TOPS-10/TOPS-20
COBOL-68
Language Manual

AA-5057B-TK

August 1981

This manual reflects the software of Version 12B of the
COBOL-68 compiler, Version 12B of LIBOL, and Version 4C
of SORT.

This manual replaces the document of the order numbers
AA-5057A-TK, AD-5057A-T1, and AD-5057A-T2

OPERATING SYSTEM: TOPS-10, Version 7.01
TOPS-20, Version 4
SOFTWARE VERSION: COBOL-68, Version 12B

LIBOL, Version 12B

Software and manuals should be ordered by title and order number. In the United States, send orders to the nearest
distribution center. Outside the United States, orders should be directed to the nearest DIGITAL Field Sales Office
or representative.

NORTHEAST/MID-ATLANTIC REGION CENTRAL REGION WESTERN REGION

Technical Documentation Center Technical Documentation Center Technical Documentation Center
Cotton Road 1050 East Remington Road 2525 Augustine Drive

Nashua, NH 03060 Schaumburg, Itlinois 60195 Santa Clara, California 95051
Telephone: (800) 258-1710 Telephone: (312) 640-5612 Telephone: (408) 984-0200

New Hampshire residents: (603) 884-6660

digital equipment corporation ® mariboro, massachusetts

First Printing, August 1969
Updated, May 1979

January 1980

Revised, August 1981

The information in this document is subject to change without notice
and should not be construed as a commitment by Digital Equipment
Corporation. Digital Equipment Corporation assumes no responsibility
for any errors that may appear in this document.

The software described in this document is furnished under a license
and may only be used or copied in accordance with the terms of such
license.

No responsibility is assumed for the use or reliability of software on
equipment that is not supplied by DIGITAL or its affiliated companies.

Copyright (), 1969, 1979, 1980, 1981, Digital Equipment Corporation.
All Rights Reserved.

The postage-prepaid READER'S COMMENTS form on the last page of this
document requests the wuser's critical evaluation to assist us in
preparing future documentation.

The following are trademarks of Digital Equipment Corporation:

DEC DECnet IAS
DECUS DECsystem-10 MASSBUS
Digital Logo DECSYSTEM-20 PDT
PDP DECwriter RSTS
UNIBUS DIBOL RSX
VAX EduSystem VMS

vT

CONTENTS

Page
CHAPTER 1 INTRODUCTION TO COBOL-68 LANGUAGE 1-1
1.1 SYMBOLS AND TERMS 1-1
1.1.1 Symbols 1-1
1.1.2 COBOL Terms 1-2
1.2 ELEMENTS OF COBOL LANGUAGE 1-3
1.2.1 Program Structure 1-3
1.2.2 Character Set 1-3
1.2.3 Words 1-4
1.2.3.1 COBOL Reserved Words 1-4
1.2.3.2 User-Created Words 1-6
1.2.4 Literals 1-7
1.2.4.1 Numeric Literals 1-7
1.2.4.2 Alphanumeric Literals 1-8
1.2.5 Punctuation 1-8
1.3 SOURCE PROGRAM FORMAT 1-9
1.3.1 Card-Type Format 1-10
1.3.2 Terminal-Type Format 1-11
1.3.2.1 With Line Numbers 1-11
1.3.2.2 Without Line Numbers 1-12
1.4 THE COBOL LIBRARY FACILITY 1-15
1.4.1 The COPY Statement 1-15
CHAPTER 2 THE IDENTIFICATION DIVISION 2-1
CHAPTER 3 THE ENVIRONMENT DIVISION 3-1
3.1 CONFIGURATION SECTION 3-2
3.1.1 SOURCE-COMPUTER 3-3
3.1.2 OBJECT-COMPUTER 3-4
3.1.3 SPECIAL-NAMES 3-6
3.2 INPUT-OUTPUT SECTION 3-9
3.2.1 FILE~CONTROL 3-10
3.2.1.1 SELECT 3-12
3.2.1.2 FOR MULTIPLE 3-14
3.2.1.3 RESERVE 3-15
3.2.1.4 FILE-LIMIT 3-16
3.2.1.5 ACCESS MODE 3-18
3.2.1.6 PROCESSING MODE 3-20
3.2.1.7 ACTUAL KEY 3-21
3.2.1.8 SYMBOLIC KEY 3-22
3.2.1.9 RECORDING MODE/DENSITY/PARITY 3-23
3.2.1.10 FILE STATUS 3-27
3.2.2 I-0-CONTROL 3-35
CHAPTER 4 THE DATA DIVISION 4-1
4.1 FILE SECTION 4-2
4.2 SCHEMA SECTION 4-2

iii

CONTENTS (CONT.)

Page
4.3 COMMUNICATION SECTION 4-3
4.4 WORKING-STORAGE SECTION 4-3
4.5 LINKAGE SECTION 4-3
4.6 REPORT SECTION 4-4
4.7 DATA DESCRIPTIONS 4-5
4,7.1 Elementary Items and Group Items 4-5
4.7.2 Level Numbers 4-5
4.7.3 Records and Files 4-6
4.8 QUALIFICATION 4-6
4.9 SUBSCRIPTING AND INDEXING 4-7
4.10 FILE DESCRIPTION (FD) 4-11
4.10.1 BLOCK CONTAINS 4-13
4.10.2 DATA RECORD 4-14
4,10.3 FD file-name 4-15
4.10.4 LABEL RECORD 4-16
4.10.5 RECORD CONTAINS 4-18
4.10.6 REPORT 4-19
4.10.7 SD file-name 4-20
4.10.8 VALUE OF
IDENTIFICATION/DATE-WRITTEN/USER-NUMBER 4-21
4.11 RECORD DESCRIPTIONS 4-24
4.11.1 Record Concepts 4-24
4.11.2 DATA DESCRIPTION ENTRY 4-25
4.11.2.1 BLANK WHEN ZERO 4-27
4.11.2,2 Condition-name (level-88) 4-28
4.11.2.3 data-name/FILLER 4-30
4.11.2.4 JUSTIFIED 4-31
4.11.2.5 level-number 4-33
4,11.2.6 OCCURS 4-34
4.11.2.7 PICTURE 4-36
4.11.2.8 REDEFINES 4-49
4.11.2.9 RENAMES (level=-66) 4-51
4.11.2.10 SYNCHRONIZED 4-53
4.11.2.11 USAGE 4-55
4.11.2.12 VALUE 4-62
4.12 REPORT SECTION 4-64
4.12.1 Report Description (RD) 4-66
4.12.1.1 CODE 4-68
4.12.1.2 CONTROL (S) 4-69
4.12.1.3 PAGE LIMIT 4-70
4,12.2 Report Group Description 4-72
4.12.2.1 COLUMN 4-75
4.12.2.2 GROUP INDICATE 4-76
4.12.2.3 LINE NUMBER 4-77
4.12.2.4 NEXT GROUP 4-79
4.12.2.5 RESET 4-80
4.12.2.6 SOURCE . 4-81
4.12.2.7 SUM 4-82
4.12.2.8 TYPE 4-83
CHAPTER 5 THE PROCEDURE DIVISION 5~-1
5.1 SYNTACTIC FORMAT OF THE PROCEDURE
DIVISION 5-2
5.1.1 Statements and Sentences 5-2
5.1.2 Sentences 5-3

iv

(SO, R0, N0,
“ s e .
WN ==
o o
> W

[NSN

. e
e o o o
=W -

W N

. N
-

—

XNV E DR WWNNNODNND

uu oot g
ST OO UI U 0D D

(S E, 0]
¢« o »
.
=

@ ~J o

......................
O 0 OO OO W WO O O OO O W IO VWYY
. . » . . . - L] . L] L] L]
NN R EREREEO®DIOUS WN -

oo oo o
HOWONOAULWNDHO

CONTENTS (CONT.)

Paragraphs

Sections
SEQUENCE OF EXECUTION
SEGMENTATION AND SECTION-NAME PRIORITY
NUMBERS
ARITHMETIC EXPRESSIONS

Arithmetic Operators

Formation and Evaluation Rules
CONDITIONAL EXPRESSIONS

Relation Condition

Format of a Relation-Condition

Relational Operators

Comparison of Numeric Items

Comparison of Alphanumeric Items

Class Condition

Format of a Class Condition

Restrictions

The ALPHABETIC Test

The NUMERIC Test

Condition-Name Condition

Format of a Condition-Name

Switch-status Condition

Format of a Switch-Status Condition

Sign Condition

Format of a Sign Condition

Logical Operators

Formation and Evaluation Rules

Abbreviations in Relation Conditions
COMMON OPTIONS ASSOCIATED WITH THE
ARITHMETIC VERSBS

The ON SIZE ERROR Option
THE CORRESPONDING OPTION
DETERMINATION OF USAGE IN ARITHMETIC
COMPUTATIONS
PROCEDURE DIVISION VERB FORMATS

ACCEPT

ADD

ALTER

CALL

CANCEL

CLOSE

COMPUTE

DELETE

DISPLAY

DIVIDE

ENTER

ENTRY

EXAMINE

EXIT

EXIT PROGRAM

FREE

GENERATE

GO TO

GOBACK

IF

INITIATE

e
o]
Q
1]

(GO,]
i
(S0~ -

[11
HFHRWOYWOWoOoOOo~NNooonoy U

oo uouiuogTuotutun
1

5-45
5-47
5-48
5-49
5-51

CONTENTS (CONT.)

5.9.22 MERGE
5.9.23 MOVE
5.9.24 MULTIPLY
5.9.25 NOTE
5.9.26 OPEN
5.9.27 PERFORM
5.9.28 READ
5.9.29 RELEASE
5.9.30 RETAIN
5.9.31 RETURN
5.9.32 REWRITE
5.9.33 SEARCH
5.9.34 SEEK
5.9.35 SET
5.9.36 SORT
5.9.37 STOP
5.9.38 STRING
5.9.39 SUBTRACT
5.9.40 SUPPRESS
5.9.41 TERMINATE
5.9.42 TRACE
5.9.43 UNSTRING
5.9.44 USE
5.9.45 WRITE

CHAPTER

(=)}

COMPILING COBOL-68 PROGRAMS
CHAPTER 7 COBOL UTILITY PROGRAMS

7.1 ISAM - INDEXED-SEQUENTIAL FILE
MAINTENANCE PROGRAM
1.1 Building An Indexed-Sequential File
1.2 Maintaining An Indexed-Sequential File
.1.3 Packing An Indexed-Sequential File
1.4 Ignoring Errors
1.5 Reading And Writing Magnetic Tape
Labels
.1.6 Renaming An Indexed-Sequential File
1.7 Checking An Indexed-Sequential File
.1.8 Producing Blocking Data With ISAM
.1.9 Indirect Commands
.1.10 Using Indexed-Sequential Files
.2 LIBARY - PROGRAM TO CREATE AND MAINTAIN
SOURCE LIBRARIES

Library File Format

Invoking The Library Utility

Command String Defaults

LIBARY Switches

Running LIBARY

LIBARY Commands

Group Mode Commands

LIBRARY-Directing Commands

Example of Command Usage
COBDDT - PROGRAM FOR DEBUGGING COBOL
PROGRAMS

Loading And Starting COBDDT

NNNNN

e s e @

SO0 Wi

* e e
. o
« o e
wn -

NNN N NN
« s .
WD N

~
.
w
.
[

vi

CHAPTER

CHAPTER

CHAPTER

CHAPTER

N
* o

NNNNNN

~N

o]

00 00 G0 G0 O GO G0 0o 0 CO OO OO G0 QO OO OO GO 0O QO 0O CO OO CO

e e & e 83 e e ¢ 5 & e + e & e s e s & o & ° o

(e}

o O WO WOWOWWYWIWW WYL

= o

1

ewwwww W W

L

AU WD

¢ o o
e o o

N =

A UVIUTUERWNNODNDNNDNONNODNDMNDNNEFFFF-

[N

= b et b b e e
e e o s o e o o o o

.« e s e

B W

AU Db DWW N -

CONTENTS (CONT.)

COBDDT Commands

Obtaining Histograms Of Program

Behavior

Initializing the Histogram Table

Starting the Histogram

Stopping the Histogram

Obtaining the Histogram Listing

Using the Histogram Feature
RERUN - PROGRAM TO RESTART COBOL
PROGRAMS .

Operating RERUN

Examples Of Using RERUN

FILE FORMATS

RECORDING MODES
ASCII Recording Mode
SIXBIT Recording Mode
EBCDIC Recording Mode
BINARY Recording Mode
FILE FORMATS
Fixed-Length ASCII
Variable-Length ASCII
Fixed-Length SIXBIT
Variable-Length SIXBIT
EBCDIC File Formats
BINARY File Formats
COBOL ASCII Mixed-Mode Binary
COBOL SIXBIT Mixed-Mode Binary
COBOL EBCDIC Mixed-Mode Binary
FILE ORGANIZATION AND ACCESS
SEQUENTIAL FILES
RANDOM FILES
Sequential Access Of Random Files
Random Access Of Random Files
INDEXED-SEQUENTIAL FILES
Indexed Data File
Index File

SIMULTANEOUS UPDATE

PROGRAMMING CONSIDERATIONS
The OPEN Statement
The RETAIN Statement
The FREE Statement
Accessing Sequential Files
Basic Reading
Basic Writing
Basic Updating

Access to Sequential File Strategies

Accessing Random Files
Accessing Indexed-Sequential Files

REPORT WRITER

PROGRAM SEGMENTS, SUBPROGRAMS, AND
OVERLAYS

vii

Page
7-30

7-38
7-38
7-39
7-39
7-40
7-42

7-42
7-43
7-44

[o¢]
|
=

|
HH oo WUkWwWwWwihN -

|
NN
BN HNO

0 0 00 0 0 o o oo
[

CHAPTER

CHAPTER

11.1
11.1.1
11.1.2
11.2
11.2.1
11.2.1.1
11.2.1.2
11.2.2
11.2.3
11.2.4
11.3
11.3.1
11.3.2
11.3.3
11.3.4
11.3.5
11.3.6

12

12.1
12.2

13

13.1
13.1.1
13.1.2
13.1.3
13.1.4
13.1.5
13.2
13.2.1
13.2.1.1
13.2.1.2
13.2.1.3
13.2.1.4
13.3
13.3.1
13.3.2
13.3.3
13.3.4
13.3.5
13.4
13.4.1
13.4.2
13.4.3
13.5
13.5.1
13.5.2
13.5.3
13.5.4
13.5.5
13.5.6

CONTENTS (CONT.)

PROGRAM SEGMENTS
Section-Names And Segment Numbers
Examples

SUBPROGRAMS
Inter-Program Communication
The Calling Program
The Called Subprogram
Loading A Subprogram Structure
Object Libraries And Searches
Examples

OVERLAYS
When To Use Overlays
Overlayable COBOL Programs
Defining Overlays
The /SPACE Switch To LINK
The CANCEL Statement
Examples

CALLING NON-COBOL SUBPROGRAMS

CALLING FORTRAN SUBPROGRAMS
CALLING MACRO SUBPROGRAMS

IMPROVING PERFORMANCE OF COBOL-68
PROGRAMS

HOW TO PROCEED WITH PROGRAM OPTIMIZATION
Where To Begin
What Tools Are Available
What Method Or Procedure To Use
Evaluating Performance
Documentation

LISTING THE TOOLS
COBDDT
The ENTRIES Column
The CPU Column
ELAPSED Column
OVERHEAD

USING THE CORRECT DATA TYPE
DISPLAY Data Types
EBCDIC
ASCII
SIXBIT
COMPUTATIONAL

DATA EFFICIENCIES
Counter, Indexes, Subscripts
File Storage
Blocking Data

EFFICIENT CODING CONVENTIONS
Alignment
Use Of Subscripts
Incrementing Counters
The PERFORM Statement
Use Of The EXAMINE Statement
Data Movement

viii

Page

11-1
11-1
11-2
11-3
11-4
11-4
11-5
11-6
11-6
11-7
11-8
11-8
11-9
11-9
11-11
11-14
11-14

12-1

12-2
12-3

13-1

13-3
13-3
13-3
13-4
13-5
13-5
13-6
13-6
13-7
13-7
13-8
13-8
13-8
13-8
13-8
13-9
13-1¢0
13-10
13-10
13-11
13-11
13-11
13-12
13-12
13-12
13-13
13-13
13-14
13-14

APPENDIX

APPENDIX

APPENDIX
APPENDIX

APPENDIX

GLOSSARY

INDEX

FIGURE

w N

e I sl o B B o I el 5] m
> -

e o s o

[N CN NS
.

....
B B LB LWWWWW
. . . L)
N

mOoEHooOoEEmE

mm

| L UL L L AL U N T N I N B B |
OCONOANVNRWNDHFHFEWNEWND -
—~—~—~

[VI)

~ ~— —

COOOO OO W~J b

CONTENTS (CONT.)

Ordering Statements
Asking The Correct Question

COBOL RESERVED WORDS

COLLATING SEQUENCES AND CONVERSION
TABLES

DEFINING LOGICAL NAMES UNDER TOPS-20
ALTERNATE NUMERIC TEST
TAPE HANDLING

DIRECTIONS AND DEFINITIONS
Definitions
Finding The Right Instructions
Symbols Used In The Text

FACTORS TO CONSIDER WHEN USING TAPES
General Defaults And Restrictions
Converting Tapes Between Labeled And
Unlabeled

USING SYSTEM-UNLABELED TAPES
Tape Has No Labels
Tape Drive Is Available To The User
Tape Drive Is Owned By The System
Tape Has Labels

USING SYSTEM-LABELED TAPES
Tape Has ANSI Labels
Transportable Tapes - F, D, And S
Formats
Undefined-Format Tapes - U-Format
Tape Has EBCDIC Labels

Glossary-1

Index-1

FIGURES

Card-Type Format

Terminal-Type Format with Line Numbers
Terminal-Type Format without Line Numbers
Direct Subscripting/Indexing

Relative Subscripting/Indexing

Qualified Direct Subscripting/Indexing
COBOL ISAM File Environment

ASCII Recording Mode

SIXBIT Recording Mode

EBCDIC Recording Mode

EBCDIC Recording Mode - Industry-Compatible
Binary Recording Mode

Fixed-Length ASCII

COBOL Fixed-Length ASCII

Variable-Length

COBOL Variable-Length ASCII

ix

tuthmtum
S SN

PeeTTTTT
[oolie oo BLNELN BN Bl)]

o
[
= O
= o

| U T T T U N Y S B I |
OB WNDNNHFWEHWW

0 CO 00 CO O b >

FIGURES (Cont.)

8-10 Fixed-Length SIXBIT 8-8
8-11 COBOL Fixed-Length SIXBIT 8-9
8-12 Variable-Length SIXBIT 8-10
8-13 COBOL Variable-Length SIXBIT 8~12
8-14 Fixed-Length EBCDIC 8-13
8-15 COBOL Fixed-Length EBCDIC 8-13
8-16 Variable-Length EBCDIC 8-14
8-17 COBOL Variable-Length EBCDIC 8-16
8~18 COBOL Blocked Fixed-Length EBCDIC 8~18
8-19 Blocked Variable~-Length EBCDIC 8-19
8-20 COBOL Blocked Variable-Length EBCDIC 8-21
8-21 COBOL Standard Binary and
ASCII Mixed-Mode Binary 8-23
8-22 COBOL Standard Binary and
SIXBIT Mixed-Mode Binary 8-24
8-23 COBOL Standard Binary and
EBCDIC Mixed-Mode Binary 8-26
8-24 Statements Used to Sequentially
Access a Random File 8-30
8-25 ISAM Data File Structure 8-32
8-26 Locating a Record in an
Indexed-Sequential File 8-33
8-27 ISAM Index File Structure 8-34
9-1 The Problem of Buried Update 9-2
9-2 The Problem of Deadly Embrace 9-3
9-3 Declaring Resources For Simultaneous Update 9-4
9-4 The OPEN Statement 9-5
9-5 Competing For Program Access to Files 9-7
9-6 The RETAIN Statement 9-8
9-7 The FREE Statement 9-10
11-1 Example of an Overlay Structure 11-10
13-1 Sample COBDDT Histogram 13-6
TABLES
TABLE 3-1 Recording Modes 3-26
3-2 Monitor File Status Bits 3-31
3-3 Monitor Error Codes 3-32
4-1 Standard Label for Nonrandom-Access Media 4-17
5-1 Procedure Verb and Statement Categories 5-2
5-2 Types of Segments 5-5
5-3 CLOSE Options and File Types 5-30
6-1 COBOL Switch Summary 6-3
B-1 ASCII and SIXBIT Collating Sequence
and Conversion to EBCDIC B-1
B-2 ASCII to SIXBIT Conversion B-3
B-3 EBCDIC Collating Sequence and
Conversion to ASCII B-5

FORWARD

This manual describes COBOL-68 as implemented on both TOPS-10 and
TOPS-20. This manual 1is a complete manual containing reference
material, user's guide material, and COBOL wutilities. Chapter 1
discusses language elements, conventions used in this manual, and the
structure of a COBOL-68 program. Chapters 2 through 5 describe the
four major divisions of a COBOL-68 program. Chapters 6 through 13
provide the information necessary to use the COBOL-68 system,
including performance improvements, wutility programs, file formats,
report writing, and various other useful features of COBOL-68.

