d(2), correspond if the following conditions exist:

1. All possible qualifiers for d(l) up to but not including
d(l), must be identical to all possible qualifiers for d(2),
up to but not including d(2).

2. Both of the data items are elementary numeric data items in
the case of an ADD or SUBTRACT statement with the
CORRESPONDING option.

3. Neither d(l) nor d(2) can be data items with level-number 66,
77, or 88.

4. Each data item subordinate to d(l) or d(2) that contains a
RENAMES, a REDEFINES or an OCCURS clause is ignored.
However, d(l) and d(2) can have REDEFINES or OCCURS clauses
or be subordinate to data items with REDEFINES or OCCURS
clauses.

See ADD, MOVE, and SUBTRACT; Sections 5.9.2, 5.9.23, and 5.9.39
respectively for information on the specific formats and results of
the use of the CORRESPONDING option.

5.8 DETERMINATION OF USAGE IN ARITHMETIC COMPUTATIONS
\

If a programmer describes a numeric field as having USAGE DISPLAY-6,
DISPLAY-7, DISPLAY-9, or COMP-3, the compiler converts this data to
fixed-point binary when performing arithmetic computations with it.
If the field contains 10 or fewer digits, it is converted to
single-precision fixed-point binary. Conversion to double-precision
fixed-point binary is performed if the field contains more than 10
digits. A field described as COMPUTATIONAL (or INDEX) is fixed-point
binary; single-precision for 10 or fewer digits, double-precision for
more than 10 digits. A field described as COMPUTATIONAL-l is single
precision floating-point binary.

5-17

THE PROCEDURE DIVISION

When any arithmetic computation is performed, the arithmetic usage
(single-precision fixed-point, double-precision fixed-point, or
floating-point) used for each operation is determined from the usages
of the two operands of the computation. If either operand is
floating-point, the operation is performed in floating-point
arithmetic. If neither operand is floating-point, but one operand is
double-precision fixed-point, the operation is performed in
double-precision fixed-point arithmetic. Otherwise, the operation is
performed in single-precision fixed-point arithmetic. If both
operands are constants, the operation is performed in single- or
double-precision fixed-point arithmetic, as appropriate.

On KL or KS hardware, ADD, SUBTRACT, MULTIPLY, or DIVIDE is done in
four-word fixed point arithmetic, if the size of the intermediate
result exceeds 18 digits. In the COMPUTE verb, double-precision
floating-point arithmetic is used if division or exponentiation is
performed or if the intermediate result exceeds 18 digits.

If any alphanumeric characters appear in the DISPLAY-6, DISPLAY-7, or
DISPLAY-9 field that is to be converted, the compiler attempts to
convert them to binary; however, in many cases, undefined results can
occur. When DISPLAY-6, DISPLAY-7, and DISPLAY-9 characters are
converted to binary, the following rules apply.

o through 9

A through I

? , [,{

J through R

:,!,],}

Nulls

Leading spaces
and tabs

+ and -

are converted to 0 through 9.

are converted to 1 through 9.

are converted to o.

are converted to 1 through 9, and the field
is made negative if it is found in the
low-order digit, unless an explicit sign is
present.

are converted to 0, and the field is made
negative if it is found in the low-order
digit unless an explicit sign is present.

are ignored.

are ignored.

are treated as sign characters.

Scanning of a field proceeds from left to right, it stops when one of
the following conditions is met:

1. The entire field has been scanned.

2. A trailing space, tab, plus, or minus is seen.

If both leading and trailing signs appear in the field, the trailing
sign is ignored.

5-18

THE PROCEDURE DIVISION

5.9 PROCEDURE DIVISION VERB FORMATS

The format of each PROCEDURE DIVISION verb is given on the following
pages. The verbs are presented in alphabetical order.

The word "identifier" is a data-name followed, as required, by
qualification, subscripts, and/or indexes necessary to make
data-name unique.

5-19

any
the

THE PROtEDURE DIVISION

ACCEPT

5.9.1 ACCEPT

Function

Option 1 of the ACCEPT statement causes low-volume data to be read
from the terminal.

Option 2 of the ACCEPT statement causes the MESSAGE COUNT field to be
updated to include the number of messages in a queue or sub-queue
maintained by MCS-IO, DIGITAL'S Message Control System for TOPS-IO.

General Format

Option 1.

ACCEPT identifier-l [, i dent; fi er-2] [FROM mnemonic-name]

Option 2.

ACCEPT cd-name MESSAGE Cill.lli.l MR-S-1044-81

Technical Notes

1. The ACCEPT statement causes the next set of data available
from the terminal to replace the contents of the items named
by identifier-I, identifier-2, ..•.

2. If the FROM
appear in
paragraph.

option is specified, the mnemonic-name must
the CONSOLE IS clause of the SPECIAL-NAMES

3. When the data to be read for one or more ACCEPT statements is
numeric, a comma (,), space, or tab is used as a delimiter
separating the data items.

4. When the data to be read for one or more ACCEPT statements is
alphanumeric, each data item is delimited by a line-feed,
altmode, form-feed, or vertical tab.

5. The ACCEPT statement reads from left to right a maximum of
1023 characters into each identifier. If the identifier is
1023 or less characters in size, then depending upon how many
characters are input from the terminal, the following occurs:

a. Less than the identifier the identifier is left
justified and the rest is filled with spaces.

b. Exactly the size of the identifier - the identifier is
filled.

c. More than the identifier the identifier is left
justified and the rest is truncated.

5-20

THE PROCEDURE DIVISION

ACCEPT (Cont.)

If the identifier is greater than 1023 characters in size,
then the above holds true for the first 1023 characters of
the identifier. The remaining characters of the identifier
are not changed, no mattei how many characters are typed on
the terminal.

6. Upon execution of the ACCEPT MESSAGE COUNT statement, the
contents of the area specified by a communication description
entry must contain at least the name of the symbolic queue to
be tested. Testing the condition causes the contents of the
data items replaced by data-name-ID (status key) and
data-name-2 (MESSAGE COUNT) of the areas associated with the
communications entry to be appropriately updated.

5-21

THE PROCEDURE DIVISION

ADD

5.9.2 ADD

Function

The ADD statement computes the sum of two more numeric operands and
stores the result.

General Format

Option 1:

ADD

Option 2:

ADD

Option 3:

ADD

{
identifier-1 }
1 itera 1-1 [{

identifier-2 }]
, 1iteral-2 TO identifier-m [ROUNDED]

[• i dent ifi er-n [ROUNDED]]

[ON SIZE ERROR statement-l [, s tatement-2] ... ~]

{
identifier-I}
1itera1-1 {

identifier-2 }
1iteral-2 [. {

identifier-3 }]
1 i tera 1- 3 ...

GIVING identifier-m [ROUNDED] [• identifier-n [ROUNDED]]

[ON SIZE ERROR statement-l [,statement-2] ... ~]

{
CORRESPONDING I
CORR identifier-l TO identifier-2

[ROUNDED] [ON SIZE ERROR s tatement-l [, s tatement- 2] ... ~]
MR-S-1045-B1

5-22

THE PROCEDURE DIVISION

ADD (Cont.)

Technical Notes

1. Each ADD statement must contain at least two operands (that
is, an addend and an augend). In options 1 and 2, each
identifier must refer to an elementary numeric item, except
that identifiers appearing to the right of the word GIVING
can refer to numeric edited items. In option 3, each
identifier must refer to a group item.

Each literal must be a numeric literal;
constant ZERO is permitted.

the figurative

2. The composite of all opera"nds (i.e., the data item resulting
from the superimposition of all operands aligned by decimal
point) must not contain more than 19 decimal digits for the
non-BIS compiler and not more than 36 digits for a
BIS-compiler. In either case, a maximum of 18 digits can be
stored in the receiving field.

NOTE

The BIS-compiler is standard on the DECSYSTEM-20 and
DECsystem-lO. For KI based hardware, the non-BIS
compiler is optional on the DECsystem-lO. (See the
COBOL-68 Installation Procedures.)

3. Option 1 causes the values of the operands preceding the word
TO to be algebraically summed. The resultant sum is then
added to the current value of identifier-m and this result
replaces the current value in identifier-me If other
identifiers follow, the same process is repeated for each of
them.

4. Option 2 causes the values of the operands preceding the word
GIVING to be algebraically summed. The resultant sum then
replaces the current contents of identifier-me If other
identifiers follow, their contents are also replaced by this
resultant sum. The current values of identifier-m,
identifier-n,... do not enter into the arithmetic
computation.

5. Option 3 causes the data items in the group item associated
with identifier-l to be added to the current value of the
corresponding data items associated with identifier-2, and
each result replaces the value of the corresponding
data-items associated with identifier-2. The criteria used
to determine whether two items are corresponding are
described in Section 5.7, The CORRESPONDING Option.

6. The ROUNDED and ON SIZE ERROR options are described in
Section 5.6 Common Options Associated with Arithmetic Verbs.

5-23

THE PROCEDURE DIVISION

ALTER

5.9.3 ALTER

Function

The ALTER statement changes the object of one or more GO TO
statements.

General Format

ALTER procedure-name-l TO PROCEED TO procedure-name-2

[,procedure-name-3 TO PROCEED TO procedure-name-l]
MR-S-1046-81

Technical Notes

1. During execution of the object program, the ALTER statement
modifies the GO TO statement in the paragraph named
procedure-name-l, procedure-name-3, ... replacing the object
of the GO TO by procedure-name-2, procedure-name-4, •.. ,
respectively.

2. Each procedure-name-l, procedure-name-3, must be the name
of a paragraph that contains only a single GO TO statement
without the DEPENDING option.

3. Each procedure-name-2, procedure-name-4, ... must be the name
of a paragraph or section within the PROCEDURE DIVISION.

4. A GO TO statement in a section whose priority is greater than
or equal to 50 must not be referred to by an ALTER statement
in a section with a different priority.

5. An ALTER statement in a procedure not in
portion of the program can not reference
within the DECLARATIVESi conversely, an
within the DECLARATIVES can not reference
not in the DECLARATIVES.

the DECLARATIVES
a procedure name
ALTER statement
a procedure-name

6. Restrictions similar to those in Note 5 also apply to the
INPUT PROCEDUREs and to the OUTPUT PROCEDUREs associated with
SORT and MERGE verbs.

7. For program segments with priorities of 50 and greater, the
changes made by ALTER statements are lost when segments are
overlaid.

5-24

THE PROCEDURE DIVISION

5.9.4 CALL

Function

The CALL statement is used i~ transfer control to a subprogram.

General Format

CALL {program-name} [USING identifier-l
entry-name , identifier-2

[ON OVERFLOW imperative-statement-l] ~
MR-S-1047-81

Technical Notes

...]

CALL

1. Program-name is a l-to-6 character name (PROGRAM-ID) of the
subprogram to be called. Errtry-name is a l-to-6 character
name of an entry point in the subprogram. Either name can be
enclosed in quotation marks, but can contain only letters and
digits.

2. If the program-name is used, the entry point is at the
beginriing of the executable code in the subprogram.

3. Called programs can call other subprograms, but a called
program cannot call, either directly or indirectly, any part
of itself or the program that called it.

4. The number of operands in the USING clause of the CALL
statement must be greater than or equal to the number of
operands in the ENTRY statement or PROCEDURE DIVISION header
in the subprogram.

5. Each of the operands in the USING clause can be any item
defined in the FILE, WORKING-STORAGE, or LINKAGE SECTION of
the calling program. However, these items must be
word-aligned; that is, they must begin on a word boundary.
01- and 77-level items are always word-aligned. Any other
item can be word-aligned by means of the SYNCHRONIZED LEFT
clause.

6. The identifiers in the USING clause indicate those data items
in the calling program that can be referenced (or whose
subordinate parts can be referenced) in the called program.
The order of the identifiers in the CALL statement in the
calling program and in the PROCEDURE DIVISION header or ENTRY
statement of the calling program is critical. The items in
the USING clause are related by their corresponding
positions, not by name. Cor~esponding identifiers refer to a
single set of data that is available to both the calling and
called programs.

5-25

I

I

THE PROCEDURE DIVISION

CALL (Cont.)

7. The first time a called program is entered, its state is that
of a fresh copy. Subsequently, if the subprogram is not in a
LINK overlay, its state when entered is exactly as it was
left after the last exit from it. That is, all internal
variables, altered GO TO's, and the like are exactly as they
were left. However, external data (that is, data described
in the LINKAGE SECTION) may have been changed since the last
exit.

If the subprogram is in
again, its state is
exit from it provided
cancelled by you or
cancelled or overlaid,

a LINK overlay and it is entered
exactly as it was left after the last
that the subprogram has not been
overlaid. If the subprogram has been

its state is that of a fresh copy.

8. The ON OVERFLOW condition cannot happen if it is encountered
within the CALL statement. It is merely shown here for ANSI
compatability. If ON OVERFLOW is used, it is ignored and
your CALL statement exits normally.

9. Refer to Chapter 11 of this manual for more information on
subprograms.

5-26

THE PROCEDURE DIVISION

CANCEL

5.9.5 CANCEL

Function

The CANCEL statement causes a subprogram to be logically disassociated
from the main program and,' if possible, causes the return of the
memory used by the subprogram to the system.

General Format

CANCEL subprogram-l [,subprogram-2]

Technical Notes

1. The CANCEL statement can only be used to cancel a subprogram
that has been loaded into an overlay link by LINK. Refer to
Chapter 11 of this manual for information on specifying LINK
overlays and on subprograms.

2. After a subprogram has been cancelled, a subsequent call to
the subprogram caus'es a freshly-initialized copy to be
brought into memory.

3. Cancellation of a subprogram causes the entire link in which
it resides and all lower level -links to be cancelled.

4. A subprogram in the root link or higher in the current
overlay structure cannot be cancelled. If an attempt is made
to do so, the CANCEL statement is ignored and a warning
message issued at runtime.

5. A subprogram cannot cancel itself or any subprogram that
resides in an overlay link with it. An attempt to do either
results in the CANCEL statement being ignored and a warning
message issued at runtime.

6. Cancellation of a subprogram higher in the current calling
sequence is also an illegal operation. But, if the
subprogram being cancelled is in a lower-level link and
higher in the calling sequence, it could be cancelled without
being detected as an error. This would cause the return from
the program to be an undefined location.

Example

CANCEL SUBA,SUBC.

5-27

THE PROCEDURE DIVISION

CLOSE

5.9.6 CLOSE

Function

The CLOSE statement terminates the processing of input and output
files, reels, or units.

General Format

~ {
NO REWIND}]

CLOSE file-name [{~~~~}J WITH LOCK
DELETE

[. file-name-l [{ ~m }] [WITH {~:;IND}]]
MR-S-1048-81

Technical Notes

1. Each filename must appear as the subject of an FD entry in
the FILE SECTION of the DATA DIVISION.

2. The REEL, UNIT, and NO REWIND options apply only to magnetic
tape files. UNIT is synonymous with REEL.

3. The DELETE option applies only to disk and DEC tape files. If
this option is included, the file is deleted from the device.

4. For the purpose of showing the effect of various CLOSE
options as applied to the various storage media, all input,
output, and input-output files are divided into the following
three mutually exclusive categories:

a. NON-REEL A file whose device is such that the concepts
of REWIND, REEL, or UNIT have no meaning.
This category includes files residing on
disk, punched cards, paper tape, line
printer, and terminal.

b. SINGLE REEL A file that is entirely contained on one reel
or unit.

c. MULTI-REEL A file that can be contained on more than one
reel or unit.

The results of each CLOSE option for each of the above types
of files are summarized in Table 5-3. The definitions for
the s¥mbols used in this table are given below. Where the
defin1tion depends upon whether the file is an input or
output file, alternate definitions are given; otherwise, the
single definition given applies to both input and output
files.

5-28

THE PROCEPURE DIVISION

CLOSE (Cont.)

Codes Qsed in Table 5-3

A = Any subsequent reels of this file are not processed.

B The current reel is not rewound.

C Standard CLOSE File P~ocedure

INPUT and 1-0 Files (see "OPEN")

If the file is positioned at its end, your ENDING FILE
LABEL PROCEDUREs are performed, if you have specified
any by a USE statement. An input file is considered to
be at the end-of-file if the imperative-statement in the
AT END clause of a READ for the file has been executed,
and no CLOSE statement for the file has been executed.

OUTPUT Files

If LABEL RECORDS are STANDARD, an ending
created and written on the output medium.
ENDING FILE LABEL PROCEDUREs are performed.

D The current reel is rewound and unloaded.

label is
Then, your

If you are using TOPS-20, the tape drive must be made
unavailable to MOUNTR and ASSIGNed to your job in order
for the reel to be unloaded.

E Any attempt to subsequently OPEN this file results in an
error message being typed and the run terminated.

F = Standard CLOSE REEL Procedure

INPUT Files

1. If the file is assigned
next device specified
the current device.
specified, the first
current device.

to more than one device, the
in the ASSIGN clause becomes
If no other device is
device mentioned becomes the

2. The standard beginning reel label procedure and your
BEGINNING REEL LABEL PROCEDURE (specified in a USE
statement) are performed for the new reel.

OUTPUT and, 1-0 Files

1. The standard ending reel label procedure and your
ENDING REEL LABEL PROCEDURE are performed.

2. If the file is assigned to more than one device, the
devices are swapped. A halt occurs to allow you to
mount an available reel.

3. The standard beg~nning reel label procedure and your
BEGINNING REEL LABEL PROCEDURE (specified in a USE
statement) are performed.

G The tape is rewound.

5-29

THE PROCEDURE DIVISION

CLOSE (Cont.)

s::
0

• .-1
+l
0-1
0

~
Ul
0
H
u

5.

Codes Used in Table 5-3

H The file is deleted from the device. However, if the
file is a sequential file on disk that is open for
output in supersede mode, the original file remains
intact (that is, the original file is not superseded nor
deleted) .

X Illegal. This is an illegal combination of a CLOSE
option and a file type.

If a file is OPENed but not CLOSEd before the STOP
statement is executed, the file is automatically CLOSEd.
records still retained by a RETAIN statement
automatically freed by a CLOSE statement.

RUN
Any
are

6. If the file has been specified with an OPTIONAL clause in the
FILE-CONTROL paragraph of the ENVIRONMENT DIVISION and the
file was not present for this run, the CLOSE has no effect.

7. If a CLOSE statement without the REEL or UNIT option has been
executed for a file, a READ, WRITE, or CLOSE statement for
that file must not be executed until another OPEN for that
file has been executed.

Table 5-3
CLOSE Options and File Types

File Type

SINGLE
NON-REEL REEL/UNIT t-lUL'rI - REEL

CLOSE C C,G C,G,A

CLOSE C,E C,G,E C,G,E,A
WITH LOCK

CLOSE WITH X C,B C,B,A
NO REWIND

CLOSE REEL X X F,G

CLOSE REEL X X F,D
WITH LOCK

CLOSE REEL X X F,B
WI'rH NO
REWIND

CLOSE WITH CfH X X
DELETE

5-30

THE PROCEDURE DIVISION

COMPUTE

5.9.7 COMPUTE

Function

The COMPUTE statement assigns to a data item the value of a numeric
data item, literal, or arithmetic expression.

General Format

{
EQUALS } {identifier-2 }

COMPUTE identifier-l [ROUNDED] EQUAL TO li~eral-~ .
= arlthmetlc-expresslon

[ON SIZE ERROR [statement-l ,statement-2] ... ~J
MR-S-1049-81

Technical Notes

1. The COMPUTE statement allows you to combine arithmetic
operations without the restrictions on the composite of
operands and/or receiving data items imposed by the
arithmetic statements ADD, SUBTRACT, MULTIPLY, and DIVIDE.
Division and exponentiation are always done using
double-precision floating-point internal representations.
This can cause problems for you if your result has seventeen
or eighteen digits of precision; your answers could be low
by a very small amount. If this is causing a problem for
you, you should use the ROUNDED option.

Exponentiation can only be done by using the
statement.

COMPUTE

2. Identifier-l must be an elementary numeric or numeric edited
item.

3. Identifier-2 must be an elementary numeric item.
must be a numeric literal.

Literal-2

The identifier-2 and literal-l options provide a method for
setting the value of identifier-l equal to identifier-2 or
literal-I.

4. The rules for forming arithmetic expressions and the order of
evaluation are given earlier in this chapter under
"Arithmetic Expressions".

5. The ROUNDED and SIZE ERROR options are described earlier in
this chapter under "Common Options Associated with the
Arithmetic Verbs".

5-31

I

THE PROCEDURE DIVISION

DELETE

5.9.8 DELETE

Function

The DELETE statement removes a specified record from a file whose
access mode is INDEXED.

General Format

DELETE record-name INVALID KEY statement-l [, statement-2] ... ~

Technical Notes

1. Record-name must be a record associated with a file whose
access mode is INDEXED.

2. When the DELETE statement is executed, the record in the file
that has a key equal in value to the SYMBOLIC KEY for the
file is removed from the file. If no such record exists, the
statement(s) associated with the INVALID KEY clause is
executed.

3. At the time that the DELETE statement is executed, the file
must be open for OUTPUT or INPUT-OUTPUT.

5-32

THE PROCEDURE DIVISION

DISPLAY

5.9.9 DISPLAY

Function

The DISPLAY statement causes low-volume data to be written on your
terminal.

General Format

DISPLAY {~iter~l:l } [{literal-2 }] ldentlfler-l t identifier-2 ...

[UPON mnemonic-name] [WITH NO ADVANCING]
MR·S-1050-81

Technical Notes

1. The contents of each operand are written on your terminal in
the order listed.

2. Each of the literals can be numeric or alphanumeric, or one
of the figurative constants. If a figurative constant is
specified as one of the operands, only a single occurrence of
that constant is written on the device.

3. The mnemonic-name must appear in the CONSOLE clause in the
SPECIAL-NAMES paragraph of the ENVIRONMENT DIVISION.

4. If WITH NO ADVANCING is specified, the terminal does not
advance to the next line. Thus, printing or type-in can
continue on the same line.

5. If the identifier being displayed is numeric, commas are
inserted automatically from the right. for example, if you
code DISPLAY NUM-ONE and NUM-ONE contains 1234567890, then
this appears on your terminal as 1,234,567,890.

5-33

THE PROCEDURE DIVISION

DIVIDE

5.9.10 DIVIDE

Function

The DIVIDE statement divides one numeric item into another and sets
the value of a data item equal to the result.

General Format

Option 1:

DIVIDE {i?entifier-1} INTO identifier-2 [ROUNDED] [REMAINDER identifier-4] -- llteral-1

[ON SIZE ERROR statement-1 [,statement-2] ... ~]

Option 2:

DIVIDE {i?entifier-2} BY identifier-1 [ROUNDED] [REMAINDER identifier-4] -- llteral-2

[ON SIZE ERROR statement-1 [,statement-2] ... ~]

Option 3:

DIVIDE {identifier-1} INTO {identifier-2} GIVING identifier-3
literal-1 -- literal-2

[ROUNDED] [REMAINDER identifier-4]

[ON SIZE ERROR statement-1 [,statement-2] ... ___ .]
MR-S-1051-81

5-34

THE PROCEDURE DIVISION

DIVIDE (Cont.)

Opt ion 4:

DIVIDE {identifier-2} BY {i~entifier-l} GIVING identifier-3
literal-2 llteral-l

[ROUNDED] [REMAINDER identifier-4]

[ON SIZE ERROR statement-l [,statement-2] ...] _
MR·S·1052·81

Technical Notes

1. The value of identifier-lor literal-l is divided into the
value of identifier-2 or literal-2. In option 1, the
resulting quotient replaces the value of identifier-2. In
option 2, the resulting quotient replaces the value of
identifier-I. In options 3 and 4, the resulting quotient
replaces the value of identifier-3.

2. Each DIVIDE statement must contain two
dividend and a divisor} • Both
(identifier-l and identifier-2) must
numeric items. Identifier-3 can be an
numeric edited item. Each literal-lor
numeric literal. Identifier-4 can be
or numeric edited item.

operands (that is, a
of these operands

refer to elementary
elementary numeric or
literal-2 must be a
an elementary numeric

3. The ROUNDED and SIZE ERROR options are described earlier in
this chapter under "Common Options Associated with Arithmetic
Verbs" .

4. If the REMAINDER clause is used, the resulting remainder
replaces the value of identifier-4.

5. The data item resulting from the divide operation (i.e., the
sum of the digits in the dividend and the digits in the
fractional part of the divisor) must not contain more than 20
decimal digits for the non-BIS compiler and not more than 36
digits for the BIS compiler. In either case, a maximum of 18
digits can be stored in the receiving field.

NOTE

The BIS compiler is standard for the DECSYSTEM-20 and
DECsystem-lO. For KI based hardware, the non-BIS
compiler is optional on the DECsystem-lO. (See the
COBOL-68 Installation Procedures.)

6. The remainder is checked for a size error after the quotient
is checked, whether or not the quotient has a size error. If
either the quotient or the remainder has a size error, LIBOL
follows the procedure described under "Common Options
Associated with Arithmetic Verbs".

7. The ROUNDED option does not apply to the remainder; the
remainder is always truncated.

5-35

I

THE PROCEDURE DIVISION

ENTER

5.9.11 ENTER

Function

The ENTER statement allows the execution of MACRO and FORTRAN
subroutines in conjunction with the COBOL program.

General Format

{
MACRO }

ENTER FORTRAN
COBOL

program-name

.. .] [USING {
identifier-l } [{identifier-2 }]
literal-l , literal-2
procedure-name-l procedure-name-2

[ON OVERFLOW imperative-statement-l] ~
MR-S-1053-81

Technical Notes

1. MACRO refers to MACRO assembly language and FORTRAN refers to
the FORTRAN language.

2. The program-name can be enclosed in quotation marks.

3. The ENTER statement generates a subroutine call followed by
the address in which the items associated with the USING
clause are located. (Refer to Chapter 12 for more
information on the ENTER statement.)

4. The ON OVERFLOW condition cannot happen if it is encountered
within the ENTER statement. It is merely shown here for ANSI
compatability. If ON OVERFLOW is used, it is ignored and
your ENTER statement exits normally.

5. ENTER COBOL is equivalent to CALL.

5-36

THE PROCEDURE DIVISION

ENTRY

5.9.12 ENTRY

Function

The ENTRY statement establishes an entry point in a subprogram.

General Format

ENTRY entry-name [USING identifier-l [,identifier-2] •.. ~

Technical Notes

1. The ENTRY statement can only be used in a subprogram.

2. Control is passed to the entry point by a CALL statement in a
calling program.

3. Entry-name is a I-to-6 character name that can contain only
letters and digits. It can, however, be enclosed in
quotation marks. This name must not be the same as any other
entry-name or PROGRAM-ID in any program with which the
subprogram containing it is loaded.

4. The identifiers listed in the USING clause must be defined as
01- or 77-level items in the LINKAGE SECTION of the
subprogram containing the ENTRY statement.

5. The number of operands in the USING clause
statement must be less than or equal to
operands in any CALL statement referencing
statement.

of an ENTRY
the number of
that ENTRY

6. The identifiers in the USING clause indicate those data items
in the called program that can reference data items in the
calling program. The order of identifiers in the CALL
statement in the calling program and in the ENTRY statement
in the called program is critical. The items in the USING
clauses are related by their corresponding positions, not by
name. Corresponding identifiers refer to a single set of
data that is available to both the calling and called
programs.

7. At run-time, additional ENTRY statements are ignored unless
there are specific calls made to them. for example, if a
subprogram has three ENTRY statements and a call is made to
the first ENTRY statement, the remaining two ENTRY statements
are ignored.

8. Refer to Chapter 11 of this manual for more information on
subprograms.

5-37

THE PROCEDURE DIVISION

EXAMINE

5.9.13 EXAMINE

Function

The EXAMINE atatement replaces or counts the number of occurrences of
a given character in a data item.

General Format

EXAMINE identifier

TALLYING {t~~DING } literal-l [REPLACING BY literal-2]
UNTIL FIRST

REPLACING {~~~DING } literal-l JrL literal-2
[UNTIL] FI RST

MR·S·l054·81

Technical Notes

1. The USAGE of identifier must be DISPLAY-6, DISPLAY-7, or
DISPLAY-9, implicitly or explicitly.

2. Each literal must consist of a single character belonging to
a class consistent with that of the identifier. A literal
can be any figurative constant.

3. Examination starts at the leftmost
identifier and proceeds to the right.

character

4. When the TALLYING option is used, a count is kept of:

of

a. Occurrences of literal-l when the ALL option is used.

the

b. Occurrences of literal-l prior to a character other than
literal-l when the LEADING option is used.

c. Characters prior to the first occurrence of literal-l
when the UNTIL FIRST option is used.

This count replaces the contents of the special register
called TALLY (see "Special Registers", Chapter 1). TALLY has
a PICTURE of S9(5), and can be referenced in any statement
where an identifier referring to an elementary numeric data
item is valid.

If the REPLACING BY clause is used with the TALLYING option,
replacement is performed according to the rules below.

5-38

THE PROCEDURE DIVISION

EXAMINE (Cont.)

5. When either of the REPLACING BY options are used, replacement
rules are

a. If the ALL option is used, literal-2 is substituted for
each occurrence of literal-I.

b. If the LEADING option is used, the substitution of
literal-2 for literal-l terminates as soon as a character
other than literal-l is encountered.

c. If the UNTIL FIRST option is
substituted for each .character
occurrence of literal-I.

used,
prior

literal-2 is
to the first

d. If the FIRST option is used, literal-2 is substituted for
only the first occurrence of literal-I.

6. If the identifier is classified as numeric, it must consist
solely of numeric characters. It can possess an operational
sign, but this sign is ignored by the EXAMINE process.

5-39

THE PROCEDURE DIVISION

EXIT

5.9.14 EXIT

Function

The EXIT statement provides a common end point for a series of
routines executed by a PERFORM or USE statement.

General Format

paragraph-name. EXIT.

Technical Notes

1. EXIT must be the first sentence in a paragraph.
can follow.

Only NOTE

2. The EXIT statement can be used to provide an end point for a
series of paragraphs th~t are PERFORMed, or at the end of a
section in the DECLARATIVES. By using EXIT at the end of the
range of a PERFORM or USE, a variety of exits from the
performed procedure can be accomplished by making each point
at which an exit is required a transfer to the EXIT
paragraph. However, unless EXIT is specified as the end of
the range of a PERFORM or USE or is placed as the last
paragraph in the range of a PERFORM or USE, it is ignored.

Example:

PERFORM TAX-ROUTINE THROUGH EXIT-RTE.

TAX-ROUTINE.
IF TOTAL-TAX IS EQUAL TO OR GREATER THAN TAX-LIMIT
GO TO EXIT-RTE.
MULTIPLy .•.•.

DEDUCTION-RTE.
IF NO-OF-DEPENDENTS IS EQUAL TO ZERO
GO TO EXIT-RTE.
MULTIPLY NO-OF-DEPENDENTS BY DEP-DEDUCT ••••

EXIT-RTE. EXIT.

3. If control reaches an EXIT statement and no associated
PERFORM or USE statement is active or if EXIT is not the last
paragraph in the range of a PERFORM or USE statement even if
the PERFORM or USE statement is active, control passes
through the EXIT paragraph to the first statement of the next
paragraph.

5-40

THE PROCEDURE DIVISION

EXIT PROGRAM

5.9.15 EXIT PROGRAM

Function

The EXIT PROGRAM statement is used to return control from a subprogram
to its calling program.

General Format

EXIT PROGRAM.

Technical Notes

1. EXIT PROGRAM can only appear in a subprogram.

2. When an EXIT PROGRAM statement is executed, control is
returned to the calling program at the statement immediately
following the CALL statement.

3. If an EXIT PROGRAM statement is encountered in a subprogram
that is operating as a main program, it is ignored.

4. Refer to Chapter 11 of this manual for more information on
subprograms.

5-41

THE PROCEDURE DIVISION

FREE

5.9.16 FREE

Function

The FREE statement explicitly frees records that have been retained in
a RETAIN statement.

General Format

fi le-n ame-l

I
RECORD [KEY {i?entifier-l}] 1 - llteral-l

EVERY RECORD

[I RECORD [KEY {i ?entifier-2}] I]
f Ol 2 - llteral-2

t 1 e-n ame-
EVERY RECORD

EVERY RECORD

[NOT RETAINED statement-l [, statement-2] ...] _
MR-S-1055-B1

Technical Notes

1. Filename-I, filename-2 ... are the names of files containing
records that have been retained. Thus, they are files that
have been opened for simultaneous update.

2. Identifier-I, identifier-2... and literal-I, literal-2 .••
specify the value of a key. This key refers to the record to
be freed in the file.

3. Statement-I, statement-2 ... are any valid COBOL statements.

4. The FREE statement is needed to explicitly free records that
have not been implicitly freed by an I/O statement. This
could occur when the RETAIN statement contains the UNTIL
FREED phrase, when an I/O statement is not issued after the
RETAIN statement, or when the FOR clause of the RETAIN
statement specifies ANY VERB. Refer to the RETAIN statement
in this chapter for a description of its function and syntax.

5. The EVERY RECORD phrase is used to free all records retained
or to free all records retained in a specific file.

5-::42

THE PROCEDURE DIVISION

FREE (Cont.)

6. The NOT RETAINED phrase.specifies the COBOL statements to be
executed when one or more records to be freed are not
currently retained. If the NOT RETAINED phrase is not
included and the records to be freed are not currently
retained, the program proceeds and you are not notified of
the possible error. .

7. When an EVERY RECORD phrase is used, the statements in the
NOT RETAINED phrase are executed only if no records are
currently retained or only if no records are currently
retained in the specified file.

8. If the FREE statement includes a file that was not opened for
simultaneous update, the NOT RETAINED statements, if present,
are executed. Otherwise, the program continues and you are
not notified of the error.

9. You can mix records from sequential, random, and indexed
sequential files in the same FREE statement.

10. All records of a file are freed automatically when the file
is closed including those records that were retained with an
UNTIL FREED clause in the RETAIN statement.

11. The record to be freed, whether or not the KEY phrase is
specified, depends on the access mode of the file. Each
access mode is described separately below.

a. SEQUENTIAL ACCESS FILES

If the KEY phrase is specified, its value refers to the
record with that value in the RETAIN statement. That is,
a KEY value of 6 in the FREE statement frees the record
defined with a KEY value 'of 6 in the RETAIN statement.

If the KEY phrase is not specified, the record freed is
that record defined with a KEY value of 0 in the RETAIN
statement.

The value of a key can be specified by any identifier,
which can be subscripted and/or qualified, provided that
its USAGE is COMPUTATIONAL or INDEX. The value of the
key can also be specified by a positive integer numeric
literal containing ten or fewer digits.

b. RANDOM ACCESS FILES

If the KEY phrase is specified, its value refers to the
record with that value in the RETAIN statement. That is,
a KEY value of 0 in the FREE statement frees the record
defined with a KEY value of 0 in the RETAIN statement.

If the KEY phrase is not specified, the record freed is
that record defined by the ACTUAL KEY of the file.

The value of a key can be specified by any identifier,
which can be subscripted and/or qualified, provided that
its USAGE is COMPUTATIONAL or INDEX. The value of a key
can also be specified by a positive integer numeric
literal containing ten or fewer digits.

5-43

THE PROCEDURE DIVISION

FREE (Cont.)

Examples

c. INDEXED SEQUENTIAL FILES

If the KEY phrase is specified, its value refers to the
record with that value in the RETAIN statement. That is,
a key identified with a value of "ABC" in the FREE
statement frees the record identified as "ABC" in the
RETAIN statement. If LOW-VALUES is used as the value of
the key, it refers to the next record after the current
record, which is not necessarily the record identified by
LOW-VALUES in the RETAIN statement. This is because the
current record is changed by an I/O statement and
LOW-VALUES always refers to the record following the
current record.

The value specified in the KEY phrase must normally be an
identifier that specifies a field that agrees with the
RECORD KEY defined for the file in size, class, usage,
and number of decimal places. However, if the RECORD KEY
of the file is USAGE COMPUTATIONAL or INDEX, a positive
integer numeric literal of ten or fewer digits can be
used as the value in the KEY phrase.

If the KEY phrase is not specified, the record freed is
that record defined by the SYMBOLIC KEY of the file. If
the SYMBOLIC KEY contains LOW-VALUES, it refers to the
next record after the .current record, which is not
necessarily the record specified by LOW-VALUES in the
RETAIN statement. This is because the current record is
changed by an I/O statement and LOW-VALUES refers to the
record following the current record.

Sequential File

RETAIN HISTORY KEY 0 FOR READ-WRITE UNTIL FREED,
HISTORY KEY 1 FOR READ-WRITE UNTIL FREED,
HISTORY KEY 2 FOR READ-WRITE.

READ HISTORY, AT END STOP RUN.
FREE HISTORY EVERY RECORD.

Random Access File

RETAIN PART KEY 0 FOR ANY VERB.
READ PART, INVALID KEY GO TO ERR.
WRITE PARTREC.
FREE PART KEY O.

Indexed Sequential File

MOVE "B" TO SYMBOLIC-KEY.
RETAIN LETTERS FOR READ.
FREE LETTERS.

5-44

THE PRdcEDURE DIVISION

GENERATE

5.9.17 GENERATE

Function

The GENERATE statement causes the
automatic report operations, and,
report groups.

Report-Writer to execute all
if required, produce one or more

General Format

GENERATE identifier

Technical Notes

1. If identifier is the name of a TYPE DETAIL report group, the
GENERATE statement performs all the automatic report
operations, and produces an output detail report group on the
output file. This is called detailed reporting.

2. If the identifier is the name of an RD entry, the GENERATE
statement performs all the automatic report operations, but
do~s not produce an output detail report group. This is
called summary reporting.

3. A GENERATE statement performs the
operations:

following automatic

a. Steps and tests the LINE-COUNTER and/or PAGE-COUNTER to
produce, if necessary, any PAGE FOOTING and PAGE HEADING
report groups.

b. Recognizes any specified control breaks to produce
appropriate CONTROL FOOTING and CONTROL HEADING report
groups, and resets appropriate summation counters.

c. Accumulates into the summation counters all specified
identifiers.

d. Executes any routines defined by a USE statement.

e. If this is detailed reporting, produces the detailed
report group.

4. During the execution of the first GENERATE statement for a
report, the following groups, if specified, are produced:

a. Report Heading

b. Page Heading

c. All Control Headings, in the order major to minor.

d. The detail report group, if this is detailed reporting.

5-45

THE PROCEDURE DIVISION

GENERATE (Cont.)

5. Data is moved to the data item in the Report Group
Description Entry according to the same rules for movement
described for the MOVE statement see Section 5.9.23.

6. A GENERATE statement for a particular report can not be
executed until an INITIATE statement has been executed for
that report. In addition, if a TERMINATE statement has been
executed for that report, a GENERATE statement can not be
executed until an intervening INITIATE statement is executed
for the report.

5-46

THE PROCEDURE DIVISION

GO TO

5.9.18 GO TO

Function

The GO TO statement causes control to ~e transferred from one part of
the PROCEDURE DIVISION to another.

General Format

Option 1:

GO TO [procedure-name-1]

Option 2:

GO TO procedure-name-1,procedure-name-2 [,procedure-name-3]

DEPENDING ON identifier
MR-S-1056-81

Technical Notes

1. Each procedure-name is the name of a paragraph or section in
the PROCEDURE DIVISION of the program.

2. Option 1 causes transfer of control to the specified
procedure-name, or to some other procedure-name if the GO TO
has been previously ALTERed.

3.

In order to be alterable, Option 1 must appear as the first
sentence in a paragraph; only NOTE can follow.

If procedure-name-l is not specified, the GO TO must be
alterable and an associated ALTER statement must be executed
prior to executing this GO TO.

When this form of GO TO appears in an imperative sentence, it
must appear as the last or only statement in the sentence,
except for NOTE.

Option 2 causes transfer of control to procedure-name-l,
procedure-name-2,... or procedure-name-n depending on
whether the value of the identifier is 1, 2, or n,
respectively.

The identifier must refer to an elementary numeric
having no positions to the right of the decimal point.
item can not be USAGE COMPUTATIONAL-I.

item
The

If the value of the identifier is other than the positive
integers 1, 2, •.. or n, the GO TO statement is by-passed.

5-47

THE PROCEDURE DIVISION

GOBACK

5.9,.19 GOBACK

Function

The GOBACK statement is used in a subprogram to return control to the
calling program.

General Format

GOBACK.

Technical Notes •

1. The GOBACK statement can only be used in subprograms.

2. When control reaches a GOBACK statement, control is returned
to the calling program at the statement immediately following
the CALL statement.

3. If a GOBACK statement is encountered in a subprogram that is
operating as a main program, it is treated as a STOP RUN
statement.

4. Refer to Chapter 11 of this manual for more information on
subprograms.

5-48

THE PROCEDURE DIVISION

IF

5.9.20 IF

Function

The IF statement causes a conditional expression to be evaluated and
the subsequent operations to be performed to be determined as a result
of this evaluation.

General Format

!f conditional-expression

{
statement-l [,statement-2] } [ELSE {statement-3 [tstatement-4]
NEXT SENTENCE • • • -- NEXT SENTENCE ... }] -'

MR-S-1057-B1

Technical Notes

1. Conditional expressions are discussed in Section 5.5 in this
chapter.

2. The subsequent action of the program is determined by whether
the conditional expression is true or false.

a. If the conditional expression, is true and statement-l and
any following statements are given, statement-l and any
following statements are executed and, provided that they
do not contain a GO TO or STOP RUN, control passes to the
next sentence. If the conditional expression is true and
NEXT SENTENCE is given, control passes to the next
sentence.

b. If the conditional expression is false and statement-3
and any following statements are given, statement-3 and
any following statements are executed and, provided that
they do not contain a GO TO or STOP RUN, control passes
to the next sentence.

If the conditional expression is false and either ELSE
NEXT SENTENCE is given or the entire ELSE clause is
omitted, control passes to the next sentence.

3. The length of compared data-items in the conditional
expression of an IF statement is limited to 2047 characters.

4. Statement-I, statement-2, statement-3, and statement-4 can
include any statement or sequence of statements, including
other IF statements. IF statements included within other IF
statements are nested. Nested IF statements are paired IF
and ELSE combinations and can continue up to 12 levels deep.
Each ELSE encountered is paired with the nearest preceding IF
not already paired with an ELSE. The pairing process begins
with the innermost IF ••• ELSE pair and proceeds outwards.

5-49

THE PROCEDURE DIVISION

IF (Cent.)

Example: (c=condition;s=statement)

MR·S·1058·81

5-50

THE PROCEDURE DIVISION

INITIATE

5.9.21 INITIATE

Function

The INITIATE statement is used to initialize all counters before a
report is produced.

General Format

INITIATE repor t-name-l [, repor t-name-2] ••.

Technical Notes

1. Each report-name must be defined by an RD entry in the REPORT
SECTION of the DATA DIVISION.

2. The INITIATE statement resets all data-name entries that
contain SUM clauses associated with a report.

3. The PAGE-COUNTER is set to 1 during the execution of an
INITIATE statement. If a different starting value for the
PAGE-COUNTER is desired, it can be reset following the
INITIATE statement before the execution of the first GENERATE
statement.

4. The LINE-COUNTER is set to 0 during execution of the INITIATE
statement.

5. The INITIATE statement does not open the file with which the
report is associated. An OPEN statement must be executed
prior to the execution of the INITIATE statement.

6. A second INITIATE statement for a particular report-name can
not be executed until a TERMINATE statement for that
report-name is executed.

5-51

THE PROCEDURE DIVISION

MERGE

5.9.22 MERGE

Function

The MERGE statement combines two or more identically sequenced files
on a set of specified keys. During the MERGE process records are made
available, in merged order, to an output procedure or to an output
file.

General Format

[] . { AS C END I N G } [] MERGE WITH SEQUENCE CHECK flle-name-ION DESCENDING KEY data-name-l data-name-2 ...

[{ASCENDING} [J] ON DESCENDING KEY data-name-3 data-name-4

USING file-name-2, file-name-3 [,file-name-4] ...

I
OUTPUT PROCEDURE IS

GIVING file-name-5

Technical Notes

. [{ THROUGH} sectlon-name-l THRU section-name-2] I
MR-S-1059-81

1. File-name-l must be described in an SD file description entry
in the DATA DIVISION. Each data-name must represent data
items described in records associated with file-name-l.

2. File-name-2, file-name-3, file-name-4, and file-name-5 must
be described in an FD file description, not an SD file
description. All records associated with file-name-2,
file-name-3, and file-name-4 must be large enough to contain
all the KEY data-names.

3. The data-names following the word KEY are listed in order of
decreasing significance without regard to how they are
divided into KEY clauses.

4. The data-names can be qualified but not subscripted.

5. MERGE statements can appear anywhere in the PROCEDURE
DIVISION except in the DECLARATIVES portion or in an INPUT or
OUTPUT PROCEDURE associated with a SORT, or an OUTPUT
PROCEDURE associated with another MERGE.

6. When the ASCENDING clause is used, the input files must be in
sequence from the lowest values to the highest values; when
the DESCENDING clause is used, the input files must be in
sequence from the highest values to the lowest values.

7. The OUTPUT PROCEDURE, if present, must consist of one or more
sections or paragraphs that appear contiguously in the source
program and do not form a part of any INPUT PROCEDURE. The
OUTPUT PROCEDURE must contain at least one RETURN statement
in order to make MERGEd records available for processing.

5-52

THE PROCEDURE DIVISION

MERGE (Cont.)

8. ALTER, GO, and PERFORM statements in the OUTPUT PROCEDURE can
not refer to procedure-names outside the OUTPUT PROCEDURE in
which they appear.

9. If you specify an OUTPUT PROCEDURE, it is PERFORMed by the
MERGE statement. You must. observe all rules relating to the
range of a PERFORM.

10. If WITH SEQUENCE CHECK is present then the input files are
checked to make sure that the records are in sequence with
respect to the merge keys (that is, that the files were
presorted.) A warning message is given for each record out
of order.

11. If you specify the GIVING option, all the merged records in
file-name-l are automatically transferred to file-name-5.
File-name-5 must not be open when the MERGE statement is
executed. Any USE PROCEDURES associated with file-name-5 are
executed as appropriate. The GIVING option is equivalent to
the following OUTPUT PROCEDURE:

L4. OPEN OUTPUT file-name-5.
L5. RETURN sort-file INTO record-name-5; AT END GO TO

L6.
WRITE record-name-5 ..
GO TO L5.

L6. CLOSE file-name-5.

5-53

THE PROCEDURE DIVISION

MOVE

5.9.23 MOVE

Function

The MOVE statement transfers data in accordance with the rules of
editing, from one data area to one or more data areas.

General Format

Option 1:

MOVE {i~entifier-1} TO identifier-2 [identifier-3] ... -- llteral-1 - ,

Opti on 2:

MOVE {CORRESPONDING} identifier-1 TO identifier-2 - CORR -
MR-S-1060-81

Technical Notes

1. Identifier-l (or literal-I) represents the data to be moved
and is called the sending item. Identifier-2, identifier-3,

represent the receiving data items.

2. In option 1, the data contained in identifier-lor literal-l
is moved first to identifier-2, then identifier-3, etc.

In option 2, data items within the group item associated with
identifier-l are moved to corresponding data items within the
group item associated with identifier-2. The results are the
same as if you had referred to each pair of corresponding
identifiers in separate MOVE statements. The criteria used
to determine whether two items are corresponding are
described under "The CORRESPONDING Option" at the beginning
of this chapter.

3. The following rules apply to both group and elementary items;
a group item is treated as a single field.

a. A numeric edited, alphanumeric edited, or alphabetic data
item must not be moved to a numeric or numeric edited
data item.

b. A numeric or numeric edited item must not be moved to an
alphabetic data item.

5-54

THE PROCEDURE DIVISION

MOVE (Cont.)

c. A numeric item whose implicit decimal point is not
immediately to the right of the least significant digit
must not be moved to an alphanumeric or alphanumeric
edited item.

All other moves are l~gal.

4. The following rules apply to legal moves.

a. When an alphanumeric, alphanumeric edited, or alphabetic
item is the receiving item,

1. If the size of the sending field is greater than the
size of the receiving field, the least significant
(rightmost) characters are truncated if the receiving
field is not described by a JUSTIFIED RIGHT clause;
the most significant (leftmost) characters are
truncated if the receiving field is described as
JUSTIFIED RIGHT.

2. If the size of the sending field is less than the
size of the receiving field, spaces are placed in the
remaining rightmost characters of the receiving field
if the receiving field is not described by a
JUSTIFIED RIGHT clause; spaces are placed in the
remaining leftmost characters of the receiving field
if the receiving field is described by a JUSTIFIED
RIGHT clause.

3. If the sizes of the sending and receiving field are
equal, no truncation or filling with spaces takes
place.

b. When a numeric or numeric edited item is the receiving
item, the sending and receiving fields are aligned by
decimal point. If the sending field is not numeric, the
decimal point is assumed to be on the right. Any
necessary zero filling takes place before editing. If
the receiving item has no operational sign, the absolute
value of the sending item is stored. If the receiving
item has fewer digits to the left or right of the decimal
point than does the sending item, the excess digits are
truncated. If the sending item contains any nonnumeric
characters, the result is unpredictable.

c. Any necessary conversion of data from one form of
internal representation to another is performed
automatically during the move, along with any editing
specified by the PICTURE of the receiving item.

5. Any move that is not an elementary move (that is, both the
sending and receiving items are not elementary items) is
called a group move. A group move is treated as if it were
an alphanumeric to alphanumeric elementary move, except that
there is no conversion of data from one form of internal
representation to another. In other words, the individual
data descriptions of the items within the sending group item
and the receiving group item are completely ignored and both
items are treated as though they were described by a PICTURE
IS X(n) clause, where n is the number of character positions
in the particular item.

5-55

THE PROCEDURE DIVISION

MULTIPLY

5.9.24 MULTIPLY

Function

The MULTIPLY statement causes one data item to be multiplied by
another data item and the resulting product to be stored in a data
item.

General Format

Option 1:

MULTIPLY {i ~ent i fier-1} BY i dent i fier-2 [ROUNDED] 11 tera1-1 --

[ON SIZE ERROR statement-1 [,:tatement-2] ... __ .]

Option 2:

MULTIPLY {i~entifier-1} BY {i~entifier-2} GIVING identifier-3
l1tera1-1 -- l1teral-2

[ROUNDED] [ON SIZE ERROR statement-1 [,statement-2] ... _._]
MR-S-1061-81

Technical Notes

1. Each MULTIPLY statement must contain at least two operands (a
multiplicand and a multiplier). Each identifier must refer
to an elementary numeric item, except that identifier-3 can
refer to either a numeric or a numeric edited item. Each
literal must be a numeric literal; the figurative constants
ZERO and TALLY are permitted.

2. Option 1 causes the value of identifier-lor literal-l to be
multiplied by the value of identifier-2. The resultant
product replaces the value of identifier-2.

3. Option 2 causes the value of identifier-lor literal-l to be
multiplied by the value of identifier-2 or literal-2. The
resultant product replaces the value of identifier-3.

5-56

THE PROCEDURE DIVISION

MULTIPLY (Cont.)

4. The ROUNDED and SIZE ERROR options are described earlier in
this chapter under "Common Options Associated with Arithmetic
Verbs".

5. The data item resulting from the multiply operation (that is,
the sum of all digits in both operands) must not contain more
than 20 decimal digits for the non-BIS compiler and not more
than 36 digits for the BIS compiler. In either case, a
maximum of 18 digits can be stored in the receiving field.

NOTE

The BIS compiler is standard on the DECSYSTEM-20 and
DECsystem-lO. For KI based hardware, the non-BIS
compiler is optional on the DECsystem-IO (See the
COBOL-68 Installation Procedures.)

5-57

THE PROCEDURE DIVISION

NOTE

5.9.25 NOTE

Function

The NOTE statement allows the programmer to insert comments in the
PROCEDURE DIVISION.

General Format

NOTE character-string~

Technical Notes

1. Any combination of characters from the ASCII character set
can be included in the character-string.

2. If the NOTE sentence appears as the first sentence in a
paragraph, the entire paragraph is considered to be part of
the character-string. The paragraph is ended when a new
paragraph is begun. A new paragraph has its first word
starting in Area A.

3. If the NOTE statement appears as other than the first
sentence in a paragraph, the character-string ends at the
first period followed by a space or carriage return.

4. The contents of the character-string appear
compilation listing, but are not compiled.

5-58

on the

THE PROCEDURE DIVISION

OPEN

5.9.26 OPEN

Function

The OPEN statement initiates th~ processing of files and, where
necessary, performs the checking and writing of labels. It also
specifies your covenants for opening a file for simultaneous update.

General Format

{ 6~~~0T} fi le-name-l [WITH NO REWI NO] [, file-n ame-2 [WITH NO REWIND JJ ...

{~UT-OUTPUT} file-name-3 FOR I ~~~~~TE ltmw I :!~~~TE l] ...
DELETE QElill
ANY VERB ANY VERB

[
ALLOWING OTHERS I ~~~~ITE ltND I !ITE lJ J -- WRITE - WRITE ...

DELETE DELETE
8l1Y VERB .8.!iY VERB

OPEN

[I
~~C~ITE l t I ~~C~ITE l] ,file-name-4 EQR WBlII ~ WRlI& ...
DELETE DELETE
ANY VERB ANY VERB

[
ALLOWING OTHERS I ilihTE

ltND I ilihTE
l]· .Jl

DELETE DELETE II
~ VERB ANY VERB U

[EXTEND] fi le-name-5 [fi le-name-6] ...

[UNAVAILABLE statement-l [,statement-2] ... J ~
MR·S·1062·B1

5-59

I

I

I

THE PROCEDURE DIVISION

OPEN (Cant.)

Technical Notes

1. The OPEN statement must be executed for a file prior to the
execution of any SEEK, READ, WRITE, REWRITE, DELETE, or CLOSE
for that file.

2. A second OPEN statement for a file cannot be executed prior
to the execution of a CLOSE statement for that file.

3. When your program executes an OPEN verb, the record area for
that file is cleared.

4. An OPEN statement does not obtain or release the first record
of a file. A READ statement must be executed to obtain the
first record (or a WRITE statement must be executed to
release the first record).

5. The maximum number of files that can be opened at a time is
16. When indexed sequential files are being used, each
indexed sequential file is treated as two files: the index
file and the data file. If the program is segmented, one
less file can be open; similarly, if the RERUN option is
being used, one less file can be open. The key word INPUT,
OUTPUT, INPUT-OUTPUT, or 1-0 applies to each subsequent
filename until another such key word is encountered or until
the end of the OPEN statement is reached.

6. When you OPEN an indexed sequential file, the OPEN statement
initializes the keys to LOW-VALUES. Thus, you cannot load a
key with a value prior to opening the ISAM file and expect
the key to have the value you specify.

7. The NO REWIND option has meaning only for magtape files and
is ignored for all other devices. If the NO REWIND clause is
not specified for a tape file, the tape is rewound to the
beginning of tape.

8. If labels exist, the label is read into the record area to
make it available to the USE routines. The record area is
then filled with spaces. If a file has been described as
LABEL RECORDS ARE STANDARD, standard label checking or label
writing is performed; your BEGINNING LABEL (USE) routines
are executed if provided. If a file has been described as
LABEL RECORDS ARE data-name-l, your BEGINNING LABEL (USE)
routines are executed. If a file has been described as LABEL
RECORDS ARE OMITTED, no label checking or writing is
performed.

9. If an INPUT
FILE-CONTROL
message

file is described as OPTIONAL (in the
paragraph), the object-time system types the

IS file-name PRESENT?

and wait for you to type "YES" or "NO". If you
the first READ statement for this file
imperative-statement at the AT END or INVALID KEY
be executed.

5-60

type "NO" ,
causes the
clause to

THE PROCEDURE DIVISION

OPEN (Cont.)

10. The 1-0 or INPUT-OUTPUT options permit the opening of a file
on a random-access device for both input and output
processing. When the 1-0 option is specified, the execution
of the OPEN statement causes the standard beginning label
procedures and your BEGINNING LABEL routines, if specified by
a USE statement, to be executed. If the file does not exist
when it is opened for INPUT-OUTPUT, an empty file is created.

11. A file is opened for simultaneous update if the ALLOWING
OTHERS clause is present in the OPEN statement. It must be
opened in 1-0 mode and cannot have a recording mode of V
(variable-length EBCDIC).

12. If the first user of a fi~e opens it for simultaneous update,
all subsequent users of' the file must also open it for
simultaneous update or for input only. If the file 1S
currently open for simultaneous update, any subsequent users
attempting to open the file for output or 1-0 are denied
access to the file. If the first user of a file opens it for
output or 1-0 only and subsequent users attempt to open that
file for simultaneous update, the simultaneous update users
are denied access to the file until the first user closes it.

13. After the keyword FOR, you can give one or more verbs that
you intend to execute while you have the file ope~. You can
only execute those verbs that you have specified. Following
the keywords ALLOWING OTHERS, you give one or more verbs that
you allow other users to execute when they open the file.
You can also specify that others not be allowed to execute
any verbs when they open the file. Specification of ANY VERB
means that all verbs legal for the file are permissible. If
the ALLOWING OTHERS clause is not present, the file is not
opened for simultaneous update.

14. Once you have opened at least one file for simultaneous
update, you cannot open any other files for simultaneous
update until all files you previously opened for simultaneous
update are closed. Thus, all files that must be open
concurrently for simultaneous update must be opened in the
same OPEN statement. However, files that are not to be
opened for simultaneous update can be opened at any time.

15. Files can be opened for INPUT, OUPUT, and just INPUT-OUTPUT
(that is, not for simultaneous update) in the same OPEN
statement as files opened for simultaneous update.

5-61

THE PROCEDURE DIVISION

OPEN (Cont.)

16. When more than one file is to be opened in one OPEN statement
and at least one of the files is to be opened for
simultaneous update, no files are opened if the simultaneous
update file cannot be opened. Simultaneous update files
cannot be opened if they are not available in the modes
specified by both the FOR and ALLOWING clauses. If the files
cannot be opened for this reason, your program is suspended
until all files are available, unless the UNAVAILABLE clause
is specified. If the UNAVAILABLE clause is specified and one
or more simultaneous update files are unavailable, control
passes to the UNAVAILABLE clause. Note that the availability
of the simultaneous update files is always checked before any
files are opened. After the simultaneous update files are
checked for availability the files are opened. A failure
during the actual opening process on any of the files does
not cause the UNAVAILABLE path to be taken, but an error to
be returned. You can choose to ignore the error by using the
FILE STATUS clause in the ENVIRONMENT DIVISION (see FILE
STATUS in Chapter 3 of this manual).

17. Any valid COBOL statements (including OPEN) can be used in
the UNAVAILABLE clause.

18. If you wish to open a file in your program for simultaneous
update and the file is not available to it, the open request
is queued for the file on a first-come/first-served basis.
However, if your program wishes to open more than one file
for simultaneous update and at least one of the files is not
available, the program is queued for those files that are
available as well as the ones that are not available. This
is because the program cannot open one file without opening
all files in the same OPEN request. The requests for files
remain in the queue for the files until all of the files are
available to you.

19. If your program violates its simultaneous update covenants,
it is aborted. That is, if the program opens a file for READ
and then issues a WRITE statement for that file, the program
is aborted.

20. Once a file is open for simultaneous update, you must issue a
RETAIN statement before you execute any I/O on that file.
Refer to the RETAIN statement, described further ahead in
this chapter.

21. When you specify the EXTEND phrase, the OPEN statement
positions the file immediately following the last logical
record of that file. Subsequent WRITE statements referencing
the file add records to the file as though the file had been
opened with the OUTPUT phrase.

22. If you wish to open a file using the EXTEND option, you
cannot open the same file for input-output in the same
program. You can, however, supply two FD's for the same
file. This allows you to open the file for input-output
using the file name supplied with one FD, and at a different
time you can open the file using the EXTEND option and the
file name supplied in the other FD.

5-62

THE PROCEDURE DIVISION

OPEN (Cont.)

23. You cannot use the EXTEND option with system-labeled tapes.

24. When you specify the EXTEND phrase and the LABEL RECORDS
clause indicates label records are present, the execution of
the OPEN statement includes the following steps:

Examples

a. The beginning file labels are processed only in the case
of a single reel file.

b. The beginning reel labels on the last existing reel are
processed as though the file was being opened with the
INPUT phrase.

c. The existing ending file labels are processed as though
the file is being opened with the INPUT phrase. These
labels are then deleted.

d. Processing then proceeds as though the file had been
opened with the OUTPUT phrase.

OPEN INPUT INFIL.

OPEN 1-0 TRANSACTION FOR READ AND WRITE,
ALLOWING OTHERS READ AND WRITE.

OPEN OUTPUT LOG, LIST,
INPUT-OUTPUT MASTER FOR READ AND REWRITE,

OTHERS ANY
DET FOR READ,

OTHERS READ AND WRITE,
ACCOUNT FOR ANY

OTHERS NONE,
INPUT DAILY WITH NO REWIND,
1-0 SKILLS

NAMES FOR WRITE.

5-63

THE PROCEDURE DIVISION

PERFORM

5.9.27 PERFORM

Function

The PERFORM statement is used to depart from the normal sequence of
execution to execute one or more procedures and then return control to
the normal sequence.

General Format

Option 1:

PERFORM procedure-name-1 [THRU procedure-name-2]

Option 2:

PERFORM procedure-name-1 [THRU procedure-name-2] {~dentifier-1} TIMES lnteger-1 --

Option 3:

PERFORM procedure-name-l [THRU procedure-name-2] UNTIL condition-l

Option 4:

PERFORM procedure-name-1 [THRU procedure-name-2]

VARYING identifier-l FROM {~~!~~~ii!r-2}

BY {liter~1:2 l UNTIL condition-1
- i dent 1 f 1 er- 3 f MR.S.l063.81

5-64

THE PROCEDURE DIVISION

PERFORM (Cont.)

[
J literal-3 I AFTER VARYING identifier-4 FROM \ identifier-5

J literal-4 I BY \ identifier-6 UNTIL condition-2

[AFTER VARYING identifier-7 FROM J literal-5 I
\ identifier-8

BY J literal-6 I'
\ identifier-9 UNTIL condition-3]]

MR-S-1064-81

Technical Notes

1. Each procedure-name is the name of a section or paragraph in
the PROCEDURE DIVISION. Each identifier must refer to a
numeric elementary item described in the DATA DIVISION. Each
literal must be a numeric literal or the figurative constants
ZERO and TALLY.

2. When the PERFORM statement is
transferred to the first statement
automatic return to the statement
statement is established as follows.
constitute the range of the PERFORM.

executed, control is
of procedure-name-l. An

following the PERFORM
The procedures executed

a. If procedure-name-l is a paragraph-name and

b.

procedure-name-2 is not specified, the return is after
the last statement of procedure-name-l.

If procedure-name-l is a section-name and
procedure-name-2 is not specified, the return is after
the last statement in the last paragraph in
procedure-name-l.

c. If procedure-name-2 is a paragraph-name, the return is
after the last statement in that paragraph.

d. If procedure-name-2 is a section-name, the return is
after the last statement in the last paragraph of that
section.

3. There is no relationship between procedure-name-l and
procedure-name-2, except that the sequence of operations
beginning at procedure-name-l must eventually end with the
execution of procedure-name-2 in order to effect the return
at the end of procedure-name-2. Any number of GO TO and/or
PERFORM statements can occur between procedure-name-l and
procedure-name-2.

5-65

THE PROCEDURE DIVISION

PERFORM (Cont.)

4. If control passes to these procedures by means other than a
PERFORM statement, control passes through the return point to
the following statement as though no return mechanism were
present.

5. No PERFORM statement can terminate until all
statements that it has executed have terminated.
statement can be executed which terminates at
procedure-name as another active PERFORM.

PERFORM
A PERFORM
the same

6. Option I causes the PERFORM range to be executed once,
followed by a return to the statement immediately following
the PERFORM.

7. Option 2 causes the PERFORM range to be executed the number
of times specified by identifier-lor integer-I. The value
of identifier-lor integer-l must not be negative; it can be
zero. Once the PERFORM statement has been initialized, any
modification to the contents of identifier-l has no effect on
the number of times the range is executed.

8. Option 3 causes the PERFORM range to be executed until the
condition specified in the UNTIL clause is true. If this
condition is true at the time the PERFORM statement is
initialized, the range is not executed. Conditions are
explained under "Conditional Expressions" earlier in this
chapter.

9. Option 4 is used to augment the value of one or more
identifiers during the execution of a PERFORM statement.

In option 4, when only one identifier is varied, identifier-l
is set equal to identifier-2 or literal-2 when the PERFORM
statement is initialized. If the condition specified is
determined to be false at this point, the PERFORM range is
executed once. Then the value of identifier-l is augmented
by identifier-3 or literal-3 and the rest of the condition is
done again. This cycle continues until condition-l is true;
at this point, control passes to the statement following the
PERFORM statement. If condition-l is true at the beginning
of the execution of the PERFORM, control immediately passes
to the statement following the PERFORM.

5-66

THE PROCEDURE DIVISION

PERFORM (Cont.)

The flow chart below illustrates the logic of the PERFORM
cycle when two identifiers are varied.

ENTRANCE

+
Set identifier-2 and identifier-5

to current F ROM values

• True
Condition-1 Exit

+
False

True
Condition-2

+ + False

Execute procedure-name-1 Set identifier-5 to its
TH R U procedure-name-2 current F ROM value

+ • y Augment identifier-5 with Augment identifier-2 with
current BY value current BY value

I MR-S-1065-81

The following flow chart illustrates the logic of the PERFORM
cycle when three identifiers are varied.

ENTRANCE

+
Set

identifier-2, identifier-5, identifier-8
to current FROM values

+
Condition-1

True
Exit -

+ False
True

Condition-2

+
False

~ Condition-3
True

t •
False

Execute Set Set

procedure-name-1 identifier-8 identifier-5

TH R U procedure- to its current to its current

name-2 FROM value FROM value ,
+

Augment Augment Augment

identifier-8 identifier-5 identifier-2
""----

with current with current with current

BY value BY value BY value

I MR-S-1066-81

5-67

THE PROCEDURE DIVISION

PERFORM (Cont.)

10. When a procedure-na~e in a segment with a priority number
greater than 49 1S referred to by a PERFORM statement
contained in a segment with a different priority number, the
segment referred to is made available in its initial state
(that is, with all ALTERable GO TOs set to their initial
setting) for each execution of the PERFORM statement.

11. A PERFORM statement in a section not in the DECLARATIVES can
have as its range, procedures wholly contained within the
DECLARATIVESi however, a PERFORM statement in a section
within the DECLARATIVES can not have any non-DECLARATIVE
procedures within its range.

12. A PERFORM statement within an INPUT or OUTPUT PROCEDURE
associated with a SORT or MERGE verb can not have within its
range any procedures outside of that INPUT or OUTPUT
procedure.

5-68

THE PROCEDURE DIVISION

READ

5.9.28 READ

Function

The READ statement makes available a logical record from an input file
and allows performance of a specified imperative statement when
end-of-file or invalid key is detected.

General Format

READ file-name RECORD

[INTO identifier] {:~V~D KEY} statement-l [,statement-2] _e_
MR·S·1067·81

Technical Notes

1. An OPEN INPUT or OPEN 1-0 statement must be executed for the
file prior to execution of the first READ statement for that
file.

2. The AT END clause is valid only for those files whose access
mode is SEQUENTIAL (explicitly or implicitly).

The AT END clause should be used if there is the possibility
that your program will encounter "End-of-Data", in order to
avoid program failure.

The INVALID KEY clause is valid only for those files whose
access mode is RANDOM or INDEXED.

If an end-of-file condition is encountered during the
execution of a READ statement for a sequential file, the
statement(s) specified in the AT END clause is executed, and
no logical record is made available.

The logical end-of-file depends upon the type of device on
which the file resides (see the Monitor Calls manual).

After execution of the imperative-statement(s) in the AT END
clause, no further READ statements can be executed for that
file without first executing a CLOSE statement followed by an
OPEN statement for the file.

If, during the execution of a READ statement for a file whose
access mode is RANDOM, the ACTUAL KEY is found to contain a
value not within the range specified by the FILE-LIMITS
clause for that file or a value for a record that has not
been written (that is, a zero-length record) , the
statement(s) specified in the INVALID KEY clause is executed
and no logical record is made available.

5-69

THE PROCEDURE DIVISION

READ (Cont.)