Several Appendixes, A through E, plus a Glossary of COBOL terms are
included in this manual. Appendix A contains the COBOL reserved
words, Appendix B contains the character collating sequence, Appendix
C describes how to define 1logical names under TOPS-20, Appendix D
describes an alternate form of numeric test, and Appendix E describes
Tape Handling.

It is assumed that the reader has a knowledge of the COBOL-68
language. This manual is intended primarily for reference and is not
a tutorial guide for beginning COBOL programmers. Those wishing to
learn the COBOL-68 language are referred to the following books:

Farina, Mario V., COBOL Simplified, New Jersey, Prentice Hall,
Inc., 1968.

McCameron, Fritz A., COBOL Logic and Programming, Homewood,
Illinois, Richard D. Irwin, Inc., 1966.

McCracken, Daniel D. and Garbassi, Umberto, A Guide to COBOL

Programming, Second Edition, New York, John Wiley and Sons, Inc.,
1970.

xi

TOPS-10 users should read and be familiar with the following manuals:
e TOPS-10 Operating System Commands Manual
e TECO Programmer's Reference Manual
e TOPS-10 Monitor Calls Manual
e TOPS-10 Hardware Reference Manual
e TOPS-10 LINK Reference Manual
e TOPS-10 SORT/MERGE User's Guide
TOPS-20 user's should read and be familiar with the following manuals:
e TOPS-20 Commands Reference Manual
e TOPS-20 TV Reference Manual
e TOPS-20 EDIT Reference Manual
e TOPS-20 Monitor Calls Manual
e TOPS-20 Hardware Reference Manual
e TOPS-20 LINK Reference Manual

e TOPS-20 SORT/MERGE User's Guide

xii

ACKNOWLEDGMENT

COBOL is an industry language and is not the property of any company
or group of companies, or of any organization or group of
organizations.

No warranty, expressed or implied, is made by any contributor or by
the CODASYL Programming Language Committee as to the accuracy and
functioning of the programming system and language. Moreover, no
responsibility 1is assumed by any contributor, or by the committee, in
connection therewith.

The authors and copyright holders of the copyrighted material wused
herein

) FLOW-MATIC (trademark of Sperry Rand Corporation),
Programming for the Univac (R) I and II, Data Automation
Systems copyrighted 1958, 1959, by Sperry Rand Corporation;

. IBM Commercial Translator Form No. F 28-8013, copyrighted
1959 by IBM;

° FACT, DSI 27a5260-2760, copyrighted 1960 by
Minneapolis-Honeywell.

have specifically authorized the user of this material, in whole or in
part, in the COBOL specifications. Such authorization extends to the
reproduction and use of COBOL specifications in programming manuals or
similar publications.

xiii

CHAPTER 1
INTRODUCTION TO COBOL-68 LANGUAGE

This chapter describes the conventions, special terms, 1language
elements, and formats acceptable to COBOL-68. The source language
statements are discussed in subsequent chapters.

NOTE
For the purposes of this document, the
terms COBOL and COBOL-68 are
interchangeable.

1.1 SYMBOLS AND TERMS

The symbols and terms used in the following chapters of this manual
are necessary to describe the language or are commonly used COBOL
terms. The single exception of this statement is the term
BIS~compiler. This term refers to compiler implementations that
compile COBOL-68 using the Business Instruction Set (BIS). All users
of TOPS-20 get BIS code. Users of TOPS-10 who have a KS or KL central
processing unit get BIS code as the default, but the compiler can be
installed without the BIS option. TOPS-10 users who have a KI central
processor will usually not get the BIS option on their compilers. The
KI processor will not execute the BIS instructions; however, the KI
will run the compiler which produces BIS code should there be a need

for it. (For more information, see the COBOL-68 Installation
Procedures.) You can tell if your compiler is producing BIS code by
checking a 1listing of a compiled program. If your compiler is

producing the BIS instructions, the letters BIS will follow the
version and edit numbers on top of the page.

1.1.1 Symbols
The symbology used in this manual to illustrate the various COBOL

statement formats is essentially the same as that used in other COBOL
language manuals and is based on the CODASYL COBOL reference document.

Symbology Meaning

Lower-case characters Represent information that must be
supplied by the programmer, such as
values, names, and other parameters.

1-1

INTRODUCTION TO COBOL-68 LANGUAGE

Symbology Meaning
Upper-case characters, Key words in the COBOL lexicon that must
Underscored be used when the formats of which they
are a part are used.
Upper-case characters, Other words in the COBOL lexicon that

not underscored

Braces

Brackets

Ellipsis...

serve only to make the COBOL statement
more readable. Their use is optional
and has no effect on the meaning of the
formats of which they are a part.

Indicate that a choice must be made from
the two or more lines enclosed.

Indicate an optional feature. The
contents of the brackets are wused
according to the rules above if the
feature is desired.

Indicate that the information contained
within the preceding pair of braces or
brackets can be repeated at the
programmer's option,

1.1.2 COBOL Terms

The terms block, record, and item have special meanings when used in a

COBOL program.

Term

Block

Record

Item

Meaning

Signifies a logical grouping of records. This term
commonly refers to a logical block of records on some
storage medium.

Signifies a logical unit of information. In relation
to a data file, a record is the largest unit of logical
information that can be accessed and processed at a
time. Records can be subdivided into fields or items.

Signifies a logical field or group of fields within a
record. A group item is one that is further broken
down into subitems (for example, a group item called
TAX might be broken down into subitems called FED-TAX
and STATE-TAX). Subitems can be further broken down
into other subitems. An item that has no subitems is
called an elementary item.

INTRODUCTION TO COBOL-68 LANGUAGE
1.2 ELEMENTS OF COBOL LANGUAGE

1.2.1 Program Structure

A COBOL program consists of four divisions. Within each division are
the program statements; some are required, others are optional.

Division Meaning
IDENTIFICATION DIVISION Identifies the source program.
ENVIRONMENT DIVISION Describes the computer on which the

source program is to be compiled,
the computer on which the object
program 1is to run, and certain
relationships between program
elements and hardware devices.

DATA DIVISION Describes the data to be processed
by the object program.

PROCEDURE DIVISION Describes the actions to be
performed on the data.

NOTE

There is no limit to the number of
source 1lines the compiler can handle.
However, the largest source line number
that the compiler can generate is 8134.
Beyond that number, the compiler begins

again with 0001. This can cause
confusion when error messages are
issued.

1.2.2 Character Set

Within a source program statement, all ASCII characters are valid
except:

1. Null, delete, and carriage return (which are ignored);

2. Line feed, vertical tab, form feed, and the printer control
characters (20(8) through 24(8)), which mark the end of a
source line;

3. Control-Z, which marks the end-of-file.

The lower case ASCII characters are translated to upper case
characters except when they appear in nonnumeric literals.

Of this character set, 37 characters (the digits 0 through 9, the 26
letters of the alphabet, and the hyphen) can be used by the programmer
to form COBOL words, such as data-names, procedure-names, and
identifiers.

INTRODUCTION TO COBOL-68 LANGUAGE

Punctuation characters include:

(space) " or ! (quotation mark)
’ (comma) ((left parenthesis)
; (semicolon)) (right parenthesis)
. (period) (horizontal tab)

Special editing characters include:

+ (plus sign) * .(check protection symbol)
- (minus sign) Z (zero suppression)
$ (dollar sign) B (blank insertion)
, (comma) 0 (zero insertion)
. (decimal point) CR (credit)
DB (debit)

Special characters used in arithmetic expressions include:
+ (addition) / (division)
- (subtraction) * % (exponentiation)

* (multiplication) (exponentiation)

Special characters used in conditional (IF) statements include:

= (equal) > (greater than) < (less than)

1.2.3 Words

A COBOL word is composed of not more than 30 characters <chosen from
the 37 characters A through Z, 0 through 9, and hyphen. A word is
terminated by a space, period, right parenthesis, comma, semi-colon,
or horizontal tab. A hyphen can not be used as the first or last
character of a word. 1If the terminator is not a space or horizontal
tab, at least one space or tab must follow the terminator.

Words used in writing COBOL source programs are of two types: COBOL
reserved words and user-created words.

1.2.3.1 COBOL Reserved Words - COBOL reserved words are those words
that constitute the COBOL lexicon and have a special meaning to the
compiler (for example, DIVISION, PROCEDURE, ADD); these words are
listed in Appendix A. They include all the COBOL division, section,
and paragraph names, descriptive clauses, procedure verbs, certain
prepositions, figurative constants, and special registers. Reserved
words must be spelled and used exactly as shown in the formats given
in this manual.

INTRODUCTION TO COBOL-68 LANGUAGE

Figurative Constants - Figurative constants are reserved words that
specify certain fixed values. When these reserved words are to be
used as figurative constants, they must not be enclosed 1in quotation
marks; otherwise they are treated by the compiler as alphanumeric
literals.

The figurative constants are given below. Except for one case (the
ALL constant), singular and plural forms are given; these forms are
equivalent and can be used interchangeably.

Figurative
Constant Use

ZERO Represents the value zero or one or more of

ZEROS the character 0 depending on context.

ZEROES

SPACE Represents one or more blanks or spaces.

SPACES

HIGH-VALUE For DISPLAY-6, DISPLAY-7, and DISPLAY-9 items

HIGH-VALUES this represents the highest value in the
collating sequence. For COMP and COMP-1
items, this represents the largest number
that can be placed in the machine word(s)
containing the item. For COMP-3 items, this
represents all 9s with the nonprinting plus
sign.

LOW-VALUE For DISPLAY-6, DISPLAY-7, and DISPLAY-9 items

LOW-VALUES this represents the 1lowest value in the
collating sequence. For COMP and COMP-1
items, this represents the smallest number
(most negative) that can be placed in the
machine word(s) containing the item. For
unsigned COMP-3 items, this represents all
zeros with the nonprinting plus sign; for
signed COMP-3 items, this represents all 9s
with a minus sign.

QUOTE Represents one or more quotation marks (").

QUOTES It can be used anywhere that the quotation

mark character (") is wvalid, except to
delimit alphanumeric 1literals (see Section
1.2.4.2, Alphanumeric Literals). QUOTE(S) is
frequently used where an actual quotation
mark character would erroneously appear to
delimit an alphanumeric literal. For
example, 1if you wanted your program to type
out the exact character string

MOUNT TAPE LABELLED "MASTER" ON DRIVE 3
you could use the procedure statement

DISPLAY "MOUNT TAPE LABELLED" QUOTE
"MASTER" QUOTE "ON DRIVE 3".

ALL any-literal Represents repetitions of the string of

characters that constitute either an
alphanumeric literal or a figurative constant
(other than ALL any-literal). If a
figurative constant 1is wused, the ALL is
redundant; thus, ZEROS and ALL ZEROS are
equivalent.

1-5

INTRODUCTION TO COBOL-68 LANGUAGE

Figurative constants generate a string of characters whose length is
determined, based on context, by the compiler. For example, if
TOTAL-AMOUNT is a five-character field, the procedure statement MOVE
ALL ZEROS TO TOTAL-AMOUNT moves a string of five zeros to the field
TOTAL-AMOUNT; MOVE ALL "AB" TO TOTAL-AMOUNT moves "ABABA" to
TOTAL-AMOUNT. If the length cannot be determined by context, a single
character (or a single-character sequence, in the <case of ALL) is
generated. For example, the procedure statement DISPLAY ALL QUOTES
results in the output of a single quotation mark (") to your terminal.

Examples of Use of Figurative Constants:

DATA DIVISION Usage: 02 "AMOUNT PICTURE IS 9999.99 VALUE
IS ZERO.
04 MESSAGE PICTURE IS A(10) VALUE
IS SPACES.

PROCEDURE DIVISION Usage: MOVE ZEROS TO AMOUNT.

MOVE SPACES TO MESSAGE.

IF TOTAL IS EQUAL TO ZERO....
EXAMINE FLD-A TALLYING LEADING
ZEROS.

Special Registers - In addition to figurative constants, COBOL
recognizes two other special reserved-words: TALLY and TODAY.

TALLY is the name of a fixed five-digit signed COMPUTATIONAL £field.
It is used primarily to hold information produced by the EXAMINE verb.
However, the programmer can use TALLY in any situation where a signed
numeric field is valid (for example, temporary storage of any integer
value of five or fewer digits).

TODAY is a l2-character alphanumeric DISPLAY field that contains the
current date and time. 1Its format is:

yymmddhhmmss

where vy is the year (last two digits) hh is the hour
mm is the month mm is the minute
dd is the day ss is the second

1.2.3.2 User-Created Words - User-created words are 1labels for the
various parts of your data (files, records, and fields) and your
orocedure (sections and paragraphs). They can contain only the
symbols 0 through 9, A through 2%, and the hyphen. With the exception
of procedure names, they cannot be all digits. A user-created word
can neither begin nor end with a hyphen. The maximum number of
user-created words allowed in the program is 4681.

User-created words can be further subdivided into several categories.
To understand the remainder of this manual, you should be familiar
with the following types of words.

data-name The user-created name assigned to an item
(field) within a record.

file-name The user-created name assigned to a data
file.

INTRODUCTION TO COBOL-68 LANGUAGE

record-name The user-created name assigned to a data
record within a file.

procedure-name The user-created name assigned to a paragraph
or section in the PROCEDURE DIVISION. When
assigned to a section, it is referred to as a
section-name; and when assigned to a
paragraph, it is referred to as a
paragraph-name.

identifier A user-created name used in PROCEDURE
DIVISION statement formats to indicate a
data-name followed, as required, by the
syntactically correct combination of
qualifiers, and/or subscripts, and/or indexes
necessary to make reference to a unique item
of data.

mnemonic-name A user-created name assigned to a hardware
device or a report code.

condition-name A user-created name assigned to a value or
range of values of the associated data item.
Condition-name can also be assigned to
console switch settings.

index-name A user-created name defined using the INDEXED
BY clause (see OCCURS in Chapter 4). 1Its
function is identical to that of an index
data-name (see below).

index data-name A user-created name defined with USAGE INDEX.
Its function 1is identical to that of an
index-name.

1.2.4 Literals

A literal is a string of characters, the value of which is identical
to the characters that compose the 1literal. Literals are of two
types: numeric and nonnumeric.

1.2.4.1 Numeric Literals - A numeric literal is a string of 1 to 18
numeric characters (0 through 9). It cannot contain any alphabetic
characters. It can be preceded by a plus sign (+) or a minus sign
(=); if no sign is used, the literal is assumed to be positive. A
decimal point can appear anywhere in the literal except to the left of
the sign or as the rightmost character. If no decimal point is used,
the literal is assumed to be an integer. A numeric literal is
considered to be of the numeric <class; that is, it can be used
legitimately as a value in arithmetic expressions.

Examples of Numeric Literals:

123 -123 +123 1.23456 .123456789
-.123456789 1234567890.12345678 -1234567890.12345678

INTRODUCTION TO COBOL-68 LANGUAGE

1.2.4.2 Alphanumeric Literals - Alphanumeric literals are character
strings containing from 1 to 120 characters enclosed in single or
double guotation marks. The value of the 1literal 1is equal to the
characters, including any spaces, enclosed by the quotation marks.
Note that the compiler accepts either single or double quotation marks
to enclose a literal; however, the opening and closing gquotation
marks must be the same type, either single or double. Any ASCII
character except the quotation mark, null, delete, carriage return,
and printer control can appear within a literal.

Alphanumeric literals cannot be wused as values in arithmetic
operations, and numeric editing cannot be performed on them. If a
literal conforms to the rules for formation of a numeric literal, but
is enclosed in quotation marks, it is considered to be an alphanumeric
literal. That is, "120.45" is not equivalent to 120.45.

Examples of Nonnumeric Literals:

"A" 'THIS ACCOUNT HAS A CREDIT BALANCE' "RETURN"
"-125.50" 'DEDUCT 10% IF PAID BEFORE JAN.31ST'

1.2.5 Punctuation

The punctuation that can be used in source programs includes the
space, comma, semicolon, and period.

The space is used to separate words, phrases and clauses. The comma
and semicolon can be used interchangeably within a program to improve
the appearance of the program. However, both the comma and the
semicolon are treated as spaces by the compiler; they can be used any
place in the program where a space is expected.

The period is used to terminate a division name, a section name, and a
paragraph name, It 1is also wused in the PROCEDURE DIVISION to
terminate sentences. Paragraphs and sections are terminated by the
period ending the last sentence of the paragraph or section. In the
DATA DIVISION, a period must be placed after the description of a data
item. Examples of the use of periods are:

PROCEDURE DIVISION.

INPUT SECTION.

READ INFIL AT END GO TO ENDER.
DATA DIVISION.
FILE SECTION.

01 MYDATA PICTURE IS X(10).

INTRODUCTION TO COBOL-68 LANGUAGE

1.3 SOURCE PROGRAM FORMAT

There are two basic types of source program formats in which you can
write your COBOL-68 programs. These two types arise from the methods
of entering the source program into the system. The first is
conventional card-type format. You should use this type if you wish
your COBOL-68 program to be compatible with other compilers. The
second 1is the standard DEC format which is designed for easy use on
terminals. This format is the one to use for those programs that are
to be entered into the system through a terminal using a text editor.
The compiler assumes that the source program is written in
terminal-type format wunless the /S switch is included in the command
string to the compiler (refer to Chapter).

Certain margins which begin the areas wused for writing COBOL-68
statements are standard for source programs. The standard names for
these margins are Margins L, A, B, and R. As you might expect,
Margins L and R are the 1left and right wmargins of the line,
respectively. Margins A and B mark the beginning of two areas, Areas
A and B. Area A 1is where all division-names, section-names,
paragraph-names, and FD (File Description) entries must begin. All
other entries must begin in Area B. Although the actual character
position which marks each of these margins changes from format to
format, the function of each area is the same; in other words, you
must begin your division-names at Margin A no matter what format vyou
use, no matter where Margin A happens to be placed in that format.

NOTE

These rules agree with the 1968 ANSI
standard for source program formats.
Programs written according to the rules
are more readable and transportable.
The COBOL-68 compiler, however, does not
do complete syntax checking to determine
if you have followed all rules, and does
not always issue an error message if you
violate them. Thus, you are encouraged
to conform to the rules to avoid
unpredictable results.

Some of the rules for using source program formats remain constant
regardless of which format you wuse. These rules are given below.
Refer to them for all types of formats.

1. Continuation Area - If you wish to split a word or literal
across two 1lines, vyou must use this area to indicate your
wish to the compiler. To do this, write the first line up to
the point at which you wish to split it, then place a hyphen
(=) in the continuation area of the next 1line and continue
the second 1line beginning at or after Margin A. If you are
splitting a word or numeric 1literal you can leave spaces
between the 1last character in the first line and the end of
the source statement area. (This area ends at the
identification area, when it exists; otherwise it ends at
Margin R.) However, if you wish to split an alphanumeric
literal you must not leave spaces after the last character of
the first line, since the compiler assumes that those spaces
are part of the 1literal. If you wish only to continue a
sentence on the next line without splitting any words, you
can simply write the first line, then continue on the next
line; do not use the continuation column for this purpose.

1-9

INTRODUCTION TO COBOL-68 LANGUAGE

2. Comment Lines - You can insert comment 1lines into your
COBOL-68 program by using the continuation area. If the
compiler f£inds an asterisk (*) in that aréa it 1lists the
remainder of the 1line as a comment on the next line. If
there is a slash (/) instead of an asterisk a new page is
started and the comment is listed at the top of the new page.

NOTE

All formats can be used with any input
medium. The. names of the types of
formats refer to their origins, not
their uses.

1.3.1 Card-Type Format

You should use card-type format if you wish to compile your program
under an operating system other than TOPS-10 or TOPS-20. Your program
can be punched on an off-line card punch or created with an on-line

text editor. This format uses card sequence numbers which must be
created by you. The layout of a line in this format is shown in
Figure 1-1(a). The numbers refer to card columns or character
positions.

CARD-TYPE FORMAT

1 67 8 12 . 73 80
y
L ,
e ——._— b,/ " -~ —
L C A 8 | MR-5-965-81

Figure 1-1(a) Card-Type Format

In this format, Margin L is to the left of position 1 and Margin R is
to the right of position 80. Margin A is between positions 7 and 8
and begins the area labeled A in the figure. Margin B 1is between
positions 11 and 12 and begins the area labeled B.

The following rules pertain to the use of this source format:

1. Line Numbers - These are placed in area L (positions 1
through 6) by you when creating the file on a terminal or a
card punch.

2. Identification Area - This area is marked I in the figure
(positions 73 through 80). These eight character positions
can hold identifying information which can be composed of any
eight characters. This information is printed on the source
listing, and can be used to identify the card deck (if the
source code is in fact on cards).

INTRODUCTION TO COBOL-68 LANGUAGE

NOTE

The card sequence numbers are not the
same as the line numbers created by a
line editor. The numbers supplied by an
editor are not acceptable to COBOL-68
when you specify card-type format.

The example in Figure 1-1(b) illustrate these rules. The first two
lines are simple statements, with a line number in area L, COBOL-68
statements in areas A and B, and the identification area containing
the name of the program. The third line shows how the continuation
column is used to split a word across two lines. Note that the word
can be written right up to the end of area B.

1.3.2 Terminal-Type Format

If you are writing your program using a text editor and a terminal to
input the source <code, terminal-type format is your best choice.
There are two types of terminal-oriented formats, one with 1line
numbers and one without. Layouts and examples of each type are shown
in the figures which follow.

1.3.2.1 With Line Numbers - This format is suitable if you wuse a
line-oriented editor such as EDIT or SOS. The format is shown in
Figure 1-2(a).

TERMINAL-TYPE FORMAT - WITH LINE NUMBERS

1 6 7 8 12 122

/ L
/ 4
L] . J

MR-S-966-81

L Z C A B
Figure 1-2(a) Terminal-Type Format with Line Numbers

In this format, margin L is to the left of position 1 and margin R 1is
to the right of position 122. Margin A is between positions 7 and 8
and begins the area labeled A. Margin B is between positions 11 and
12 and begins the area labeled B. Therefore, areas A and B can
contain a maximum of 114 characters.

INTRODUCTION TO COBOL-68 LANGUAGE

The following rules pertain to the use of this source format:

1. Line Numbers - These are placed 1in area L (positions 1
through 5) either by the line editor or by you. If you are
using an editor which supplies line numbers you must not add
numbers yourself - one set is enough.

2. Position 6 - This position (marked Z in the figure) remains
blank. The editor can insert a tab here for purposes of
making your text more readable; 1if so, the compiler reads
the tab as a space.

3. Continuation Area - To use the continuation area, type -, *,
, or / as the first character of the line. However, if you
do not wish to use the continuation area, you can ignore it
altogether - you do not need to type a space at the beginning
of the line. 1If you do type a space as the first character
of a 1line, the compiler assumes that you meant the space to
be part of the line.

The example in Figure 1-2(b) illustrate the use of this format. The
first two lines are simple COBOL-68 statements with the five-character
line number in area L and areas Z and C blank. The third 1line shows
how a word is split across two lines. Note that you can leave spaces
between the last letter of the word and margin R without confusing the
compiler.

1.3.2.2 Without Line Numbers - If you decide to use a terminal to
enter your program but your editor (such as TECO or TV) does not
supply line numbers (or you requested that the editor remove them when
you finished editing), this is the simplest format to use. The format
is shown in Figure 1-3(a).

TERMINAL-TYPE FORMAT - NO LINE NUMBERS

o 1 5 ., 122
L | L]
TN T N et Z if -

c A B MR-S-967-81

Figure 1-3(a) Terminal-Type Format without Line Numbers

In this format, margin L is to the left of position 0, if it exists,
or position 1, if position 0 does not exist. Margin R is to the right
of position 122. Margin A is to the left of position 1 and begins the
area labeled A. Margin B is between positions 4 and 5 and begins the
area labeled B. Therefore, areas A and B can contain a maximum of 114
characters.

INTRODUCTION TO COBOL-68 LANGUAGE

The following rule pertains to the use of this source format:

Continuation Area - If you wish to use the continuation area,
type the character you wish to enter (-, *, /) as the first
character of the continued line. If the compiler £finds one
of these <characters at the beginning of a line it assumes
that the 1line has a position 0 - in other words, a
continuation area. Otherwise, each line starts in position 1
and there is no position 0.

The example in Figure 1-3(b) show this format's simplicity. The first
two 1lines are the same simple COBOL-68 sentences as above. Note that
the paragraph-name starts in the very first character position. The
third line shows how to tell the compiler that the line you enter is a
continuation (or a comment) line. The first half of the 1line |is
entered beginning in the first position of Area B, while the second
half begins with a hyphen and continues from the second position.

PT-T

71

olo[1]ololo] [plRIolclE[s[s]-rlAl . TRk
olojilofilo MolviE] [THITISI-IPIEIRIT{olDlS = [TIAK [T/ol [TAIX-[PIAIT[D T[Tl
olo[1[ol2[o SITIRITING] MOIS[TI-IRIE[CEINT{-[MOINTH][SIPIAICEE], 1= [+ SIPIA v/, TRIXACITG
olo[1)o[3 s{PAClEL T slPlAlclE], Mols TI-IRE| EIN[T-|VIEAIR] [ofE[LTM ozlslplLiTilxlAlcldTla
oloj1[ofalo AY-[DlATIE
MR-5-968-81
Figure 1-1 (b)
PIROJCIElS[S TN |
Mo el [Tl s|-[PlERltlolnls| { A [Tol A X-lplal1]n
SR TN G M ols|T-|RE[deENTIMoNTH /sIPlAlde],["[H "] Islplalde] Md sl "' JsIPA el Mdls
- TRE[CENT-MEAR (DL IMITED (8] [S[1]zE] N0 [oTiSiPllAY |
MR-S-969-81
Figure 1-2 (b)
ofijob] | lPRRICEIsk[TlAlx(.
obfifio molVIE] TrHITSIPERITols -l ol AP R[o
oloneo STIRITING] MOSTFIRIEICENTI-[MOINT HI, BIPIAKEL FIFFLLISIPIA AIEEEERERERSE
ol 3 el IMolsT-IREICEINTI-I¥[E[AR] IoE LT M1|TiE]D] BlY| TSit/zE El.

Figure 1-3 (b)

MR-S-970-81

dOVAODNVT 89-T0€90D OL NOILDNAOYINI

INTRODUCTION TO COBOL-68 LANGUAGE

l.4 THE COBOL LIBRARY FACILITY

You can use the COBOL Library Facility to copy part of your program
from a COBOL source library at compile time. This can be useful if,
for example, you need to describe a complex file to be used in several
different programs, and you wish to write the file description only
once. You can insert the file description into the 1library (for
directions and further description sée the COBOL-68 Usage Material,
Part 3 of this manual), and whenever the description is needed you can
simply copy it from the library into the program you are writing. The
following statement is used to accomplish this.

NOTE

The COPY facility for COBOL-68 1is the
enhanced version from the ANSI-74
standard, and not the original one from
the ANSI-68 standard. :

1.4.1 The COPY Statement

Function

The COPY statement incorporates text from a COBOL library into a COBOL
source program. (For a complete description of COBOL libraries, see
the COBOL-68 Usage Material, Part 3 of this manual.) The COPY
statement can also be wused to replace specified text in the source

text being copied.
General Format

OPY text-name [{%ﬁ} 11brary-name]

==pseudo-text-1== j ==pseudo-text-2==
sepuacig {4 SeTLETIeL G gy enkifierd
word-1 lword-Z
L MR-8-971-81
Technical Notes
NOTE

In the technical notes which follow, the
term string-1 1is wused to denote the
character string which is used in place
of the following: pseudo-text-1,
identifier-1, literal-1l, or word-l. The
term string-2 is similarly used.

INTRODUCTION TO COBOL-68 LANGUAGE

If more than one COBOL library is available during
compilation, text-name must be qualified by the library-name
identifying the COBOL library in which the text associated
with text-name resides.

Within one COBOL library, each text-name must be unique.

The COPY statement must be preceded by a space and terminated
by the separator period. The entire statement, including the
period, is removed when the text is copied from the library.

String-1 must not be null, nor can it consist solely of the
character space(s), nor can it consist solely of comment
lines.

String~2 can be null.

Character-strings within string-l and string-2 can be
continued. However, both characters of a pseudo-text
delimiter must be on the same line.

A COPY statement can occur in the source program anywhere a
character-string or a separator can occur except that a COPY
statement must not occur within another COPY statement.

The effect of processing a COPY statement is that the library
text associated with text-name 1is copied into the source
orogram, logically replacing the entire COPY statement,
beginning with the reserved word COPY and ending with the
punctuation character period, inclusive. The compilation of
a source program containing COPY statements is logically
equivalent to processing all COPY statements prior to the
processing of the resulting source program. For clarity, use
the double equal sign (==) around string-l1] and string-2 to
designate clearly the string that is being replaced and the
string that is replacing that text. See Note 10 for an
example of the use of the double equal sign.

If the REPLACING phrase is not specified, the library text is
copied unchanged. 1If the REPLACING phrase is specified, the
library text is copied and each properly matched occurrence
of string-1 in the 1library text 1is replaced by the
corresponding string-2.

The comparison operation to determine text replacement occurs
as follows:

a. Any separator comma, semicolon, and/or space(s) preceding
the leftmost library text-word is copied into the source
program. Starting with the 1leftmost library text-word
and the first string-1 that was specified in the
REPLACING phrase, the entire REPLACING phrase operand
that precedes the reserved word BY is compared to an
equivalent number of contiguous library text-words.

b. String-1 matches the library text if, and only 1if, the
ordered sequence of text-words that forms string-1 is
equal, character for character, to the ordered sequence
of 1library text-words. For purposes of matching, each
occurrence of a separator comma or semicolon in string-1
or in the library text is considered to be a single space
except when string-1 consists solely of either a
separator comma or semicolon, in which case it
participates in the match as a text-word. Each sequence

1-16

10.

11.

14.

15.

INTRODUCTION TO COBOL-68 LANGUAGE

of one or more space separators is considered to be a
single space.

c. If no match occurs, the comparison is repeated with each
next successive string-1l, if any, in the REPLACING phrase
until either a match is found or there 1is no next
successive REPLACING operand.

d. When all the REPLACING phrase operands have been compared
and no match has occurred, the leftmost library text-word
is copied into the source program. The next successive
library text-word is then considered as the leftmost
library text-word, and the comparison cycle starts again
with the first string-1 specified in the REPLACING
phrase.

e. Whenever a match occurs between string-l1 and the library
text, the corresponding string-2 is placed 1into the
source program. The library text-word immediately
following the rightmost text-word that participated in
the match is then considered as the 1leftmost library
text-word. The comparison cycle starts again with the
first string-1 specified in the REPLACING phrase.

f. The comparison operation continues until the rightmost
text-word ‘in the library text has either participated in
a match or been considered as a leftmost library
text-word and participated in a complete comparison
cycle.

When you use the REPLACING phrase, you must treat any picture
strings in the library text as complete pieces of text. That
is, if you wish to replace X's in the picture string

EXAMPLE-ITEM PICTURE IS XXX.

with 9's, you must replace the entire PICTURE clause, not
just the three X's, with the form shown below:

COPY EXAMPLE-TEXT FROM LIBARY REPLACING ==PICTURE IS
XXX== BY ==PICTURE IS 999==,

For purposes of matching, a comment line which occurs in the
library text and string-1 is interpreted as a single space.
Comment lines which appear in string-2 and library text are
copied into the source program unchanged.

The text produced as a result of the complete processing of a
COPY statement must not contain a COPY statement.

The syntactic correctness of the 1library text cannot be
independently determined. The syntactic correctness of the
entire COBOL source program cannot be determined until all
COPY statements have been completely processed.

Library text must conform to the rules for COBOL source
program format. (See Section 1.3.) You can copy text from a
library without worrying about what format your ©program 1is
in, however.

For purposes of compilation, text-words after replacement are
placed in the source program according to the rules for
source program format.

CHAPTER 2

THE IDENTIFICATION DIVISION

The IDENTIFICATION DIVISION is required in every source program and
identifies the source program and the output from compilation. In
addition, you can include other documentary information such as the
name of the program's author, the name of the installation, the dates
on which the program was written and compiled, any special security
restrictions, and any miscellaneous remarks.

General Structure

)
{IDENTIFICATION}DLMEHQN-
[PROGRAM-ID. [program-name] [comment paragraph] ;‘]

AUTHOR. comment paragraph .]

INSTALLATION. comment paragraph .]

DATE-COMPILED. comment paragraph .]

[AurHoR.
[InSTALLATION.
[DATE-WRITTEN. comment paragraph . |
[
[securTy.

SECURITY. comment paragraph . |

[REMARKS. comment paragraph

-] MR-8-972-81
Technical Notes
1. The Identification Division must begin with the reserved

words IDENTIFICATION DIVISION (or ID DIVISION) followed by a
period and a space. ID is the equivalent to IDENTIFICATION.

THE IDENTIFICATION DIVISION

The PROGRAM-ID paragraph contains the name identifying the
program. The program-name can have up to six characters, and
must contain only letters, digits, and the hyphen. It can be
enclosed 1in quotation marks. The program-name cannot be a
reserved word and must be unique. It cannot be the same as a
section, paragraph, file, data or subprogram name. This
paragraph is optional. If it is not present, the name MAIN
is assigned to the program.

The remaining paragraphs are optional and, 1if wused, can
appear in any combination and in any order. A comment
paragraph consists of any combination of characters from the
COBOL character set organized to conform to COBOL sentence
and paragraph format. All text appears as written on the
output listing except the DATE-COMPILED paragraph. The first
line in this paragraph is deleted and replaced by the current
date. Any remaining text in the DATE-COMPILED paragraph is
treated as comments. Reserved words can be wused 1in any
comment paragraph.

CHAPTER 3

THE ENVIRONMENT DIVISION

The Environment Division allows you to describe the particular
computer configurations to be wused for program compilation and
execution. In this division you also specify the files and devices
you will use for input and output. The Environment Division consists
of the division header (ENVIRONMENT DIVISION.) followed by one or more
of the following sections:

CONFIGURATION SECTION. (See Section 3.1)
INPUT-OUTPUT SECTION. (See Section 3.2)

THE ENVIRONMENT DIVISION

CONFIGURATION SECTION

3.1 CONFIGURATION SECTION

The CONFIGURATION SECTION allows you to describe the computers wused
for program compilation and execution, and to assign mnemonic-names
for input/output devices. The Configuration Section consists of the
section name (CONFIGURATION SECTION.) followed by one or more of the
following paragraphs.

SOURCE-COMPUTER. (See Section 3.1.1)
OBJECT-COMPUTER. (See Section 3.1.2)
SPECIAL~-NAMES. (See Section 3.1.3)

Technical Notes
1. This section is optional.

2. All commas and semicolons are optional. A period must
terminate the entire entry in each of the three paragraphs.

THE ENVIRONMENT DIVISION

SOURCE-COMPUTER

3.1.1 SOURCE-COMPUTER

Function

The SOURCE-COMPUTER paragraph describes the computer on which the
program is to be compiled.

General Format

[SOURCE-COMPUTER. computer-name .]

MR-5-973-81

Technical Notes
1. This paragraph is optional.
2. You must use one of the following terms for computer-name:
DECsystem-10
PDP-10
DECSYSTEM-20
DECsystem-10nn

where nn is a 2-digit integer in the range from 00 to 99.

Example

SOURCE-COMPUTER. DECSYSTEM-1055.

THE ENVIRONMENT DIVISION

OBJECT-COMPUTER

3.1.2

Function

OBJECT-COMPUTER

The OBJECT-COMPUTER paragraph describes the computer on which the
program is to be executed.

General Format

0BJECT-COMPUTER {computer-name}

[MEMORY SIZE integer-1 l WORDS

[SEGMENT-LIMIT IS integer-2)

DISPLAY IS {Q[SPLA!-7

CHARACTERS }]
MODULES

M}
DISPLAY-9

MR-5-974-81

Technical Notes

1.

2.

This paragraph is optional.
You must use one of the following terms for computer-name:

DECsystem-10
PDP-10
DECSYSTEM-20
DECsystem-10nn

where nn is a 2-digit integer in the range 00 to 99.
The MEMORY SIZE <clause 1is optional. If it 1is omitted,

262,144 WORDS are assumed. If it appears, the following
ranges are applicable.

CHARACTERS Up to 1,572,864 (262,144 words x 6
characters/word)

WORDS Up to 262,144

MODULES Up to 256 (1 module equals 1024
words)

Example

THE ENVIRONMENT DIVISION

OBJECT-COMPUTER (Cont.)

COBOL-68 ignores the MEMORY SIZE clause. SORT uses its
default algorithms to determine the amount of memory needed
to execute a sort. (Refer to the TOPS-10 and the TOPS-20
SORT User's Guides for more information.)

If the SEGMENT-LIMIT clause is "given, only those segments
having segment numbers from 0 up to, but not including, the
value of integer-2 are considered as resident segments of the
program. Integer-2 must be a positive integer in the range 1
to 49.

If the SEGMENT-LIMIT clause is omitted, segments having
segment numbers from 0 through 49 are considered as resident
segments of the program (that is, SEGMENT-LIMIT IS 50 is
assumed). More on segmentation can be found in Chapter 5.

The DISPLAY IS clause is optional. If vyou specify DISPLAY
IS, then all data~items described as DISPLAY defaults to the
specified DISPLAY type. Using the DISPLAY IS clause also
causes the recording mode for external files to default to
the specified DISPLAY type.

OBJECT-COMPUTER. DECSYSTEM-1077

MEMORY 50000 WORDS.

THE ENVIRONMENT DIVISION

SPECIAL-NAMES

3.1.3 SPECIAL-NAMES

Function

THE SPECIAL-NAMES paragraph provides a means of assigning mnemonic
names to input/output devices.

General Format

SPECIAL-NAMES. [CONSOLE IS mnemonic-name-1]

[CHANNEL (m) IS mnemonic-name-2 J

[CHANNEL (n) IS mnemonic-name-3 ...]

)
IS mnemonic-name-4 [ON STATUS IS condition-name-1 }

[OFF STATUS IS condition-name-2]

ON STATUS IS condition-name-1

SWITCH (m)
7 [Q_F£ STATUS 1S condition—name—?] (

OFF STATUS IS condition-name-2

[ON STATUS IS condition-name-1]

[SWITCH (n) ... }

[literal-1 IS mnemonic-name-5]
[CURRENCY SIGN IS Titeral-2]

[DECIMAL-POINT 15 comMA | .

MR-5-975.81

THE ENVIRONMENT DIVISION

SPECIAL-NAMES (Cont.)

Technical Notes

1.
2.

This paragraph is optional.

The reserved word CONSOLE refers to your terminal. The
assigned mnemonic-name can be used with the ACCEPT and
DISPLAY verbs in the PROCEDURE DIVISION to input data from
and output data to the terminal.

The name CHANNEL refers to a channel on the 1line-printer
control tape. m and n represent any integer from 1 to 8 and
refer to any one of the eight channels on the tape. Control
tape channels can be referred to in the ADVANCING clause of
the WRITE verb in the PROCEDURE DIVISION to advance the paper
form to the desired channel position. (Refer to the Hardware
Reference Manual for a description of printer control
tapes.) For example, if the entry

CHANNEL (1) IS TOP-OF-PAGE

is included in this paragraph, the following procedure
statement prints the 1line and then skip to the top of the
next page.

IF LINE-COUNT IS GREATER THAN 50 WRITE PRINT-RECORD
BEFORE ADVANCING TOP-OF-PAGE.

The reserved word SWITCH is provided for compatibility with
other manufacturers' COBOL compilers. The use of the SWITCH
feature is discouraged in a time~sharing environment. If
provided, the name SWITCH refers to the hardware switches on
the KA-10 or KI-10 console. The 1letters m and n 1in the
general format represent any integer from 0 to 35 and refer
to the corresponding console switches.

The mnemonic-name can be used in conditional expressions in
the PROCEDURE DIVISION. For example, if the entry

SWITCH (4) IS INPUT-1

is included in this paragraph, the following condition 1is
considered to be true if switch (4) is on.

IF INPUT-1 IS ON....
If a condition-name is specified for the ON or OFF STATUS of
a switch, that condition-name can be used in a conditional
expression. For example, if the entry

SWITCH (4) IS INPUT-1; OFF STATUS IS NO-INPUT

is included in this paragraph, the following procedure
statements are functionally equivalent.

IF INPUT-1 IS OFF....

IF NO-INPUT....

THE ENVIRONMENT DIVISION

SPECIAL-NAMES (Cont.)

Example

The clause literal-l IS mnemonic-name-5 specifies the CODE
value for a particular report (refer to the CODE clause in
Chapter 4). Literal-l must be a nonnumeric literal enclosed
in quotation marks, and can be from 1 through 120 characters
in length.

If you use the CURRENCY SIGN clause in the SPECIAL NAMES
paragraph, then the literal you specify replaces the standard
$ character functions for PICTURE <c¢lauses in. the DATA
DIVISION.

This literal is limited to a single printable character and
must not be one of the following characters:

digits 0 through 9
alphabetic characters A, B, C, D, P, R, S, V, X, Z
special characters * + - , . ; () "
If you wuse the DECIMAL-POINT IS COMMA clause then the

functions of the comma and period are interchanged for all
PICTURE clauses and numeric literals.

SPECIAL-NAMES. CONSOLE IS MYTERM

CHANNEL (1) IS TOP-OF-PAGE
SWITCH (10) IS LOOPER.

THE ENVIRONMENT DIVISION

INPUT-OUTPUT SECTION

3.2 INPUT-OUTPUT SECTION

The INPUT-OUTPUT SECTION names the files and external media required
by the object program and provides information required for
transmission and handling of data during execution of the object
program. This section consists of the section header (INPUT-OUTPUT
SECTION.) followed by one or more of the following paragraphs:

FILE-CONTROL (See Section 3.2.1)

I-0-CONTROL (See Section 3.2.2)

Technical Notes
1. This section is optional.

2. All semicolons and commas are optional. Each SELECT
statement in the FILE-CONTROL paragraph must end with a
period. The entire entry in the I-O-CONTROL paragraph must
end with a period.

THE ENVIRONMENT DIVISION

FILE-CONTROL

3.2.1 FILE-CONTROL

Function

The FILE-CONTROL paragraph names each file, identifies the

medium, and allows logical hardware assignments.