When a READ statement is executed for a file whose access
mode is RANDOM and the ACTUAL KEY contains a value of 0, the
first nonzero-length record having a key higher than the last
record processed (by a READ or WRITE statement) is made
available. If no such record exists (that is, end-of-file),
the INVALID KEY statement(s} is executed and no record is
made available. If the file has been opened but no READ or
WRITE statement has been executed, the first nonzero-length
record is made available. You can use this method to
sequentially read a file whose access mode is RANDOM.

When a READ statement is executed for a file whose access
mode is INDEXED and the SYMBOLIC KEY contains a value other
than LOW-VALUES, a search of the file is made to find the
record that has a key equal to the contents of the SYMBOLIC
KEY associated with the file. If that record is found, it is
moved to the record area for the file; if it is not found,
the statement(s) associated with the INVALID KEY clause is
executed, and no record is made available. When a READ
statement is executed for a file whose access mode is INDEXED
and the SYMBOLIC KEY contains a value of LOW-VALUES, the
first logical record having a key higher than the last record
processed (by a READ, WRITE, REWRITE, or DELETE statement) is
made available. The next higher key is used regardless of
whether or not the previous I/O operation caused the INVALID
KEY path to be taken. If no such record exists (i.e.,
end-of-file), the INVALID KEY statement(s} is executed, and
no record is made available. If the file has been opened but
no READ, WRITE, REWRITE, or DELETE statement has been
executed, the first record of the file is made available.

3. If a file described by an OPTIONAL clause is not present, the
imperative-statement(s} in the AT END or INVALID KEY clause
is executed on the first READ for that file. Any specified
USE procedures are not performed.

4. If logical end-of-reel is recognized during execution of a
READ statement, the following operations are carried out.

a. The reel is rewound and your ENoDING REEL LABEL PROCEDUREs
are executed, if specified in a USE statement.

b. If the file is assigned to more than one device, the
devices are advanced. The previous reel is rewound and
the next reel is initialized.

c. The standard beginning label procedure and your BEGINNING
REEL LABEL PROCEDURE are executed, if specified in a USE
statement.

d. The first data record on the new reel is made available.

5. If a file consists of more than one type of logical record,
these records automatically share the same storage area.
This is equivalent to an implied REDEFINE for the record
area. Only information in the current record is accessible.

6. If the INTO identifier option is specified, the READ
statement is then equivalent to a READ without the INTO
option, followed by a MOVE of the record area associated with
the filename to identifier.

5-70

THE PROCEDURE DIVISION

RELEASE

5.9.29 RELEASE

Function

The RELEASE statement transfers records to the initial phase of the
sort operation.

General Format

RELEASE record-name [FROM identifier]

Technical Notes

1. A RELEASE statement can be used only in an input procedure
associated with a SORT or MERGE statement for a file whose SD
description contains record-name.

2. If the FROM option is used, the contents of identifier are
moved to record-name, then the contents of record-name are
released to the sort subroutines.

3. After the RELEASE statement is executed, the contents of
record-name are not available.

4. Refer to the description of the SORT or MERGE verb for
examples.

5-71

THE PROCEDURE DIVISION

RETAIN

5.9.30 RETAIN

Function

The RETAIN statement specifies your intent to access one or more
records in files that are open for simultaneous update.

General Format

RETAIN file-name-l RECORD [KEY { i dent i f i er-l }]
literal-l

READ
REWRITE
READ-REWRITE

FOR DELETE
WRITE
~WRITE
ANY VERB

READ
REWRITE
READ-REWRITE

AND DELETE
WRITE
~WRITE
ANY VERB

• file-nane-2 RECORD [KEY { identifier-2}]
literal-2

READ
REWRITE
READ-REWRITE

FOR DELETE
WRITE
~WRITE
ANY VERB

READ
REWRITE
READ-REWRITE

AND DELETE
WRITE
~WRITE
ANY VERB

statement-l

[UNT IL FREED]

[UNTI L FREED]

[UNAVAILABLE [,statement-2] ...]
MR-S-1068-81

Technical Notes

1. Filename-I, filename-2 ••• must be the names
previously opened for simultaneous update.

5-72

of files

2.

THE PROCEDURE DIVISION

RETAIN (Cont.)

Identifier-I, identifier-2 ... and
literal-2 ... specify keys that refer to records in

literal-I,
the file.

3. Statement-I, statement-2 •.• are any valid COBOL statements.

4. The RETAIN statement must be given before any record is
accessed in a file opened for simultaneous update. If it is
given for a file not open for simultaneous update, the
program is terminated.

5. The RETAIN statement does not cause any change in the record
area or any change in the positioning in the file. You must
explicitly issue I/O statements for these changes to be
performed. Thus, the RETAIN statement does not cause an
end-of-file condition.

6. The actions performed by any I/O operation is logically the
same as if the file were not opened for simultaneous update.
That is, a sequential file is always read/written
sequentially; the ACTUAL KEY is examined to determine the
record to be read/written in a random access file; and the
SYMBOLIC KEY is examined to determine the record to be
read/written/rewritten/deleted in an indexed sequential file.
The only difference is that a check is made to ascertain that
the record has been retained. Thus, retaining a record does
not cause that record to become the current record of the
file. Only I/O operations can cause a record to become the
current record of the file.

7. You can retain nonexistent records in a file, but you will
receive an error if you attempt to perform I/O, other than a
WRITE, on these nonexistent records. You can perform a WRITE
operation on nonexistent records.

8. It is possible to mix requests for records from sequential,
random, and indexed sequential files in the same RETAIN
statement.

9. Using the RETAIN for WRITE, DELETE, or ANY VERB statement
with indexed-sequential files locks the entire file, not just
the record.

10. When you retain a record for READ, other users are also
allowed to read that record, but cannot perform any other
form of I/O on that record (WRITE, REWRITE, or DELETE). In
addition, any other record in that logical-block, where a
logical-block is that set of records grouped in a block as
defined by the BLOCK CONTAINS clause or as calculated by the
compiler for sequential access files, cannot be accessed by
other users for any form of I/O. When you retain a record
for any use other than READ, all other users are banned
completely from accessing that record or block of records.

11. The statement included in the FOR clause in the RETAIN
statement must agree with at least one statement in the FOR
clause in the OPEN statement for the file. If ANY VERB is
specified in the FOR clause in the RETAIN statement, the file
must have been explicitly opened for ANY VERB.

5-73

THE PROCEDURE DIVISION

RETAIN (Cont.)

12. The record or records named in the RETAIN statement are
automatically freed upon execution of the statement or
statements (except ANY VERB) in the FOR clause of the RETAIN
statement. If you do not issue an I/O statement for the
record, or if the UNTIL FREED phrase is used, you must
explicitly free the record with the FREE statement. If a
record is not freed, you cannot retain any more records in
any of your files open for simultaneous update.

13. The UNTIL FREED phrase allows you to retain several logically
related records for processing ,without their being freed
automatically by the I/O statements. Instead, the records
are retained until they are explicitly freed by means of the
FREE statement.

14. The KEY phrase allows you to specify a particular record or
to specify more than one record in a file.

15. All records to be retained concurrently, whether in one or
several files, must be retained in the same RETAIN statement.
Once records in any file have been retained, no other records
in any open file can be retained until the currently retained
records have all been freed. This rule prevents a deadly
embrace situation.

NOTE

Deadly embrace occurs when two users make conflicting
demands upon a file resource and neither is willing
or able to yield to the other, with the result that
both programs hang or stall waiting for the resource
to become available.

16. When attempting to retain records, the program is suspended
if anyone of the records is not available. If you wish the
program to perform other processing, rather than be
suspended, you can include an UNAVAILABLE phrase in the
RETAIN statement. Any valid COBOL ~tatement can be used in
the UNAVAILABLE phrase.

17. Use of the RETAIN statement differs according to the access
mode of the file. Each type of file is described separately
below.

18. SEQUENTIAL ACCESS FILES

a. Records in a sequential access file only can be retained
for READ, WRITE, READ-WRITE, or ANY VERB. For sequential
access files, ANY VERB means READ, WRITE, and READ-WRITE.

5-74

THE PROCEDURE DIVISION

RETAIN (Cont.)

b. When the KEY phrase is specified, KEY 0 refers to the
next record in the file. The next record in the file
depends on the last I/O operation performed (READ or
WRITE) and the I/O operation for which the record is to
be retained. If the last record was written, the next
record to be retained for READ, WRITE, or READ-WRITE is
defined to be the one following the record just written.
Similarly, if the last record was read, the next record
to be retained for READ is defined to be the one
following the on~ just read. However, the next record to
be retained for WRITE is defined to be the record just
read.

c. Subsequent KEY values (1, 2, 3 .••), refer to records
relative to the record designated by a KEY value of O.

d. If the KEY phrase is not included, the record retained is
always the record designated by a KEY value of O.

e. The value of a key can be specified by any identifier,
which can be subscripted or qualified, or both, provided
that its USAGE is COMPUTATIONAL or INDEX. The value of
the key can also be specified by a positive integer
numeric literal containing ten or fewer digits.

f. It is recommended that you, when performing simultaneous
updating on sequential access files, retain several
records at a time so that the input/output overhead is
reduced. If records are retained singly, each record
must be brought into memory from the device (even if it
is already in memory) so that you have the latest copy of
the record. Also when you free a record (either
implicitly or explicitly), after writing it, the record
must be written out to the device so that other users
have access to the latest copy of that record.

g. Example:

OPEN INPUT-OUTPUT HISTORY FOR READ AND WRITE
ALLOWING OTHERS READ AND WRITE

RETAIN HISTORY KEY 0 FOR READ-WRITE UNTIL FREED,
HISTORY KEY 1 FOR READ-WRITE UNTIL FREED,
HISTORY KEY 2 FOR READ-WRITE;

READ HISTORY, AT END STOP RUN.

19. RANDOM ACCESS FILES

a. Records in a random access file can only be retained for
READ, WRITE, READ-WRITE, or ANY VERB. For random access
files, ANY VERB means READ, WRITE, and READ-WRITE.

5-75

THE PROCEDURE DIVISION

RETAIN (Cont.)

b. When the KEY phrase is specified, the value of the key
designates a specific record in the file, just as the
ACTUAL KEY of the file does. Thus, record 1 is always
the first record in the file. If the value of the key is
0, however, the record retained is the next sequential
record in the file. The next record in the file depends
on the last I/O operation performed (READ or WRITE) and
the I/O operation for which the record is to be retained.
If the last record was written, the next record to be
retained for READ, WRITE, or READ-WRITE is defined to be
the one following the record just written. Similarly, if
the last record was read, the next record to be retained
for READ is defined to be the one following the record
just read. However, the next record to be retained for
WRITE is defined to be the record just read. Note that
the next record actually read or written depends on the
value of the ACTU~L KEY, not on the record specified in
the RETAIN statement.

c. If you wish to read/write the file sequentially, you
should set the KEY to 0 in the RETAIN statement and set
the ACTUAL KEY to 0 so that you are performing I/O on the
same records that you are retaining. If you wish to
read/write the file randomly, you should set the ACTUAL
KEY to the desired record and either use the same value
in the KEY in the RETAIN statement or use no KEY value in
the RETAIN statement.

d. If the KEY phrase is not specified, the value used for
the key is taken from the ACTUAL KEY specified for the
file.

e. The value of a key can be specified by any identifier,
which can be subscripted or qualified, or both, provided
that its USAGE is COMPUTATIONAL or INDEX. The value of
the key can also be specified by a positive integer
numeric literal containing ten or fewer digits.

f. Example:

OPEN 1-0 PART FOR READ AND WRITE ALLOWING OTHERS
NONE.
MOVE 64 TO PART-ACTUAL-KEY
RETAIN PART FOR READ.
READ PART, INVALID KEY GO TO ERR.

RETAIN PART KEY 0 FOR WRITE,
PART KEY 35 FOR READ AND WRITE.

WRITE PARTREC.
MOVE 35 TO PART-ACTUAL-KEY.
READ PART, INVALID KEY GO TO ERR.
WRITE PARTREC.

5-76

THE PROCEDURE DIVISION

RETAIN (Cont.)

20. INDEXED SEQUENTIAL ACCESS FILES

a. Records in an indexed sequential file can be retained for
READ, WRITE, REWRITE, DELETE, READ-REWRITE, and ANY VERB.
For indexed sequential files, ANY VERB means READ, WRITE,
REWRITE, DELETE, and READ-REWRITE. Records in an indexed
sequential file cannot be retained for READ-WRITE.

b. When the KEY phrase is specified, the value of the key
refers to a specific record in the file, just as the
SYMBOLIC KEY does.

c. The value specified in the KEY phrase must normally be an
identifier that specifies a field that agrees with the
RECORD KEY defined for the file in size, class, usage,
and number of decimal places. However, if the RECORD KEY
of the file is USAGE COMPUTATIONAL or INDEX, a positive
numeric literal of ten or fewer digits can be used as the
value in the KEY phrase.

d. If the KEY phrase is not specified, the value used for
the key is taken from the current SYMBOLIC KEY for the
file.

e. If the value of the key is LOW-VALUES (which must be
specified as the contents of an identifier or as the
SYMBOLIC KEY), the record retained is that following the
last record referenced in the same RETAIN statement or by
a READ, WRITE, REWRITE, or DELETE statement.

f. If other users are allowed to write or delete records in
an indexed sequential file, LOW-VALUES cannot be used as
the value of the first key specified in the RETAIN
statement. Similarly, the first I/O statement following
the RETAIN statement cannot reference a record specified
with a SYMBOLIC KEY value of LOW-VALUES. These
restrictions are applied because the next record in the
file could be undefined because another user has written
or deleted that record.

g. Example:

OPEN 1-0 LETTERS FOR READ ALLOWING OTHERS READ AND
WRITE.
MOVE IIBII TO SYMBOLIC KEY.
RETAIN LETTERS FOR READ.
READ LETTERS INVALID KEY GO TO ERRS.

5-77

THE PROCEDURE DIVISION

RETURN

5.9.31 RETURN

Function

The RETURN statement obtains sorted records from the final phase of a
SORT or MERGE operation.

General Format

RETURN file-name RECORD [INTO identifier] AT END statement-l [,statement-2]

Technical Notes

1. File-name must be described by an SO file descriptor.

2. A RETURN statement can be used only in an output procedure
associated with a SORT or MERGE statement for file-name.

3. If .the INTO phrase is specified, the current record is moved
from the record area associated with file-name to identifier.

4. The AT END path is automatically taken when there are no more
records to be returned. After executing the statement(s) in
the AT END clause, no RETURN statements can be executed until
another SORT or MERGE is executed.

5. Refer to the description of the SORT or MERGE verbs for
examples.

5-78

THE PROCEDURE DIVISION

REWRITE

5.9.32 REWRITE

Function

The REWRITE statement replaces an already existing record in a file
whose access mode is INDEXED.

General Format

REWRITE record-name [FROM identifier] INVALID KEY statement-l [,statement-2]
MR-S-1070-B1

Technical Notes

1. Record-name must be a record associated with a file whose
access mode is INDEXED.

2. When the REWRITE statement is executed, a record in the file
is located whose key value is equal to the contents of the
SYMBOLIC KEY associated with the file. The contents of the
SYMBOLIC KEY item are moved to the RECORD KEY item and the
contents of the record are then replaced with the contents of
record-name. If no such record exists in the file, the
statement(s) associated with the INVALID KEY clause is
executed.

3. At the time the REWRITE statement is executed, the file must
be open for OUTPUT or INPUT-OUTPUT.

4. If the FROM option is used, the statement is equivalent to:

MOVE identifier TO record-name
REWRITE record-name (without the FROM option)

5-79

THE PROCEDURE DIVISION

SEARCH

5.9.33 SEARCH

Function

The SEARCH statement is used to search a table until a specified
condition exists.

General Format

Opti on 1:

SEARCH identifier-l [VARYING identifier-2][AT END imperative-statement-l [,imperative-statement-2] ... J

WHEN d't' -1 {imperative-statement-3 [,imperative-statement-4] }
__ can 1 10n NEXT SENTENCE ..•

[WHEN d't' -2 { imperati ve-statement-5 [, imperat ive-statement-6] }]
, __ can 1 10n NEXT SENTENCE ...

Option 2:

SEARCH ALL identifier-l [AT END imperative-statement-l [,imperative-statement-2] ... J

WHEN dit· -1 {imperative':statement-3 [,imperative-statement-4] }
-- can lon NEXT SENTENCE . .. MR.·s.107,.a,

Technical Notes

1. If any of the optional clauses are present, they must appear
in the order shown.

2. Identifier-l must not be subscripted or indexed, but its
description must contain an OCCURS clause with an INDEXED BY
option. In option 2, identifier-l must also contain a KEY
option in its OCCURS clause.

3. Identifier-2 must be an index, or an elementary numeric item
with no places to the right of the decimal point.

4. In option 1, condition-I, condition-2, etc., can be any
condition described in Section 5.5.

5-80

THE PROCEDURE DIVISION

SEARCH (Cont.)

5. In option 2, condition-l must consist of a relation condition
incorporating the EQUAL TO or equal sign, or a condition-name
condition where the VALUE clause contains only a single
literal, or a compound condition consisting of two or more
such simple conditions connected by AND.

A data-name that appears in the KEY clause of identifier-l
must appear as the subject or object of a test, or be the
name of the data-item with which the tested condition-name is
associated. However, all preceding data-names in the KEY
clause must also be included within condition-I.

6. If the AT END clause is not present, AT END NEXT SENTENCE is
assumed.

7. If the VARYING option is not specified, the first index
specified in the INDEXED BY option for identifier-l is used.

If the VARYING option is used, and identifier-2 is the name
of an item specified in the INDEXED BY option for
identifier-I, then identifier-2 is used as the index. If
identifier-2 is not specified in the INDEXED BY option for
identifier-I, the first index-name in the INDEXED BY option
is used as the index, and identifier-2 contains the value of
the index at each step of the search.

8. If option 1 of the SEARCH verb is used, a serial search takes
place, starting with the current index setting.

If, at the start of execution of the SEARCH statement, the
index contains a value that is not positive or is greater
than allowed (greater than the number of occurrences or
greater than any DEPENDING item), the statement(s) specified
in the AT END statement is executed.

If, at the start of execution of the SEARCH statement, the
index is within the allowed range of values, the WHEN
conditions are evaluated one at a time. If any condition is
true, the associated statement(s) is executed. If no
condition is true, the index is incremented by 1, and the
search operation is executed again.

The contents of the index are always left as they were when
the search is terminated, either by a WHEN condition, or the
AT END condition.

9. If option 2 of the SEARCH verb is used, a binary search takes
place. All the keys in the table must be in order (ascending
or descending) and all the elements in the table must be
filled. It is up to you to ensure that the keys associated
with the table are in order and the table filled. If the
keys are not in order, or if there are empty elements in the
table being searched, the SEARCH can take the AT END path
even if the key being searched for is there. If the table is
not going to be filled, using the DEPENDING ON clause with
OCCURS effectively shortens the table. -

5-81

THE PROCEDURE DIVISION

SEARCH (Cont.)

The initial contents of the index are ignored; instead, the
table is examined until the WHEN condition is satisfied (in
which case imperative-statement-3 and any following
statements are executed) or until the entire table is
examined (in which case the AT END statement(s) is executed).

When the search is terminated, the contents of the index
reflect the occurrence number of the entry that satisfied the
WHEN condition if it was satisfied, or is arbitrary if it was
not satisfied.

Conditional statements (for example, IF) are not allowed in
the WHEN clause of a SEARCH verb.

10. In either option, after any WHEN or AT END statement(s) is
executed, control is transferred to NEXT SENTENCE unless that
statement contained a GO TO.

11. If identifier-l is a data item subordinate to a data item
that contains an OCCURS clause (that is, this is a
multidimensional table), only the index associated with
identifier-l is modified during the search. To search an
entire multidimensional table, the SEARCH statement must be
executed several times.

Example

01 TABLE.
02 TABLI OCCURS 200 TIMES INDEXED BY I,

ASCENDING KEYS A, B.
03 A PICTURE XXX.
03 FOO PICTURE X(20).
03 B PICTURE 9(4).
03 DES PICTURE X(40).
03 AM PICTURE S9(5)V99.

SEARCH ALL TABLl, AT END GO TO WHAT-HAPPENDEDi
WHEN A(I) = "XYZ" AND B(I) = 350 GO TO GO-ONE.

5-82

THE PROCEDURE DIVISION

SEEK

5.9.34 SEEK

Function

The SEEK statement initiates the accessing of a mass storage data
record in a random access file for subsequent reading or writing.

General Format

SEEK file-name RECORD

Technical Notes

1. The SEEK statement uses the contents of the ACTUAL KEY item
to position the read-write arms on a mass storage device. If
the key is invalid, no action is taken; however, if the
contents of ACTUAL KEY are not changed before the next READ
or WRITE statement is executed, that READ or WRITE statement
then takes the INVALID KEY path.

2. The file must be assigned to amass-storage device, and the
ACCESS MODE must be RANDOM.

3. The statement cannot be used for files whose access modes are
sequential or indexed.

4. Under timesharing, a SEEK to a public file structure is
generally a waste of time, because many users are competing
for positioning.

5-83

THE PROCEDURE DIVISION

SET

5.9.35 SET

Function

The SET statement allows a data-item to be incremented, decremented,
or set to a value.

General Format

[] {
lQ. } {identifier-3} SET identifier-l ,identifier-2 ... UP BY literal-l
DOWN BY MR-S-1072-B1

Technical Notes

1. All identifiers must be numeric elementary items described
without any positions to the right of the assumed decimal
point.

All literals must be integers, or the figurative constant
ZERO.

2. The SET statement causes identifier-I, identifier-2,... to
be set (TO), incremented (UP BY), or decremented (DOWN BY)
the value of identifier-3 or literal-I.

5-84

THE PROCEDURE DIVISION

SORT

5.9.36 SORT

Function

The SORT statement creates a sort file containing the contents of one
or more files that have been ordered according to user-specified keys.

General Format

SORT file-name-l ON ~~~~~~~~~G KEY data-name-l

[] ASCENDING
,data-name-2 ... ON DESCENDING KEY data-name-3

. {ASCENDING} . SORT flle-name-l ON DESCENDING KEY data-name-l

[. data-name-2] ••. [ON gm~~6~~G} KEY data-name-3 [.data-name-4] ...] ...

{ INPUT PROCEDURE IS procedure-name-l [THRU procedure-name-2]}
USING file-name-2 [,file-name-3] ...

{
OUTPUT PROCEDURE IS procedure-name-3 [THRU procedure-name-4]}
GIVING file-name-4 .

. MR-S·1073-81

Technical Notes

1. File-name-l must be described in an SD file description entry
in the Data Division. Each data-name must represent data
items described in records associated with file-name-l.

2. File-name-2, file-name-3, and file-name-4 must be described
in an FD file description. All records associated with these
files must be large enough to contain all of the KEY
data-names. If multiple files must be read, you can use an
input procedure that reads each file in turn. If you use
SORT, you can use any number of input files with a SORT
statement.

3. The data-names following the word KEY are listed in order of
decreasing significance without regard to how they are
organized in the SD record description.

4. The data-names can be qualified but not subscripted.

5-85

THE PROCEDURE DIVISION

SORT (Cont.)

5. with SORT, the maximum record size is 4095 characters for
ASCII, EBCDIC, and SIXBIT representations.

6. SORT statements can appear anywhere in the PROCEDURE DIVISION
except in the DECLARATIVES portion or in an input or output
procedure associated with a sort, or an output procedure
associated with a merge.

7. When the ASCENDING clause is used, the sorted sequence is
from the lowest value to the highest value; when a
DESCENDING clause is used, the sorted sequence is from the
highest value to the lowest value.

8. The input procedure, if present, must consist of one or more
sections or paragraphs that appear contiguously in the
program and do not form a part of any output procedure. The
input procedure must contain at least one RELEASE statement
to transfer records to the sort subroutine.

9. The output procedure, if present, must consist of one or more
sections or paragraphs that appear contiguously in a source
program and do not form a part of any input procedure. The
output procedure must contain at least one RETURN statement
to make sorted records available for processing.

10. ALTER, GO and PERFORM statements in the input procedure are
not permitted to refer to procedure-names outside the input
procedure; similarly, ALTER, GO and PERFORM statements in
the output procedure are not permitted to refer to
procedure-names outside the output procedure.

11. If an input or output procedure is specified, those
procedures are PERFORMED by the SORT statement, and all rules
re,1ating to the range of a PEHFORM must be observed.

12. If the USING option is specified, all rec6rds in file-name-2,
file-name-3, ... , are automatically transferred to the SORT
subroutine. File-name-2, file-name-3, ... , must not be open
when the SORT statement is executed. Any USE PROCEDUREs
associated with file-name-2, file-name-3, ... , are executed as
appropriate. The USING option is equivalent to the following
INPUT PROCEDURE:

Ll. OPEN INPUT file-name-2
L2. READ file-name-2 INTO sort-record; AT END GO TO

L3. RELEASE sort-record.
GO TO L2.

L3. CLOSE file-name-2.

5-86

THE PROCEDURE DIVISION

SORT (Cant.)

13. If the GIVING option is specified, all the sorted records in
file-name-l are automatically transferred to file-name-4.
File-name-4 must not be open when the SORT statement is
executed. Any USE PROCEDURES associated with file-name-4 are
executed as appropriate. The GIVING option is equivalent to
the following OUTPUT PROCEDURE:

L4. OPEN OUTPUT file-name-4.
L5. RETURN sort-file INTO record-name-4; AT END GO TO L6.

WRITE record-name-4.
GO TO L5.

L6. CLOSE file-name-4.

14. An ISAM file can be sorted with INPUT and OUTPUT procedures. I
ISAM files cannot be sorted with the USING and GIVING
options.

ISAM files are by definition a sorted set. In designing the
file you should use the order in which the file is most often
accessed. If you wish to access it in a different order,
write a program with an input procedure that reads the ISAM
file sequentially using LOW VALUES. The input procedure can
release records to the sort. If you wish to use an ISAM file
as output, you must have an empty ISAM file for output,
return records from the sort and write them into the new ISAM
file.

5-87

THE PROCEDURE DIVISION

STOP

5.9.37 STOP

Function

The STOP statement halts the object ·program.

General Format

STOP lliterall

RUN

Technical Notes

1. If the literal option is used, the literal is displayed on
your terminal, and the program waits for you to type

CONTINUE

Following receipt of this message, the program continues
execution at the statement following the STOP.

The literal can be a figurative constant; in this case, a
single character is displayed.

2. If the RUN option is used, all files currently open are
closed, and execution of the program is terminated.

5-88

THE PROCEDURE DIVISION

STRING

5.9.38 STRING

Function

The STRING statement is used to concatenate the partial or complete
contents of several data items into a single data item.

General Format

STRING {
ide n t i fie r -1 I
literal-1 [

,identifier-2]
,literal-2 {

identifier-3 }
DELIMITED BY literal-3

SIZE

[. I i dent i fi er-4
literal-4 I [,identifier-5]

,literal-5 {
identifier-6 }]

DELIMITED BY literal-6
SIZE

INTO identifier-7 [WITH POINTER identifier-8]

[;ON OVERFLOW statement-l]
MR-S-1074-81

Technical Notes

1. Source Items

a. The data items referenced by identifier-I,

b.

identifier-2, •.• are called source data items.

A numeric source item is
unsigned numeric data item of
and whose USAGE is the same
according to the rules for
treated as alphanumeric.

moved to an intermediate
the same size as the source
as that of identifier-7

numeric transfers, and then

c. If subscripting or indexing is needed to identify a
source data item, the values of the required subscripts
and/or indexes and the depending items, if any, just
prior to the transfer of that pa~ticular source item are
used.

d. If a source item is defined in the Data Division using I
the OCCURS ••• DEPENDING option, STRING deals with the
source item as if it were just long enough to contain the
existing characters.

e. Literal-I; literal-2 •••
Source literals must
alphanumeric figurative
modifier.

are called source literals.
be alphanumeric literals or

constants without the ALL

f. If a source literal is a figurative constant, it refers
to a single-character literal of the specified type.

5-89

THE PROCEDURE DIVISION

STRING (Cont.)

2. Delimiter Items

a. Each series of source items specified in the STRING
statement must be followed by a DELIMITED BY phrase.
This phrase specifies the delimiter condition to be
associated with each source item in that series.

b. The data items referenced by identifier-3 and
identifier-6 are called delimiter data items.

c. A numeric delimiter item is moved to an intermediate
unsigned numeric data item of the same size as the
delimiter and whose USAGE is the same as that of
identifier-7 according to the rules for numeric transfers
and then treated as alphanumeric.

d. If subscripting or indexing is needed to identify a
delimiter data item, the values of the required
subscripts and/or indexes and the depending items, if
any, just prior to the transfer of the source item
corresponding to that particular delimiter item are used.

e. Literal-3 and literal-6 are called delimiter literals.

f.

g.

Delimiter literals must be alphanumeric literals or
alphanumeric figurative constants without the ALL
modifier.

If a delimiter
refers to a
type.

literal is a
single-character

figurative constant, it
literal of the specified

If a delimiter data item or a delimiter literal is
specified, the content of the data item during the
execution of the STRING statement, or the value of the
literal is the delimiter string for each source item
corresponding to that delimiter item.

In this case, the delimiter condition for each of the
corresponding source items is the first occurrence in the
source item of a character string that matches the
delimiter string. If there is not such character string
in the source item, the delimiter condition is the
rightmost boundary of that source item.

Two character strings match if, and only if, they
are of equal length and each character of the
first string is equivalent, according to the
rules for code conversion, to the corresponding
character of the second string.

h. If the DELIMITED BY SIZE phrase is specified, the only
delimiter condition for each of the corresponding source
items is the rightmost boundary of the source item.

5-90

THE PROCEDURE DIVISION

STRING (Cont.)

3. Destination

a. The data item referenced by identifier-7 is called the
destination. The destination must be an unedited
alphanumeric data item. It cannot be justified (that is,
the JUSTIFIED clause cannot be used for this item).

b. If subscripting or indexing is needed to identify the
destination, the values of the required subscripts and/or
indexes and the depending items, if any, just prior to
the execution of the STRING statement are used.

4. Pointer

a. The data item referenced by identifier-8 is called the
pointer. The pointer must be an unedited integer data
item of sufficient size to contain a value one greater
that the size of the destination.

b. The pointer serves as a character index
destination.

for the

c. If subscripting or indexing is needed to identify the
pointer, the values of the required subscripts and/or
indexes and the depending items, if any, prior to the
execution of the STRING statement are used.

d. If the POINTER phrase is specified, the pointer is
directly available to you. It must be initialized before
the execution of the STRING statement to a value greater
than zero and not greater than the size of the
destination.

e. If the POINTER phrase is not specified, the STRING
statement is always executed as if you have specified a
pointer and set the initial value to 1. In this case,
the pointer is not directly available to you.

f. The STRING statement is executed as if the initial value
of the pointer were stored in a temporary location. This
temporary location is used as the pointer during the
execution of the STRING statement. The value in this
temporary location is stored in the real pointer item
before any subscripting is done and at the end of
execution of the STRING statement.

5. Execution

a. When the STRING statement is executed, each source item
in turn, starting with the first source item specified,
is transferred to the destination character-by-character,
beginning at the leftmost character position of the
source item and continuing to the right, until the
delimiter condition corresponding to that source item has
been encountered or the destination has been filled.

5-91

THE PROCEDURE DIVISION

STRING (Cont.)

b. If a delimiter item was specified for a source item and a
string of characters is found in the source item matching
the delimiter string, all characters of the source item
preceding the matching string are used in the transfer to
the destination, but none of the characters that are in
the matching string and no characters following it in the
source item are used in the transfer.

c. If no delimiter item was specified for a source item or
no string of characters is found in the source item
matching the delimiter string, all characters of the
source item are used in the transfer to the destination.

d. During the execution of the STRING statement, characters
are transferred to the destination from the source items
as if the destination were a table of single character
data items indexed by the pointer, which is automatically
incremented after each character transfer.

e. The first character transferred is stored in the
character position of the destination indicated by the
initial value of the pointer. The nth character
transferred is stored in the character position indicated
by the initial value of the pointer plus n-l.

f. The transfer of characters ends when one of the following
conditions occur.

These conditions are specifically checked for in the
order stated:

1. The initial value of the pointer is
integer less than or equal to
destination.

not
the

a positive
size of the

2. All appropriate characters of all source items have
been transferred to the destination.

3. A character has been transferred to the last
character position of the destination, though not all
appropriate characters of all source items have been
transferred.

g. If the transfer of characters to the destination is
terminated because of condition 2 of note f, those
character positions of the destination to which
characters were not transferred, if any, retain the
values they contained before the execution of the STRING
statement. That is, remaining character positions in the
destination are not space-filled.

h. After the transfer of characters to the destination has
ended, the pointer is set to a value one greater than the
ordinal number of the last character position of the
destination to which data was transferred. If no data
was transferred to the destination, the pointer is
unchanged.

5-92

THE PROCEDURE DIVISION

STRING (Cont.)

6. Overflow

Example

a. If the transfer of characters to the destination is
terminated because' of either condition 1 or condition 3
of note 5.f, the STRING statement is considered to have
caused an overflow.

b. IF THE ON OVERFLOW phrase is not specified, after the
execution of the STRING statement, regardless of whether
or not there was an overflow, control passes to the point
in the program immediately following the STRING
statement.

c. If the ON OVERFLOW phrase is specified, after the
transfer of characters has ended and the pointer set to
the appropriate value, the flow of program control
depends on whether or not there was an overflow.

1. If an overflow did not occur, control passes to the
point in the program corresponding to the end of the
sentence containing the STRING statement (following
all the statements in the ON OVERFLOW phrase) .

2. If an overflow did occur, control passes to the point
in the program corresponding to the beginning of
statement-I.

DATA DIVISION.
Dl INPUT-DATE.

D3 IN-MO PIC 99.
D3 IN-DA PIC 99.
D3 IN-YR PIC 99.

Dl MONTH-TABLE.
D3 MON-TABLE PIC X(36) VALUE

"JANFEBMARAPRMAYJUNJULAUGSEPOCTNOVDEC".
D3 MON-ARRAY REDEFINES MON-TABLE.

D5 MO-NAME OCCURS 12 TIMES PIC xxx.
Dl OUTPUT-DATE PIC X(12).
PROCEDURE DIVISION.

STRING IN-DA "-" MO-NAME (IN-MO) "-" IN-YR
DELIMITED BY SIZE INTO OUTPUT-DATE.

STOP RUN.

NOTE

The DELIMITED BY clause specifies a
character of data which is to serve as
the rightmost terminator of the input
field, unless SIZE is specified.

5-93

THE PROCEDURE DIVISION

SUBTRACT

5.9.39 SUBTRACT

Function

The SUBTRACT statement is used to subtract one, or the sum of two or
more, numeric items from one or more numeric items and set the values
of one or more items to the result.

General Format

Option 1:

SUBTRACT {
identifier-I} [
literal-l ' {

identifier-2 }]
literal-2

FROM identifier-m [ROUNDED] [,identifier-n [ROUNOED]]

[ON SIZE ERROR statement-l [,statement-2] ... ~]

Option 2:

SUBTRACT {
identifier-I}
literal-l [, { identifier-2

literal-2 }] ...

FROM {
identifier-m }
literal-m GIVING identifier-n [ROUNDED]

[i dent ifi er-p [ROUNDED]]

[ON SIZE ERROR statement-l [,statement-2] ~]
MR-S-1075-81

5-94

THE PROCEDURE DIVISION

SUBTRACT (Cont.)

Option 3:

SUBTRACT {
CORRESPONDING }
CORR identifier-l FROM identifier-2

[ROUNDED] [ON SIZE ERROR s tatement-l [, statement-2] ~]
MR-S-1076-81

Technical Notes

1. Each SUBTRACT statement must contain at least two operands
(that is, a subtrahend and a minuend). In options 1 and 2,
each identifier must refer to an elementary numeric item,
except that identifiers to the right of the word GIVING can
refer to numeric edited items. In option 3, each identifier
must refer to a group item.

2.

Each literal must be a numeric literal or the figurative
constant ZERO.

The composite of all operands (that is, the data item
resulting from the superimposition of all operands aligned by
decimal point) must not contain more than 18 decimal digits
for the non-BIS compiler or more than 36 for the
compiler. In either case a maximum of 18 digits can
stored in a receiving field.

NOTE

The BIS compiler is standard on the DECSYSTEM-20 and
DECsystem-lO. For KI based hardware, the non-BIS
compiler is optional on the DECsystem-lO. (See the
COBOL-68 Installation Procedures.)

BIS
be

3. Option 1 causes the values of the operands preceding the word
FROM to be added together, and this sum to be subtracted from
the values of identifier-m, identifier-n, and so forth.

4. Option 2 causes the values of the operands preceding the word
FROM to be added together, the sum subtracted from
identifier-m or literal-m, and the result stored as the new
values of identifier-n, identifier-p, and so forth. The
current values of identifier-n, identifier-p, and so forth,
do not enter into the computation.

5. Option 3 causes the data items in the group item associated
with identifier-l to be subtracted from and stored into
corresponding data items in the group item associated with
identifier-2. The criteria used to determine whether two
items are corresponding are described under "The
CORRESPONDING Option" at the beginning of this chapter.

6. The ROUNDED and SIZE ERROR options are described earlier in
this chapter under "Common Options Associated with Arithmetic
Verbs".

5-95

THE PROCEDURE DIVISION

SUPPRESS

5.9.40 SUPPRESS

Function

The SUPPRESS statement inhibits the presentation of a report group.

General Format

SUPPRESS PRINTING
MR-S-1077-81

Technical Notes

1. The SUPPRESS statement can appear only in a USE BEFORE
REPORTING procedure.

2. The SUPPRESS statement inhibits presentation of the report
group named in the USE BEFORE REPORTING statement only.

3. Each time you wish your program to inhibit presentation of a
report group you must make sure that your program executes
the SUPPRESS statement; you cannot execute it only once if
you wish the group to be suppressed all the time.

4. Execution of the SUPPRESS statement causes the following
report group functions to be inhibited:

• The presentation of the print lines of the group,

• The processing of all LINE clauses in the group,

• The processing of the NEXT GROUP clause in the group,
and

• The adjustment of LINE-COUNTER.

5-96

THE PROCEDURE DIVISION

TERMINATE

5.9.41 TERMINATE

Function

The TERMINATE statement ends the processing of a report.

General Format

TERMINATE report-name-l [, report-name-2]

Technical Notes

1. Each report-name must be defined by an RD entry in the REPORT
SECTION of the DATA DIVISION.

2. All control footings associated with the report are produced
as if a control break had occurred at the highest level. In
addition, the last PAGE FOOTING and any REPORT FOOTING report
groups are produced.

3. A second TERMINATE statement for a particular report can not
be executed until another INITIATE statement is executed for
that report.

4. The TERMINATE statement does not close the file associated
with the report; a CLOSE statement must be executed after
the TERMINATE statement is executed.

5-97

THE PROCEDURE DIVISION

TRACE

5.9.42 TRACE

Function

The TRACE statement causes the compiler to generate calls to COBDDT.
This allows you to trace paragraphs or to stop tracing paragraphs at
run time. When a paragraph is traced, its name, enclosed in angle
brackets «», is typed each time that the paragraph is entered.

General Format

TRACE { ~~F 1
MR-S-1078-81

Technical Notes

1. You must load COBDDT with your program to be able to use
trace facility. (Refer to Section 7.3.1, Loading
Starting COBDDT, for more information.)

the
and

2. The compiler generates trace calls for each paragraph in the
program if the IP switch is not included in the command
string. If the IP switch is included in the command string,
the trace calls are not generated.

3. Although the compiler generates trace calls when the IP
switch is not present, tracing is not performed unless you
include the TRACE ON statement in your program (or specify
the TRACE ON statement to COBDDT).

4. The TRACE ON statement causes all ensuing paragraphs to be
traced; that is, their names, enclosed in angle brackets
«», are typed each time they are entered. Tracing
continues until either the end of program is reached or a
TRACE OFF statement is encountered (or is specified to
COBDDT) .

5. The TRACE
paragraphs
TRACE ON
COBDDT} .

OFF statement stops tracing of all ensuing
until either the end of program is reached or a

statement is encountered (or is specified to

5-98

6.

THE P~OCEDURE DIVISION

TRACE (Cont.)

When compiling for a production run, you should
IP switch in the command string so that trace
generated and TRACE statements in the program
The following example shows paragraphs with
TRACE ON statements included.

PROCEDURE DIVISION.
PARA.

TRACE ON.
PARB.

TRACE OFF.
PARCo

TRACE ON.
PARD.

include the
calls are not
are ignored.
TRACE OFF and

are traced. Paragraph PARC is not
TRACE OFF statement is included

If the IP switch is included in the
this program is compiled, the TRACE
and trace calls are not generated.

Paragraphs PARB and PARD
traced because the
immediately before it.
command string when
statements are ignored

5-99

THE PROCEDURE DIVISION

UNSTRING

5.9.43 UNSTRING

Function

The UNSTRING statement is used to split a single data item (for
example, text string) into several parts, depending on the occurrence
of specified delimiters, and to store the parts into separate data
items where they can be more easily accessed by the COBOL program.

General Format
UNSTRING identifier-l

INTO ,identifier-4 [,DELIMITER IN i<ientifier-5J [,COUNT IN identifier-6]

[• i dent i fi er-7 [. DELIMITER IN i dent ifi er-8] [• COUNT IN i dent i fi er-9]] ...

[WITH POINTER identifier-lO J [TALLYING IN identifier-ll]

[,ON OVERFLOW statement-I]
MR-S-1 079-8 1

Technical Notes

1. Source Items

a. The data item referenced by identifier-l is called the
source item. The source item must be a DISPLAY-6,
DISPLAY-7, or DISPLAY-9 data item. A numeric source item
is moved to an intermediate unsigned numeric data item of
the same size according to the rules for numeric
transfers and then treated as alphanumeric.

b. If subscripting or indexing is needed to identify the
source, the values of the required subscripts and/or
indexes and the depending items, if any, just prior to
the execution of the UNSTRING statement are used.

2. Destination Items

a. The data items referenced by identifier-4,
identifier-7, ••• , are called destination items.
Destination items can be any kind of data items.

5-100

THE PROCEDURE DIVISION

UNSTRING (Cont.)

b. If subscripting or indexing is needed to identify a
destination item, the values of the required subscripts
and/or indexes and the depending items, if any, just
prior to the transfer of data to that destination item
are used.

3. Delimiter Items

a. The data items referenced by identifier-2,
identifier-3, ••. , are called delimiter data items.

b. A numeric delimiter item is moved to an intermediate
unsigned numeric data item of the same size as the
delimiter and whose USAGE is the same as that of
identifier-l according to the rules for numeric transfers
and then treated as alphanumeric.

c. If subscripting or indexing is needed to identify a
delimiter data item, the values of the required
subscripts and/or indexes and the depending items, if
any, just prior to the transfer of data to each
successive destination item are used.

d. Literal-I, literal-2, •.. , are called delimiter literals.

e.

Delimiter literals must be alphanumeric literals or
alphanumeric figurative constants without the ALL
modifier.

If a delimiter
refers to a
type.

literal is a
single-character

figurative constant, it
literal of the specified

f. If a delimiter data item or a delimiter literal is
specified, the contents of the data item or the value of
the literal is a delimiter string for the source.

g. If more than one delimiter item is specified, the
delimiter items are separated by the connective OR. In
this case, the several delimiter strings are ordered by
the order in which the delimiter items specifying them
occur in the UNSTRING statement.

h. If the ALL phrase is specified with a delimiter item, the
delimiter string that that item specifies is considered
to consist of as many occurrences of that simple
delimiter string as can be found contiguously stored in
the source.

i. A delimiter condition is an occurrence in the source of a
character string, not contained in the portion of the
source that has already been scanned, that matched one of
the delimiter strings, or the rightmost boundary of the
source.

5-101

THE PROCEDURE DIVISION

UNSTRING (Cont.)

4. Delimiter Storage Items

a. A DELIMITER IN phrase can be specified only if the
DELIMITED BY phrase is specified.

b. The data items referenced by identifier-5 and
identifier-8 are called delimiter storage items.

c. If subscripting or indexing is needed to identify a
delimiter storage item, the values of the required
subscripts and/or indexes and the depending items, if
any, just prior to the transfer of data to the
destination item corresponding to that delimiter storage
item are used.

5. Count Storage Items

a. The data items
identifier-9 are
storage items must
sufficient length
of the source.

referenced by identifier-6 and
called count storage items. Count
be unedited integer data items of
to contain a value equal to the length

b. If subscripting or indexing is needed to identify a count
storage item, the values of the required subscripts
and/or indexes and the depending items, if any, just
prior to the transfer of data to the destination item
corresponding to that count storage item are used.

c. A count storage item is used to store the number of
characters of the source that were examined during the
execution of the UNSTRING statement and approved for
transfer to the destination corresponding to that count
storage item.

6. Pointer

NOTE

This is not necessarily the same as the number of
characters that were actually transferred,
because the destination can be too small to hold
all that were approved for transfer.

a. The data item referenced by identifier-IO is called the
pointer. The pointer must be an unedited integer data
item of sufficient size to contain a value one greater
than the size of the source.

b. The pointer serves as a character index for the source.

c. If subscripting or indexing is needed to identify the
pointer, the values of the required subscripts and/or
indexes and the depending items, if any, just prior to
the execution of the UNSTRING statement are used.

5-102

THE PROCEDURE DIVISION

UNSTRING (Cant.)

d. If the POINTER phrase is specified, the pointer is
directly available to you. It must be initialized before
the execution of the UNSTRING statement to a value
greater than zero and not greater than the size of the
source.

e. If the POINTER phrase is not specified, the UNSTRING
statement is always executed as if you have specified a
pointer and set the initial value to 1. In this case,
the pointer is not directly available to you.

7. Destination Counter

a. The data item referenced by identifier-II is called the
destination counter. The destination counter must be an
unedited integer data item of sufficient size to contain
a value equal to the number of destination items
specified in the UNSTRING statement.

b. The destination counter is used to store the number of
destination item~ to which data was transferred by the
execution of the UNSTRING statement.

c. If subscripting or indexing is needed to identify the
destination counter, the values of the required
subscripts and/or indexes and the depending items, if
any, just prior to the execution of the UNSTRING
statement are used:'

d. If the TALLYING phrase is specified, the destination
counter is directly available to you, and it must be
initialized before the execution of the UNSTRING
statement.

e. If the TALLYING phrase is not specified, the UNSTRING
statement is always executed as if you had specified a
destination counter and set the initial value to O. In
this case, the destination counter is not directly
available to you.

8. Execution

a. The execution of the UNSTRING statement is an iterative
process. There is one iteration for each destination
item specified in the UNSTRING statement, starting with
the first destination item specified and continuing in
order through the series of destination items. However,
the iteration process is stopped after all the data in
the source has been used, even if not all destination
items have been used. During execution of the UNSTRING
statement, the pointer and an increment to be added to
the destination counter are kept in temporary locations.
At the start of execution of the UNSTRING statement, the
real pointer is stored in the temporary pointer and the
temporary destination count is set to zero. When it
becomes necessary to move these items to the real pointer
and real destination items, the internal pointer is moved
into the real pointer, the internal destination counter
is added to the real destination counter, and the
internal destination counter is set to zero again.

5-103

THE PROCEDURE DIVISION

UNSTRING (Cent.)

b. Each iteration of the process involved in
of the UNSTRING statement consists of
steps:

the execution
the following

1. Select a set of characters from the source.

2. If the destination item, delimiter storage item, or
count storage item is subscripted, store the internal
pointer into the real pointer item and update the
real destination counter.

3. Move a representation of these characters to the
destination item for that iteration.

4. Move some characters to the delimiter
corresponding to that destination
specified.

storage item
item, if one is

5. Set the count storage item corresponding to that
destination item, if one is specified.

6. Advance the internal pointer to indicate a new
position in the source.

7. Increment the internal destination counter.

c. During the execution of the UNSTRING statement, the
source is treated as if it were a table of single
character data items indexed by the pointer. The
character position of the source indicated by the
pointer, during each iteration of the UNSTRING process,
is called the pointer-indicated position for that
interation. Only the pointer-indicated position for an
iteration and those source character positions to its
right are used during that iteration. Character
positions to the left of that position are not involved
in that iteration in any way.

d. During each iteration of the UNSTRING process, a scan of
the source is done to determine which characters of the
source are selected as the character set to be moved to
the appropriate destination item. This scan begins at
the pointer-indicated position and continues to the right
in the source.

e. When the source is scanned,
detected depending on whether
phrase is specified.

certain conditions are
or not the DELIMITED BY

1. If the DELIMITED BY phrase is specified, the scan
ends when either of the following conditions occurs:

a. A string of contiguous characters in the source
that matches one of the delimiter strings is
found.

b. The rightmost boundary of the source is found.

5-104

THE PROCEDURE DIVISION

UNSTRING (Cont.)

2. When the DELIMITED BY phrase is not specified, the
scan ends when either of the following conditions
occurs:

a. A number of characters sufficient to completely
fill the destination is found.

b. The rightmost boundary of the source is found.

When the scan ends, the set of characters to be moved to
the destination item is known.

f. The source scan proceeds in one of two ways depending on
whether or not the DELIMITED BY phrase is specified.

1. If the DELIMITED BY phrase is specified, the scan
proceeds as follows:

2.

a. Each character position of the source, starting
at the pointer-indicated position and continuing
to the right, is first checked to see if any
source character-string beginning at that
position matches the delimiter-string specified
by the first delimiter item in the UNSTRING
statement. If such a string is found, condition
a of Note el is satisfied.

b. If no such string is found, the same character
position is then checked to see if any source
character-string beginning at that position
matches the second specified delimiter-string.
This process is repeated using each successive
delimiter-string until either condition a of Note
el is satisfied or all specified delimiters have
been tried.

c. If condition a of Note el is not satisfied for
the source character position under consideration
and one of the specified delimiter-strings, that
character position is then selected as part of
the source to be moved to the current destination
item.

d. The above process continues until no more source
character positions remain (condition b of Note
el) .

If the DELIMITED BY phrase is not specified, the
source scan proceeds until one of the following
conditions occurs:

a. Enough successive character positions of the
source have been selected to entirely fill the
destination item (conditon a of Note e2).

b. No more source character
(Condition b of Note e2).

5-105

positions remain

THE PROCEDURE DIVISION

UNSTRING (Cont.)

g. During each iteration of the UNSTRING process, the set of
contiguous source character positions selected by the
process described in Note f is considered to be a
complete individual data item, and is moved to the
current destination item according to the rules for the
MOVE statement, including any class of usage conversion
that might be necessary. You should note that truncation
or fill can occur during the execution of the MOVE. This
data item might contain no character positions at all if
the pointer-indicated position satisfied condition a of
Note el or it can contain as much as the entire source.

h. If a count storage item is specified with the destination
item for an iteration of the UNSTRING process, the number
of source characters that were examined during the
execution of the UNSTRING statement and approved for
transfer to the destination item is stored in that count
storage item.

i. If there is a delimiter storage item specified for a
particular iteration of the UNSTRING process, then:

1. If the selection of source character positions
described in Note f is terminated because condition a
of Note el, the string of contiguous source character
positions that contain the match for a delimiter
string is treated as a complete individual data item
and is moved to the delimiter storage item according
to the rules for the MOVE statement, including
truncation if necessary.

If, in this case, the delimiter string that was
matched is described with the ALL phrase, the set of
source character positions containing a match for the
simple delimiter string, plus every immediately
succeeding set of contiguous source character
positions containing a match for the same delimiter
string, are used in the data item that is moved to
the delimiter storage item.

2. If the selection of source character positions
described in Note f is terminated because of
condition b of Note el, spaces are moved to the
specified delimiter storage item.

j. In an iteration of the UNSTRING process, after the
appropriate data has been stored in the destination item,
the delimiter storage item, and the count storage item,
the pointer is set to a value one more than the ordinal
number of the last source character position that
participated in the selection process. This includes all
character positions that were selected as part of the
source to be moved to the destination item and, if a
DELIMITED BY phrase is specified, all character positions
that were used in the successful match of a delimiter
string.

5-106

THE PROCEDURE DIVISION

UNSTRING (Cont.)

k. At the conclusion of execution of the UNSTRING statement,
the real destination counter is updated using the
internal destination ~ounter and the internal pointer is
stored into the real pointer.

9. Overflow

a. If the initial value of the pointer is less than one or
greater than the size of the source, execution of the
UNSTRING statement is aborted before any data is
transferred, the real pointer's value is unchanged, and
the UNSTRING statement is considered to have caused an
overflow.

b. If, during the execution of an UNSTRING statement, data
has been transferred to all of the destination items in
accordance with Note g, but the updated pointer still
contains a value less than or equal to the size of the
source (that is, not all of the source character
positions have been used in the UNSTRING process), the
UNSTRING statement is considered to have caused an
overflow.

c. If the ON OVERFLOW phrase is not specified, after the
execution of the UNSTRING statement, regardless of
whether or not there was an overflow, control passes to
the point in the program immediately following the
UNSTRING statement.

d. If the ON OVERFLOW phrase is specified, after the
transfer of characters has ended and the pointer and
destination counter are set to the appropriate values,
the flow of Gontrol of the program depends on whether or
not there was an overflow.

1. If an overflow did not occur, control passes to the
point in the program corresponding to the end of the
sentence containing the UNSTRING statement (following
all the statements in the ON OVERFLOW phrase) .

2. If an overflow did occur, control passes to the point
in the program corresponding to the beginning of
statement-I.

5-107

THE PROCEDURE DIVISION

UNSTRING (Cent.)

Example

DATA DIVISION.

01
01

INPUT-DATE PIC X(12).
DATE-FIELDS.
03 DAY PIC XX.
03 MONTH PIC XXX.
03 YEAR PIC XX.

PROCEDURE DIVISION.

UNSTRING INPUT-DATE DELIMITED BY ALL "_"
INTO DAY MONTH YEAR.

STOP RUN.

This example assumes that the input date is in the form
"Ol-JAN-Sl". If the day and year are to be used as
numerics, they have to be moved to fields which are
justified right. Also, if the month is to be converted
to numeric, this must be done by means of a table search.

5-108

THE PROCEDURE DIVISION

USE

5.9.44 USE

Function

The USE statement specifies procedures for
error handling that are in addition to
provided.

input-output label and
the standard procedures

General Format

Format 1:

USE AFTER STANDARD ERROR PROCEDURE ON OTITPUT
{

fi 1 e-name-l
INPUT

Format 2:

USE

Format 3:

{
BEFORE }
AFTER STANDARD

1-0
INPUT-OUTPUT

[{ BEGINNING}] [{ ~ic~ }]
ENDING UNIT

LABEL PROCEDURE ON {~~ame-l } ~
1-0
TNPUT-OUTPUT

USE BEFORE REPORTING identifier-l ~
MR-S-10BO-B1

Technical Notes

1. USE statements can appear only in the DECLARATIVES portion of
the PROCEDURE DIVISION. The DECLARATIVES portion follows
immediately after the PROCEDURE DIVISION header and begins in
A-margin with the word

DECLARATIVES.

5-109

THE PROCEDURE DIVISION

USE (Cont.)

The DECLARATIVES portion ends in A-margin with the words

END DECLARATIVES.

Following this must be a section-header as the first entry of
the main portion of the PROCEDURE DIVISION.

The DECLARATIVES portion itself consists of USE sections,
each consisting of a section-header, followed by a USE
statement, followed by the associated procedure paragraphs.

The general format for the DECLARATIVES portion is given
below:

PROCEDURE DIVISION.

DECLARATIVES.

section-name-l SECTioN. USE
paragraph-name-la. (statement)
[paragraph-name-lb. (statement)]

[section-name-2 SECTION. USE]

END DECLARATIVES.

section-name-m SECTION.

2. The USE statement can follow on the same line as the
section-header and must be terminated by a period followed by
a space. The remainder of the section must consist of one or
more procedural paragraphs that define the procedures to be
used.

3. The USE statement itself is never executed, rather it defines
the conditions calling for the execution of the USE
procedures.

4. The designated procedures are executed at the appropriate
time as follows:

a. Format 1 causes the designated procedures to be executed
after completing the standard input-output error routine.
This provides the ability to continue a program on an I/O
error if it would have otherwise failed. Refer to the
FILE-STATUS clause in Chapter 3 for details of specifying
a FILE-STATUS action code.

b. Format 2 causes the designated procedures to be executed
at one of the following times, depending upon the options
used.

1. Before or after a beginning or ending input label
check procedure is executed.

2. Before a beginning ~r ending output label is created.

5-110

THE PROCEDU~E DIVISION

USE (Cont.)

3. After a beginning or ending output label is created,
but before it is written on tape.

4. Before or after a beginning or ending input-output
label check procedure is executed.

c. Format 3 causes the designated procedures to be executed
just prior to the production of the named report group.

5. There must not be any reference to any non-DECLARATIVES
procedure within a USE procedure. Conversely, there must be
no reference to procedure-names that appear within the
DECLARATIVES portion in the non-DECLARATIVES portion, except
that PERFORM statements can refer to a USE section or to a
procedure contained entirely within such a USE section.

6. No input/output can be performed, other than use of ACCEPT
and DISPLAY statements, during execution of a USE procedure.

7. Format I causes the associated procedures to be executed
after the standard input-output error routine has been
executed. If the INPUT option is used, the procedures are
executed for all INPUT files; if the OUTPUT option is used,
they are executed for all OUTPUT files; if the 1-0 or the
INPUT-OUTPUT option is used, they are executed for all
INPUT-OUTPUT files; if the filename-l option is used, they
are executed only for that particular file. If the
filename-l option is used and any other option is used (i.e.,
INPUT, OUTPUT, INPUT-OUTPUT) , the file named in the
filename-l option cannot be opened in the form that is
specified in the other error procedure. For example, if you
specify two error procedures, one for INPUT and the other for
filename-I, filename-l cannot be opened for INPUT; it can be
opened for OUTPUT or INPUT-OUTPUT.

If the filename-l OPEN option is used, the system performs
the associated procedures only if a "FILE BEING MODIFIED"
error occurs when an attempt is made to open an output file.
After performing the procedure, the system automatically
tries again to open the file, repeating this process until
the file is opened. This option allows you to suspend your
job until it can access a file that another user is
modifying.

8. Format 2 causes the associated procedures to be executed at
the appropriate times, as indicated by the options selected
(see note 4). If the words BEGINNING or ENDING are not
included in Format 2, the designated procedures are executed
for both the beginning and ending labels. If neither UNIT,
REEL, nor FILE is included, the designated procedures are
executed for both REEL (or UNIT) labels and for FILE labels.

If the INPUT, OUTPUT, INPUT-OUTPUT, or 1-0 option is
specified, the label procedure applies to every file of that
type except files described as LABEL RECORDS ARE OMITTED.

If the file-name-l option is used, its file description must
not contain a LABEL RECORDS ARE OMITTED clause.

5-111

THE PROCEDURE DIVISION

USE (Cont.)

9. within a given format, a file~name must not be referred to,
either implicitly (that is, by an INPUT, OUTPUT,
INPUT-OUTPUT, or 1-0 option) or explicitly (that is, by a
file-name-l option), in more than one USE statement.

10. Identifier-l in Format 3 represents a report group named in
the REPORT SECTION of the DATA DIVISION. An identifier must
not appear in more than one USE statement. The report group
must not be TYPE DETAIL.

5-112

THE PROCEDURE DIVISION

WRITE

5.9.45 WRITE

Function

The WRITE statement transfers a logical record to an output file.

General Format

Format 1:

WRITE record-name-l [FROM ~igUr~t~ve-constant]
-- -- ldentlfler-l

[1
identifier-2 LINES!]

{ BEFORE} ADVANCING intege~-l LINES
AFTER mnemonlc-name

PAGE

Format 2:

WRITE record-name-l [FROM ~igUr~t~ve-constant]
-- ldentlfler-l

AFTER POSITIONING {~dentifier-2} LINES lnteger-l

Format 3:

~ record-name-l [ERQM ~igUr~t~ve-constant]
1 dent 1 f 1 e r-l

INVALID KEY statement-l [,statement-2]
MR-S-1081-81

Technical Notes

1. An OPEN OUTPUT or OPEN I-O or OPEN INPUT-OUTPUT statement
must be executed for the file prior to the execution of the
WRITE statement.

2. After the WRITE is executed, the data in record-name-l is no
longer be available.

3. Record-name-l must be the name of a logical record in a DATA
RECORDS clause of the FILE SECTION of the DATA DIVISION.

5-113

I

THE PROCEDURE DIVISION

WRITE (Cont.)

4. Option 1 is valid for any file currently open for output,
with ACCESS MODE IS SEQUENTIAL. The ADVANCING clause allows
control of the vertical positioning of the paper form for
print files as follows:

a.

b.

If the ADVANCING
recording mode is
assumed.

clause
ASCII,

is not
BEFORE

specified
ADVANCING

and the
1 LINE is

If identifier-2 or integer-l
represent a positive integer
advanced the number of lines
identifier-2 or integer-I.

is specified, it must
or zero. The form is

equal to the value of

c. If mnemonic-name is specified, the form is advanced until
the specified channel is encountered on the paper-tape
format control loop. Mnemonic-name must be defined by a
CHANNEL clause in the SPECIAL-NAMES paragraph of the
ENVIRONMENT DIVISION.

d. If the BEFORE option is used, the record is printed
before the form positioning.

e. If the AFTER option is used, the record is printed after
form positioning occurs, and no form positioning takes
place after the printing.

If end-of-reel is encountered while writing on magtape, the
WRITE statement performs the following operations.

a. Your ENDING LABEL PROCEDURE is executed, if specified by
a USE statement.

b. A file mark is written, and the tape is rewound.

c. If the file was assigned to more than one tape unit, the
units are advanced.

d. A label is written on the new tape, if labels are not
OMITTED, and your BEGINNING LABEL PROCEDURE is executed.

5. Option 2 is valid for any file currently open for output,
with ACCESS MODE IS SEQUENTIAL.

The POSITIONING clause allows control of the vertical
positioning of the paper form for print files. The record is
written after the printer page is advanced according to the
following rules.

5-114

THE PROCEDURE DIVISION

WRITE (Cont.)

a. If identifier-2 is specified, it must be described as a
I-character alphanumeric item; that is, with PICTURE X.
The valid values that identifier-2 can contain and their
interpretations are as follows.

blank
o

+
1-8

Single-spacing
Double-spacing
Tr iple-spa"c ing
Suppress spacing
Skip to channels 1 through 8 respectively
on the paper-tape format control loop

Note that LIBOL interprets the values in identifier-2,
substituting the proper positioning characters into the
ASCII file. The character stored in the field named
identifier-2 is not stored in the output file.

b. If integer-l is specified, it must be unsigned, and must
be one of the values 0, 1, 2, or 3. The values have the
following meanings.

o

1
2
3

Skip to channell of next page (carriage
control "eject")
Single-spacing
Double-spacing
Triple-spacing

6. Either ADVANCING or POSITIONING can be specified for a file,
but not both. Also, if either is specified, the recording
mode of the file is ASCII, regardless of the recording mode
specified in the RECORDING MODE clause.

7. Option 3 is valid only for random-access files whose access
mode is RANDOM or INDEXED. The imperative-statement(s) in
the INVALID KEY clause of a RANDOM file is executed when an
attempt is made to execute a WRITE to a segment outside the
range of the FILE-LIMITS of the file.

When a WRITE statement is executed for a file whose access
mode is RANDOM and the ACTUAL KEY contains a value of 0,
records are written sequentially in the file (that is, no
records are left null). If the previous operation performed
on the file was by a READ statement, the previous record is
replaced (that is, the record is updated).

When a WRITE statement is executed for a file whose access
mode is INDEXED, the contents of the SYMBOLIC KEY item are
moved to the RECORD KEY item and the record is written.

The statement(s) in the INVALID KEY clause is executed when
the SYMBOLIC KEY contains a value equal to the key of an
already existing record in an INDEXED file (refer to the
REWRITE statement).

5-115

THE PROCEDURE DIVISION

WRITE (Cont.)

8. When executing a WRITE statement for a SEQUENTIAL file opened
for 1-0 (or INPUT-OUTPUT), the logical record is placed on
the file as the next logical record, if the previous
input-output operation was a WRITE, or it replaces the
previous record, if the previous input-output operation was a
READ.

9. If the FROM option is used, the statement is equivalent to:

MOVE identifier-l TO record-name-l
WRITE record-name-l (without the FROM option)

5-116

CHAPTER 6

COMPILING COBOL-68 PROGRAMS

I

Compiling COBOL-68 programs consists of running the COBOL-68 compiler
and typing the correct command string in response to the prompt. To
run COBOL and compile your program(s), type R COBOL in response to the
TOPS-IO prompt (.) or COBOL in response to the TOPS-20 prompt (@).
That is,

.R COBOL ~ for users of TOPS-IO

or

@COBOL ~ for users of TOPS-20

The general form of the compiler command string is as follows:

relfil,lstfil= libfil/L, srcl, libfil/L, src2, •.•

where:

relfil

lstfil

libfil

srcl,src2

is the file that is to hold the generated code.
If no generated code is desired, the file
description for relfil is replaced by a hyphen.

Example: -,lstfil=srcl,src2 ••.

is the file that is to hold the generated listing.
If no listing is desired, the file description for
lstfil is replaced by a hyphen.

Example: relfil,-=srcl,src2, .••

is an optional library file referenced by COpy
verbs in the source files. For each source file
specified, only one library file opens at once.
Thus, you can specify more than one library for a
source file, but only the last-specified one is
used.

are one or more source files required to form one
complete input program.

Each file description has the following form:

device: file.ext [project,programmer] /switch/switch

where:

device is the name of a physical or logical device.
The name is composed of 6 or fewer letters
and/or digits.

6-1

file

ext

project

programmer

switch

COMPILING COBOL-68 PROGRAMS

is the name of a file. The name is composed
of 6 or fewer letters and/or digits.

is the filename extension. It is composed of
3 or fewer letters and/or digits.

is a user's project number.

is a user's programmer number.

is any of the switches shown in Table 6-1.

Users of TOPS-20 who wish to specify a directory other than the
default can run the TRANSLATE program to determine the correct
project-programmer number. (See the TOPS-20 User's Guide for
information on how to do this.) For an alternative which is generally
more useful, see Appendix C, Defining Logical Names under TOPS-20.

Certain default assignments are made by the compiler whenever terms
are omitted from the command strings or the file descriptions.

1. If the device is omitted in any output file description, DSK
is assumed. If the device is omitted in an input file
description, either the preceding device or DSK (if no
preceding device is specified) is assumed.

2. If the filename for relfil and/or lstfil is omitted, the
filename of the first source file is used.

3. If the filename extension is omitted from relfil, .REL is
assumed; if it is omitted from lstfil, .LST is assumed. If
the extension is omitted from the source file descriptor, the
compiler looks in the file area for the named file with the
extension .CBL. If that file is not found, the compiler
looks for the named file with the extension .COB. If that
file is not found, the compiler looks for the named file
without an extension. If the extension is omitted from the
library file description, .LIB is assumed.

4. If the project-programmer option is omitted on any file, your
default path is used. On TOPS-20, the connected directory is
used.

Examples:

MTA1:RELOUT.A/W,LPT:=DSK:SRCIN.C [27,36]/M/S

The compiler compiles the program found in the file SRCIN.C in the
area reserved for project-programmer [27,36]. It treats columns 1-6
of the source as a sequence number (/S). The generated code is
written on MTAl, after the tape is rewound (/W). The listing,
including maps (/M) is put on the LPT.

=LIBl/L,PROG/A

The compiler compiles the program found in PROG.CBL (CBL is assumed
because the filename extension is omitted from the source file
descriptor) on the disk, using LIBl.LIB whenever a COpy verb is seen
(/L) . The generated code goes into the file DSK:PROG.REL, and the
listing onto the file DSK:PROG.LST. The generated code is listed
(/A) •

6-2

COMPILING COBOL-68 PROGRAMS

-=LIBI/L,PROG/A

This is identical to the preceding example, with the exception that no
generated code is produced because the file descriptor for the file
has been replaced by a hyphen. If you wish to produce the .REL file
but not the .LST file, you should add a comma to the command string,
as follows:

,-=LIBI/L,PROG/A

The following table shows the switches that can be used in compiling
COBOL-68 programs.

Switch

A

C

D:nnnnnn

E

H

I

J

L

M

N

o

P

Q

Table 6-1
COBOL Switch Summary

Action by Compiler

List the MACRO reproduction of the generated
code in the lstfil.

Produce a cross-reference
user-defined symbols.

table of all

Increment, in octal words, that is to be added
to the object-time push down list size.

Check program for errors, but do not generate
code.

Type description of COBOL-68 command strings and
switches.