General Format

e 7
FILE-CONTROL.SELECT OPTIONAL file-name

ASSIGN TO device-name-1 [,device-name-2]

-
FOR MULTIPLE { %ﬁ%%—}}

-

RESERVE { ggtege"‘l} ALTERNATE [ﬁggﬁs]

FILE-LIMIT IS
FILE-LIMITS ARE
FILE LIMITS ARE

FILE LIMIT IS I
[{1iteral-1 literal-2

data-name-1 } THRU} {data-name-E}

data-name-3 data-name-4
[, {litera1-3 } THRU {1itera1-4 }J

SEQUENTIAL [WITH CHECKPOINT OUTPUT [EVERY integer-1 RECORDS] |

ACCESS MODE IS

CHECKPOINT OUTPUT [EVERY integer-1 RECORDS]}
INDEXED [;ITH{DEFERRED oUTPUT

PROCESSING MODE IS SEQUENTIAL
ACTUAL KEY IS data-name-5

MR-5-976-81

THE ENVIRONMENT DIVISION

FILE-CONTROL (Cont.)

SYMBOLIC — —
[{————NOMINAL } KEY IS data-name-6, RECORD KEY IS data-name 7]

-
ASCII
SIXBIT
BINARY
RECORDING MODE 1S { F
V.
STANDARD-ASCII
STANDARD ASCIT
~
200
556
DENSITY IS4 800 PARITY 15 2y }
1600 et
6250
L
r B
%%%%:%%%¥%% IS data-name-8 [,data-name-Q [,data—name-lo

[,data—name-ll [,data-name—lZ [,data-name-13

[,data-name-14 [,data-name-15]]]]HH .

[SELECT] ...

_

MR-5-977-81

Technical Notes
1. This paragraph is optional.

2. All semicolons and commas are optional. Each SELECT
must end with a period.

3. The SELECT and ASSIGN clauses must appear before any

clause shown, and the SELECT clause must precede the ASSIGN

clause. Every file described in the Data Division

must

named in a SELECT <c¢lause in the Environment Division.

Therefore, a SELECT filename ASSIGN TO device-name

must be specified for every file. The other clauses can be

in any order.

4, The individual clauses are described on the following
in the order shown above.

THE ENVIRONMENT DIVISION

SELECT

3.2.1.1 SELECT

Function

The SELECT statement names each file that is to be described
DATA DIVISION, and assigns each file to a particular device.

General Format

{1itera]-1 } [,]itera]-Z
SELECT [QPTIQNAL] file-name ASSIGN TO 1 device-name-1

Technical Notes

in the

,device- name-2] MR-5.978.81

1. Each file described in the DATA DIVISION must be named once
and only once as a file-name 1in a SELECT ' statement.
Conversely, each file named in a SELECT statement must have a
File Description entry in the DATA DIVISION. Each file-name

must be unique within a program.

2. The key word OPTIONAL is required for input files that are
not necessarily present each time the object program is run.
When an OPEN statement is executed for a file that has been
declared OPTIONAL, the question IS file-name PRESENT? . is

typed and the operator responds with YES or NO.
response 1is YES, the file 1is processed normally;

If the
if the

response is NO, the first READ statement executed for that
file immediately takes the AT END or INVALID KEY path. ISAM

files can not be optional. They must be present at
start-up, even if only as dummies.

3. The ASSIGN clause specifies the device for a
Device-names can be either physical device-names or
device-names.

program

file.
logical

Physical device-names are fixed mnemonic-names that are
associated with specific peripheral devices. When specified
in an ASSIGN clause, a physical device-name assigns the
associated file to that device. Physical device-names are

described in the Operating System Commands manual.

Logical device-names are names created by the programmer.
They can contain up to six characters, consisting of any
combination of letters and digits. At object execution time,
each 1logical device-name must be assigned to a physical

device by means of the TOPS-10 ASSIGN command or the
DEFINE command.

TOPS-20

7.

Examples

THE ENVIRONMENT DIVISION

SELECT (Cont.)

The use of literals with the ASSIGN clause allows you to use
COBOL reserved words as legal device names. The literal name
must follow the same conventions as the device-name:
literals can contain up to six characters, consisting of any
combination of letters and digits. At object execution time,
each 1literal must be assigned to a physical device by means
of the TOPS-10/TOPS-20 ASSIGN command or the TOPS-20 DEFINE
command.

- More -than one device can be assigned to a file to avoid delay

when switching from one reel or unit to the next. When more
than one device is specified, the object program
automatically uses the next device, in a c¢yclic manner, when
an end-of-reel condition is detected, or when a CLOSE REEL
statement 1is executed. This automatic switching occurs only
for tapes, SORT, and ISAM files. It 1is unconditional for
tapes. For SORT/MERGE, you can assign any number of devices.
If the devices are all generic disk (i.e. DSK), SORT/MERGE
uses its internal optimal algorithm to determine which
physical devices to use. For any other devices, all devices
specified are used in a round-robin fashion. You can assign
only two devices when you use ISAM.

If the access mode is INDEXED, and two devices are assigned,
the first device is assumed to contain the index portion of
the file and the second to contain the data portion of the
file. If one device is specified, it is assumed to contain
both the index portion and the data portion of the file.

For ISAM and random files, the devices must be random-access.

SELECT INFIL ASSIGN TO DTAl.

SELECT SRTFIL ASSIGN TO DSK, DSK, DSK.

THE ENVIRONMENT DIVISION

FOR MULTIPLE

3.2.1.2 FOR MULTIPLE

Function

THE FOR MULTIPLE clause specifies that a tape-file occupies more reels
than the number of devices assigned. The FOR MULTIPLE clause does
nothing when your program 1is compiled. It is merely wused for
documentation purposes only.

General Format

‘ REEL
FOR MULTIPLE { UNIT }

MR-5-979-81

Example

SELECT OUTFIL ASSIGN TO MTA
FOR MULTIPLE REEL.

THE ENVIRONMENT DIVISION

RESERVE

3.2.1.3 RESERVE

Function

The RESERVE clause allows you to specify an additional number of
input/output buffer areas to be allocated by the compiler to this

file.

General Format

RESERVE

integer-1 \ [AREA]
[NO } ALTERNATE AREAS

MR-S-980-81

Technical Notes

1.

2.

3.

Example

If the access mode is RANDOM or INDEXED, this clause is
ignored and only one buffer area is assigned.

If the NO option is used, only one buffer area is allocated.

If the integer-1 option is used, the integer specifies the
number of buffer areas to be assigned in addition to the two
areas always assigned by the compiler. If integer-1 is less
than 0, only one buffer area is assigned.

You can specify a maximum of 62 areas for integer-1l.
However, the optimal number of areas you can specify is
between 5 and 10. If you specify the number of areas to be
greater than 62, a warning message is generated. If you
specify a large (but legal) number of areas, you might run
out of available memory. Specifying a large number of areas
might also cause your program to run more slowly, since your
program is that much bigger.

SELECT INFIL ASSIGN TO DSK

RESERVE 1 ALTERNATE AREA.

THE ENVIRONMENT DIVISION

FILE-LIMIT

3.2.1.4 FILE-LIMIT

Function

The FILE-LIMIT clause is used to define the logical limits of a file

whose access mode is RANDOM.

General Format

FILE-LIMIT IS
FILE LIMITS ARE

FILE LIMIT IS {
FILE-LIMITS ARE

data-name-1 data-name-2
literal-1 }T—HR—U {11’tera1-2 }

data-name-3 data-name-4
’{Htera]-:& } THRU [11’tera1-4 }

MR-S5-981-81

Technical Notes

1.

The FILE-LIMIT clause is required only for files whose access
mode 1is RANDOM; it 1is optional for files with SEQUENTIAL
access mode residing on mass-storage devices. It is 1ignored
in all other cases.

The words FILE and LIMIT (or LIMITS) can be separated with
the space or hyphen.

Every data-name used in this clause must be defined as USAGE
COMP or INDEX and must be an integer of 10 digits or less.

Each pair of operands represents a 1logical portion of the
file. If the first operand of the first pair 1is not
specified, it is assumed to be 1.

The operands represent logical record numbers relative to the
beginning of the file. The first record is considered to be
1.

The logical beginning and end of a random-access file are the
records specified by the first and last operands,
respectively, of the FILE-LIMIT clause.

The values of data items specified in this clause are used by
the object-time system only when the file is opened by an
OPEN statement.

If a file whose access mode is RANDOM is processed
sequentially, the FILE-LIMIT clause is ignored. Thus, you
can create records with keys higher than the upper
FILE-LIMIT.

3-16

THE ENVIRONMENT DIVISION

FILE-LIMIT (Cont.)

Example

SELECT INFIL ASSIGN TO DSK
FILE LIMIT IS 3000.

3-17

THE ENVIRONMENT DIVISION

ACCESS MODE

3.2.1.5

Function

ACCESS MODE

The ACCESS MODE clause specifies the way in which a file is accessed.

General Format

ACCESS MODE IS

SBEgNgEQn”AL [NITH CHECKPQINT OUTPUT [EVERY integer-1 RECORDS]]

CHECKPOINT OUTPUT [EVERY integer-1 RECORDS]}
INDEXED [“”“{QEFERRED OUTPUT

MR-5-9682-81

Technical Notes

1.

The ACCESS MODE clause 1is required for random-access and
indexed-sequential files. It is ignored for sequential
files.

If ACCESS MODE IS SEQUENTIAL and the file is on a
random-access device, the random-access records are obtained
or placed sequentially. That is, the next logical record is
made available from the file on a READ statement execution,
and an output record is placed into the next available area
on a WRITE statement execution. Thus sequential access
processing on a random-access device is functionally similar
to the processing of a magnetic tape file.

If ACCESS MODE IS RANDOM, the contents of the data item
associated with the ACTUAL KEY specifies which record,
relative to the beginning of the file, is made available by a
READ statement, or where the record is to be placed by a
WRITE statement.

If ACCESS MODE IS INDEXED, the contents of the data item
associated with the SYMBOLIC KEY specifies which record is
made available by a READ statement, or where the record is to
be placed by a WRITE statement, or which. record is to be
deleted by a DELETE statement, or which record is replaced by
a REWRITE statement.

The DEFERRED OUTPUT option of the INDEXED ACCESS MODE causes
the object-time system to output a block of an indexed
sequential file only when another block must be brought into

core. Normally, to ensure security for the file, a block is
output every time a record is written, even if records are
written successively in the same block. When a file is

opened for simultaneous update, the DEFERRED OUTPUT clause is
ignored. Refer to the OPEN statement in Chapter 5.

Example

THE ENVIRONMENT DIVISION

ACCESS MODE (Cont.)

If you are using ISAM files sequentially, DEFERRED OUTPUT
provides the advantage of running faster. However, it is
also more easily damaged if the system crashes. Thus, its
use is advantageous if file integrity is not important.

Specifying the CHECKPOINT OUTPUT phrase causes a checkpoint
FILOP. UUO to occur after every physical output. For
sequential files, every output may not coincide with each
WRITE. For ISAM files, the CHECKPOINT OUTPUT causes the
FILOP. UUO to occur after every output. For 1IsaM files,
every output coincides with each WRITE.

Using the CHECKPOINT OUTPUT phrase has the same effect as 1if
you were to wuse a CLOSE followed by an OPEN. However, the
CHECKPOINT OUTPUT phrase performs the action much faster than
the OPEN and CLOSE verbs. Using the CHECKPOINT OUTPUT phrase
increases the reliability of your ISAM files, but it slows
down the overall performance of your program.

If integer-1 is zero, or if you do not specify the EVERY
integer~-1 RECORDS <clause, the checkpointing actions occurs
after every physical write.

SELECT INFIL ASSIGN TO DSK, DSK

ACCESS MODE IS INDEXED WITH DEFERRED OUTPUT.

THE ENVIRONMENT DIVISION

PROCESSING MODE

3.2.1.6 PROCESSING MODE

Function

The PROCESSING MODE clause specifies that the file is to be processed
sequentially.

General Format

[PROCESSING MODE IS SEQUENTIAL]

MR-5-983-81
Technical Notes

This clause is for documentation only; records are always
processed in the order in which they are accessed. '

Example

SELECT INFIL ASSIGN TO MTAl
ACCESS MODE IS SEQUENTIAL
PROCESSING MODE IS SEQUENTIAL.

THE ENVIRONMENT DIVISION

ACTUAL KEY

3.2.1.7 ACTUAL KEY

Function

The ACTUAL KEY clause specifies which record is read or written in a
random-access file.

General Format

[ACTUAL KEY IS data-name]

MR-S-984-81
Technical Notes

1. The ACTUAL KEY clause is valid only for files whose access
mode is RANDOM; it must be specified for those files. This
clause cannot be wused for files whose access modes are
INDEXED or SEQUENTIAL.

2, The ACTUAL KEY data-name must be defined in the DATA DIVISION
as a COMPUTATIONAL item of ten or fewer digits. The PICTURE
can contain only the characters S and 9 or their equivalent,
for example S9(10).

Example

SELECT INFIL ASSIGN TO DSK
ACCESS MODE IS RANDOM
ACTUAL KEY IS RKEY.

THE ENVIRONMENT DIVISION

SYMBOLIC KEY

3.2.1.8

Function

SYMBOLIC KEY

The SYMBOLIC KEY clause specifies the record in an indexed-sequential
file that is to be read, written, deleted or rewritten.

General Format

SYMBOLI
NOMINAL

Technical
1.

2.

Example

SELE

c } KEY IS data-name-1, RECORD KEY IS data-name-2.

MR-5-985-81

Notes
NOMINAL KEY is completely equivalent to SYMBOLIC KEY.

The SYMBOLIC KEY clause is valid only for files whose access
mode is INDEXED; it must be specified for those files (refer
to the READ statement in Chapter 5).

The SYMBOLIC KEY data-item must be defined 1in the DATA
DIVISION, and must not appear in the record area of the file
to which it pertains. It must agree with the description of
the RECORD KEY data item in class, usage, size, and number of
decimal places.

The RECORD KEY data-item must be defined as an item in the
record area of the file to which it pertains. Though the
RECORD KEY is described in only one of the records, it is
assumed to occupy the same position in all records for that
file.

The RECORD KEY is required tc describe the 1location in the
record area of the key for the file. The contents of the
RECORD KEY data-item must be unique for each record in the
file, and cannot be equal to LOW-VALUES (refer to the READ,
WRITE, REWRITE, and DELETE statements in Chapter 5).

CT INFIL ASSIGN TO DSK, DSK
ACCESS MODE IS INDEXED
SYMBOLIC KEY IS SYMKEY, RECORD KEY IS RECKEY.

THE ENVIRONMENT DIVISION

RECORDING MODE/DENSITY/PARITY

3.2.1.9 RECORDING MODE/DENSITY/PARITY

Function

The RECORDING MODE clause specifies the recording mode, tape density,
and parity for a magnetic tape file.

General Format

ASCII

SIXBIT

BINARY
RECORDING | MODE IS [BYTE MODE] E

¥

STANDARD-ASCII
STANDARD ASCII

DENSITY IS 800 [EAB!TY IS [EVEN:J

MR-S-986-81

Technical Notes

1. The RECORDING MODE clause allows you to record data on the
device in a format other than that used in memory. The
following recording modes are acceptable.

ASCII - The file is read/written as ASCII records, five
7-bit characters per 36-bit word. Bit 35 (the
rightmost bit) is ignored.

SIXBIT - The file is read/written as SIXBIT records, six
6-bit characters per 36-bit word with record
headers.

BINARY - The file is read/written as binary records, 36 bits
per word.

F - The file is read/written as fixed-length EBCDIC

records, four 9-bit characters per 36-bit word for
everything but industry-compatible magnetic tape.
For industry-compatible magnetic tape (9-track, with
800, 1600, and 6250 bpi density), the file is
read/written with four 8-bit characters per 36-bit
word. If more than one record description is given
in the FD entry, the record length must be the same
for all records in the entry.

w
1

23

THE ENVIRONMENT DIVISION

RECORDING MODE/DENSITY/PARITY (Cont.)

\

- The file is read/written as variable-length EBCDIC
records, four 9-bit characters per 36-bit word with
record and block headers. However, for
industry-compatible magnetic tape (9-track, with
800, 1600, or 6250 bpi density), the file is
read/written with four 8-bit characters per 36-bit
word. If a file whose recording mode is V is open
for INPUT-OUTPUT and you overwrite a record, the
record being written must be the same size as the
overwritten record. A file whose recording mode is
V cannot be opened for simultaneous update.

STANDARD-ASCII (STANDARD ASCII)

The five 7-bit bytes 1in each word in core are
transferred to five 8-bit bytes on the tape and bit
35 is stored in bit 0 of the fifth byte on tape.
The character set and the character encodings are

the same as those of ASCII recording mode. This
enables interchanges with other manufacturers' ASCII
data files.

The format of records for each recording mode is given 1in
Section 4.11.2.11.

2. The recording mode of a file is determined by a number of
factors besides the recording mode specified in the RECORDING
MODE clause. These factors are:

a.

If the device can only accept ASCII data (For example,
Line Printer), the object-time system always uses ASCII
as the recording mode no matter what recording mode is
specified.

If the ADVANCING or POSITIONING clause is included in the
WRITE statement, the object-time system always uses ASCII
as the recording mode no matter what recording mode is
specified.

If the file descriptor (FD) has a REPORT <clause, the
object-time system always uses ASCII as the recording
mode no matter what recording mode is specified.

The recording mode specified in the RECORDING MODE clause
is compared to the USAGE <clause for the record. The
recording mode is determined in the following sequence:

1. The recording mode that is specified is used.

2. If the recording mode is not specified, the default
recording mode depends on the wusage mode that is
specified.

3. If neither the recording mode nor the usage mode is
specified, the default recording mode depends on the
display mode.

Example

THE ENVIRONMENT DIVISION
RECORDING MODE/PARITY/DENSITY (Cont.)

4. If none of the above has been specified, the default
recording mode is SIXBIT, unless the /X switch is
included in the command string to the compiler or the
DISPLAY 1is DISPLAY-6/7/9. If the /X switch |is
included, the default recording mode is F. If the
DISPLAY 1is DISPLAY-6/7/9, then the default recording
mode 1is SIXBIT/ASCII/F.

When the recording mode is not declared, it is inferred from
the usage mode for the record according to the rules given
above. However, the reverse is not true. That is, when the
recording mode 1is declared and no usage mode is given for a
record, the presence of the- RECORDING MODE clause serves only
to specify the recording mode of the file. The usage mode of
the records in the file can default to another character set,
with undesirable results (see the USAGE clause in Chapter 4).
Table 3-1 shows the resulting recording mode when the
recording mode declared in «the RECORDING MODE clause is
compared to the usage mode declared in the USAGE clause.

The DENSITY and PARITY clauses are valid only for magnetic
tape, and are ignored for all other devices. If the DENSITY
clause is not present, tapes are recorded in the density
standard for the installation. The density for a job can be
modified by the SET DENSITY command, which is described 1in
the TOPS-10 Operating Systems Manual and the TOPS-20 User's
Guide. A density of 1600 or 6250 bpl can be specified only
for tapes being read/written to or from magnetic tape drives
that can use that density. If the PARITY clause is omitted,
ODD 1is assumed. Care must be taken when using even parity.
If nulls are written into a file that 1is recorded 1in even
parity, the file cannot be read properly. Nulls can be
written into a file without you being aware of them; that
is, when SYNCHRONIZED data items appear in an item, the word
preceding the word in which the item is synchronized could
contain nulls.

If BYTE MODE is used, the exact number of bytes is written on
the tape. BYTE MODE truncates; it does not round up to word
boundary. This occurs only on magnetic tape. BYTE MODE
applies only to users of TOPS-10 and only to sequential
files. 1Its purpose is to enable interchanges with other
manufacturers' equipment.

SELECT INFIL ASSIGN TO MTAl

RECORDING MODE IS V
DENSITY IS 800
PARITY IS ODD.

THE ENVIRONMENT DIVISION

RECORDING MODE/DENSITY/PARITY (Cont.)

Table 3-1
Recording Modes

RECORDING MODE Recording Mode
Clause USAGE Clause actually used
none DISPLAY-6 SIXBIT
none DISPLAY-7 ASCII
none DISPLAf—9 EBCDIC
none none SIXBIT (no /X)

or DISPLAY-6
none none EBCDIC (/X)

or DISPLAY-9
none none ASCII (DISPLAY-7)
SIXBIT DISPLAY-6 SIXBIT
SIXBIT DISPLAY-7 SIXBIT
SIXBIT DISPLAY-9 SIXBIT
ASCII DISPLAY-6 ASCII
ASCII DISPLAY-7 ASCII
ASCII DISPLAY-9 ASCII
F or Vv DISPLAY-6 EBCDIC
F or Vv DISPLAY-7 EBCDIC
F or Vv DISPLAY-9 EBCDIC
BIﬁARY DISPLAY-6 BINARY
BINARY DISPLAY-7 BINARY
BINARY DISPLAY-9 BINARY

NOTE

Conversions necessary to make the
recording mode conform to the usage mode
of the records are made automatically by
the object-time system. (These
conversions can cause your ©program to
run more slowly.)

THE ENVIRONMENT DIVISION

FILE STATUS

3.2.1.10 FILE STATUS

Function

The FILE STATUS clause specifies data-items into which LIBOL ©places
values when an I/0 error or warning message occurs on the file
specified by the SELECT clause. A user-written USE procedure can then
examine and alter these values as part of a recovery process.

General Format

FILE-STATUS - _
{Fffﬁ—gfﬂfﬁ§} IS data-name-1 | ,data-name-2 | ,data-name-3 |,data-name-4

[,data-name-S[,data-name-6 [,data-name-7 [,data-name-B]]]}

MR-S-987-81

Technical Notes

1. Data-name-1l is required if this clause 1is specified; but
data-name-2 through data-name-~-8 are optional. If fewer than
eight data-names are specified, the compiler assumes that the
data-names are specified starting with data-name-1 and
continuing in order. Therefore, if data-name-8 is specified,
data-name-1 through data-name-7 must also be specified.

THE ENVIRONMENT DIVISION

FILE STATUS (Cont.)

2.

The file status,

The data-names must be defined in the WORKING STORAGE SECTION
of the DATA DIVISION in the following form:

After a fatal I/0 error,

data-name-1 PIC 9(2).
data-name-2 PIC 9(10).
data-name-3 USAGE INDEX.
data-name-4 PIC X(9).

USAGE INDEX.
USAGE INDEX.
PIC X(30).

USAGE INDEX.

data-name-5
data-name-6
data-name-7
data-name-8
items «contain the

the FILE STATUS

following values:

data—-name-1
data-name-2
data-name-3
data-name-4
data-name-5
data-name-6
data-name-7
data-name-~8

contains
contains
contains
contains
contains
contains
contains
contains

the

file status.

a ten digit error number.
action code, which is set to zero.

the
the
the
the
the
the

VALUE OF ID.

current block number.
current record number.

file name.

file-table pointer.

which is stored in data-name-1, is set to one of the

following 2-character codes.

00

10
in the file.

22 Duplicate key:;
record

23

24

30 Permanent

34

The I/0 was successful.
No next logical record; that is, there
The AT END path is taken.
that is, an attempt was made to write a
into a record position that is already occupied.
The INVALID KEY path is taken.
No record found on READ, REWRITE, DELETE; that is, when
an indexed sequential file was accessed, an empty record
The INVALID KEY path is taken.
that is, the random file's actual key
violated the file limits. The INVALID KEY path is taken.
error; that is, a successful hardware
operation cannot be done without a hardware error signal.
Permanent error; that is, more space on the media cannot
be obtained to extend the file for output operations.

is no next record

position was found.
Boundary violation,

The l10-character error number stored in data-name-2 has the form:

ABCDEFGHIJ

where the code has the meanings shown below.

AB contains a value indicating the COBOL verb that caused the error.

No COBOL verb error

OPEN
CLOSE
WRITE
REWRITE
DELETE
READ
RETAIN

Nk WO

THE ENVIRONMENT DIVISION

FILE STATUS (Cont.)

CD contains a value indicating the monitor call (UUO) that caused the
error.

No UUO error
INPUT
OUTPUT
LOOKUP
ENTER
RENAME

INIT

FILOP

TAPOP

OO UId WNDHO

EF contains a value indicating the type of file being accessed when
the error occurred.

0 None of the following
1 1ISAM index file

2 ISAM data file

3 A sequential file

4 A random file

G contains a value indicating the ISAM block type that was being
accessed when the error occurred.

None of the following
ISAM statistics block
ISAM SAT block

ISAM index block

ISAM data block

WO

HIJ contains a value indicating an error number on INPUT or OUTPUT.

If CD is set to 0, HIJ contains an error number. The numbers and
their meanings are listed below. Note that these are the same as the
messages issued by LIBOL after an error or warning occurs.

None of the following.

SYMBOLIC-KEY must not equal low-values.

No more index levels available.

Insufficient core while attempting to split the top index

block.

Version number discrepancy.

Allocation failure - all blocks are in use.

The maximum record size may not be exceeded.

Cannot expand core while SORT is in progress.

Insufficient core for buffer requirements.

Blocking-factor differs between index file and file-table.

10 File cannot be opened, already open.

11 Locked file cannot be opened.

12 File cannot be opened shares buffer area with opened file.

13 File cannot be opened device is not available to this job.

14 File cannot be opened device is assigned to another file.

15 File cannot be opened device cannot input/output.

16 File cannot be opened device cannot input.

17 File cannot be opened device cannot output.

18 File cannot be opened device is not a device.

19 File cannot be opened directory device must have standard
labels.

20 File cannot be closed because it is not open.

WO JOUld WO

3-29

THE ENVIRONMENT DIVISION

FILE STATUS (Cont.)

21

22
23

24
25
26

27

56

File cannot be closed.

The CLOSE "REEL" option may not be used with a
multi-file-tape.

File is not open for output.

Zero length records are illegal.

File cannot do output.

"AT END" path has been taken.

File cannot do input.

Encountered an "EOF" in the middle of a record.

File cannot do input.

RECORD-SEQUENCE-NUMBER n should be m.

File cannot do input.

file-name on device-name should be reorganized, the top index
block was just split.

Not used.

Either the ISAM file does not exist or the VALUE OF 1ID
changed during the program.

Attempt to do I/0 from a subroutine called by a non resident
subroutine. File cannot be opened.

I/0 cannot be done from an overlay. File cannot be opened.
Read an "EOF" instead of a label.

CLOSE REEL is legal only for magnetic tape.

File is not open for input.

Not enough free core between .JBFF and overlay area.

Not enough free core between .(JBFF and overlay area.
Insufficient core while attempting to split the top index
block.

Standard ASCII recording mode and density of 1600 BPI require
the device to be a TU70.

TAPOP. Failed - Unable to set STANDARD-ASCII mode.

Got an EOF in middle of BLOCK/RECORD descriptor word.

Block descriptor word byte count is less than five.

ERROR - Got another buffer instead of "EOF".

ERROR - Record extends beyond the end of the logical block.
It is illegal to change the record size of an EBCDIC IO
record.

The two low order bytes of RDW/BDW must be 2zero, spanned
EBCDIC not supported.

TAPOP. failed - Unable to set HARDWARE DATA MODE.

Unable to get mag tape status information.

Cannot set requested density.

TAPOP. failed - unable to get/set label type/information.
Improper tape label format for indicated recording mode.
Improper default hardware data mode for ASCII system-labeled
tape.

ANSI-labeled "S" and "D" mag tape not supported.

Program can not have OPEN I/0 and OPEN EXTEND for same file
FD.

TAPOP. failed, unable to switch mag tape reels.

If CD is set to 1 or 2, HIJ contains the number of an I/0 error status

bit.

The I/O error status bits, their mnemonics, and their meanings,

are shown in Table 3-2.

THE ENVIRONMENT DIVISION

FILE STATUS (Cont.)

Table 3-2
Monitor File .Status Bits

Bit Mnemonic Meaning

18 I0.IMP Improper Mode. Attempt to write on a software
write-locked file structure, or a software
redundancy failure occurred. This bit is
usually set by the monitor. You cannot set this
bit.

19 I0.DER Hardware devigce error. The disk unit 1is in
error, rather than the data on the disk.

However, data read into core or written on the
disk 1s probably incorrect. You do not usually
set this bit.

20 IO.DTE Hard data error. The data read or written has
incorrect parity as detected by the hardware.
Your data is probably unrecoverable even after
the device has been fixed. This bit is usually
not set by you.

21 I0.BKT Block too large. A disk data block is too large
to fit into the buffer; or a block number is
too large for the disk unit; or DSK has been
filled; or your quota on the file structure has
been exceeded. This bit is usually not set by
you. This error is also returned when you try
to close a file that has open 1locks associated
with it (using Engueue/Dequeue).

22 IO.EOF End-of-file. Your program has requested data
beyond the last block of the file with an IN or
INPUT call; or USETI has specified a block
beyond the last data block of the file. When
IO.EOF is set, no data has been read into the
buffer.

23 I0.ACT I/0 Active. The disk i§ actively transmitting
or receiving data. This bit is always set by
the monitor.

29 I0.WHD Write disk pack headers. This 1is wused 1in
conjunction with the SUSET. monitor call to
format a disk pack.

30 I0.SYN synchronous mode I/0. Stop disk after every
buffer is read or written.

31 I0.UWC User word count, supplied by you in each buffer.

32-35 I0.MOD Data mode of the device.

FILE STATUS (Cont.)

THE ENVIRONMENT DIVISION

For the file status for each device, refer to the Monitor Calls

Manual.

If CD is set to 3, 4,
ENTER, RENAME,

meanings.

5, or 7, HIJ contains the error code for LOOKUP,

or FILOP errors. Table 3-3 gives these codes and their

Table 3-3
Monitor Error Codes

Code Explanation

0 File not found, illegal filename (0,%),
filenames do not match, or RENAME after a LOOKUP
failed.

1 UFD does not exist on specified file structures.
(Incorrect project-programmer number.)

2 Protection failure or directory full on DTA.

3 File being modified.

4 Already existing filename (RENAME) or different
filename (ENTER after LOOKUP) or supersede (on a
non-superseding ENTER) ..

5 Illegal sequence of UUOs (RENAME with neither
LOOKUP nor ENTER, or LOOKUP after ENTER).

6 1. Transmission, device, or data error.

2. Hardware-detected device or data error
detected while reading the UFD RIB or UFD
data block.

3. Software-detected data inconsistency error
detected while reading the UFD RIB or file
RIB.

7 Not a saved file.

10 Not enough core.

11 Device not available.

12 No such device.

13 No 2-register relocation capability.

14 No room on this file structure or quota exceeded

(overdrawn quota not considered).

15 Write-lock error. Cannot write on file
structure.
16 Not enough table space in free core of monitor.

THE ENVIRONMENT DIVISION

FILE STATUS (Cont.)

Table 3-3 (Cont.)
Monitor Error Codes

Code Explanation

17 Partial allocation only.

20 Block not free on allocated position.

21 Cannot supersede an existing directory.

22 Cannot delete a non-empty directory.

23 Sub-directory not found (some SFD in the
specified path was not found).

24 Search list empty (LOOKUP or ENTER was performed
on generic device DSK and the search list is
empty) .

25 Cannot create a SFD nested deeper than the

maximum allowed level of nesting.

26 No file structure in the job's search 1list has
both the no-create bit and the write-lock bit
equal to zero and has the UFD or SFD specified
by the default or explicit path (ENTER on
generic device DSK only).

27 GETSEG from a locked 1low segment to a high
segment which is not a dormant, active, or idle
segment. (Segment not on the swapping space.)

30 Cannot update file.

31 Low segment overlaps high segment.

32 Not logged in.

The FILE STATUS items are the communications paths between
LIBOL and a USE procedure. A USE procedure specifies a
recovery process executed when an error or warning occurs
during an I/0 operation. A USE procedure determines the
error or warning type from the error-number placed into
data-name-2 by LIBOL. Control returns to LIBOL at the
conclusion of the USE procedure. The contents of the
action-code placed into data-name-3 by the USE procedure and
the error-number determine the subsequent LIBOL action. If
the action-code 1is set to 1, LIBOL ignores the error and
continues the run. If the action-code 1is 1left set to O,
LIBOL issues an error message and terminates the run., If the
error-number is 17, LIBOL continues the run independent of
the action-code setting. If the action-code is not 0 or 1,
the LIBOL action is undefined.

THE ENVIRONMENT DIVISION

FILE STATUS (Cont.)

Example

When the program comes to a normal termination and you
requested that errors be ignored, LIBOL issues the following
message:

$¥n ERRORS IGNORED

Refer to the USE statement in Chapter 5 for details of
writing USE procedures.

If the FILE STATUS statement is not specified, 1I/0 error
recovery processing cannot be performed. If the FILE STATUS
statement is specified with only data-name-1 included, you
can examine the status of the file, but you cannot specify
that LIBOL ignore the error because you cannot set the action
code (data-name-3). You also cannot examine the error number
(data-name-2).

SELECT INFIL ASSIGN DSK, DSK

ACCESS MODE IS INDEXED

SYMBOLIC KEY IS SYMKEY, RECORD KEY IS RECKEY
RECORDING MODE IS ASCII

FILE STATUS 1S FILSTAT, ERRNUM, ACTCODE, VID,
BLKNUM, RECNUM, FILNAM, FILPNTR.

DATA DIVISION.

WORKING-STORAGE SECTION.
77 SYMKEY PIC X(10).
77 FILSTAT PIC 9(2).

77 ERRNUM PIC 9(10).
77 ACTCODE INDEX.

77 VID . PIC X(9).

77 BLKNUM INDEX.

77 RECNUM INDEX.

77 FILNAM PIC X (30).
77 FILPNTR INDEX.

3.2.2

Function

THE ENVIRONMENT DIVISION

I-O-CONTROL

I-0-CONTROL

The I-O-CONTROL paragraph specifies the points at which a rerun dump
is to be performed, the memory area that is to be shared by different
files, and the location of files on a multiple-file reel.

General Format

1-0-CONTROL.

RERUN EVERY

SAME { i } AREA FOR file-name-2,file-name-3 [,file-name-4]

MULTIPLE FILE TAPE CONTAINS file-name-5 [POSITION 1nteger—2:|

,file-name-6 [POSITION integer-3 | } o J e .

REEL
END - OF 1\ Onr7 OF file-name-1

integer-1 RECORUS

MR-5-988-61

Technical Notes

1.
2.

This paragraph is optional.

The RERUN clause specifies when a rerun dump is to be
performed.

The dump is always written onto a disk file, wusing the
program's low segment name as the filename, and an extension
of CKP. 1If the program has no filename because it was never
SAVEd, the program name (from the PROGRAM-ID paragraph in the
IDENTIFICATION DIVISION) is used as a filename, with the
extension CKP.

If the END OF UNIT option is used, a rerun dump is taken at

the end of each input or output reel of the specified REEL
file.

THE ENVIRONMENT DIVISION

I-O-CONTROL (Cont.)

Example

If the integer-1 RECORDS option is wused, a rerun dump 1is
taken whenever a number of logical records equal to a
multiple of integer-1 is either read or written for the file.

A rerun dump is not taken if any file is open on a device
other than magnetic tape, disk, or terminal. Alsoc, RERUN
cannot be used if overlays are used or if files are open for
simultaneous wupdate. Do not attempt to have a rerun dump
taken while a sort is in progress.

The SAME AREA clause specifies that two or more files are to
use the same area during processing; this includes all
buffer areas and the record area. However, unless the RECORD
option 1is used, only one of the named files can be open at
one time.

If the RECORD option is specified, the files share only the
record area (that is, the area in which the current logical
record is processed). If files sharing a record area are
open at the same time but their records do not have the same
usage mode, no conversion automatically takes place.

The SORT option is used for sort files. However, this option
need not be specified because all sort files always use the
same sort area.

The MULTIPLE FILE clause is required when more than one file
shares the same physical reel of tape. This clause is
invalid for media other than magnetic tape.

Regardless of the number of files on a single reel, only
those files defined in the program can be listed. 1If all
files residing on the tape are listed in consecutive order,
the POSITION option need not be given. If any file on the
tape is not listed, the POSITION option must be included;
integer-2, integer-3, and so forth, specify position of the
file relative to the beginning of the tape. All files on the
same reel of tape must be ASSIGNed to the same device in the
FILE-CONTROL paragraph.

Not more than one file on the same reel of tape can be open
at one time.

I-0-CONTROL.

RERUN EVERY 300 RECORDS OF INFIL
SAME RECORD AREA FOR INFIL, OUTFIL
MULTIPLE FILE TAPE CONTAINS INFIL POSITION 4.

CHAPTER 4

THE DATA DIVISION

The Data Division, required in every COBOL program, describes the
characteristics of the data to be processed by the object program.

This data can be divided into six major types:

6.

Data contained in files, both input and output.

Data contained in a database and accessed through the Data
Base Management System (DBMS).

Data to be sent to or received from the Message Control
System (MCS).

Data initially stored as part of the program, as variables or
constants. This can include constant data such as messages,
tables of fixed values, and the 1like, or data developed
during processing, that is, intermediate information such as
partial arithmetic results.

Data in a subprogram that is passed from the program calling
it.

Data to be printed in a report, and the format used to print
such data.

To handle these types of data, the Data Division consists of the
following sections:

1.

2.

The FILE SECTION, which describes the characteristics and the
data formats for each file processed by the object program.

The SCHEMA SECTION, which names the sub-schema and schema
that link a program or subprogram to the Data Base Management
System (DBMS).

The COMMUNICATION SECTION, which defines the special data
items that 1link a program or subprogram to the Message
Control System (MCS).

The WORKING-STORAGE SECTION, which contains any fixed wvalues
and the working areas in which intermediate data can be
stored.

The LINKAGE SECTION, which describes the data in a subprogram
that is available from the calling program.

The REPORT SECTION, which describes the data and format of a
report.

THE DATA DIVISION

Unused sections of the Data Division can be omitted. However, the
sections included must be in the following order:

FILE SECTION.

SCHEMA SECTION.
COMMUNICATION SECTION.
WORKING-STORAGE SECTION.
LINKAGE SECTION.

REPORT SECTION.

4.1 FILE SECTION

In the File Section, the characteristics of each file to be processed
are described by two types of entries.

The first type of entry, the file description, describes the physical
aspects of the file. These aspects include:

1. How the logical data records of the file are physically
grouped into blocks on the file medium.

2. The maximum length of a logical record, which cannot exceed
4095 characters.

3. Whether or not the file contains header and trailer 1labels
and, if so, whether the format of these labels is standard or
nonstandard.

4. The names of the records contained in the file.

5. The names of any reports in the file.

The second type of entry, the data description, describes the data
formats of the logical records in the files.

The File Section begins with the section-header FILE SECTION. If
present, it must be the first section in the DATA DIVISION.

4.2 SCHEMA SECTION

In the Schema Section, the names of the sub-schema and schema to be
processed are specified by either an INVOKE statement or an ACCESS
statement.

The Schema Section begins with the section-header (SCHEMA SECTION.)
and must follow the File Section, if present.

If the installation does not include DBMS, the Schema Section cannot
be used.

A description of the contents of the Schema Section can be found in
the Data Base System Programmer's Procedures Manual.

THE DATA DIVISION

4.3 COMMUNICATION SECTION

In the Communication Section, input and output
communication-description entries are defined.

CD entries define records, called CD records, that contain special
data items wused to 1link the program to the Message Control System
(MCS~-10) .

The Communication Section begins with the section-header COMMUNICATION
SECTION. and must follow the File Section and precede the Report
Section. The Communication Section must also follow the Schema
Section if both are present. -

If the installation does not include MCS, the Communication Section
cannot be used. .

Details of the Communication Section entries <can be found in the
Message Control System Programmer's Procedures Manual.

4.4 WORKING-STORAGE SECTION

The Working-Storage Section defines (1) data that is stored when the
object program is loaded, and (2) areas used for intermediate results.
The Working-Storage Section is similar to the File Section, except
that the Working-Storage Section can contain level-77 items and cannot
contain FD, SD, or RD entries.

The Working-Storage Section begins with the section-header
WORKING-STORAGE SECTION.

The makimum size of a data item in WORKING STORAGE is 262,143
characters.

4.5 LINKAGE SECTION

The Linkage Section describes data available from a calling program
and can appear only in a subprogram. The structure is the same as
that of the Working-Storage Section with the following restrictions:

1. The VALUE clauses can only be used in condition-name entries.

2. The data-names used in the VALUE OF IDENTIFICATION (or 1D),
the VALUE OF DATE-WRITTEN, and the VALUE OF USER- NUMBER
cannot appear in this section.

3. The OCCURS clause with the DEPENDING phrase cannot be defined
in this section.

4. The SYMBOLIC KEY and ACTUAL KEY data items cannot be defined
in this section. ~

5. The data items in the FILE-LIMITS clause cannot be defined in
this section.

Data described in the Linkage Section of a subprogram is not allocated
storage space. Instead, at link~time, the 1link program sequentially
equates the Linkage Section identifiers (listed in the USING clause of
the ENTRY statement within the subprogram or in the USING clause of
the PROCEDURE DIVISION header within the subprogram) to the <calling

4-3

THE DATA DIVISION

program identifiers (listed in the USING clause of the CALL statement
within the calling program). Thus, when the Procedure Division of a
subprogram executes, references to the Linkage Section data refer
instead to the calling program data.

Thus:

CALLING PROGRAM CALLED PROGRAM
DATA DIVISION. DATA DIVISION.
FILE SECTION. FILE SECTION.
FD... LINKAGE SECTION
01 MAIN... 01 SUB...

02 MAIN]1... 02 SuUBl...

02 MAIN2... 02 sSUB2...

PROCEDURE DIVISION. PROCEDURE DIVISION.
. ENTRY ENTRPT USING SUB.

CALL ENTRPT USING MAIN. .
. EXIT PROGRAM.

The identifier MAIN is defined in the File Section of the <calling
program; the identifier SUB is defined in the Linkage Section of the
called program. When the Procedure Division of the <called ‘program
executes, references to SUB refer instead to MAIN. See the COBOL-68
User's Guide for more information about subprograms.