Suppress output of start address (program is to
be used only by CALLs) .

Force output of start address in spite of the
presence of subprogram syntax.

Use the preceding source file as a library file
whenever a copy verb is encountered. If the
first source file is not a /L file, LIBARY.LIB
is used as the library file until the first /L
file is encountered. (The default extension for
library files is .LIB.)

Include a map of your defined items in the
lstfil.

Do not type compilation errors on your terminal.

Optimize the object code.

Production mode. Omit debugging features from
relfil.

Quick mode. Do not range check PERFORMs, also
turn on /0 and /P.

6-3

Switch

R

S

u

w

x

z

COMPILING COBOL-68 PROGRAMS

Table 6-1 (Cont.)
COBOL Switch Summary

Action by Compiler

Produce a two-segment object program. The high
segment contains the Procedure Division; the
low segment all else.

The source file is in "conventional" format
(with sequence numbers in columns 1-6 and
comments starting in column 73).

Produce a one-segment object program.
the default for TOPS-ID.

This is

Rewind the device before reading or writing
(magnetic tape only).

Give a usage of DISPLAY-9 to items whose usage
is either omitted or declared as DISPLAY.

Zero the directory of the device before writing
(DECtape only).

6-4

CHAPTER 7

COBOL UTILITY PROGRAMS

COBOL provides several utility programs that
certain operations within your COBOL program.
are:

allow you to perform
These utility programs

• ISAM - Indexed-Sequential File Maintenance Program

ISAM provides you with the ability to create and
maintain indexed-sequential files (see section 7.1).

• LIBARY - Source Library Maintenance Program

LIBARY provides you with the facility to create,
modify, and delete statements or groups of statements
in a library file (See Section 7.2).

• COBDDT - Program For Debugging COBOL Programs

COBDDT provides you with the ability to:

1. Look for areas of error by setting breakpoints

2. Trace the activity of procedures

3. Display and, if necessary, change the contents of
data-items

4. Determine time spent in sections of the program
by analyzing a histogram (see Section 7.3)

• RERUN - Program to Restart COBOL Programs

RERUN provides you with the ability to restart a
COBOL program after an abnormal termination has
occurred (See Section 7.4).

7-1

I
I

I

COBOL UTILITY PROGRAMS

NOTE

Many of the examples in this chapter are
written for only one operating system -
that is, they have either the TOPS-IO
prompt (.) or the TOPS-20 prompt (@)
alone. However, unless you are told
otherwise, the examples apply to both
TOPS-IO and TOPS-20. Thus, in this
chapter you can substitute

.R (program name)~
for

@(program name)~

and vice versa.

7.1 ISAM - INDEXED-SEQUENTIAL FILE MAINTENANCE PROGRAM

Indexed-sequential files are created, maintained, and compacted for
backup storage by means of the ISAM program. ISAM performs the
following functions:

1. Builds an indexed-sequential file from a sequential file

2. Maintains an indexed-sequential file by reorganizing it

3. Packs an indexed-sequential file into a sequential file for
backup storage

ISAM has the following switches that you can use to perform these
functions:

A Advance between records according to the mode specified (this
switch can be used only with the P switch)

B Build an indexed file from a sequential one

C Check an indexed file for errors

I Ignore errors in packing a file (this switch can be used only
with the P switch)

L Read or write standard tape labels (this switch can be used
only with the B or P switches)

M Maintain an indexed file by reorganizing it

P Pack an indexed file for backup storage

R Rename an indexed file

S Provide statistics on blocking factors (this switch can be
used only with the B switch)

7-2

COBOL UTILITY PROGRAMS

Figure 7-1 shows the COBOL ISAM File Environment.

(INPUT SEQUENTIAL
DATA FILE)

R ISAM

(BUILD)

~ .-------,

RUN
MYPROG

(USER'S APPLICATION PROGRAM) /

~_ 'ISAM /

~ (PACK)

(OUTPUT SEQUENTIAL
BACKUP FILE)

Figure 7-1 COBOL ISAM File Environment

7.1.1 Building An Indexed-Sequential File

8
t

R ISAM

(MAINTAIN)

To build an indexed-sequential file you provide a sequential file in
which the record keys are arranged in ascending order. The ISAM
program uses this file to create an indexed-sequential data file with
a user-specified number of empty records and blocks. ISAM then
creates the index file according to the description of the data file.

To run the ISAM program and select the option for building the
indexed-sequential file, type the following:

.R ISAM~ for users of TOPS-IO

or

@ISAM~ for users of TOPS-20

*devl:indfil.ext[ppnl] ,dev2:datfil.ext=dev3:seqfil.ext[ppn2]/B~

where:

devl, dev2, and dev3 are the devices for the index, data, and input
sequential file. devl and dev2 must be disk. The default for
devl, dev2, and dev3 is DSK.

indfil.ext is the name and extension of the index file. If the
filename is not specified, the name of the input file is assumed.
If the extension is omitted, .IDX is assumed.

7-3

COBOL UTILITY PROGRAMS

datfil.ext is the name and extension of the indexed data file. If
the filename is omitted, the name of the index file is assumed. If
the extension is omitted, .IDA is assumed.

seqfil.ext is the name and extension of the input sequential file.
This filename must be specified, but the extension can be omitted.
If it is omitted, .SEQ is assumed.

[ppnl], [ppn2] specify directories for the index file and the input
file, respectively. If either is omitted, then the directory of
the logged-in user is assumed. The data file must reside in the
same directory as the index file. Users of TOPS-20 who wish to
specify a directory other than j the default can run the TRANSLATE
program to determine the correct project-programmer number. (See
the TOPS-20 User's Guide for information on how to do this.) For an
alternative which is generally more useful, see Appendix C,
Defining Logical Names under TOPS-20.

/B is the switch signifying that ISAM is used to build an
indexed-sequential file. If the switch is omitted from the command
string, /B is assumed. The equal sign (=) can be omitted if the
specifications for the output files are omitted.

Users can build an indexed file without providing a sequential file to
the ISAM program by specifying that the device on which the
(nonexistent) input sequential file resides is NUL:. Thus, the
following command produces an indexed file:

TSTFIL,TSTFIL=NUL:TSTFIL/B

After reading the command string, ISAM asks a series of questions,
which are described below. Every question must be answered.

Mode of input file:

Reply with S, A, F, V, or ST according to the mode of the input file.
S means SIXBIT, A means ASCII, F means fixed-length EBCDIC, V means
variable-length EBCDIC, and ST means STANDARD-ASCII.

Mode of data file:

Specify S, A, F, or V according to the mode in which the ISAM data
file is to be recorded. S means SIXBIT, A means ASCII, and both F and
V mean EBCDIC, as above. If the mode of the input file differs from
that of the data file, characters are converted in the same manner as
they are converted in standard COBOL operations.

Maximum record size:

Specify the size of the largest record irt the input file in bytes.
For ASCII records you should not count the carriage return and line
feed that are appended to each ASCII record.

Key descriptor:

Describe the key upon which the file is to be indexed. If your
records are of variable length, you must be sure that the key field
occurs in the fixed portion of the record, or that the key field is
filled with characters, in the case of an ASCII text file. If you
fail to fill the key field in the ASCII file, your key field might be
loaded with a carriage return/line feed pair.

7-4

COBOL UTILITY PROGRAMS

In response to the message from ISAM, you describe the key field using
a code that has the form:

[s] [x]m.n

where:

s designates the sign of the key:

S - the key is signed

U - the key is unsigned

x indicates the key type:

x - the key is nonnumeric

N - the key is numeric display

C - the key is COMPUTATIONAL

F - the key is COMPUTATIONAL-l

P - the key is COMPUTATIONAL-3

m specifies the character position in the record where the key
begins, assuming that the position of the first character in
the record is 1.

n specifies the size of the key in characters for types X and N
or in digits for types C and P. If n is less than or equal to
10 for type C, one word is used. If n is greater than 10, two
words are used. n is ignored for type F because it is always
one word long.

The following rules apply to the key descriptor:

1. The key type is optional; if S or U are specified, the
default is N. Otherwise, the default is x.

2. The key sign is optional; the default is S if the key type
is not x.

3. The sign designators S or U cannot be
conjunction with type x.

4. m and n must be specified.

Records per input block:

specified in

Give the blocking factor of the input file. If the file is unblocked
(that is, the file contains ASCII text), enter O.

Total records per data block: (Recommended = n):

Give the total number of records to be contained in each block of the
indexed data file. ISAM supplies .the blocking factor that is most
efficient in terms of disk utilization. If you wish to optimize the
amount of core the object-time system requires to process the file,
you must calculate the blocking factors yourself.

Empty records per data block:

7-5

COBOL UTILITY PROGRAMS

Specify the number of records that are to be initially left empty in
each block of the data file.

Total entries per index block: (Recommended: = n):

Specify the total number of index entries to be contained in each
block of the index file. ISAM supplies the blocking factor that is
most efficient in terms of disk utilization. If you wish to optimize
the amount of core the object-time system requires to process the
file, you must calculate the blocking factors yourself. Usually, a
good blocking factor is a page (or less) of memory, since this allows
the internal swapping algorithms to operate most efficiently.

Empty entries per index block:

Specify the number of index entries that are to be initially left
empty in each index block. Note that at least two entries must be
available in each index block, so that the number of total entries
minus the number of empty entries equals or exceeds two.

Percentage of data file to leave empty:

Give a figure that corresponds to the amount of empty space you wish
ISAM to allocate. This empty space corresponds to completely empty
data blocks, over and above the free space that is allocated on "live"
data blocks. ISAM figures the total number of data blocks required
for the file, then add the number of blocks which equals the given
percentage of the required blocks. This procedure helps to prevent
"DISK FULL" crashes.

Percentage of index file to leave empty:

Give a figure that corresponds to the amount of empty space you wish
ISAM to allocate. ISAM figures the total number of index blocks
required for the file, then add the number of blocks which equals the
given percentage of the required blocks. As with the data file, this
procedure helps to prevent "DISK FULL" crashes.

Maximum number of records file can become:

Reply with the maximum number of records the file can contain before
it is next maintained. Note, however, that your number is used only
for documentation, since ISAM calculates its own number and uses that
number for allocating storage.

At this point,
efficiency of
follows:

ISAM supplies you
your disk usage.

[ISMLOV m Levels of index
[ISMNDR n Data records]

wasted p. words of q.

with some information on the
The form of the information is as

r% wasted space in the Data [ISMWSD
file.]
[ISMLDE
[ISMWSI
[ISMLIE
[ISMIBS
core.]

One logical Data block equals s. physical disk blocks.]
Wasted t. words of u. in the Index file.]
One logical Index block equals v. physical disk blocks.]
LIBOL's I/O buffer will require w. words (x. pages) of

7-6

COBOL UTILITY PROGRAMS

Example - Building an indexed-sequential file

.R ISAM
*TEST.IDX,TEST.IDA=TEST.SEQ/B
Mode of input file: SIXBIT
Mode of data file: SIXBIT
Maximum record size: 240
Key descriptor: X129.29
Records per input block: 10
Total records per Data block: (Recommended: 53): 25
Empty records per Data block:
Total entries per Index block: (Recommended: 18):
Empty entries per Index block:
Percentage of Data file to leave empty:
Percentage of Index file to leave empty:
Maximum number of records file can become: 10000

[ISMLOV 2 Levels of index]
[ISMNDR 500 Data records]

[ISMWSD Wasted 127. words of 1152. 11.0% wasted space in
the Data file.]
[ISMLDE One logical Data block equals 9. physical disk
blocks.]
[ISMWSI Wasted o. words of 128. in the Index file.]
[ISMLIE One logical Index block equals 1. physical disk
blocks.]
[ISMIBS LIBOL's I/O buffer will require 2816. words (6.
pages) of core.]

7-7

COBOL UTILITY PROGRAMS

7.1.2 Maintaining An Indexed-Sequential File

The ISAM program allows you to maintain an existing ISAM file after
the file has become crowded. More empty space can be added to the
file and the number of index levels can be decreased. That is, the
files are rearranged and indexes are streamlined. The input is the
indexed-sequential file and the output is a new indexed-sequential
data and index file. The command string for the ISAM maintain option
is as follows:

.R ISAM~ for users of TOPS-IO

or

@ISAM~ for users of TOPS-20

*devl:indfil.ext[ppnl] ,dev2:datfil.ext=infil.ext[ppn2]/M~

where:

devl, and dev2, are disk devices on which the files are stored.
If any of the devices is omitted, DSK is assumed.

indfil.ext is the name and extension of the new index file. If
the name is omitted, the name of the input file is assumed. If
the extension is omitted, .IDX is assumed.

datfil.ext is the name and extension of the new indexed data
file. If the name is omitted, the name of the new index file is
assumed. If the extension is omitted, .IDA is assumed.

infil.ext is the name and extension of the index file of the old
indexed-sequential file. The name of the file must be specified,
but the extension can be omitted. No extension is assumed if the
extension is omitted.

[ppnl], [ppn2] specify directories for the new index file and the
old index file, respectively. If either is omitted, the
directory of the logged-in user is assumed. The new data file
must reside in the same directory as the new index file. Users
of TOPS-20 who wish to specify a directory other than the default
can run the TRANSLATE program to determine the correct
project-programmer number. (See the TOPS-20 User's Guide for
information on how' to do this.) For an alternative that is
generally more useful, see Appendix C, Defining Logical Names
under TOPS-20.

1M is the switch indicating that the maintain option is being
requested. The switch must be specified.

If the output file specifications are not included in the command
string, the equal sign (=) can be omitted.

After the command string has been scanned, ISAM asks a series of
questions about values for the new indexed-sequential file. The mode
of the file, the record size, and the key cannot be changed. The
values from the old file are given in parentheses with the question.
If you wish to change a value, enter the new value; if you do not
wish to change a value, press the RETURN key. All questions refer to
the output file.

7-8

COBOL UTILITY PROGRAMS

Total records per data block (n):

Specify the total number of records to be contained in each block of
the data file.

Empty records per data block (n):

Give the number of data records that are to be initially left empty in
each data block.

Total entries per index block (n):

Give the total number of index entries to be contained in each block
of the index file. Usually, a good blocking factor is a page (or
less) of memory, since this allows the internal swapping algorithms to
operate most efficiently.

Empty entries per index block (n):

Specify the number of index entries that are to be initially left
empty in each index block.

Percentage of data file to leave empty (n):

Give, as a percentage of the total number of blocks, the number of
blocks to be initially left empty in the data file. ISAM figures the
total number of data blocks required for the file, then add the number
of blocks which equals the given percentage fo the required blocks.
This procedure helps to prevent "DISK FULL" crashes.

Percentage of index file to leave empty (n):

Give, as a percentage of the total number of blocks, the number of
blocks to be initially left empty in the index file. ISAM uses the
procedure described above to figure the amount of space to allocate,
thus, helping to prevent "DISK FULL" crashes.

Maximum number of record files can become (n):

Specify the maximum number of records that can be contained in the
file. This number sets the upper limit on the size of the data file.
It is required because storage allocation tables must be set up when
the file is created, and ISAM must figure the number of index levels
required to handle the specified number of data records.

At this point, ISAM supplies you with some information on the
efficiency of your disk usage. The form of the information is the
same as that used in building an indexed-sequential file.

7-9

COBOL UTILITY PROGRAMS

Example - Maintaining an indexed-sequential file

@ISAM~

*=CALNDR/M
Total records per Data block (64):
Empty records per data block (4):
Total entries per Index block (159):
Empty entries per index block (10):
Percentage of Data file to leave empty (0):
Percentage of Index file to leave empty (0):
Maximum number of records file can become (1000):

[ISMLOV 1 Level of index]
[ISMNDR 1 Data record]

[ISMWSD Wasted O. words of 1408. in the Data file.]
[ISMLDE One logical Data block equals 11. physical disk blocks.]
[ISMWSI Wasted 2. words of 640. 0.3% wasted space in the Index
file.]
[ISMLIE One logical Index block equals 5. physical disk blocks.]
[ISMIBS LIBOL's I/O buffer will require 3712. words (8. Pages) of
core.]

*

7-10

COBOL UTILITY PROGRAMS

7.1.3 Packing An Indexed-Sequential File

Packing an indexed-sequential file is the reverse,of building one. An
indexed-sequential file is copied into a sequential file in the order
specified by the index. This option is used primarily to compact an
indexed-sequential file for backup storage, although the resulting
sequential file can be treated as any other sequential file. You
should always use ISAM to back up yo.ur indexed-sequential files. You
can pack the files to tape, then rebuild on disk, or you can maintain
the file before packing and copying it to tape (or other backup
medium). In either case, you have cleaned up the file you are saving
for backup and streamlined the actual master file as well. The
command string for the packing option of ISAM is as follows:

.R ISAM~ for users of TOPS-IO

or

@ISAM~ for users of TOPS-20

*devl:seqfil.ext[ppnl]=dev2:indfil.ext[ppn2] Ip~

where:

devl and dev2 are the devices on which the sequential file is to
be stored and the index file resides, respectively. The input
file must be on disk. If neither device is specified, DSK is
assumed.

seqfil.ext is the name and extension of the output sequential
file. If the name is omitted, the name of the input file is
assumed. If the extension is omitted, .SEQ is assumed.

indfil.ext is the name and extension of the index file of the
indexed-sequential file. The name must be specified, but the
extension can be omitted. If the extension is omitted, no
extension is assumed.

[ppnl] [ppn2] are directories for the new sequential file and the
old index file, respectively. If either is omitted, the
directory of the logged-in user is assumed. Users of TOPS-20 who
wish to specify a directory other than the default can run the
TRANSLATE program to determine the correct project-programmer
number. (See the TOPS-20- User's Guide for information on how to
do this.) For an alternative that is generally more useful, see
Appendix C, Defining Logical Names under TOPS-20.

IP is the switch signifying that the packing option is being
requested. It must be included.

If the output file specification is omitted, the equal sign (=) can be
omitted.

After the command string has been processed, ISAM asks the following
questions.

Mode of output file:

Specify SIXBIT (or S), ASCII (or A), F, V, or ST according to the mode
in which the sequential file is to be recorded. V is variable-length
EBCDIC, and F is fixed-length EBCDIC, and ST is STANDARD-ASCII.

Records per output block:

7-11

COBOL UTILITY PROGRAMS

Give the blocking factor that you want for the sequential file (i.e.,
the number of records per logical block). If the file is to be
unblocked, you answer O.

Example - Packing an indexed-sequential file

.R ISAM
*MTA2:TEST.SEQ=TEST.IDX/P
Mode of output file: SIXBIT
Records per output block: 0

If you are packing the data from the indexed file into a sequential
ASCII file, you can specify the advancing mode you want to be used
with the IA switch (lAD and IADV are also legal). The format of the
command string to use with the IA switch is as follows:

sequential-file/A:mode=index-file/P

The arguments the IA switch takes are:

Mode Meaning

6 [8] use COBOL-68 default (BEFORE)
7 [4] use COBOL-74 default (AFTER)
A [FTER] use COBOL-74 default
B[EFORE] use COBOL-68 default

If you do not specify the advancing mode when you pack an ASCII file,
your file is written using the COBOL-68 default, which is BEFORE
ADVANCING.

7.1.4 Ignoring Errors

When packing an indexed-sequential file into a sequential file, you
can include the II switch in the command string to force ISAM to
ignore certain fatal errors. This switch causes ISAM to try to
recover as much data as possible from a damaged indexed-sequential
file.

Including the II switch in the command string to ISAM causes the
program to make nonfatal those errors that concern duplicate keys or
keys out of order. The messages for these errors are preceded by a
percent sign (%) rather than a question mark (?) so that ISAM
continues the packing operation. The II switch can be used only with
the Ip switch. It cannot be used alone.

The command string to use with the II and Ip switches is as follows:

.R ISAM~ for users of TOPS-IO

or

@ISAM~ for users of TOPS-20

*devl:seqfil.ext[ppnl]=dev2:indfil.ext[ppn2]/P/I~

where:

devl and dev2 are the devices on which the sequential and index
files reside, respectively. The input file must be on disk. If
neither device is specified, DSK is assumed.

7-12

COBOL UTILITY PROGRAMS

segfil.ext is the name and extension of the output sequential
file. If the name is omitted, the name of the input file is
assumed. If the extension is o~itted, .SEQ is assumed.

indfil.ext is the name and extension of. the index file of the
indexed-sequential file. The name must be specified, but the
extension can be omitted. If the extension is omitted, no
extension is assumed.

[ppnIJ, [ppn2J are directories for the new sequential file and
the old index file, respectively. If either is omitted, the
directory of the logged-in user is assumed. Users of TOPS-20 who
wish to specify a directory other than the default can run the
TRANSLATE program to determine the correct project-programmer
number. (See the TOPS-20 User's Guide for information on how to
do this.) For an alternative that is generally more useful, see
Appendix C, Defining L6gical Names under TOPS-20.

IP is the switch signifying that the packing option is being
requested. It must be included.

II is the switch signifying that some fatal errors are to be
ignored. It can be included only with the IP switch.

The equal sign (=) can be omitted if
specification is omitted.

7.1.5 Reading And Writing Magnetic Tape Labels

the output file

When you are building or packing an indexed-sequential file, you can
include the IL switch to cause ISAM to read or write labels on
magnetic tape. The IL switch, when used with the IB switch, causes
ISAM to read COBOL standard tape labels on the input magnetic tape.
When used with the IP switch, the IL switch causes ISAM to write
standard tape labels on the output magnetic tape. The IL switch can
only be used on magnetic tape files whose recording mode is not F or
V.

NOTE

The tape labels handled by ISAM are
COBOL tape labels, not ANSI labels.
COBOL labels are processed by the
object-time system, not the operating
system.

The command string when using the IL switch with the IB switch is as
follows:

.R ISAM~ for users of TOPS-IO

or

@ISAM~ for users of TOPS-20

*devl:indfil.ext[ppnJ ,dev2:datfil.ext=MTAn:seqfil.ext/B/L~

7-13

COBOL UTILITY PROGRAMS

where:

devl, dev2, and MTAn are the devices for the index, data, and
input sequential file. devl and dev2 must be disk devices. The
default disk for devl and dev2 is DSK.

indfil.ext is the name and extension of the index file. If the
filename is not specified, the name of the input file is assumed.
If the extension is omitted, .IDX is assumed.

datfil.ext is the name and extension of the indexed data file.
If the filename is omitted, the name of the index file is
assumed. If the extension is omitted, .IDA is assumed.

seqfil.ext is the name and extension of the input sequential
file. This filename must be specified, but the extension can be
omitted. If it is omitted, .SEQ is assumed.

[ppn] specifies the directory for the index file. If it is
omitted, the directory of the logged-in user is assumed. The
data file must reside in the same directory as the index file.
Users of TOPS-20 who wish to specify a directory other than the
default can run the TRANSLATE program to determine the correct
project-programmer number. (See the TOPS-20 User's Guide for
information on how to do this.) For an alternative that is
generally more useful, see Appendix C, Defining Logical Names
under TOPS-20.

18 is the switch signifying that
indexed-sequential file. If the
command string, 18 is assumed.

ISAM is
switch

used to build an
is omitted from the

IL is the switch signifying that ISAM reads standard tape labels.
It must be included.

The equal sign (=) can be omitted if the file specifications for the
output files are also omitted.

The command string when using the IL switch with the IP switch is as
follows:

.R ISAM~ for users of TOPS-10

or

@ISAM~ for users of TOPS-20

*MTAn:seqfil.ext=devl:indfil.ext[ppn]/P/L~

7-14

COBOL UTILITY PROGRAMS

where:

MTAn: and devl are the devices on which the sequential file is
to be stored and the index file resides, respectively. The input
file must be on disk. If the name of devl is not specified, DSK
is assumed.

seqfil.ext is the name and ext~nsion of the output sequential
file. The name and extension can both be omitted because
filenames are not used on magnetic tape.

indfil.ext is the name and extension of the index file of the
indexed-sequential file. The name must be specified, but the
extension can be omitted. If the extension is omitted, no
extension is assumed.

[ppn] is a directory for the old index file. If it is omitted,
the directory of the logged-in user is assumed. Users of TOPS-20
who wish to specify a directory other than the default can run
the TRANSLATE program to determine the correct project-programmer
number. (See the TOPS-20 User's Guide for information on how to
do this.) For an alternative that is generally more useful, see
Appendix C, Defining Logical Names under TOPS-20.

/p is the switch signifying that the packing option is being
requested. It must be included.

/L is the switch signifying that ISAM writes standard tape
labels. It must be included.

7.1.6 Renaming An Indexed-Sequential File

Since indexed-sequential files actually consist of two different
files, you cannot rename a particular ISAM file with a single
monitor-level command. To allow you to rename ISAM files with greater
ease, the ISAM program has the /R switch. The form of the command
string you must supply to ISAM is as follows:

.R ISAM~ for users of TOPS-IO

or

@ISAM~ for users of TOPS-20

*devl:indfil.ext[ppnl] ,dev2:datfil.ext=infil.ext[ppn2]/R~

where:

devl, and dev2, are disk devices on which the files are stored.
If any of the devices is omitted, DSK is assumed.

indfil.ext is the name and extension of the new index file. If
the name is omitted, the name of the input file is assumed. If
the extension is omitted, .IDX is assumed.

datfil.ext is the name and extension of the new indexed data
file. If the name is omitted, the name of the new index file is
assumed. If the extension is omitted, .IDA is assumed.

7-15

COBOL UTILITY PROGRAMS

infil.ext is the name and extension of the index file of the old
indexed-sequential file. The name of the file must be specified,
but the extension can be omitted. No extension is assumed if the
extension is omitted.

[ppnl], [ppn2] specify directories for the new index file and the
old index file, respectively. If either is omitted, the
directory of the logged-in user is assumed. The new data file
must reside in the same directory as the new index file. Users
of TOPS-20 who wish to specify a directory other than the default
can run the TRANSLATE program to determine the correct
project-programmer number. (See the TOPS-20 User's Guide for
information on how to do this.) For an alternative that is
generally more useful, see Appendix C, Defining Logical Names
under TOPS-20.

IR is the switch indicating that the file is to be renamed. The
switch must be specified.

The equal sign (=) can be omitted if the output file specification is
omitted.

Example - Renaming an indexed-sequential file

@DIRECTORY CALNDR

PS:<DUPREE)
CALNDR.IDA.l

.IDX.l

Total of 7 pages in 2 files
@ISAM
*CLDR=CALNDR/R

*C
@DIRECTORY CLDR

PS:<DUPREE)
CLDR.IDA.l

.IDX.l

Total of 7 pages in 2 files
@

7.1.7 Checking An Indexed-Sequential File

The ISAM program can check the format of an indexed-sequential file to
make sure there are no detectable errors. This includes duplicate
keys, bad key ordering, version number discrepancies, and record
length discrepancies.

When you use the IC switch, ISAM reads the entire file, printing error
messages when it encounters errors as it does when you use the II
switch. That is, the messages are printed as warnings rather than
fatal errors; the prefix character for these messages is % instead of
? Since ISAM does not produce an output file, you need not specify
an output file specification. The command string you should use to
get ISAM to check your indexed-sequential file is as follows:

7-16

COBOL UTILITY PROGRAMS

.R ISAM~ for users of TOPS-IO

or

@ISAM~ for users of TOPS-20

*idxfil/C

Example

*CALNDR/C

%ISMKOO keys are out .of order
00000009
is after
00000010
Data block 7. version number 21.

*

7.1.8 Producing Blocking Data With ISAM

The ISAM program can help you to build indexed-sequential files more
efficiently when you use the /S switch to produce blocking factors and
statistics. ISAM cannot make the decision of the best blocking factor
for you, because you must balance the best blocking factor in terms of
disk space against the amount of main memory the file needs to be
processed. But ISAM can help you by doing most of the simple
calculations. The statistics ISAM can calculate include:

• Percentage of wasted space in the file for each blocking
factor

• Number of physical blocks in each logical block for each
blocking factor

• Size of logical block in core words for each blocking factor

Example - Producing Blocking Data

@ISAM
*=CALNDR/B/S
Mode of input file: A
Mode of data file: A
Maximum record size: 102
Key descriptor: 1.8
Records per input block: 0
Total records per Data block:

Records Disk Wasted
/block Blocks space

5 1 14.1%
11 2 5.5%
17 3 2.6%
23 4 1.2%
29 5 0.3%
34 6 2.6%
40 7 1.8%
46 8 1.2%
52 9 0.7%
58 10 0.3%
64 11 0.0%

Core
(wds)
128
256
384
512
640
768
896
1024
1152
1280
1408

7-17

COBOL UTILITY PROGRAMS

(Recommended = 64):
Empty records per data block: 4
Total entries per Index block:

Records Disk Wasted
/block Blocks space

31 1 1.6%
63 2 0.8%
95 3 0.5%
127 4 0.4%
159 5 0.3%

(Recommended 159) :

Core
(wds)
128
256
384
512
640

Empty entries per index block: 10
Percentage of Data file to leave empty: 10
Percentage of Index file to leave empty: 10
Maximum number of records file can become: 1000

[ISMLOV
[ISMNDR

[ISMWSD
[ISMLDE
blocks.]
[ISMWSI
Index file.]
[ISMLIE
blocks.]

1 Level of index
4 Data records]

wasted O. words of 1408. in the Data file.]
One logical Data block equals 11. physical disk

Wasted 2. words of 640. 0.3% wasted space in the

One logical Index block equals 5. physical disk

[ISMIBS LIBOL's I/O buffer will require 3712. words (8.
Pages) of core.]

*~C

@

7.1.9 Indirect Commands

The ISAM program accepts command strings and dialogue responses from
indirect command files.

The command string to direct ISAM to read an indirect command file is:

.R ISAM~ for users of TOPS-IO

or

@ISAM~ for users of TOPS-20

*@dev:cmdfil.ext[ppn]~

where:

@ indicates that this is an indirect command file.

dev is the device on which the command file is stored. If it is
omitted, DSK is assumed.

cmdfil.ext is the name and extension of the command file. The
name must be specified. If you omit the extension, .CMD is
assumed.

7-18

COBOL UTILITY PROGRAMS

[ppn] is the directory in which the command file is stored. If
it is omitted, the directory of the logged-in user is assumed.
Users of TOPS-20 who wish to specify a directory other than the
default can run the TRANSLATE program to determine the correct
project-programmer number. (See the TOPS-20 User's Guide for
information on how to do this.) For an alternative that is
generally more useful, see Appendi~ C, Defining Logical Names
under TOPS-20.

After ISAM reads the c~mmand string, it reads the command file and
performs the processlng specified within it. The command file must
contain the complete command string and all dialogue responses for a
single ISAM operation exactly as they would be typed if you were
giving them directly to the ISAM program. Nothing else can be present
in the command file.

7.1.10 Using Indexed-Sequential Files

Indexed-sequential files can be read and written, and individual
records within them can be rewritten or deleted. You can perform any
actions on the records in an indexed-sequential file by specifying the
desired record key in the RECORD KEY field. Remember that COBOL-68
supports single-key ISAM files only. To use an indexed-sequential
file, the following statements are employed:

ENVIRONMENT DIVISION.
INPUT-OUTPUT SECTION.
FILE-CONTROL.

1. SELECT ISAM-FILE ASSIGN TO DSK
2. ACCESS MODE IS INDEXED
3. SYMBOLIC KEY IS ISAM-SYM-KEY
4. RECORD KEY IS ISAM-RECORD-KEY.

DATA DIVISION.
FILE SECTION.
FD ISAM-FILE

5. BLOCK CONTAINS 13 RECORDS
6. VALUE OF IDENTIFICATION IS .. ISAMFLIDX" .

01 ISAM-RECORD.
02 FILLER PIC X(12).

4. 02 ISAM-RECORD-KEY PIC X(3).
02 FILLER PIC X(75).

WORKING-STORAGE SECTION.
3. 01 ISAM-SYM-KEY PIC S(3).

PROCEDURE DIVISION.
BEGIN.

OPEN INPUT-OUTPUT ISAM-FILE.

7. READ ISAM-FILE, INVALID KEY GO TO ERRPROC.

8. WRITE ISAM-RECORD, INVALID KEY GO TO ERRPROC.

9. DELETE ISAM-RECORD, INVALID KEY GO TO ERRPROC.

7-19

COBOL UTILITY PROGRAMS

10. REWRITE ISAM-RECORD, INVALID KEY GO TO ERRPROC.

MOVE LOW-VALUES TO ISAM-SYM-KEY.
11. READ ISAM-FILE, INVALID KEY GO TO ENDFILE.

The notes in the following list are keyed to the numbers to the left
of the lines in the preceding program.

1. The indexed-sequential file must reside on disk.

2. The ACCESS MODE clause is required if you wish to access the
file in random fashion, since the ACCESS MODE defaults to
sequential.

3. The SYMBOLIC KEY clause is required in the Environment
Division and the data item named must be defined in the
Working-Storage Section of the Data Division. The SYMBOLIC
KEY and the RECORD KEY must have the same size and usage, but
they do not need to have the same level number, and the fact
that one of them is a group item does not mean that the other
must also be a group item.

4. The RECORD KEY clause is required in the Environment
Division. It refers to the data-item designated as the
record key which appears in the Data Division within the FD.

5. An indexed-sequential file must be blocked.

6. The VALUE OF IDENTIFICATION clause is required. It
designates the filename and extension of the index file
rather than that of the data file. The name of the related
data file is stored within the index file. The VALUE OF
IDENTIFICATION must be specified because the name of the file
must be present at initialization time so that the buffer and
storage space can be allocated.

7. The READ statement reads the indexed-sequential file to find
the record whose key as written on the file matches the
record key. If no match is found, the INVALID KEY path is
taken.

8. The WRITE statement writes the record that has a key that
matches the record key. If the record whose key matches the
record key is already in the file, the INVALID KEY path is
taken.

9. The DELETE statement causes a search to be made of the file
to find the record whose key matches the record key. When
the record is found, it is deleted. If the record is not
found, the INVALID KEY path is taken.

10. The REWRITE statement causes searching of the file to find
the record whose key matches the record key. When the record
is found, it is replaced with the contents of the record
specified in the REWRITE statement. If the record is not
found in the file, the INVALID KEY path is taken.

7-20

COBOL UTILITY PROGRAMS

11. This shows the method used to read an indexed-sequential file
sequentially. First, LOW-VALUES is moved to the SYMBOLIC
KEY. Then a READ is issued, which causes the record
following the last record accessed to be read. Thus, if the
first I/O operation you execute is a READ with LOW-VALUES in
the SYMBOLIC KEY, you read the first record in the file. You
could then proceed to issue more READs and you would be
reading the indexed file sequentially. This procedure works
with all I/O verbs, not just with READ.

7.2 LI'BARY - PROGRAM TO CREATE AND MAINTAIN SOURCE LIBRARIES

LIBARY provides a facility for creating or maintaining COBOL library
files on disk or DECtape (TOPS-IO only). Library files contain COBOL
source-language text organized into statement groups. Specifically,
the LIBARY program has the capability of adding source-language text
to the library file, replacing and/or deleting statement groups, and
providing a listing of the file. It allows you to specify those data
descriptions or procedures used in many programs and to place them in
a common file for use by the COBOL compiler. The statement groups in
the library file are included in a COBOL program through the use of
the COpy verb. (See Section 1.4.1 for information on the COpy
statement.)

7.2.1 Library File Format

A library file is a collection of COBOL source-language statement
groups, each identified by a unique 1- to 8-character
library-entry-name. The library file must be on a directory device.
Each statement group is a set of ordinary COBOL language statements
conforming to the use of the COpy verb. The statement groups are kept
in alphabetic order according to their library names. The maximum
number of statement groups that can appear in a library is 3869.

The library file is in a
LIBARY and the COBOL
yourself with the format
them as ASCII text;
automatically.

binary format that is recognizable only by
compiler. You, however, need not concern
of the actual entries in the file. You enter
LIBARY stores them in the appropriate format

7.2.2 Invoking The Library Utility

To invoke the library utility program, enter R LIBARY in response to
the TOPS-IO prompt (.) or LIBARY in response to the TOPS-20 prompt
(@). That is:

.R LIBARY~ for users of TOPS-IO

or

@LIBARY~ for users of TOPS-20

7-21

COBOL UTILITY PROGRAMS

When LIBARY is ready to process commands, it issues an asterisk
prompting character and waits for you to enter a file specification
command line. The file specification command line identifies the
library files being either created or used as input. It also
identifies the listing file if a listing is required. The file
specification command line has the following general format:

*output-library,listing=input-library~

where:

output-library

listing

input-library

is the file specification for the library file
being generated.

is the file specification for the file that is
to receive the output listing (See Figure 10-1,
Sample LIBARY listing.)

is the file specification for the library file
being used as input.

Each file specification has the following format:

dev:filename.ext[ppn]/sw

where:

dev:

filename

.ext

[ppn]

/sw

is the logical device name for the unit on which
the desired file is mounted. The default
assignment is DSK:.

is the name of the file consisting of from one
to six SIXBIT characters. Filename must be
specified for at least one library file.

is the filename extension consisting of a period
followed by zero to three characters. It is
used to indicate the type of information in the
file.

is the directory area in which the file is
stored. The directory specification, enclosed
in brackets, contains the project-programmer
number of the file's owner. Users of TOPS-20
who wish to specify a directory other than the
default can run the TRANSLATE program to
determine the correct project-programmer number.
(See the TOPS-20 User's Guide for information on
how to do this.) For an alternative which is
generally more useful, see Appendix C, Defining
Logical Names under TOPS-20.

is one ASCII character preceded
specifying a LIBARY switch option.
7.2.4, LIBARY Switches.)

7-22

by a slash
(See Section

COBOL UTILITY PROGRAMS

There are three main forms to the LIBARY command string. One form
allows you to read an existing library and make changes, additions,
deletions, and extractions as you wish. The second form simply
produces a listing of the contents of the exiting library. The third
allows you to create a new library by typing in the text with which
you wish to load it.

To make changes, additions, and so on, to your existing library, you
use the following command form (note that the listing file contains
only the changes to your existing library, not a listing of the entire
library) :

*output-library,listing-file=input-library~

If you wish to produce a listing of your input library but do not wish
to make any changes to the library, use the following form:

*listing-file=input-library/L~

To create a new library by typing in text, use the following form of
the command:

*output-library,listing-file=~

After you have invoked LIBARY and given it a file specification
command line, it automatically creates a scratch file to contain the
output file generated by the LIBARY run. When you are through working
on your library file and enter the END command (See Section 7.2.6.2,
LIBARY Directing Commands), LIBARY renames the scratch file with the
proper output name (after any necessary renaming of the input file).

If an error occurs causing the execution of LIBARY to be aborted, the
input file, if specified, is unchanged and the scratch file is
deleted. If the error occurred after the input file has been renamed,
the original input file has an extension of .BAK.

7.2.3 Command String Defaults

The following default values are assumed by LIBARY if any part of any
file specification is omitted:

1. If any device is not specified, DSK is assumed.

2. If the file specification for the listing file is omitted, no
listing is produced.

3. If the name of the listing file is omitted, the name of the
input file is assumed.

4. If the extension of the listing file is omitted, .LST is
assumed.

5. If the file specification for the output file is omitted, it
is assumed that there is no output file to be produced.

7-23

COBOL UTILITY PROGRAMS

NOTE

If you are omitting the output file because you want
to run LIBARY to obtain a listing only, the listing
file specification, the input file specification, and
the /L switch must be specified.

6. If the name of the output file is omitted, the name of the
input file is assumed. In this case (as well as when you
specify that the output file is to be named the same as the
input file), the input file is written out with the extension
.BAK.

7. If the extension of the output file is omitted, .LIB is
assumed.

8. If the file specification of the input file is omitted, it is
assumed that there is no input file and that a library is
being created. Thus, only commands for insertion can be
used.

9. The filename for the input file cannot be omitted if the file
specification is present.

10. If the extension of the input file is omitted, .LIB is
assumed.

11. If any project-programmer number is omitted, it is assumed to
be that of the logged-in user. Users of TOPS-20 who wish to
specify a directory other than the default can run the
TRANSLATE program to determine the correct project-programmer
number. (See the TOPS-20 User's Guide for information on how
to do this.) For an alternative which is generally more
useful, see Appendix C, Defining Logical Names under TOPS-20.

12. If the input and output files have the same name and
extension, and are both on disk, the extension of the input
file is changed to .BAK at the completion of the operation.

7.2.4 LIBARY Switches

The following switches can be included in the command string to
LIBARY:

/D List on your terminal all of the
contained on the input library file.

library-entry-names

/H List on your terminal all of the commands available with
LIBARY.

/L Create only a listing file of the entire input library. The
output file specification must be omitted.

/S Put the input statement group into standard card format.

/w Rewind (for magnetic tape only).

7-24

COBOL UTILITY PROGRAMS

/Z Clear an output directory (for DEC tape only).

7.2.5 Running LIBARY

Running LIBARY consists of specifying commands in response to the
LIBARY asterisk prompting character (*). LIBARY provides you with the
means to optionally create new library files and insert or delete
statement groups into an existing file. Each command causes LIBARY to
move forward in the file. Because LIBARY cannot move backward in the
file, you should plan your interaction with LIBARY so that you create
or modify your files in alphabetical order by statement group. This
keeps you from having to restart LIBARY and reprocess your file.
Thus, if you have a library entry that is called CLDESC and another
called FLSTAT, you should be sure to deal with CLDESC first and do
everything you wish to accomplish at once, if possible, before going
on to FLSTAT.

7.2.6 LIBARY Commands

The following sections describe the commands available with LIBARY.
LIBARY commands are divided into two classes of commands:

• Group mode

• LIBARY directing

(See Section 7.2.6.1)

(See Section 7.2.6.2)

These commands can be abbreviated as long as you supply a unique
abbreviation.

NOTE

For the remainder of this chapter, the
words "line number" refer to the line
numbers generated by a system standard
editor (such as SOS or EDIT); the words
"COBOL line number" refer to the
conventional line numbers as described
in Section 1.3, Source Program Format.

7.2.6.1 Group Mode Commands - Group mode commands allow you to
insert, replace, extract, and delete entire statement groups. The
group mode commands are:

DELETE library-entry-name

Delete the statement group identified by library-entry-name from
the library file. The library-entry-name itself is also deleted.
LIBARY moves forward through the input library file. It copies
each statement it finds onto the output file until it encounters
the library entry specified by library-entry-name. When
library-entry-name is reached, LIBARY positions itself at the
next sequential library entry and waits for another command.

7-25

COBOL UTILITY PROGRAMS

EXTRACT library-entry-narne,file-specification

Extract the complete library entry specified by
library-entry-name from the input library file and generate a new
file named filename. LIBARY searches the input library file for
the library entry specified by library-entry-name. When
library-entry-name is found, it creates a file or overwrites an
existing file with the attributes specified by filename and
copies the library entry onto it. The input library file remains
unchanged.

INSERT library-entry-narne,file-specification

Insert the statement group contained on the file specified by
filename into the output library file. The statement group is
inserted alphabetically according to the name specified by
library-entry-name. The file specified by filename must be an
ASCII file. LIBARY assumes that the entire file is to be
inserted under library-entry-name. If you want to insert many
entries, you must create a separate file for each and execute a
separate INSERT command for each. If there are line numbers in
the file, they are included when the file is merged. If there
are no line numbers, LIBARY generates them starting with 10 and
incrementing by 10. If the library entry being inserted contains
COBOL line numbers, the /S swi tch must be specified. (See
Section 7.2.4, LIBARY Switches.)

REPLACE Iibrary-entry-name, file-specification

Replace the library entry identified by library-entry-name with
the statement group contained on the file specified by filename.
The file specified by filename must be an ASCII file. LIBARY
assumes that the entire file is to replace the statements
currently associated with library-entry-name. If you want to
replace many library entries, you must create a separate file for
each, and execute a separate REPLACE command for each. If there
are line numbers in the file, they are included. If there are no
line numbers, LIBARY generates them starting with 10 and
incrementing by 10. The /S switch must be specified for files
having COBOL line numbers. (See Section 7.2.4, LIBARY Switches.)

7.2.6.2 LIBRARY-Directing Commands - LIBRARY-directing commands allow
you to end or restart library processing. The LIBARY-directing
commands are:

END

Copy any remaining statement groups from the input to the output
file, close both the input and output files, and rename the input
file with the extension .BAK, if necessary.

NOTE

If you neglect to use the END command and attempt to
leave LIBARY by hitting CTRL/C, you abort your LIBARY
session, and your output library and listing file is not
written out.

7-26

COBOL UTILITY PROGRAMS

RESTART

Copy any remalnlng statement groups from the input to the output
files, close both the inputl and output files, rename the input
file with the extension .BAK, 'and, reopen the output file as the
new input. Any changes made p~ior to issuing the RESTART command
are in the new input file.

7.2.6.3 Example of Command Usage - The following example shows the
use of LIBARY commands. Suppose a library on disk contains the
routines PAYCOMP, FIND-MP, and MP-DESCR, and you wish to do the
following:

1. Insert a new routine called JOB-DESC

2. Correct MP-DESCR

3. Delete PAYCOMP

These ,tasks must be undertaken in this order because LIBARY deals with
code units in alphabetic order only. The MP-DESCR routine contains
the following source statements:

000010
000020

LABEL RECORDS ARE OMITTED
DATA RECORD IS MP-RECORD.

The dialogue at the terminal might appear as follows:

.R LIBARY
*LIBARY.NEW=LIBARY.OLD
*INSERT JOB-DESC, JOBDES.TXT
*REPLACE MP-DESCR, MPDESC.TXT
*DELETE PAYCOMP
*END

The file LIBARY.NEW now contains the following:

1. FIND-MP

2. JOB-DESC

3. MP-DESCR

To insert one or more files in a library, you can issue the following
commands to LIBARY •

. R LIBARY
*ALIB,ALIB=
*INSERT AFIL,AFIL
*INSERT BFIL,BFIL
*END

7-27

COBOL UTILITY PROGRAMS

The file ALIB.LIB contains two statement groups (AFIL and BFIL) and
the file ALIB.LST contains the following information.

A F I L COBOL LIBRARY 01-DEC-78 09:52

000010 DISPLAY "A".

B F I L COBOL LIBRARY 01-DEC-78 09:52

000010 DISPLAY "B".

7.3 COBDDT - PROGRAM FOR DEBUGGING COBOL PROGRAMS

COBDDT is an interactive program that is used to debug COBOL programs
at run-time. with COBDDT, you can:

1. Change the contents of a data-name

2. Set up to 20 breakpoints in a program

3. Continue from a breakpoint to any other breakpoint

4. Display the contents of a data-name

5. Trace paragraphs and sections

6. Obtain a histogram of paragraphs executed to show program
behavior

7. Interrupt a running program

7.3.1 Loading And Starting COBDDT

To run COBDDT, you must first compile the source program.
load and start the compiled program with COBDDT.

NOTE

Using the IP switch with the COMPILE
command suppresses your symbols that are
used by COBDDT. Therefore, you must not
use the IP switch when compiling your
program, if you wish to use COBDDT.
However, it is possible to load some
programs compiled with the IP switch
with some compiled without the Ip
switch, though those compiled with the
IP switch cannot be debugged.

You then

You can load the compiled source program
command LOAD or direct commands to LINK.
your symbols along with the program.

with either the monitor
In both cases, LINK loads

7-28

COBOL UTILITY PROGRAMS

After loading the compiled source program, you issue the monitor
command START to start the program. You can also issue the monitor
command DEBUG to load and start COB DDT with your COBOL program. If
you use the DEBUG command, you can specify the file to be debugged by
any of the following: the name of the source file, the name of the
binary relocatable file, or merely the name of the file without the
extension. However, if the extension of the source file is something
other than .CBL, you must use the /COBOL switch with the DEBUG
command. Otherwise the file is not recognized as a COBOL file. When
you load COBDDT with your program, only COBDDT is started; the
program itself is not started.

The three methods of loading and starting are shown below. Although
all system prompts shown are for TOPS-IO, you can use the same syntax
on TOPS-20. If you are using TOPS-20, you do not have to specify the
/"LOCALS" switch, as TOPS-20 loads local symbols by default.

1. .LOAD %"LOCALS" file spec, SYS:COBDDT
. START

2. .DEBUG file spec [/COBOL]

3. .R LINK
*/LOCALS file spec, SYS:COBDDT /GO
• START

NOTE

On TOPS-20, you do not need to
load local symbols as this
default mode.

specify
is the

When the program is started with the START command, COBDDT is entered.
This is shown by the message:

[Starting COBOL DDT]
COBDDT>

You can now issue any COBDDT command (described below). Users of
TOPS-20 can get a list of the available commands by typing a question
mark. The TOPS-20 version of COBDDT also allows you to use
recognition on the commands. If you want to run your program at this
time, enter the PROCEED command. This causes your program to run to
completion or until a fatal error is encountered. If an error is
encountered that would normally cause abortion of execution, COBDDT is
entered automatically and the message:

?ENTERING COBDDT from: <paragraph-name>

gives the name of the paragraph in which the error occurred. COBDDT
can then be used to check data values at the time of the failure. The
program cannot proceed after COBDDT has been entered due to an error.

If the COBOL program is in a loop and is not reaching a breakpoint,
you can enter COBDDT by typing CTRL/C two times followed by typing the
REENTER command. For example:

"c"c
REENTER

7-29

I

COBOL UTILITY PROGRAMS

This causes COBDDT to display the following message:

Do you want to enter COBDDT (Y or N)

If you enter Y, the execution of the object program is resumed where
it was interrupted and COBDDT is entered at the next TRACE entry in
the program. If you enter N, however, your COBOL program is reentered
at its original address.

7.3.2 COBOOT Commands

The commands to COBDDT are described below. Other than for the STOP
command, you need only type the first letter of each command for
COBDDT to recognize the command. For the STOP command, however, you
must type the entire command. Data-names and section-names need not
be typed in full as long as each name or portion of the name is unique
in the program. Paragraph-names can be qualified by section-names,
and data-names can be qualified by higher-level data-names or
subscript values or both. The subscripts for a qualified data-name
must appear immediately after the first data-name. Subscripts must be
numeric integers. Section-names and data-names cannot be qualified by
program-names because COBDDT uses the names in the program specified
in the MODULE command.

ACCEPT

NOTE to TOPS-20 Users

COBDDT uses the COMND JSYS to do its
command parsing. You must be aware that
if a command line ends with a"-"
(hyphen), the COMND JSYS deletes the "_"
from the command line and continues
parsing on the next line.

If you wish to include a "_" as the last
character on a cummand line, you should
type a space following the "_" For
example,

COBDDT>DISPLAY FILE-<SPACE>~

The ACCEPT command allows you to change the contents of a data
item. The new contents of the data item are typed on the next
line. The ACCEPT command has the format:

ACCEPT
ACCEPT data-name

If the data-name is not specified, the last name specified in a
DISPLAY or another ACCEPT command is assumed.

Example:

COBDDT>ACCEPT VARl
16.25

COBDDT>

7-30

BREAK

CLEAR

COBOL UTILITY PROGRAMS

The BREAK command sets a breakpoint (or pause) at the beginning
of the specified paragraph or section name. The BREAK command
has the format:

BREAK paragraph-name
BREAK section-name

Up to 20 breakpoints can be set in a program.
UNPROTECT command is given.

unless the

Breakpoints can be set in nonresident COBOL segments, whether or
not the segment is in memory. If more than one module is in
memory, the name of the module in which the break occurred is
typed with the paragraph and section names.

You can set breakpoints in LINK overlays, but all breaks in the
overlay are cleared when the overlay is overlaid or cancelled.
To set breakpoints in LINK overlays, you must use the OVERLAY
command to specify OVERLAY ON. If you do not specify the OVERLAY
ON command, the program executes through the overlay before you
can set a breakpoint. This is because you cannot set a
breakpoint in an overlay unless the overlay is in memory.

Example:

COBDDT)BREAK PARI

COBDDT)

The CLEAR
paragraph.

command removes the breakpoint
The CLEAR command has the format:

CLEAR paragraph-name
CLEAR

at a specified

If the paragraph-name is not specified, all breakpoints that have
been set in the program are removed.

Example:

COBDDT)CLEAR PARI

COBDDT)

7-31

I

I

I

DDT

COBOL UTILITY PROGRAMS

The COBDDT DDT command allows you to enter regular DDT, the
assembly language debugger. COBDDT can supply only certain types
of data; the use of the DDT command enables you to look at the
data areas or procedure areas of the object program. This allows
you to change the compiled code or to put breakpoints in the
middle of a paragraph. If COBDDT or LIBOL have been linked with
symbols, you can use the DDT command to look at these as well.
To use the assembly language debugger, you must first use the
LOCATE command or an assembly listing to obtain the addresses of
the areas that you want to look at. Once you have these
addresses, you can use the DDT command to look at these areas.
The DDT command has the format:

DDT

COBDDT responds to the DDT command by telling you how to exit
from the assembly language debugger back to COBDDT. To get back
to COBDDT from the assembly language debugger, you type
POPJ 17,$X, where the "$" is an ESCape (~).

COBDDT tries to load DDT into memory if it is not already there.

This example shows the use of the DDT command on TOPS-IO.
Although the system prompt differs on TOPS-20, the use of the
command is the same on both systems.

Example:

.RUN PRGRM

STARTING COBOL DDT

COBDDT)DDT
[Return from DDT by typing "POPJ 17,$X"]
DDT

DISPLAY

The DISPLAY command causes the contents of a data item to be
displayed on your terminal. The DISPLAY command has the format:

DISPLAY
DISPLAY data-name

If no data-name is specified, COBDDT uses the last data-name
specified in an ACCEPT or DISPLAY command.

Example:

COBDDT)DISPLAY ALPHA
o

COBDDT)

7-32

GO

COBOL UTILITY PROGRAMS

The GO command causes the program to resume execution of the
specified procedure name. The GO command has the format:

GO procedure-name

The procedure name must be in a module that is currently loaded
into core. Execution of the program begins at the designated
procedure name immediately after ihe command is typed.

The procedure name that you specify can be in another module, if
that module is in memory. However, the GO command does not set
up a return for the EXIT PROGRAM statement, nor does it provide
addresses for LINKAGE SECTION items.

The GO command also does not alter the
exits or subprogram exits. If an
these return mechanisms following the
returned to COBDDT, but the PROCEED and
Therefore further execution of the
possible.

Example:

COBDDT>GO PARAl
BREAK AT «PARA4»

COBDDT>

existing stack of PERFORM
error is detected in using

GO command, control is
GO commands are disabled.
object program is not

LOCATE

The LOCATE command causes the object-time address of a procedure
name or a data item to be typed. The LOCATE command has the
format:

LOCATE procedure-name

LOCATE data-item

If the specified data-item does not start on a word boundary in
memory, the bit displacement of the data-item is also displayed.

Example:

MODULE

COBDDT>LOCATE PARAl
401057

COBDDT>

The MODULE command causes COBDDT to look
procedure names in the specified program.
the format:

MODULE [program-name]

7-33

for data names and
The MODULE command has

I

I

I

I

NEXT

COBOL UTILITY PROGRAMS

If the name is omitted, COBODT types the name of the current
module followed by the names of all modules currently in memory.

Normally, within a run unit containing more than one program,
COBDDT searches for data names and procedure names in the current
program. The MODULE command changes the program in which the
search takes place. All subsequent searches for data names and
procedure names are within the specified program until another
MODULE command is issued. If the current module is cancelled or
overlaid, the main program becomes the current module.

Example:

COBDDT>MODULE

CURRENT MODULE: MYPROG

COBDDT>

The NEXT command causes the contents of a data item to be
displayed on your terminal. The NEXT command uses the variable
name and the subscript values given for the last ACCEPT, DISPLAY,
or NEXT command and adds the numeric value of the signed integer
to the rightmost subscript value in the subscript list. The NEXT
command has the format:

NEXT
NEXT signed integer

If the signed integer is omitted, a default of +1 is used. A
signed integer can be any integer with plus, minus, or no leading
sign. If you specify a subscript that is out of range, an error
message is displayed.

Example:

COBDDT>NEXT 3
33

COBDDT>

OVERLAY

The OVERLAY command either causes a
entered or clears the breakpoint.
format:

OVERLAY ON
OVERLAY OFF

7-34

break when un overlay is
The OVERLAY command has the

COBOL UTILITY PROGRAMS

OVERLAY ON causes COBDDT to break the first time that a LINK
overlay is entered each time it is brought into memory. The
break only occurs once for each time the overlay is brought into
memory. COBDDT types the following message when the break
occurs:

BREAK UPON ENTRY TO name

where name is the name of the entry point. Following the
message, COBDDT types the name of the current module and a list
of the modules currently in memory.

OVERLAY OFF causes COBDDT not to break when a LINK overlay is
entered and not to type the information described above. OVERLAY
OFF is the initial default.

PROCEED

The PROCEED command causes the program either to be started or to
continue execution after a breakpoint caused it to pause. The
PROCEED command has the format:

PROCEED
PROCEED n

After a PROCEED command is executed, the program runs either to
completion or until another breakpoint is reached. If an integer
is included with the command, the program runs until the n(th)
occurrence of the preceding" breakpoint has been reached. Thus
PROCEED I is equivalent to PROCEED.

Example:

COBDDT>PROCEED 3
BREAK AT «PARA3»

COBDDT>

SHOW SYMBOLS

The SHOW SYMBOLS command prints on the terminal all symbols that
match the given mask. The mask consists of letters and the
special characters ?, %, and *. The asterisk (*) stands for any
number of characters, including zero. The question mark (?) for
TOPS-IO and the percent sign (%) for TOPS-20 represent exactly
one character.

COBDDT>SHOW SYMBOLS *WRITE*

FIRST-WRITE-PARA
LAST-WRITE-PARA
REWRITE-RECORD
WRITE-RECORD

COBDDT>SHOW SYMBOLS %%WRITE*

REWRITE-RECORD

COBDDT>

7-35

I

STEP

I
STOP

I
TRACE

COBOL UTILITY PROGRAMS

The STEP command causes your program to execute a specified
number of steps, each step being a procedure name, section name,
or a paragraph name. The default is a single step. The STEP
command has the format:

STEP
STEP integer

If an integer is included with the command, the program runs
until the n(th) occurrence of a step has been reached. When the
STEP command has completed the specified number of steps, the
program is interrupted, and control is returned to COBDDT. The
following di~play then occurs:

!procedure-namel
lProgram-name J STEP AT

EXIT PROGRAM

Modules that have been compiled with the IP switch are invisible
to the STEP command. The entry point, the procedure names and
the exit programs are not counted as steps.

Example:

COBDDT>STEP 2
BREAK AT «PARA2»

COBDDT>

The STOP command is equivalent to the COBOL STOP RUN statement.
All files that are open are closed and program execution is
terminated. The STOP command has the format:

STOP

You must type the word STOP in Eull. Typing only the first
letter, S, initiates execution of the STEP command.

Example:

COBDDT>STOP
EXIT

The TRACE command starts
backwards, depending on
command has the format:

TRACE ON
TRACE OFF
TRACE BACK

tracing,
the form

stops tracing,
of the command.

or traces
The TRACE

TRACE ON causes tracing of all paragraphs and sections as they
are executed. Whenever a paragraph or section is entered, its
name, enclosed in angle brackets «», is typed on your terminal.

7-36

COBOL UTILITY PROGRAMS

For each depth of subprogram, COBDDT types an exclamation poi'nt
(L) before each paragraph or section name. For each depth of a
PERFORM statement, COBDDT also types an asterisk (*) before each
paragraph or section name. The maximum length of the string
printed is 35 characters. Note that the exclamation point and
asterisk are printed for each depth of subprogram or PERFORM.

Example:

COBDDT)TRACE ON
!!*!**<PARA)

COBDDT)

When a LINK overlay is brought into memory, COBDDT types the
names of any modules overlaid and the names of the modules in the
new overlay. When a LINK overlay is cancelled, COBDDT types the
names of the modules in that overlay.

TRACE OFF causes COBDDT to stop tracing procedures until either
execution is terminated or another TRACE ON command is executed.

Example:

COBDDT)TRACE OFF

COBDDT)

TRACE BACK causes COBDDT to show the sequence of paragraphs and
sections that were called to reach this program. When you
specify the TRACE BACK command, the name of the currently
activated program is displayed, followed by the sequence of
programs that were called to reach this program.

Example:

COBDDT)TRACE BACK

IN PROGRAM [SAMPLE]

COBDDT)

UNPROTECT (TOPS-lO only)

The UNPROTECT command turns off write-protection for the high
segment. This command must be typed before you put breakpoints
(the BREAK command) in the high segment of the source code to be
compiled with the /R switch.

7-37

I

I

I

WHERE

COBOL UTILITY PROGRAMS

The WHERE
paragraphs
the format:

command causes COBDDT to list the names of all
at which breakpoints were set. The WHERE command has

WHERE

If more than one module is in memory, the module name is included
with the paragraph name.

Example:

COBDDT>WHERE

PROGRAM STOPPED AT «PARAl»

BREAKPOINTS:
«PARAl»
«PARA2»
«PARA3»

17 UNUSED BREAKPOINTS

COBDDT>

7.3.3 Obtaining Histograms Of Program Behavior

The histogram facility in COBDDT allows you to obtain a report of the
number of times each section and paragraph in your COBOL program was
entered as well as the total amount of processor time and elapsed time
spent in each section and paragraph. The commands for using this
feature are described in the following sections.

Both words of the histogram commands can be shortened to their unique
abbreviations. None of the commands can be abbreviated to just H;
the first letter of the second word of the command must be present;
for example, H I, H B, and H E are legal.

7.3.3.1 Initializing the Histogram Table - The HISTORY INITIALIZE
command causes COBDDT to set up and initialize the histogram table in
which are stored the statistics for the histogram. The form of this
command is:

HISTORY INITIALIZE [filespec] ['title']

The file specification is the device, filename, extension, and
project-programmer number of the output histogram report
(dev:file.ext[p,pn]). If the entire file specification is omitted,
your terminal is assumed. If the device is omitted but the filename
is included, DSK is assumed. If the extension is omitted, .HIS is
assumed. If the project-programmer number is omitted, that of the
logged-in user is assumed. Users of TOPS-20 who wish to specify a
directory other than the default can run the TRANSLATE program to
determine the correct project-programmer number. (See the TOPS-20
User's Guide for information on how to do this.) For an alternative
that is generally more useful, see Appendix C, Defining Logical Names
under TOPS-20.

7-38

COBOL UTILITY PROGRAMS

The title is the one that is printed as the second line of the
histogram report. It must be enclosed in single quotation marks and
can have a maximum length of 70 characters.

Once you specify a file specification and/or title, it becomes the
default for any subsequent reports until explicitly changed.

It is not necessary to use this command, but it is advisable to do so
if only a portion of the program's statistics are to be recorded. The
table can also be reinitialized by means of the HISTORY INITIALIZE
command to begin a new histogram.

7.3.3.2 Starting the Histogram - The HISTORY BEGIN command causes
COBDDT to start gathering statistics for each section and paragraph
entered after this command is issued. This command has the form:

HISTORY BEGIN [filespec] ['title']

The file specification is the device, filename, extension, and
project-programmer number of the output histogram report
(dev:file.ext[p,pn]). If the entire file specification is omitted,
your terminal is assumed. If the device is omitted but the filename
is included, DSK is assumed. If the extension is omitted, .HIS is
assumed. If the project-programmer number is omitted, that of the
logged-in user is assumed. Users of TOPS-20 who wish to specify a
directory other than the default can run the TRANSLATE program to
determine the correct project-programmer number. (See the TOPS-20
User's Guide for information on how to do this.) For an alternative
that is generally more useful, see Appendix C, Defining Logical Names
under TOPS-20.

The title is the one that is printed as the second line of the
histogram report. It must be enclosed in single quotation marks and
can have a maximum length of 70 characters.

Once you specify a file specification and/or title, it becomes the
default for any subsequent reports until explicitly changed.

The HISTORY BEGIN command implies a HISTORY INITIALIZE command if one
has not already been issued and if a histogram has not already been
started. If a histogram already exists, HISTORY BEGIN adds data to
that histogram. The statistics collected are:

• The number of times each paragraph or section is entered

• The CPU time spent within each paragraph or section

• The elapsed time spent within each paragraph or section

• The elapsed time and CPU time for overhead

• The unaccounted elapsed time and CPU time

7.3.3.3 Stopping the Histogram - The HISTORY END command causes
COBDDT to stop gathering statistics for the histogram. This command
has the form:

HISTORY END

7-39

COBOL UTILITY PROGRAMS

If you wish to gather statistics throughout the entire execution of
the program, you need not use the HISTORY END command. However, if
you wish to stop gathering statistics for the histogram before the
p~ogram finishes, you must set a breakpoint at the appropriate
paragraph and, when the break occurs, use the HISTORY END command.

7.3.3.4 Obtaining the Histogram Listing - The HISTORY REPORT command
causes COBDDT to list the available statistics in a report. This
command has the form:

HISTORY REPORT [file specification] ['title']

The file specification is the device, filename, extension, and
project-programmer number of, the output histogram report
(dev:file.ext[p,pn]). If the entire file specification is omitted,
your terminal is assumed. If the device is omitted but the name is
included, DSK is assumed. If the extension is omitted, .HIS is
assumed. If the project-programmer number is omitted, that of the
logged-in user is assumed. Users of TOPS-20 who wish to specify a
directory other than the default can run the TRANSLATE program to
determine the correct project-programmer number. (See the TOPS-20
User's Guide for information on how to do this.) For an alternative
that is generally more useful, see Appendix C, Defining Logical Names
under TOPS-20.

The title is the one that is printed as the second line of the
histogram report. It must be enclosed in single quotation marks and
can have a maximum length of 70 characters.

Once you specify a file specification and/or title, it becomes the
default for any subsequent reports until explicitly changed.

The format for the histogram report is shown below. The heading is
printed for each module that is in memory at the time the report is
printed, even if the module was never entered. If the report is
printed while a module for which statistics were gathered is not in
memory, the statistics for that module are not printed.

COBDDT HISTOGRAM FOR module-name
title

PROCEDURE
-section-name­
paragraph-name

OVERHEAD:
UNACCOUNTED:

ENTRIES
integer-2
integer-3

ELAPSED:time-5
ELAPSED:time-7

7-40

CPU
time-l
time-3

CPU:time-6
CPU:time-8

REPORT: integer-l

ELAPSED
time-2
time-4

module-name

integer-l

title

section-name

integer-2

time-l

time-2

paragraph-name

integer-3

time-3

time-4

time-5

time-6

time-7

time-8

COBOL UTILITY PROGRAMS

is the" name of the module, taken from the
PROGRAM ID ·clause.

is the report number. It starts at 1 and is
incremented by 1 for each report produced in
a run.

is the title that you specified in one of the
HISTORY commands.

is the name of a section into which control
was transferred or passed. Each paragraph in
the section to which control was passed is
given with the section.

is the number of times control was passed
directly to the section.

is the amount of CPU time spent in the
section.

is the amount of elapsed time spent in the
section.

is the name of a paragraph to which control
was transferred or passed.

is the number of times control was passed to
this paragraph.

is the amount of CPU time spent in this
paragraph.

is the amount of elapsed time spent in this
paragraph.

is the elapsed time spent entering and
exiting from subprograms and PERFORM
statements. If this time is 0, the line is
not printed.

is the CPU time spent entering and exiting
from subroutines and PERFORM statements.

is the elapsed time that could not be charged
to any section or paragraph. If this time is
0, the line is not printed.

is the CPU time that could not be charged to
any section or paragraph. For example, when
a subprogram is entered, the time accrued
until the first paragraph or section is seen
is charged to unaccounted.

If control is never passed to a particular section or paragraph,
nothing is printed for that section or paragrap,h. When a PERFORM
statement or subprogram is entered, the current paragraph or section
is saved on a stack so that COBDDT can continue to charge time to the
correct section or paragraph when the return is done. The size of the
stack is 20 locations. After a depth of twenty calls or PERFORM
statements is reached, time is charged to unaccountable.

7-41

COBOL UTILITY PROGRAMS

A sample histogram report is shown below.

COBDDT HISTOGRAM FOR CASHX REPORT: 1

PROCEDURE ENTRIES CPU ELAPSED

-GENERATED-SECTION-NAME- 0 1.360 21.707
START 721 0.008 2.641
ST-l 1 0.000 0.000
START-2 721 0.385 5.616
INITIAL-SETUP 1 0.016 0.233
END-INITIAL-SETUP 1 0.000 0.017
CONVERT-RECORDS 721 0.400 5.575
END-CONVERT-RECORDS 721 0.167 2.146
RATE-IT 721 0.178 2.086
END-RATE-IT 721 0.206 3.393

7.3.3.5 Using the Histogram Feature - To use the histogram feature,
issue the following commands upon entering COBDDT for the first time.