Each 0l- or 77-level item in the Linkage Section must have a unique
name because it cannot be qualified. Also, each 01- and 77-level item
must correspond to a word-aligned item of the same size or larger 1in
the calling program. Word-aligned items start at the beginning of a
computer word. All 0l1l- and 77-level items fulfill this requirement;
items that do not, can be made to do so by the SYNCHRONIZED LEFT
statement.

4.6 REPORT SECTION

The Report Section defines reports by describing the physical
appearance of the particular format and data rather than by specifying
the procedure used to produce the report.

The data for a report can be read from a file or another part of the
program or can be summed within the Report Section. The format of the
report is given in the record description and report group entries in
the Report Section.

The Report Section begins with the section-header REPORT SECTION., and
must follow the File Section, the Working-Storage Section and the
Linkage Section.

THE DATA DIVISION

4.7 DATA DESCRIPTIONS

4.7.1 Elementary Items and Group Items

The basic user-defined datum in a COBOL program 1is <called an
elementary item; it can be referenced directly only as a unit. An
elementary item can be associated with contiguous elementary items to
form sets of data items <called group items. Group items can be
associated with other group items and/or elementary items to form more
inclusive group items. Thus, an elementary item can be contained
within one or more group items, and a group item can contain more than
one elementary item.

4.7.2 Level Numbers

Level numbers indicate a hierarchy in which data items are ranged.
The highest 1level is 01, which signifies that the data item is a
record within a file named in an FD clause (or is a contiguous area in
the WORKING-STORAGE SECTION). Level numbers of 02 through 49 indicate
items that are subordinate to a 0l-level data item. For example, an
employee record can be described in the following manner.

01 EMPLOYEE-RECORD.
02 NAME.
03 FIRST-NAME PICTURE IS A(6).
03 MIDDLE-INITIAL PICTURE IS A.
03 LAST-NAME PICTURE IS A(20).
02 BADGE-NUMBER PICTURE IS X(5).
02 SALARY-CLASS PICTURE IS X(2).

Within a record description, the level numbers indicate which items
are contained within higher-level items. That 1s, 1in the above
example, the items that have a 03 level are subordinate to NAME, which
has a 02 level, which is in turn subordinate to EMPLOYEE-RECORD, which
has a 01 level. The example also shows elementary items (those that
contain PICTURE clauses) contained within group items. In this
example, EMPLOYEE-RECORD is a group item, NAME 1is a group item
contained within a group item, and FIRST-NAME is an elementary item
contained within the group item NAME. An item at a 0l level can be an
elementary item as well as a group item as long as it is referenced as
a unit. For example:

01 EMPLOYEE-RECORD PICTURE IS A(34).

shows the same record as above, but in this case the record is always
operated on as a single entity.

Three other level numbers are available to the COBOL programmer: 77,
66, and 88.

Items with a level number of 77 are noncontiguous elementary items
that are written only in the WORKING-STORAGE SECTION to define
constant values and to store intermediate results.

Level-66 data items are those items that «contain an explicitly

specified portion of a record, or even the whole record. A data item
at a level of 66 is used in a RENAMES clause to regroup items within a

4-5

THE DATA DIVISION

record. After a record 1is described, a level-66 item RENAMES a
portion of that record. The level-66 data item can be a regrouping of
the whole record, a group within the record, or a combination of group
and elementary items. For example:

01 EMPLOYEE-RECORD
02 NAME
03 FIRST-NAME...
03 MIDDLE-INITIAL...
03 LAST-NAME...
02 BADGE-NO...
02 SALARY-CLASS...
66 PERSONNEL-REC RENAMES NAME THRU BADGE-NO.
66 PAY-REC RENAMES LAST-NAME THRU SALARY-CLASS.

When the level-66 item PAY-REC is referenced, the 1items LAST-NAME,
BADGE-NO., and SALARY-CLASS are referenced as a unit, The programmer
can thus regroup portions of a record for differing purposes.

Level—-88 items are condition-names that cause a value or a range of
values to be associated with a data item. The condition-name can then
be used in place of the relation condition in conditional expressions
in the PROCEDURE DIVISION. For example:

03 BADGE-NO...
88 FIRST-BADGE VALUE IS "A0001".
88 LAST-BADGE VALUE IS "Z9999".

In a comparison, the following statements would then be equivalent:

Conditional Variable Condition-Name
IF BADGE-NO IS EQUAL TO "A0001"... IF FIRST-BADGE...
IF BADGE-NO IS EQUAL TO "Z9999"... IF LAST-BADGE...

4.7.3 Records and Files

Records can be divided into two categories; those associated with a
file and those not associated with a file. A file is the highest
level of data organization in COBOL; it represents a collection of
data records held on some external medium, that is, not wholly in real
or virtual memory. Records not associated with a file are those
values stored in the WORKING-STORAGE and LINKAGE SECTIONS or sum
counters in the REPORT SECTION.

4.8 QUALIFICATION

Any data item that is to be referenced must be uniquely identified.
This wunique identification can be achieved by the assignment of a
unique name to each item. However, in many applications this 1is
tedious and inconvenient (1) because of the large number of names
required, and (2) because items c¢ontaining the same type of
information in different records would have different names.
Therefore, qualification is introduced to allow similar items and
certain records to have identical names.

THE DATA DIVISION

Qualification means giving enough information about the item to
specify it uniquely. In COBOL, this information is the name of the
group items containing it, in order of increasing inclusiveness. It
is not necessary to name each group containing it, but only enough
groups so that no other item with the same name as the original item
could be identically qualified. It is also unnecessary to name each
successively higher group containing the item until a unique
qualification is made. Any set of names that uniquely describe the
item can be used. :

Example:
01 RECORD-1. 01 RECORD-2.
02 ITEM-1. 02 ITEM-2.
03 SUB-ITEM. 03 SUB-ITEM.
04 FIELD PIC X. 04 FIELD PIC X.

FIELD in the left-hand example can be referenced uniquely in any of
the following ways:

FIELD OF SUB-ITEM OF ITEM-1 IN RECORD-1.
FIELD OF SUB-ITEM OF ITEM-1.

FIELD OF SUB-ITEM IN RECORD-1.

FIELD IN ITEM-1 OF RECORD-1.

FIELD IN RECORD-1.

FIELD IN ITEM-1.

The connectives OF and 1IN are equivalent and can be used
interchangeably.

The only data items which need have unique names are level-77 items
and records not associated with files, since they are not contained in
any higher level data structure. Records associated with files can be
qualified by the file name, as can any item contained within the
record. File names must be unique.

Level-66 items can be qualified only (1) by the name of the record
with which they are associated and (2) by the name of any file with
which that record is associated.

4.9 SUBSCRIPTING AND INDEXING

It can sometimes be more convenient for you to specify a set of data
values as a table rather than assigning a name to each element of the
set. A table (or array) is a set of homogeneous items stored together
in memory for use by the program. You define the table elements in
the program by specifying an OCCURS clause in the description of a
data item. The data item thus defined represents not one item but a
set of items having the identical format. Subscripting and indexing
are used to refer to one of the elements of the set. 1In DIGITAL
COBOL-68, subscripting and indexing are identical in:use and can be
used interchangeably. However, the manner in which they are defined
differs.

THE DATA DIVISION

Subscripting is defined simply by the fact that an item has an OCCURS
clause in its description. For example,

01 RATE-TABLE.
02 VOLUME OCCURS 25 TIMES.

describes VOLUME as 25 elements of RATE-TABLE. If you wish to refer
to one of the elements of this set, you must qualify the data-name

with a subscript. Thus, VOLUME(10) 1is the tenth -element (or
occurrence) of VOLUME. A subscript can be either an integer or a
data-name to which an integer value has been assigned. Thus, when

DIST has been assigned to wvalue 10, VOLUME(DIST) is the same as
VOLUME (10) .

To specify indexing you must add the INDEXED BY option to the OCCURS
clause. Thus,

01 RATE-TABLE.
02 VOLUME OCCURS 25 TIMES INDEXED BY IND.

defines VOLUME as 25 elements of the table and defines IND as the
index by which each element of the table can be indexed; that is,
VOLUME (IND) is an element in the table. The index-name IND is
treated exactly like the data-name DIST because the compiler
recognizes an index-name as being exactly the same as a data-name. An
item defined as an index in an OCCURS clause has an implicit usage of
INDEX, and is equivalent to a data item that is declared USAGE INDEX.
However, this wusage is included in DIGITAL COBOL for compatibility
with other compilers because an item whose usage is INDEX (implicit or
explicit) 1is treated as if its usage were COMPUTATIONAL. In fact, a
data-name that is used as a subscript can be explicitly declared as
USAGE INDEX; it can be treated as a COMPUTATIONAL data item by the
compiler.

COBOL-68 tables can be one, two, or three dimensions. The number of
dimensions 1is defined by the number of subscripts or indexes required
to refer to an individual item. For example:

C(1,3)

represents the item located in the first row and third column of a
2-dimensional table which is defined by the DATA DIVISION entries:

01 TABLEA.
02 ROW OCCURS 20 TIMES.
03 COLUMN OCCURS 5 TIMES.

The subscript/index must be enclosed in parentheses and must appear in
the PROCEDURE DIVISION statement where the subscripted/indexed data
name is used. The subscript/index must appear after the data-name. A
space between the data-name and the parentheses is optional. Multiple
subscripts/indexes are separated by a comma or by a space. No spaces
can appear immediately following the left parenthesis or immediately
preceding the right parenthesis. When referring to elements in
multi-dimensional tables, subscript/indexes are written from left to
right in the order of major (subscript/index varying least rapidly),
intermediate, and minor (subscript/index varying most rapidly). The
major index <corresponds to the item written with the smallest
level-number, that is, the most inclusive item.

THE DATA DIVISION

As an illustration, consider a table having a major element occurring
ten times, an intermediate element occurring five times within each
occurrence of the major element, and a minor element occurring three
times within each intermediate element. The last major element of the
table has a subscript of (10,1,1), while the final element of the

table has a subscript of (10,5,3).

There are two forms of subscripting/indexing: direct and relative.
Direct subscripting/indexing means that the subscript/index refers
directly to the desired element. Relative subscripting/indexing means
that the element of the table is referred to indirectly . by a
subscript/index to a data name to which an integer 1is added or
subtracted. The form for direct subscript/indexing is shown in Figure
4-1.

subscript { ,subscript
data-name ({index { [{ ,index } T
MR-5-581-80

Figure 4-1 Direct Subscripting/Indexing

In relative subscripting/indexing, the subscript/index is followed by
the operator plus (+) or minus (=) followed by an unsigned integer
numeric literal. The operator plus (+) or minus (-) must be delimited
by spaces. The subscript/index, the operator, and the numeric literal
must follow the data-name and must be enclosed 1in parentheses. The
form for relative subscripting/indexing is shown in Figure 4-2.

data-name ({?£322r1pt} {f} integer [{,?222§r1pt } {f} 1nteger] ...)

MR-S-582-80
Figure 4-2 Relative Subscripting/Indexing

When you use relative subscripting/indexing, the element of the table
that vyou refer to is not the one to which the subscript/index refers,
but the element to which the subscript/index plus or minus the integer
refers. That is, if the item

VOLUME (IND + 2)

is specified, and IND is set at 3, the fifth occurrence of VOLUME |is
referred to, not the third. However, the value of the subscript/index
is not changed by relative subscripting/indexing; the wvalue of 1IND
remains 3.

You can also combine direct subscripting/indexing and relative
subscripting in the same statement. For example, if you specify the
following statement

TABLE (IND, VOL + 3)

the first subscript value is the value of IND and the second subscript
value is the value of VOL + 3.

4-9

THE DATA DIVISION

When you need to qualify a table element for uniqueness, you should
use the format for direct subscripting/indexing shown in Figure 4-3.

data-name [{

=43

_ subscript ,subscript |
} data-name 1] ve ({index } [{,index { .

MR-S-583-80

Figure 4-3 Qualified Direct Subscripting/Indexing
For example, to refer to ANAME in the following example:
01 ARECL.
02 AGROUP1 OCCURS 5.
03 ASUBGROUP1 OCCURS 10.
04 ANAME PIC X(5) OCCURS 20.
you could specify the following:

ANAME (I,J,4)

NOTE

Subscripts can not be subscripted.

THE DATA DIVISION

FILE DESCRIPTION (FD)

4.10 FILE DESCRIPTION (FD)

Function

The Fi;e Description (FD) furnishes information concerning the
physical structure, identification, and record names pertaining to a
given file.

General Format

FD file-name

- 1 1] s _, [RECORD(S)
| BLOKK CONTAINS [integer-1 T0] integer-2 [FRARACTERS

-

RECORD CONTAINS [integer-3 |10 | integer-4 wmmmm]
-

RECORD IS STANDARD
LABEL RECORDS ARE OMITTED
= record-name-1 [,record-name-2}

—

‘ REPORT IS

REPORTS ARE ; report-name-1 [,report-name-2...] }

-

—

ID data-name-2
VALLE OF { { IDENTIFICATION } IS { literal-1 }]

L

data-name-2
DATE-WRITTEN IS [literal-?)}

-

data-name-3
USER-NUMBER IS [literal-3,literal-4 }}

[DATA { EgggﬁgSIiRE ; record-name-3 [,record-name-4]

MR-S-989-81

THE DATA DIVISION

FILE DESCRIPTION (FD) (Cont.)

RECORDING

ASCII
SIXBIT
BINARY
MODE IS { F

v
STANDARD-ASCII
STANDARD ASCII

— —

-
MR-S§-1000-81

The clauses shown in the General Format appear in alphabetical order
on the following pages.

Technical Notes

1.

2.

An FD entry must be present for each file-name selected in
the FILE-CONTROL paragraph of the Environment Division.

All semicolon and commas are optional. The entire FD entry
must terminate with a period.

The clauses can appear in any order within the File
Description entry.

The ability to place the RECORDING MODE clause in the FD has
been provided for compatibility with other manufacturers. If
you place the RECORDING MODE clause for a file in the FD, you
cannot also place it in the FILE-CONTROL paragraph for that
file in the ENVIRONMENT DIVISION. Also, if you wish to use
the RECORDING DENSITY and RECORDING PARITY clauses, you must
put them in the FILE-CONTROL paragraph 1in the ENVIRONMENT
DIVISION, even if +the RECORDING MODE clause is in the FD.
The description of the RECORDING MODE clause can be found in
Chapter 3 with the full description of the ENVIRONMENT
DIVISION.

The maximum number of files that can be open at one time is
16.

NOTE

ISAM files count as two files: one index (.IDX) file
and one data (.IDA) file.

THE DATA DIVISION

BLOCK CONTAINS

4.10.1 BLOCK CONTAINS

Function

The BLOCK CONTAINS clause specifies the size of a logical block.

General Format

CHARACTERS

MR-S-1001-81

[BLOCK CONTAINS [integer-1 T0] integer-2 (_._(JRECORDS]

Technical Notes

1. You must specify the BLOCK CONTAINS clause if you want the
file to be organized into 1logical blocks. If you do not
specify this clause, or if you specify integer-2 to be 0,
then all records are packed in the file with no empty space
between the records. The file is then considered to be
"unblocked" or "blocked zero". However, if you use magnetic
tape and have used the RECORDING MODE clause to specify that
the recording mode as V or F, or standard ASCII, the default
is a blocked file with a blocking factor of one.

2. If the CHARACTERS option is used, the logical block size is
specified in terms of the number of character positions
required to contain the record. If the recording mode |is
ASCII (that 1is, all records for the file are described,
explicitly or implicitly, as USAGE DISPLAY-7), it is assumed
that the size is specified in terms of DISPLAY-7 characters.
If the recording mode is SIXBIT (that is, the records for the
file are all described, explicitly or implicitly, as
DISPLAY-6) it is assumed that the size is specified in terms
of SIXBIT characters. If the recording mode is F or V (that
is, the data is recorded on the medium as EBCDIC characters),
it 1s assumed that the size is specified in terms of EBCDIC
characters, either fixed- or variable-length. When
variable-length EBCDIC records are used (i.e., the recording
mode is V), the number of records in a block 1is also
variable. If the blocking factor is not zero, the number of
records in a block is determined by dividing the block size
in characters by the number of characters in the longest
record as specified by the FD statement. For example, if the
FD statement specifies a maximum record length of 248
characters and the BLOCK CONTAINS 2400 CHARACTERS clause is
used, the number of records in a block are 9.

3. 1Integer-1 and integer-2 must be positive integers. If only
integer-2 1is specified, it represents the exact size of the
logical' block., If both integer-1 and integer~2 are given,
integer~1 is 1ignored and integer-2 is used as the blocking
factor.

4, Files whose access modes are RANDOM or INDEXED must have a
nonzero blocking factor. Files whose access mode is
sequential and opened for I/0 should have a nonzero blocking
factor. If not, the compiler will calculate one.

4-13

THE DATA DIVISION

DATA RECORD

4.10.2

Function

DATA RECORD

The DATA RECORD clause <cross references the record-name with its
associated file.

General Format

DATA {

%%%%%%SIiRE} record-name-1 [,record-name-2] ...

MR-8-1002-81

Technical Notes

1.

This clause is optional because all records not associated
with a LABEL RECORDS clause are assumed to be data records.

Both record-name-1 and record-name-2 must be the names given
in 0l-level data entries subordinate to this FD. The
presence of more than one such record-name indicates that the
file contains more than one type of data record. These
records can have different descriptions. The order in which
they are listed is not significant.

All records within a file share the same area.

THE DATA DIVISION

FD file-name

4.10.3 FD file-name

Function

The FD file-name clause identifies the file to which this file
description entry and the subsequent record descriptions relate.
General Format

FD file-name

Technical Notes
1. This entry must begin each file description.

2. The file-name must appear in a SELECT statement in the
FILE-CONTROL paragraph of the ENVIRONMENT DIVISION.

THE DATA DIVISION

LABEL RECORD

4.10.4
Function
The LABE

the file

General

LABEL

Technica

1.

2.

LABEL RECORD

L. RECORD clause specifies whether or not labels are present on
and, if so, identifies the format of the labels.
Format
RECORD IS OMITIED
RECORDS ARE STANDARD
e record-name-1 [,record-name-2]
MR-S-1003-81
1 Notes

If the clause is omitted, LABEL RECORDS ARE STANDARD is
assumed.

The OMITTED option is used when the file has no header or
trailer labels.

The STANDARD option is used when the file has header and
trailer 1labels that conform to the DECsystem-10 standard
format. If this clause is used for files on disk or DECtape,
LABEL RECORDS ARE STANDARD must be specified. See the VALUE
OF IDENTIFICATION clause for the association between the
label and the filename on disk or DECtape.

The standard label for DECtape and random-access devices is
the directory block used by the monitor. For magnetic tape,
if the file is recorded in SIXBIT, the standard label 1is 78
SIXBIT characters in length and is written in a separate
physical record from the data, with the same recording mode
as the data. If the recording mode is ASCII, the label
contains 78 ASCII characters, plus carriage return and 1line
feed, for a total of 80 characters. Table 4-1 shows the
contents of each character in a standard label for
nonrandom-access devices.

Magnetic tapes are the only devices with ending labels. Each
ending label is preceded by and followed by an end-of-file
mark.

The record-name option is used when the file 1labels do not
conform to the system standard format. The record-names must
appear as the names of record description (level-01)
subordinate to this FD; the record-names must not appear in
a DATA RECORDS clause. When a file is opened, the beginning
non-standard label is read (as input) or written (as output)
automatically by the I-O routines. If the file 1is being
opened for output, the data for the record must be supplied
by a USE procedure in the DECLARATIVES (see Chapter 5). If
the file is being opened for input, no checks are made by the
I-0 routines to determine the validity of the label; you can
program any checks in a USE procedure.

4-16

THE DATA DIVISION

LABEL RECORD (Cont.)

The presense of TOPS-10 or TOPS-20 system labels on a
magnetic tape <causes the system to handle tape volume
processing normally done by LIBOL and overrides the COBOL
labeling described above. Thus, a magnetic tape only has
TOPS-10 or TOPS-20 system labels or LIBOL created labels, but
never both.

5. Files whose recording mode is F or V (fixed- or variable-
length EBCDIC), must have LABELS RECORDS ARE OMITTED if they
are on magnetic tape. If they are on disk or DECtape, they
are assumed to have DECsystem-10 standard 1labels. The
record-name option cannot be used for EBCDIC files.

Table 4-1
Standard Label for Nonrandom-Access Media
Characters Contents
1-4 HDR1 = Beginning File.
EOF1 = Ending file.
EOV1 = Ending reel.
5-13 Value of identification.

14-21 Always spaces.

22-27 Not used.

28-31 Reel number. The first reel is always 0001.

32-41 Not used.

42-47 Creation date; two characters each for the

year, month, and day, respectively.

48-78 Not used.

79-80 Carriage-return/line-feed 1if file |is ASCII.

(Note that this is on the label only; it is not
kept internally.)

THE DATA DIVISION

RECORD CONTAINS

4.10.5
Function
The RECO

this fil

General

RECORD CONTAINS

RD CONTAINS clause specifies the size of the data records in
e.

Format

[RECORD CONTAINS [integer-1 T0] integer-2 CHARACTERS]

Technica

1.

MR-§-1004-81

1 Notes

Because the size of each data record is completely defined by
its record description entry, this clause is never required.
However, if you use it, it replaces the record description
entry 1in setting the size of the record, and the following
rules must be observed.