HISTORY INITIALIZE
HISTORY BEGIN

At any time when you are stopped at a breakpoint, you can stop
gathering statistics for the histogram by issuing the HISTORY END
command. If you issue a HISTORY BEGIN command after a HISTORY END
command, the histogram continues from the point where the HISTORY
BEGIN command was issued. However, if after a HISTORY END command you
issue a HISTORY INITIALIZE and a HISTORY BEGIN command, the previous
statistics are lost and a new histogram begun. To get the previous
histogram, issue a HISTORY REPORT command before the HISTORY
INITIALIZE command.

If a histogram file already exists with the same file specification as
the one given, the histogram report is appended to the existing file.
If the file specification is different, COBDDT starts a new histogram
file.

7.4 RERUN - PROGRAM TO RESTART COBOL PROGRAMS

The RERUN program is used to restart a COBOL program that has been
terminated abnormally due to a system failure, a device error, o(an
exceeded disk quota. RERUN uses checkpoint files, which are similar
to memory-image dump files. Checkpoint files are created in one of
two ways:

• By including RERUN statement(s) in the COBOL program itself

• By typing CTRL/C twice followed by REENTER during program
execution

The COBOL system creates a checkpoint file by writing a memory-image
dump file of the program onto disk and adding some other information
to allow a later restart of the program. At the same time, the COBOL
system closes and reopens all disk and magnetic tape output files.
The dump is not performed if a sort is in progress. Each time the
checkpoint file is written, the COBOL system types the message DUMP
COMPLETED on your terminal.

7-42

COBOL UTILITY PROGRAMS

If the COBOL program is interrupted during execution, you can restart
the program by means of the RERUN program. The RERUN program reads
the dump file back into memory, restores the files to their state at
the time the checkpoint file was written, and then passes control to
the COBOL program so that it can continue processing to completion.
RERUN assumes that the operating environment at the time the COBOL
program was interrupted is the same as the environment at the time the
checkpoint file was written. Thus, the files must be associated with
the same types of devices, and devices must have the same logical
names.

7.4.1 Operating RERUN

To restart a COBOL program from the last checkpoint file written
before execution stopped, type R RERUN in response to the operating
system prompt (users of TOPS-20 can respond RERUN). For example:

.R RERUN~ for users of TOPS-IO

or

@RERUN~ for users of TOPS-20

If you are running on TOPS-20, RERUN displays a prompt:

RERUN>

The first message you see from TOPS-IO RERUN is the second
message you see from TOPS-20 RERUN, and both are followed by
an asterisk prompt:

TYPE CHECKPOINT FILENAME

*
At this point you type the name of the checkpoint file in which the
core-image dump is stored.

When a checkpoint dump is being written, the COBOL system uses the
filename of the program as the name of the checkpoint file and adds
the extension .CKP. If the COBOL program does not have a filename
because it was not saved, the COBOL system takes the checkpoint
filename from the PROGRAM-ID in the program and adds the extension
.CKP. If the program has been divided into a 2-segment file, the
high-segment filename must be the same as the low-segment filename.
Thus, when you respond with the checkpoint filename you are in effect
telling RERUN the program name as well.

If TOPS-IO RERUN encounters a logical device name in the program, it
types the following message:

ASSIGN device-name
TYPE CONTINUE WHEN DONE

and exits to monitor command level. If this happens, you should give
the appropriate ASSIGN command to assign the logical device to a
specific one, then a CONTINUE monitor command to restart RERUN.

The TOPS-20 RERUN works similarly. If it finds a logical name, it
prints the following:

DEFINE logical-name: (AS) device:
TYPE CONTINUE WHEN DONE

7-43

I

COBOL UTILITY PROGRAMS

TOPS-20 RERUN exits
appropriate DEFINE
RERUN.

to the monitor. You should then give the
command followed by a CONTINUE command to restart

7.4.2 Examples Of Using RERUN

In the following example, you have a COBOL program that was terminated
by a system failure. Checkpoints had been inserted in the program by
means of RERUN statements. The program has a filename of ACCNT;
thus, the checkpoint filename is ACCNT.CKP. Instead of running the
program again from the beginning, you employ the RERUN program to
restart your program from the last checkpoint written before the
program stopped. You type:

.R RERUN~

The RERUN> prompt is not printed above because the example is running
on a TOPS-IO system. RERUN responds:

TYPE CHECKPOINT FILENAME
*

You type:

ACCNT.CKP ~

RERUN loads the che~kpoint file into memory, reopens and repositions
the magnetic tape and disk files, and passes control to the COBOL
program so that it can continue processing to completion.

In the example below, you are running a COBOL program that is notified
the system is going down. You do not have any RERUN statements in
your program, yet you wish to create a checkpoint file so that the
processing done by your COBOL program up to that point is not wasted.
You create the checkpoint file by typing CTRL/C twice and then typing
REENTER. The checkpoint file is written by the COBOL system onto disk
with a filename of PROGl3 (taken from the PROGRAM-ID) and an extension
of .CKP. After the system is restored, you can restart the program by
running the RERUN program. The dialogue is as follows:

@RERUN ~
RERUN>
TYPE CHECKPOINT FILENAME

*
PROGl3.CKP ~

The program PROGl3 is loaded into memory, its files are reopened, and
it continues running to completion.

7-44

CHAPTER 8

FILE FORMATS

8.1 RECORDING MODES

The recording mode specifies the byte size of the data and, except for
binary mode, also specifies the character set used. The four
recording modes and their respective byte sizes are:

RECORDING MODE

ASCII
SIXBI'r
EBCDIC
Binary

BYTE SIZE

7 bits
6 bits
8 bits
36 bits (1 word)

The following sections describe the recording modes in more detail.

8.1.1 ASCII Recording Mode

An ASCII word consists of 5 characters left-justified in the word.
Each character is represented by a 7-bit byte:

BIT NU

BINAR
REPRE

MBER_ 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

Y
SENTATION

DATA

BYTES: 5

-- . o 0 o 0 o • o • • 0 0 0 • • 0 0 0 0 • 0 0 • • 0 (> •
. A

• = on bit
o = off bit
X = unused bit

1 B 2

Figure 8-1 ASCII Recording Mode

NOTE

A variant form of ASCII, line-sequence
ASCII, sets bit 35 of the line-sequence
word to 1.

8-1

27 28 29 30 31 32 33 34 35

0 • 0 0 0 0 • • x

C

MR-S-030-79

FILE FORMATS

8.1.2 SIXBIT Recording Mode

SIXBIT is a compressed form of ASCII in which lowercase letters and a
few special characters are not used. A SIXBIT word consists of 6
characters per word, with each character represented by a 6-bit byte:

BIT N UMBER-O

Y ~
ESENTATION •

BINAR
REPR

DATA

BYTES: 6

1 2 3

0 o 0

A

• ~ on bit

o ~ off bit

4 5 6 7 8 9 10 11 12

o • o • o 0 0 • •
1

13 14 15 16 17 18 19 20 21 22 23 24

0 0 0 • 0 0 • 0 0 • 0 •
B 2

Figure 8-2 SIXBIT Recording Mode

8.1.3 EBCDIC Recording Mode

25 26 27 28 29 30 31 32 33 34 35

0 0 0 • • 0 • 0 0 • •
C 3

MR-S-031-79

An EBCDIC word consists of 4 characters per word. Each byte is 9 bits
long, but the first bit in each byte is unused. Each character is
represented by 8 bits:

BIT NU MBER- 0 1 2 3

Y BINAR
REPRE SENTATION -- X

.. . .
DATA

BYTES: 4

.

• ~ on bit
o ~ off bit

4

0

A

X ~ unused bit

5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

o 0 o • X • • • • 0 0 0 • x • • • 0 0 0

1 B

Figure 8-3 EBCDIC Recording Mode

25 26 27 28 29 30 31 32 33 34 35

• 0 x • • • • 0 0 • 0

2

MR-S-032-79

A variant form, used only for magnetic tape, is industry-compatible
EBCDIC. In this form of EBCDIC, there are 4 characters per word,
left-justified within the word. Each character is represented by an
8-bit byte. The last 4 bits in the word are unused:

BIT NU MBER----- 0 1 2 3

BINAR
REPRE

DATA

Y
SENTATION

BYTES: 4

--
.

• • • 0

A

• = on bit
o = off bit

4

0

5 6 7 8 9 10 11 12 13 14 15

o 0 • • • • • 0 0 0 •
1

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

• • • 0 0 0 • 0 • • • • 0 0 • 0

B 2

Figure 8-4 EBCDIC Recording Mode - Industry-Compatible

8-2

32 33 34 35

X X X X

MR-S-033-79

FILE FORMATS

8.1.4 BINARY Recording Mode

Unlike the recording modes previously mentioned, binary mode does not
specify a character set for the data. In binary mode, the entire
36-bit word is interpreted as a single byte of binary data:

BIT N UMBER-O 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35

Y __ 0
o 0 o 0 000 000 0 0 0 • • 0 0 • • • 0 0 • 0 • • • • 0 0 0 0 0 0

BINAR
REPR ESENTATION

0

DATA

BYTES: 1

.-

• = on bit
o = off bit

2,739,136

MR-S-034-79

Figure 8-5 Binary Recording Mode

8.2 FILE FORMATS

The file format specifies the structure of the record used to store
the data. The following sections describe all major file formats.
Each section includes a diagram of the file format and a COBOL code
segment that generates the file format.

The following conventions are used in the diagrams:

1. Alphanumeric or numeric-character data in a word is shown
with each individual character enclosed in a box. The box
represents 1 byte. Thus, a word of ASCII data would be shown
as follows:

2. Binary data in a word (fixed- and floating-point numbers) is
shown by a number in the word:

132156.1°1

3. EBCDIC packed-decimal values are shown as two decimal digits
per EBCDIC byte. The right half of the rightmost byte
contains the sign. Neither the digits nor the sign are
EBCDIC characters.

4. COBOL signed numeric data, such as produced by PIC S9(n), is
shown with the over-punched character if the sign is
negative. For example, -12345 is shown as 1234N, with the N
representing both the negative sign and the value 5.
DIGITAL's COBOL does not use over-punched characters for
positive sign representation, so diagrams depicting positive,
signed numeric data do not show a sign.

5. Italicized characters in a diagram do not depict data;
label or clarify parts of the diagram:

ROW 30 I 0 I
MR-S-034A-81

8-3

they

FILE FORMATS

6. Heavy vertical lines are used to delimit individual fields
within a record:

7. Padding, the use of blanks or nulls to force the next record
to begin on some boundary (for example, a word or disk-block
boundary), is shown by white space in the word:

You cannot consider padding as part of a record field, nor can you use
padding as part of a key field. However, the length of any padding
must be taken into account when calculating record length and key
starting position.

8.2.1 Fixed-Length ASCII

A fixed-length ASCII file consists of records containing five
characters per 36-bit word, with each group of five characters
left-justified within the word. Fixed-length ASCII records must end
wi th a car riage return/l ine feed. The following diagr aem ill ustrates
the format of fixed-length ASCII records:

WORD RECORD

I A B C D E

2 F G ~ ~ A 2

3 B C D E F

4 G ~ ~ A B 3

5 C D E F G I
6 ~ ~ A B C 4

D E F G ~

8 GD
~ CARRIAGE RETURN MR-S-035-79

(ill LINE FEED

Figure 8-6 Fixed-Length ASCII

8-4

FILE FORMATS

CODE SEGMENT:

ENVIRONMENT DIVISION.
INPUT-OUTPUT SECTION.
FILE-CONTROL.

SELECT filename ASSIGN TO DSK
RECORDING MODE IS ASCII.

DATA DIVISION.
FILE SECTION.

FD filename
01 record-l

02 field-l
02 field-2
02 field-3
02 field-4
02 field-5

VALUE OF ID "DATA FIL".
DISPLAY-7.
PIC X{6}.
PIC A(3).
PIC 9{4}.
PIC S9(6).
PIC S9(6)V9999.

PROCEDURE DIVISION.

LOAD-PARAGRAPH. '
MOVE "AB12EF" TO field-I.
MOVE "GHI" TO field-2.
MOVE 3249 TO field-3.
MOVE -481253 TO field-4.
MOVE 31458.5012 TO field-5.
WRITE record-I.

Figure 8-7 illustrates the record produced by the code segment shown
above:

WORD

I A B 1 2 E

2 F G H I 3

3 2 4 9 4 8

4 1 2 5 L 0

5 3 1 4 5 8

6 5 0 1 2 ~

7 GO
MR-S-036-79

Figure 8-7 COBOL Fixed-Length ASCII

8.2.2 Variable-Length ASCII

Variable-length ASCII consists of records containing five characters
per 36-bit word, with each group of five characters left-justified
within the word. Variable-length ASCII records must end with some
combination of the following control characters:

1. Carriage return

8-5

FILE FORMATS

2. Line feed

3. Vertical tab

4. Form feed

The following diagram illustrates the format of variable-length ASCII
records:

A B C D E

F G!!) GO A B

3 C D E F G

4 H I J G!) C!Q

A E ~ GQ CK) 3

6 A B C D E 4

F ~ GO

~ = CARRIAGE RETURN
~ = VERTICAL TAB
CK) = FORM FEED
GQ = LINE FEED MR-S-037-79

Figure 8-8 Variable-Length ASCII

8-6

FILE FORMATS

CODE SEGMENT:

ENVIRONMENT DIVISION.
INPUT-OUTPUT SECTION.
FILE-CONTROL.

SELECT filename ASSIGN TO DSK
RECORDING MODE IS ASCII.

DATA DIVISION.
FILE SECTION.

FO filename
01 record-1

02 fie1d-1
02 field-2
02 field-3
02 field-4

01 record-2
02 field-l
02 field-2
02 field-3
02 field-4

VALUE OF IO "DATA FIL".
OISPLAY-7.
PIC X(7).
PIC S9(7)V99.
PIC A(3).
PIC 9(4).

DISPLAY-7.
PIC X(7).
PIC S9(7)V99.
PIC A(3).
PIC 9(7).

PROCEDURE DIVISION.

LOAD-PARAGRAPH-l.
MOVE "AB13521" TO field-l OF record-I.
MOVE -3269.02 TO field-2 OF record-I.
MOVE "ILM" TO field-3 OF record-I.
MOVE 1359 TO field-4 OF record-I.
WRITE record-I.

LOAD-PARAGRAPH-2.
MOVE "EFGHI95" TO field-l OF record-2.
MOVE 42553.40 TO field-2 OF record-2.
MOVE "LMN" TO field-3 OF record-2.
MOVE 3712536 TO field-4 OF record-2.
WRITE record-2.

Figure 8-9 illustrates the record produced by the code segment shown
above:

8-7

FILE FORMATS

WORD

A B 1 3 5

2 1 0 3 2

6 9 a K I

L M 1 3 5

5 9 ~ ~ E F

6 G H I 9 5 1
4 2 5 5 3

8 4 a L M N 1
9 3 7 1 2 5

10 3 6 ~ CD
MR-S-038-79

Figure 8-9 COBOL Variable-Length ASCII

8.2.3 Fixed-Length SIXBIT

In a SIXBIT file, characters are stored six per 36-bit word, and a
SIXBIT record must start and end on a word boundary. The left half of
the first word in the record contains one of the following:

1. The record sequence number of COBOL magnetic tape records

2. Data specific to COBOL ISAM records

3. Binary zeros

The right half of the first word contains the number of characters in
the record. To ensure that the record ends on a word boundary, the
last word in the record is padded with blanks, if necessary. When
determining the size of the record for memory considerations, you must
take into account the first word of the record {containing file-access
information and a character count} and the possible existence of
padding characters {blanks} to enable the record to end on a word
boundary.

The following diagram illustrates the format of fixed-length SIXBIT
records. Note that the character count is the same for each record:

WORD RECORD

FAD CC 8 I
2 A B C D T E I F

3 G H '-' '-' '-' '-'

4 FAD CC 8 J
5 A B C D I E I F

6 G H '-' '-' '-' '-'

MR-S-039-79
FAD = FILE ACCESS DATA
CC = CHARACTER COUNT
'-' = BLANK (USED AS PADDING CHARACTER)

Figure 8-10 Fixed-Length SIXBIT

8-8

FILE FORMATS

CODE SEGMENT:

ENVIRONMENT DIVISION.
INPUT-OUTPUT SECTION.
FILE-CONTROL.

SELECT filename ASSIGN TO DSK
RECORDING MODE IS SIXBIT.

DATA DIVISION.
FILE SECTION.

FD filename
01 record-l

02 field-l
02 field-2
02 field-3
02 field-4
02 field-5
02 field-6
02 field-7
02 field-8

VALUE OF ID "DATA FIL".
DISPLAY-6.
PIC X(4).
PIC A(5).
PIC 9(10) COMPo
PIC X(2).
PIC 9(11) COMPo
PIC 9(4).
COMP-l.
PIC 9(11} COMPo

PROCEDURE DIVISION.

LOAD-PARAGRAPH.
MOVE "A13B" TO field-I.
MOVE "CDEFG" TO field-2.
MOVE 9654839218 TO field-3.
MOVE "HI" TO field-4.
MOVE 34567982314 TO field-5.
MOVE 1289 TO field-6.
MOVE 123.45 TO field-7.
MOVE 12398756983 TO field-8.
WRITE record-I.

Figure 8-11 illustrates the record produced by the code segment shown
above:

WORD

FAD CC 60

I A 1 3 B I C I D

E F G

3 9654839218 I
4 H I LI LI LJ LJ

5
r-- 34567982314

I 6

1 2 8 9 ILl LJ

8 123.45

9
r--- 12398756983

I 10

FAD = FILE ACCESS DATA
MR-S-040-79

CC = CHARACTER COUNT

L.....I = BLANK (USED AS PADDING CHARACTER)

Figure 8-11 COBOL Fixed-Length SIXBIT

8-9

FILE FORMATS

8.2.4 Variable-Length S~XBIT

This format is the same as fixed-length SIXBIT, except that the
character count can vary from record to record. The following diagram
illustrates the format of variable-length SIXBIT records:

WORD

FAD CC 8

2 I A B C D E F

G H '-' '-' '-' '-'

4 FAD CC 11

5 I A B C D E F

6 G H I J K

MR-S-041-79
FAD: FILE ACCESS DATA

CC = CHARACTER COUNT

'-' = BLANK (USED AS PADDING CHARACTER)

Figure 8-12 Variable-Length SIXBIT

8-10

FILE FORMATS

CODE SEGMENT:

ENVIRONMENT DIVISION.
INPUT-OUTPUT SECTION.
FILE-CONTROL.

SELECT filename ASSIGN TO DSK
RECORDING MODE IS SIXBIT.

DATA DIVISION.
FILE SECTION.

FD filename VALUE OF 10 "DATA FIL".
01 record-l OISPLAY-6.

02 field-l COMP-l.
02 field-2 PIC X(3).
02 field-3 PIC A(3).
02 field-4 PIC 9(3).
02 field-5 PIC 9(10) COMPo
02 field-6 PIC 9 (11) COMPo
02 field-7 PIC X(2).
02 field-8 PIC 9(5) COMPo

01 record-2 DISPLAY-6.
02 field-l COMP-l.
02 field-2 PIC X(3).
02 field-3 PIC A(3).
02 field-4 PIC 9(3).
02 field-5 PIC 9(10) COMPo
02 field-6 PIC 9(11) COMPo
02 field-7 PIC X(2).
02 field-8 PIC 9(11) COMPo

PROCEDURE DIVISION.

LOAD-PARAGRAPH-l.
MOVE 123.4567 TO field-l OF record-I.
MOVE "A3C" TO field-2 OF record-I.
MOVE "DEF" TO field-3 OF record-I.
MOVE -55 TO field-4 OF record-I.
MOVE 1234567809 TO field-5 OF record-I.
MOVE 98765432108 TO field-6 OF record-I.
MOVE "A2" TO field-7 OF record-I.
MOVE 32571 TO field-8 OF record-I.
WRITE record-I.

LOAD-PARAGRAPH-2.
MOVE 1395.678 TO field-l OF record-2.
MOVE "B5L" TO field-2 OF record-2.
MOVE "LMN" TO field-3 OF record-2.
MOVE 79 TO field-4 OF record-2.
MOVE 8176596821 TO field-5 OF record-2.
MOVE 18976532150 TO field-6 OF record-2.
MOVE "M5" TO field-7 OF record-2.
MOVE 12357986183 TO field-8 OF record-2.
WRITE record-2.

Figure 8-13 illustrates the record produced by the code segment shown
above:

8-11

FILE FORMATS

WORD

FAD CC 48

123.4567

A 3 C D I E I F

3 0 5 N

4 1234567809

5
- 98765432108

I 6

A 2

8 32571

FAD CC 54

1395,678

B 5 L L I M I N

0 7 9

4 8176596821

L- 18976532150

I 6

M 5

L 12357986183

I
8

9

MR-S-042-79

Figure 8-13 COBOL Variable-Length SIXBIT

8.2.5 EBCDIC File Formats

On disk and in memory, the characters in an EBCDIC file are
represented by 8 bits right-justified in 9-bit bytes. On tape, the
characters in an EBCDIC file are represented by 8-bit bytes, and 4
bytes occur per 36-bit word. Within a given file, records can be
either fixed or variable length, and can be either blocked
unblocked. Thus, there are four types of EBCDIC files:

1. Fixed-length

2. Variable-length

3. Blocked fixed-length

4. Blocked variable-length

or

In a file written in fixed-length EBCDIC, records all have the same
record length and the records need not begin or end on a word
boundary. The following diagram illustrates the format of
fixed-length EBCDIC records in an unblocked file:

8-12

FILE FORMATS

WORD RECORD

I A B C D

2 E F A B

3 C D E F I
4 I A B C D 3

5 E F

MR-S-043-79

Figure 8-14 Fixed-Length EBCDIC

CODE SEGMENT:

ENVIRONMENT DIVISION.
INPUT-OUTPUT SECTION.
FILE-CONTROL.

SELECT filename ASSIGN TO DSK
RECORDING MODE IS F.

DATA DIVISION.
FILE SECTION.

FD filename
01 record-l

02 field-l
02 field-2
02 field-3
02 field-4
02 field-5

VALUE OF ID "DATA FIL".
DISPLAY-9.
PIC 9(3).
PIC X(5).
PIC A(2).
PIC 9(9) COMP-3.
PIC S9(6) COMP-3.

PROCEDURE DIVISION.

LOAD-PARAGRAPH.
MOVE 123 TO field-I.
MOVE "ABCDE" TO field-2.
MOVE "LM" TO field-3.
MOVE 137958795 TO field-4.
MOVE -351235 TO field-5.
WRITE record-I.

Figure 8-15 illustrates the record produced by the code segment shown
above:

I 1 2 3 A

2 B C D E I
I

7 :9 L M 1 :3 3

I

5:+ 5 :8 7 :9 3
I

4

5 : 1
I

2:3 5 :-5

MR-S-044-79

Figure 8-15 COBOL Fixed-Length EBCDIC

8-13

FILE FORMATS

In a file written in variable-length EBCDIC format, the record lengths
can vary from record to record. Each record contains a 4-byte Record
Descriptor Word (RDW) at the head of the record. The left half-word
of the RDW specifies a value equal to the number of bytes in the
record plus 4 (to allow for the length of the RDW itself). The
rightmost 2 bytes of the RDW must be zero; if they are nonzero, they
indicate spanned records, which are unsupported. The following
diagram illustrates the format of variable-length EBCDIC records in an
unblocked file:

WORD

3

4

6

8

9

10

I ROW 12 0 I
A B C D

E F G H

l ROW 16 0 I
A B C D

E F G H

I J K L

L ROW 12 0 I
A B C D

E F G H

ROW ~ RECORD DESCRIPTOR WORD
MR-S-045-79

RECORD

Figure 8-16 Variable-Length EBCDIC

8-14

FILE FORMATS

CODE SEGMENT:

ENVIRONMENT DIVISION.
INPUT-OUTPUT SECTION.
FILE-CONTROL.

SELECT filename ASSIGN TO DSK
RECORDING MODE IS V.

DATA DIVISION.
FILE SECTION.

FD filename
01 record-l

02 field-l
02 field-2
02 field-3
02 field-4
02 field-5

01 record-2
02 field-l
02 field-2
02 field-3
02 field-4
02 field-5

VALUE OF ID "DATA FIL".
DISPLAY-9.
PIC S9(7) COMP-3.
PIC S9(8) COMP-3.
PIC 9 (3) •
PIC A(2).
PIC X(5}.

DISPLAY-9.
PIC S9(7} COMP-3.
PIC S9(8) COMP-3.
PIC 9(3}.
PIC A(2}.
PIC X(8).

PROCEDURE DIVISION.

LOAD-PARAGRAPH-l.
MOVE -1398569 TO field-l OF record-I.
MOVE 57635937 TO f{eld-2 OF record-I.
MOVE 596 TO field-3 OF record-I.
MOVE "AB" TO field-4 OF record-I.
MOVE "AI3DE" TO field-5 OF record-I.
WRITE record-I.

LOAD-PARAGRAPH-2.
MOVE 5369787 TO field-l OF record-2.
MOVE -53896156 TO field-2 OF record-2.
MOVE 593 TO field-3 OF record-2.
MOVE "MN" TO field-4 OF record-2.
MOVE "ILH5MLXY" TO field-5 OF record-2.
WRITE record-2.

Figure 8-17 illustrates the record produced by the code segment shown
above:

8-15

FILE FORMATS

WORD

ROW 23 0

1 :3
I

5 :6 9 i-
I

9:8
I I

I

3 :5 :5 7 : 6 9 :3

3
I I 7 :+ 5 9 6

4 A B A 1

3 D E ROW

26 0 5 13
1

6 19 7 :8 7 1+ 15
I I

I
I

1,2

3 18 9 :6
I

6:- I I 1 :5 2,3

3,4 5 9 3 M

4,5 N I L H

5,6 5 M L X

6 Y

MR-S-046-79

Figure 8-17 COBOL Variable-Length EBCDIC

Fixed-length EBCDIC records can also be blocked. In this file format,
fixed-length EBCDIC records are written in groups (or blocks). Each
new block begins on a disk-block boundary. For tapes, each block
starts a new physical magnetic-tape record.

8-16

FILE FORMATS

CODE SEGMENT:

ENVIRONMENT DIVISION.
INPUT-OUTPUT SECTION.
FILE-CONTROL.

SELECT filename ASSIGN TO DSK
RECORDING MODE IS F.

DATA DIVISION.
FILE SECTION.

FD filename
BLOCK

01 record-l
02 field-l
02 field-2
02 field-3
02 field-4
02 field-5

01 record-2
02 field-l
02 field-2
02 field-3
02 field-4

·02 field-5

VALUE OF ID "DATA
CONTAINS 1 RECORD.

DISPLAY-9.
PIC 9{3}.
PIC X(5).
PIC A(2).
PIC S9(5) COMP-3.
PIC S9(4) COMP-3.

DISPLAY-9.
PIC X(3).
PIC X(5).
PIC A(2).
PIC S9(5) COMP-3.
PIC S9(4) COMP-3.

PROCEDURE DIVISION.

LOAD-PARAGRAPH-l.

FIL"

MOVE 194 TO field-l OF record-I.
MOVE "BDEFG" TO field-2 OF record-I.
MOVE "MN" TO field-3 OF record-I.
MOVE 13796 TO field-4 OF record-I.
MOVE 1985 TO field-5 OF record-I.
WRITE record-I.

LOAD-PARAGRAPH-2.
MOVE "762" TO field-l OF record-2.
MOVE "LANBH" TO field-2 OF record-2.
MOVE "AB" TO field-3 OF record-2.
MOVE 76543 TO field-4 OF record-2.
MOVE -9764 TO field-5 OF record-2.
WRITE record-2.

Figure 8-18 illustrates the record produced by the code segment shown
above:

8-17

FILE FORMATS

WORD BLOCK
BLOCK'

9 4 B

2 D E F G

I

7:9 3 M N 1: 3
1

6:+
i 1

4 918 5 ' +
1 1 1

I 1

I 7 6 2 L

A N B H J
3 A B 7:6 5:4

I
1 I

7:6 3
'
+ :9 4 : --

I
4

1 I : I

I 1 I

.......... ~-
MR-S-047-79

Figure 8-18 COBOL Blocked Fixed-Length EBCDrC

Variable-length EBCDIC records can be blocked as well. In this file
format, the record length can vary from record to record. Each record
contains a I-word Record Descriptor Word (RDW) at the head of the
record. This word contains (in the left half-word) a count of all
bytes in the record and in the RDW itself. The right half of the RDW
must be zero. The records are read and written in groups called
blocks. The actual number of records in a block depends on the
blocking factor specified when the file was created. Each block of
records contain a I-word Block Descriptor Word (BDW) which contains a
count (in the left half-word) of the bytes in the block. That is, the
bytes of data and the bytes of the RDW for each record in the block
and the 4 bytes of the BDW itself are incLuded in the block count.
The following illustrates the format of blocked variable-length EBCDIC
records:

8-18

WORD

3

4

5

201

202

203

204

205

206

207

FILE FORMATS

BOW 20 0

ROW 10 0

A B C D

E F ROW 6 1
0 0 A B

L
-

BOW 28 0

ROW 6 0

A B ROW 10

0 A B

C D E F

I ROW 8 0 I
A B C D

BOW = BLOCK DESCRIPTOR WORD
ROW = RECORD DESCRIPTOR WORD

MR-S-048-79

RECORD BLOCK

2

2

3

4

Figure 8-19 Blocked Variable-Length EBCDIC

8-19

FILE FORMATS

CODE SEGMENT:

ENVIRONMENT DIVISION.
INPUT-OUTPUT SECTION.
FILE-CONTROL.

SELECT filename ASSIGN TO DSK
RECORDING MODE IS V.

DATA DIVISION.
FILE SECTION.

FD filename
BLOCK

01 record-l
02 field-l
02 field-2
02 field-3
02 field-4
02 field-5
02 field-6

01 record-2
02 field-l
02 field-2
02 field-3
02 field-4
02 field-5
02 field-6

VALUE OF 10 "DATA
CONTAINS 1 RECORD.

DISPLAY-9.
PIC S9(7) COMP-3.
PIC S9(7) COMP-3.
PIC X(3).
PIC A(2).
PIC S9(9) COMP-3.
PIC X(6).

DISPLAY-9.
PIC S9(7) COMP-3.
PIC S9(7) COMP-3.
PIC X(3).
PIC A(2).
PIC 9(9) COMP-3.
PIC X(9).

PROCEDURE DIVISION.

LOAD-PARAGRAPH-l.

FILII

MOVE +9356127 TO field-l OF record-I.
MOVE 3987156 TO field-2 OF record-I.
MOVE 11198 11 TO field-3 OF record-I.
MOVE IIMN II TO field-4 OF record-I.
MOVE -569138279 TO field-5 OF record-I.
MOVE IIABCDEF II TO field-6 OF record-I.
WRITE record-I.

LOAD-PARAGRAPH-2.
MOVE -3295865 TO field-l OF record-2.
MOVE 9378518 TO field-2 OF record-2.
MOVE 11196" TO field-3 OF record-2.
MOVE IIAL" TO field-4 OF record-2.
MOVE 569138279 TO field-5 OF record-2.
MOVE IIABCDEFGHI" TO field-6 OF record-2.
WRITE record-2.

Figure 8-20 illustrates the record produced by the code segment shown
above:

8-20

FILE FORMATS

BOW 32 0

ROW 28 0

9:3 5:6
I

1 12 7; +
I I I I

'2
I

8: 7 6:+ 3i 9
1 1 ! 5

1

3 1 9 8 M

4 N 5:6 9 : 1 3: 8
I I I

2:7
I

9: - A B
I I

6 C D E F I
~ ~ .A ..".r .A. '""'-V

BOW 35 0

ROW 31 0
I I 1

3:2 9; 5 8:6 51
I I I

I I !
9:3 7:8 5: 1 81+

I I 1 I

3 1 9 6 A

5:6
I

3:8 L 91 1
1 I

4

2: 7
I

91+ A. B
I

6 C D E F

G H I

~~~--< ~ 
MR-S-049-79 

Figure 8-20 COBOL Blocked Variable-Length EBCDIC 

8.2.6 BINARY File Formats 

Binary records consist of contiguous 36-bit words. Each record starts 
and ends on a word boundary. Binary is the only recording mode which 
does not have a character set associated with it, and standard binary 
records can only be interpreted as COMPUTATIONAL and COMP-l binary 
numbers. However, it is possible to associate a character set with 
binary records by writing mixed-mode records. COBOL programs are 
capable of writing three mixed-mode binary formats. Each format is 
shown below: 

8-21 



FILE FORMATS 

8.2.6.1 COBOL ASCII Mixed-Mode Binary -

CODE SEGMENT: 

ENVIRONMENT DIVISION. 
INPUT-OUTPUT SECTION. 
FILE-CONTROL. 

SELECT filename ASSIGN TO DSK 
RECORDING MODE IS BINARY. 

DATA DIVISION. 
FILE SECTION. 

FD filename 
01 binary-rec 

02 field-l 
02 field-2 
02 field-3 
02 field-4 
02 field-5 
02 field-6 
02 field-7 

VALUE OF ID "DATA FIL". 
DISPLAY-7. 
PIC S9(10) COMPo 
COMP-l. 
PIC X(7). 
PIC 9(11) COMPo 
PIC X(3). 
PIC 9(14) COMPo 
PIC A(2). 

PROCEDURE DIVISION. 

LOAD-PARAGRAPH. 
MOVE 1234568910 TO field-I. 
MOVE 1246.5978 TO field-2. 
MOVE "ABCDE12" TO field-3. 
MOVE 12345678954 TO field-4. 
MOVE "532" TO field-50 
MOVE 12345678954967 TO field-6. 
MOVE "LM" TO field-7. 
WRITE binary-rec. 

Figure 8-21 illustrates the record produced by the code segment shown 
above: 

8-22 



FILE FORMATS 

1234568910 

2 1246.597892 

3 A B C I D I E 

4 1 2 
I 

L 12345678954 

~ 
5 

6 

5 3 2 I 
8 

'-- 12345678954967 

l 9 

10 I L M 

MR-S-050-79 

Figure 8-21 COBOL Standard Binary and ASCII Mixed-Mode Binary 

8-23 



FILE FORMATS 

8.2.6.2 COBOL SIXBIT Mixed-Mode Binary -

CODE SEGMENT: 

ENVIRONMENT DIVISION. 
INPUT-OUTPUT SECTION. 
FILE-CONTROL. 

SELECT filename ASSIGN TO DSK 
RECORDING MODE IS BINARY. 

DATA DIVISION. 
FILE SECTION. 

FD filename 
01 binary-ree 

02 field-l 
02 field-2 
02 field-3 
02 field-4 
02 field-5 
02 field-6 
02 field-7 

VALUE OF ID "DATA FIL". 
DISPLAY-6. 
PIC S9(10) COMPo 
COMP-l. 
PIC X(7). 
PIC 9(11) COMPo 
PIC X(3). 
PIC 9(14) COMPo 
PIC A(2). 

PROCEDURE DIVISION. 

LOAD-PARAGRAPH. 
MOVE 1234567891 TO field-I. 
MOVE 1234.5921 TO field-2. 
MOVE IABCDE12" TO field-3. 
MOVE 12345678954 TO field-4. 
MOVE "532" TO field-5. 
MOVE 12345678954967 TO field-6. 
MOVE "LM" TO field-7. 
WRITE binary-ree. 

Figure 8-22 illustrates the record produced by the code segment shown 
above: 

WORD 

12345678910 

1234.592175 

3 A B I c I DIE I 1 

4 2 

L 12345678954 

~ 6 

5 3 I 2 I 
8 

'-- 12345678954967 

l 9 

10 I L M I 
MR-S-051-79 

Figure 8-22 COBOL Standard Binary and SIXBIT Mixed-Mode Binary 

8-24 



FILE FORMATS 

8.2.6.3 COBOL EBCDIC Mixed-Mode Binary -

CODE SEGMENT: 

ENVIRONMENT DIVISION. 
INPUT-OUTPUT SECTION. 
FILE-CONTROL. 

SELECT filename ASSIGN TO DSK 
RECORDING MODE IS BINARY. 

DATA DIVISION. 
FILE SECTION. 

FD filename 
01 binary-rec 

02 field-l 
02 field-2 
02 field-3 
02 field .... 4 
02 field-5 
02 field-6 
02 field-7 
02 field-8 
02 field-9 

VALUE OF ID "DATA FIL". 
DISPLAY-9. 
PIC S9(lO) COMPo 
COMP-l. 
PIC X(7). 
PIC 9(11) COMPo 
PIC 9(3). 
PIC 9 (14) COMPo 
PIC A(2). 
PIC S9(5) COMP-3. 
PIC 9(8) COMP-3. 

PROCEDURE DIVISION. 

LOAD-PARAGRAPH. 
MOVE 1234567891 TO field-I. 
MOVE 1246.5978 TO field-2. 
MOVE "ABCDE12" TO field-3. 
MOVE 12345678954 TO field-4. 
MOVE "532" TO field-5. 
MOVE 12345678954967 TO field-6. 
MOVE "LM" TO field-7. 
MOVE -72539 TO field-8. 
MOVE 36193586 TO field-9. 
WRITE binary-rec. 

Figure 8-23 illustrates the record produced by the code segment shown 
above: 

8-25 



FILE FORMATS 

12345678910 

2 1246.597861 

3 A B C 0 

4 E 1 2 

L 12345678954 

l 
5 

6 

5 3 2 

8 
12345678954967 

J 9 

L M 7:2 5 :3 
I 

10 

9 :- :3 
I 

9 :3 
I 

6: 1 11 

5 :8 
I 

6 :+ 12 

MR-S-052-79 

Figure 8-23 COBOL Standard Binary and EBCDIC Mixed-Mode Binary 

8-26 



FILE FORMATS 

8.3 FILE ORGANIZATION AND ACCESS 

File organization refers to the manner in which the records are 
arranged in a file. File access refers to the method by which records 
in the file are read and written. COBOL-68 supports three types of 
file organization: sequential, random, and indexed-sequential. Each 
type of file organization has a corresponding method of access. 
Sequential files are accessed sequentially only, that is, in the order 
in which they are recorded. Random and indexed-sequential files can 
be accessed either sequentially or randomly. 

You use the ACCESS MODE clause in the Environment Division to specify 
the method of access which you wish to use. The chart below shows the 
types of COBOL-68 files and the methods by which they can be accessed. 

File Organization 

Sequential 

Random 

Indexed 

Method of Access 

Sequential 

Sequential 
Random 

Sequential 
Random 

ACCESS MODE 

SEQUENTIAL 

SEQUENTIAL 
RANDOM 

SEQUENTIAL 
INDEXED 

In the following sections, file types are described in greater detail, 
along with the methods by which they can be accessed and the manner in 
which these methods are specified. 

8.4 SEQUENTIAL FILES 

Sequential files are those files that can only be read or written 
sequentially, that is, starting at the first record in the file and 
continuing with each subsequent record until the end of the file. 
Sequential files can reside on any file medium: cards, paper tape, 
DEC tape (DECsystem-lO only), magnetic tape, and disk. If the file 
contains a large amount of data that is read and written frequently, 
it should be stored on magnetic tape or disk. Since tape storage is 
normally less expensive than disk storage, magnetic tape is often used 
for such files. However, if it is necessary to have rapid access to 
the data, disk storage can be preferable to tape storage. Sequential 
files on disk or DEC tape should not be blocked unless they are to be 
open for input/output. When the files are stored on magnetic tape, 
they should be blocked to reduce wasted space caused by inter-record 
gaps. 

A sequential file can be open for input/output (updating), but it must 
be blocked for this purpose and must reside on disk. If a sequential 
file is open for input/output, a write to the file causes writing of 
either the last record read (if the last operation was a READ) or the 
record after the last record written (if the last operation was a 
WRITE) . 

8.5 RANDOM FILES 

Random files are arranged like sequential files, but differ from 
sequential files in the method by which they are accessed and in the 
devices on which they must be stored. The following requirements must 
be fulfilled for a random file: 

8-27 



FILE FORMATS 

1. It must be on a random-access device. 

2. It must be blocked. 

Random files can be accessed sequentially by declaring ACCESS MODE IS 
SEQUENTIAL in the SELECT statement of the FILE-CONTROL paragraph. 
This declaration allows you to treat your random file exactly like a 
sequential one. If you declare this, you must deal with the records 
in the order in which they are recorded - you can not access records 
by their relative position in the file. 

Random files can be accessed randomly by declaring ACCESS MODE IS 
RANDOM in the SELECT statement. This declaration allows you to 
process records in any order you choose. You must specify the 
data-name of the item which holds the relative record number of the 
record you wish to access in the random file. This item is called the 
ACTUAL KEY, and is specified in the SELECT statement in the 
Environment Division. You must also specify the maximum range of 
relative record numbers in the FILE-LIMIT clause, which is also in the 
SELECT statement. 

The data-name specified by the ACTUAL KEY must be described in the 
Working-Storage section of the Environment Division as a COMPUTATIONAL 
item of 10 or fewer digits. Its picture can only contain the 
characters Sand 9 (or their equivalent, such as S9(4)). The ACTUAL 
KEY specifies to the object-time system the location of a record 
relative to the beginning of the file. That is, the ACTUAL KEY of the 
first record in the file is 1, that of the second is 2, and that of 
the last is n where n is the number of records in the file. 

Some records in a random file can be zero-length; that is, they do 
not have anything written in them because the file was created 
randomly. These records have ACTUAL KEYs and can be written but 
cannot be read until information is placed into them. If an attempt 
is made to read zero-length records, the INVALID KEY path is taken. 

You can create a random file by declaring its ACCESS MODE to be RANDOM 
and writing out records to the file. You can write the records either 
randomly or sequentially. To create a file randomly (that is, by 
writing into scattered or random records), you must open the file for 
output, move an integer value into the ACTUAL KEY for each record to 
be written, and write each record. To create a random file 
sequentjally, simply open the file for output and begin writing 
records. The ACTUAL KEY defaults to the next record in the file, and 
the records are entered sequentially. No zero-length records are in 
the file if it is written sequentially. 

8.5.1 Sequential Access Of Random Files 

A random file can be accessed sequentially if you specify ACCESS MODE 
IS SEQUENTIAL in the FILE-CONTROL paragraph of the Environment 
Division. Read operations on such a file retrieves succeeding 
records, starting with the first non-zero-length record on the file, 
and continuing with each successive non-zero-length record. Any 
zero-length records are skipped by the sequential read operation. A 
successful sequential READ or WRITE updates the file's ACTUAL KEY 
value to indicate the current record position. 

8-28 



FILE FORMATS 

The AT END or INVALID KEY condition occurs if: 

1. A READ is made to a non-existent record 
End-of-File 

this is logical 

2. A WRITE is made to a lo~ation containing a non-zero-length 
record 

8.5.2 Random Access Of Random Files 

A random file can be accessed at scattered locations if you specify 
the clause ACCESS MODE IS RANDOM in the FILE-CONTROL paragraph of the 
Environment Division. In this case the record accessed is the one 
indicated by the current value of the ACTUAL KEY. The first record on 
the file is assigned the key of 1, with succeeding records numbered 
2, 3, 4, .... Therefore, before you execute a random I/O operation, 
you must specify the record by moving the value you desire into the 
ACTUAL KEY for the file. Non-zero-length records can be updated by 
the use of the WRITE clause, assuming that the file is open for I/O 
and that the previous I/O operation was a successful READ of the 
record in question. 

The INVALID KEY condition occurs if: 

1. A READ is made to a zero-length record 

2. A WRITE is made to a non-zero-length record 

A random file can be treated as a sequential file by declaring its 
ACCESS MODE to be SEQUENTIAL, but the file cannot be read or written 
randomly when this declaration has been made. However, if you declare 
that the ACCESS MODE IS RANDOM, you can access the records randomly or 
sequentially. You can access the records sequentially by moving zero 
to the ACTUAL KEY and acting as if the ACCESS MODE were SEQUENTIAL. 

The following example shows the statements used to update a random 
file sequentially when the ACCESS MODE has been declared to be RANDOM. 

8-29 



FILE FORMATS 

ID DIVISION. 
PROGRAM-ID. RNDTST. 
ENVIRONMENT DIVISION. 
INPUT-OUTPUT SECTION. 
FILE-CONTROL. 

SELECT RNDOUT ASSIGN TO DSK 
ACCESS MODE IS RANDOM 
FILE LIMIT IS 100 
ACTUAL KEY IS RNDKEY. 

DATA DIVISION. 
FILE SECTION. 
FD RNDOUT 

BLOCK CONTAINS 1 RECORD 
RECORDING MODE IS ASCII 
VALUE OF ID IS "FOO FIL". 

01 RNDREC. 
03 BEGIN-REC PIC S999 USAGE COMPo 
03 MID-REC PIC 9(4). 
03 FILLER PIC X(50). 

WORKING-STORAGE SECTION. 
77 RNDKEY PIC 9(10) VALUE ZERO USAGE COMPo 
PROCEDURE DIVISION. 
START. 

OPEN INPUT-OUTPUT RNDOUT. 

READ-AND-UPDATE-PARA. 
READ RNDOUT, INVALID KEY GO TO FINISH. 
PERFORM UPDATE-ROUTINE. 

WRITE RNDREC, INVALID KEY GO TO ERROR-ROUTINE. 
GO TO READ-AND-UPDATE-PARA. 

FINISH. 
CLOSE RNDOUT, STOP RUN. 

UPDATE-ROUTINE. 

ERROR-ROUTINE. 
DISPLAY "ERROR REPLACING RECORD", DISPLAY "RNDKEY ="RNDKEY. 
GO TO FINISH. 

Figure 8-24 Statements Used to Sequentially Access a Random File 

8.6 INDEXED-SEQUENTIAL FILES 

Indexed-sequential files (also called ISAM files, for 
indexed-sequential access method) are files in which records are 
accessed through a hierarchy of indexes according to a key within each 
data record. This file organization is commonly used for applications 
in which the programmer wishes to identify and access records by the 
contents of a data field (the key) rather than the relative location 
of the record within the file. Some examples of applications for 
which this file organization is commonly used are: 

• Payroll (key is employee number) 

• Inventory control (key is part number) 

• Production control (key is job or batch number) 

8-30 



FILE FORMATS 

An indexed-sequential file consists of two files: the indexed data 
file containing the actual data and the index file containing pointers 
to record keys within the indexed data file. The location of the 
record key within each record is specified when the file is built. To 
build an indexed-sequential file, you must provide a sequential file 
and some necessary information to the ISAM program. (See Section 7.1, 
ISAM, Indexed-Sequential File Maintenance Program.) ISAM then copies 
the data from the sequential file and creates an indexed data file and 
an index file to reference the indexed data file. 

All reading and writing of the index file is performed by the 
object-time system; you need not be concerned with this function. 
When using indexed-sequential files, you need only specify which 
record is to -be read, written, rewritten, or deleted. The object-time 
system performs all searching, insertion, deletion, and updating of 
both the index and indexed data files. 

Indexed-sequential files must be accessed from disk. Also, because 
each indexed-sequential file is actually two files, two software I/O 
channels are required - one for the indexed data file and one for the 
index file. 

8.6.1 Indexed Data File 

The indexed data file can be recorded in EBCDIC, SIXBIT or ASCII; in 
any mode, the file must be blocked. When building an 
indexed-sequential file (by means of the ISAM utility program), you 
must provide a sequential file that contains record keys in the same 
relative location in each record. You are advised to sort the file in 
advance to insure that the most efficient index is built. Each record 
must have a unique key and the keys must be arranged in ascending 
order (numeric, alphabetic, or alphanumeric). You can indicate to the 
ISAM program that some records in each block are to be left empty and 
some empty blocks should be added to the file. The empty records and 
blocks are to allow for insertion or addition of new records in the 
file. 

When a program processes the indexed-sequential file, insertions and 
additions are made by the object-time system. Records are inserted in 
a block in ascending order. When there are no empty record slots in 
the block, the block is split into two more-or-less-equal blocks, and 
the record is added to the appropriate block. New blocks created by 
insertions or additions are placed in the empty blocks that were 
allocated when the file was built. If empty records and blocks were 
not provided when the file was built, the object-time system requests 
additional blocks from the monitor as needed. If the monitor cannot 
allocate additional blocks (that is, because your quota on the file 
structure is exceeded or the system's limit was reached), an error 
message is issued. 

The format of the indexed data file is similar to that of random and 
sequential files, with the following exceptions: 

1. The right half of the header word contains the size of the 
record ln bytes; the left half contains a version number. 
Only the version number of the first record of a block has 
any meaning; it pertains to all records for that block. All 
records (ASCII, SIXBIT, and EBCDIC) have a header word. 

2. All records are line-blocked; they occupy an integral number 
of words. ASCII records always end with a single carriage 
return/line feed pair. 

8-31 



FILE FORMATS 

3. For ASCII records, the left half of the header word contains 
a version number, bits 18 through 34 contain the size of the 
record in bytes, and bit 35 is always 1. 

Figure 8-25 shows the structure of an ISAM data file. 

IN .IDA FILE 

.IDA BLOCK STRUCTURE 

DATA RECORD STRUCTURE 

HEADER WORD BLOCK NUMBER NO. OF CHARACTERS 
(SIXBIT OR ASCII) 

DATA WORDS SIXBIT OR ASCII DATA (NOTE ON PADDING CHARACTERS 
ZEROES FOR ASCII, AND SPACES FOR SIXBIT) 

MR-S-053-79 

Figure 8-25 ISAM Data File Structure 

8.6.2 Index File 

The index file is created by the ISAM program from the description of 
the input sequential data file and your parameters. It contains to 
ten levels of indexes, the lowest of which contains pointers to the 
record keys in the data file. Each successive level of index points 
to all blocks containing the next lower-level index. The highest 
level index is contained in one block and points to the blocks 
containing the next lower-level index. Index levels are provided so 
that the entire index need not be searched each time that a record key 
is accessed. When a record key is accessed, the object-time system 
reads the highest-level index to find which lower-level index contains 
a pointer to the approximate location of that key. The block of the 
next lower-level index that contains the approximate location of the 
key is then searched. If this is the lowest-level index, it points to 
the first record of the data block in which the record is stored. The 
data block is then searched for the appropriate record key, and the 
record is made available. If this is not the lowest-level index, the 
next lower level is searched until the lowest level is reached. 
Figure 8-26 illustrates the search. 

8-32 



POINTERS 
TO NEXT 

FILE FORMATS 

POINTERS 
TO NEXT 

POINTERS 
TO DATA 

BLICKS 

~ rKEYS 

r------r-~.L, 

1 • 

2 D 

3 G 

LEV IEL 

USERS LEV IEL rKEYS INDEX BLOCK 1 

:~~~~~T!ITH rKEYS 
r----r--'--1--r---L-,. 

KEY~ 

:~~:~::---1R-I* I------I-I
NDEX 

.:oC

J

K

I-0

4

1-----' : : \ 

'NDEX .LOCK 6 ,NDEX .LOC~ 2 \ 
INDEX LEVEL 2 

(HIGHEST) 

*=LOW VALUES 

I
R 

INDEX BLOCK 5 

8 V 

9 Y I
R 

INDEX LEVEL 1 INDEX BLOCK 3 
(INTERMEDIATE) INDEX LEVEL 0 

(LOWEST) 

INDEX FILE 

T 
I 

DATA BLOCK 1 

I 
DATA BLOCK 2 

I 
DATA BLOCK 3 

DATA BLOCK 4 

DATA FILE 

MR-S-054-79 

Figure 8-26 Locating a Record in an Indexed-Sequential File 

The format of the index file is more complex than that of the indexed 
data file. Figure 8-27 shows an overview of the structure of the 
index file. 

8-33 



IN .IDX FILE 

./OX BLOCK STRUCTURE 

HEADER WORD 1 

HEADER WORD 2 

INDEX ENTRIES 

FILE FORMATS 

INDEX LEVEL NO. OF CHARS IN BLOCK 
(AS IF SIXBIT) 

I VERSION NO. OF THIS BLOCK 

AS SPECIFIED IN ISAM DIALOG 

INDEX ENTRY STRUCTURE 

WORD 1 

WORD 2 

WORDS 3·11 

I POINTER TO NEXT LOWER LEVEL OF INDEX OR DATA 

I VERSION NO. OF BLOCK POINTED TO 

VALUE OF KEY COMPUTATIONAL IF NUMERIC 
OR SIXBIT CHARACTERS 

MR-S-055-79 

Figure 8-27 ISAM Index File Structure 

Each index block in an indexed-sequential file is written as if it 
were a block of a SIXBIT file. The format of the block is: 

header word 1: 

header word 2: 

is the header word. The right half contains 
the size of the index block in characters, as 
if it were SIXBIT (that is, six characters 
per word). The left half contains a number 
representing the level of the index (the 
lowest level is 0). 

contains the version number. This is 
initially set to 0 by the ISAM program, and 
is incremented by 1 whenever this block is 
divided due to the insertion of an entry when 
a WRITE is executed. 

Following word 2 are the index entries. Each entry has the format: 

word 1: 

word 2: 

contains the pointer to a data block (if this 
is index level 0) or a pointer to the next 
lower-level index block (if this is index 
level 1 or higher). 

contains the version number of the index or 
data block to which the index entry points. 

8-34 



FILE FORMATS 

words 3-11: contain the value of a key. If the key is 
nonnumeric, it extends over as many words as 
are necessary. If the key is numeric, it is 
kept in COMPUTATIONAL form (even if the 
record key for the file is DISPLAY). It is 
one word· if 10 or fewer digits are in the 
key; it is two words if 11 or more digits 
are in the key. If the key is 
COMPUTATIONAL-l (floating point), it is one 
word. 

NOTE 

Take special care to describe your key 
fields in exactly the same way in both 
the ISAM program and your COBOL program. 
For example, if you describe your key 
field as S9(10) DISPLAY to ISAM, you 
should describe it the same way in your 
COBOL program. By using the same 
descriptions you ensure that appropriate 
key matches are made, and that the same 
amount of storage is generated in both 
the ISAM file and its record area in 
memory. 

within the index file, in addition to the index blocks, are two other 
blocks: the statistics block and the storage allocation table. The 
statistics block is a header containing all the necessary information 
about the index file and the indexed data file. Included in these 
statistics are: the name and extension of the data file, the number 
of levels in the index, the blocking factor, and a description of the 
record key. The storage allocation table is a bit table that shows 
which data blocks are in use and which are free. There are as many 
blocks of this table as are necessary to contain this information. 

In constructing an ISAM file you must consider not only optimizing 
disk block usage, but also the number of levels of indexes in the 
index file. An indexed-sequential file should be constructed so that 
it does not require more than three levels of index, because the more 
levels of index there are, the slower the access of the data will be. 
Indeed, it is usually a simple matter to restrict a file of moderate 
size to two levels of index. For example, if the maximum file is to 
be 200,000 records, the blocking of the indexed data file could be 20 
records per block and that of the index file 100 entries per block. 
Since 

100*100*20 = 200,000 

the file never needs more than two levels 
occasionally maintained using the ISAM program. 

8-35 

of index if it 
(See Section 7.1) 

is 





CHAPTER 9 

SIMULTANEOUS UPDATE 

The COBOL-68 simultaneous update facility allows sequential, random, 
or indexed-sequential data files to be updated concurrently by two or 
more running jobs. That is, it is possible for several truly 
independent jobs to modify, insert, and delete records in the same 
data files without loss of information or file integrity. 
Simultaneous update, under the control of COBOL-68, allows multiple 
users to share resources at the file level while having exclusive 
control of a portion of that resource at the record level. 

You should also refer to Part 2 of this manual, COBOL-68 Language 
Reference Material, for the simultaneous update features of the OPEN, 
RETAIN, and FREE statements. To declare in your program that a file 
is being processed concurrently with other programs, use the 
appropriate syntax available with the OPEN statements. (See Section 
9.1.1, The OPEN Statement.) The OPEN statement identifies the file as 
being open for simultaneous update and excludes most users from 
accessing it until you are ready to release it. However, users who 
attempt to open a file for READ access only, can open the file even if 
you already have it open under simultaneous access. The file is not 
released until you expressly close it by issuing a CLOSE statement. 

To gain exclusive control of individual records within the file, use 
the RETAIN statement. (See Section 9.1.2, The RETAIN 
Statement.) This statement inhibits any other user from accessing the 
retained records until you have finished processing them. Records 'can 
be released either: 

• Explicitly, by issuing a FREE statement (see Section 9.1.3, 
The FREE Statement) 

• Implicitly, by exhausting the verb selection specified on the 
preceding RETAIN statement 

You are advised to make careful use of the RETAIN statement in order 
to avoid the two most common problems that can occur using 
simultaneous update. The first, buried update, occurs when two users 
are updating the same record concurrently and one user's update is 
overlaid by the other's. (See Figure 9-1, The Problem of Buried 
Update.) The second is deadly embrace. It occurs when two users make 
conflicting demands upon the file resources and neither is willing or 
able to yield to the other. This results in both users being stalled 
waiting for the other to relinquish control. (See Figure 9-2, The 
Problem of Deadly Embrace.) Both of these problems can be avoided by 
carefully declaring the resources needed with a RETAIN statement prior 
to performing any I/O operations on a shared file. 

9-1 



SIMULTANEOUS UPDATE 

. FILE RESOURCE IS AVAILABLE TO ALL USERS INDISCRIMINANTLY 

1. PROGRAM A 

ACCEPT KEY·A 
READ FILE-A 

2. 
PROGRAM B 

ACCEPT KEY-A 
READ FILE-A 

3_ 

PROGRAM A 

REWRITE RECORD-A 

4. 
PROGRAM B 

REWRITE RECORD-A 

NOTE: PROGRAM A'S UPDATE IS NOW LOST. 

MR-S-056-79 

Figure 9-1 The Problem of Buried Update 

9-2 



1. 

2. 

3. 

4. 

SIMULTANEOUS UPDATE 

INDIVIDUAL FILE RESOURCES ARE AVAILABLE TO ONLY ONE USER AT 
ONE TIME. 

PROGRAM A 

ACCEPT KEY-A 
READ FILE-A WITH LOCK 

PROGRAM B 

ACCEPT KEY-B 
READ FILE-B WITH LOCK 

PROGRAM A 

ACCEPT KEY-B 
READ FILE-B WITH LOCK 

(PROGRAM A IS DENIED ACCESS TO KEY-B OF FILE-BI 

PROGRAM B 

ACCEPT KEY-A 
READ FILE-A WITH LOCK 

(PROGRAM B IS DENIED ACCESS TO KEY-A OF FILE-AI 

NOTE: PROGRAMS A AND B ARE NOW STALLED, AS EACH HAS A LOCK ON A 
RESOURCE THAT THE OTHER WANTS, AND NEITHER CAN GIVE UP THE 
RESOURCE THAT THEY ALREADY HAVE A LOCK ON. 

MR-S-057-79 

Figure 9-2 The Problem of Deadly Embrace 

9.1 PROGRAMMING CONSIDERATIONS 

Simultaneous update allows you to declare the usage you want at both 
the file and record level. It also allows you to declare the usage 
you are allowing others to have while you have control of the file. A 
central clearing house in the COBOL-68 object-time system correlates 
these projections and takes one of three actions with respect to the 
intent of each user: 

• Allows the process to proceed 

• Suspends the process until the required resource is available 

• Returns with a message to the effect that the process cannot 
proceed at this time 

You declare file usage by specifying which of the COBOL-68 
input/output verbs you execute during your tenure of the file or 
record and which you allow others to execute. Once allowed to 
proceed, you are bound by the object-time system to act within the 
scope of your projections and are stopped if you attempt to do 
otherwise. For example, if you open a file for a read operation and 
then issue a write you are stopped from doing so. See Figure 9-3 for 
an outline of how resources can be declared for simultaneous update. 

9-3 



PROCEDURE DIVISION. 
BEGIN-PARAGRAPH. 

SIMULTANEOUS UPDATE 

OPEN 1-0 FILE-NAME-l FOR [verb selection] 
ALLOWING OTHERS [verb selection] 

UNAVAILABLE [Object statements]. 

LOOP-PARAGRAPH. 
[Generate key values for records to be 

retained] 
RETAIN FILE-NAME-l RECORD KEY .•• 

FOR [verb selection] 
UNTIL FREED 

UNAVAILABLE [Object statement]. 

1-0 verb selection as appropriate. 
Including READ, WRITE, DELETE, 
REWRITE. 

FREE [appropriate file records]. 
GO TO LOOP-PARAGRAPH. 

END-OF-JOB. 
CLOSE FILE-NAME-l .•. 

(File-wide spec­
ification'of 
resources) 

(Specification 
of record re­
sources to be 
retained and 
manipulated 
within the 
context of a 
user-defined 
transaction) 

(Release of 
file-wide 
resource) 

Figure 9-3 Declaring Resources For Simultaneous Update 

9.1.1 The OPEN Statement 

The OPEN statement is the vehicle by which you declare a file is being 
used for simultaneous update. It allows you to specify: 

• Your projected usage of the file in terms of the I/O 
operations you wish to perform 

• The projected usage you are willing to allow others in terms 
of the I/O operations they are allowed to perform 

Figure 9-4 shows the general format of the OPEN statement. 

9-4 



SIMULTANEOUS UPDATE 

{5~~~~T} file-name-I [WITH NO REWIND] [,file-name-2[WITH NO REWIND]]. •• 

! 

READ It ! READ I] REWRITE REWRITE 
FOR WRITE AND WRITE ..• 

DELETE QU.lli 
ANY VERB ANY VERB 

{~UT -OUTPUT} fi le-name-3 

[

ALLOWING OTHERS! ~~~~ITE I tND ! ~~C~ITE IJ .. J ---- WRITE -- WRITE 
DELETE DELETE 
ANY VERB ANY VERB 

OPEN 

, fi le-name-4 [EQR! ~~~~~TE I t.8.!:ill 1 ~~~~~TE I] ... 
DELETE DELETE 
ANY VERB ANY VERB 

[
ALLOWING OTHERS! ~TE ItND ! ~TE I]· .Jl 

DELETE DELETE I I 
.8NY VERB llli1. VERB U 

[EXTEND] fi le-name-5 [ fi le-name-6 ] .•• 

[UNAVAILABLE statement-I. [,statement-2] ••• ] -=-

Figure 9-4 The OPEN Statement 

The following rules apply to the use of an OPEN statement for files 
being processed under simultaneous update: 

1. To open a file under simultaneous update, the ALLOWING OTHERS 
clause must be specified. 

2. Every user, that is, every program expecting to process the 
file concurrently, must open the file either under 
simultaneous update or for input only. Other users are 
denied access. 

NOTE 

File access is determined on a first come first 
served basis. Therefore, if the first user opens a 
file for simultaneous update, all others must 
likewise open it under simultaneous update - unless 
the user who is not under simultaneous update wishes 
to open the file for READ access only. Conversely, 
if a file is open for normal processing, users 
attempting to open it under simultaneous update are 
denied access. See Figure 9-5, Competing For Program 
Access to Files. 

9-5 



SIMULTANEOUS UPDATE 

3. The file must be OPEN in I/O mode. 

4. The COBOL-68 I/O verbs you intend to execute must be entered 
following the key word FOR. 

5. The COBOL-68 I/O verbs you are willing 
execute must be entered following 
OTHERS. 

to allow others to 
the key words ALLOWING 

6. All files to be opened for simultaneous update must be opened 
in the same OPEN statement. Multiple OPEN statements for 
simultaneous update are not allowed. Therefore, before 
another file can be opened for simultaneous update, the 
previously opened files must be closed. This prevents deadly 
embrace at the file level. 

7. You can use the same OPEN statement to open files for 
simultaneous update as well as for normal processing. 

8. A maximum of sixteen (16) files can be opened by a single 
OPEN statement. In fact, a maximum of sixteen files can be 
open at once, regardless of the number of OPEN statements 
involved in opening them. 

9. If one or more of the files being opened for simultaneous 
update is not available in the mode specified, the program 
requesting the OPEN is suspended until the requested file is 
available. Those files, if any, that were opened during the 
process remain open~ Control is not returned to the program 
until all !of the requested files are open. If the 
UNAVAILABLE clause is specified, no file is opened, even 
though available, until all of the requested files are 
available. In this case, the statements following the 
UNAVAILABLE clause are executed. 

10. The I/O verbs specified in the OPEN statement are the only 
verbs that can be used to process the file. Likewise, the 
I/O verbs you allow others to use are the only ones available 
to them. Any attempt to use verbs other than the ones 
specified causes the object-time system to abort the program. 

Example 9-1 

OPEN I/O FILE-A FOR READ AND WRITE, 

ALLOWING OTH&RS READ AND WRITE. 

Example 9-2 

OPEN OUTPUT FILE-A, LIST, 

INPUT-OUTPUT FILE-B FOR READ AND REWRITE, 
OTHERS ANY 

FILE-C FOR READ, 
OTHERS READ AND REWRITE, 

FILE-D FOR ANY, 
OTHERS NONE, 

INPUT FILE-E WITH NO REWIND, 
1-0 FILE-F, FILE-G FOR WRITE. 

9-6 



SIMULTANEOUS UPDATE 

Example 9-3 

OPEN I-O FILE-A FOR READ AND WRITE, 
OTHERS ANY, 

UNAVAILABLE OPEN I-O FILE-A FOR READ, 
OTHERS ANY, 
UNAVAILABLE STOP RUN . 

. WITH AND WITHOUT SIMULTANEOUS UPDATE 

1. 
PROGRAM A 

OPEN FI LE·A FOR 

~ 
SIMUL TANEOUS UPDATE 

2. 
PROGRAM B 

OPEN FILE·A FOR 
INPUT ONL Y 

/ 3. 
PROGRAM C 

OPEN FILE·A WITHOUT 
SIMULTANEOUS UPDATE 

1. 
PROGRAM C 

FILE·A () 

OPEN FILE·A WITHOUT ~ 

r--__ 

SI

_

M

_

U 

L_T_A_NE_O_U_S _U_PD_A_T_E --. ~( FI LE.A () 

PROGRAM A ..---1'. - . 2. 

OPEN FILE·A UNDER 
SIMULTANEOUS UPDATE 

MR-S-058-79 

Figure 9-5 Competing For Program Access to Files 

9.1.2 The RETAIN Statement 

The RETAIN statement allows you to gain exclusive control of 
individual records within a file that was previously opened for 
simultaneous update. Figure 9-6 shows the general format of the 
RETAIN statement. 

9-7 



SIMULTANEOUS UPDATE 

RETAIN file-name-l RECORD [KEY {identifier-I}] 
literal-I 

READ 
REWRITE 
READ-REWR ITE 

FOR DELETE AND 
WRITE 
READ-WRITE 
ANY VERB 

• fi le-name-2 RECORD [KEY 

READ 
REWRITE 
READ-REWRITE 

FOR DELETE AND 
WRITE 
READ-WRITE 
ANY VERB 

[UNAVAILABLE statement-l 

READ 
REWRITE 
READ-REWRITE 
DELETE 
WRITE 
READ-WRITE 
ANY VERB 

{ identifier-2}] 
literal-2 

READ 
REWRITE 
READ-REWRITE 
DELETE 
WRITE 
READ-WRITE 
ANY VERB 

[,staternent-2 ] 

Figure 9-6 The RETAIN Statement 

[ UNT IL FREED] 

[ UNTI L FREED] 

'rhe following general rules apply to the use of the RETAIN statement. 
For a description of how the RETAIN statement is used for the 
individual file types - sequential, random, indexed-sequential see 
Sections 9.1.4, 9.1.5, and 9.1.6 respectively. (See also the COBOL-68 
Language Reference Material, Part 2 of this manual.) 

1. The file(s) named in a RETAIN statement must 
previously opened under simUltaneous update. 
object-time system aborts the program. 

have been 
If not, the 

2. A RETAIN statement must be given before any record on a file 
opened for simUltaneous update can be accessed. 

3. You can use the same RETAIN statement to reserve records on 
sequential, random, or indexed-sequential files. The I/O 
verbs selected, however, must conform to those allowed for 
the file. 

4. All records to be retained concurrently must be retained with 
the same RETAIN statement. Once records have been retained, 
no other records can be retained until the currently retained 
records are freed. 

9-8 



SIMULTANEOUS UPDATE 

5. The retention of records is purely a logical operation and 
does not involve any actual I/O. You can, in fact, retain 
nonexistent records. Obvious~y, any attempt to read or 
rewrite any of these records could result in an I/O error 
that could cause your program to be terminated. (See note 
6.) 

6. A RETAIN statement, consistent with note 5, does not cause an 
AT END condition. This can only be caused by a READ 
statement. The RETAIN statement in this case merely retains 
a nonexistent record after the last one in the file. 

7. If you retain a record for a READ operation, other users are 
allowed concurrent access to that record for READ. If you 
retain a recbrd for any other type of I/O, all other users 
are denied access until you have freed it. 

8. The I/O usage you specify in a RETAIN statement must agree 
with the usage you specified in the OPEN statement for the 
file. For example, if you want to retain a record for a 
WRITE operation, you must have specified WRITE in the OPEN 
statement for the file. This holds true as well for the ANY 
VERB option. The key words ANY VERB must appear in the OPEN 
statement if you want to use them in a RETAIN statement. 

9. The records named in the RETAIN statement are automatically 
freed upon execution of the I/O verbs specified in the FOR 
clause. The only exceptions are: 

a. If the ANY VERB option is specified in the FOR clause, a 
FREE statement must be issued to release a record. 

b. If the UNTIL FREED option is specified, a FREE statement 
must be issued to release a record. 

NOTE 

The UNTIL FREED option allows you to 
retain several logically related 
records for processing without their 
being automatically freed by the I/O 
verbs. 

c. If an I/O verb is specified in a RETAIN statement but 
that verb is not executed, the record is not freed until 
a FREE statement is issued. 

10. The KEY phrase allows you to specify a particular record or 
more than one record in a file. 

11. The value of the key can be specified by any identifier that 
can be subscripted, qualified, or both. Its usage, however, 
must be COMPUTATIONAL. For example: 

RETAIN FILE-A RECORD 
KEY PAY-REC OF RECORD-KEYS 
FOR READ-REWRITE. 

9-9 



SIMULTANEOUS UPDATE 

It can also be a positive numeric literal containing from 1 
to 10 digits. You can, for example, enter: 

RETAIN FILE-A-RECORD 
KEY 123 
FOR READ-REWRITE. 

12. The optional word RECORD can be used as a reminder that you 
are retaining records, not files. For example: 

RETAIN FILE-A RECORD FOR READ. 

retains the next record in FILE-A. Be aware, though, that in 
most cases the RETAIN statement actually locks up the block 
in which the requested record resides. The only time this is 
not true is in the case of an indexed-sequential file which 
is open for WRITE access; if you retain a record in this 
file, the entire file is locked until the record is freed. 
This is because all the index blocks must be locked until any 
new record is placed into the file. 

9.1.3 The FREE Statement 

The FREE statement explicitly frees records that have been retained 
for simultaneous update. Figure 9-7 shows the general format of the 
FREE statement. 

f i 1 e - n arne - 1 

1 

RECORD [KEY {i?entifier-l}] l - llteral-l 

EVERY RECORD 

[ ,fil e-name-2 1 
RECORD [KEY {i?entifier-2}] l] - llteral-2 

EVERY RECORD 

EVERY RECORD 

[NOT RETAINED statement-l [,statement-2] ... ]_ 
MR-S-1055-81 

Figure 9-7 The FREE Statement 

The following general rules apply to the use of the FREE statement. 
For a description of how the FREE statement is used with the 
individual file types - sequential, random, and indexed-sequential 
see Sections 9.1.4, 9.1.5, and 9.1.6 respectively. (See also the 
COBOL-68 Language Reference Material, Part 2 of this manual.) 

9-10 



SIMULTANEOUS UPDATE 

1. The FREE statement is required to explicitly release records 
that have not been implicitly released by an I/O statement. 
This could occur when: 

a. The RETAIN statement contains the UNTIL FREED phrase 

b. An I/O statement is not issued after the RETAIN statemeht 

c. The FOR clause of the RETAIN statement specifies ANY VERB 

2. The EVERY RECORD phrase allows you to free all of the records 
retained or just those of a particular file. It saves you 
from having to issue a separate FREE statement for every 
record that was retained. 

3. When the EVERY RECORD phrase is used, the NOT RETAINED 
condition occurs only if no records are currently retained or 
if no records in a specific file are retained. 

4. The NOT RETAINED phrase specifies the COBOL statements to be 
executed in the event that one or more of the record(s) you 
are attempting to free have not been retained. If this 
phrase is not specified, the program continues and you are 
not notified of any possible error. 

5. A FREE statement issued to a file that was not opened for 
simultaneous update causes the statements following the NOT 
RETAINED phrase, if present~ to be executed. If the NOT 
RETAINED phrase was not specified in this case, the program 
continues and you are not notified of a possible error 
condition. 

6. A single FREE statement can be used to free records retained 
from all open files, regardless of file type. 

7. All records, regardless of how they were retained, are 
automatically freed when the file is closed. 

9.1.4 Accessing Sequential Files 

The following sections describe how to use the RETAIN and FREE 
statements to access records in a sequential file. 

9.1.4.1 Basic Reading - The simplest way to read a sequential file 
opened for simultaneous update is to execute pairs of statements like 
this: 

RETAIN FILE-A FOR READ. 

READ FILE-A AT END GO TO EOJ. 

The RETAIN statement declares your intent to read the next record of 
FILE-A. The READ statement delivers the next record to the file's 
record area in memory, and automatically frees it for use by other 
users. 

9-11 



SIMULTANEOUS UPDATE 

9.1.4.2 Basic Writing - Basic writing of a sequential file opened for 
simultaneous update is analogous to basic reading. For example, you 
could use code that looks like this: 

RETAIN FILE-A FOR WRITE. 

(process record) 

WRITE FILE-A-RECORD. 

In this case, FILE-A-RECORD is written out to FILE-A and automatically 
freed for access by other users. 

9.1.4.3 Basic Updating - To update the next record in a file open for 
simultaneous upate, you can use statements that look like this: 

RETAIN FILE-A FOR READ-REWRITE. 

READ FILE-A AT END GO TO EOJ. 

REWRITE FILE-A-RECORD. 

FILE-A-RECORD is automatically released upon execution of the REWRITE 
statement because both verbs named in the RETAIN statement have been 
executed. If only one or none of the verbs were executed, the record 
would not have been freed and any attempt to RETAIN any other records 
would fail. 

If, however, your application is such that you can or can not want to 
update a record once it has been read, code of this nature could be 
used: 

RETAIN FILE-A FOR READ-REWRITE. 

READ FILE-A AT END GO TO EOJ. 

IF CHANGED REWRITE FILE-A-RECORD 
ELSE FREE FILE-A. 

9.1.4.4 Access to Sequential File Strategies - There are two reasons 
why the basic reading, writing, and updating of sequential files as 
outlined in Sections 9.1.4.1, 9.1.4.2, and 9.1.4.3 are not sufficient 
for some applications: 

1. Performance 

2. Logically related records 

Each time you retain a record and that record happens to be already in 
your buffer, it is necessary to refill that buffer from mass storage 
to make sure that you have the very latest copy. Similarly, each time 
a record that you have written or rewritten is implicitly or 
explicitly freed, you must be certain that it is the very latest copy, 

9-12 



SIMULTANEOUS UPDATE 

and that no other user has updated that record in the interim. These 
considerations have little effect on the performance of random or 
indexed-sequential files accessed randomly, but the effect on 
sequentially processed files is profound. Processing a file with a 
blocking factor of ten, as suggested in Sections 9.1.4.1, 9.1.4.2, or 
9.1.4.3, would require an order of magnitude more input/output 
overhead than it would if you were not using simultaneous update mode. 
This is the performance reason for using more sophisticated coding 
techniques. Sometimes, several records in a file are logically 
related and must be updated together. For example, a header record 
and subsequent trailer records might be logically related in such a 
way that the trailer records cannot be changed unless the header 
record remains static. But with the basic techniques outlined in 
Sections 9.1.4.1, 9.1.4.2, and 9.1.4.3, only a single record can be 
retained at a time. This is the logically-related-records reason for 
more sophisticated coding techniques. 

The first step in providing for more sophisticated code is the 
introduction of a notation for addressing the records of a sequential 
file. The notation is this: record 0 is defined as the next record 
to be read or written. Records 1, 2, 3, through n are defined 
relative to record O. 

NOTE 

If you have just written a record, the 
next record to be written is the one 
following it. If you have just read a 
record, however,. the next record to be 
written is the one just read. 
Therefore, if you have just read a 
record and then you retain record 0 for 
WRITE, you have in effect retained the 
record just read. If, however, you have 
just read a record and then you retain 
record 0 for READ-WRITE, you have 
effectively retained the next record in 
the file. 

Sequential file users should code for performance by retaining several 
records at a time. 
retained is a multiple 
RETAIN statement is 
RETAIN statement for a 
this: 

Performance is optimal if the number of records 
of the blocking factor and the execution of the 
synchronized with logical block boundaries. A 
file whose b19cking factor is 5 might look like 

RETAIN FILE-A KEY 0 FOR READ, 

FILE-A KEY 1 FOR READ, 

FILE-A KEY 2 FOR READ, 

FILE-A KEY 3 FOR READ, 

FILE-A KEY 4 FOR READ. 

9-13 



SIMULTANEOUS UPDATE 

This would then be followed by READ and/or FREE statements until all 
records have been freed. Subsequent FREE statements use the same 
notation for freeing records as was used for retaining them. Thus: 

RETAIN FILE-A KEY 0 FOR READ, 

FILE-A KEY 1 FOR READ. 

READ FILE-A AT END GO TO EOJ. 

FREE FILE-A KEY 1. 

causes the second record of the pair to be freed, not the next one in 
the file. 

Providing a notation for referencing several records of a sequential 
file is not enough for updating several logically related records 
together. It is also necessary to retain a record, even though you 
are through with it, until all of the related records have been 
processed. The UNTIL FREED phrase is provided for this purpose. It 
allows you to bypass the automatic freeing of records and retain them 
until you are ready to expressly free them. Also, to facilitate the 
freeing of multiple records, the EVERY RECORD phrase is provided. It 
allows you to free every record retained or every record in a 
particular file. Thus, to update three logically related records in a 
particular file, you can code: 

RETAIN FILE-A KEY 0 FOR READ-WRITE 
UNTIL FREED, 

FILE-A KEY 1 FOR READ-WRITE 
UNTIL FREED 

FILE-A KEY 2 FOR READ-WRITE. 

READ FILE-A AT END GO TO EOJ. 

WRITE FILE-A-RECORD. 

READ FILE-A AT END GO TO EOJ. 

WRITE FILE-A-RECORD. 

READ FILE-A AT END GO TO EOJ. 

WRITE FILE-A-RECORD. 

FREE FILE-A EVERY RECORD. 

You could also use the ANY VERB phrase to accomplish the same results. 
For example: 

RETAIN FILE-A KEY 0 FOR ANY VERB 

results in your having to expressly free the record when you have 
finished with it. 

9-14 



SIMULTANEOUS UPDATE 

When retaining records, the program is normally suspended if any of 
the requested files or records are unavailable. You are not notified 
of this suspension unless you have provided the UNAVAILABLE phrase as 
part of the RETAIN statement. The UNAVAILABLE phrase allows you to 
specify a procedure to be followed in the event a record or file is 
unavailable at the time your program attempts to access it. For 
example: 

RETAIN FILE-A KEY 0 FOR ANY VERB 
UNAVAILABLE PERFORM UNAVAIL-RTN. 

This instruc~s the object-time system to execute the statement 
following the word UNAVAILABLE in the event that the file (FILE-A) or 
the next record in the file is unavailable at the time the RETAIN 
statement is executed. 

Similarly, if you execute a FREE statement for a record or records 
that are not currently retained -by your program, the object-time 
system proceeds to the next instruction in your program as though the 
condition did not exist. If you wish to be informed of this 
condition, you must provide the NOT RETAINED phrase in the FREE 
statement. The NOT RETAINED phrase causes the object-time system to 
execute the procedures immediately following the words NOT RETAINED. 
A FREE statement of this kind might look like this: 

FREE FILE-A KEY 0 NOT RETAINED 
GO TO ERROR-RTN. 

9.1.5 Accessing Random Files 

Accessing records in a random file is similar to 
sequential file records. (See Section 9.1.4.) 
these differences: 

the accessing of 
There are, however, 

1. If a key is not specified, the ACTUAL KEY specified in the FD 
for the file is used. 

2. positive keys, whether specified directly or with ACTUAL KEY, 
designate fixed (absolute) records of the file (as opposed to 
designating records relative to the current record). Thus, 
record 1 is always the first record of the file, not the next 
record. A zero key, on the other hand, is interpreted in the 
same way as for sequential files: record 0 is defined as the 
next record to be read or written. 

3. A RETAIN statement, by virtue of its not performing any 
actual I/O, cannot generate an INVALID KEY condition. 

Example 9-4 demonstrates reading a random file sequentially. 

Example 9-4 

A. MOVE ZERO TO FILE-A-KEY. 

RETAIN FILE-A FOR READ. 

READ FILE-A RECORD; INVALID KEY GO TO ERROR-RTN. 

GO TO A. 

9-15 



SIMULTANEOUS UPDATE 

Example 9-5 shows how a file can be processed randomly. Note that the 
UNTIL FREED clause is used to insure that no one can access the record 
until it is written. 

Example 9-5 

A. PERFORM RANDOM-KEY-GENERATION. 

RETAIN FILE-A KEY GENERATED-KEY 
FOR READ-WRITE UNTIL FREED. 

READ FILE-A INVALID KEY GO TO ERR-RTN. 

WRITE FILE-A-RRCORD. 
FREE FILE-A RECORD. 
GO TO A. 

Example 9-6 shows how to use a field within a record as the ACTUAL KEY 
for processing a chain of related records in a random file. Procedure 
A initializes processing with record number 64. Procedure B insures 
that record 64 is stable, that is, that it has not been changed by 
some other user after you read it and that it is not changed while you 
are processing it. 

Example 9-6 

A. MOVE 64 TO FILE-A-REL-KEY. 

RETAIN FILE-A FOR READ. 

READ FILE-A INVALID KEY GO TO ERR-RTN. 

B. RETAIN FILE-A FOR READ-REWRITE 

FILE-A KEY NUMBER OF FILE-A-RECORD 
FOR READ-REWRITE. 

READ FILE-A INVALID KEY GO TO ERR-RTN. 

IF (record not stable) FREE FILE-A EVERY RECORD. 
GO TO B. 

C. (process record 64 and record pointed to by NUMBER) 

9.1.6 Accessing Indexed-Sequential Files 

Accessing records in an indexed-sequential 
accessing of sequential file records. 
are, however, these differences: 

file is similar to the 
(See Section 9.1.4.) There 

1. You can retain records for REWRITE, DELETE, and READ-REWRITE, 
in addition to READ, WRITE, and ANY VERB. You can not retain 
a record for READ-WRITE. 

2. If no key is specified, the RECORD KEY defined in the SELECT 
statement for the fiLe is used. 

9-16 



SIMULTANEOUS UPDATE 

3. If a key is supplied, it must be specified with an identifier 
that agrees with the file's RECORD KEY in size, class, usage, 
and number of decimal places. The only exception is a key 
whose usage is COMP; in th,is case, a positive numeric 
literal of ten or fewer digits can be used. 

4. Retaining or freeing records does not affect the "remembered" 
key of the file; that is, the record which would be read by 
a READ NEXT statement would be the same before and after a 
RETAIN or a FREE statement. 

Example 9-7 demonstrates how an indexed-sequential file can be 
processed sequentially. 

Example 9-7 

A. RETAIN FILE-A KEY FILE-A-KEY 
FOR READ. 

READ FILE-A NEXT RECORD; INVALID KEY GO TO ERR-RTN. 

GO TO A. 

Example 9-8 shows the random processing of an indexed file. Note how 
the UNTIL FREED statement is used to insure the stability of the 
record. 

Example 9-8 

A. ACCEPT DATA-KEY. 

RETAIN FILE-A KEY DATA-KEY 
FOR READ-REWRITE UNTIL FREED. 

READ FILE-A INVALID KEY GO TO ERR-RTN. 

DISPLAY FILE-A-RECORD. 

B. (process and update record if you wish) 

C. FREE FILE-A-RECORD. 

GO TO A. 

9-17 





CHAPTER 10 

REPORT WRITER 

The COBOL compiler offers a report writing facility, REPORT WRITER. 
Using this facility can make it easy to format printed reports. 

The example program on the following pages shows how to use the major 
features of REPORT WRITER. The full formats and available options for 
each statement are discussed in detail in the COBOL-68 Language 
Reference Material, Chapter 4 of this manual. 

10-1 



REPORT WRITER 

PRO G RAM REP E X M 
lS-JAN-81 lS:19 

COBOL-68 12B(lllS) BIS 
PAGE 1 

REP1.CBL lS-JAN-81 lS:20 

0001 
0002 
0003 
0004 
OOOS 
0006 
0007 
0008 
0009 
0010 
0011 
0012 
0013 
0014 
001S 
0016 
0017 
0018 
0019 
0020 
0021 
0022 
0023 
0024 
002S 
0026 
0027 
0028 
0029 
0030 
0031 
0032 
0033 
0034 
0035 
0036 
0037 
0038 
0039 
0040 
0041 
0042 

ID DIVISION. 
PROGRAM-ID. REPEXM. 

* ************************************************************** 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 

This program is an example of the use of REPORT WRITER. 

The program generates two reports: one is a list of 
customers by city and statei the other is a list of 
totals for each state. 

The two reports are generated at one time and into one 
file. The line printer spooler can separate them at the 
time they are to be printed. 

* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 

* ************************************************************** 

ENVIRONMENT DIVISION. 
CONFIGURATION SECTION. 
SPECIAL-NAMES. 

* ************************************************************** 
* * 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 

Report Codes (Line 37) * 
* 

The following entry in the SPECIAL-NAMES paragraph of the * 
CONFIGURATION SECTION defines the codes 'A' and 'B' for * 
the two reports we are going to generate. The line printer * 
spooler can separate them when we use the /REPORT switch * 
with the system QUEUE command. For example, to print * 
both reports, we would use * 

Q LL:=CUSTMR.LPT/REPORT:A,CUSTMR.LPT/REPORT:B 
* 
* 
* 

* ************************************************************** 

'A' IS BY-CITY-CODEi'B' IS STATE-TOTALS-CODE. 

INPUT-OUTPUT SECTION. 
FILE-CONTROL. 

SELECT CUSTOMER-FILEi ASSIGN TO DSKi 
RECORDING MODE IS ASCII. 

10-2 



REPORT WRITER 

0043 PRO G RAM REP E X M COBOL-68 12B(1115) BIS 
PAGE 2 15-JAN-81 15:19 

REPl.CBL 15-JAN-81 15:20 

0044 
0045 
0046 
0047 
0048 
0049 
0050 
0051 
0052 
0053 
0054 
0055 
0056 
0057 
0058 
0059 
0060 
0061 
0062 
0063 
0064 
0065 
0066 
0067 
0068 
0069 
0070 
0071 
0072 
0073 
0074 
0075 
0076 
0077 
0078 
0079 
0080 

* ************************************************************** 
* * * Report file SELECTion and ASSIGNment (Line 55) * 
* 
* 
* 
* 
* 

* 
Like any file, the file for the report must be SELECTed and * 
ASSIGNed. Here we're using a disk file, but any device is * 
legal. * 

* 
* ************************************************************** 

SELECT PRINTER-FILEi ASSIGN TO DSKi 
RECORDING MODE IS ASCII. 

SELECT SORT-FILEi ASSIGN TO DSK,DSK,DSKi 
RECORDING MODE IS ASCII. 

DATA DIVISION. 
FILE SECTION. 

SD 
01 

SORT-FILE. 
SORT-RECORD. 
02 SORT-NAME 
02 SORT-CITY 
02 SORT-STATE 
02 SORT-STREET 
02 SORT-SALES 

PIC X(24) USAGE DISPLAY-7. 
PIC X(20) USAGE DISPLAY-7. 
PIC XX USAGE DISPLAY-7. 
PIC X(20) USAGE DISPLAY-7. 
PIC S9(10) USAGE COMPo 

FD CUSTOMER-FILE 
VALUE OF IDENTIFICATION IS 'CUSTMRDAT'. 

01 GUSTMR-RECORD. 
02 CUSTMR-NAME PIC X(24) USAGE DISPLAY-7. 
02 CUSTMR-STREET PIC X(20) USAGE DISPLAY-7. 
02 CUSTMR-CITY PIC X(20) USAGE DISPLAY-7. 
02 CUSTMR-STATE PIC XX USAGE DISPLAY-7. 
02 CUSTMR-SALES PIC S9(10)V99. 
02 FILLER PIC X(302) . 

10-3 



REPORT WRITER 

OOSl PRO G RAM REP E X M COBOL-68 12B(1115) BIS 
PAGE 3 15-JAN-Sl 15:19 

REPl.CBL 15-JAN-Sl 15:20 

00S2 
00S3 
00S4 
00S5 
00S6 
00S7 
OOSS 
00S9 
0090 
0091 
0092 
0093 
0094 
0095 
0096 
0097 
009S 
0099 
0100 
0101 
0102 
0103 
0104 
0105 
0106 
0107 
010S 
0109 
0110 
0111 
0112 
0113 
0114 
0115 
0116 
0117 
OIlS 
0119 
0120 
0121 
0122 
0123 
0124 
0125 
0126 
0127 

* ************************************************************** 
* * 
* The FD for the Report File (Lines 100 - 103) * 
* * * Here we give the file for the report the name CUSTMR.LPT. * 
* * 
* The REPORTS ARE clause names the RD entries that weIll * 
* define in the REPORT SECTION and names the reports to be * 
* written in the file. * 
* 
* 
* 
* 
* 
* 
* 

* 
The record named in the 01-level entry must be large enough * 
to contain the largest line written (including a l-character* 
code. In our example, we never refer to PRINTER-RECORD in * 
the PROCEDURE DIVISION, so we could omit this; the default * 
size for PRINTER-RECORD is 132 characters. * 

* 
* ************************************************************** 

FD PRINTER-FILE; 
REPORTS ARE STATE-TOTALS-ONLY,BY-CITY 
VALUE OF IDENTIFICATION IS ICUSTMRLPT I . 

01 PRINTER-RECORD PIC X(70) USAGE DISPLAY-7. 

WORKING-STORAGE SECTION. 

01 
01 

01 

THIS-DATE 
TO-REDEFINED 
02 TO-MONTH 
02 TD-HYF-l 
02 TO-DAY 
02 TD-HYF-2 
02 TO-YEAR 

UNEDITED-DATE. 
02 UE-YEAR 
02 UE-MONTH 
02 UE-DAY 
02 FILLER 

PIC X(S). 
REDEFINES THIS-DATE. 
PIC Z9. 
PIC X. 
PIC 99. 
PIC X. 
PIC 99. 

PIC 99. 
PIC 99. 
PIC 99. 
PIC X(6). 

77 TEMP PIC S999 USAGE COMP. 
77 NR-OF-CITIES PIC S999 USAGE COMP. 
77 NR-OF-STATES PIC S999 USAGE COMP. 

77 ONE-COUNT PIC S9 USAGE COMP VALUE -I. 
77 CURRENT-STATE PIC XX. 
77 CURRENT-CITY PIC X(20) USAGE DISPLAY-7. 

10-4 



REPORT WRITER 

0128 PRO G RAM REP E X M COBOL-68 12B(1115) BIS 
PAGE 4 15-JAN-Sl 15:19 

REPl.CBL 15-JAN-81 15:20 

0129 
0130 
0131 
0132 
0133 
0134 
0135 
0136 
0137 
0138 
0139 
0140 
0141 
0142 
0143 
0144 
0145 
0146 
0147 
0148 
0149 
0150 
0151 
0152 
0153 
0154 
0155 
0156 
0157 
0158 
0159 
0160 
0161 
0162 

* ************************************************************** 
* * The REPORT SECTION Statement (Line 139) 

* 
* 

* * * The REPORT SECTION is in the DATA DIVISION. It must be the * 
* last section of the division. In the REPORT SECTION, we * 
* define the formats for the reports. * 
* * 
* ************************************************************** 

REPORT SECTION. 

* ************************************************************** 
* * The RD for a Report (Lines 160 - 453) 
* 
* 
* 
* 
* 
* 
* 
* 

The RD is the report description for each report. We need 
an RD for each report; one is here and the other is below. 

The CODE clause of the RD gives the mnemonic-name of the 
code assigned to the report. This is the same code given 
by the literal in the SPECIAL-NAMES paragraph of the 
ENVIRONMENT DIVISION above. 

* 
* 
* 
* 
* 
* 
* 
* 
* 
* 

* * * The CONTROL clause specifies the break fields in order from * 
* most important to least important. FINAL is a special case * 
* in which a control break occurs at the end of the * 
* report. * 
* * 
* ************************************************************** 

RD STATE-TOTALS-ONLY 
CODE STATE-TOTALS-CODE 
CONTROLS ARE FINAL, SORT-STATE. 

10-5 



REPORT WRITER 

0163 PRO G RAM REP E X M COBOL-68 12B(ll15) BIS 
PAGE 5 15-JAN-81 15:19 

REPl.CBL 15-JAN-81 15:20 

0164 
0165 
0166 
0167 
0168 
0169 
0170 
0171 
0172 
0173 
0174 
0175 
0176 
0177 
0178 
0179 
0180 
0181 
0182 
0183 
0184 
0185 
0186 
0187 
0188 
0189 
0190 
0191 
0192 
0193 
0194 
0195 
0196 
0197 
0198 
0199 
0200 
0201 
0202 
0203 
0204 
0205 
0206 
0207 
0208 
0209 
0210 
0211 
0212 
0213 
0214 

* ************************************************************** 
* * The TYPE Statement (Line 266 and throughout the RDs) 

* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 

* * The TYPE statement defines the type of each record and 
* where it appears in the report. The record need not be 
* named unless it is referenced in the PROCEDURE DIVISION. 

* * There are seven types of records: 

* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 

REPORT HEADING (or RH) is a heading that appears at 
the beginning of the report. 

REPORT FOOTING (or RF) is a footing that appears at 
the end of the report. 

PAGE HEADING (or PH) is a page heading that appears 
at the top of each page of the report. 

PAGE FOOTING (or PF) is a page footing that appears 
at the bottom of each page. 

CONTROL HEADING (or CH) is a heading that appears 
immediately before any detail lines whenever a 
control break occurs, and after the page heading of 
the first page. The name of the control break is 
specified in the CONTROL clause, and tells REPORT 
WRITER which field to test for a control break. 

CONTROL FOOTING (or CF) is a footing that appears 
immediately after the last detail line before a 
control break. 

DETAIL (or DE) is a detail line that is printed each 
time a GENERATE statement is executed in the 
PROCEDURE DIVISION. 

* ************************************************************** 

* ************************************************************** 
* * The NEXT GROUP Clause (Lines 266 and 424) 

* 
* 
* * 

* 
* 
* 
* 
* 
* 
* 

The NEXT GROUP clause given the line-number of the line for * 
the beginning of the next group written. The argument for * 
NEXT GROUP can be a number; for example, NEXT GROUP IS 15 * 
places the next group on line 15 of the page. The argument * 
can also be relative; for example, NEXT GROUP IS PLUS 2 * 
places the next line two lines below the current line. * 

* 
* ************************************************************** 

10-6 



REPORT WRITER 

0215 PRO G RAM REP E X M COBOL-68 12B(1115) BIS 
PAGE 6 l5-JAN-8l 15:19 

REPl.CBL l5-JAN-8l 15:20 

0216 
0217 
0218 
0219 
0220 
0221 
0222 
0223 
0224 
0225 
0226 
0227 
0228 
0229 
0230 
0231 
0232 
0233 
0234 
0235 
0236 
0237 
0238 
0239 
0240 
0241 
0242 
0243 
0244 
0245 
0246 
0247 
0248 
0249 
0250 
0251 
0252 
0253 

* ************************************************************** 

The LINE Clause (Line 267 and throughout the RDs) 
* 
* 
* 

* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 

The LINE NUMBER IS clause (which can be abbreviated to LINE)* 
tells on which line of the page a report entry should be * 
written. The LINE clause applies to the item containing it * 
and continues to apply until the end-of-record or until * 
another LINE clause is found. * 

The LINE clause can take three kinds of arguments: 

1. An integer that specifies the line number. 
For example, LINE NUMBER IS 25 specifies line 25. 
If the number is smaller than the current line, a 
new page is begun. 

2. PLUS with an integer that specifies how, many lines 
below the current line to print the current entry. 
For example, LINE PLUS 3 means to skip two lines 
before printing the current entry. 

3. NEXT PAGE, which specifies the next page. If the 
record is a page header, it is printed on 
line 1; otherwise it is printed on line 2. 

* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 

* ************************************************************** 

* ************************************************************** 
* 
* The COLUMN Clause (Line 267 and throughout the RDs) 
* 
* The COLUMN NUMBER IS clause (we can omit NUMBER IS) tells 
* REPORT WRITER which column is the first for a record or 
* field. If a record or field does not have a COLUMN entry, 
* it is not printed. 
* 

* 
* 
* 
* 
* 
* 
* 
* 

* *******************************************~****************** 

10-7 



REPORT WRITER 

0254 PRO G RAM REP E X M COBOL-68 12B(1115) BIS 
PAGE 7 15-JAN-81 15:19 

REP1.CBL 15-JAN-81 15:20 

0255 
0256 
0257 
0258 
0259 
0260 
0261 
0262 
0263 
0264 
0265 
0266 
0267 
0268 
0269 
0270 
0271 
0272 
0273 
0274 
0275 
0276 
0277 
0278 
0279 
0280 
0281 
0282 
0283 
0284 
0285 
0286 
0287 
0288 
0289 
0290 
0291 
0292 
0293 
0294 
0295 
0296 
0297 
0298 
0299 
0300 
0301 
0302 
0303 
0304 
0305 

* ************************************************************** 
* * The SOURCE Clause (Line 269 and throughout the RDs) 

* 
* 

* * * The SOURCE IS clause (we can omit IS) specifies the source * 
* for an item. The source item must have been defined in the * 
* FILE or WORKING-STORAGE SECTION. Its value is moved into * 
* the report item before the item is written in the file. * 
* * 
* ************************************************************** 

01 TYPE PH NEXT GROUP PLUS 2. 
02 LINE 1 COLUMN 22 PIC X(25) USAGE DISPLAY-7 

VALUE 'State Totals of Customers'. 
02 LINE 2 COLUMN 31 PIC X(8) SOURCE THIS-DATE. 
02 LINE 5 COLUMN 1 PIC X(5) USAGE DISPLAY-7 

VALUE 'State'. 
02 LINE 5 COLUMN 10 PIC X(19) USAGE DISPLAY-7 

VALUE 'Number of Customers'. 
02 LINE 5 COLUMN 44 PIC X(5) USAGE DISPLAY-7 

VALUE 'Sales'. 

* ************************************************************** 
* * The SUM Clause (Line 309 and throughout the RDs) 
* * The SUM clause in the second following line specifies that 
* the data-item is summed. The data-item summed can be 
* either a SOURCE item from a TYPE DETAIL line (for example, 
* SORT-SALES in this program), or a summation counter (for 
* example, CITY-COUNT). 
* * When either the SOURCE item or the summation counter is 
* used, the value of the item is added to a compiier-
* generated accumulator and this accumulator is moved to the 
* report item before writing. The summation counter need 
* not be named unless it is referenced directly in the 
* PROCEDURE DIVISION or in another REPORT SECTION statement. 

* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 

* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 

* 
A SUM clause can appear only in a TYPE CONTROL FOOTING * 
record. The accumulator is zeroed after being moved to the * 
report item. * 

* 
You can selectively sum portions of a data-item by using * 
the UPON option with the SUM clause. In that case, summing * 
occurs only when the item is referenced by a GENERATE * 
statement. The individual items to be summed must be * 
SOURCE items within a data-name specified as a TYPE DETAIL * 
report group. * 

* 
* ************************************************************** 

10-8 



REPORT WRITER 

0306 PRO G RAM REP E X M COBOL-68 12B(1115) BIS 
PAGE 8 15-JAN-81 15:19 

REPl.CBL 15-JAN-81 15:20 

0307 
0308 
0309 
0310 
0311 
0312 
0313 
0314 
0315 
0316 
0317 
0318 
0319 
0320 
0321 
0322 
0323 
0324 
0325 
0326 
0327 
0328 
0329 
0330 
0331 
0332 
0333 
0334 
0335 
0336 
0337 
0338 
0339 
0340 
0341 
0342 
0343 
0344 
0345 
0346 
0347 
0348 
0349 
0350 
0351 
0352 
0353 

01 TYPE CF SORT-STATE LINE PLUS 1. 

01 

02 COLUMN 3 PIC XX SOURCE CURRENT-STATE. 
02 COLUMN 15 PIC ZZ,ZZ9 SUM ONE-COUNT. 
02 COLUMN 35 PIC ZZ,ZZZ,ZZZ,ZZ9 SUM SORT-SALES. 

TYPE CF FINAL 
02 COLUMN 1 

VALUE 
02 COLUMN 15 
02 COLUMN 35 

LINE PLUS 2. 
PIC X(5) USAGE DISPLAY-7 

'Total'. 
PIC ZZ,ZZ9 SUM ONE-COUNT. 
PIC $$,$$$,$$$,$$9 SUM SORT-SALES. 

* ************************************************************** 
* 
* Missing COLUMN Clause (Lines 330 - 331) 
* 
* The following lines illustrate the fact that a report 
* item is not written in the report (even if directly 
* specified in a GENERATE statement) unless the item has a 
* COLUMN NUMBER clause. 
* 

* 
* 
* 
* 
* 
* 
* 
* 

* *********************************~**************************** 

01 TYPE DETAIL. 
02 
02 

PIC S9(5) SOURCE ONE-COUNT. 
PIC S9(10) SOURCE SORT-SALES. 

* ************************************************************** 

* 
* The PAGE LIMIT Clause (Line 351) 

* 
* 

* * 
* The PAGE LIMIT clause specifies the number of lines that * 
* can be written on one page of the report. If a line is * 
* written that would exceed PAGE LIMIT, page footings are * 
* written, a new page is begun, and page headings are written.* 
* * 
* 'rhe PAGE LIMIT clause can contain additional options to 
* control placement of page headings and footings, and the 
* placement of first and last TYPE DETAIL lines. 
* 

* 
* 
* 
* 

* ************************************************************** 

RD BY-CITY 
CODE BY-CITY-CODE 
CONTROLS ARE FINAL SORT-STATE,SORT-CITYi 
PAGE LIMIT IS 58 LINES 

HEADING 1, FOOTING 58, FIRST DETAIL 6, 
LAST DETAIL 55. 

10-9 



REPORT WRITER 

0354 PRO G RAM REP E X M COBOL-68 12B(1115) BIS 
PAGE 9 15-JAN-81 15:19 

REP1.CBL 15-JAN-81 15:20 

0355 
0356 
0357 
0358 
0359 
0360 
0361 
0362 
0363 
0364 
0365 
0366 
0367 
0368 
0369 
0370 
0371 
0372 
0373 
0374 
0375 
0376 
0377 
0378 
0379 
0380 
0381 
0382 
0383 
0384 
0385 
0386 
0387 
0388 
0389 
0390 
0391 
0392 
0393 
0394 
0395 
0396 

01 REPORT-HEADER TYPE REPORT HEADING LINE 25. 
02 COLUMN 27 PIC X(27) USAGE DISPLAY-7 

VALUE 'Customers By City and State'. 
02 LINE 29 COLUMN 36 PIC X(8) SOURCE THIS-DATE. 

01 REPORT-FOOTER TYPE REPORT FOOTING LINE PLUS 2. 
02 COLUMN 30 PIC X(19) USAGE DISPLAY-7 

VALUE '** End of Report **'. 

* ************************************************************** 
* * * The PAGE-COUNTER (Line 384) * 
* * * The compiler generates a data-item called PAGE-COUNTER for * 
* each report descriptor (RD) item. It is set to 1 by the * 
* INITIATE statement, and incremented by 1 for each new page. * 
* * * If you define more than one report in the same program, you * 
* must qualify a reference to PAGE-COUNTER'by using the name * 
* of the report. * 
* * 
* ************************************************************** 

01 PAGE-HEADING TYPE PAGE HEADING. 

01 

02 LINE 1 COLUMN 1 PIC X(33) USAGE DISPLAY-7 
VALUE 'Customers By City and State'. 

02 LINE 1 COLUMN 62 PIC X(4) USAGE DISPLAY-7 
VALUE 'Page'. 

02 LINE 1 COLUMN 66 PIC ZZZ9 
SOURCE PAGE-COUNTER OF BY-CITY. 

02 LINE 2 COLUMN 1 PIC X(8) SOURCE THIS-DATE. 

STATE-HEADING TYPE CONTROL HEADING SORT-STATE 
LINE PLUS 2. 

02 COLUMN 1 PIC X(9) USAGE DISPLAY-7 
VALUE 'Customer'. 

02 COLUMN 30 PIC X(5) USAGE DISPLAY-7 
VALUE 'State'. 

02 COLUMN 36 PIC X(4) USAGE DISPLAY-7 
VALUE 'City' . 

02 COLUMN 65 PIC X(5) USAGE DISPLAY-7 
VALUE 'Sales'. 

10-10 



REPORT WRITER 

0397 PRO G RAM REP E X M COBOL-68 12B(1115) BIS 
PAGE 10 15-JAN-81 15:19 

REPl.CBL 15-JAN-81 15:20 

0398 
0399 
0400 
0401 
0402 
0403 
0404 
0405 
0406 
0407 
0408 
0409 
0410 
0411 
0412 
0413 
0414 
0415 
0416 
0417 
0418 
0419 
0420 
0421 
0422 
0423 
0424 
0425 
0426 
0427 
0428 
0429 
0430 
0431 

01 

01 

01 

01 

DETAIL-LINE-l TYPE DETAIL LINE PLUS 2. 
02 COLUMN 1 PIC X(24) USAGE DISPLAY-7 

SOURCE SORT-NAME. 
02 COLUMN 32 PIC X(2) USAGE DISPLAY-7 

SOURCE SORT-STATE. 
02 COLUMN 36 PIC X(20) USAGE DISPLAY-7 

SOURCE SORT-CITY. 
02 COLUMN 56 PIC ZZ,ZZZ,ZZZ,ZZ9 

SOURCE SORT-SALES. 
02 PIC ZZ,ZZ9 SOURCE ONE-COUNT. 

DETAIL-LINE-2 TYPE DETAIL LINE PLUS 1. 
02 COLUMN 1 PIC X(20) USAGE DISPLAY-7 

SOURCE SORT-STREET. 

CITY-FOOTING TYPE CF SORT-CITY LINE PLUS 3. 
02 CITY-COUNT COLUMN 4 PIC ZZ,ZZ9 USAGE DISPLAY-7 

SUM ONE-COUNT. 
02 COLUMN 11 PIC X(11) USAGE DISPLAY-7 

VALUE 'customers in city'. 
02 COLUMN 36 PIC X(20) USAGE DISPLAY-7 

SOURCE SORT-CITY. 
02 CITY-SALES COLUMN 56 PIC $$,$$$,$$$,$$9 

SUM SORT-SALKS. 

STATE-FOOTING TYPE CF SORT-STATE LINE PLUS 3 
NEXT GROUP NEXT PAGE. 

02 STATE-COUNT COLUMN 4 PIC ZZ,ZZ9 USAGE DISPLAY-7 
SUM CITY-COUNT. 

02 COLUMN 11 PIC X(18) USAGE DISPLAY-7 
VALUE 'customers in state'. 

02 COLUMN 32 PIC X(2) SOURCE SORT-STATE. 
02 STATE-SALES COLUMN 56 PIC $$,$$$,$$$,$$9 

SUM CITY-SALES. 

10-11 



REPORT WRITER 

0432 PRO G RAM REP E X M COBOL-68 128(1115) BIS 
PAGE 11 15-JAN-81 15:19 

REP1.CBL 15-JAN-81 15:20 