Integer-1 and integer-2 must be positive integers. Integer-2
can not be 1less than the size of the largest record but
cannot exceed 4095, which is the 1limit on the size of a
record.

The data record size is specified in terms of the number of
character positions required to contain the record.

The maximum size of a record in an FD is 4095 characters.
This clause is ignored if the FD contains a REPORT clause and

there 1is no data record description. In this case, the
record size defaults to 132 characters.

THE DATA DIVISION

REPORT

4.10.6 REPORT

Function

The REPORT clause specifies the name of each report that is associated
with the file,

General Format

[l g%%%%%s IgRE report-name-1 [,report-name-2]

MR-S-1005-81

Technical Notes

1. This clause is optional; it is used only when Report-Writer
statements cause output to be written on the file.

2. Report-name-1 and report-name-2 must be the names of Report
Descriptor items in the REPORT SECTION.

3. 1If this clause is used, the data record description can be
omitted because the name of the data record is not referred
to directly in the PROCEDURE DIVISION. When the data record
description 1is omitted, the compiler automatically assumes a
132-character record.

THE DATA DIVISION

SD file-name

4,10.7 §SD file-name

Function

The SD file-name clause identifies the sort to which this file
description entry and the subsequent record description relate.

General Format

SD file-name [DATA {%%%%%%SlzRE} record-name-1 [,record-name-Z] ...}

[RECORD CONTAINS [integer-1 T0] integer-2 CHARACTERS] .

MR-S-1006-81

Technical Notes
1. The SD entry must begin each sort file description.

2. The file-name must appear in a SELECT statement in the
FILE-CONTROL paragraph of the ENVIRONMENT DIVISION.

3. The DATA RECORD and RECORD CONTAINS clauses are the only
descriptive clauses allowed.

4.10.8
Function
The VALU

within t

General

VALUE OF

Technica

l.

THE DATA DIVISION

2

VALUE OF IDENTIFICATION

VALUE OF IDENTIFICATION/DATE-WRITTEN/USER-NUMBER

E OF IDENTIFICATION clause provides specific data for an item
he label records associated with a file.

Format

[{%ENTIFICATION} 1S {??E&Q?’"‘fl}}

data-name-2
[DATA-NRITTEN IS {1itera1-2 }]

data-name-3
[USER'NUMB RIS {1itera1-3,]itera1-4}]

MR-8-1007-81

1 Notes

The VALUE OF IDENTIFICATION clause is required only if 1label
records are standard; it is ignored in all other cases. The
VALUE OF DATE-WRITTEN and the VALUE OF USER-NUMBER are always
optional.

The three clauses can be written in any order, but only one
of each can be specified for a file.

IDENTIFICATION represents the file-name and extension of a
file with standard labels., If a data-name is specified, it
must be associated with a DISPLAY-6, DISPLAY-7, or DISPLAY-9
data item nine characters in 1length. If a 1literal is
specified, it must be a alphanumeric literal nine characters
in 1length. The first six characters are taken as the
file-name, and 1last three characters are taken as the
extension. The programmer must provide spaces as required to
conform to this convention. The 1literal cannot consist
exclusively of spaces. The period which the system prints
between the file-name and the extension must not be included
in the VALUE OF IDENTIFICATION clause.

Examples:
a. VALUE OF IDENTIFICATION IS "COST TST"

b. VALUE OF IDENTIFICATION IS FILE-1-NAME

(WORKING-STORAGE SECTION.)

77 FILE-1-NAME PICTURE IS X(9).

4-21

THE DATA DIVISION

VALUE OF IDENTIFICATION (Cont.)

DATE-WRITTEN represents the date that a magnetic tape file
(with STANDARD labels) was written. If a data-name is
specified, it must be associated with a DISPLAY-6, DISPLAY-7
or DISPLAY-9 data item six characters in 1length. If a
literal is specified, it must be a alphanumeric literal six
characters in length. The first two characters are taken as
year, the next two as month, and the last two as day. The
DATE-WRITTEN clause 1is ignored when the file is OPENed for
output; instead, the current date is used.

Examples:

a. VALUE OF IDENTIFICATION IS "RANDOMXYZ", DATE-WRITTEN IS
760112

b. VALUE OF IDENTIFICATION IS "DATA ", DATE-WRITTEN IS
FILE-1-DATE

(WORKING-STORAGE SECTION.)
77 FILE-1-DATE PICTURE IS 9(6).

USER-NUMBER represents the project-programmer number of the
owner of a disk file; it is ignored for all other devices.
Data-name-3 must be a COMPUTATIONAL item of 10 or fewer
digits in which the project-programmer number is stored.
Literal-3 and literal-4 are numeric literals of six or fewer
digits that are treated as octal. Literal-3 is the project
number and literal-4 is the programmer number.

For input files the VALUEs specified are checked against the
file when it 1is opened. 1ISAM files are checked as soon as
your program 1is run. For output files, the VALUE OF
IDENTIFICATION is written when the file is opened. 1If the
specified values do not match a file on the selected medium,
a run-time error message is issued.

If the access mode is INDEXED and data-name-1 is used in the
VALUE OF IDENTIFICATION clause, data-name-1 must contain the
filename and extension of the index-file for the indexed
sequential file being referenced. The contents of
data-name-1 can not be altered during program execution. You
need not specify the identification for the data file of an
indexed sequential file because this identification is stored
in the index file.

If data-name-3 is used to represent the project-programmer
number, vyou must be aware that the value of data-name-3 is
treated as decimal, even though the project-programmer number
is octal. The data-name-3 value is translated from decimal
to binary by the COBOL conversion routine. Thus, the
project-programmer is not accurate unless you provide a
conversion routine in your program to convert your octal
project-programmer number to its decimal equivalent so that
it is converted to the correct binary number. The following
example is a suggested method for performing the conversion.

THE DATA DIVISION

VALUE OF IDENTIFICATION (Cont.)

77 ERR-FLAG PIC 9, USAGE COMP.
77 HALF-NUM, PIC 89(7), USAGE COMP.
77 OCTAL-PPN, PIC Ss9(10), USAGE COMP.
77 DIGIT, PIC 9.
01 PP-NUMBER.

02 PROJ-NUMBER, PIC 9(6).

02 PROG-NUMBER, PIC 9(6).

02 EITHER-NUM, PIC 9(6).

02 X REDEFINES EITHER-NUM.

03 PP-DIGIT, PIC 9, OCCURS 6 TIMES, INDEXED BY I.

ACCEPT PROJ-NUMBER, PROG-NUMBER.

SET ERR-FLAG TO ZERO.

MOVE PROJ-NUMBER TO EITHER-NUM.,

MOVE ZERO TO HALF-NUM.

PERFORM CONVERT VARYING I FROM 1 BY 1 UNTIL I>6.

IF ERR-FLAG IS NOT = 0 GO TO OCTAL-ERROR.

COMPUTE OCTAL-PPN = HALF-NUM * 262144.

MOVE PROG-NUMBER -TO EITHER-NUM.

MOVE ZERO TO HALF-NUM.

PERFORM CONVERT VARYING I FROM 1 BY 1 UNTIL I>6.

IF ERR-FLAG IS NOT = 0 GO TO OCTAL-ERROR.

COMPUTE OCTAL-PPN = OCTAL-PPN + HALF-NUM.
CONVERT.

IF PP-DIGIT (I) = 8 OR 9, SET ERR-FLAG UP BY 1.
COMPUTE HALF-NUM = 8 *HALF-NUM + PP-DIGIT (I).

THIS ROUTINE INVALID FOR PROJECT NUMBERS LARGER THAN
77777.

If the access mode is INDEXED and data-name-3 is used to

repr

esent the project-programmer number, the following rules

must be observed:

a.

Data-name-3 must have a value that 1is the decimal
equivalent of an octal project-programmer number, and
that project-programmer number must contain a file with
the name used in the VALUE OF IDENTIFICATION clause.

Data-name-3 can be altered during program execution only
if all files referenced have identical parameters.

If several files are read through the same File
Description, data-name-3 should point to the file with
the largest number of levels of index (this 1is wusually
the largest file).

None of the data-names in the VALUE clauses can appear in the
LINKAGE SECTION.

THE DATA DIVISION

RECORD DESCRIPTIONS

4.11 RECORD DESCRIPTIONS

Following the FD for a file, a record description is given for each
different record format in the file. A record description begins with
a level-0l1 entry:

01 data-name
A complete record description can be as simple as
01 data-name PICTURE picture-string.

or it can be more complex, where the 0l-level is followed by a 1long
series of data description entries of varying hierarchies that
describe various portions and subportions of the record. A (QOl-level
data-name in the File Section cannot be explicitly redefined (using
the REDEFINES clause). However, because a file has only one record
area, if more than one data-name 1is specified, they implicitly
redefine the first data-name. Also, if the additional data-names have
usages different from that of the first data-name, the last usage
given is used as the usage in determining the usage mode of the file
if it is necessary to use a default.

4.11.1 Record Concepts

A record description consists of a set of data description entries
which describe a particular 1logical record. Each data description
entry consists of a level-number followed by a data-name (or FILLER)
which is followed, as required, by a series of descriptive clauses.

The general format of a data description entry follows.

THE DATA DIVISION

DATA DESCRIPTION ENTRY

4.11.2 DATA DESCRIPTION ENTRY

Function

A data description entry describes a particular item of data.

General Format

level-number {g?EfERame-l} [REDEFINES data-name-2] [{g%gTURE} IS picture-string]

COMPUTATIONAL
comp
COMPUTATIONAL-1

CoMP-1
COMPUTATIONAL-3

coMP-3

[USAGE Is] DISPLAY
DISPLAY-6
DISPLAY-7
DISPLAY=9
TNDEX
DATABASE-KEY
DBKEY

[{ZEEEHRONIZED} {%551 }]

—
%
=
=

r

JUSTIFIED\ f RIGHT .
{JUST }{LEFT }} [BLANK WHEN ZERO] [VALUE IS 11tera1-1]

OCCURS [integer-l IQ] integer-2 TIMES [DEPENDING ON data—name—l]

ASCENDING _)))
[<BE§EEN5TNG} KEY 1S data-name-2 [,data-name-3] ...J s

[INDEXED BY index-name-1 [,index-name-2] .;J .

66 data-name-1 RENAMES data-name-2 [THRU data-name-B} .

88 condition-name {%%%%%SlzRE} literal-1 [THRU 1itera1-2]

[,1itera1-3 [IHBU 1itera]-4]] vee e

MR-S-1008-81

THE DATA DIVISION

DATA DESCRIPTION ENTRY (Cont.)

The clauses shown in the General Format appear in alphabetical order
on the following pages.

Technical Notes

1.

2.

Each data description entry must be terminated by a period.
All semicolons and commas are optional.

The clauses can appear in any order, with one exception: the
REDEFINES clause, when wused, must immediately follow the
data-name being redefined.

The VALUE clause must not appear in a data description entry
which also contains an OCCURS clause, or in an entry which is
subordinate to an entry containing an OCCURS clause. The
latter part of this rule does not apply to condition-name
(level-88) entries.

The PICTURE clause must be specified for every elementary
item, except a USAGE INDEX, COMP-1, DATABASE-KEY, or DBKEY.

The clauses SYNCHRONIZED, PICTURE, JUSTIFIED, and BLANK WHEN
ZERO can be specified only at the elementary level.

4.11.2.1

Function

THE DATA DIVISION

BLANK WHEN ZERO

BLANK WHEN ZERO

The BLANK WHEN ZERO clause causes the blanking of an item when its

value is

Zero.

General Format

[BLANK WHEN ZERO

MR-S-1009-81

Technical Notes

1.

2.

When the BLANK WHEN ZERO option is used and the item is zero,
the item is set to blanks.

BLANK WHEN ZERO can be specified only at the elementary level
and only for numeric or numeric-edited items whose usage 1is
DISPLAY-6, DISPLAY-7, or DISPLAY-9.

More comprehensive editing features are available in the
PICTURE clause. For example, if a PICTURE clause appears in
the same data description entry and contains the zero
suppression symbol * (zero suppress and replace with *), the
field is replaced with * when the item is given a zero value
(see Section 4.11.2.7, PICTURE). The only exception is
fields containing a decimal point, in which case the decimal
point is not replaced.

THE DATA DIVISION

Condition-name (level-88)

4.11.2.2

Function

Condition-name (level-88)

To assign a name to a value or range of values of the associated data

item.

General Format

VALUE IS

88 condition-name I VALUES ARE } literal-1 [THRU Titeral-2]

[,literal-3 [THRU literal-4] } .

MR-S-1010-81

Technical Notes

1.

Each condition-name requires a separate level-88 entry. This
entry contains the name assigned to the condition, and the
value or values associated with that condition.
Condition-name entries must immediately follow the data
description entry with which the condition-name 1is to be
associated.

A condition-name entry can be associated with an elementary
or group item except:

a. another condition-name entry, or
b. a level-66 item.
Some examples of possible level-88 entries are given below:

a. 05 B-FIELD PICTURE IS 99.
88 Bl VALUE IS 3.
88 B2 VALUES ARE 50 THRU 69.
88 B3 VALUES ARE 20, 25, 28, 31 THRU 37.
88 B4 VALUES ARE 70 THRU 75, 80 THRU 85, 90 THRU 95.

b. 02 C-FIELD PICTURE IS XXX.
88 C-YES VALUE IS "YES".
88 C-NO VALUE IS "NO ".

The data item with which the condition-name is associated 1is
called a conditional variable. A conditional variable can be
used to qualify any of its condition-names. 1If references to
a conditional variable require indexing, subscripting, or
qualification, then reference to its associated
condition-names also require the same combination of
indexing, subcripting, or qualification.

5.

THE DATA DIVISION

Condition-name (level-88) (Cont.)

A condition-name is used in conditional expressions as an
abbreviation for the related condition. Thus, if the above
DATA DIVISION entries (NOTE c¢) are used, the statements in
each pair below are functionally equivalent.

Relational Expression Condition-Name
a. IF B-FIELD IS EQUAL TO 3.... IF Bl....
b. IF B-FIELD IS GREATER THAN IF B2....

49 AND LESS THAN 70....

¢. IF B-FIELD IS EQUAL TO 20 OR IF B3....
EQUAL TO 25 OR EQUAL TO 28
OR GREATER THAN 30 AND
LESS THAN 38....

d. IF B-FIELD IS GREATER THAN 69 IF B4....
AND LESS THAN 76 OR GREATER
THAN 79 AND LESS THAN 86 OR
GREATER THAN 89 AND LESS
THAN 96.... -

e. IF C-FIELD IS EQUAL TO "YES".. IF C-YES

Literal-1 must always be less than literal-2, and 1literal-3
less than literal-4. The values given must always be within
the range allowed by the format given for the conditional
variable. For example, any condition-name values given for a
conditional variable with a PICTURE of PP999 must be in the
range of .00000 to .00999. (See Note 10 under PICTURE in
this chapter for the meaning of P in a picture-string.)

THE DATA DIVISION

data-name/FILLER

4.11.2.3

Function

data-name/FILLER

A data-name specifies the name of the data being described. The word
FILLER specifies an unreferenced portion of the logical record.

General Format

level-number {

data-name
FILLER

MR-S-1011-81

Technical Notes

1.

2.

A data-name or the word FILLER must immediately follow the
level-number in each data description entry.

A data-name must be composed of a combination of the
characters A through Z, 0 through 9, and the hyphen. It must
contain at least 1 alphabetic character and must not exceed
30 <characters in 1length. It must not duplicate a COBOL
reserved word. Refer to Section 1.2.3.2, User-Created Words,
for further information.

The key word FILLER is used to name an unreferenced item in a
record (that 1is, an item to which the programmer has no
reason for assigning a unique name). A FILLER item cannot,
under any circumstances, be referenced directly in a
PROCEDURE DIVISION statement. However, it can be indirectly
referenced by referring to a group-level item of which the
FILLER item is a part. FILLER can be used at any level,
including the 01 level.

THE DATA DIVISION

. JUSTIFIED

4,11.2.4 JUSTIFIED
Function

The JUSTIFIED clause specifies nonstandard positioning of data within
a receiving data item.

General Format

JUSTIFIED RIGHT
JUST LEFT
MR-S-1012-81

Technical Notes

1. The JUSTIFIED clause cannot be specified at a group level or
for numeric edited items.

2. If neither RIGHT nor LEFT is specified, RIGHT is assumed.

3. An item subordinate to one containing a VALUE clause cannot
be JUSTIFIED.

4. DISPLAY-6, DISPLAY-7 and DISPLAY-9 items can be JUSTIFIED.

5. The standard rules for positioning data within an elementary
data item are as follows:

a. Receiving data item described as numeric or
numeric-edited (see definition in Notes 6 and 9 under
PICTURE in this chapter). A numeric or numeric-edited
item 1is justified according to the following rules, thus
the JUSTIFIED clause cannot be used.

The data is aligned by decimal point and is moved to the
receiving character positions with zero fill or
truncation on either end as required.

If an assumed decimal point is not explicitly specified,
the data item is treated as if it had an assumed decimal
point immediately following its rightmost character, and
the sending data 1is aligned according to this decimal
point.

b. Receiving data item described as alphanumeric (other than
numeric edited) or alphabetic (see definition in Notes 5
and 7 under PICTURE in this chapter).

The data is moved to the receiving character positions
and aligned at the leftmost character position with space
fill or truncation at the right end as required.

THE DATA DIVISION

JUSTIFIED (Cont.)

Examples

03

03

03

03

MOVE
MOVE
MOVE

MOVE

When a receiving item 1is described as JUSTIFIED LEFT,
positioning occurs as in 4a above.

When a receiving data item is described with the JUSTIFIED
RIGHT <clause and 1is larger than the sending data item, the
data is aligned at the rightmost character position in the
receiving item with space fill at the left end.

When a receiving data item is described with the JUSTIFIED
RIGHT <clause and is smaller than the sending data item, the
data is aligned at the right most character position in the
receiving item with truncation at the left end.

are given below:

ITEM-A PICTURE IS
X(8) VALUE IS "ABCDEFGH".

ITEM-B PICTURE IS
X(4) VALUE IS "WXYZ".

ITEM-C PICTURE IS X(6).

ITEM-D PICTURE IS X (6).
JUSTIFIED RIGHT.

Contents of Receiving Field

ITEM-A TO ITEM-C. ABCDEFTF
ITEM-A TO ITEM-D. CDETFGH
ITEM-B TO ITEM-C. WXYZ

ITEM-B TO ITEM-D. WXYZ

THE DATA DIVISION

level-number

4,11.2.5 1level~number
Function

The level-number shows the hierarchy of data within a logical record.
In addition, special level-numbers are used for condition-names
(level-88), noncontiguous WORKING-STORAGE items (level-77), and the
RENAMES clause (level-66).

General Format

data-name
level-number t FILLER

MR-S-1013-81

Technical Notes

1. A level-number is required as the first element in each data
description entry.

2. Level-numbers can be placed anywhere on the source 1line, at
or after margin A.

3. Level-number 88 is described under "condition-name
(level-88)", and level-number 66 is described under "RENAMES
(level-66)", both in this section.

4, A further description of level-numbers and data hierarchy can
be found in the introduction to this chapter.

THE DATA DIVISION

OCCURS

4.11.2.6 OCCURS

Function

The OCCURS clause eliminates the need for separate entries for
repeated data, ‘and supplies information required for the application
of subscripts and indexes.

General Format
OCCURS {integer—l T0 integer-2 TIMES DEPENDING ON data-name—l}
integer-3 TIMES
ASCENDING
[{fﬁgfgﬁﬁfﬁG} KEY IS data-name-2 [,data-name-3] - }
[INDEXED BY index-name-1 [,index-name-2] ces]

MR-S-1014-81

Technical Notes

1.

This clause cannot be specified in a data description entry
that has a 66 or 88 level-number, or in one that contains a
VALUE clause.

The OCCURS clause is wused to define tables or other
homogeneous sets of repeated data. Whenever this clause is
used, the associated data-name and any subordinate data-names
must always be subscripted or indexed when used in all
PROCEDURE DIVISION statements.

All clauses given in a data description that includes an
OCCURS clause apply to each repetition of the item.

The integers must be positive. If integer-1 is specified, it
must have a value less than integer-2. No value of a
subscript can exceed 1integer-2; in addition, if the
DEPENDING option 1is specified, no subscript can exceed the
value of data-name-1 at the time of subscripting.

The value of data-name-1] is the <count of the number of
occurrences of the item described by the OCCURS clause; its
value must not exceed integer-2.

If the DEPENDING option 1is specified, the integer-1 TO
integer-2 phrase must be included. Data-name-1 must be USAGE
INDEX or USAGE COMP of 10 digits or less with no scaling or
decimal places. It cannot be subscripted or appear in the
LINKAGE SECTION.

10.

11.

THE DATA DIVISION

OCCURS (Cont.)

The KEY IS option indicates that the repeated data has been
sorted by you into either ascending or descending order
according to the wvalues associated with data-name-2,
data-name-3, and so forth. The data-names are listed in
order of decreasing significance.

Data-name-2 must be either the name of the entry containing
the OCCURS clause, or the name of an entry subordinate to the
entry containing the OCCURS clause. Data-name-3, etc., must
be the name of an entry subordinate to the group item that is
the subject of this entry.