0433 01 FINAL-FOOTING TYPE CF FINAL LINE PLUS 1. 
0434 02 COLUMN 3 PIC X(5) USAGE DISPLAY-7 
0435 VALUE 'Total'. 
0436 02 COLUMN 15 PIC X(5) USAGE DISPLAY-7 
0437 VALUE 'Total'. 
0438 02 COLUMN 25 PIC X(5) USAGE DISPLAY-7 
0439 VALUE 'Total'. 
0440 02 COLUMN 45 PIC X(5) USAGE DISPLAY-7 
0441 VALUE 'Total'. 
0442 02 LINE PLUS 1 COLUMN 1 PIC X (9) USAGE DISPLAY-7 
0443 VALUE 'Customer s ' . 
0444 02 COLUMN 15 PIC X(6) USAGE DISPLAY-7 
0445 VALUE 'States'. 
0446 02 COLUMN 25 PIC X(6) USAGE DISPLAY-7 
0447 VALUE 'Cities'. 
0448 02 COLUMN 45 PIC X(5) USAGE DISPLAY-7 
0449 VALUE 'Sales'. 
0450 02 LINE PLUS 2 COLUMN 1 PIC ZZ,ZZ9 SUM STATE-COUNT. 
0451 02 COLUMN 16 PIC ZZ9 SOURCE NR-OF-STATES. 
0452 02 COLUMN 26 PIC ZZ9 SOURCE NR-OF-CITIES. 
0453 02 COLUMN 36 PIC $$,$$$,$$$,$$9 SUM STATE-SALES. 

10-12 



REPORT WRITER 

0454 PRO G RAM REP E X M COBOL-68 12B(1115) BIS 
PAGE 12 15-JAN-81 15:19 

REP1.CBL 15-JAN-81 15:20 

0455 
0456 
0457 
0458 
0459 
0460 
0461 
0462 
0463 
0464 
0465 
0466 
0467 
0468 
0469 
0470 
0471 
0472 
0473 
0474 
0475 
0476 
0477 
0478 
0479 
0480 
0481 
0482 
0483 
0484 
0485 
0486 
0487 
0488 
0489 
0490 
0491 
0492 
0493 
0494 
0495 
0496 
0497 

PROCEDURE DIVISION. 

* ************************************************************** 
* 
* 
* 
* 
* 
* 
* 
* 
* 

The USE BEFORE REPORTING Verb (Li~e 470) 

You can include the USE BEFORE REPORTING verb in the 
DECLARATIVES SECTION of the PROCEDURE DIVISION. A report 
record is specified in the USE statement to indicate when 
the USE procedure is to be performed. It is performed 
immediately before the report record is written. 

* 
* 
* 
* 
* 
* 
* 
* 
* 

* ************************************************************** 

DECLARATIVES. 
EOR SECTION. USE BEFORE REPORTING REPORT-FOOTER. 
EOR-A. DISPLAY 'END OF REPORTS'. 
END DECLARATIVES. 

MAIN SECTION. 

START-PROC1. 
SORT SORT-FILE ON ASCENDING KEY 

SORT-STATE,SORT-CITY,SORT-NAME 
INPUT PROCEDURE IS IN-PROCEDURE 
OUTPUT PROCEDURE IS OUT-PROCEDURE. 

STOP RUN. 
IN-PROCEDURE SECTION. 

START-PROC2. 

LOOP. 

OPEN INPUT CUSTOMER-FILE. 

READ CUSTOMER-FILE AT END GO TO DONE-INPUT. 
COMPUTE SORT-SALES ROUNDED = CUSTMR-SALES. 
MOVE CUSTMR-NAME TO SORT-NAME. 
MOVE CUSTMR-STATE TO SORT-STATE. 
MOVE CUSTMR-STREET TO SORT-STREET. 
MOVE CUSTMR-CITY TO SORT-CITY. 
RELEASE SORT-RECORD. 
GO TO LOOP. 

DONE-INPUT. CLOSE CUSTOMER-FILE. 

10-13 



REPORT WRITER 

0498 PRO G RAM REP E X M COBOL-68 12B(1115) BIS 
PAGE 13 15-JAN-81 15:19 

REPl.CBL 15-JAN-81 15:20 

0499 
0500 
0501 
0502 
0503 
0504 
0505 
0506 
0507 
0508 
0509 
0510 
0511 
0512 
0513 
0514 
0515 
0516 
0517 
0518 
0519 
0520 
0521 
0522 
0523 
0524 
0525 
0526 
0527 
0528 
0529 
0530 
0531 
0532 

OUT-PROCEDURE SECTION. 

* ************************************************************** 
* * OPEN the Report File (Line 511) 
* 

* 
* 
* * The report file must be OPENed before any records can be * 

* written in it. * 
* * 
* ************************************************************** 

START-PROC3. 
OPEN OUTPUT PRINTER-FILE. 
MOVE TODAY TO UNEDITED-DATE. 
MOVE UE-DAY TO TD-DAY; MOVE UE-MONTH TO TD-MONTH; 

MOVE UE-YEAR TO TD-YEAR 
MOVE I_I TO TD-HYF-l,TD-HYF-2. 

* ************************************************************** 
* * 
* INITIATE the Reports (Lines 531 - 532) * 
* * * The INITIATE statement causes the counters and accumulators * 
* to be initialized. The summation counters are set to 0; * 
* the PAGE-COUNTER is set to 1. * 
* * * Each report written must be named in an INITIATE statement. * 
* The output file for the report must be OPENed before any * 
* INITIATE statement is executed. * 
* * 
* ************************************************************** 

INITIATE BY-CITY. 
INITIATE STATE-TOTALS-ONLY. 

10-14 



REPORT WRITER 

0533 PRO G RAM REP E X M COBOL-68 12B(1115) BIS 
PAGE 14 15-JAN-81 15:19 

REPl.CBL 15-JAN-81 15:20 

0534 
0535 
0536 
0537 
0538 
0539 
0540 
0541 
0542 
0543 
0544 
0545 
0546 
0547 
0548 
0549 
0550 
0551 
0552 
0553 
0554 
0555 
0556 
0557 
0558 
0559 
0560 
0561 
0562 
0563 
0564 
0565 
0566 
0567 
0568 
0569 
0570 
0571 
0572 
0573 
0574 
0575 
0576 
0577 
0578 
0579 
0580 
0581 
0582 

* ************************************************************** 
* 
* GENERATE Report Records (Lines 577 - 578) 

* 
* 

* * 
* The GENERATE statement causes testing of control fields and * 
* writes any required control headings and footings. If the * 
* argument to the GENERATE statement is a TYPE DETAIL record, * 
* the record is written after any control breaks. If the * 
* argument is a report descriptor (RD) , the detail lines are * 
* set up but not printed, so that a summary report is written.* 
* * 
* In this program, both types of reports are generated. The * 
* GENERATE DETAIL-LINE statement causes a detail report to be * 
* written; the GENERATE STATE-TOTALS-ONLY statement causes a * 
* summary report to be written. * 

* * 
* A GENERATE statement performs the following operations: * 

* 
* 
* 
* 
* 
* 
* 

1. Increments and tests the PAGE-COUNTER and produces 
any required page footings and headings. 

2. Tests for any control breaks and produces any 
required control footings and headings. 

* 
* 
* 
* 
* 
* 
* 

* 3. Adds all specified identifiers to summation counters. * 
* 
* 
* 
* 
* 
* 

4. Executes any routines defined by USE statements. 

5. If the argument to the GENERATE statement is a TYPE­
DETAIL record, writes the detail report group. 

* During the first execution of a GENERATE statement, all 
* required report headings, page headings, control headings, 
* and detail report groups are written. 
* 

* 
* 
* 
* 
* 
* 
* 
* 
* 
* 

* ************************************************************** 

LOOP. 
RETURN SORT-FILE; AT END GO TO DONE-REPORTS. 
IF CURRENT-STATE NOT EQUAL SORT-STATE 

ADD 1 TO NR-OF-STATES~ 
IF CURRENT-CITY NOT EQUAL SORT-CITY 

ADD 1 TO NR-OF-CITIES. 
GENERATE DETAIL-LINE-l. 
GENERATE DETAIL-LINE-2. 
GENERATE STATE-TOTALS-ONLY. 
MOVE SORT-STATE TO CURRENT-STATE. 
MOVE SORT-CITY TO CURRENT-CITY. 
GO TO LOOP. 

10-15 



REPORT WRITER 

0583 PRO G RAM REP E X M COBOL-68 l2B(1115) BIS 
PAGE 15 l5-JAN-8l 15:19 

REPl.CBL l5-JAN-8l 15:20 

0584 
0585 
0586 
0587 
0588 
0589 
0590 
0591 
0592 
0593 
0594 
0595 
0596 
0597 
0598 
0599 
0600 
0601 
0602 
0603 
~604 
0605 
0606 
0607 
0608 
0609 
0610 
0611 

* ************************************************************** 
* * * TERMINATE the Reports (Line 609) 
* 

* 
* * The TERMINATE statement completes the processing for a * 

* report. When the TERMINATE statement is executed, breaks * 
* occur for all control fields and all control footings are * 
* written; all page footings and report footings are also * 
* written. If a program writes more than one report in the * 
* same file, each report must be named in a TERMINATE * 
* statement. * 
* * 
* ************************************************************** 

* ************************************************************** 
* * CLOSE the Report File (Line 610) 
* 

* 
* 
* * The CLOSE statement closes the report file. All reports * 

* written in the file must be TERMINATEd before the CLOSE * 
* statement is executed. * 
* * 
* ************************************************************** 

DONE-REPORTS. 
TERMINATE BY-CITY,STATE-TOTALS-ONLY. 
CLOSE PRINTER-FILE. 

NO ERRORS DETECTED 

10-16 



REPORT WRITER 

The following pages show the reports produced by the program just 
listed. 

Customers By City and State 

2-12-81 

10-17 



Customers By City and State 
2-12-81 

Customer 

Other Side Of The Fence 
1247 Main Street 

1 customers in city 

The Lawn Man 
174 Barrington Drive 

Turf World 
8745 Asylum Street 

2 customers in city 

Bushwhackers, Inc. 
2735 Skyline Drive 

1 customers in city 

4 customers in state 

REPORT WRITER 

Page 1 

State City Sales 

CT Darien 61,500 

Darien $61,500 

CT Hartford 874,259 

CT Hartford 47,525 

Hartford $921,784 

CT Hew Haven 83,247 

Hew Haven $83,247 

CT $1,066,531 

10-18 



Customers By City and State 
2-12-81 

Customer 

Boston Garden Shop 
419 Beacon Street 

Sodbusters 
8941 Commonwealth Av 

2 customers in city 

Joyce Kilmer Trees 
453 Henry T Drive 

1 customers in city 

Mass Grass, Inc. 
8789 Worcester Drive 

1 customers in city 

4 customers in state 

REPORT WRITER 

Page 2 

State City Sales 

MA Boston 15,389 

MA Boston 45,639 

Boston $61,028 

MA Concord 7,649 

Concord $7,649 

MA Worcester 9,042 

Worcester $9,042 

MA $77,719 

10-19 



Customers By City and State 
2-12-81 

Customer 

Plastic Yards, Inc. 
4772 Providence Blvd 

1 customers in city 

Astro Grass Company 
666 Armageddon 

1 customers in city 

2 customers in state 

REPORT WRITER 

Page 3 

State City Sales 

RI Providence 7,747 

Providence $7,747 

RI Woonsocket 6,489 

Woonsocket $6,489 

RI $14,236 

10-20 



Customers By City and State 
2-12-81 

REPORT WRITER 

Total 
Customers 

Total 
States 

Total 
Cities 

Total 
Sales 

10 3 8 $1,158,486 

** End of Report ** 

10-21 

Page 4 



State 

CT 
MA 
RI 

Total 

REPORT WRITER 

State Totals of Customers 
2-12-81 

Number of Customers Sales 

4 
4 
2 

10 

1,066,531 
77,719 
14,236 

$1,158,486 

** End of Report ** 

10-22 



CHAPTER 11 

PROGRAM SEGMENTS, SUBPROGRAMS, AND OVERLAYS 

Some tasks which are done by computers require them to execute 
extraordinarily large amounts of code in order to solve the problem at 
hand. In rare cases, it can be difficult to fit the program into your 
memory area. In other, more numerous, cases, it can be desirable to 
split up the task into subtasks in order to make debugging easier or 
so that the subtasks can be given to different people to code. There 
are also cases where you wish to make some type of calculation which 
is difficult or impossible in COBOL. For any of these reasons, you 
can find it convenient to organize your program into parts to make the 
programming task easier, to allow the program to run more efficiently, 
or both. A COBOL programming task can be organized into program 
segments, into subprograms, or into an overlay structure to allow the 
breaking-up of the task. These various methods for breaking the task 
into smaller pieces must be carefully studied in order to determine 
which method is most suitable for your particular use. The methods 
themselves differ widely in the techniques used and the results 
obtained. 

11.1 PROGRAM SEGMENTS 

You can divide the Procedure Division of a COBOL program into parts 
called program segments. By doing this, you cause the system to run 
your program with some segments in memory only when they are needed; 
when they are not needed, they are on disk storage. Thus, the amount 
of memory required for execution is reduced. 

You can define program segments in a main program or in a subprogram, 
but only one segmented program is allowed in a single load. 

11.1.1 Section-Names And Segment Numbers 

A program segment is made up of one or more sections, each of which 
begins with a SECTION statement of the form 

section-name SECTION nn. 

where nn is a two-digit segment number in the range 00 to 99. A 
section extends from its SECTION statement to the next SECTION 
statement, or to the end of the program, whichever is first. All 
sections having the same segment number are in the same segment. 

A program segment is either resident or nonresident, and writable or 
nonwritable, depending on its segment number, and on the setting of 
the segment-limit. (The SEGMENT-LIMIT IS nn statement in the 
Environment Division defines the segment limit, which is the smaller 
of nn and 49; if nn is omitted or nn is 0, the segment-limit is 49.) 

11-1 



PROGRAM SEGMENTS, SUBPROGRAMS, AND OVERLAYS 

A segment with a segment number of 50 or greater is nonresident and 
nonwritable; it is brought into memory only when it is needed for 
execution. Further, such a segment loses any changes made by ALTER 
statements when it leaves memory. It is in its original state each 
time it enters memory. 

A segment with a segment number in the range SEGMENT-LIMIT 
nonresident, but writable; it retains changes made 
statements. 

to 49 is 
by ALTER 

A segment with a segment number less than the SEGMENT-LIMIT (or with 
no segment number) is a resident and writable segment; it is always 
in memory during execution. 

Nonresident segments are suitable for routines that are executed 
infrequently, run for a long time once begun, and require large 
amounts of memory. For example, a program that has four main tasks 
that are executed sequentially is an ideal application for nonresident 
segmentation. Placing each task in a nonresident segment allows the 
program to run with only one of the se~ments in memory at a time. 

On the other hand, a frequently used routine should be placed in a 
resident segment to avoid the overhead of bringing it into memory time 
after time. 

11.1.2 Examples 

In the following sample program, there are nine program SECTIONs 
forming six program segments. (Recall that sections having the same 
segment numbers are in the same segment.) 

PRO G RAM S E G M N T 
l5-JAN-8l 09:22 

SEGMNT.CBL l5-JAN-8l 09:22 
0001 IDENTIFICATION DIVISION. 
0002 PROGRAM-ID. SEGMNT. 
0003 

COBOL-68 l2B(1033) BIS 
PAGE 1 

0004 
0005 
0006 
0007 
0008 
0009 
0010 
0011 
0012 
0013 
0014 
0015 
0016 
0017 
0018 
0019 
0020 
0021 
0022 
0023 
0024 
0025 
0026 
0027 

ENVIRONMENT DIVISION. 
CONFIGURATION SECTION. 
OBJECT-COMPUTER. DECSYSTEM-20 
SEGMENT-LIMIT IS 25. 

DATA DIVISION. 

PROCEDURE DIVISION. 
SECT 1 SECTION 20. 
CALL A. 
SECT2 SECTION 65. 
CALL A. 
SECT3 SECTION 22. 
CALL A. 
SECT4 SECTION 20. 
CALL A. 
SECTS SECTION 60. 
CALL A. 
SECT6 SECTION 30. 
CALL A. 
SECT7 SECTION 35. 
CALL A. 
SECT8 SECTION 35. 
CALL A. 

11-2 



0028 
0029 
0030 

PROGRAM SEGMENTS, SUBPROGRAMS, AND OVERLAYS 

SECT9 SECTION 60. 
CALL A. 
STOP RUN. 

NO ERRORS DETECTED 

In the example above, the segments are as follows: 

1. Segment 20 contains the sections SECTI and 
SEGMENT-LIMIT IS 25 statement causes this 
resident and writable. 

SECT4. The 
segment to be 

2. Segment 22 contains section SECT3; 
writable. 

it is resident and 

3. Segment 30 contains section SECT6. Since its segment number 
IS above the SEGMENT-LIMIT but less than 50, it is 
nonresident and writable; changes made to the segment are 
preserved even if it leaves and returns to memory. 

4. Segment 35 contains sections SECT7 and SECT8. 
nonresident and writable. 

It 

5. Segment 60 contains sections SECTS and SECT9. Since 
segment number is above 50, it is nonresident 
nonwritable; changes made to the segment are lost when 
leaves and returns to memory. 

is 

its 
and 
it 

6. Segment 65 contains section SECT2. 
nonwritable. 

It is nonresident and 

11.2 SUBPROGRAMS 

A COBOL subprogram is written and compiled as a separate program, but 
is meant to be executed together with other programs. When several 
programs are loaded and executed together, the program in which 
execution begins is called the main program; the other programs are 
called subprograms. 

A large programming task can become more manageable if the program is 
divided into subprograms. Each subprogram can perform a few 
relatively simple tasks and each can be written and tested separately 
by using "dummy" main programs. 

Using subprograms also permits you to define an overlay structure at 
load time. (See Section 11.3 for a discussion of overlays.) 

A subprogram can open files, perform I/O for them, and close them; 
but no COBOL subprogram can perform I/O for files in another program. 
Any COBOL subprogram that performs I/O must be linked to the main 
program. That is, there must be a link, consisting of CALL 
statements, or a series of CALL statements through a series of 
subprograms, from the main COBOL program to any COBOL subprogram that 
wishes to do I/O. The CALL statement does not have to be executed to 
provide a link in fact, it can be in such a position that it is 
never executed. This requirement is met by any group of subprograms 
all of which are written in COBOL. If, however, you wish to call a 
non-COBOL subprogram, you must make sure that any COBOL routines which 
are called by the non-COBOL subprogram have a link to the main COBOL 
program if the COBOL routines wish to do any I/O. 

11-3 



PROGRAM SEGMENTS, SUBPROGRAMS, AND OVERLAYS 

The COBOL compiler recognizes a subprogram by its use of LINKAGE 
SECTION, ENTRY, GOBACK, or the presence of the USING clause in the 
Procedure Division header. If a program has none of these, the 
compiler treats it as a main program. 

The compiler generates a start address for a main program, but not for 
a subprogram. This start address is the address of the beginning of 
the Procedure Division, that is, the address where the first 
executable instruction is generated. This start address tells LINK 
and, in turn, the system where to begin execution of the program. 

You can force the compiler to generate a start address for a 
subprogram by using the IJ switch. You can prevent the compiler from 
generating a start address for a main program by using the II switch. 

NOTE 

A subprogram can be treated as a main 
program (that is, can contain a start 
address) only if no statements in the 
Procedure Division refer to data in the 
Linkage Section. This is because in a 
main program only Data Division 
statements can allocate memory 
locations. There is no space in memory 
for data in the Linkage Section. 

11.2.1 Inter-Program Communication 

Main programs and subprograms communicate by transfering execution 
control and by sharing data. The shared data can be in files, but it 
is often more useful for them to share data that is already in memory. 

11.2.1.1 The Calling Program - In the calling program, a CALL 
statement transfers execution control to a subprogram and optionally 
makes a list of data-items available to the called subprogram. The 
CALL statement has the form: 

CALL {program- or entry-name} [USING identifier-l [,identifier-2] ... ]. 

The program- or entry-name specifies the point to which execution 
control is to be passed in a subprogram. If a program-name is given, 
it is the PROGRAM-ID name in the subprogram, and control is 
transferred to the beginning of the subprogram's Procedure Division. 
If an entry-name is given, it is the name given by an ENTRY statement 
in the subprogram, and control is transferred to that statement. 

Each program-name and entry-name must be unique among all those loaded 
together. 

The identifiers specified in the CALL statement give a list of 
data-items in the calling program. The memory locations associated 
with them are then available for use in the called subprogram. If you 
omit the USING clause, no memory locations in the calling program are 
available to the called subprogram. 

Each identifier must be defined in the File Section, Working-Storage 
Section, or Linkage Section of the calling program. Each data-item 
must be word-aligned. (Items at the 01 and 77 levels and COMP items 

11-4 



PROGRAM SEGMENTS, SUBPROGRAMS, AND OVERLAYS 

are already word-aligned; 
SYNCHRONIZED LEFT clause.) 

others can be aligned by using the 

11.2.1.2 The Called Subprogram - A subprogram can begin execution at 
any of its entry points. The beginning of the Procedure Division is 
always an entry point. Its entry-name is the name given in the 
subprogram's PROGRAM-ID statement. 

You can name data-items to be available to the called program with a 
USING clause in the PROCEDURE DIVISION statement. This statement has 
the form: 

PROCEDURE DIVISION [USING identifier-l [,identifier-2] ••• ]. 

You can define additional entry points using the ENTRY statement, 
which has the form: 

ENTRY entry-name [USING identifier-l [,identifier-2] ..• ]. 

The specified entry-name is defined for 
calling programs and must be unique 
program-names loaded together. 

use by 
among 

CALL statements 
all entry-names 

in 
and 

The USING clause of the calling program's CALL statement can have 
defined data-items to be made available to the called subprogram. If 
so, the USING clause of the entry-point statement (PROCEDURE DIVISION 
or ENTRY) can give identifiers to be used as local names for the 
shared memory. 

The identifiers in the called subprogram's USING clause are assigned 
data-items in the shared memory from left to right. The lengths of 
the data-items in the called subprogram need not match those in the 
calling program; but the total length of the data-items in the called 
program must not exceed that in the calling program. 

The identifiers in 
subprogram's Linkage 
identifiers. 

the USING clause must be defined in the 
Section and they must be level-Ol or level-77 

When a subprogram is called, execution proceeds as in any program. 
Control leaves the subprogram at the first executed GOBACK, EXIT 
PROGRAM, or STOP statement. 

If the subprogram does any I/O there must be a link to the main 
program consisting of COBOL subprograms. You can not have a COBOL 
subprogram doing I/O that is called by a non-COBOL subprogram. 

Execution of a GOBACK or EXIT PROGRAM statement in a subprogram 
returns control to the calling program. Execution of the calling 
program resumes at the statement immediately following the CALL 
statement that called the subprogram. Any changes to the data-items 
specified in USING clauses at the entry point are preserved on return 
to the calling program. 

The forms of the GOBACK and EXIT PROGRAM statements are: 

GOBACK. 

EXIT PROGRAM. 

11-5 



PROGRAM SEGMENTS, SUBPROGRAMS, AND OVERLAYS 

Execution of a STOP statement halts execution of the entire loaded 
program. The STOP statement has the form: 

STOP {RUN or literal}. 

The STOP RUN statement ends program execution; there is no return to 
the calling program. The STOP literal statement causes a pause in 
program execution and the literal is typed on your terminal. If you 
then type CONTINUE, execution continues at the statement following the 
STOP literal. 

11.2.2 Loading A Subprogram Structure 

There are two ways to load a subprogram structure: 

1. For simple loads, you can use the COMPILE-class commands. 

2. For more complex loads, you must use LINK directly. 

In either case, the following special considerations for loading 
subprogram structures apply: every entry point (program-name or 
entry-name) referenced in a CALL statement anywhere in the loaded 
program must be satisfied by loading a program containing the 
program-name or entry-name. If some referenced entry points are 
missing, a fatal LINK error occurs at load time. 

11.2.3 Object Libraries And Searches 

An object library is a file having one or more object modules; when 
LINK searches an object library, a module is loaded from the file only 
if it satisfies an unresolved global reference. (COBOL global 
references are created by the CALL or ENTER statement in a program; 
additional global references to routines in the object-time system are 
created by the COBOL compiler.) 

NOTE 

Object libraries are very different from 
source libraries. The source library is 
built using the COBOL utility program 
LIBARY and is accessed by the COpy 
statement in a COBOL program. The 
object library is built using the system 
program MAKLIB and is accessed by LINK 
command strings or by COMPIL-class 
system commands. 

The /SEARCH and /NOSEARCH switches turn on and off LINK's library 
search mode. When the library search mode is off (the initial 
default), LINK loads each input file you specify. When the library 
search mode is on, LINK searches each specified input file as a 
library. 

11-6 



PROGRAM SEGMENTS, SUBPROGRAMS, AND OVERLAYS 

If the /SEARCH switch is appended to a file specification, then the 
switch is automatically turned Dff after that file is searched. For 
example: 

MYCOBL/SEARCH, COB4 

searches MYCOBL.REL, but loads all of COB4.REL. 

If the /SEARCH switch is not appended to a file specification, then 
the switch remains on until end-of-line or until a /NOSEARCH switch is 
found, whichever is earlier. For example: 

COBO,/SEARCH MYLIBl,MYLIB2,/NOSEARCH COBI 

loads CaBO, searches MYLIBI and MYLIB2, and loads COBI. 

The system library LIBOL.REL is searched automatically when LINK loads 
programs compiled with COBOL. If the program has LINK overlays, this 
search occurs at the end of each overlay (sometimes referred to as 
nodes) • 

You can change this normal search procedure by using LINK switches. 
The /SYSLIB switch requires LINK to search specified system libraries 
no matter what kind of modules are loaded. The /NOSYSLIB switch 
forbids search of specified system libraries. Using these two 
switches, you can select the time for searching system libraries. 

The /USERLIB switch specifies that for modules from a specified 
translator, a given user library must be searched before the 
corresponding system library. For example, using the switch 
MYCOBL/USERLIB:COBOL requlres LINK to search MYCOBL.REL before 
searching LIBOL.REL. The /NOUSERLIB switch can suspend the effect of 
a /USERLIB swi tch. . 

Using combinations of these search-related switches gives you precise 
control of library searches. All LINK switches are described in 
detail in the LINK Reference Manual. 

11.2.4 Examples 

Section 11.3.6 contains program listings of seven programs. The first 
of these is called CBLO; it is a main program. The remaining six 
programs are subprograms. Each has a Linkage Section that defines 
data items named in USING clauses of PROCEDURE DIVISION or ENTRY 
statements. The program CBL2 has two entry points defined by ENTRY 
statements. 

The following example shows how to load, save, and run these programs. 
The LOAD system command loads the programs; the SAVE command creates 
a file (CBLO.EXE) for the loaded program; the RUN CBLO command 
executes the program. All text between the RUN and EXIT lines were 
written by the executed program. The example is shown with a TOPS-IO 
system prompt character (.), but the TOPS-20 system prompt (@) could 
be there instead. TOPS-20 responds the same way to the LOAD command. 

11-7 



PROGRAM SEGMENTS, SUBPROGRAMS, AND OVERLAYS 

.LOAD CBLO,CBLl,CBL2,CBL3,CBL4,CBLS,CBL6 ~ 
COBOL: CBLO [CBLO.CBL] 
COBOL: CBLI [CBLl.CBL] 
COBOL: CBL2 [CBL2.CBL] 
COBOL: CBL3 [CBL3.CBL] 
COBOL: CBL4 [CBL4.CBL] 
COBOL: CBLS [CBLS.CBL] 
COBOL: CBL6 [CBL6.CBL] 
LINK: Loading 

EXIT 

.SAVE ~ 
CBLO.EXE.l saved 

.RUN CBLO ~ 
We're at level 0 in program CBLO 
CBLO calling CBL2A 

We're at level 1 in program CBL2 at CBL2A 
CBL2 calling CBLS 

We're at level 2 in program CBLS 
CBLS doesn't call anything 

Returned to CBL2 
CBL2 calling CBL6 

We're at level 2 in program CBL6 
CBL6 calling CBL3 

We're at level 3 in program CBL3 
CBL3 doesn't call anything 

Returned to CBL6 
Returned to CBL2 

Returned to CBLO 
CBLO calling CBL4 

We're at level 1 in program CBL4 
CBL4 calling CBLI 

We're at level 2 in program CBLI 
CBLI calling CBL2B 

We're at level 3 in program CBL2 
CBL2B doesn't call anything 

Returned to CBLI 
Returned to CBL4 

Returned to CBLO 
Execution ends in CBLO 

EXIT 

11.3 OVERLAYS 

at CBL2B 

If your loaded program would be too large to execute in one piece, you 
can define an overlay structure for it. This permits the system to 
execute the program with only some parts in your memory space at one 
time. (See the chapter on overlays in the LINK Reference Manual.) 

11.3.1 When To Use Overlays 

You do not need an overlay structure unless your program is too large 
for your memory area. If the program can fit in your memory space, 
you should not define an overlay structure for it; the monitor's 
page-swapping facility is faster than overlay execution. 

11-8 



PROGRAM SEGMENTS, SUBPROGRAMS, AND OVERLAYS 

11.3.2 Overlayable COBOL Programs 

A COBOL subprogram structure is overlayable if it observes the 
following rules: 

1. If a subprogram contains I/O verbs other than ACCEPT and 
DISPLAY, it must be placed in the root link. (The other I/O 
verbs are CLOSE, DELETE, OPEN, READ, REWRITE, START, and 
WRITE.) Further, the subprogram that does I/O must have a 
chain of calls from the main program entirely within the root 
link; the chain of calls cannot contain calls to subprograms 
in other links. Suppose, finally, that control could pass 
from the main program to an overlaid subprogram and thence to 
a root-node subprogr~m. If the root-node subprogram wishes 
to do any I/O (again, other than ACCEPT and DISPLAY), there 
must be a call from the main program to the root-node 
subprogram to establish the direct link. 

2. The subprogram structure must not contain RERUN statements. 

3. The subprogram structure must not contain reentrant code 
(compiled with /R under TOPS-IQ or compiled without switches 
under TOPS-20.) Thus, users of TOPS-20 must use the /U switch 
and users of TOPS-IO need not use the /U switch, as it is the 
default, to avoid reentrant code. 

To insure proper execution of a COBOL overlay, observe the following 
rules: 

1. After bringing the overlay into memory (by a LOAD command), 
run it using the RUN command (not the START command). 

2. Be sure that enough free memory is in the root link for the 
program to execute. (See Section 11.3.4.) 

A subprogram loaded into a nonroot link is not writable. 
the link comes into memory, it is in its original state. 

11.3.3 Defining Overlays 

Each time 

A program overlay has a tree structure. The tree is made up of links, 
each containing one or more program modules. These links are 
connected by paths. Using LINK switches, you define each link and 
each path. 

At the top of the tree is the root link, which must contain the main 
program. First-level links are below the root link; each first-level 
link is connected to the root link by one path. 

Second-level links are below the first-level links, and each is 
connected by a path to exactly one first-level link. A link at level 
n is connected by a path to exactly one link at level n-l. 

Notice that a link can have more than one downward path (to successor 
links), but only one upward path (to ancestor links). 

Figure 11-1 shows a diagram of an overlay structure with 5 links. The 
root link is TEST; the first-level links are LEFT and RIGHT; the 
second-level links are LEFTI and LEFT2. 

11-9 



PROGRAM SEGMENTS, SUBPROGRAMS, AND OVERLAYS 

Example of an Overlay Structure 

Figure 11-1 Example of an Overlay Structure 

Defining an overlay structure allows your program to execute in a 
smaller space. This is because the code in a given link is allowed to 
make reference to memory only in links along a direct upward or 
downward path. 

In the structure in Figure 11-1, the link LEFT can reference memory in 
itself, in the root link TEST, or in its successor links LEFTI and 
LEFT2. More generally, a link can reference memory in any link that 
is vertically connected to it. 

Referencing memory in any other link is illegal; for example, a path 
from LEFTI to LEFT2 is not a direct upward or downward path. 

Because of this restriction on memory references, only one complete 
vertical path (at most) is required in the memory area at anyone 
time. The remaining links can be stored on disk while they are not 
needed. 

LINK has a family of overlay-related switches for defining overlays. 
These switches are described in detail in the LINK Reference Manual. 
The following example shows command strings for defining the overlay 
diagrammed in Figure 11-1. 

TEST/LOG/LOGLEVEL:2 
/ERRORLEVEL:5 
TEST/OVERLAY 
TEST/MAP 
LPT:TEST/PLOT 
CBLO,CBLI/LINK:TEST 

/NODE:TEST CBL2,CBL3/LINK:LEFT 
/NODE:LEFT CBL5/LINK:LEFTI 
/NODE:LEFT CBL6/LINK:LEFT2 

/NODE:TEST CBL4/LINK:RIGHT 
TEST/SAVE 
/E/GO 

;Define TEST.LOG 
;Important messages 
;Define TEST.OVL 
;Define TEST.MAP 
;Request diagram 
;Root link 
;Left branch 
;Left-left branch 
;Left-right branch 
;Right branch 
;Define TEST.EXE 
;Execute now 

The first command string above defines the .LOG file for the overlay. 
TEST/LOG specifies that the file is named TEST. LOG. The /LOGLEVEL:2 
switch directs that only LINK messages at level 2 or greater be 
written in the .LOG file. 

11-10 



PROGRAM SEGMENTS, SUBPROGRAMS, AND OVERLAYS 

In the second command string, the /ERRORLEVEL:5 switch directs that 
messages below the level of 5 be suppressed for terminal typeout. The 
third command string, TEST/OVERLAY, tells LINK that an overlay 
structure is to be defined and that the file for the overlay is to be 
TEST.OVL. 

The fourth command string, TEST/MAP, defines the file TEST.MAP for 
overlay symbol maps. 

The next command string, LPT:TEST/PLOT directs that a diagram of the 
overlay links be printed on the line printer. 

The next command string, CBLO,CBLI/LINK:TEST, loads the files CBLO.REL 
and CBLl.REL into the root link. The /LINK:TEST switch tells LINK 
that no more modules are to be in the root link and that the link name 
is TEST. 

Each of the next four lines defines one link with a string of the 
form: 

/NODE:linkname filenames/LINK:linkname 

where: 

/NODE:/linkname 

filenames/LINK:linkname 

specifies the previously defined link 
to which the present link is an 
immediate successor. 

names the files in the current link 
and specifies the name of the link. 

The first of these four lines begins with /NODE:TEST, which tells LINK 
that the link being defined is to be an immediate successor to TEST, 
the root link. Then (on the same line) , the string 
CBL2,CBL3/LINK:LEFT loads the files CBL2.REL and CBL3.REL, ends the 
link, and names the link LEFT. 

The next line, /NODE:LEFT CBL5/LINK:LEFTl, defines a link named LEFTI 
containing the file CBL5.REL, and this link is an immediate successor 
to the link LEFT. 

The next line, /NODE:LEFT CBL6/LINK:LEFT2, defines another immediate 
successor to LEFT, this time containing the file CBL6.REL and called 
LEFT2. 

The last link is defined in the next line, /NODE:TEST CBL4/LINK:RIGHT. 
This string defines the link RIGHT, which is an immediate successor to 
TEST and contains the file CBL4.REL. 

The next-to-last line in the example, TEST/SAVE, directs LINK to 
create the saved file TEST.EXE. The last line, /E/GO, specifies that 
the loaded program is to be executed and that all commands to LINK are 
completed. 

11.3.4 The /SPACE Switch To LINK 

For a COBOL overlay structure to execute properly, it must have free 
memory in its root link for the following uses: 

1. General-purpose I/O buffers 

11-11 



PROGRAM SEGMENTS, SUBPROGRAMS, AND OVERLAYS 

2. I/O buffers and file tables for sorting 

3. Label record area for multireel files 

4. File index blocks for split index blocks of ISAM files 

The /SPACE switch to LINK reserves free memory. It has the form: 

/SPACE:n 

where n is the decimal number of words to be reserved. 

The /SPACE switch is used in the root link. For example, to allocate 
5000 words of free memory in the overlay example above, you would 
type: 

CBLO,CBLI/SPACE:5000/LINK:TEST 

There are two types of space needed in the root link of a COBOL 
overlay: space for buffers and space for dynamic allocation. 

Use the following guidelines to compute the free memory needed for 
buffers: 

1. Two buffers are needed for each sequential file and one 
additional buffer is needed for each extra area used in the 
program. 

For an unblocked sequential file (on disk or magnetic tape), 
each buffer is 128 words. For example, the buffer space 
needed for one sequential file on disk with one alternate 
area is 3*128 = 384 words. 

For a blocked sequential file on magnetic tape, the buffer 
size is the blocksize (record-size*records/block). For 
example, the buffer space needed for one blocked sequential 
file with 100 records per block and records of 100 words each 
is 2*100*100 = 20000 words. 

2. One buffer is needed for each random-access file and one for 
each file that is open for I/O. The buffer size is the 
number of l28-word blocks needed to hold the logical block, 
plus seven words. 

For example, a random-access file with logical blocks of 25 
10-word records has a block size of 250 words. The smallest 
number of 1~8-word blocks containing 250 words is 2 (= 256 
words). Therefore the buffer size is 256 + 7 = 263 words. 

3. Indexed-sequential files require one buffer for each file. 
The buffer size is the sum of the following: 

a. Enough 128-word blocks to contain a logical block for 
each level of the index file. 

b. Enough l28-word blocks to contain a logical block of 
data. 

c. A number of l28-word blocks equal to the number used in 
an index block. These are used for storage allocation 
tables. 

d. One l28-word block for the statistics block. 

11-12 



PROGRAM SEGMENTS, SUBPROGRAMS, AND OVERLAYS 

e. One l28-wotd block for the index table. 

f. A number of words equal to the largest index key-size, 
plus two words. 

g. A number of words equal to the largest blocking factor of 
all the indexed-sequential files in the program. For 
example, if the largest blocking factor is 10, then 10 
words are required in the buffer. 

h. Enough l28-word blocks to contain the largest of the data 
or index blocks in all indexed-sequential files in the 
program. 

For example, to compute the buffer size for an indexed 
sequential file with four levels, with l28-word index 
blocks and 256-word data blocks, compute as follows: 

Total 

512 Four l28-word index blocks 
256 One 256-word data block 
128 One l28-word storage allocation table 

block 
128 One l28-word statistics block 
128 One l28-word index table block 
256 Two l28-word blocks for the largest of 

all data or index blocks 
2 Two words for the largest blocking factor 
4 2-word index key plus two words 

1414 Buffer size (in words) 

Use the following guidelines to compute the amount of free memory 
needed for dynamic allocation du~ing program execution: 

1. The size of the label-record area for a multireel file. This 
size is 16 words for standard labels. For nonstandard 
labels, the size is the number of characters in the label 
divided by 5. 

2. The size of the index block of an indexed-sequential file if 
the top index block is split. 

3. The size of the sort I/O buffers if sorting is used in the 
program. This size is calculated as the number of devices 
assigned to the sort file in the SELECT clause times two (for 
two buffers for each file) plus 26 words for each file table 
for each device. 

For example, for a sort file with four assigned devices, calculate 
buffers as follows: 

4 * 128 words *2 + (4 * 26 words) 1128 words 

NOTE 

This calculation reflects only the 
requirements needed by COBOL. See also 
the SORT User's Guide for sort 
requirements. 

11-13 



PROGRAM SEGMENTS, SUBPROGRAMS, AND OVERLAYS 

If you do not allocate sufficient fre~ memory ~ith the /SPACE switch, 
either your program does not begin execution or it fails during 
execution. 

11.3.5 The CANCEL Statement 

You can use the CANCEL statement 
structure to reduce memory size 
statement has the form: 

in a 
during 

CANCEL subprogram-l [,subprogram-2] •..• 

COBOL subprogram overlay 
program execution. This 

where each named subprogram is in one of the overlay links. 

The CANCEL statement creates a call to the REMOV. Overlay Handler 
subroutine. This directs removal from core of the links containing 
the named subroutines, along with all their successor links. The 
Overlay Handler attempts to return the recovered memory. 

A CANCEL statement cannot direct removal of its own link or of any of 
its ancestor links, including the root link. 

In the overlay structure diagrammed in Figure 11-1, for example, a 
subprogram loaded into the link LEFT can CANCEL subprograms in link 
LEFTl, LEFT2, or both. But it cannot CANCEL subprograms in its own 
link, LEFT, or in the root link, TEST. 

11.3.6 Examples 

The following pages show terminal listings of files associated with 
the example above. These pages show: 

1. COBOL listing files for the programs used in the overlay 
(seven pages) 

2. Terminal copy of the interactive use of LINK to define and 
execute the overlay (two pages) 

3. The file TEST.MAP, generated by LINK, which shows symbol maps 
for the overlay (eight pages) . 

11-14 



PRO G RAM C B L 0 COBOL-68 12B(1033) BIS 10-SEP-80 08:45 PAGE 1 
CBLO.CBL 15-JAN-81 08:31 

0001 ID DIVISION. 
0002 PROGRAM-ID. CBLO.CBL 
0003 DATA DIVISION. 
0004 WORKING-STORAGE SECTION. 
0005 01 INFO. 
0006 02 LEVMSG PIC X (15) USAGE IS DISPLAY-7 VALUE "We're at level " 
0007 02 LEVEL PIC 9V VALUE O. 
0008 02 PGMMSG PIC X (12) USAGE IS DISPLAY-7 VALUE " in program " 
0009 02 CALMSG PIC X (9) USAGE IS DISPLAY-7 VALUE " calling " 
0010 02 RETMSG PIC X (12) USAGE IS DISPLAY-7 VALUE "Returned to " 
0011 02 B PIC X(8) VALUE " " 
0012 01 PGMN~M PIC X(6) VALUE "CBLO". 
0013 01 ENDMSG PIC X(18) USAGE IS DISPLAY-7 VALUE "Execution ends in " 
0014 PROCEDURE DIVISION. 
0015 DISPLAY LEVMSG,LEVEL,PGMMSG,PGMNAM. 
0016 DISPLAY PGMNAM,CALMSG,"CBL2A". 
0017 CALL CBL2A USING INFO. 

..... 0018 DISPLAY RETMSG,PGMNAM . ..... 
0019 DISPLAY PGMNAM,CALMSG,"CBL4". I ..... 0020 CALL CBL4 USING INFO. Ul 
0021 DISPLAY RETMSG,PGMNAM. 
0022 DISPLAY PGMNAM,CALMSG,"CBL2B". 
0023 CALL CBL2B USING INFO. 
0024 DISPLAY RETMSG,PGMNAM. 
0025 DISPLAY ENDMSG,PGMNAM. 
0026 STOP RUN. 

NO ERRORS DETECTED 



SUB C B L 1 COBOL-68 12B(1033) BIS 10-SEP-80 08:46 PAGE 1 
CBLl.CBL 15-JAN-81 08:30 

0001 ID DIVISION. 
0002 PROGRAM-ID. CBLI. 
0003 DATA DIVISION. 
0004 WORKING-STORAGE SECTION. 
0005 01 PGMNAM PIC X(6) VALUE IICBLll1. 
0006 LINKAGE SECTION. 
0007 01 INFO. 
0008 02 LEVMSG PIC X (15) USAGE IS DISPLAY-7. 
0009 02 LEVEL PIC 9V. 
0010 02 PGMMSG PIC X (12) USAGE IS DISPLAY-7. 
0011 02 CALMSG PIC X (9) USAGE IS DISPLAY-7. 
0012 02 RETMSG PIC X(12) USAGE IS DISPLAY-7. 
0013 02 B PIC X(8). 
0014 PROCEDURE DIVISION USING INFO. 
0015 ADD 1 TO LEVEL. 
0016 DISPLAY B,B,LEVMSG,LEVEL,PGMMSG,PGMNAM. 
0017 DISPLAY B,B,IICBLI doesn't call anything ll

• 

I-' 0018 SUBTRACT 1 FROM LEVEL. 
I-' 

0019 GOBACK. I 
I-' 
m 

NO ERRORS DETECTED 



SUB C B L 2 COBOL-68 12B(1033) BIS 
CBL2.CBL 15-JAN-81 08:40 

0001 
0002 
0003 
0004 
0005 
0006 
0007 
0008 
0009 
0010 
0011 
0012 
0013 
0014 
0015 
0016 
0017 
0018 
0019 
0020 
0021 
0022 
0023 
0024 
0025 
0026 
0027 
0028 
0029 
0030 
0031 
0032 
0033 
0034 
0035 

ID DIVISION. 
PROGRAM-ID. CBL2. 
DATA DIVISION. 
WORKING-STORAGE SECTION. 
01 PGMNAM PIC X(6) VALUE "CBL2". 
01 ENTNAM PIC X(6). 
01 ENTMSG PIC X(4) USAGE IS DISPLAY-7 VALUE" at " 
LINKAGE SECTION. 
01 INFO. 

02 LEVMSG 
02 LEVEL 
02 PGMMSG 
02 CALMSG 
02 RETMSG 
02 B 

PROCEDURE DIVISION. 
ENTRY CBL2A USING INFO. 

ADD 1 TO LEVEL. 

PIC 
PIC 
PIC 
PIC 
PIC 
PIC 

x (15) 
9V. 
X (12) 
X (9) 
X(12) 
X (8) • 

MOVE "CBL2A" TO ENTNAM. 

USAGE IS DISPLAY-7. 

USAGE IS DISPLAY-7. 
USAGE IS DISPLAY-7. 
USAGE IS DISPLAY-7. 

DISPLAY B,LEVMSG,LEVEL,PGMMSG,PGMNAM,ENTMSG,ENTNAM. I 

DISPLAY B,PGMNAM,CALMSG,"CBL5". 
CALL CBL5 USING INFO. 
DISPLAY B,RETMSG,PGMNAM. 
DISPLAY B,PGMNAM,CALMSG,"CBL6". 
CALL CBL6 USING INFO. 
DISPLAY B,RETMSG,PGMNAM. 
SUBTRACT 1 FROM LEVEL. 
GOBACK. 

ENTRY CBL2B USING INFO. 
ADD 1 TO LEVEL. 
MOVE "CBL2B" TO ENTNAM. 
DISPLAY B,LEVMSG,LEVEL,PGMMSG,PGMNAM,ENTMSG,ENTNAM. 
DISPLAY B,"CBL2B doesn't call anything". 
SUBTRACT 1 FROM LEVEL. 
GOBACK. 

NO ERRORS DETECTED 

10-SEP-80 08:46 PAGE 1 



SUB C B L 3 COBOL-68 12B(1033) BIS 10-SEP-80 08:46 PAGE 1 
CBL3.CBL 15-JAN-81 08:51 

0001 ID DIVISION. 
0002 PROGRAM-ID. CBL3. 
0003 DATA DIVISION. 
0004 WORKING-STORAGE SECTION. 
0005 01 PGMNAM PIC X(6) VALUE ICBL3". 
0006 LINKAGE SECTION. 
0007 01 INFO. 
0008 02 LEVMSG PIC X (IS) USAGE IS DISPLAY-7. 
0009 02 LEVEL PIC 9V. 
0010 02 PGMMSG PIC X (12) USAGE IS DISPLAY-7. 
0011 02 CALMSG PIC X (9) USAGE IS DISPLAY-7. 
0012 02 RETMSG PIC X (12) USAGE IS DISPLAY-7. 
0013 02 B PIC X (8) . 
0014 PROCEDURE DIVISION USING INFO. 
0015 ADD 1 TO LEVEL. 
0016 DISPLAY B,B,B,LEVMSG,LEVEL,PGMMSG,PGMNAM. 
0017 DISPLAY B,B,B,"CBL3 doesn't call anything". 

I--' 0018 SUBTRACT 1 FROM LEVEL. 
I--' 0019 GOBACK. I 
I--' 
ex> 

NO ERRORS DETECTED 



SUB C B L 4 COBOL-68 12B(1033) BIS 10-SEP-80 08:46 PAGE 1 
CBL4.CBL 15-JAN-81 09:05 

0001 ID DIVISION. 
0002 PROGRAM-ID. CBL4. 
0003 DATA DIVISION. 
0004 WORKING-STORAGE SECTION. 
0005 01 PGMNAM PIC X(6) VALUE IICBL411. 
0006 LINKAGE SECTION'. 
0007 01 INFO. 
0008 02 LEVMSG PIC X(15) USAGE IS DISPLAY-7. 
0009 02 LEVEL PIC 9V. 
0010 02 PGMMSG PIC X (12) USAGE IS DISPLAY-7. 
0011 02 CALMSG PIC X (9) USAGE IS DISPLAY-7. 
0012 02 RETMSG PIC X (12) USAGE IS DISPLAY-7. 
0013 02 B PIC X (8) . 
0014 PROCEDURE DIVISION USING INFO. 
0015 ADD 1 TO LEVEL. 
0016 DISPLAY B,LEVMSG,LEVEL,PGMMSG,PGMNAM. 
0017 DISPLAY B,PGMNAM,CALMSG,IICBLl l1

• 

I-' 0018 CALL CBLI USING INFO. 
I-' 0019 DISPLAY B,RETMSG,PGMNAM. I 
I-' 0020 SUBTRACT 1 FROM LEVEL. \.0 

0021 GOBACK. 

NO ERRORS DETECTED 



SUB C B L S COBOL-68 12B(1033) BIS 10-SEP-80 08:48 PAGE 1 
CBLS.CBL 1S-JAN-81 09:05 

0001 ID DIVISION. 
0002 PROGRAM-ID. CBLS. 
0003 DATA DIVISION. 
0004 WORKING-STORAGE SECTION. 
OOOS 01 PGMNAM PIC X(6) VALUE "CBLSII. 
0006 LINKAGE SECTION. 
0007 01 INFO. 
0008 02 LEVMSG PIC X (IS) USAGE IS DISPLAY-7. 
0009 02 LEVEL PIC 9V. 
0010 02 PGMMSG PIC X (12) USAGE IS DISPLAY-7. 
0011 02 CALMSG PIC X {9} USAGE IS DISPLAY-7. 
0012 02 RETMSG PIC X (12) USAGE IS DISPLAY-7. 
0013 02 B PIC X (8) • 
0014 PROCEDURE DIVISION USING INFO. 
0015 ADD 1 TO LEVEL. 
0016 DISPLAY B,B,LEVMSG,LEVEL,PGMMSG,PGMNAM. . ... 
0017 DISPLAY B,B,"CBLS doesn't call anything". 

..... 0018 SUBTRACT 1 FROM LEVEL . ..... 
I 0019 GOBACK. 
~ 
0 

NO ERRORS DETECTED 



SUB C B L 6 COBOL-68 12B(1033) BIS 10-SEP-80 08:48 PAGE 1 
CBL6.CBL 15-JAN-81 09:04 

0001 ID DIVISION. 
0002 PROGRAM-ID. CBL6. 
0003 DATA DIVISION. 
0004 WORKING-STORAGE SECTION. 
0005 01 PGMNAM PIC X(6) VALUE "CBL6". 
0006 LINKAGE SECTION. 
0007 01 INFO. 
0008 02 LEVMSG PIC X (15) USAGE IS DISPLAY-7. 
000'9 02 LEVEL PIC 9V. 
0010 02 PGMMSG PIC X (12) USAGE IS DISPLAY-7. 
0011 02 CALMSG PIC X (9) USAGE IS DISPLAY-7. 
0012 02 RETMSG PIC X (12) USAGE IS DISPLAY-7. 
0013 02 B PIC X (8) • 
0014 PROCEDURE DIVISION USING INFO. 
0015 ADD 1 TO LEVEL. 
0016 DISPLAY B,B,LEVMSG,LEVEL,PGMMSG,PGMNAM. 
0017 DISPLAY B,B,PGMNAM,CALMSG,"CBL3". 

I-' 0018 CALL CBL3 USING INFO. I-' 
I 0019 DISPLAY B,B,RETMSG,PGMNAM. 
~ 0020 SUBTRACT 1 FROM LEVEL. I-' 

0021 GOBACK. 

NO ERRORS DETECTED 



.R LINK ~ 
*TEST/LOG/LOGLEVEL:S ~ 
*/ERRORLEVEL:S ~ 
*TEST/OVERLAY ~ 
*TEST/MAP ~ 
*CBLO,CBLI/LINK:TEST ~ 
[LNKLMN Loading module CBLO] 
[LNKLMN Loading module CBLl] 
[LNKLMN Loading module OVRLAY] 
[LNKLMN Loading module CON012] 
[LNKLMN Loading module LILOWS] 
[LNKLMN Loading module TRACED] 
[LNKLMN Loading module USRDSL] 
[LNKLMN Loading module DBSTP$] 
[LNKELN End of link number 0 name TESTj 

jDefine TEST. LOG 
jImportant messages 
jDefine TEST.OVL 
jDefine TEST.MAP 
iRoot link 

* /NODE:TEST CBL2,CBL3/LINK:LEFT ~ 
[LNKLMN Loading module CBL2] 
[LNKLMN Loading module CBL3] 
[LNKELN End of link number 1 name LEFT] 
* /NODE:LEFT CBLS/LINK:LEFTI ~ 
[LNKLMN Loading module CBLS] 
[LNKELN End of link number 2 name LEFTl] 
* . /NODE:LEFT CBL6/LINK:LEFT2 ~ 
[LNKLMN Loading module CBL6] 
[LNKELN End of link number 3 name LEFT2] 
* /NODE:TEST CBL4/LINK:RIGHT ~ 
[LNKLMN Loading module CBL4] 
[LNKELN End of link number 4 name RIGHT] 
*TEST/SAVE ~ 
*/E/GO ~ 
[LNKXCT CBLO Execution] 

jLeft branch 

jLeft-left branch 

iLeft-right branch 

;Right branch 



We're at level 0 in program CBLO 
CBLO calling CBL2A 

We're at level I in program CBL2 at CBL2A 
CBL2 calling CBL5 

We're at level 2 in program CBL5 
CBL5 doesn't call anything 

Returned to CBL2 
CBL2 calling CBL6 

We're at level 2 in program CBL6 
CBL6 calling CBL3 

We're at level 3 in program 
CBL3 doesn't call anything 

Returned to CBL6 
Returned to CBL2 

Returned to CBLO 
CBLO calling CBL4 

We're at level I in program CBL4 
CBL4 calling CBLI 

We're at level 2 in program CBLI 
CBLI doesn't call anything 

Returned to CBL4 
Returned to CBLO 
CBLO calling CBL2B 

We're at level I in program ,CBL2 at CBL2B 
CBL2B doesn't call anything 

Returned to CBLO 
Execution ends in CBLO 

EXIT 

to 

CBL3 
l:O 
0 
Gl 

~ 
3: 

00 
t%l 
Gl 
3: 
t%l 
Z 
1-3 
00 

00 
C 
tx:I 
to 
:::0 
0 
Gl 

~ 
3: 
00 

)01 
z 
tj 

0 
<: 
t%l 
:::0 
t'1 
)01 
t< 
00 



LINK SV~bol map ot TEST version 128(1102) paQe 1 
Produced by LINK version 4B(1272) on 18-~~r-R1 at 9:05:27 

Overley no. 0 name TE5T 
Low seg~ent starts at 0 ends at 3144 length 3145. 4P 
~lgh seg~ent starts at 0 ends at 3506 length 3507 = 4P 
Control Block address is 31~5, length 30 (oct~l), 24. (decimal) 
411 words free In Low S~9ment, 185 words free In hiah segment 
366 Gl~bal ~ymbols loaded, therefore min. hash size is 407 
Start- ad~ress Is 400010, located 1n program CaLO 

••••••••••••• "0 
~ 
0 

JOBDAT-INITIAL-SYMBOLS G'l 

~ 
Zero lenQtn ~o"ule 3: 

••••••••••••• til 
tzl 
G'l 

LIBOL-STATIC-AREA 3: 
Low segment st8rts itt 140 ends at 1477 length 1340 (octal), 736. (dechal) tzl 

Z 
.COf04M. 140 Coml!lon length 736. .COMM. _140 Common length 736. t-3 

til 

••••••••• *.*. 
til 

f-' C 
f-' CBLO fro~ DSK:C8LO.RELf4,206] cre!lted by CQBOL-68 on 21-Jan-Bl !It 10121100 '" I Low segment starts at 1500 ends at 1747 length 250 (octal), 168. (deCimal) "0 
N High 5eq~~nt starts ~t 400011) ends at 400214 length 205 (octal) , 133. (dec!m"l) ~ 
,j::. 0 

G'l 
CRLO 400022 Entry Relocatable 5;! 

••••••••••• ** 3: 
til 

CSLl from DSK:CRL1.REL[4,206] created by COBOL-6B on 21-Jan-B1 at 10:21100 
Low seqment starts at 1750 ends at 2167 length 220 (o~tal), 144. (deCimal) > 
High seqment starts at 400215 ends at 400440 length 224 (octal) , 14~. (deCimal) Z 

0 

CBLl 400217 F.ntry Relocatable 0 
<: 

•••••• *.***.* tzl 
~ 
t'1 

OVRLAY from SYS:OVRLAY.REL[4,20J created by ~ACRO on 15-May-BO at 16154100 > 
Low segment starts at 2170 ends at 2673 length 504 (octal) , 324. (deClIIal ) t< 
Hlqh seqment starts at 400441 t'nds at 403506 length 3046 (octal), 1574. (dec!mal ) til 

BOUn 104000000051 GlObal Absolute CLOSF, 104000000022 GlObal AbSolute 
ERJ~P 320700000000 GlObal Absolute ERSTR\ 104000000011 Glonel Absolute 
GCVEC\ t04000000300 GlObal Absolute GETOV. 402056 Entrv Relocetable 
GJ,OLD 10(1)00000000 Global Absolute Suppressed GTJFN, 104000000020 Globel Absolute 
HlLTF% 104000000170 GlObal Absolute INIOV. 402045 Entrv Relocatable 
JFNS\ 104000000030 GlObal Ahsolute JS'DI~ 70000000000 GlObal AbSolute Suppressed 
JS\NAJ4 7000000000 GlObal Absolute suppressed JS%PAF 1 GlObal AbSolute Suppressed 
LOGI)V. 402644 Entry Relocatable OP'\~SZ 770000000000 GlObal Absolute SUPpressed 
OF'%RD 200000 GlObal Absolllte Suppressed OF\WR 100000 GlObal Absolute Suppressed 
OPE~F' 104000000021 GlOhal Absolute Pl\F.X 20000000000 Global Absolute Sup Dressed 



LINK symbol map of T1!:Sr version 12B(1102) paQe 2 
OVRLAY 

PA\PRV 200000000 Global Absolute suppressed PBOUT, 104000000074 Global Absolute 
psoun 104000000076 Global Absolute REMOV. 402077 Entry Reloeatable 
R"'AP\ 104000000061 GlObal Absolute RPACS\ 104000000057 GlObal AbSolute 
RUNnv. 402115 Entry Relocateble RUNTM\ 104000000015 GlObal Absolute 
S~PTR\ 10400001)0027 Global Absolute SIN\ 104000000051 GlObal Absolute 
SOUT% 104000000053 Global Absolute \OVRLA 402000052 GlObal Absolute Suppressed 
.FHJOB 777773 GlObal Absolute Suppressed .F'HSLF 400000 GlObal AbSolute SUPpressed 
.JSAOF' 1 Global Absolute suppressed ."'ULIO 371777 GlObal Absolute SUPpressed 
.OVRL!. 2171 Entry Relocatable .OVRLO 2176 GlObal Reloeatable I't:J 
.QVPLU 402401 Entry Relocatable .OVRWA 2175 GlObal Reloeatable ~ 

0 
••••••• **** •• G'l 

~ 
CDNOl2 from SY~:~IROL.R~Lr4,20J created by MACRO on 30-Jan-81 at 17:52:00 3: 

LOW segment starts at 2614 ends at 3073 lenQth 200 (octal), 128. (deCimal ) 
til 

CN.12 2f>74 Entry Reloc'atable COBST. 2674 GlObal Relocatable 
tZJ 
G'l 

GF-T\ 104000000200 Global AI'\solut .. GJ\PHY 10000000 GlObal Absolute Suppre .. ed 3: 
GJ%SHT 1001')000 Global Absolut~ Suppressed GT\ADR 200000 GlObal Absolute Suppressed tZJ 
JS\GEN 70000000 GlObal Absolute Sup~ress@d JS\TYP 700000000 GlObal Ab'olute SUPpressed Z 

8 
RF\LNr, 4000(1)000000 Global Ahsolut~ SUP ores sed RFSTS% 104000000156 GlObal Absolute til 
.~FSFt. 4 GlObal Absolute Suooressed 

*** •• *.* •••• * til 
I--' C 
I--' ll' 
I LILOWS from SYS:LIROL.REL[4,20] created by MACRO on 30-Ja~-81 at 17:52100 "'CI 

N ~ 
U1 0 Zero tenQth module G'l 

** •• ***_.* •• * ~ 
3: 

LIDISP from SYS:LIBOL.REL[4,20] created by MACRO on 30-Jan-Sl at 17:52:00 til 

Zero 1 enqth lIIodllle ~ 
Z 

*.* ••• *.* •• ** t::I 

0 
TRACED from SYS:LIBOL.REL[4,20J created by MACRO on 30-Jan-81 at 17:52100 < 

Low seqm@nt st~rts at 3074 ends at 3103 lenQth 10 (octal) , 8. (deCimal) tZJ 
~ 
t"1 

STPAC. 3077 Entry Relocatable C.TRCE 3074 E~try Relor:atable ~ 
(,'\OI)T. 3101 Entry R~locatable CNTRC. 3077 E~try Relocatable t< 
HSRPT. 3077 Entry Relocatable PTFLG. 3102 GlObal Relocatable til 

SJ:lPSG. 3077 E!'Itry Relocatable SF'OV. 3077 Entry Relocatable 
TRPO. 3100 Entry Reloc8table TRPOP. 3077 E~try Relocatable 

*.* •• * ••• * ••• 
USROSL from SYS:LIROL.REL[4,20] created bv MACRO on 30-Jan-81 at 17:52,00 

Zero leoQth ",odule 

••••••••••••• 



LINK sy~bol map of TEST version 128(1102) pa;e 3 

08STP, from SYSILIBOL.REL[4,20) created bv ~ACRO on lO-Jan-81 at 17152100 
Low seQment starts at 3104 ends at 3104 lenQth 1 (octal), 1. (decimal) 

DBSTPS ]t04 Entry 

....•.. ".".*. 



Index to LI"K symbol mao of TEST vl!!rslon 128(1102) page 4 

Nallle Paqe Nlllllle P8Qe Name Pl!ge Name Page 

('8LO t ORSTPS , LILnws 2 TRACED 2 
CRLl 1 LTDISP '1 OVRLAY t USROSL 2 
cnN012 2 



CRL2 

CBL] 

LTN~ sy~bol map of TFST 

Overlay no. n~me L~FT 

Low s~Q~ent starts at 7145 en~s at 
Contrnl Blo~K a1~ress Is 106it, lenath 
Path 15 0 

version 128(1102) 11 

10704 length 1540 = 2P 
30 (oct~l), 24. (dec1mal) 

sq words free In Low seqrnent, 185 words free In hlQh seQment 
74 r.lobal symbols loade~, therefore mtn. hash size 15 27 

••••• ** ••• *** 

paQe 5 

created by COBOL-68 on 21-Jan-81 at 10.23100 from I)SKICFH.2.REL[4,2061 
Low seqment starts at 
Hlnh seament st8rts at 

7711 ends at 10160 l~ngth 250 (octal), 168. (deCimal) 

CAL2 
C~L1B 

7147 
74S0 

***.********* 
from ~SK:CBLJ.RELr4,2061 
Low seome~t st~rts at 
H1qh seqment starts at 

CRLJ 10t63 

************. 

714~ ends at 77tO lenqth 544 (octal), 356. (decl~al' 

~ntry 

Entrv 
Relocatable 
ReloCl'ltable 

CBL2A 7165 

created by COBOL-68 on 21-Jan-81 at 10:23100 

Entry 

10421 ends at 10640 lengt~ 220 (octal), 144. (deCimal) 
10161 pndS at 10420 lengt~ 240 (octal), 160. (deCimal) 

Entry Relocatable 

Relocatable 



...... 

...... 
I 

N 
~ 

CRL5 

LINK sy~bol map Of TEST 

Overlay no. 2 n~me LEFT1 
LOW seg~~nt starts at 10705 ~n~s at 
Control RInCk address is 11351, length 
Path 15 Or 1 
257 words free In ~ow seqment, 185 words 
t9 Global svmbols loaded, t~erefore min. 

************* 

version 128(1102) .2 

11376 lenQth 472. 1P 
26 (oct~l), 14. (decimal) 

free in high segment 
hash size Is 22 

paoe 6 

from DSK:CBLS.REL(4 r 1061 
Low segment starts at 
High seq~ent st~rts at 

created bV COBOL-68 on 21-Jan-81 at 10124100 
11131 ~nds at 11350 length 22n (octal), 144. (deCiMal) 
10705 ends at 11130 length 224 (octal), 148. (deCImal) 

CRLI) 10707 Entry 

************* 



CBL6 

LINK SY~bol map Of TEST 

Overlay no. 3 name LF.FT2 
Low segment starts at 10705 ends at 
Control ~loCK a~dress 15 11421, length 
~~th 15 0, 1 

version 128(1102) .3 

11446 length 542. 1P 
16 (oct~l), 14. (decimal) 

217 words free In Lo~ segment, 185 words free In hlQh segment 
20 Global Sy~bOls loade~, t~erefore min. has~ sIze 15 23 

**,*.*.****** 

page 7 

from DSK:CBL6.RELr4,206J 
Low seQ~ent starts at 
HIgh seqment starts at 

created bv CO~OL-68 on 21-Jan-81 at 10:24:00 
11177 en~s at 11420 lenat~ 222 (octal), 146. (decl~al) 
'0705 ends at 1117~ length 272 (octal), 1A6. (deCimal) 

CRL6 tQ7~7 Entrv 

***.** •• ** •• * 



..... ..... 
I 

W ..... 

CRL4 

Overlay no. 4 
Low segment Itarts at 
Control BlOCk addrels Is 
Path :Is 0 

TEST 

nallle RIGHT 
7145 ends at 

7617, length 

verlion 128(1102) paoe 8 

7664 length 520. IP 
16 (octal), 14. (deci.al) 

75 words free In Low seoment, 285 words free In hlg~ leg~ent 
20 Global symbols loa1e1, therefore ~tn. hash size Is 21 

************* 
fro~ DSKIC8L4.~F.L[4,206] 
Low se~ment starts at 
Hiah seQ~e~t starts at 

CRL4 7147 

************* 

created bV COBOL-68 on ,1-Jan-81 at 10123100 
7415 ends at 7636 lenQt~ 222 (octal), 146. (dec1Mal) 
714~ ends at 7414 lenQt~ 250 (octal), 168. (decl~.l) 

Entrv 



Index to overlay nU'IIbers of TE:ST version 128(1102) paoe 9 

Overlay Pi'lge Overlay Page Overlay Po!lq~ Overlay Page 

lIO 4 1I2 F. lI3 7 114 8 
It t " 
Index to I')verlav names of TF.ST version 128(1102) 

rH!me P"!ge N'!me Paqe Name Paae Name Paoe 

',EF'T 0; LI';F'T2 7 RIGHT A TEST 4 
LF:F'I'l 6 

[~n'" of LINK map of TFST) 



CHAPTER 12 

CALLING NON-COBOL SUBPROGRAMS 

Some programming tasks are more conveniently done in a language other 
than COBOL. You can write non-COBOL subprograms for these tasks, and 
then call the subprograms from COBOL programs. 

To call a non-COBOL subprogram, use the ENTER verb in the Procedure 
Division. The call has the form: 

ENTER language entry-name [USING string-l [,string-2] .•. ]. 

where: 

language 

entry-name 

string 

is the name of the compiler that generated the 
subprogram. 

is the name of the entry point you want to call. 

is an identifier, literal, or procedure-name. The 
list of strings is usually called an argument list 
or a parameter list. 

The compilers that can generate COBOL-callable subprograms are COBOL, 
FORTRAN, and MACRO. The phrase ENTER COBOL is equivalent to CALL and 
is not discussed further here. 

The entry point used in the ENTER statement must be an entry-name 
symbol generated by the compiler for the called program. COBOL 
generates an entry-name for each ENTRY statement and program-name. 
FORTRAN generates an entry-name for each SUBROUTINE, FUNCTION, and 
ENTRY statement. MACRO generates an entry-name for each ENTRY 
statement. 

NOTE 

You can use the "weaker" MACRO statement 
INTERN instead of ENTRY if you 
explicitly load the MACRO module. ENTRY 
is required only if the module must be 
loaded in a library search. 

In the USING clause, using an identifier passes the value of the 
identifier to the called subprogram; uSlng a literal passes the 
literal to the subprogram; using a procedure-name passes the address 
of the beginning of the named procedure, which can be used for 
alternate returns. FORTRAN cannot accept DISPLAY-6 (SIXBIT) , 
DISPLAY-9 (EBCDIC), or COMP-3 (packed-decimal) data. 

12-1 



CALLING NON-COBOL SUBPROGRAMS 

12.1 CALLING FORTRAN SOBPROGRAMS 

When the COBOL compiler finds an ENTER FORTRAN statement, it generates 
a call for the named subprogram. If the ENTER statement contains a 
USING clause, the values indicated by the given identifiers, literals, 
and procedure-names are passed to the subprogram. 

FORTRAN programs called by COBOL programs should not use blank COMMON, 
even among themselves. Doing so can overwrite storage in the COBOL 
program. 

In the following example, the COBOL program CFSQRT calls the FORTRAN 
subprogram FSQRT to perform a square-root operation. The following 
list shows how values are passed from the main program to the 
subprogram: 

Use of COBOL FORTRAN 
Value Identifier Variable 

Input number INPUT-NUMBER INPUT 

Answer ANSWER ANSWER 

Error message location ERROR-MESSAGE ERRMSG 

Exit message location EXIT ..... MESSAGE EXMSG 

The following is the source file for the COBOL program CFSQRT: 

ID DIVISION. 
PROGRAM-ID. CFSQRT. 
DATA DIVISION. 
WORKING-STORAGE SECTION. 
01 INPUT-NUMBER USAGE COMP-l. 
01 ANSWER USAGE COMP-I. 
PROCEDURE DIVISION. 
LOOP. 

DISPLAY 'Type a positive integer. '. 
ACCEPT INPUT-NUMBER. 
ENTER .FORTRAN FSQRT USING INPUT-NUMBER,ANSWER, 

ERROR-MESSAGE,EXIT-MESSAGE. 
DISPLAY ANSWER. 
GO TO LOOP. 

ERROR-MESSAGE. 
DISPLAY 'No negative numbers, please.'. 
GO TO LOOP. 

EXIT-MESSAGE. 
DISPLAY 'Thank you~'. 
STOP RUN. 

The following is the source file for the FORTRAN program FSQRT: 

SUBROUTINE FSQRT(INPUT,ANSWER,*,*) 
REAL INPUT 
INTEGER ERRMSG,EXMSG 
ERRMSG=l 
EXMSG=2 
IF(INPUT.LT.O) RETURN ERRMSG 
IF(INPUT.EQ.O) RETURN EXMSG 
ANSWER=SQRT(INPUT) 
RETURN 
END 

12-2 



CALLING NON-COBOL SUBPROGRAMS 

In the following lines, these two source p~ograms are executed. Each 
positive integer input yields its square root; a negative number 
yields an error message at an alternate return in the COBOL program; 
o yields the exit message at another al±ernate return. Note that the 
TOPS-IO system prompt could be replaced by the TOPS-20 prompt (@) 
without altering the example - the programs run exactly the same way 
under TOPS-20 • 

• EX CFSQRT.CBL,FSQRT.FOR 
FORTRAN: FSQRT 
FSQRT 
COBOL: CFSQRT [CFSQRT.CBL] 
LINK: Loading 
[LNKXCT CFSQRT Execution] 
Type a positive integer. 
4 
2.0EO 
Type a positive integer. 
3 
1.7320508EO 
Type a positive integer. 
2 
1.4142136EO 
Type a positive integer. 
1 
1.OEO 
Type a positive integer. 
-1 
No negative numbers, please. 
Type a positive integer. 
o 
Thank you. 

EXIT 

12.2 CALLING MACRO SUBPROGRAMS 

When the COBOL compiler finds an ENTER MACRO statement, it generates 
the standard calling sequence: 

MOVEI 16,arglist 
PUSHJ 17,entry point 

where arglist is the address of the first word of the argument list, 
and entry point is an entry-name symbol. 

If the ENTER statement contains a USING clause, the compiler creates 
an argument list containing an entry for each identifier or literal in 
the clause. The word immediately preceding the argument list is of 
the form: 

-length"O 

where length is the number of arguments in the list. If no USING 
clause appears in the ENTER statement, the length of the list is 0 
(but the length word still appears). 

12-3 



CALLING NON-COBOL SUBPROGRAMS 

Each entry in the argument list is a 36-bit storage word of the form: 

1=======================================================1 
1 0 1 Code 1 Effective Address (E) 1 
1=======================================================1 
o 8 9 12 13 35 

where code is a 4-bit code (described below), and bits 13-35 contain 
the effective address (E) of the first word of the argument. 

If the passed argument is a I-word COMP item, the code is 2 and E is 
the location of the argument. 

If the passed argument is a 2-word COMP item, the code is 
and E is the location of the first word of the argument; 
word of the argument is at E+l. 

11 (octal) 
the second 

If the passed argument is a COMP-l item, the code is 4 and E is the 
location of the argument. 

If the passed argument is a DISPLAY-6, DISPLAY-7, DISPLAY-9, or COMP-3 
item, or a figurative constant, the code is 15 (octal) and E is the 
location of a 2-word descriptor for the argument. The first word of 
the descriptor is a byte pointer word pointing to the argument. Its 
byte size is 6 for DISPLAY-6 or TODAY, 7 for DISPLAY-7 or literals or 
other figurative constants, and 9 for DISPLAY-9 and COMP-3 items. 

The format of the second word is: 

Bit 0 

Bit 1-4 

Bit 5 

Bit 6 

Bit 7 

If bit 7 = 

Bit 8-11 

Bit 12-35 

If bit 7 = 

Bit 8 

Bit 9 

Bit 10 

If bit 9 = 

Bit 11-25 

Bit 26-30 

Reserved 

Type code: 
1= DISPLAY-6 
2= DISPLAY-7 
3= DISPLAY-9 
4= COMP-3 

Item is a literal 

Item is a figurative constant 

Item is numeric 

0: 

Reserved 

Size of item in bytes 

1: 

Item is signed 

Item is scaled (i.e. PICTURE 
left of implied decimal point, 

Item is numeric edited 

0: 

Reserved 

Number of decimal places 

12-4 

(e. g. SPACES) 

contains "P's" to 
e.g. 999PP) 



CALLING NON-COBOL SUBPROGRAMS 

Bit 31-35 Size of item in bytes 

If bit 9 = 1: 

Bit 11-25 Reserved 

Bit 26-30 

Bit 31-35 

Scale factor (e.g. 2 if picture was 999PP) 

Size of item in bytes (e.g. 
999PP) 

3 if picture was 

The following are additional usage notes: 

1. A figurative constant is passed exactly as a one-character, 
non-numeric DISPLAY-7 data item, except that bit 6 in the 
second descriptor word is set~ 

2. The figurative constant TODAY is passed as a 12-character 
DISPLAY-6 data item, except that bit 6 in the second 
descriptor word is set. 

3. The figurative constant TALLY is passed as a I-word COMP data 
item. 

4. For an item with a picture that contains "PiS" on the right 
side of the assumed decimal point (e.g. PIC VPP999), bit 9 
is not set. This case can be recognized because the number 
of decimal places is greater than the total size of the item. 

5. If the passed argument is a procedure-name (not allowed in a 
call to a COBOL subprogram), the code is 7 and E is the 
location of the first word of the procedure. 

In the following example, the COBOL program CMSQRT calls the MACRO 
subprogram MSQRT to perform a square-root operation. (The subprogram 
uses the FORLIB routine SQRT to take the square root.) 

The argument list generated by the ENTER MACRO statement is as 
follows: 

-4,,0 
ARGLST: Z 4,address 

Z 4,address 
Z 7,address 
Z 7,address 

;-Arglength"O 
;<4B12>+<Address of 1st COMP-l item> 
;<4B12>+<Address of 2nd COMP-l item> 
;<7B12>+<Address of 1st procedure> 
;<7B12>+<Address of 2nd procedure> 

12-5 



CALLING NON-COBOL SUBPROGRAMS 

The following is the source file for the COBOL program CMSQRT: 

ID DIVISION. 
PROGRAM-ID. CMSQRT. 
DATA DIVISION. 
WORKING-STORAGE SECTION. 
01 INPUT-NUMBER USAGE COMP-l. 
01 ANSWER USAGE COMP-l. 
PROCEDURE DIVISION. 
LOOP. 

DISPLAY 'Type a positive integer.'. 
ACCEPT INPUT-NUMBER. 
ENTER MACRO MSQRT USING INPUT-NUMBER,ANSWER, 

ERROR-MESSAGE,EXIT-MESSAGE. 
DISPLAY ANSWER. 
GO TO LOOP. 

ERROR-MESSAGE. 
DISPLAY 'No negative numbers, please.'. 
GO TO LOOP. 

EXIT-MESSAGE. 
DISPLAY 'Thank you. '. 
STOP RUN. 

The following is the source file for the MACRO program MSQRT. Notice 
that the entry-name MSQRT must be declared ENTRY and that the FORLIB 
routine SQRT, which is to be called, must be declared EXTERNAL. 

Notice also that at NEG and ZERO, the return address in the stack is 
replaced by a procedure-name (address) to set up the alternate 
returns. At POS, the pointer to the argument list must be saved 
before calling SQRT. 

TITLE 
ENTRY 
EXTERN 

MSQRT: SKIPN 
JRST 
JUMPL 

POS: MOVEM 
MOVEM 
MOVEI 

PUSHJ 
MOVE 
MOVEM 
POPJ 

ZERO: MOVEI 
MOVEM 
POPJ 

NEG: MOVEI 
MOVEM 
POPJ 

ARG: BLOCK 1 
SAVPTR: BLOCK 1 

END 

MSQRT 
MSQRT 
SQRT 
1,@0(16) 
ZERO 
1,NEG 

1,ARG 
16,SAVPTR 
16,1+[-1,,0 
Z 4,ARG] 
l7,SQRT 
16,SAVPTR 
0,@1(16) 
17, 
1,@3(16) 
1,0(17) 
17, 
1,@2(16) 
1,0(17) 
17, 

;Skip if not zero 
;To zero routine 
;To negative routine 
;Fall into positive routine 
;Save arg in reg 1 
;Save return address 
;Set up arg for SQRT 

;FORLIB square root routine 
;Restore return address 
;Set up return arg 
;Return 
;Set up alternate return 
; for zero arg 
;Return 
;Set up alternate return 
; for negative arg 
;Return 

In the following lines, these two source programs are executed. Since 
neither program is a FORTRAN program, FORLIB must be explicitly 
searched. 

12-6 



CALLING NON-COBOL SUBPROGRAMS 

Each positive integer input yields its square root; a negative number 
yields an error message at an alternate return in the COBOL program; 
o yields the exit message at another alternate return. Note that the 
execution of these programs yields the same output if run under 
TOPS-IO. 

@EXE CMSQRT.CBL,MSQRT.MAC,SYS:FORLIB.REL/SEARCH 
COBOL: CMSQRT [CMSQRT.CBL] 
MACRO: MSQRT 
LINK: Loading 
[LNKXCT CMSQRT Execution] 
Type a positive integer. 
4 
2.0EO 
Type a positive integer. 
3 
1.7320508EO 
Type a positive integer. 
2 
1.4142136EO 
Type a positive integer. 
1 
1.OEO 
Type a positive integer. 
-1 
No negative numbers, please. 
Type a positive integer. 
o 
Thank you. 

EXIT 

@ 

12-7 





CHAPTER 13 

IMPROVING PERFORMANCE OF COBOL-68 PROGRAMS 

Normally, the code generated by the COBOL-68 compiler is adequately 
efficient. However, since there are certain COBOL-68 constructions 
for which efficient code is not g~nerated, it is possible to write 
programs that perform poorly. If your programmed application performs 
inefficiently, you are left with the following alternatives: 

1. Assume that a higher-performance version of the COBOL-68 
compiler solves the problem 

2. Purchase new or faster hardware 

3. Redesign the entire program 

4. Rewrite only the bad portions of the program 

Assuming that you are unwilling to wait for an 
purchase new or faster hardware, let us 
alternatives. 

improved 
consider 

compiler or 
the remaining 

Although redesigning the entire program or application is possible, it 
is expensive and is generally not done. Like any system rewrite, 
however, it does offer the opportunity to add new features and 
eliminate old, out-of-date ones. It is a good alternative, in the 
long run. 

The much cheaper solution is to determine why a program is performing 
poorly and rewrite only the inefficient portions. This normally does 
not require a large effort since most COBOL programs spend 90% of the 
time executing only 10% of their code. The biggest task involves 
determining why a program is inefficient. 

Most programs lend themselves to some improvement. There have been 
many instances where a program used less than half the CPU time after 
improvement than it did before. Most often, the gain is in the range 
of 30%. Most significant is the fact that the reprogramming generally 
involved only 20 lines or less. 

Because some optimization techniques can be contrary to programming 
standards, it is necessary to use discretion when choosing which 
programs to improve and how much to improve them. It is, therefore, 
not recommended that all programs be optimized. For example, little 
is gained if a weekly application has its CPU time cut from 10 to 5 
minutes. A program that runs for 2 hours a day, on the other hand, 
probably should be investigated. 

Program optimization is usually done on an as-needed basis: the 
greater the resource consumption by a program, the greater the 
priority for optimization. Therefore, your installation's programming 
standards should guide programmers towards efficient, partially 

13-1 



IMPROVING PERFORMANCE OF COBOL-68 PROGRAMS 

optimized programs. 

Each computer system is different. Therefore, it is likely that 
installation programming standards reflects, to some extent, practices 
that promote efficient use of the presently installed system. On some 
systems, for example, the size of a program, the number of files open, 
and the type of devices used affects a program's performance. On 
other systems, emphasis is placed on data types, coding practices, and 
data patterns. It is normal for a programming standard to reflect 
those practices that normally produce efficient results without 
impairing reliability or maintainability. 

The standard, therefore, could stipulate that all counters, indexes, 
and subscripts be described as COMPUTATIONAL. It could also, as is 
the case with most TOPS-IO and TOPS-20 installations, standardize 
around DISPLAY-6 files because of file-space economy. Another 
standard practice is to request that an analysis of the data be made 
and that the program be written to efficiently process it. For 
example, the following program statements make some decisions based on 
the value of a particular item: 

IF ABLE> BAKER GO TO CHARLIE. 
IF ABLE < BAKER GO TO DOG. 
IF ABLE BAKER GO TO ECHO. 

If the value of ABLE is normally equal to BAKER, the program should be 
reordered with the following statement first: 

IF ABLE = BAKER GO TO ECHO. 

Programming techniques of this type promotes efficiency on virtually 
every system and should be encouraged. 

Any programmer who can write COBOL programs can optimize them. Most 
of the programming tools currently available require minimal knowledge 
of anything other than COBOL. The optimization tools and techniques 
described in this chapter plus the techniques described in your 
installation standard provide most of the information needed to 
improve most COBOL programs. 

It is easy to apply already known optimizations to a program. It 
becomes more difficult to make programs more efficient, however, when 
the known optimization techniques are not applicable. The person who 
can be most successful is one who understands a little about the code 
generated by the compiler and can read assembler code. By using the 
/A switch option to obtain a listing of the assembly language code 
generated for the program, you can determine, from the code generated, 
which alternatives produce the best results. 

There are many ways to make a program more efficient. The best 
results come from good program design. Minimizing disk access, 
segmenting programs into small well-defined pieces, and keeping 
irrelevant information out of records are some ways to gain more 
efficiency. Discussion of these techniques, because they are 
applications-specific, are beyond the scope of this chapter. They are 
mentioned here in order that you take them into consideration when 
designing your individual applications. The remainder of this chapter 
deals with program improvements. It is a collection of techniques 
that have been used to good advantage by various installations. 

13-2 



IMPROVING PERFORMANCE OF COBOL-68 PROGRAMS 

13.1 HOW TO PROCEED WITH PROGRAM OPTIMIZATION 

The actual coding required to optimize a program is usually minimal 
and not time-consuming. The largest component of time is spent 
learning the nature of the problem, that is, determining where and how 
much time is being spent by the program. Therefore, once a program 
has been selected for investigation, it is advisable to form a plan or 
procedure to be followed. This plan should consist of a series of 
small steps each designed to improve a small portion of the program. 
As one portion of the program is improved, begin on the next, and so 
on until the entire program has been improved to your satisfaction. 

NOTE 

Do not attempt program optimization 
until the program has been debugged and 
runs correctly! 

13.1.1 Where To Begin 

Begin by gathering together the following material and information: 

1. An understanding of the goal (lower elapsed time or CPU time) 

2. Copies of the source program and supporting software 

3. Enough data to make this program run long enough to measure, 
and short enough to allow quick turn-around - 10 to 15 
minutes is usually sufficient 

4. Files for output verification 

5. Access to the measurement tools (see Section l3.l.2) 

6. A notebook to record all observations, measurements, and 
results (see Section l3.l.S) 

13.1.2 What Tools Are Available 

There are some tools that are part of the system software; you can 
have others at your installation; and some are available through 
DECUS and other agencies. This chapter discusses those that are part 
of the system software and are commonly used and understood. These 
tools are: 

• COBDDT- For users of TOPS-10 and TOPS-20 
7.3 and 13.2 

see Sections 

• SET WATCH - For users of TOPS-10 only see the TOPS-10 
Operating System Commands Manual 

13-3 



IMPROVING PERFORMANCE OF COBOL-68 PROGRAMS 

13.1.3 What Method Or Procedure To Use 

Once you have gathered all of the information and materials required, 
and are familiar with the various tools at your disposal, it is time 
to decide upon a course of action. The following procedure is 
provided as a guide. You can expand or shorten it as benefits your 
application or installation. 

1. Generate a version of the program and its data that uses 10 
to 15 minutes elapsed time. Remove anything from the program 
(terminal interaction, logical names, etc.) that make it 
difficult to run. 

2. Schedule your machine time to coincide with periods when the 
system is lightly loaded. This enables you to make better 
use of the elapsed time statistics. 

3. Run the unaltered (original) program and determine the 
following statistics: 

a. Amount of CPU time used 

b. Elapsed time 

c. Amount of idle time on the system 

d. Amount of disk I/O, swapping, etc. 

e. Use SET WATCH to observe the program during its 
execution; SET WATCH aids you in determining CPU time, 
peripheral usage, etc. 

Some of these statistics are not too meaningful on a system 
with even a moderate work load. Only the person conducting 
the test can determine to what extent the system work load 
can bias the measurement. However, even if the system is 
loaded, CPU time is normally a good indication of how the 
program performs. If the program runs with idle time, 
determine the reason for it (disk wait, tape wait, etc.). 
Often, additional buffering can lower the elapsed time. (See 
Section 13.1.4, Evaluating Performanrie.) 

4. Run a COBDDT histogram to determine its runtime statistics. 
The histogram aids you in spotting potential problem areas in 
the program. 

5. If other tools are available, use them. 

6. Save the output from this first run for verification. 

7. Analyze the results and make any changes you believe improves 
the program. 

8. Recompile, link, and execute the program using the tools and 
techniques mentioned above. 

9. Compare the statistics from this run with those of the 
previous or original run. 

10. Write down all observations, facts, and hunches. (See 
Section 13.1.5, Documentation.) 

13-4 



IMPROVING PERFORMANCE OF COBOL-68 PROGRAMS 

11. Repeat steps 7 through 10 until you are satisfied with the 
results. 

The last step, repeat until satisfied, is very important. 
easy to get carried away with program optimization. 
premise, for example, "I will be satisfied with a 30% 
When you reach this level of performance, stop. 

13.1.4 Evaluating Performance 

It is very 
Start with a 

improvement". 

Generally the best criterion for evaluating performance is the one 
that led you to be suspicious of the program in the first place. Most 
generally, CPU time is used. It is easy to measure and easy to 
reproduce. You simply observe the CPU time in the original program, 
make changes as appropriate, rerun the program and observe it again. 
If the CPU time decreases, the changes were effective. 

NOTE 

Because CPU time can vary with the load 
on the system, 6nly changes in excess of 
5% can be considered significant. 

Another, more effective, way to determine performance is to measure 
the amount of work done per second of CPU time. By counting the 
number of records processed per second or minute, you have a good way 
to document a program's performance. Thus, if a program can normally 
process 100 records per CPU minute, and the volume increases by 1000 
records per run, the effect is clearly an increase of about 10 CPU 
minutes per run. 

13.1.5 Documentation 

It is a good practice to document everything you have done during 
program optimization. You may want to improve other programs, and the 
notes you take for the first attempt can aid you in saving time and 
effort on each succeeding attempt. The documentation kept should be 
simple and should include the following information: 

1. The name of the program, the time and date of the run, and 
the name of the programmer 

2. The amount of data used by the test program, for example, 
1000 records for a 10-minute run 

3. The time (CPU and elapsed) used by the original program 

4. The level of performance desired 

5. The optimization techniques utilized 

6. The results obtained, both positive and negative 

7. COBDDT histogram 

8. Any observations about system performance 

13-5 



IMPROVING PERFORMANCE OF COBOL-68 PROGRAMS 

9. Any other statistics collected, feelings, hunches, and other 
perceptions 

The documentation need not be elegant. It should, however, be 
permanent. You might even tape portions of the console log into your 
notebook as a quick way of recording timings. 

13.2 LISTING THE TOOLS 

This section discusses the tools most commonly used by COBOL 
programmers for program optimization: COBDDT and SET WATCH. You are 
advised to read Section 7.3, COBDDT, before reading this section. The 
write-up on SET WATCH in the TOPS-IO Operating System Commands Manual 
is also recommended for users of TOPS-IO. This section does not 
attempt to redo anything that has already been done. It attempts only 
to present information relevant to program optimization. 

13.2.1 COBDDT 

This section discusses COBDDT as used for evaluating program 
performance. Therefore, only the histogram feature is described. The 
COBDDT histogram provides you with the following information for each 
procedure that was executed in your program (see Figure 13-1, Sample 
COBDDT Histogram) : 

• Procedure name 

• The number of times the procedure was entered (ENTRIES) 

• The CPU time the procedure used (CPU) 

• The elapsed time the procedure used (ELAPSED) 

COBDDT HISTOGRAM FOR XDDT04 REPORT: 1 
XDDT4B.HIS 

PROCEDURE ENTRIES CPU ELAPSED 

1ST 1 0.336 1.649 
P12 5 0.251 1.239 
PP3 1 0.028 0.333 
PP4 1 0.005 0.005 
PP5 2 0.045 0.065 

2ND 3 0.123 0.398 
2PO 3 0.013 0.029 
2Pl 7 0.032 0.065 
2P3 7 0.030 0.152 
2PI0 7 0.030 0.047 

3RD 10 0.115 0.380 
3PO 10 0.050 0.108 

XDDT4B.HIS 

OVERHEAD: ELAPSED: 0.002 CPU: 0.002 

Figure 13-1 Sample COBDDT Histogram 

13-6 



IMPROVING PERFORMANCE OF COBOL-68 PROGRAMS 

13.2.1.1 The ENTRIES Column - The information listed in the ENTRIES 
column of the histogram helps you to set your priorities for program 
improvement. Very high counts relative to others establishes the 
paragraph as one which needs further investigation. For example: 

1. Why is it entered so often? 

2. Is anything done there that could be done more effectively 
elsewhere? 

3. Can it be rewritten to do less? (See Section 13.5, Efficient 
Coding Conventions.) 

Often, the numbers guide you into understanding how to order your 
decision lists. For example: 

Suppose P-l was typically entered 1000 times, P-2 was entered 500 
times, and these paragraphs are chosen by a decision list that 
looks like this: 

S-l. IF A " " GO TO P-2. 

S-2. IF A "00" GO TO P-l. 

It is apparent, then, that the order of S-l and S-2 should be 
reversed because A is usually 00. 

Also, based on the number of records processed, unexpected counts in 
ce~tain paragraphs should be accounted for. 

Do not be afraid to add new paragraph names to the program. Not only 
does this technique allow you to break large paragraphs up into 
smaller ones, it also enables you to better understand exactly where 
the program spends its time. 

13.2.1.2 The CPU Column - The histogram's CPU column lists the amount 
of CPU time each paragraph used. Generally, if you can cut the CPU 
time, the elapsed time also drops and the application performs more 
efficiently. By analyzing this column, you can easily identify the 
big spenders - those procedures that eat up most of the CPU time. One 
approach is to rank the paragraphs in terms of CPU time and to look 
for paragraphs that spend more time per entry than others. Then, 
proceeding in rank order, determine what each paragraph is doing, if 
it has to do it, and if a better coding technique is in order. 
Usually only a few paragraphs need be examined. 

NOTES 

1. CPU time for a paragraph also 
includes time spent in'paragraphs 
performed or routines called. 
Therefore, the sum of the CPU time 
is greater than the total time 
actually spent within this 
paragraph. (See Section 13.2.1.4.) 

2. CPU time also includes time spent in 
the object-time system, the monitor, 
and for users of TOPS-20, the 
compatability package. 

13-7 



IMPROVING PERFORMANCE OF COBOL-68 PROGRAMS 

If after examining the list of the most time-consuming paragraphs, you 
determine that all can be explained, it is unlikely that changing any 
particular thing improves performance. Either the program cannot be 
improved any further, or other techniques are needed. 

13.2.1.3 ELAPSED Column - In a lightly loaded system, the elapsed 
time can be a guide to the .effective blocking of records. Some 
experiences with programs that seemed I/O-bound indicated that they 
were spending a great deal of time in the paragraphs that dealt with 
random or ISAM reads and updates. Inspection of the blocking revealed 
that while the files were blocked to conserve disk space, large 
amounts of data were being transferred (1 block) when the desired 
object was to update 1 record. Therefore, if a disproportionate 
amount of time is spent in some paragraphs, there could be a problem 
in processing. These paragraphs should definitely be investigated. 

13.2.1.4 OVERHEAD - This entry in the histogram, (see Figure 13-1) 
represents the time spent for PERFORM or CALL overhead. Look at this 
entry to evaluate the cost of PERFORM-loop control mechanisms. If 
this figure is high, then some very short paragraph is being performed 
a large number of times. If this is the case, a more 'efficient method 
of loop control is probably in order. 

13.3 USING THE CORRECT DATA TYPE 

Understanding the various data types available is extremely important 
because there are so many of them. COBOL-68 offers you three 
different DISPLAY types and several COMPUTATIONALS. Each data type 
offers some advantages and some disadvantages. It is necessary to 
understand these in order to maximize the efficiency of a particular 
application. 

13.3.1 DISPLAY Data Types 

There are 3 display data types used within COBOL. 

EBCDIC 
ASCII 
SIXBIT 

EBCDIC and ASCII are character codes that occupy 8 and 7 bits per 
character respectively. The representations for each character are 
defined by industry standards. SIXBIT is a 6-bit BCD code which is 
defined by DIGITAL. 

13.3.2 EBCDIC 

The 8-bit EBCDIC code allows 256 different characters. It is 
compatible with IBM and thus is a natural where data interchange with 
360s and 370s is necessary. EBCDIC files can contain a mixture of 
EBCDIC and COMPUTATIONAL-3 data. EBCDIC is packed into the computer's 
memory, 4 characters per word. 

13-8 



IMPROVING PERFORMANCE OF COBOL-68 PROGRAMS 

EBCDIC processing is going to be somewhat slower than either ASCII or 
SIXBIT because of the amount of space that each character takes up. 
As an example, a l20-character record would occupy: 

1. 30 words in EBCDIC 

2. 24 words in ASCII 

3. 20 words in SIXBIT 

Since movement of data is roughly linear with volume (it takes twice 
as long to move twice as much), it can be seen that SIXBIT and ASCII 
are 33% and 20% more efficient than EBCDIC, respectively. 

The amount of file storage is also proportional to the byte size. For 
example, five ASCII records or 6 SIXBIT records can be stored in the 
same space taken by only 4 EBCDIC records. 

Thus the use of EBCDIC should be restricted to those cases where: 

1. The ASCII and SIXBIT character set is too small (128 and 64 
characters respectively compared with 256 for EBCDIC). 

2. The transmittal of data to and from EBCDIC systems is a major 
part of the application. 

3. The application depends on the collating sequence (numerics 
after alphabetics). 

4. The existence of many redefined records with mixtures of 
EBCDIC and COMP-3 make reprogramming unthinkable. 

In summary, it suffices to say that EBCDIC is a useful data type 
available to the COBOL user. For whatever its benefit, you must 
realize that it is slower and that a 33% increase on throughput could 
be realized by going to SIXBIT. 

13.3.3 ASCII 

Seven-bit ASCII is the coding sequence utilized by the unit record 
peripherals and terminals. Any other data type (EBCDIC or SIXBIT) has 
to be converted to ASCII if it is to be sent to one of these devices. 

In memory, the use of ASCII makes the movement of data proceed faster 
than EBCDIC but slower than SIXBIT because of the number of characters 
per word. On the disk, all ASCII records are variable length as 
defined by industry standards, the end of an ASCII record is defined 
by the existence of a "vertical form" (normally a line feed) character 
(or several such characters). Thus, it is necessary to read ASCII 
files a character at a time in order to find the end-of-record 
character. This implies that ASCII records can be variable length and 
efficiently stored on the disk. It also implies that moving such 
records to or from memory is more costly than the other data types 
that can be moved by the block transfer instruction. 

ASCII is the standard data type for "text files". Files created by 
editors that contain arbitrary length records can be stored 
economically and processed easily using the ASCII data type. Cards 
from a reader can be "trailing blank suppressed" so that they can be 
stored economically and are easily manipulated using ASCII. However, 
unless the full character set capabilities of ASCII (128 with 
lowercase plus line control) are necessary or the data is coming from 

13-9 



IMPROVING PERFORMANCE OF COBOL-68 PROGRAMS 

or going to an ASCII peripheral, conversion to SIXBIT files is 
probably preferable. 

13.3.4 SIXBIT 

By far the most efficient DISPLAY code is SIXBIT. Six characters can 
be packed per word. Each record on disk or tape is preceded by a word 
with a character count allowing for block transfers of data. And the 
transmission time for moving the data around memory is less than any 
other data type. 

The only problem with SIXBIT is the number of characters possible 
within the 6-bit code. The 64 characters allow for uppercase, 
numerics, and punctuation. It does not allow for lowercase, device 
control characters, or special graphics. 

Most installations put the bulk of their files into SIXBIT due to the 
storage economy and the processing efficiency. Use if SIXBIT files is 
highly recommended wherever possible. 

13.3.5 COMPUTATIONAL 

There are several flavors of computational data types available to the 
COBOL programmer including: 

1. COMPUTATIONAL-3, the four-bit complement of EBCDIC 

2. COMPUTATIONAL, internal binary {35 bits plus sign} 

3. Double-word COMPUTATIONAL, 
number of digits desired 
sign} 

automatically invoked when the 
is greater than 10 {70 bits plus 

4. COMPUTATIONAL-I, floating point {the hardware supports 
double-precision floating point, but COBOL does not} 

Aside from the use of COMP-3 as an adjunct to EBCDIC, the most useful 
data type is COMPUTATIONAL. This is normally used for indexes, 
counters, and subscripts. If other data types are used for these 
purposes, there is continual conversion taking place since all 
arithmetic is done in binary. 

You can read arbitrary files by defining them as BINARY mode and then 
use the data as desired. 

13.4 DATA EFFICIENCIES 

Programming standards should insist on using the correct data types 
for certain operations. Using COMPUTATIONAL for counters works better 
on almost any machine. 

13-10 



IMPROVING PERFORMANCE OF COBOL-68 PROGRAMS 

13.4.1 Counter, Indexes, Subscripts 

In DIGITAL COBOL indexes and subscripts are not different (this is not 
the case with some systems). They are, in fact, the same as 
COMPUTATIONAL. A data item that is used as a counter or subscript 
should be declared: 

77 THE-NAME PICTURE S9(10) COMPUTATIONAL. 

COMPUTATIONAL items are always word-aligned no matter at what level 
they are defined and thus are equally efficient. However, there are 
some things which must be observed. 

1. If the number of digits is greater than 10, the item becomes 
double-word computational. If you have the BIS compiler on 
TOPS-IO or you are using TOPS-20, all arithmetic is done 
in-line using double-precision instructions. Otherwise, all 
arithmetic is done with calls to the object-time system. 
However, it is still faster and more efficient than DISPLAY. 

2. It is important that the variable be signed. If it is not, 
much less efficient code is generated in order to insure that 
it is never negative. 

13.4.2 File Storage 

SIXBIT files are the best for file storage and data manipulation 
efficiencies. Not only do they requlre less space than ASCII or 
EBCDIC, but they are efficient to move about. Each SIXBIT record is 
preceded by a "length descriptor" that provides the information 
necessary to do block transfers of data in memory rather than 
character by character. Also, since SIXBIT records are always word 
aligned, they can be transferred with block transfer instructions. 

ASCII is good for text which is of variable length (for example those 
created by EDIT) and for line control. It suffers from the necessity 
to process each character to determine the end of the record. 

EBCDIC is necessary if more than 128 characters are needed and if data 
transfer to systems using EBCDIC is necessary. It is also necessary 
to read files character by character since EBCDIC records (fixed 
length) need not necessarily be word aligned. It can be somewhat more 
efficiently processed than ASCII, however, since a specified number of 
characters is always transferred rather than an arbitrary number. 

13.4.3 Blocking Data 

Processing data from disk is more efficient if it is not blocked. 
This allows the system to pack information as tightly as possible on 
the disk with no slack bytes between blocks. Blocks always start on 
one of the disk's l28-word sector boundaries. Thus blocking 
inefficiently could waste considerable space. 

If you block disk records, remember to count the length descriptor 
words on SIXBIT and variable-length EBCDIC records. Records for these 
two data types are also word aligned. 

13-11 



IMPROVING PERFORMANCE OF COBOL-68 PROGRAMS 

13.5 EFFICIENT CODING CONVENTIONS 

This section contains a listing of some practical coding practices 
that have proven efficient. You can show these to be beneficial by 
writing short programs that execute these sequences a large number of 
times. It is also possible- to look at the MACRO expansion of the 
program to see what is different about the compiled code. 

13.5.1 Alignment 

When the addresses of the data items are known at compile time, the 
compiler can generate efficient in-line code. This code can include 
the use of the block transfer instruction where the two data items are 
aligned and of the same type. When they are not aligned, or when 
conversion is necessary, an object-time system routine can be called. 

The simplest way to insure that data is aligned is to define it at 
ei ther the "77" level or at the "01" level. It is possible by 
counting characters or by using the COBOL data map to also determine 
alignment. 

Alignment simply means that the first byte of each item begins in the 
same position in the beginning word, that the items are the same 
length, and that they are of the same type. 

13.5.2 Use Of Subscripts 

Avoid the use of subscripts whenever possible. Subscripts are 
recomputed every time they are used, they are never remembered. If 
you use a subscripted item more than once, it is more efficient to 
move it into a simple variable and then use that. For example: 

01 THE-TABLE OCCURS 200 TIMES 
02 THE-COUNT PIC S9(10) COMPo 
02 THE-DATA PIC XXXXXXXX. 

77 THE-TABLE-COUNT PIC S9(10) COMPo 

The sequence: 

MOVE THE-COUNT (IDX) TO THE-TABLE-COUNT. 
IF THE-TABLE-COUNT 3 GO TO P-l. 
IF THE-TABLE-COUNT = 4 GO TO P-2. 

is more efficient if it is likely that the count is not 3, than the 
following: 

IF THE-COUNT(IDX) = 3 GO TO P-l. 
IF THE-COUNT(IDX) = 4 GO TO P-l. 

13-12 



IMPROVING PERFORMANCE OF COBOL-68 PROGRAMS 

It is usually advantageous to move the whole entry from a table into 
some Ol-level structure which contains similar items rather than to 
process the data from the table with subscripts. For example: 

01 THE-TABLE OCCURS 20 TIMES. 
02 THE-CNT PIC S9(10) COMP. 
02 THE-DATA PIC XXXXXXX. 

01 THE-TABLE-ENTRY. 
02 THE-TABLE-CNT PIC S9(10) COMP. 
02 THE-TABLE-DATA XXXXXXX. 

MOVE THE-TABLE(IDX) TO THE-TABLE-ENTRY. 
IF THE-TABLE-CNT = 5 DISPLAY THE-TABLE-DATA. 

In this example, only one subscript had to be calculated, and one 
unsubscripted move performed. Savings in often-referenced paragraphs 
(in a loop) can be quite large.. Simply remember that there is 
additional overhead involved in subscripting and it pays to eliminate 
it. 

13.5.3 Incrementing Counters 

COBOL-68 provides three ways of incrementing counters. Each performs 
the same function in different ways. For example: 

77 COUNTER PIC S9(10) COMP. 

This counter can be modified in the following ways: 

SET COUNTER UP BY 1. 

ADD 1 TO COUNTER. 

COMPUTE COUNTER = COUNTER +1. 

The first two examples are equivalent, the third is much slower and, 
therefore, not recommended. 

Keep in mind that computational counters should always be signed even 
when they logically never become negative. If they are not signed, 
the compiler must generate additional instructions to make sure they 
do not become negative. 

13.5.4 The PERFORM Statement 

The PERFORM statement provides an essential element of structured 
programming. It provides implicit loop control and it makes listings 
easy to follow. The power of the statement is not provided without 
some cost, however. Every entrance to a routine requires that some 
information be posted, and every exit from a routine requires that 
some information be cleared. Because of the complexity of these 
operations, COBOL-68 uses the concept of level. Each time a PERFORM 
statement is encountered, the level counter is incremented by 1. Each 
time a performed routine exits, it is decremented by 1. The level 
counter must have the same value at exit time as it has at entry or 
else there is an error in the program. 

Here are a few known ways to improve the efficiency of programs that 
use PERFORMs. 

13-13 



IMPROVING PERFORMANCE OF COBOL-68 PROGRAMS 

Example 13-1 

SET IDX TO 0 PERFORM PARl 100 TIMES. 

PARle SET IDX UP BY 1. 
IF TABLE(IDX) = ABLE MOVE 6 TO FOO. 

Example 13-1 is more efficient than: 

PERFORM PAR2 VARYING IDX FROM 2 BY 1 
UNTIL IDX > 100. 

When a loop or PERFORM is done repeatedly, the loop should do 
everything possible on each iteration. This minimizes the expense of 
the loop control mechanism. Thus: 

PERFORM F-l 1000 TIMES. 
PERFORM F-2 1000 TIMES. 

should be rewritten so that both functions of F-l and F-2 can be 
accomplished by a single PERFORM. This is most meaningful when the 
amount of work being accomplished by each paragraph is small. 

13.5.5 Use Of The EXAMINE Statement 

Use of the EXAMINE statement is preferable to doing 
in other ways. You should understand all the 
REPLACING) so that the power of the statement can 
information on the EXAMINE statement see Part 
Reference Material. 

13.5.6 Data Movement 

the same process 
options (including 
be applied. For 

2, COBOL Language 

If you are moving data from one record to another and the records 
differ in their usages, the object-time system has to convert the data 
from one character-set to another. In this case, it is more efficient 
to change all fields in a record with one MOVE statement than to move 
the data field by field. If, on the other hand, the usages are the 
same for the two records, the compiler recognizes that data conversion 
is not necessary. If the records are also aligned, then efficient 
in-line code can be generated. Due to the method of moving data used 
by TOPS-IO and TOPS-20, however, the fixed cost to move any number of 
characters is higher than on some systems. You should therefore try 
to avoid loops where small numbers of characters are continually being 
transferred. If it is impossible to avoid such situations, then make 
sure that the data is aligned. 

13-14 



IMPROVING PERFORMANCE OF COBOL-68 PROGRAMS 

13.5.7 Ordering Statements 

All programs should be written so 
numbers of useless instructions. 

that they avoid executing large 
Thus classic decision lists like: 

IF AB 
IF CD 
IF EF 

IF GH = 

" " 
"I" 
"2" 

"3" 

GO TO FOO. 
GO TO FOO-l 
GO TO FOO-2. 

GO TO FOO-3 

should be ordered by expected frequency. The following type of coding 
should be avoided if it is in a highly used spot: 

IF AB 
IF AB = 
IF AB 

" " 
"1" 
"2" 

MOVE Z TO DQD. 
MOVE Z TO FFF. 
MOVE Z TO GGG. 

In this type of code the conditional clauses of all statements get 
executed each time, even though only one actually does anything 
useful. 

13.5.8 Asking The Correct Question 

Some small efficiencies can be gained by asking the correct questions. 
Thus the following example is inefficient. 

LOOP. 
SET X TO 1. 
MOVE B(X) TO C(X). 
SET X UP BY 1. 
IF X > 1000 GO TO ZIP. 
GO TO LOOP. 

While this is not bad coding, the program only goes to ZIP one time in 
a 1000. Some better code is developed if the statement were 
rewritten: 

IF X < 1001 GO TO LOOP ELSE GO TO ZIP. 

The first option is the one that happens the most often. 

13-15 





APPENDIX A 

COBOL RESERVED WORDS 

In the listing below, words not preceded by symbols are reserved in 
both ANSI-68 Standard COBOL and in COBOL-68. Words preceded by '*' 
are reserved in ANSI-68 Standard COBOL but not reserved in COBOL-68. 
Words preceded by '**' are reserved in COBOL-68 but not reserved in 
ANSI-68 Standard COBOL. Reserved words can not be used as 
user-created names. 

A 

ACCEPT ACCESS ACTUAL 

ADD *ADDRESS ADVANCING 

AFTER ALL **ALLOWING 

ALPHABETIC ALTER ALTERNATE 

AND **ANY ARE 

AREA AREAS ASCENDING 

**ASCII ASSIGN AT 

AUTHOR 

B 

BEFORE BEGINNING **BINARY 

BLANK BLOCK BY 

**BYTE 

C 

**CALL **CANCEL **CD 

CF CH CHARACTERS 

**CHECK **CHECKPOINT **CLASS 

*CLOCK-UNITS CLOSE COBOL 

CODE COLUMN COMMA 

**COMMUNICATION COMP **COMP-l 

A-I 

I 



COBOL RESERVED WORDS 

**COMP-3 **COMPILE COMPUTATIONAL 

**COMPUTATIONAL-l **COMPUTATIONAL-3 COMPUTE 

CONFIGURATION **CONSOLE CONTAINS 

CONTROL CONTROLS COPY 

CORR CORRSPONDING **COUNT 

CURRENCY **CURRENT 

D 

DATA **DATABASE-KEY **DATE 

**DATE-COMPILED DATE-WRITTEN **DBKEY 

DE **DEC DECIMAL-POINT 

DECLARATIVES **DECSYSTEM-IO **DECSYSTEM-20 

**DECSYSTEMIO **DEFERRED **DELETE 

**DELIMITED **DELIMITER **DENSITY 

DEPENDING **DEPTH DESCENDING 

**DESTINATION DETAIL **DISABLE 

DISPLAY **DISPLAY-6 **DISPLAY-7 

**DISPLAY-9 DIVIDE DIVISION 

DOWN **DUP **DUPLICATE 

E 

**EGI ELSE **EMI 

**EMPTY **ENABLE END 

ENDING ENTER **ENTRY 

ENVIRONMENT **EPI EQUAL 

**EQUALS ERROR **ESI 

**EVEN EVERY EXAMINE 

**EXCL **EXCLUSIVE EXIT 

I **EXTEND 

F 

FD FILE FILE-CONTROL 

FILE-LIMIT FILE-LIMITS **FILE-STATUS 

FILLER FINAL **FIND 

A-2 



COBOL RESERVED WORDS 

FIRST FOOTING FOR 

**FORTRAN-IV **FORTRAN **FREE I 
FREED FROM 

G 

GENERATE **GET GIVING 

GO **GOBACK GREATER 

GROUP 

H 

HEADING HIGH-VALUE HIGH-VALUES 

I 

1-0 1-0 CONTROL **ID 

IDENTIFICATION IF IN 

INDEX INDEXED INDICATE 

**INITIAL INITIATE INPUT 

INPUT-OUTPUT **INSERT INSTALLATION 

INTO INVALID **INVOKE 

IS 

J 

**JOURNAL JUST JUSTIFIED 

K 

KEY KEYS 

L 

LABEL LAST LEADING 

LEFT *LENGTH LESS 

LIMIT LIMITS LINE 

*LINE-COUNTER LINES **LINKAGE 

LOCK LOW-VALUE LOW-VALUES 

M 

**MACRO **MEMBER **MEMBERS 

A-3 



COBOL RESERVED WORDS 

MEMORY **MERGE **MESSAGE 

MODE **MODIFY MODULES 

MOVE MULTIPLE MULTIPLY 

N 

NEGATIVE NEXT NO 

**NOMINAL **NONE NOT 

NOTE NUMBER NUMERIC 

0 

OBJECT-COMPUTER OCCURS **ODD 

OF OFF OMITTED 

ON **ONLY OPEN 

**OPT OPTIONAL OR 

OTHERS OUTPUT **OVERFLOW 

**OWNER 

P 

*PAGE-COUNTER **PARITY **PDP-IO 

PERFORM PF PH 

PIC PICTURE PLUS 

**POINTER POSITION **POSITIONING 

POSITIVE **PRIOR **PRIVACY 

PROCEDURE PROCEED PROCESSING 

* * PROGRAM PROGRAM-ID **PROT 

**PROTECTED 

Q 

**QUEUE QUOTE QUOTES 

R 

RANDOM RD READ 

**READ-REWRITE **READ-WRITE **RECEIVE 

RECORD **RECORDING RECORDS 

REDEFINES REEL **RELATIVE 

A-4 



COBOL RESERVED WORDS 

RELEASE **REMAINDER REMARKS 

**REMOVE RENAl~ES REPLACING 

REPORT REPORTING REPORTS 

RERUN RESERVE RESET 

**RETAIN **RETAINED **RETR 

**RETRIEVAL RET RUN REVERSED 

REWIND **REWRITE RF 

RH RIGHT ROUNDED 

RUN **RUN-UNIT 

S 

SAME **SCHEMA SO 

SEARCH SECTION SECURITY 

SEEK **SEGMENT SEGMENT-LIMIT 

SELECT **SELECTIVE **SEND 

SENTENCE **SEQUENCE SEQUENTIAL 

SET **SETS SIGN 

**SIXBIT SIZE SORT 

SOURCE SOURCE-COMPUTER SPACE 

SPACES SPECIAL-NAMES STANDARD 

**STANDARD-ASCII STATUS STOP 

**STORE **STRING **SUB-QUEUE-l 

**SUB-QUEUE-2 **SUB-QUEUE-3 **SUB-SCHEMA 

SUBTRACT SUM **SUPPRESS 

**SWITCH **SYMBOLIC SYNC 

SYNCHRONIZED 

T 

**TABLE TALLY TALLYING 

TAPEL **TERMINAL TERMINATE 

**TEXT THAN THROUGH 

THRU **TIME TIMES 

TO TODAY **TRACE 

A-5 



COBOL RESERVED WORDS 

**TRANSACTION TYPE 

U 

**UNAVAILABLE UNIT **UNSTRING 

UNTIL UP **UPDATE 

**UPDATES UPON USAGE 

**USAGE-MODE USE **USER-NUMBER 

USING 

V 

VALUE VALUES VARYING 

**VERB **VIA 

W 

WHEN WITH **WITHIN 

WORDS WORKING-STORAGE WRITE 

Z 

ZERO ZEROES ZEROS 

A-6 



APPENDIX B 

COLLATING SEQUENCES AND CONVERSION TABLES 

Table B-1 shows the ASCII and SIXBIT collating sequence and the 
conversions from ASCII to EBCDIC, SIXBIT to ASCII, and SIXBIT to 
EBCDIC. If the ASCII character does not convert to the same character 
in EBCDIC, the EBCDIC character is shown in parentheses next to the 
EBCDIC code. Note that the first and last 32 characters do not exist 
in SIXBIT. Also, the characters in the first column (NUL, SOH, STX, 
and so forth) are control characters, which are nonprinting. 

Table B-1 
ASCII and SIXBIT Collating Sequence and Conversion to EBCDIC 

ASCII EBCDIC ASCII EBCDIC 
Character 7-bit 9-bit Character SIXBIT 7-bit 9-bit 

NUL 000 000 Space 00 040 100 
SOH 001 001* ! 01 041 132 
STX 002 002* " 02 042 177 
ETX 003 003* # 03 043 173 
EOT 004 067 $ 04 044 133 
ENQ 005 055* % 05 045 154 
ACK 006 056* & 06 046 120 
BEL 007 057* I 07 047 175 
BS 010 026 ( 10 050 115 
HT 011 005 ) 11 051 135 
LF 012 045 * 12 052 134 
VT 013 013* + 13 053 116 
FF 014 014* , 14 054 153 
CR 015 025* (NL) - 15 0550 

140 
SO 016 006* (LC) . 16 056 113 
SI 017 066* (UC) / 17 057 141 
DLE 020 044* (BYP) 0 20 060 360 
DCl 021 024*(RES) 1 21 061 361 
DC2 022 064*(PN) 2 22 062 362 
DC3 023 065*(RS) 3 23 063 363 
DC4 024 004*(PF) 4 24 064 364 
NAK 025 075* 5 25 065 365 
SYN 026 027* (IL) 6 26 066 366 
ETB 027 046* (EOB) 7 27 067 367 
CAN 030 052* (CM) 8 30 070 370 
EM 031 031* 9 31 071 371 \ 

SUB 032 032*(CC) : 32 072 172 
ESC 033 047*(PRE) ; 33 073 136 
FS 034 023*(TM) < 34 074 114 
GS 035 041*(SOS) = 35 075 176 
RS 036 040*(DS) > 36 076 156 
US 037 042*(FS) ? 37 077 157 

B-1 



COLLATING SEQUENCES AND CONVERSION TABLES 

Table B-1 (Cont.) 
ASCII and SIXBIT Collating Sequence and Conversion to EBCDIC 

ASCII EBCDIC ASCII EBCDIC 
Character SIXBIT 7-bit 9-bit Character 7-bit 9-bit 

@ 40 100 174 \ 140 171 
A 41 101 301 a 141 201 
B 42 102 302 b 142 202 
C 43 103 303 c 143 203 
D 44 104 304 d 144 204 
E 45 105 305 e 145 205 
F 46 106 306 f 146 206 
G 47 107 307 g 147 207 
H 50 110 310 h 150 210 
I 51 III 311 i 151 211 
J 52 112 321 j 152 221 
K 53 113 322 k 153 222 
L 54 114 323 1 154 223 
M 55 115 324 m 155 224 
N 56 116 325 n 156 225 
0 57 117' 326 0 157 226 
p 60 120 327 P 160 227 
Q 61 121 330 q 161 230 
R 62 122 331 r 162 231 
S 63 123 342 s 163 242 
T 64 124 343 t 164 243 
U 65 125 344 u 165 244 
V 66 126 345 v 166 245 
W 67 127 346 w 167 246 
X 70 130 347 x 170 247 
y 71 131 350 Y 171 250 
Z 72 132 351 z 172 251 
[ 73 133 255"'1 { 173 300"'1 
\ 74 134 340 I 174 117 
! 75 135 275 

76 136 137 
} 175 320 - 176 241 

- 77 137 155 Delete 177 007 

1. These EBCDIC codes either have no equivalent in the ASCII or 
SIXBIT character sets, or are referred to by different names. 
They are converted to the indicated ASCII characters to preserve 
their uniqueness if the ASCII character is converted back to 
EBCDIC. 

B-2 



COLLATING'SEQUENCES AND CONVERSION TABLES 

Table B-2 shows the conversion of ASCII code to SIXBIT code. The 
table does not show ASCII codes 000 through 037 because they all 
convert to SIXBIT 74 (\), except 11 (TAB) which converts to SIXBIT 00 
(space) • 

Table B-2 
ASCII to SIXBIT Conversion 

ASCII ASCII 
Character 7-bit SIXBIT Character 7-bit SIXBIT 

Space 040 00 @ 100 40 
! 041 01 A 101 41 
" 042 02 B 102 42 
# 043 03 C 103 43 
$ 044 04 D 104 44 
% 045 05 E 105 45 
& 046 06 F 106 46 
I 047 07 G 107 47 

( 050 10 H 110 50 
) 051 11 I III 51 
* 052 12 J 112 52 
+ 053 13 K 113 53 , 054 14 L 114 54 
- 055 15 M 115 55 . 056 16 N 116 56 
/ 057 17 0 117 57 

0 060 20 p 120 60 
1 061 21 Q 121 61 
2 062 22 R 122 62 
3 063 23 S 123 63 
4 064 24 T 124 64 
5 065 25 U 125 65 
6 066 26 V 126 66 
7 067 27 W 127 67 

8 070 30 X 130 70 
9 071 31 y 131 71 
: 072 32 Z 132 72 
; 073 33 [ 133 73 
< 074 34 \ 134 74 
= 075 35 
> 076 36 1 135 75 

136 76 
? 077 37 - 137 77 

B-3 



COLLATING SEQUENCES AND CONVERSION TABLES 

ASCII 
code 

. 140 
141 
142 
143 
144 
145 
146 
147 

150 
151 
152 
153 
154 
155 
156 
157 

160 
161 
162 
163 
164 
165 
166 
167 

170 
171 
172 
173 
174 
175 

, 176 
177 

Table B-2 (Cont.) 
ASCII to SIXBIT Conversion 

ASCII SIXBIT 
character code 

\ 74 
a 41 
b 42 
c 43 
d 44 
e 45 
f 46 
9 47 

h 50 
i 51 
j 52 
k 53 
1 54 
m 55 
n 56 
0 57 

P 60 
q 61 
r 62 
s 63 
t 64 
u 65 
v 66 
w 67 

x 70 
y 71 
z 72 
{ 73 
I 74 
} 75 - 74 

delete 74 

B-4 

SIXBIT' 
character 

\ 
A 
B 
C 
0 
E 
F 
G 

H 
I 
J 
K 
L 
M 
N 
0 

P 
Q 
R 
S 
T 
U 
V 
W 

x 
y 
Z 
[ 
\ 
] 
\ 
\ 



COLLATING SEQUENCES AND CONVERSION TABLES 

Table B-3 shows the EBCDIC collating sequence and the conversion from 
EBCDIC to ASCII. When conver9ion is from EBCDIC to SIXBIT, it is as 
if the code was converted to ASCII and then from ASCII to SIXBIT. 

Table B-3 
EBCDIC Collating Sequence and Conversion to ASCII 

EBCDIC EBCDIC ASCII ASCII EBCDIC EBCDIC ASCII ASCII 
code character code character code character code character 

000 NUL 000 NUL 050 134 \ 
001 SOH 001 SOH 051 134 \ 
002 STX 002 STX 052 SM 030 CAN 
003 ETX 003 ETX 053 CUZ 134 \ 
004 PF 024 DC4 054 134 \ 
005 HT 011 HT 055 ENQ 005 ENQ 
006 LC 016 SO 056 ACK 006 ACK 
007 Delete 177 Delete 057 BEL 007 BEL 

010 134 \ 060 134 \ 
011 134 \ 061 134 \ 
012 SMM 134 \ -62 134 \ 
013 VT 013 VT 063 134 \ 
014 FF 014 FF 064 PN 022 DC2 
015 CR 134 \ 065 RS 023 DC3 
016 SO 134 \ 066 UC 017 SI 
017 SI 134 \ 067 EaT 004 EaT 

020 DLE 134 \ 070 134 \ 
021 DC1 134 \ 071 134 \ 
022 DC2 134 \ 072 134 \ 
023 TM 034 FS 073 134 \ 
024 RES 021 DC1 074 CU3 134 \ 
025 NL 015 CR 075 DC4 025 NAK 
026 BS 010 BS 076 NAK 134 \ 
027 IL 026 SYN 077 SUB 134 \ 

030 CAN 134 \ 100 Space 040 Space 
031 EM 031 EM 101 134 \ 
032 CC 032 SUB 102 134 \ 
033 CUI 134 \ 103 134 \ 
034 IFS 134 \ 104 134 \ 
035 IGS 134 \ 105 134 \ 
036 IRS 134 \ 106 134 \ 
037 IUS 134 \ 107 134 \ 

040 DS 036 RS 110 134 \ 
041 SOS 035 GS III 134 \ 
042 FS 037 US 112 CENT 134 \ 
043 134 \ 113 056 
044 BYP 020 DLE 114 < 074 < 
045 LF 012 LF 115 ( 050 ( 
046 ETB 027 ETB 116 + 053 + 
047 ESC 033 ESC 117 174 

B-5 



COLLATING SEQUENCES AND CONVERSION TABLES 

Table B-3 (Cont.) 
EBCDIC Collating Sequence and Conversion to ASCII 

EBCDIC EBCDIC ASCII ASCII EBCDIC EBCDIC ASCII ASCII 
code character code character code character c::ode character 

120 & 046 & 170 134 \ 
121 134 \ 171 140 \ 
122 134 \ 172 : 072 : 
123 134 \ 173 # 043 # 
124 134 \ 174 @ 100 @ 

125 134 \ 175 , 47 
, 

126 134 \ 176 = 075 = 
127 134 \ 177 .. 042 .. 

130 134 \ 200 134 \ 
131 134 \ 201 a 141 a 
132 ! 041 ! 202 b 142 b 
133 $ 044 $ 203 c 143 c 
134 * 052 * 204 d 144 d 
135 1 051 1 205 e 145 e 
136 073 206 f 146 f 
137 137 \ 207 9 147 9 

140 - 055 - 210 h 150 h 
141 / 057 / 211 i 151 i 
142 134 \ 212 134 \ 
143 134 \ 213 134 \ 
144 134 \ 214 134 \ 
145 134 \ 215 134 \ 
146 134 \ 216 134 \ 
147 134 \ 217 134 \ 

150 134 \ 220 134 \ 
151 134 \ 221 j 152 j 
152 134 \ 222 k 153 k 
153 , 054 , 223 1 154 1 
154 % 045 % 224 m 155 m 
155 - 137 - 225 n 156 n 
156 > 076 > 226 0 157 0 

157 ? 077 ? 227 P 160 P 

160 134 \ 230 q 161 q 
161 134 \ 231 r 162 r 
162 134 \ 232 134 \ 
163 134 \ 233 134 \ 
164 134 \ 234 134 \ 
165 134 \ 235 134 \ 
166 134 \ 236 134 \ 
167 134 \ 237 134 \ 

B-6 



COLLATING SEQUENCES AND CONVERSION TABLES 

Table B-3 (Cont.) 
EBCDIC Collating Sequence and Conversion to ASCII 

EBCDIC EBCDIC ASCII ASCII EBCDIC EBCDIC ASCII ASCII 
code character code character code character code character 

240 134 \ 310 H 110 H 
241 176 311 I 110 I 
242 s 163 s 312 134 \ 
243 t 164 t 313 134 \ 
244 u 165 u 314 134 \ 
245 v 166 v 315 134 \ 
246 w 167 w 316 134 \ 
247 x 170 x 317 134 \ 

250 y 171 Y 320 175 
251 z 172 z 321 J 112 J 
252 134 \ 322 K 113 K 
253 134 \ 323 L 114 L 
254 134 \ 324 1'1 115 M 
255 [ 133 [ 325 N 116 N 
256 134 \ 326 0 117 0 
257 134 \ 327 P 120 P 

260 175 330 Q 121 Q 

261 134 \ 331 R 122 R 
262 134 \ 332 134 \ 
263 134 \ 333 134 \ 
264 134 \ 334 134 \ 
265 134 \ 335 134 \ 
266 134 \ 336 134 \ 
267 134 \ 337 134 \ 

270 134 \ 340 134 \ 
271 134 \ 341 134 \ 
272 134 \ 342 S 123 S 
273 134 \ 343 T 124 T 
274 134 \ 344 U 125 U 
275 ] 135 ] 345 V 126 V 
276 134 \ 346 W 127 W 
277 134 \ 347 X 130 X 

300 173 350 y 131 y 

301 A 101 A 351 Z 132 Z 
302 B 102 B 352 134 \ 
303 C 103 C 353 134 \ 
304 D 104 D 354 134 \ 
305 E 105 E 355 134 \ 
306 F 106 F 356 134 \ 
307 G 107 G 357 134 \ 

360 0- 060 1 370 8 070 8 
361 1 061 1 371 9 071 9 
362 2 062 2 372 134 \ 
363 3 063 3 373 134 \ 
364 4 064 4 374 134 \ 
365 5 065 5 375 134 \ 
366 6 066 6 376 134 \ 
367 7 067 7 377 134 \ 

B-7 





APPENDIX C 

DEFINING LOGICAL NAMES UNDER TOPS-20 

Most of the file specifications for the COBOL compiler and the 
utilities associated with COBOL~68 use project-programmer numbers to 
identify areas on the disk. Users of TOPS-20 do not normally deal 
with project-programmer numbers; named directories are used instead. 
However, the compiler and the utilities often do not accept named 
directories in the command strings. There are two ways for TOPS-20 
users to specify a directory to be searched. One is to use the TRANSL 
command to translate a named directory to a project-programmer number. 
This way is perfectly functional, but usually inconvenient. The other 
way is to define a logical name and use it in the command string in 
place of the device name and the project-programmer number. The 
TRANSL and DEFINE commands are described in the TOPS-20 User's Guide. 
Refer to that manual for more information on these two commands. A 
short description of the DEFINE command has been included here for 
convenience. 

The DEFINE command has the following format: 

where: 

logname: 

filespecs 

@DEFINE (LOGICAL NAME) logname: (AS) filespecs 

is the logical name being defined. It consists 
to 6 alphanumeric characters (A-Z and 0-9 
followed by a colon. 

of up 
only) 

is a list of file specifications (separated by commas) 
that define the logical name. A file specification can 
contain any combination of a structure name, device 
name, directory, file name, file type, generation 
number, and wildcards. If you wish to remove a logical 
name, you should leave the filespecs entry blank. 

The following characteristics of the DEFINE command should be noted: 

1. The DEFINE command is used at TOPS-20 monitor level (or in a 
batch or command file). The command does not alter any 
program and leaves you at monitor level. 

2. Some programs can expect certain logical names to be defined 
certain ways. You should exercise caution in deciding on a 
character string to use as a logical name. See the 
INFORMATION command in the TOPS-20 User's Guide for a 
description of how to determine what logical names are 
already defined. 

C-l 



DEFINING LOGICAL NAMES UNDER TOPS-20 

Example: 

DEFINE PR: <PAYROLL> 

allows you to type the following command to the COBOL-68 
compiler: 

PR:FEDTAX=TESTFT.CBL 

This command string takes a file in your connected directory 
named TESTFT.CBL and compile it, writing the .REL file in the 
directory <PAYROLL>. As written, the command string would also 
write the .LST file to your connected directory. If you wish to 
have it in the <PAYROLL> directory you must use the following 
command: 

PR:FEDTAX,PR:FEDTAX=TESTFT.CBL 

C-2 



APPENDIX D 

ALTERNATE NUMERIC TEST 

LIBOL as normally assembled includes the ANSI standard 
However, an assembly switch has been provided 
installation manager to replace this with the ALTERNATE 
at installatiqn time. 

NUMERIC test. 
to allow the 

NUMERIC test 

The ALTERNATE NUMERIC test result is TRUE under the following 
conditions: 

1. For alphanumeric and unsigned numeric items, each character 
must be a digit (0 through 9). Leading and tiailing spaces 
and leading and trailing tabs are ignored. No signs are 
permitted. 

2. For signed numeric items, the sign can have only one of the 
three following representations: 

1. A leading graphic sign ("+" or "-"), 

2. A trailing graphic sign, or 

3. A trailing embedded sign. 

Leading and trailing spaces and leading and trailing tabs are 
ignored. All other characters must be digits. 

D-1 





TAPE HANDLING 

In this case, you do not want to use a STANDARD-ASCII tape, so you do 
not use the SET TAPE FORMAT command. If your COBOL program is running 
on a TOPS-IO system, you can use the simplest TOPS-IO MOUNT command: 

MOUNT tapnam: •..•• 

If your program is running on a TOPS-20 system, you must use a logical 
name in the MOUNT command to allow you to set the attribute iFORMAT 
(with the DEFINE command). You must set this attribute to avoid 
confusion with the case where you wish to write an ASCII U-format 
tape. On TOPS-20, you can write both F-format and D-format tapes, so 
you can use either iFORMAT:F or iFORMAT:D with the DEFINE command. It 
is also a good idea to declare the record and block size in the DEFINE 
command. The format is shown below (here x stands for one of the 
letters F and D, and nn and mm for a decimal number of bytes). 

MOUNT TAPE tapnam: ....• 

DEFINE taplnm: tapnam: iFORMAT:x ;RECORD:nn iBLOCK:mm 

E.4.1.2 Undefined-Format Tapes - U-Format - Undefined-format tapes 
include all tapes written in EBCDIC, SIXBIT, and binary recording 
modes, as well as tapes written in other recording modes if the label 
type is set to U. U-format tapes cannot be written with 
STANDARD-ASCII or ASCII recording modes on TOPS-IO. 

EBCDIC for TOPS-IO 

If you want to use EBCDIC recording mode on an ANSI-labeled tape, you 
simply declare in your COBOL program-that: 

RECORDING MODE IS EBCDIC 

Then you mount the tape using the simple form of the MOUNT command: 

MOUNT TAPE tapnam 

The tape-labeling software recognizes the recording mode and realize 
that it must write a U-format tape. 

EBCDIC and ASCII for TOPS-20 

If you wish to use EBCDIC or ASCII recording modes on a U-format tape, 
you should include in your COBOL program an explicit declaration of 
the recording mode you want to use. You should also include a 
statement of the form: 

SELECT filnam ASSIGN TO taplnm 

When you mount the tape, use some name that is different from taplnm, 
thus: 

MOUNT TAPE tapnam 

Finally, use the DEFINE command to set the label type: 

DEFINE taplnm: tapnam: iFORMAT:U 

Another way for users of TOPS-20 to handle ASCII data on an 
undefined-format tape is to use the SET TAPE FORMAT monitor command. 

E-IO 



APPENDIX E 

TAPE HANDLING 

E.l DIRECTIONS AND DEFINITIONS 

This appendix describes in detail the methods you use to handle tapes 
with COBOL programs. The appendix does not describe the use of the 
MOUNT command; for this information, see the TOPS-IO Operating System 
Commands Manual or the TOPS-20 Commands Reference Manual. This 
appendix also does not describe the piocedures used by the operating 
system in handling tapes and tape drives. For more information on 
this subject, consult the TOPS-IO or TOPS-20 Tape Processing Manual. 

E.l.l Definitions 

Several terms used in this appendix require explicit definition. 

COBOL Labels 

Labels written by a COBOL program that includes the 
RECORDS clause. COBOL labels and system labels 
definition below) are mutually exclusive. You cannot 
COBOL labels onto a system-labeled tape; nor can you 
system labels onto a tape that has COBOL labels, since 
must initialize a tape to write a system label on it. 

Label Type 

LABEL 
(see 

write 
write 

you 

A field in the system label that defines the structure 9 f 
records on the tape. There are four label types: F, 
meaning fixed-length records, D, indicating variable-length 
records, U, signifying that an undefined format has been 
used to write the records, and S, meaning spanned records. 

Object-Time System 

The object-time system consists of LIBOL.REL and LIB012.EXE. 

System Labels 

These are labels written by the TOPS-IO or TOPS-20 operating 
system. Labels are written on a tape by the aPR program 
when it initializes the tape. You must therefore ask the 
operator to initialize your tape if you do not have the 
privileges required to run OPR. COBOL labels and system 
labels are mutually exclusive. 

E-l 



TAPE HANDLING 

Volume 

A single magnetic tape; a reel. 

Volume Number 

A number signifying the position of the reel in the volume 
set. 

Volume Set 

A group of magnetic tapes that are accessed as a single 
unit. 

E.l.2 Finding The Right Instructions 

This appendix presents a number of specific methods of labeled-tape 
handling that are recommended ways to use the tape-handling software. 
Many situations can be devised that do not fit exactly into one of the 
cases listed here. If you attempt to use the tape-labeling software 
in one of these ways, the results are not predictable. Therefore, you 
are advised to set up a system of handling tapes at your site that is 
consistent with the methods discussed in this appendix. 

The flowchart below helps to guide you to the section that describes 
the type of tape handling you are doing. 

E-2 



Yes 

No 

TAPE HANDLING 

Yes 

See 
Section 
E.4.2 

Yes See 
Section 
E.4.1.1 

See 
Section 
E.4.1.2 

(1) See definition of system labels in Section E.1.2. 

No 

See 
Section 
E.3.2 

Yes See 
Section 
E.3.1.1 

See 
Section 
E.3.1.2 

(2) A tape drive is either assigned by the system tape-handling software or assigned by you. 

(3) Tapes with F-format, S-format, and D-format ANSI labels are transportable to other systems, 
and must be written in either ASCII or STANDARD-ASCII recording mode. 

MR-S-1377-B1 

E-3 



TAPE HANDLING 

E.l.3 Symbols Used In The Text 

The sample ASSIGN clauses and MOUNT commands that follow contain text 
strings that represent user-supplied information. The strings, and 
the information they represent, are shown belqw. 

String Represents Where used 

tapnam Name of tape ASSIGN clause, MOUNT command 

taplnm Logical name ASSIGN clause, MOUNT command 

filnam Name of file ASSIGN clause 

xxx Any legal switch MOUNT command 

idN Volume 10 MOUNT command 
(N=O,1,2, ••• ) 

E.2 FACTORS TO CONSIDER WHEN USING TAPES 

Several new situations have been introduced into the COBOL environment 
by the addition of software to TOPS-IO and TOPS-20 for handling 
labeled tapes. This section presents some factors you should consider 
when deciding what type of tape labeling to use. 

E.2.1 General Defaults And Restrictions 

The following defaults and restrictions apply to tape handling on both 
TOPS-IO and TOPS-20. 

1. If you are using system labels, no COBOL labels are read or 
written on your tape. The object-time system can tell 
whether the system tape-handling software found labels on 
your tape; if system labels were found, the object-time 
system does not write or read COBOL labels. 

2. All STANDARD-ASCII tapes (explicit or default) are written 
without carriage return/line feed pairs unless you introduce 
the carriage return/line feeds by using the ADVANCING clause. 

3. COBOL-68 USE procedures for END-OF-REEL no longer work if you 
use system labeled tapes. This is because the EaT (End Of 
Tape) condition is never seen by the COBOL object-time 
system; the system tape-handling software intervenes when 
EaT is reached and requests the ne~t tape from the operator. 
The only time a USE procedure far END-OF-REEL is executed is 
when the program contains a CLOSE REEL statement. When this 
statement is executed, the USE procedure is performed. 

E-4 



TAPE HANDLING 

4. If you have multiple devi~es in the ASSIGN statement in your 
COBOL program, your system labeled tapes use only the first 
device in the list. The only exception to this is when you 
use the CLOSE REEL syntax to end one tape and start another. 
This syntax causes the system tape-handling software to see 
one volume set being closed, rather than one reel. This 
allows COBOL to switch to the next device in the ASSIGN 
statement while the system tape-handling software switches to 
the next volume set, as specified in the next MOUNT command 
you gave. 

5. You cannot write an unblocked tape with an F-format or 
D-format label •. If your COBOL program declares the blocking 
factor to be zero, or if you omit the BLOCK CONTAINS clause, 
the object-time system acts as if you had declared BLOCK 
CONTAINS 1 RECORD. 

6. The COBOL compiler and object-time system do not always 
enforce the description of your file glven in the FD when you 
are writing tapes. In particular, you could write 
variable-length records to an F-format ANSI-labeled tape 
without receiving any errors. The data on the tape would be 
padded with nulls to the specified maximum record size. 

E.2.2 Defaults And Restrictions Specific To TOPS-20 Systems 

The following defaults and restrictions apply to tape handling on 
TOPS-20 only. 

1. The default recording mode for TOPS-20 systems is determined 
by a fairly simple algorithm. If you use the RECORDING MODE 
IS STANDARD-ASCII clause in your program, and you set no tape 
attributes (using the DEFINE command), your tape becomes 
D-format. If your RECORDING MODE IS ASCII, and you give the 
SET TAPE FORMAT ANSI-ASCII command at monitor level, your 
tape again becomes D-format. You can also get aD-format 
tape by omitting the RECORDING MODE clause from your program 
and giving the SET TAPE FORMAT ANSI-ASCII command. In all 
other default cases, TOPS-20 writes a U-format tape. TOPS-20 
never defaults to F-format. (This does not mean that you 
cannot write an F-format tape if you specify that you wish to 
do so.) 

2. Users of TOPS-20 who wish to write compatible tapes should 
set record and block length attributes (using the DEFINE 
command - see examples below) to make explicit the exact 
sizes of the record and block. Setting attributes is 
advisable because the tape-handling software allows several 
attributes to default to values that can conflict with the 
declarations in your program. When you are determining the 
size of any record, you must count all the characters in the 
record, including explicit and implicit advancing characters 
and header characters (see the TOPS-20 Tape Processing Manual 
for more information on the format of record headers). 

3. The TOPS-20 user-set attributes (set with the DEFINE command) 
are the overriding factor in determining the label 
information when you are writing a labeled tape. When you 
are reading a labeled tape, the overriding factor is the 
information written in the tape's label. 

E-5 



TAPE HANDLING 

4. You can write STANDARD-ASCII tapes (both labeled and 
unlabeled) by declaring the recording mode to be 
STANDARD-ASCII, as you would expect. You can also write 
STANDARD-ASCII tapes by using the SET TAPE FORMAT ANSI-ASCII 
command at monitor level and ~eclaring the recording mode to 
be ASCII or allowing the reco¢ding mode to default to SIXBIT. 

5. TOPS-20 cannot write EBCDIC labels, but it can read them. 

E.2.3 Defaults And Restrictions Specific To TOPS-IO Systems 

The following defaults and restrictions apply to tape handling on 
TOPS-IO only. 

1. Both the TOPS-IO monitor and the TOPS-IO COBOL object-time 
system use F-format by default. 

2. TOPS-IO can both read and write EBCDIC labels. 

3. The COBOL object-time system running under TOPS-IO cannot 
read or write S-format or D-format labeled tapes. 

4. TOPS-IO cannot write a U-format tape in STANDARD-ASCII or 
ASCII recording modes. The object-time system causes all 
such tapes to be written with F-format labels. 

E.2.4 Converting Tapes Between Labeled And Unlabeled 

System-labeled tapes can only be created with the OPR program (both 
TOPS-IO and TOPS-20). Since OPR writes a system label on a tape by 
initializing the tape, you cannot convert an unlabeled tape to a 
system-labeled one simply by writing a system label on it. The 
simplest way to create a system-labeled tape with the same data as a 
given unlabeled tape is to write a short COBOL program to copy the 
data. This COBOL program should read every record on the unlabeled 
tape and copy it to a tape that has been initialized and mounted as a 
system-labeled tape. If there are several files on a tape, the COBOL 
program must deal with end-of-file conditions. Once all the data on 
the unlabeled tape has been copied, the system-labeled version of the 
tape has been created; no further steps are necessary. You can 
create an unlabeled version of a system-labeled tape by reversing this 
process. 

E.3 USING SYSTEM-UNLABELED TAPES 

This section describes the use of tapes that the system considers to 
be unlabeled. This includes tapes that actually have system labels if 
you have told the system tape-handling :software that labels are to be 
bypassed. The section is divided intd procedures for tapes that have 
no system labels and procedures for tapes whose labels are bypassed. 

E-6 



TAPE HANDLING 

E.3.l Tape Has No Labels 

If you wish to use tapes that actually have no system labels, as 
opposed to tapes whose system labels are bypassed, the method you 
should use depends on whether the tape drive can be assigned by you. 

E.3.l.l Tape Drive Is Available To The User - If you wish to use a 
tape that actually has no system labels (as opposed to bypassing 
labels that are on the tape), and the tape drive is available for you 
to assign, you can assign it and proceed with your processing exactly 
as you have always done. The introduction of system label processing 
does not interfere with this style of tape usage. 

E.3.l.2 Tape Drive Is Owned By The System - This section contains 
instructions for using unlabeled tapes on tape drives assigned by the 
system tape-handling software. The instructions are in two parts: 
one part for single-reel volume sets, and one part for multiple-reel 
volume sets. 

SINGLE-REEL VOLUME SET 

To use a single tape, put the following statement into your COBOL 
program: 

SELECT filnam ASSIGN TO tapnam 

At run time, use the following command to mount the tape: 

MOUNT TAPE tapnam: /LABEL-TYPE:UNLABELED /xxx 

MULTIPLE-REEL VOLUME SET 

There are three methods you can use to deal with multiple-reel volume 
sets. The most convenient way to use the multiple tapes is to put the 
following statement into your COBOL program: 

SELECT filnam ASSIGN TO tapnam 

This allows you to mount the tapes at run time with the following 
command: 

MOUNT TAPE tapnam /LABEL-TYPE:UNLABELED /VOLIDS:fdl, ... ,idN /xxx 

where N is the number of tapes in the volume set, and idN is the 
volume ID of the tape that corresponds to tapnamN (the name of tape 
N) • 

It is also possible to deal with a multiple-volume set by mounting the 
first volume and notifying the operator of the names and volume 
numbers of the remaining tapes. The tape-labeling software recognizes 
the end of a volume and requests the operator to mount the next tape 
in the volume set. The MOUNT command is of the form: 

MOUNT TAPE tapnam /LABEL-TYPE:UNLABELED /xxx 

Finally, you can use in your COBOL program an ASSIGN statement of the 
form: 

E-7 



TAEE HANDLING 

SELECT filnam ASSIGN TO tapnaml, ... ,tapnamN 

where N is the number of tapes in the volume set. If you use this 
form of the ASSIGN clause, you must use N MOUNT commands (which 
requires you to have N tape drives). Each MOUNT command is of the 
simplest form: 

MOUNT TAPE tapnaml /LABEL-TYPE:UNLABELED /xxx 

MOUNT TAPE tapnamN /LABEL-TYPE:UNLABELED /xxx 

E.3.2 Tape Has Labels 

If you wish to bypass the system labels on a tape and use the tape as 
if it had no labels, you can use the instructions above for unlabeled 
tapes. However, you should note the following exceptions: 

1. You must have privileges to bypass the labels on a tape. 

2. You must tell the system to bypass the system labels on the 
tape. The MOUNT command for doing this is: 

MOUNT TAPE tapnam /LABEL-TYPE:BYPASS /xxx 

3. If you want to look at the system label in your COBOL 
program, simply read it as the first file on the tape. 

4. If you want to skip the system label, give the REWIND and 
SKIP 1 commands at monitor level. 

E.4 USING SYSTEM-LABELED TAPES 

This section describes the use of tapes that the system considers to 
be labeled. This does not include tapes whose system labels are being 
bypassed. (For information on using this kind of tape, see Section 
E.3.2 above.) There are two types of system labels: ANSI labels and 
EBCDIC labels. 

E.4.1 Tape Has ANSI Labels 

Methods for using ANSI-labeled tapes can be separated into those used 
with transportable tapes and those used with undefined-format tapes. 
The first section that follows deals with transportable tapes, which 
have F-format, D-format, or S-format labels and must be written in 
STANDARD-ASCII or ASCII recording modes. The next section presents 
information on using U-format tapes. U-format tapes include all those 
recorded in EBCDIC, SIXBIT, and binary, and it is possible to write 
U-format tapes in ASCII and STANDARD-ASCII as well. 

E-8 



TAPE HANDLING 

E.4.1.1 Transportable Tapes - F, D, And S Formats - You can write 
transportable tapes in two styles of ASCII. One kind, STANDARD-ASCII, 
does not contain any carriage ~eturn/line feed pairs unless your COBOL 
program explicitly introduces them (using the ADVANCING clause). The 
other kind, ASCII, does include carriage return/line feed pairs in 
each record unless they are specifically excluded (using, once again, 
the ADVANCING clause). This sec~ion presents two methods for writing 
STANDARD-ASCII transportable tapes that do not have implicit carriage 
return/line feed pairs, and another for writing ASCII transportable 
tapes that do have implicit carriage return/line feed pairs. 

STANDARD-ASCII 

There are two ways to write a tape in STANDARD-ASCII. The first 
method requires your COBOL program to include the following statement: 

RECORDING MODE IS STANDARD-ASCII 

This allows the MOUNT command to be in its simplest form: 

MOUNT TAPE tapnam 

The second method, usable only on TOPS-20, requires your COBOL'program 
to include the following statement: 

RECORDING MODE IS ASCII 

However, the data on the tape is (or can be, depending on whether you 
are reading or writing the tape) recorded as if you had said 
STANDARD-ASCII. Therefore, you must tell the object-time system to 
read (or write) a STANDARD-ASCII tape. To do this, type the following 
command at monitor level before you run your COBOL program: 

SET TAPE FORMAT ANSI-ASCII 

This command must be given at monitor level, but it does not matter 
whether you type it before or after you mount the tape with the MOUNT 
command. The MOUNT command you should use is the simplest form: 

MOUNT TAPE tapnam 

You can produce the same kind of tape by omitting the RECORDING MODE 
clause from your COBOL program altogether, assuming that you have not 
changed the default recording mode (with the /X compiler switch or the 
DISPLAY IS clause). In this case, your recording mode defaults to 
STANDARD-ASCII, despite the fact that the usual default recording mode 
is SIXBIT. If you omit the clause, you must set the default tape 
format as shown in the previous case, and you can use the simple MOUNT 
command format shown for the previous case as well. 

ASCII 

If you wish to write a transportable tape and you also want carriage 
return/line feed pairs in each record, you can use regular ASCII 
recording mode. To do this, you must include in your COBOL program a 
statement of the following type: 

SELECT filnam ASSIGN TO taplnm 

This must be followed by the statement: 

RECORDING MODE IS ASCII 

E-9 



TAPE HANDLING 

You can avoid the use of the logical name by giving the command: 

SET TAPE FORMAT CORE-DUMP 

This command, along with the declaration of ASCII recording mode in 
your COBOL program, allows you to read or write an ASCII U-format tape 
with carriage return/line feed pairs included. You could also 
read/write an ASCII U-format tape, omitting carriage return/line 
feeds, by including in your COBOL program the statement: 

RECORDING MODE IS STANDARD-ASCII 

Omitting the RECORDING MODE clause fr~m the program would have the 
same effect. 

SIXBIT and Binary 

If you want to deal with SIXBIT or binary data on a labeled tape, you 
must declare the recording mode in your COBOL program. You cannot 
allow the recording mode to default to SIXBIT; if you did, you would 
get STANDARD-ASCII data on your tape (assuming the default hardware 
data mode to be ANSI-ASCII; see the section on EBCDIC and ASCII tapes 
above) . You must also make sure that the default tape format is not 
INDUSTRY-COMPATIBLE or ANSI-ASCII, so that you are sure to get a 
U-format tape (INDUSTRY-COMPATIBLE and ANSI-ASCII formats indicate an 
F-format or D-format tape). Users of TOPS-20 can make sure of this by 
giving the moni tor command- show'n below: 

SET TAPE FORMAT CORE-DUMP 

Users of TOPS-IO cannot use this command; the default tape format is 
set for the site and cannot be changed by individual users. If you 
have trouble handling SIXBIT or binary tapes, check with your system 
administrator to make sure the default tape format is not set to 
INDUSTRY-COMPATIBLE or ANSI-ASCII. 

E.4.2 Tape Has EBCDIC Labels 

If your tape has EBCDIC labels, you can read it on both TOPS-IO and 
TOPS-20 by using the simple forms of the ASSIGN clause and the MOUNT 
command: 

SELECT filnam ASSIGN TO tapnam 

MOUNT TAPE tapnam /LABEL-TYPE:EBCDIC /xxx 

You can write EBCDIC-labeled tapes on TOPS-IO using the same ASSIGN 
clause and MOUNT command. However, TOPS-20 systems cannot write to 
EBCDIC labeled tapes. 

The COBOL object-time system running under TOPS-IO writes F-format 
tapes if you declare the recording mode to be F in your COBOL program; 
the same software writes D-format tapes if you declare the recording 
mode to be V. If the recording mode is something other than EBCDIC F 
or V, the TOPS-IO COBOL object-time system writes a U-format tape. 

E-II. 



TAPE HANDLING 

TOPS-lO does not read S-format tapes (S-format tapes contain spanned 
records) • F-format, D-format, and U-format tapes can be read on a 
TOPS-lO system. To read F-format tapes, you must declare the 
recording mode to be F in your COBOL program. To read D-format tapes, 
you must declare the recording mode to be V in your COBOL program. If 
you wish to read a U-format tape, you can read the data in any fashion 
you wish; no checking is done on the recording mode. 

TOPS-20, as mentioned above, does not write EBCDIC-labeled tapes. 
However, you can read EBCDIC-labeled tapes on TOPS-20. The TOPS-20 
monitor processes the data coming from the tape; it knows how big a 
logical record is, and it hands the COBOL program one logical record. 
If you are expecting to receive the data in the format in which it was 
actually recorded, you get the right data when you read a record. If, 
however, your idea of the data format of the tape is not accurate, 
your results are unpredictable. 

E-l2 



GLOSSARY 

The terms in this glossary are defined in accordance with COBOL as 
used in this document. Therefore, these terms may not have the same 
meanings in other languages. 

These definitions are also intended to serve either as reference 
material or as introductory material to be reviewed before reading the 
detailed language specifications. For this reason, these definitions 
are, in most instances, brief and do not include detailed syntactical 
rules. 

Abbreviated Combined Relation Condition 

The combined condition that results from the explicit omission of 
a common subject, or a common subject and common relational 
operator, in a consecutive sequence of relation conditions. 

Access Mode 

The manner in which records are to be operated upon within a 
file. 

Actual Decimal Point 

The physical representation {decimal point characters period (.) 
or comma (,)) of the decimal point position in a data item. 

Actual Key 

A key whose contents identify a logical record in a random file. 

Alphabetic Character 

A character that belongs to the following set of letters: A, 
B, C, D, E, F, G, H, I, J, K, L, M, N, 0, P, Q, R, S, T, U, 
V, W, X, Y, Z, and Space. 

Alphanumeric Character 

Any character in the computer's character set. 

Arithmetic Expression 

An arithmetic expression can be an identifier or a numeric 
elementary item, a numeric literal, such identifiers and literals 
separated by arithmetic operators, two arithmetic expressions 
separated by an arithmetic operator, or an arithmetic expression 
enclosed in parentheses. 

Glossary-l 



Arithmetic Operator 

A single character, or a fixed 2-character combination that 
belongs to the following set: 

Character 

+ 

* 
/ 
** 

Meaning 

addition 
subtraction 
multiplication 
division 
exponentiation 

Ascending Key 

A key upon the values of which data is ordered starting with the 
lowest value of key up to the highest value of key in accordance 
with the rules for comparing data~items. 

Assumed Decimal Point 

A decimal point position that does not involve the existence of 
an actual character in a data item. The assumed decimal point 
has logical meaning but no physical representation. 

At End Condition 

Block 

A condition caused: 

1. During the execution of a READ statement for a sequentially 
accessed file. 

2. During the execution of a RETURN statement, when no next 
logical record exists for the associated sort or merge file. 

3. During the execution of a SEARCH statement, when the search 
operation terminates without satisfying the condition 
specified in any of the associated WHEN phrases. 

A physical unit of data that is normally composed of one or more 
logical records. For mass storage files, a block can contain a 
portion of a logical record. The size of a block has no direct 
relationship to the size of the file within which the block is 
contained, or to the size of the logical record(s) that are 
either continued within the block or that overlap the block. The 
term is synonymous with physical record. 

Body Group 

Generic name for a report group of TYPE DETAIL, CONTROL HEADING, 
or CONTROL FOOTING. 

Called Program 

A program that is the object of a CALL statement combined at 
object time with the calling program to produce a run unit. 

Calling Program 

A program that executes a CALL to another program. 

Glossary-2 



Cd-Name 

A user-defined word that names an MCS interface area described in 
a communication descrip~ion entry within the Communication 
section of the Data Division. 

Character 

The basic indivisible unit of the language. 

Character position 

A character position is the amount of physical storage required 
to store a single standard data format character described as 
usage is DISPLAY. Further characteristics of the physical 
storage are defined by the implementor. 

Character-String 

A sequence of contiguous characters that form a COBOL word, a 
literal, a PICTURE character-string, or a comment-entry. 

Class Condition 

The proposition, for which a truth value can be determined, that 
the content of an item is wholly alphabetic or is wholly numeric. 

Clause 

A clause is an ordered set of consecutive COBOL character-strings 
whose purpose is to specify an attribute of an entry. 

COBOL lCharacter Set 

The complete COBOL character set consists of the 51 characters 
listed below: 

COBOL Word 

Character 

0,1, ••. ,9 
A,B, •.. ,Z 

+ 

* 
/ 

$ 

II 

( 
) 

> 
< 

(See Word.) 

Collating Sequence 

Meaning 

digit 
letter 
space (blank) 
plus sign 
minus sign (hyphen) 
asterisk 
stroke (virgule, slash) 
equal sign 
currency sign 
comma (decimal point) 
semicolon 
period (decimal point) 
quotation mark 
left parenthesis 
right parenthesis 
greater than symbol 
less than symbol 

The sequence in which the characters that 
computer are ordered for purposes of 
comparing. 

are acceptable in a 
sorting, merging, and 

Glossary-3 



Column 

A character position within a print line. 
numbered from 1, by 1, starting at the 
position of the print line and extending 
position of the print line. 

Combined Condition 

The columns are 
leftmost character 
to the rightmost 

A condition that is the result of connecting two or more 
conditions with the 'AND' or the 'OR' logical operator. 

Comment-Entry 

An entry in the Identification Division that can be any 
combination of characters from the computer character set. 

Comment Line 

A source program line represented by an asterisk in the indicator 
area of the line and any characters from the computer's character 
set in area A and area B of that line. The comment line serves 
only \s documentation in a program. A special form of comment 
line represented by a stroke (/) in the indicator area of the 
line, and any characters from the computer's character set in 
area A and area B of that line, causes page ejection prior to 
printing the comment. 

Communication Description Entry 

An entry in the Communication Section of the Data Division that 
is composed of the level indicator CD, followed by a cd-name, and 
then followed by a set of clauses as required. It describes the 
interface between the Message Control System (MCS) and the COBOL 
program. 

Communication Device 

A mechanism (hardware or hardware/software) capable of sending 
data to a queue and/or recelvlng data from a queue. This 
mechanism can be a computer or a peripheral device. One or more 
programs containing communication description entries and 
residing within the same computer define one or more of these 
mechanisms. 

Communication Section 

The section of the Data Division that 
areas between the MCS and the program. 
of one or more CD description entries. 

Compile Time 

describes the interface 
This section is composed 

The time at which a COBOL source program is translated by a COBOL 
compiler to a COBOL object program. 

Compiler Directing Statement 

A statement beginning with a compiler-directing verb that causes 
the compiler to take a specific action during compilation. 

Complex Condition 

A condition in which one or more logical operators act upon one 
or more conditions. (See Negated Simple Condition, Combined 
Condition, Negated Combined Condition.) 

Glossary-4 



Computer-Name 

A system-name that identifies the computer upon which the program 
is to be compiled or run. 

Condition 

A status of a program at execution time for which a truth value 
can be determined. Where the term 'condition' (condition-I, 
condition-2, •.• ) appears in these language specifications in or 
in reference to 'condition' (condition-I, condition-2, .•. ) of a 
general format, it is a conditional expression consisting of 
either a simple condition optionally parenthesized, or a combined 
condition consisting of the syntactically correct combination of 
simple conditions, logical operators, and parentheses, for which 
a truth value can be determined. 

Condition-Name 

A user-defined word assigned to a specific value, set of values, 
or range of values, within the complete set of values that a 
conditional variable can possess; or the user-defined word 
assigned to a status of an implementor-defined switch or device. 

Condition-Name Condition 

The proposition, for which a truth value can be determined, that 
the value of a conditional variable is a member of the set of 
values att~ibuted to a condition-name associated with the 
conditional variable. 

Conditional Expression 

A simple condition or a complex condition specified in an IF, 
PERFORM, or SEARCH statement. (See Simple Condition and Complex 
Condition.) 

Conditional Statement 

A conditional statement specifies that the truth value of a 
condition is to be determined, and that the subsequent action of 
the object program is dependent on this truth value. 

Conditional Variable 

A data item of which one or more values has a condition-name 
assigned to it. 

Configuration Section 

A section of the Environment Division that describes overall 
specifications of source and object computers. 

Connective 

A reserved word that is used to: 

1. Associate a data-name, paragr~ph-name, condition-name, or 
text-name with its qualifier. 

2. Link two or more operands written in a series. 

3. Form conditions 
Operator.) 

(logical connectives) • 

Glossary-5 

(See Logical 



Contiguous Items 

Items that are described by consecutive entries in the Data 
Division, and ,that bear a definite hierarchical relationship to 
each other. 

Control Break 

A change in the value of a data item that is referenced in the 
CONTROL clause. More generally, a change in the value of a data 
item that is used to control the hierarchical structure of a 
report. 

Control Break Level 

The relative position within a control hierarchy at which the 
most major control break occurred. 

Control Data Item 

A data item, in whose contents a change can produce a control 
break. 

Control Data-Name 

A data-name that appears in a CONTROL clause and refers to a 
control data item. 

Control Footing 

A report group that is presented at the end of the control group 
of which it is a member. 

Control Group 

A set of body groups that is presented for a given value of a 
control data item or of FINAL. Each control group can begin with 
a CONTROL HEADING, end with a CONTROL FOOTING, and contain DETAIL 
report groups. 

Control Heading 

A report group that is presented at the beginning of the control 
group of which it is a member. 

Control Hierarchy 

A designated sequence 
positional order of 
clause. 

Counter 

of report subdivisions defined by the 
FINAL and the data-names within a CONTROL 

A data item used for storing numbers or number representations in 
a manner that permits these numbers to be increased or decreased 
by the value of another number, or to be changed or reset to zero 
or to an arbitrary positive or negative value. 

Currency Sign 

The character '$' of the COBOL character set. 

Glossary-6 



Currency Symbol 

The character defined by- the CURRENCY SIGN clause in the 
SPECIAL-NAMES paragraph. If no CURRENCY SIGN clause is present 
in a COBOL source program, the currency symbol is identical to 
the currency sign. 

Current Record 

The record that is available in the record area associated with 
the file. 

Current Record Pointer 

A conceptual entity that is used in the selection of the next 
record. 

Data Clause 

A clause that appears in a data description entry in the Data 
Division and that provides information describing a particular 
attribute of a data item. 

Data Description Entry 

An entry in the Data Division that is composed of a level-number 
followed by a data-name, if required, and then followed by a set 
of data clauses, as required. 

Data Item 

A character or a set of 
either case, literals) 
program. 

Data-Name 

contiguous characters (excluding, in 
defined as a unit of data by the COBOL 

A user-defined word that names a data item described in a data 
description entry in the Data Division. When used in the general 
formats, 'data-name' represents a word that cannot be 
subscripted, indexed, or qualified unless specifically permitted 
by the rules for that format. 

Declaratives 

A set of one or more special-purpose sections, written at the 
beginning of the Procedure Division, the first of which is 
preceded by the key word DECLARATIVES, and the last of which is 
followed by the key words END DECLARATIVES. A declarative is 
composed of a section header, followed by a USE 
compiler-directing sentence, followed by a set of zero, one, or 
more associated paragraphs. 

Declarative-Sentence 

A compiler-directing sentence consisting of a 
statement terminated by the separator period. 

Delimiter 

single USE 

A character or a sequence of contiguous characters that identify 
the end of a string of characters and separate that string of 
characters from the following string of characters. A delimiter 
is not part of the string of characters that it delimits. 

Glossary-7 



Descending Key 

A key upon the values of which data is ordered starting with the 
highest value of key. down to the lowest value of key, in 
accordance with the rules for comparing data items. 

Destination 

The symbolic identification of the receiver of a transmission 
from a queue. 

Digit position 

A digit position is the amount of physical storage required to 
store a single digit. This amount can vary depending on the 
usage of the data item describing the digit position. Further 
characteristics of the physical storage are defined by the 
implementor. 

Division 

A set of zero, one, or more sections of paragraphs, called the 
division body, that are formed and combined in accordance with a 
specific set of rules. There are four divisions in a COBOL 
program: Identification, Environment, Data, and Procedure. 

Division Header 

A combination of words followed by a period and a space that 
indicates that beginning of a division. 'The division headers 
are: 

IDENTIFICATION DIVISION. 
ENVIRONMENT DIVISION. 
DATA DIVISION. 
PROCEDURE DIVISION [USING data-name-l [data-name-2] •.• ] • 

Edi ting Char,acter 

A single character or a fixed 2-character combination belonging 
to the following set: 

Elementary Item 

Character 

B 
o 
+ 

CR 
DB 
Z 

* 
$ 

Meaning 

space 
zero 
plus 
minus 
credit 
debit 
zero suppress 
check protect 
currency sign 
comma (decimal point) 
period (decimal point) 

A data item that is described as not being further logically 
subdivided. 

End of Procedure Division 

The physical position in a COBOL source program after which no 
further procedures appear. 

Glossary-8 



Entry 

Any descriptive set of con~edutiye clauses terminated by a period 
and written in the Identification Division, Environment Division, 
or Data Division of a COBOL source program. 

Environment Clause 

A clause that appears as part of an Environment Division entry. 

Execution Time 

(See Object Time.) 

Extend Mode 

The state of a file after execution of an OPEN statement with the 
EXTEND phrase specified for that file, and before the execution 
of a CLOSE statement for that file. 

Figurative Constant 

File 

A compiler-generated value referenced through the use of certain 
reserved words. 

A collection of records. 

File Clause 

A clause that appears as part of any of the .following Data 
Division entries: 

File description (FD) 
Sort-merge file description (SD) 
Communication description (CD) 

FILE-CONTROL 

The name of an Environment Division paragraph in which the data 
files for a given source program are declared. 

File Description Entry 

An entry in the File Section of the Data Division that is 
composed of the level indicator FD, followed by a file-name, and 
then followed by a set of file clauses as required. 

File-Name 

A user-defined word that names a file described in a file 
description entry or a sort-merge file description entry within 
the File Section of the Data Division. 

File Organization 

The permanent logical file structure established at the time that 
a file is created. 

File Section 

The section of the Data Division that contains file description 
entries and sort-merge file description entries together with 
their associated record descriptions. 

Glossary-9 



Format 

A specific arrangement of a set of data. 

Group Item 

A named contiguous set of elementary or group items. 

High Order End 

The leftmost character of a string of characters. 

I-O-CONTROL 

The name of an Environment Division paragraph in which object 
program requirements for specific input-output techniques, rerun 
points, sharing of same areas by several data files, and multiple 
file storage on a single input-output device are specified. 

1-0 Mode 

The state of a file after execution of an OPEN statement, with 
the input-output phrase specified, for that file and before the 
execution of a CLOSE statement for that file. 

Identifier 

A data-name followed as required by the syntactically correct 
combination of qualifiers, subscripts, and indexes necessary to 
make unique reference to a data item. 

Imperative Statement 

A statement that begins with an imperative verb and specifies an 
unconditional action to be taken. An imperative statement can 
consist of a sequence of imperative statements. 

Implementor-Name 

Index 

A system-name that refers to a particular feature available on 
that implementor's computing system. 

A computer storage position or register, the contents of which 
represent the identification of a particular element in a table. 

Index Data Item 

A data item in which the value associated with an index-name can 
be stored in a form specified by the implementor. 

Index-Name 

A user-defined word that names an index associated with a 
specific table. 

Indexed Data-Name 

An identifier that is composed of a data-name followed by one or 
more index-names enclosed in parentheses. 

Indexed File 

A file with indexed organization. 

Glossary-IO 



Indexed Organization 

The permanent logical file structure in which each record is 
identified by the value of one or more keys within that record. 

Input File 

A file that is opened in the input mode. 

Input Mode 

The state of a file after execution of an OPEN statement with the 
INPUT phrase specified for that file, and before the execution of 
a CLOSE statement for that file. 

Input-Output File 

A file that is opened in the input-output mode. 

Input-Output Section 

The section of the Environment Division that names the files and 
the external media required by an object program, and that 
provides information required for transmission and handling of 
data during execution of the object program. 

Input Procedure 

A set of statements that is executed each time a record is 
released to the sort file. 

Integer 

A nonnegative numeric literal or a numeric data item that does 
not include any character positions to the right of the assumed 
decimal point. Where the term 'integer' appears in general 
formats, integer must not be a numeric data item, and must not be 
signed or zero, unless explicitly allowed by the rules of that 
format. 

Invalid Key Condition 

Key 

A condition at object time caused when a specific value of the 
key associated with an indexed or relative file is determined to 
be invalid. 

A data item that identifies the location of a record, or a set of 
data items that serve to identify the ordering of data. 

Key Word 

A reserved word whose presence is required when the format in 
which the word appears is used in a source program. 

Language-Name 

A system-name that specifies a particular programming language. 

Level Indicator 

Two alphabetic characters that identify a specific type of file 
or a position in hierarchy. 

Glossary-II 



Level-Number 

A user-defined word that indicates the position of a data item in 
the hierarchical structure of a logical record or that indicates 
special properties of a data description entry. A level-number 
is expressed as a 1- or 2-digit number. Level-numbers in the 
range 1 through 49 indicate the position of a data item in the 
hierarchical structure of a logical record. Level-numbers in the 
range 1 through 9 can be written either as a single digit or as a 
zero followed by a significant digit. Level-numbers 66, 77, and 
88 identify special properties of a data description entry. 

Library-Name 

A user-defined word that names a COBOL library that is to be used 
by the compiler for a given source program compilation. 

Library Text 

Line 

A sequence of character-strings and/or separators in a COBOL 
library. 

(See Report Line.) 

Line Number 

An integer that denotes the vertical position of a report line on 
a page. 

Linkage Section 

The section in the Data Division of the called program 
describes data items available from the calling program. 
data items can be referred to by both the calling and 
program. 

Literal 

that 
These 

called 

A character-string whose value is implied by the ordered set of 
characters constituting the string. 

Logical Operator 

One of the reserved words AND, OR, or NOT. In the formation of a 
condition, both or either of AND and OR can be used as logical 
connectives. NOT can be used for logical negation. 

Logical Record 

The most inclusive data item. The level-number for a record is 
01. (See Repor t Wr iter Log ical Record.) 

Low Order End 

The rightmost character of a string of characters. 

Mass Storage 

A storage medium on which data can be oganized and maintained in 
both a sequential and nonsequential manner. 

Mass Storage Control System (MSCS) 

An input-output control system that directs or controls the 
processing of mass storage files. 

G1ossary-12 



Mass Storage File 

MCS 

A collection of records that is assigned to a mass storage 
medium. 

(See Message Control System.) 

Merge File 

A collection of records to be merged by a MERGE statement. The 
merge file is created and can-be used only by the merge function. 

Message 

Data associated with an end of message indicator or an end of 
group indicator. (See Message Indicators.) 

Message Control System (MCS) 

A communication control system that supports the processing of 
messages. 

Message Count 

The count of the number of complete messages that exist in the 
designated queue of messages. 

Message Indicators 

EGI (end of group indicator), EMI (end of message indicator), and 
ESI (end of segment indicator) are conceptual indications that 
notify the MCS that a specific condition exists (end of group, 
end of message, end of segment). 

Within the 
equivalent 
equivalent 
terminated 
terminated 

hierarchy of EGI, EMI, and ESI, an EGI is conceptually 
to an ESI, an EMI, and an EGI. An EMI is conceptually 
to an ESI and an EMI. Thus, a segment can be 

by an ESI, an EMI, or an EGI. A message can be 
by an EMI or an EGI. 

Message Segment 

Data that forms a 
associated with 
Indicators.) 

logical 
an end 

subdivision 
of segment 

of a message normally 
indicator. {See Message 

Mnemonic-Name 

MSCS 

A user-defined word that is associated in the Environment 
Division with a specified implementor-name. 

(See Mass Storage Control System.) 

Negated Combined Condition 

The 'NOT' logical operator immediately 
parenthesized combined condition. 

Negated Simple Condition 

followed by a 

The 'NOT' logical operator immediately followed by a simple 
condition. 

Glossary-13 



Next Executable Sentence 

The next sentence to which control is transferred after execution 
of the current statement is complete. 

Next Executable Statement 

The next statement to which control is transferred 
execution of the current statement is complete. 

Next Record 

after 

The record that logically follows the current record of a file. 

Noncontiguous Items 

Elementary data items in the Working-Storage and Linkage Sections 
that bear no hierarchical relationship to other data items. 

Nonnumeric Item 

A data item whose description permits its contents to be composed 
of any combination of characters taken from the computer's 
character set. Certain categories of nonnumeric items can be 
formed from more restricted character sets. 

Nonnumeric Literal 

A character-string bounded by quotation marks. The string of 
characters can include any character in the computer's character 
set. To represent a single quotation mark character within a 
nonnumeric literal, two contiguous quotation marks must be used. 

Numeric Character 

A character that belongs to the following set of digits: 
2, 3, 4, 5, 6, 7, 8, 9. 

0, 1, 

Numeric Item 

A data item whose description restricts its contents to a value 
represented by characters chosen from the digits '0' through '9'; 
if signed, the item can also contain a '+', I_I or other 
representation of an operational sign. 

Numeric Literal 

A literal composed of one or more numeric characters that also 
~an contain either a decimal point, or an algebraic sign, or 
both. The decimal point must not be the rightmost character. 
The algebraic sign, if present, must the leftmost character. 

OBJECT-COMPUTER 

The name of an Environment Division 
computer environment, within which 
executed, is described. 

Object of Entry 

paragraph in which the 
the object program is 

A set of operands and reserved words within a Data Division entry 
that immediately follows the subject of the entry. 

Glossary-14 



Object Program 

A set or group of executable machine language instructions and 
other material designed to interact with data to provide problem 
solutions. In this context, an object program 1S generally the 
machine language result of the operation of a COBOL compiler on a 
source program. Where there is no danger of ambiguity, the word 
'program' alone can be used in place of the phrase 'object 
program.' 

Object Time 

The time at which an object program is executed. 

Open Mode 

The state of a file after execution of an OPEN statement for that 
file, and before the execution of a CLOSE statement for that 
file. The particular open mode is specified in the OPEN 
statement as either INPUT, OUTPUT, 1-0, or EXTEND. 

Operand 

Whereas the general definition of operand is 'that component that 
is operated upon,' for the purposes of this publication any 
lowercase word (or words) that appears in a statement or entry 
format can be considered to be an operand and, as such, is an 
implied reference to the data indicated by the operand. 

Operational Sign 

An algebraic sign associated with a numeric data item or a 
numeric literal, which indicates whether its value is positive or 
negative. 

Optional Word 

A reserved word that is included in a specific format only to 
improve the readability of the language and whose presence is 
optional to you when the format in which the word appears is used 
in a source program. 

Output File 

A file that is opened in either the output mode or the extend 
mode. 

Output Mode 

The state of a file after execution of an OPEN statement, with 
the OUTPUT or EXTEND phrase specified for that file, and before 
the execution of a CLOSE statement for that file. 

Output Procedure 

Page 

A set of statements to which control is given during execution of 
a SORT statement after the sort function is completed, or during 
execution of a MERGE statement after the merge function has 
selected the next record in merged order. 

A vertical division of a report representing a physical 
separation of report data, the separation being based on internal 
reporting requirements and/or external characteristics of the 
reporting medium. 

Glossary-IS 



Page Body 

That part of the logical page in which lines can be written 
and/or spaced. 

Page Footing 

A report group that is presented at the end of a report page as 
determined by the Report writer Control System. 

Page Heading 

A report group that is presented at the beginning of a report 
page and determined by the Report Writer Control System. 

Paragraph 

In the Procedure Division, a paragraph-name followed by a 
and a space, and by zero, one, or more sentences. 
Identification and Environment Divisions, a paragraph 
followed by zero, one, or more entries. 

Paragraph Header 

period 
In the 
header 

A reserved word followed by a period and a space that indicates 
the beginning of a paragraph in the Identification and 
Environment Divisions. The permissible paragraph headers are: 

In the Identification Division: 

PROGRAM-ID. 
AUTHOR. 
INSTALLATION. 
DATE-WRITTEN. 
DATE-COMPILED. 
SECURITY. 
REMARKS. 

In the Environment Division: 

SOURCE-COMPUTER. 
OBJECT-COMPUTER. 
SPECIAL-NAMES. 
FILE-CONTROL. 
I-a-CONTROL. 

Paragraph-Name 

A user-defined word that identifies and begins a paragraph in the 
Procedure Division. 

Phrase 

A phrase is an ordered set of one or more 
character-strings that form a portion of 
statement or of a COBOL clause. 

Physical Record 

(See Block.) 

Prime Record Key 

consecutive COBOL 
a COBOL procedural 

A key whose contents uniquely identify a record within an indexed 
file. 

Glossary-16 



Printable Group 

A report group that contains at lea~t one print line. 

Printable Item 

A data item, the extent and contents of which are specified by an 
elementary report entry. This elementary report entry contains a 
COLUMN NUMBRR clause, a PICTURE clause, and a SOURCE, SUM, or 
VALUE clause. 

Procedure 

A paragraph or group of logically successive paragraphs, or a 
section or group of logically successive sections, within the 
Procedure Division. 

Procedure-Name 

A user-defined word that is used to name a paragraph or section 
in the Procedure Division. It consists of a paragraph-name 
(which can be qualified) or a section-name. 

program-Name 

A user-defined word that identifies a COBOL source program. 

Pseudo-Text 

A sequence of character-strings and/or separators bounded by, but 
not including, pseudo-text delimiters. 

Pseudo-Text Delimiter 

Two contiguous equal sign (=1 characters used to 
pseudo-text. 

Punctuation Character 

A character that belongs to the following set: 

Character 

II 

( 
) 

Qualified Data-Name 

Meaning 

comma 
semicolon 
period 
quotation mark 
left parenthesis 
right parenthesis 
space 
equal sign 

delimit 

An identifier that is composed of a data-name followed by one or 
more sets of either of the connectives OF and IN followed by a 
data-name qualifier. 

Glossary-l7 



Qualifier 

Queue 

1. A data-name that is used in a reference together with another 
data-name at a lower level in the same hierarchy. 

2. A section-name that is used in a reference together with a 
paragraph-name specified in that section. 

3. A library-name that is used in a reference together with a 
text-name associated with that library. 

A logical collection of messages awaiting transmission or 
processing. 

Queue Name 

A symbolic name that indicates to the MCS the logical path by 
which a message or a portion of a completed message can be 
accessible in a queue. 

Random Access 

An access mode in which the program-specified value of a key data 
item identifies the logical record that is obtained from, deleted 
from, or placed into a relative or indexed file. 

Random File 

A file with random organization. 

Random Organization 

The permanent logical file structure in which each record is 
uniquely identified by an integer value greater than zero, which 
specifies the record's logical position in the file. 

Record 

(See Logical Record.) 

Record Area 

A storage area allocated for processing the record described in a 
record description entry in the File Section. 

Record Description 

(See Record Description Entry.) 

Record Description Entry 

The total set of data description entries associated with a 
particular record. 

Record Key 

A key whose contents identify a record within an indexed file. 

Record-Name 

A user-defined word that names a record described in a record 
description entry in the Data Division. 

Glossary-18 



Reference Format 

A format that provides a standard method for describing COBOL 
source programs. 

Relation 

(See Relational Operator.) 

Relation Character 

A character that belongs to the following set: 

Character 

> 
< 
= 

Relation Condition 

Meaning 

greater than 
less than 
equal to 

The proposition for which a truth value can be determined that 
the value of an arithmetic expression or data item has a specific 
relationship to the value of another arithmetic expression or 
data item. (See Relational Operator.) 

Relational Operator 

A reserved word, a relation character, a group of consecutive 
reserved words, or a group of consecutive reserved words and 
relation characters used in the construction of a relation 
condition. The permissible operators and their meanings are: 

Relational Operator Meaning 

IS [NOT] GREATER THAN 
Greater than or not greater than 

IS [NOT] > 

IS [NOT] LESS THAN 
Less than or not less than 

IS [NOT] < 

IS [NOT] EQUAL TO 
Equal to or not equal to 

IS [NOT] 

Report Clause 

A clause in the Report Section of the Data Division that appears 
in a report description entry or a report group description 
entry. 

Report Description Entry 

An entry in the Report Section of the Data Division that is 
composed of the level indicator RD followed by a report name, 
followed by a set of report clauses, as required. 

Report File 

An output file whose file description entry contains a REPORT 
clause. The contents of a report file consist of records that 
are written under control of the Report Writer Control System. 

Glossary-19 



Report Footing 

A report group that is presented only at the end of a report. 

Report Group 

In the Report Section of the Data Division, an 01 level-number 
entry and its subordinate entries. 

Report Group Description Entry 

An entry in the Report Section of the Data Division that is 
composed of the level-number 01, the optional data-name, a TYPE 
clause, and an optional set of report clauses. 

Report Heading 

A report group that is presented only at the beginning of a 
report. 

Report Line 

A division of a page representing one row of horizontal character 
positions. Each character position of a report line is aligned 
vertically beneath the corresponding character position of the 
report line above it. Report lines are numbered from 1, by 1, 
starting at the top of the page. 

Report-Name 

A user-defined word that names a report described in a report 
description entry within the Report Section of the Data Division. 

Report Section 

The section of the Data Division that contains one or more report 
description entries and their associated report group description 
entries. 

Report Writer Control System (RWCS) 

An object-time control system provided by the implementor that 
constructs reports. 

Report writer Logical Record 

A record that consists of the 
associated control information 
vertical positioning. 

Reserved Word 

Report writer print line and 
necessary for its selection and 

A COBOL word specified in the list of words that can be used in 
COBOL source programs, but that must not appear in the programs 
as user-defined words or system-names. 

Routine-Name 

A user-defined word that identifies a procedure written in a 
language other than COBOL. 

Run Unit 

A set of one or more object programs that function at object time 
as a unit to provide problem solutions. 

Glossary-20 



RWCS 

(See Report Writer Control System.) 

Section 

A set of zero, one, or more paragraphs or entries, called a 
section body, the first of which is preceded by a section header. 
Each section consists of the section header and the related 
section body. 

Section Header 

A combination of words followed by a period and a space that 
indicates the beginning of a section in the Environment, Data, 
and Procedure Division. 

In the Environment and Data Divisions, a section header is 
composed of reserved words followed by a period and a space. The 
permissible section headers are: 

In the Environment Division: 

CONFIGURATION SECTION. 
INPUT-OUTPUT SECTION. 

In the Data Division: 

FILE SECTION. 
SCHEMA SECTION. 
WORKING-STORAGE SECTION. 
COMMUNICATION SECTION. 
LINKAGE SECTION. 
REPORT SECTION. 

In the Procedure Division, a section header is composed of a 
section-name followed by the reserved word SECTION, followed by a 
segment-number (optional), followed by a period and a space. 

Section-Name 

A user-defined word that names a section in the Procedure 
Division. 

Segment-Number 

A user-defined word that classifies sections in the Procedure 
Division for purposes of segmentation. Segment-numbers can 
contain only the characters '0', '1', •. , '9'. A segment-number 
can be expressed either as a 1- or 2-digit number. 

Sentence 

A sequence of one or more statements, the last of which is 
terminated by a period followed by a space. 

Separator 

A punctuation character used to delimit character-strings. 

Sequential Access 

An access mode in which logical records are obtained from or 
placed into a file in a consecutive predecessor-to-successor 
logical record sequence determined by the order of records in the 
file. 

Glossary-21 



Sequential File 

A file with sequential organization. 

Sequential Organization 

The permanent logical file structure in which a record is 
identified by a predecessor-successor relationship established 
when the record is placed into the file. 

Sign Condition 

The proposition, for which a truth value can be determined, that 
the algebraic value of a data item or an arithmetic expression is 
either less than, greater than, or equal to zero. 

Simple Condition 

Any single condition chosen from the set: 

Sort File 

relation condition 
class condition 
condtion-name condition 
switch-status condition 
sign condition 
(simple-condition) 

A collection of records to be sorted by a SORT statement. The 
sort file is created and can be used by the sort function only. 

Sort-Merge File Description Entry 

An entry in the File Section of the Data Division that is 
composed of the level indicator SD, followed by a file-name, and 
then followed by a set of file clauses, as required. 

Source 

The symbolic identification of the originator of a transmission 
to a queue. 

SOURCE-COMPUTER 

The name of an Environment Division 
computer environment, within which 
compiled, is described. 

Source Item 

paragraph in 
the source 

which 
program 

the 
is 

An identifier designated by a SOURCE clause that provides the 
value of a printable item. 

Source Program 

Although it is recognized that a source program can be 
represented by other forms and symbols, in this document it 
always refers to a syntactically correct set of COBOL statements 
beginning with an Identification Division and ending with the end 
of the Procedure Division. In contexts where there is no danger 
of ambiguity, the word 'program' alone can be used in place of 
the phrase 'source program.' 

Glossary-22 



Special Character 

A character that belongs to the following set: 

Character 

+ 

* 
/ 
= 
$ 

" 
( 
) 

> 
< 

Special-Character Word 

Meaning 

plus sign 
minus sign 
asterisk 
stroke (virgule, slash) 
equal sign 
currency sign 
comma (decimal point) 
semicolon 
period (decimal point) 
quotation mark 
left parenthesis 
right parenthesis 
greater than symbol 
less than symbol 

A reserved word that is an arithmetic operator or a relation 
character. 

SPECIAL-NAMES 

The name of an Environment Division paragraph in which 
implementor-names are related to user-specified mnemonic-names. 

Special Registers 

Compiler-generated storage areas whose primary use is to store 
information produced in conjunction with the user of specific 
COBOL features. 

Standard Data Format 

The concept used in describing the characteristics of data in a 
COBOL Data Division under which the characteristics or properties 
of the data are expressed in a form oriented to the appearance of 
the data on a printed page of infinite length and breadth, rather 
than a form oriented to the manner in which the data is stored 
internally in the computer, or on a particular external medium. 

statement 

A syntactically valid combination of words and symbols written in 
the Procedure Division and beginning with a verb. 

Sub-Queue 

A logical hierarchical division of a queue. 

Subject of Entry 

An operand or reserved word that appears immediately following 
the level indicator or the level-number in a Data Division entry. 

Subprogram 

(See Called Program.) 

Glossary-23 



Subscript 

An integer whose value identifies a particular element in a 
table. 

Subscripted Data-Name 

An identifier that is composed of a data-name followed by one or 
more subscripts enclosed in parentheses. 

Sum Counter 

A signed numeric data item established by a SUM clause in the 
Report Section of the Data Division. The sum counter is used by 
the Report writer Control System to contaiQ the result of 
designated summing operations that take place during production 
of a report. 

Switch-Status Condition 

The proposition, for which a truth value can be determined, that 
an implementor-defined switch, capable of being set to an 'on' or 
'off' status, has been set to a specific status. 

System-Name 

Table 

A COBOL word that is used to communicate with the operating 
environment. 

A set of logically consecutive items of data that are defined in 
the Data Division by means of the OCCURS clause. 

Table Element 

A data item that belongs to the set of repeated items comprising 
a table. 

Terminal 

The originator of a transmission to a queue, or the receiver of a 
transmission from a queue. 

Text-Name 

A user-defined word that identifies library text. 

Text-Word 

Any character-string or separator, except space, in a COBOL 
library or in pseudo-text. 

Truth Value 

The representation of the result of the evaluation of a condition 
in terms of one of two values: 

true 
false 

Unary Operator 

A plus (+) or a minus (-) sign that precedes a variable or a left 
parenthesis in an arithmetic expression, and that has the effect 
of multiplying the expression by +1 or -1, respectively. 

Glossary-24 



unit 

A module of mass storage the dimensions of which are determined 
by each implementor. 

User-Defined Word 

A COBOL word that must be supplied by you to satisfy the format 
of a clause or statement. 

variable 

Verb 

Word 

A data item whose value can be changed by execution of the object 
program. A variable used in an arithmetic expression must be a 
numeric elementary item. 

A word that expresses an action to be taken by a COBOL compiler 
or object program. 

A character-string of not more than 30 characters that forms a 
user-defined word, a system-name, or a reserved word. 

Working-Storage Section 

The section of the Data Division that describes working storage 
data items, which is composed either of noncontiguous items or of 
working storage records or of both. 

77-Level-Description-Entry 

A data description entry that describes a noncontiguous data item 
with the level-number 77. 

Glossary-25 





36-bit storage word, 12-4 

Abbreviations in relation 
condition, 5-15 

ACCEPT, 5-20 
ACCEPT command, 

COBDDT, 7-30 
Access, 

file, 8-27 
ACCESS MODE, 3-18 
Accessing 

indexed-sequential file, 
9-16 

Accessing random file, 9-15 
Accessing sequential file, 

9-11 
ACTUAL KEY, 3-21, 5-70, 

5-73 
ADD, 5-22 
ADVANCING, 5-114 
AFTER, 5-114 
Alignment, 13-12 
ALL, 5-39, 5-101 
ALLOWING OTHERS, 5-61 
Alphabetic item definition, 

4-38 
Alphanumeric edited item 

definition, 4-38 
Alphanumeric item 

definition, 4-38 
Alphanumeric items, 

comparison of, 5-9 
Alphanumeric literals, 1-8 
ALTER, 5-24 
Alternate numeric test, 0-1 
ANSI labeled tape, E-8 
Area, 

continuation, 1-9 
Argument list, 

entries in, 12-4 
Arithmetic computations, 

usage in, 5-17 
Arithmetic expressions, 1-4, 

5-6 
Arithmetic operators, 5-6 
Arithmetic signs, 

symbols representing, 
4-36 

Arithmetic verbs, 
common options in, 5-16 

ASCENDING, 5-52, 5-86 
ASCII, 

fixed-length, 8-4 
variable-length, 8-5 

INDEX 

Index-l 

ASCII conversion, 
EBCDIC to, B-5 

ASCII data types, 13-9 
ASCII mixed-mode binary, 

8-22 
ASCII recording mode, 3-23, 

8-1 
ASCII tape writing, E-9 
ASCII to EBCDIC conversion, 

8-1 
ASCII to SIXBIT conversion, 

B-3 
ASSIGN, 3-11, 3-12 
AT END, 5-69, 5-81 

Basic reading, 9-11 
Basic updating, 9-12 
Basic writing, 9-12 
BEFORE, 5-114 
BEGINNING, 5-111 
Binary, 

ASCII mixed-mode, 8-22 
EBCDIC mixed-mode, 8-25 
SIXBIT mixed-mode, 8-24 

BINARY recording mode, 3-23, 
8-3 

Bits, 
monitor file status, 3-31 

BLANK wHEN ZERO, 4-27 
Block, 1-2 ' 
BLOCK CONTAINS, 4-13 
Blocked fixed-length EBCDIC, 

8-18 
Blocked variable-length 

EBCDIC, 8-21 
Blocking data, 13-11 
Blocking data with ISAM, 

_p rod u c in g, 7 -1 7 
Braces, 1-2 
Brackets, 1-2 
BREAK command, 

COBDDT, 7-31 
Building indexed-sequential 

, file, 7-3 
Buried update, 9-2 
BYTE MODE, 3-25 

CALL, 5-25 
Called subprogram, 11-5 
Calling FORTRAN subprograms, 

12-2 



Calling MACRO subprograms, 
12-3 

Calling program, 11-4 
Calling subprograms, 12-1 
CANCEL, 5-27, 11-14 
Card-type format, 1-10 
Categories, 

statement, 5-3 
CHANNEL, 3-7 
Character set, 1-3 
Characters, 

edi ting, 1-4 
floating replacement, 

4-47 
lower-case, 1-1 
punctuation, 1-4 
special, 1-4 
upper-case, 1-2 

Checking indexed-sequential 
file, 7-16 

CHECKPOINT OUTPUT, 3-19 
Class condition, 5-9 
Class condition format, 

5-10 
Class condition 

restrictions, 5-10 
CLEAR command, 

COBDDT, 7-31 
CLOSE, 5-28, 5-30 
CLOSE REEL procedure, 5-29 
COBDDT, 

loading, 7-28 
starting, 7-28 

COBDDT ACCEPT command, 7-30 
COBDDT BREAK command, 7-31 
C08DDT CLEAR command, 7-31 
COBDDT commands, 7-30 
C08DDT DDT command, 7-32 
COBDDT DISPLAY command, 

7-32 
C08DDT GO command, 7-33 
C08DDT histogram, 13-6 
COBDDT LOCATE command, 7-33 
COBDDT MODULE command, 7-33 
COBDDT NEXT command, 7-34 
COBDDT OVERLAY command, 

7-34 
COBDDT PROCEED command, 

7-35 
C08DDT SHOW SYMBOLS command, 

7-35 
C08DDT STEP command, 7-36 
COBDDT STOP command, 7-36 
COBDDT TRACE command, 7-36 
COBDDT UNPROTECT command, 

7-37 
COBDDT utility, 7-1, 7-28, 

13-6 
COBDDT WHERE command, 7-38 

INDEX (CONT.) 

COBOL, 

Index-2 

elements of, 1-3 
COBOL compile switches, 6-3 
C080L labels, E-l 
COBOL library facility, 

1-15 
COBOL programs, 

debugging, 7-28 
overlayable, 11-9 
restarting, 7-42 

COBOL reserved words, 1-4, 
A-I 

COBOL symbols, 1-1 
COBOL terms, 1-1, 1-2 
COBOL utility programs, 7-1 
COBOL-68 language, 

introduction to, 1-1 
COBOL-68 performance, 

improving, 13-1 
COBOL-68 programs, 

compiling, 6-1 
CODE, 4-68 
Codes, 

file status, 3-28, 3-29, 
3-30 

monitor error, 3-32, 3-33 
Coding conventions, 13-12 
Collating sequences, B-1 
COLUMN, 4-75 
Column, 

histogram CPU, 13-7 
histogram ELAPSED, 13-8 
histogram ENTRIES, 13-7 
histogram OVERHEAD, 13-8 

Command, 
C08DDT ACCEPT, 7-30 
COBDDT BREAK, 7-31 
C08DDT CLEAR, 7-31 
COBDDT DDT, 7-32 
COBDDT DISPLAY, 7-32 
COBDDT GO, 7-33 
COBDDT LOCATE" 7-33 
C08DDT MODULE, 7-33 
COBDDT NEXT, 7-34 
COBDDT OVERLAY, 7-34 
COBDDT PROCEED, 7-35 
COB DDT SHOW SYMBOLS, 7-35 
COB DDT STEP, 7-36 
COBDDT STOP, 7-36 
COBDDT TRACE, 7-36 
C08DDT UNPROTECT, 7-37 
COBDDT WHERE, 7-38 
LIBARY DELETE, 7-25 
LIBARY END, 7-26 
LIBARY EXTRACT, 7-26 
LI8ARY INSERT, 7-26 
LIBARY REPLACE, 7-26 
LIBARY RESTART, 7-27 



Command defaults, 
LIBARY, 7-23 

Command usage, 
LIBARY, 7-27 

Commands, 
COBDDT, 7-30 
indirect, 7-18 
LIBARY, 7-25 
LIBARY directing, 7-26 
LIBARY group mode, 7-25 

Comment lines, 1-10 
Common options in 

arithmetic verbs, 5-16 
Communication, 

inter-program, 11-4 
COMMUNICATION SECTION, 4-3 
Comparison of alphanumeric 

items, 5-9 
Comparison of numeric items, 

5-8 
Compile switches, 

COBOL, 6-3 
Compiling COBOL-68 programs, 

6-1 
COMPUTATIONAL, 4-56 
Computational data types, 

13-10 
COMPUTATIONAL-I, 4-57 
COMPUTATIONAL-3, 4-58 
COMPUTE, 5-31 
Concepts, 

record, 4-24 
Condition, 

class, 5-9 
relation, 5-7 

Condition-name, 4-28 
Condition-name condition 

format, 5-10 
Conditional expressions, 

5-7 
Conditional statements, 1-4 
CONFIGURATION SECTION, 3-2 
CONSOLE, 3-7 
Constants, 

Figurative, 1-5 
Continuation area, 1-9 
CONTROL FOOTING, 4-69 
CONTROL HEADING, 4-69 
CONTROL{S), 4-69 
Conventions, 

coding, 13-12 
Conversion, 

ASCII to EBCDIC, B-1 
ASCII to SIXBIT, B-3 
EBCDIC to ASCII, B-5 
SIXBIT to EBCDIC, B-1 

Conversion table, 
data type, B-1 

Converting tapes, E-6 

INDEX (CONT.) 

COPY, 1-15 
CORRESPONDING, 5-17 
Count storage items, 

UNSTRING, 5-102 
Counter, 13-11 
Counters, 

incrementing, 13-13 
CPU column, 

histogram, 13-7 
Creating source libraries, 

7-21 
CURRENCY SIGN, 3-8 
CURRENCY SIGN IS, 4-37 

D-format, E-9 
Data, 

blocking, 13-11 
Data characters, 

symbols representing, 
4-36 

Data description entry, 
4-25 

Data descriptions, 4-5 
DATA DIVISION, 4-1 
Data efficiencies, 13-10 
Data file, 

indexed, 8-31 
Data item qualification, 

4-6 
Data movement, 13-14 
DATA RECORD, 4-14 
Data type, 

using correct, 13-8 
'Data type conversion table, 

B-1 

Index-3 

Data types, 
ASCII, 13-9 
computational, 13-10 
DISPLAY, 13-8 
EBCDIC, 13-8 
SIXBIT, 13-10 

Data-name, 4-30 
DATABASE-KEY, 4-60 
DATE-COMPILED paragraph, 

2-2 
DATE-WRITTEN, 4-22 
DDT command, 

COBDDT, 7-32 
Deadly embrace, 9-3 
Debugging COBOL programs, 

7-28 
DECIMAL-POINT IS COMMA, 

4-37 
DECLARATIVES, 5-109 
Defaults, 

tape handling, E-4 
TOPS-IO tape handling, 



Defaults (Cont.) 
E-6 

TOPS-20 tape handling, 
E-5 

DEFERRED OUTPUT, 3-18 
Defining logical names, C-l 
Defining overlays, 11-9 
Definition, 

alphabetic item, 4-38 
alphanumeric edited item, 

4-38 
alphanumeric item, 4-38 
elementary item, 4-39 
histogram listing, 7-41 
numeric edited item, 4-38 
numeric item, 4-38 
picture-string, 4-39, 

4-40 
Definitions, 

PICTURE, 4-36 
tape handling, E-l 

DELETE, 5-28, 5-32 
DELETE command, 

LIBARY, 7-25 
DELIMITED BY, 5-102 
DELIMITED BY SIZE, 5-90 
DELIMITER IN, 5-102 
Delimiter items, 

STRING, 5-90 
UNSTRING, 5-101 

Delimiter storage items, 
UNSTRING, 5-102 

DENSITY, 3-23 
DEPENDING, 5-24 
DESCENDING, 5-52, 5-86 
Description entry, 

data, 4-25 
Description (FD), 

file, 4-11 
Descriptions, 

data, 4-5 
record, 4-24 

Destination, 
STRING, 5-91 

Destination counter, 
UNSTRING, 5-103 

Destination items, 
UNSTRING, 5-100 

Direct indexing, 4-9 
Direct subscripting, 4-9 
Directing commands, 

LIBARY, 7-26 
DISPLAY, 5-33 
DISPLAY command, 

COBDDT, 7-32 
DISPLAY data types, 13-8 
DISPLAY IS, 3-5 
DISPLAY-6, 4-59 
DISPLAY-7, 4-59 

INDEX (CONT.) 

Index-4 

DISPLAY-9, 4-59 
DIVIDE, 5-34 
DIVISION, 

DATA, 4-1 
ENVIRONMENT, 3-1 
ID, 2-1 
IDENTIFICATION, 2-1 
PROCEDURE, 5-1 

Documentation, 13-5 
DOWN BY, 5-84 

EBCDIC, 
blocked fixed-length, 

8-18 
blocked variable-length, 

8-21 
fixed-length, 8-13 
variable-length, 8-14 

EBCDIC conversion, 
ASCII to, B-1 
SIXBIT to, B-1 

EBCDIC data types, 13-8 
EBCDIC file formats, 8-12 
EBCDIC labeled tapes, E-ll 
EBCDIC mixed-mode binary, 

8-25 
EBCDIC recording mode, 8-2 
EBCDIC to ASCII conversion, 

B-5 
Editing, 

fixed insertion, 4-45 
floating insertion, 4-44, 

4-46 
simple insertion, 4-44 
special insertion, 4-45 
symbols representing, 

4-37 
zero suppression, 4-46 

Editing characters, 1-4 
Editing in PICTURE, 4-44 
ELAPSED column, 

histogram, 13-8 
Elementary item definition, 

4-39 
Elementary items, 4-5 
Elements of COBOL, 1-3 
Ellipsis, 1-2 
ELSE, 5-49 
Embrace, 

deadly, 9-3 
END command, 

LIBARY, 7-26 
END DECLARATIVES, 5-110 
END OF UNIT, 3-35 
ENDING, 5-111 
ENTER, 5-36 



ENTRIES column, 
histogram, 13-7 

Entries in argument list, 
12-4 

ENTRY, 5-37 
Entry, 

data description, 4-25 
level-66, 4-51 
RD, 4-66 
report group description, 

4-72 
ENVIRONMENT DIVISION, 3-1 
Error codes, 

monitor, 3-32, 3-33 
Errors, 

Ignoring ISAM, 7-12 
Evaluating performance, 

13-5 
Evaluation rules, 5-12 
EVERY RECORD, 5-42 
EXAMINE, 5-38, 13-14 
Execution, 

sequence of, 5-5 
STRING, 5-91 
UNSTRING, 5-103 

EXIT, 5-40 
EXIT PROGRAM, 5-41 
Expressions, 

arithmetic, 1-4, 5-6 
conditional, 5-7 

EXTEND, 5-62 
EXTRACT command, 

LIBARY, 7-26 

F-format, E-9 
Facility, 

COBOL library, 1-15 
FD file-name, 4-15 
(FD) , 

file description, 4-11 
Features, 

using histogram, 7-42 
Figurative constants, 1-5 
File, 

accessing 
indexed-sequential, 
9-16 

accessing random, 9-15 
accessing sequential, 

9-11 
building 

indexed-sequential, 7-3 
checking 

indexed-sequential, 
7-16 

index, 8-32 
indexed data, 8-31 

INDEX (CONT.) 

Index-5 

File (Cont.) 
indexed-sequential, 8-30 
maintaining 

indexed-sequential, 7-8 
packing 

indexed-sequential, 
7-11 

random, 8-27 
renaming 

indexed-sequential, 
7-15 

sequential, 8-27 
using indexed-sequential, 

7-19 
File access, 8-27 
File description (FD), 4-11 
File format, 

library, 7-21 
File formats, 8-1, 8-3 
File formats, 

EBCDIC, 8-12 
File organization, 8-27 
FILE SECTION, 4-2 
FILE STATUS, 3-27 
File status bits, 

monitor, 3-31 
File status codes, 3-28, 

3-29, 3-30 
File storage, 13-11 
File strategies, 

sequential, 9-12 
File types, 5-30 
FILE-CONTROL paragraph, 

3-10 
FILE-LIMIT, 3-16 
Files, 4-6 
FILLER, 4-30 
FIRST, 5-39 
FIRST DETAIL, 4-70 
Fixed length recording mode, 

3-23 
Fixed-length ASCII, 8-4 
Fixed-length EBCDIC, 8-13 

blocked, 8-18 
Fixed-length SIXBIT, 8-8 
FOR, 5-61 
FOR MULTIPLE, 3-14 
Format, 

card-type, 1-10 
class condition, 5-10 
condition-name condition, 

5-10 
library file, 7-21 
relation condition, 5-8 
sign condition, 5-12 
source program, 1-9 
switch-status condition, 

5-11 
terminal-type, 1-11, 1-12 



Format of PROCEDURE 
DIVISION, 5-2 

Formation rules, 5-12 
Formats, 

EBCDIC file, 8-12 
file, 8-1, 8-3 
PROCEDURE DIVISION verb, 

5-19 
FORTRAN subprograms, 

calling, 12-2 
FREE, 5-42, 9-10 
FROM, 5-71, 5-79, 5-116 

GENERATE, 5-45 
GIVING, 5-23, 5-87, 5-95 
GO command, 

COBDDT, 7-33 
GO TO, 5-24, 5-47 
GOBACK, 5-48 
GROUP INDICATE, 4-76 
Group items, 4-5 
Group mode commands, 

LIBARY, 7-25 

Handling, 
tape, E-l 

Histogram, 
COBDDT, 13-6 
starting, 7-39 
stopping, 7-39 

Histogram CPU column, 13-7 
Histogram ELAPSED column, 

13-8 
Histogram ENTRIES column, 

13-7 
Histogram features, 

using, 7-42 
Histogram listing, 

obtaining, 7-40 
Histogram listing 

definition, 7-41 
Histogram OVERHEAD column, 

13-8 
Histogram table, 

initializing, 7-38 
Histograms, 

obtaining, 7-38 
Histograms of program 

behavior, 7-38 

1-0, 5-60, 5-111 
I-O-CONTROL paragraph, 3-35 
ID DIVISION, 2-1 

INDEX (CONT.) 

Index-6 

IDENTIFICATION DIVISION, 
2-1 

IF, 5-49 
Ignoring ISAM errors, 7-12 
Improving COBOL-68 

performance, 13-1 
Incrementing counters, 

13-13 
INDEX, 4-60 
Index file, 8-32 
INDEXED BY, 5-80 
Indexed data file, 8-31 
Indexed-sequential file, 

8-30 
accessing, 9-16 
building, 7-3 
checking, 7-16 
maintaining, 7-8 
packing, 7-11 
renaming, 7-15 
using, 7-19 

Indexed-sequential file 
maintenance program, 
7-2 

Indexes, 13-11 
Indexing, 4-7 

direct, 4-9 
qualified direct, 4-10 
relative, 4-9 

Indirect commands, 7-18 
Initializing histogram 

table, 7-38 
INITIATE, 5-51 
INPUT, 5-60, 5-111 
INPUT PROCEDURE, 5-52 
INPUT-OUTPUT, 5-111 
INPUT-OUTPUT SECTION, 3-9 
INSERT command, 

LIBARY, 7-26 
Insertion, 

symbols representing, 
4-37 

Inter-program communication, 
11-4 

INTO, 5-70, 5-78 
Introduction to COBOL-68 

language, 1-1 
INVALID KEY, 5-32, 5-69 
Invoking library utility, 

7-21 
ISAM, 

producing blocking data 
with, 7-17 

ISAM errors, 
Ignoring, 7-12 

ISAM utility, 7-1 
Item, 1-2 
Items, 

elementary, 4-5 



Items (Cont.) 
group, 4-5 

JUSTIFIED, 4-31 

KEY, 5-44, 5-74, 5-85 

Label, 
standard, 4-17 

LABEL RECORD, 4-16 
Label type, E-l 
Labeled tape, 

ANSI, E-8 
Labeled tapes, E-6, E-8 
Labeled tapes, 

EBCDIC, E-ll 
Labels, 

COBOL, E-l 
Reading magnetic tape, 

7-13 
system, E-l 
writing magnetic tape, 

7-13 
Language, 

introduction to COBOL-68, 
1-1 

LAST DETAIL, 4-70 
LEADING, 5-39 
Level numbers, 4-5 
Level-66, 4-33 
Level-66 entry, 4-51 
Level-77, 4-33 
Level-88, 4-28, 4-33, 4-62 
Level-number, 4-33 
LIBARY, 

running, 7-25 
LIBARY command defaults, 

7-23 
LIBARY command usage, 7-27 
LIBARY commands, 7-25 
LIBARY DELETE command, 7-25 
LIBARY directing commands, 

7-26 
LIBARY END command, 7-26 
LIBARY EXTRACT command, 

7-26 
LIBARY group mode commands, 

7-25 
LIBARY INSERT command, 7-26 
LIBARY program, 7~21 
LIBARY REPLACE command, 

7-26 

INDEX (CONT.) 

Index-7 

LIBARY RESTART command, 
7-27 

LIBARY switches, 7-24 
LIBARY utility, 7-1 
Libraries, 

creating source, 7-21 
maintaining source, 7-21 
object, 11-6 

Library facility, 
COBOL, 1-15 

Library file format, 7-21 
Library utility, 

invoking, 7-21 
LINE NUMBER, 4-77 
Line numbers, 1-11 
LINE-COUNTER, 4-66 
Lines, 

comment, 1-10 
LINK /SPACE switch, 11-11 
LINKAGE SECTION, 4-3 
Literals, 1-7 

alphanumeric, 1-8 
numeric, 1-7 

Loading COBDDT, 7-28 
Loading subprogram 

structure, 11-6 
LOCATE -command, 

COBDDT, 7-33 
Logical names, 

defining, C-l 
Logical operators, 5-12 
Lower-case characters, 1-1 

MACRO subprograms, 
calling, 12-3 

Magnetic tape labels, 
Reading, 7-13 
writing, 7-13 

Maintaining 
indexed-sequential file, 
7-8 

Maintaining source 
libraries, 7-21 

Maintenance program, 
indexed-sequential file, 

7-2 
Media, 

nonrandom-access, 4-17 
MEMORY-SIZE, 3-4 
MERGE, 5-52 
MESSAGE COUNT, 5-20 
Methods, 

programming, 13-4 
Mixed-mode binary, 

ASCII, 8-22 
EBCDIC, 8-25 



Mixed-mode binary (Cont.) 
SIXBIT, 8-24 

Mode, 
ASCII recording, 3-23, 

8-1 
BINARY recording, 3-23, 

8-3 
EBCDIC recording, 8-2 
fixed length recording, 

3-23 
SIXBIT recording, 3-23, 

8-2 
STANDARD-ASCII recording, 

3-24 
variable length recording, 

3-24 
Mode table, 

recording, 3-26 
Modes, 

recording, 8-1 
MODULE command, 

COBDDT, 7-33 
Monitor error codes, 3-32, 

3-33 
Monitor file status bits, 

3-31 
MOVE, 5-54 
Movement, 

data, 13-14 
MULTIPLE FILE, 3-36 
Multiple-reel volume set, 

E-7 
MULTIPLY, 5-56 

NEXT command, 
COBDDT, 7-34 

NEXT GROUP, 4-79 
NEXT SENTENCE, 5-49, 5-82 
NO REWIND, 5-28 
NOMINAL KEY, 3-22 
Nonrandom-access media, 

4-17 
NOT RETAINED, 5-43 
NOTE, 5-58 
Number, 

volume, E-2 
Numbers, 

level, 4-5 
line, 1-11 
section-name priority, 

5-5 
segment, 11-1 
segmentation priority, 

5-5 
Numeric edited item 

definition, 4-38 

INDEX (CONT.) 

Index-8 

Numeric item definition, 
4-38 

Numeric items, 
comparison of, 5-8 

Numeric literals, 1-7 
NUMERIC test, 5-10 
Numeric test, 

alternate, D-l 

Object libraries, 11-6 
OBJECT-COMPUTER paragraph, 

3-4 
Object-time system, E-l 
Obtaining histogram listing, 

7-40 
Obtaining histograms, 7-38 
OCCURS, 4-7, 4-34, 5-80 
OFF, 5-98 
OMITTED, 4-16 
ON, 5-98 
ON OVERFLOW, 5-26, 5-36, 

5-93 
ON SIZE ERROR, 5-16, 5-23 
OPEN, 5-59, 9-4 
Operating RERUN, 7-43 
Operators, 

arithmetic, 5-6 
logical, 5-12 
relational, 5-8 

Optimization, 
program, 13-3 

OPTIONAL, 3-12 
Ordering statements, 13-15 
Organization, 

file, 8-27 
OUTPUT, 5-60, 5-111 
OUTPUT PROCEDURE, 5-52 
Overflow, 

STRING, 5-93 
UNSTRING, 5-107 

OVERHEAD column, 
histogram, 13-8 

OVERLAY command, 
COBDDT, 7-34 

Overlayable COBOL programs, 
11-9 

Overlays, 11-1, 11-8 
Overlays, 

defining, 11-9 
using, 11-8 

Packing indexed-sequential 
file, 7-11 

PAGE LIMIT, 4-70 



PAGE-COUNTER, 4-66 
Paragraph, 

DATE-COMPILED, 2-2 
FILE-CONTROL, 3-10 
I-O-CONTROL, 3-35 
OBJECT-COMPUTER, 3-4 
PROGRAM-ID, 2-2 
SOURCE-COMPUTER, 3-3 
SPECIAL-NAMES, 3-6 

Paragraphs, 
procedure, 5-4 

Parentheses, 
using, 5-13 

PARITY, 3-23 
PERFORM, 5-64, 13-13 
Performance, 

evaluating, 13-5 
improving COBOL-68, 13-1 

PICTURE, 4-36 
editing in, 4-44 

PICTURE definitions, 4-36 
Picture-string definition, 

4-39, 4-40 
Picture-string symbols, 

4-47, 4-48 
POINTER, 5-103 
Pointer, 

STRING, 5-91 
Pointer items, 

UNSTRING, 5-102 
POSITIONING, 5-114 
Priority numbers, 

section-name, 5-5 
segmentation, 5-5 

Procedure, 
CLOSE REEL, 5-29 

PROCEDURE DIVISION, 5-1 
format of, 5-2 

PROCEDURE DIVISION verb 
formats, 5-19 

Procedure paragraphs, 5-4 
Procedure sections, 5-4 
Procedure sentences, 5-2 
Procedure statements, 5-2 
Procedure verbs, 5-3 
PROCEED command, 

COBDDT, 7-35 
PROCESSING MODE, 3-20 
Producing blocking data 

with ISAM, 7-17 
Program, 

calling, 11-4 
indexed-sequential file 

maintenance, 7-2 
LIBARY, 7-21 

Program behavior, 
histograms of, 7-38 

Program format, 
source, 1-9 

INDEX (CONT.) 

Index-9 

Program optimization, 13-3 
Program segments, 11-1 
Program structure, 1-3 
PROGRAM-ID paragraph, 2-2 
Programming methods, 13-4 
Programming tools, 13-3, 

13-6 
Programs, 

. COBOL utility, 7-1 
compiling COBOL-68, 6-1 
debugging COBOL, 7-28 
overlayable COBOL, 11-9 
restarting COBOL, 7-42 

Punctuation, 1-8 
Punctuation characters, 1-4 

Qualification, 
data item, 4-6 

Qualified direct indexing, 
4-10 

Qualified direct 
subscripting, 4-10 

Random access of random 
file, 8-29 

Random file, 8-27 
accessing, 9-15 
random access of, 8-29 
sequential access of, 

8-28 
RD entry, 4-66 
READ, 5-69 
Reading magnetic tape 

labels, 7-13 
Record, 1-2 
RECORD, 3-36 
Record concepts, 4-24 
RECORD CONTAINS, 4-18 
Record descriptions, 4-24 
RECORD KEY, 3-22, 5-79 
RECORDING MODE, 3-23 
Recording mode, 

ASCII, 3-23, 8-1 
BINARY, 3-23, 8-3 
EBCDIC, 8-2 
fixed length, 3-23 
SIXBIT, 3-23, 8-2 
STANDARD-ASCII, 3-24 
variable length, 3-24 

Recording mode table, 3-26 
Recording modes, 8-1 
Records, 4-6 
REDEFINES, 4-49 
REEL, 5-28 



Registers, 
special, 1-6 

Relation condition, 5-7 
abbreviations in, 5-15 

Relation condition format, 
5-8 

Relational operators, 5-8 
Relative indexing, 4-9 
Relative subscripting, 4-9 
RELEASE, 5-71 
REMAINDER, 5-35 
RENAMES, 4-51 
Renaming indexed-sequential 

file, 7-15 
REPLACE command, 

LIBARY, 7-26 
REPLACING BY, 5-39 
REPORT, 4-19 
Report description, 4-66 
Report group description 

entry, 4-72 
REPORT SECTION, 4-4, 4-64 
Report writer, 10-1 
RERUN, 3-35, 5-60 
RERUN, 

operating, 7-43 
using, 7-44 

RERUN utility, 7-1, 7-42 
RESERVE, 3-15 
Reserved words, 

COBOL, 1-4, A-I 
RESET, 4-80 
RESTART command, 

LIBARY, 7-27 
Restarting COBOL programs, 

7-42 
Restrictions, 

class condition, 5-10 
tape handling, E-4 
TOPS-IO tape handling, 

E-6 
TOPS-20 tape handling, 

E-5 
RETAIN, 5-72, 9-7 
RETURN, 5-78 
REWRITE, 5-79 
ROUNDED, 5-23, 5-31, 5-35, 

5-57 
Rules, 

evaluation, 5-12 
formation, 5-12 

RUN, 5-88 
Running LIBARY, 7-25 

S-format, E-9 
SAME AREA, 3- 3 6 
SCHEMA SECTION, 4-2 

INDEX (CONT.) 

Index-IO 

SD file-name, 4-20 
SEARCH, 5-80 
Searches, 11-6 
SECTION, 

COMMUNICATION, 4-3 
CONFIGURATION, 3-2 
FILE, 4-2 
INPUT-OUTPUT, 3-9 
LINKAGE, 4-3 
REPORT, 4-4 
SCHEMA, 4-2 
WORKING-STORAGE, 4-3 

Section-name priority 
numbers, 5-5 

Section-names, 11-1 
Sections, 

procedure, 5-4 
SEEK, 5-83 
Segment numbers, 11-1 
SEGMENT-LIMIT, 3-5 
Segmentation priority 

numbers, 5-5 
Segments, 

program, 11-1 
types of, 5-5 

SELECT, 3-il, 3-12 
Sentences, 

procedure, 5-2 
Sequence of execution, 5-5 
Sequences, 

collating, B-1 
Sequential access of random 

file, 8-28 
Sequential file, 8-27 

accessing, 9-11 
Sequential file strategies, 

9-12 
SET, 5-84 
Set, 

character, 1-3 
volume, E-2 

SHOW SYMBOLS command, 
COBDDT, 7-35 

Sign condition, 5-11 
Sign condition format, 5-12 
Sign-control symbols, 4-37 
Simultaneous update, 9-1 
Simultaneous update 

considerations, 9-3 
Single-reel volume set, E-7 
SIXBIT, 

fixed-length, 8-8 
variable-length, 8-10 

SIXBIT conversion, 
ASCII to, B-3 

SIXBIT data types, 13-10 
SIXBIT mixed-mode binary, 

8-24 



SIXBIT recording mode, 3-23, 
8-2 

SIXBIT to EBCDIC conversion, 
B-1 

SIZE ERROR, 5-31, 5-35, 
5-57 

SORT, 3-36, 5-85 
SOURCE, 4-81 
Source items, 

STRING, 5-89 
UNSTRING, 5-100 

Source libraries, 
creating, 7-21 
maintaining, 7-21 

Source program format, 1-9 
SOURCE-COMPUTER paragraph, 

3-3 
/SPACE switch, 

LINK, 11-11 
Special characters, 1-4 
Special registers, 1-6 
SPECIAL-NAMES paragraph, 

3-6 
STANDARD, 4-16 
Standard label, 4-17 
STANDARD-ASCII recording 

mode, 3-24 
STANDARD-ASCII tape writing, 

E-9 
Starting COBDDT, 7-28 
Starting histogram, 7-39 
Statement categories, 5-3 
Statements, 

conditional, 1-4 
ordering, 13-15 
procedure, 5-2 

STEP command, 
COBDDT, 7-36 

STOP, 5-88 
STOP command, 

COBDDT, 7-36 
STOP RUN, 5-88 
Stopping histogram, 7-39 
Storage, 

file, 13-11 
Storage word, 

36-bit, 12-4 
STRING, 5-89 
STRING delimiter items, 

5-90 
STRING destination, 5-91 
STRING execution, 5-91 
STRING overflow, 5-93 
STRING pointer, 5-91 
STRING source items, 5-89 
Structure, 

program, 1-3 
Subprogram, 

called, 11-5 

INDEX (CONT.) 

Subprogram structure, 
loading, 11-6 

Subprogram transfer, 5-25 
Subprograms, 11-1, 11-3 
Subprograms, 

Calling, 12-1 
calling FORTRAN, 12-2 
calling MACRO, 12-3 

Subscripting, 4-7 
direct, 4-9 
qualified direct, 4-10 
relative, 4-9 

Subscripts, 13-11 
use of, 13-12 

SUBTRACT, 5-94 
SUM, 4-82 
SUPPRESS, 5-96 
SWITCH, 3-7 
Switch, 

LINK /SPACE, 11-11 
Switch-status condition 

format, 5-11 
Switches, 

COBOL compile, 6-3 
LIBARY, 7-24 

SYMBOLIC KEY, 3-22, 5-32, 
5-70, 5-73, 5-79 

Symbols, 
COBOL, 1-1 
picture-string, 4-47, 

4-48 
sign-control, 4-37 

Symbols representing 
arithmetic signs, 4-36 

Symbols representing data 
characters, 4-36 

Symbols representing 
editing, 4-37 

Symbols representing 
insertion, 4-37 

Symbols representing zero 
suppression, 4-36 

SYNC LEFT, 4-53 
SYNC RIGHT, 4-53 
SYNCHRONIZED, 4-53 
System, 

object-time, E-l 
System labels, E-l 
System-labeled tapes, 

using, E-8 
System-unlabeled tapes, 

using, E-6 

TALLYING, 5-38, 5-103 
Tape, 

ANSI labeled, E-8 
Tape handling, E-l 

Index-II 



Tape handling defaults, E-4 
TOPS-lO, E-6 
TOPS-20, E-5 

Tape handling definitions, 
E-l 

Tape handling restrictions, 
E-4 

TOPS-lO, E-6 
TOPS-20, E-5 

Tape writing, 
ASCII, E-9 
STANDARD-ASCII, E-9 

Tapes, 
converting, E-6 
EBCDIC labeled, E-ll 
labeled, E-6, E-8 
transportable, E-9 
undefined-format, E-IO 
unlabeled, E-6, E-7 
using, E-4 
using system-labeled, E-8 
using system-unlabeled, 

E-6 
Terminal-type format, 1-11, 

1-12 
TERMINATE, 5-97 
Terms, 

COBOL, 1-1, 1-2 
Test, 

NUMERIC, 5-10 
Tools, 

programming, 13-3, 13-6 
TOPS-IO tape handling 

defaults, E-6 
TOPS-IO tape handling 

restrictions, E-6 
TOPS-20 tape handling 

defaults, E-5 
TOPS-20 tape handling 

restrictions, E-5 
TRACE, 5-98 
TRACE command, 

COBDDT, 7-36 
Transfer, 

subprogram, 5-25 
Transportable tapes, E-9 
TYPE, 4-83 
Types, 

file, 5-30 
Types of segments, 5-5 

U-format, E-IO 
UNAVAILABLE, 5-62, 5-74 
Undefined-format tapes, 

E-IO 
UNIT, 5-28 
Unlabeled tapes, E-6, E-7 

INDEX (CONT.) 

Index-12 

UNPROTECT command, 
COBDDT, 7-37 

UNSTRING, 5-100 
UNSTRING count storage 

items, 5-102 
UNSTRING delimiter items, 

5-101 
UNSTRING delimiter storage 

items, 5-102 
UNSTRING destination 

counter, 5-103 
UNSTRING destination items, 

5-100 
UNSTRING execution, 5-103 
UNSTRING overflow, 5-107 
UNSTRING pointer items, 

5-102 
UNSTRING source items, 

5-100 
UNTIL FIRST, 5-39 
UNTIL FREED, 5-43, 5-74 
UP BY, 5-84 
Update, 

buried, 9-2 
simultaneous, 9-1 

Update considerations, 
simultaneous, 9-3 

Upper-case characters, 1-2 
USAGE, 4-55 
Usage, 

LIBARY command, 7-27 
Usage in arithmetic 

computations, 5-17 
USE, 5-109 
Use of subscripts, 13-12 
User-created words, 1-6 
USER-NUMBER, 4-22 
USING, 5-25, 5-37, 5-86 
Using correct data type, 

13-8 
Using histogram features, 

7-42 
Using indexed-sequential 

file, 7-19 
Using overlays, 11-8 
using parentheses, 5-13 
Using RERUN, 7-44 
Using system-labeled tapes, 

E-8 
Using system-unlabeled 

tapes, E-6 
Using tapes, E-4 
Utility, 

COBDDT, 7-1, 7-28, 13-6 
invoking library, 7-21 
ISAM, 7-1 
LIBARY, 7-1 
RERUN, 7-1, 7-42 



Utility programs, 
COBOL, 7-1 

VALUE, 4-62 
VALUE OF IDENTIFICATION, 

4-21 
Variable length recording 

mode, 3-24 
Variable-length ASCII, 8-5 
Variable-length EBCDIC, 

8-14 
blocked, 8-21 

Variable-length SIXBIT, 
8-10 

VARYING, 5-81 
Verbs, 

procedure, 5-3 
Volume, E-2 
Volume number, E-2 
Volume set, E-2 

multiple-reel, E-7 
single-reel, E-7 

INDEX (CONT.) 

Index-13 

WHERE command, 
COBDDT, 7-38 

WITH SEQUENCE CHECK, 5-53 
Word, 

36-bit storage, 12-4 
Words, 1-4 

COBOL reserved, 1-4, A-I 
user-created, 1-6 

WORKING-STORAGE SECTION, 
4-3 

WRITE, 5-113 
writer, 

report, 10-1 
Writing, 

ASCII tape, E-9 
STANDARD-ASCII tape, E-9 

writing magnetic tape 
labels, 7-13 

Zero suppression, 
symbols representing, 

4-36 



READER'S COMMENTS 

TOPS-IO/TOPS-20 
COBOL--68 

Language Manual 
AA-SOS7B-TK 

NOTE: This form is for document comments only. DIGITAL will use comments sub­
mitted on this form at the company's discretion. If you require a written reply 
and are eligible to receive one under Software Performance Report (SPR) ser­
vice, submit your comments on an SPR form. 

Did you find this manual understandable, usable, and well-organized? Please make 
suggestions for improvement. 

Did you find errors in this manual? If so, specify the error and the page number. 

Please indicate the type of reader that you most nearly represent. 

o Assembly language programmer 
o Higher-level language programmer 
o Occasional programmer (experienced) 
o User with little programming experience 
o Student programmer 
o Other (please speci~)~~~~~~~~~~~~~~~~~~~~~~~ 

Name~ __________________________________ ~ Date~ ____________________ ~ 

Organization ~ ____________________________ Telephone ~~~~~~~~~_ 

Street~ ___________________________________________________________ ~ 

City~~~~~~~~~~~~~~~~~~-- State ____ _ Zip Code ~ __ _ 
or Country 



----~---aDO mNot 
Ta

ear 
t- FOa

id 
He Ire and Tape----------------------ffl-Ill--------::~o~~g~---

. Necessary 
• . • if Mailed in the 

United States 

BUSINESS REPLY MAIL 
FIRST CLASS PERMIT NO. 33 MAYNARD MASS. 

POSTAGE WILL BE PAID BY ADDRESSEE 

SOFTWARE PUBLICATIONS 
200 FOREST STREET MR1-2/E37 
MARLBOROUGH, MASSACHUSETTS 01752 

I 
I 
I 
I 
I 

Do Not Tear -Fold Here and Tape --------------------------------------------, 
I 
I , 
, 
I 
I 
I 
I 
I 
I 


	0001
	0002
	0003
	0004
	0005
	0006
	0007
	0008
	0009
	0010
	0011
	0012
	0013
	0014
	01-01
	01-02
	01-03
	01-04
	01-05
	01-06
	01-07
	01-08
	01-09
	01-10
	01-11
	01-12
	01-13
	01-14
	01-15
	01-16
	01-17
	01-18
	02-01
	02-02
	03-01
	03-02
	03-03
	03-04
	03-05
	03-06
	03-07
	03-08
	03-09
	03-10
	03-11
	03-12
	03-13
	03-14
	03-15
	03-16
	03-17
	03-18
	03-19
	03-20
	03-21
	03-22
	03-23
	03-24
	03-25
	03-26
	03-27
	03-28
	03-29
	03-30
	03-31
	03-32
	03-33
	03-34
	03-35
	03-36
	04-01
	04-02
	04-03
	04-04
	04-05
	04-06
	04-07
	04-08
	04-09
	04-10
	04-11
	04-12
	04-13
	04-14
	04-15
	04-16
	04-17
	04-18
	04-19
	04-20
	04-21
	04-22
	04-23
	04-24
	04-25
	04-26
	04-27
	04-28
	04-29
	04-30
	04-31
	04-32
	04-33
	04-34
	04-35
	04-36
	04-37
	04-38
	04-39
	04-40
	04-41
	04-42
	04-43
	04-44
	04-45
	04-46
	04-47
	04-48
	04-49
	04-50
	04-51
	04-52
	04-53
	04-54
	04-55
	04-56
	04-57
	04-58
	04-59
	04-60
	04-61
	04-62
	04-63
	04-64
	04-65
	04-66
	04-67
	04-68
	04-69
	04-70
	04-71
	04-72
	04-73
	04-74
	04-75
	04-76
	04-77
	04-78
	04-79
	04-80
	04-81
	04-82
	04-83
	04-84
	05-001
	05-002
	05-003
	05-004
	05-005
	05-006
	05-007
	05-008
	05-009
	05-010
	05-011
	05-012
	05-013
	05-014
	05-015
	05-016
	05-017
	05-018
	05-019
	05-020
	05-021
	05-022
	05-023
	05-024
	05-025
	05-026
	05-027
	05-028
	05-029
	05-030
	05-031
	05-032
	05-033
	05-034
	05-035
	05-036
	05-037
	05-038
	05-039
	05-040
	05-041
	05-042
	05-043
	05-044
	05-045
	05-046
	05-047
	05-048
	05-049
	05-050
	05-051
	05-052
	05-053
	05-054
	05-055
	05-056
	05-057
	05-058
	05-059
	05-060
	05-061
	05-062
	05-063
	05-064
	05-065
	05-066
	05-067
	05-068
	05-069
	05-070
	05-071
	05-072
	05-073
	05-074
	05-075
	05-076
	05-077
	05-078
	05-079
	05-080
	05-081
	05-082
	05-083
	05-084
	05-085
	05-086
	05-087
	05-088
	05-089
	05-090
	05-091
	05-092
	05-093
	05-094
	05-095
	05-096
	05-097
	05-098
	05-099
	05-100
	05-101
	05-102
	05-103
	05-104
	05-105
	05-106
	05-107
	05-108
	05-109
	05-110
	05-111
	05-112
	05-113
	05-114
	05-115
	05-116
	06-01
	06-02
	06-03
	06-04
	07-01
	07-02
	07-03
	07-04
	07-05
	07-06
	07-07
	07-08
	07-09
	07-10
	07-11
	07-12
	07-13
	07-14
	07-15
	07-16
	07-17
	07-18
	07-19
	07-20
	07-21
	07-22
	07-23
	07-24
	07-25
	07-26
	07-27
	07-28
	07-29
	07-30
	07-31
	07-32
	07-33
	07-34
	07-35
	07-36
	07-37
	07-38
	07-39
	07-40
	07-41
	07-42
	07-43
	07-44
	08-01
	08-02
	08-03
	08-04
	08-05
	08-06
	08-07
	08-08
	08-09
	08-10
	08-11
	08-12
	08-13
	08-14
	08-15
	08-16
	08-17
	08-18
	08-19
	08-20
	08-21
	08-22
	08-23
	08-24
	08-25
	08-26
	08-27
	08-28
	08-29
	08-30
	08-31
	08-32
	08-33
	08-34
	08-35
	08-36
	09-01
	09-02
	09-03
	09-04
	09-05
	09-06
	09-07
	09-08
	09-09
	09-10
	09-11
	09-12
	09-13
	09-14
	09-15
	09-16
	09-17
	09-18
	10-01
	10-02
	10-03
	10-04
	10-05
	10-06
	10-07
	10-08
	10-09
	10-10
	10-11
	10-12
	10-13
	10-14
	10-15
	10-16
	10-17
	10-18
	10-19
	10-20
	10-21
	10-22
	11-01
	11-02
	11-03
	11-04
	11-05
	11-06
	11-07
	11-08
	11-09
	11-10
	11-11
	11-12
	11-13
	11-14
	11-15
	11-16
	11-17
	11-18
	11-19
	11-20
	11-21
	11-22
	11-23
	11-24
	11-25
	11-26
	11-27
	11-28
	11-29
	11-30
	11-31
	11-32
	12-01
	12-02
	12-03
	12-04
	12-05
	12-06
	12-07
	12-08
	13-01
	13-02
	13-03
	13-04
	13-05
	13-06
	13-07
	13-08
	13-09
	13-10
	13-11
	13-12
	13-13
	13-14
	13-15
	13-16
	A-1
	A-2
	A-3
	A-4
	A-5
	A-6
	B-1
	B-2
	B-3
	B-4
	B-5
	B-6
	B-7
	B-8
	C-1
	C-2
	D-1
	D-2
	E-00
	E-01
	E-02
	E-03
	E-04
	E-05
	E-06
	E-07
	E-08
	E-09
	E-11
	E-12
	glossary-01
	glossary-02
	glossary-03
	glossary-04
	glossary-05
	glossary-06
	glossary-07
	glossary-08
	glossary-09
	glossary-10
	glossary-11
	glossary-12
	glossary-13
	glossary-14
	glossary-15
	glossary-16
	glossary-17
	glossary-18
	glossary-19
	glossary-20
	glossary-21
	glossary-22
	glossary-23
	glossary-24
	glossary-25
	glossary-26
	index-01
	index-02
	index-03
	index-04
	index-05
	index-06
	index-07
	index-08
	index-09
	index-10
	index-11
	index-12
	index-13
	replyA
	replyB