An index-name defined in a OCCURS clause must not be defined
elsewhere; its appearance in the INDEXED option is its only
definition. There can be no items of the same name defined
elsewhere. The USAGE of each index-name is assumed to be
INDEX.

Subscripting and indexing are described in the introduction
to this chapter.

The maximum number of OCCURS for a single data item 1is
32,767.

THE DATA DIVISION

PICTURE

4.11.2.7

Function

PICTURE

The PICTURE clause describes the general characteristics and editing
requirements of an elementary item.

General Format

PICTURE
PIC

] IS picture-string }

MR-S-1015-81

Technical Notes

1.

A PICTURE clause can be used only at the elementary level.
It .can not be used with an item described as USAGE INDEX or
COMP-1.

A picture-string consists of certain allowable combinations
of characters in the COBOL character set used as symbols.
These symbols are as follows:

a. Symbols representing data characters

9 represents a numeric character (0 through 9)

A represents an alphabetic character (A through 2z, and
the space)

X represents an alphanumeric character (any allowable
character)

b. Symbols representing arithmetic signs and assumed decimal
point positioning

V represents the position of the assumed decimal point
P represents an assumed decimal point scaling position
S represents the presence of an arithmetic sign

c. Symbols representing zero suppression operations

Z represents standard zero suppression (replacement of
leading zeros by spaces)

* represents check protection (replacement of leading
zeros by asterisks)

3.

THE DATA DIVISION

PICTURE (Cont.)

d. Symbols representing insertion characters

$ represents a dollar sign (this sign floats from left
to right and replaces the rightmost leading zero when
more than one $ apears)!

represents an insertion comma?

represents an actual decimal point?

represents an insertion blank

represents an insertion zero

oW ~

e. Symbols representing editing sign-control symbols

+ represents an editing plus sign
- represents an editing minus sign
CR represents an editing Credit symbol
DB represents an editing Debit symbol

The plus and minus signs (+ and -) float when more than
one appear, and replace the rightmost leading zeroes.

f. Consecutive repetitions of a picture-symbol can be
abbreviated to the symbol followed by (n), where n
indicates the number of occurrences.

A maximum number of 30 symbols can appear in a
picture-string. Note that the number of symbols in a
picture-string and size of the item represented are not
necessarily the same. There are two reasons for this
discrepancy. First, the abbreviated form for indicating
consecutive repetitions of a symbol <can result in fewer
symbols in the picture-string than character positions in the
item being described. For example, a data item having 40
alphanumeric character positions can be described by a
picture-string of only 5 symbols:

PICTURE IS X(40).

The second reason is that some symbols are not counted when
calculating the size of the data item being described. These
symbols include the V (assumed decimal point), P (decimal
point scaling position), and S (arithmetic sign); these
symbols do not represent actual physical character positions
within the data item. For example, the character-string

S999Vv99
represents a 5-position data item.

Other size restrictions for numeric and numeric edited items
are given under the appropriate headings below.

1 If the CURRENCY SIGN IS clause appears in the SPECIAL-NAMES
paragraph, the symbol specified by the literal must be used in all
instances in place of the $.

If the DECIMAL-POINT IS COMMA clause appears in the SPECIAL-NAMES
paragraph, the functions of the comma and decimal point are reversed.

4-37

THE DATA DIVISION

PICTURE (Cont.)

There are five categories of data that can be described with
a PICTURE clause: alphabetic, numeric, alphanumeric,
alphanumeric edited, and numeric edited. A description of
each category is given in the notes below.

Definition of an Alphabetic Item

a. Its picture-string can contain only the symbol A.

b. It can contain only the 26 letters of the alphabet and
the space.

Definition of a Numeric Item

a. Its picture-string can contain only the symbols 9, P, S,
and V. It must contain at least one 9.

The picture-string must have from 1 to 18 digit
positions.

b. It can contain only the digits 0 through 9 and an
operational sign.

Definition of an Alphanumeric Item

a. Its picture-string can consist of all Xs, or a
combination of the symbols A, X, and 9 (except all 9s or
all As). The item is treated as if the character-string
contained all Xs.

b. 1Its contents can be any combination of characters from
the complete character set (see Section 1.2.2.2).

Definition of an Alphanumeric Edited Item

a. Its picture-string can consist of any combination of As,
Xs, or 9s (it must contain at least one A or one X), plus
at least one of the symbols B or 0.

b. 1Its contents can be any combination of characters from
the complete character set.

Definition of a Numeric Edited Item

a. Its picture-string must contain at least one of the
following editing symbols:

;, « * + - 0B CRDB $
It can also contain the symbols 9, V, or P.

The allowable sequences are determined by certain editing
rules for each symbol and can be found in Note 10.

The picture-string must have from 1 to 18 digit
positions.

b. The contents can be any combination of the digits 0
through 9 and the editing characters.

THE DATA DIVISION

PICTURE (Cont.)

10. The symbols used to define the category of an elementary item
and their functions are as follows.

A Each A in the picture-string represents a character
position which can contain only a letter of the alphabet
or a space.

B Each B in the picture-string represents a character
position into which a space character is inserted during
editing.

Examples: (A-FLD contains the value 092469)

B-FLD picture-string Result
MOVE A-FLD TO B-FLD 99B99B99 [o]9]a]2]4]A]6]9]
MOVE A-FLD TO B-FLD 9999BBBB lo[o]2]4[alalala]

Also see Note 14, "Simple Insertion Editing”.

P Each P in the picture-string indicates an assumed decimal
point scaling position and 1is used to specify the
location of an assumed decimal point when the point is
outside the positions defined for the item. Ps are not
counted in the size of the data item. They are counted
in determining the maximum number of digit positions (18)
allowed in numeric edited items or numeric items. Ps can
appear only to the left or right of the picture-string
and must appear together. The assumed decimal point |is
assumed to be to the left of the string of Ps it the Ps
are at the left end of the picture-string and to the
right of the string of Ps if the Ps are at the right end
of the picture-string. If the V symbol is used in this
case, it must appear in either of those positions; it is
redundant. ’

Examples:

PPP9999 (or VPPP9999) defines a data item of four character
positions whose <contents 1is treated as .000nnnn during any
decimal point alignment operation (such as in a MOVE or ADD).
9PPP (or 9PPPV) defines a data item of one character position
whose contents is treated as n000 during any decimal point
alignment operation.

S An S in a picture-string indicates that the item has an
operational sign and retains the sign of any data stored
in it. The S must be written as the leftmost character
in the picture-string. If S is not included, all data is
stored in the item as an absolute value and is treated as
positive in all operations. The S symbol is not counted
in the size of the data item.

THE DATA DIVISION

PICTURE (Cont.)

\

A V in a picture-string indicates the 1location of the
assumed decimal point and can appear only once in a
picture-string. The V does not represent a physical
character position and is not counted in the size of the
data item. If the assumed decimal point position is at
the right of the rightmost character position of the
item, the V is redundant (that is, 9999 1is functionally
equivalent to 9999vV).

Each X 1in a picture-string represents a character
position which «can contain any allowable character from
the complete character set.

Each 2z in a picture-string represents the leftmost
leading numeric character positions in which leading
zeros are to be replaced by spaces. Each Z is counted in
the size of the item.

Each * in a picture-string represents the leftmost
leading numeric character positions in which leading
zeros are to be replaced by *. Each * is counted in the
size of the item.

Examples: (A-FLD contains the value 00305)

B-FLD picture-string Result
MOVE A-FLD TO B-FLD 999999 loJo[o]3]o]5]
MOVE A-FLD TO B-FLD 229999 |alalo]3]o]s]
MOVE A-FLD TO B-FLD 2222722 |a]alal3]o]s]|
MOVE A-FLD TO B-FLD 2222.2% |Aa]3]o]s].]o]0]

Also see Note 18, "Zero Suppression Editing".

9

Each 9 in a picture-string represents a character
position which can contain a digit. Each 9 is counted in
the size of the item.

Each 0 1in a picture-string represents a character
position into which a zerc is inserted. It is counted in
the size of the item. The 0 symbol works in the same
manner as the B symbol.

Each , in a picture-string represents a character
position into which a comma is inserted.

Examples: (A-FLD contains 362577)

B-FLD picture-string Result
MOVE A-FLD TO B-FLD 9,999,999 tol,[3]e]2].[5]7]7]
MOVE A-FLD TO B-FLD 2,227,227 [3T6[2],[5]7]7]

4-40

THE DATA DIVISION

PICTURE (Cont.)

Also see Note 14, "Simple Insertion Editing".

. A ., (dot or period) in a picture-string 1is an editing
symbol that represents an actual decimal point. It is
used for decimal point alignment and also indicates where
a point (.) is to be inserted. This symbol is counted in
the size of the item. Only one . can ‘appear 1in a
picture-string.

Examples: (A-FLD contains 3529@\9)1

B-FLD picture-~-string Result

MOVE A-FLD TO B-FLD 99,999.99 lo]3]/[5]2]6].[9]9]
MOVE A-FLD TO B-BLD 27,222 .22 Ia]3]/[s]2]6].]9]9]
MOVE A-FLD TO B-FLD 99999.9999 [o]3]5]2]6].]9]9]0]0]

See Note 4 under MOVE in Chapter 5 for a clarification of the
rule governing the third example.

Also see Note 15, "Special Insertion Editing".

+ Each of these symbols is used as an editing sign-control

- symbol. When used, they represent the character

CR, position(s) into which the editing sign-control symbol

DBY is placed. Only one of these symbols can appear 1in a
character~-string.

The + and - symbols can appear either at the beginning or at the
end of a picture-string. The CR and DB symbols can appear only
at the end of a picture-string.

+ The character position containing this symbol contains a
+ if the sending field either was unsigned (absolute) or
had a positive operational sign; it contains a - if the
sending field had a negative operational sign.

- The character position containing this symbol contains a
space if the sending field either was unsigned (absolute)
or had a positive operational sign; it contains a - 1if
the sending field had a negative operational sign.

CR) Each of these symbols requires two character positions.
DB} The character positions containing either of these
symbols contains spaces if the sending field either was
unsigned (absolute) or had a positive operational sign;
they contain the symbol specified if the sending field
had a negative operational sign,

! The caret (") symbol is used to indicate the location of the
assumed decimal point.

THE DATA DIVISION

PICTURE (Cont.)

Examples: (A-FLD contains 3459%5, B-FLD contains —3459%5)1

C-FLD picture-string Result
MOVE A-FLD TO C-FLD 9999.99BCR [3]4]s]6].[2]5]alala]
MOVE B-FLD TO C-FLD 9999.99BCR [3]4]s]6].]2][5]a[c]R]
MOVE A-FLD TO C-FLD +9999.99 |+[3]4]5]6].]2]5]
MOVE B-FLD TO C-FLD +9999.99 [-13]4]s]6].]2]5]
MOVE A-FLD TO C-FLD -9999.99 [a]3]4]5]6].[2]5]
MOVE B-FLD TO C-FLD -9999.99 [-13]4]5]6].]2]5]
MOVE A-FLD TO C-FLD 9999.99DB [3[4]s]6].]2]5]a]a]
MOVE B-FLD TO C-FLD 9999.99DB [3[4]5][6].[2]5]p]B]
MOVE B-FLD TO C-FLD $9999.99+ Is]3]4]s]6].]2]5]-]

Also see Note 16, "Fixed Inserting Editing".

The + and - can also be used to perform floating insertion
editing, a combination of zero suppression and symbol insertion.
Floating insertion editing is indicated by the occurrence of two
or more consecutive + or -~ symbols at the beginning of the
picture-string. The total number of significant positions in the
editing field must be at least one greater than the number of
significant digits in the data to be edited. The floating + or -
moves from left to right through any high-order zeros until a
decimal point or the picture character 9 is encountered.

Examples: (A-FLD contains 005935; B-FLD contains —0059%5)

C-FLD picture=-string Result
MOVE A-FLD TO C-FLD ++999.99 |a]+[o]s]6].]2]5]
MOVE B-FLD TO C-FLD ++++9.99 [alal-]s5]s].[2]5]
MOVE ZERO TO C-FLD ++999.99 [a]+][o]o]o].]o]0]
MOVE ZERO TO C-FLD Ft L+ |A]A|AIAJALA|AJA]

The caret (") symbol is used to indicate the 1location of the
assumed decimal point.

THE DATA DIVISION

PICTURE (Cont.)

(In order for floating to go past decimal point, all numeric
positions of item must be represented by the floating insertion
symbol)

MOVE A-FLD TO C-FLD --999.99 [alalo]s]e].[2]5]
MOVE B-FLD TO C-FLD --999.99 [Aa]-[o]5]6].]2]5]
MOVE ZERO TO C-FLD ---99.99 lalalajolo].fo]o]
MOVE ZERO TO C-FLD ——————- [Ala]la]a]a]a]ala]

Also see Note 15, "Floating Insertion Editing".

Note that the + and - symbols are distinct from the S
(operational sign) symbol. Normally, the + and - symbols are
used to describe display items that are to appear on some printed
report; they provide visual sign indication and cannot be used
with items appearing as operands in arithmetic statements.

$ A $ (or the symbol specified by the CURRENCY SIGN clause
in the SPECIAL-NAMES paragraph) represents the character
position into which a $ (or the currency symbol) is to be
placed. This symbol is counted in the size of the item.

Example: (A-FLD contains 345935)

B-FLD character-string . Result
MOVE A-FLD TO B-FLD $9,999.99 Is[3].[a]5]e]-]7]5]
MOVE A-FLD TO B-FLD $999,999.99 [s]o]o3],[4]5]6]-]7]5]

Also see Note 16, "Fixed Insertion Editing".

The $ symbol can also be used to perform floating insertion
editing. Floating insertion editing 1is indicated by the
occurrence of two or more consecutive $ symbols at the beginning
of the <character string. The total number of significant
positions in the editing field must be at least one greater than
the number of significant digits in the data to be edited. The
floating $ symbol floats from 1left to right through any
high-order zeros until a decimal point or the picture character 9
is encountered.

Examples: (A—-FLD contains 0059@5)

B-FLD picture-string Result
MOVE A-FLD TO B-FLD $$9,999.99 [a]s]o] Jo][5]6].]2]5]
MOVE A-FLD TO B-FLD $$5,$$5.99 Ialalalals]s]e].|2]s]
MOVE ZERO TO B-FLD $$5,999.99 [alalals]o]o]o]. [o]o]
MOVE ZERO TO B-FLD $$5,555.5$ ININANNSINNNN

4-43

THE DATA DIVISION

PICTURE (Cont.)

Also see Note 17, "Floating Insertion Editing".

11. There are two general methods of performing editing in the
PICTURE clause:
a. insertion, or
b. suppression and replacement.
There are four types of insertion editing available:
a. Simple insertion
b. Special insertion
c. Fixed insertion
d. Floating insertion
There are two types of suppression and replacement editing:
a. Zero suppression and replacement with spaces
b. Zero suppression and replacement with asterisks
12. The type of editing that can be performed upon an item
depends on the category to which the item belongs.
Category Type of Editing Allowed
Alphabetic None
Numeric None
Alphanumeric None
Alphanumeric edited Simple insertion: 0 and B
Numeric Edited All (except for the restriction given in
Note 13)
13. Floating insertion editing and zero suppression/replacement
editing are mutually exclusive in a PICTURE clause. Only one
type of replacement can be used with zero suppression in a
PICTURE clause.
14. Simple Insertion Editing (, B 0)

The , (comma), B (space), and 0 (zero) constitute those
editing symbols wused 1in simple insertion editing. These
insertion characters represent the character position in the
item into which the character is inserted. These symbols are
counted in the size of the item..

15.

16.

THE DATA DIVISION

PICTURE (Cont.)

Special Insertion Editing (.)

The . (decimal point) symbol is wused in special insertion
editing. In addition to its use as an insertion character,
it also represents the position of the decimal point for
decimal point alignment. This symbol is counted in the size
of the item. The symbols . and V (assumed decimal point) are
mutually exclusive in a PICTURE clause. 1If the . is the last
symbol in the character-string, it must be immediately
followed by one of the punctuation characters (semicolon or
period). ‘

Fixed Insertion Editing ($ + - CR DB)

The currency symbol ($) and the editing sign control
characters (+ - CR DB) constitute the characters used in
fixed insertion editing. Only one $ and one of the editing
sign control characters can be used in a PICTURE
character-string. When the symbols CR or DB are used, they
represent two character positions in determining the size of
the item. The symbols + or - when used must be the leftmost
or rightmost character positions to be counted in the size of
the item. The $ when used must be the 1leftmost <character
position to be counted in the size of the item, except that
it can be preceded by a + or. - symbol. A fixed insertion
editing character appears in the same character position in
the edited item as it occupied in the PICTURE
character-string. :

When the $ is used as a floating insertion editing character,
the picture string must contain at least one $ more than the
maximum number of significant digits in the item to be
edited. If you use a comma and the $ simultaneously for
editing, there must always be at least two $ to the 1left of
the comma because one $ is always printed; there is no place
for a significant digit to the left of the comma if you have
used only one $. (If the item has a picture of $,$$$ then no
digit ever appears to the left of the comma; a $ 1is always
there.) A comma is omitted only when what appears to its
left consists only of zeroes. (With the picture string $,$$$
the comma is never omitted.)

Editing sign control symbols produce the following results
depending on the value of the data being edited.

Editing Symbol in Result
PICTURE character-string Data Positive Data Negative
+ + -
- space -
CR 2 spaces CR
DB 2 spaces DB

THE DATA DIVISION

PICTURE (Cont.)

17.

18.

Floating Insertion Editing ($$ ++ --)

The $ and the editing sign control symbols + and - are the
floating insertion editing characters and are mutually
exclusive in a given PICTURE string.

Floating insertion editing is indicated 1in a PICTURE
character-string by wusing a string of at least two of the
allowable insertion characters to represent the 1leftmost
numeric character positions into which the insertion
characters can be floated. Any of the simple insertion
characters embedded 1in the string of floating insertion
characters or to the immediate right of this string are part
of the floating string.

In a PICTURE character-string, there are only two ways of
representing floating insertion editing.

a. Represent any two or more of the leading numeric
character positions on the left of the decimal point by
the insertion character. The result 1is that a single
insertion character is placed in the character position
immediately preceding the leftmost nonzero digit of the
data being edited or in the <character position
immediately preceding the decimal point, or in the
character position represented by the rightmost insertion
character, whichever is encountered first.

b. Represent all numeric character positions in the
character-string by the insertion character. If the
value is not zero, the result is the same as when the
insertion character appears only to the 1left of the
decimal point. If the value is zero, the entire item is
set to spaces.

A picture-string containing floating insertion characters
must contain at least one more floating insertion
character than the maximum number of significant digits
in the item to be edited. For example, a data field
containing five significant digit positions requires an
editing field of at least six significant positions.

All floating insertion characters are counted in the size
of the itenm.

Zero suppression Editing (Z *)

The suppression of leading zeros and commas in a data field
is indicated by the wuse of the 2 or the * symbol in a
picture-string. These symbols are mutually exclusive in a
given picture-string. Each suppression symbol is counted in

the size of the item. If a 2 1is wused, the replacement
character 1is a space. If an * is used, the replacement
character is an *. Zero suppression and replacement is

indicated by a string of one or more Zs or *s to represent
the leading numeric-character positions which are to be
replaced when the associated character position in the data
contains a leading zero. Any of the simple insertion
characters embedded in this string of zero suppression
symbols or to the immediate right of this string are part of
the string.

4-46

19.

20.

THE DATA DIVISION

PICTURE (Cont.)

If the zero suppression symbols appear only to the 1left of
the decimal point, any 1leading zero 1in the data that
corresponds to a zero suppression symbol in the string is
replaced by the replacement character.

Suppression terminates at the first nonzero digit in the data
represented by the suppression symbol in the string or at the
decimal point, whichever is encountered first.

If all numeric character positions in the picture-string are
represented by the suppression symbol and the value of the
data 1is not =zero, the result 1is the same as 1if the
suppression characters were only to the left of the decimal
point. 1If the value is zero, the entire item (including any
sign) is set to the replacement character (with the exception
of the decimal point if the suppresson symbol is an *).

When the * is used and the clause BLANK WHEN ZERO appears in
the same entry and 2zeros are moved to the field, all
character positions with the exception of the decimal point
are replaced by *.

The symbols + - * Z and $ when used as floating replacement
characters are mutually exclusive within a given
picture-string.

The following chart shows the order of precedence of the
various picture-string symbols. Each "Y" on the chart
indicates that the symbol in the top row directly above can
precede the symbol at the left of the row in which the "Y"
appears.

{ } indicate that the symbols are mutually exclusive.

The P and the fixed insertion + and - appear twice.

P9, +9, and -9 represent the case where these symbols appear
to the left of any numeric positions in the string.

9P, 9+, and 9- represent the case where these symbols appear
to the right of any numeric positions in the string.

The Z, *, and the floating ++, --, and $$ also appear twice.

Z., *., $$., and --. represent the case where these symbols
appear before the decimal point position.

.Z, .*, .88, .++, and .-- represent the case where these
symbols appear following the decimal point position.

THE DATA DIVISION

PICTURE (Cont.)

MR-§8-1016-81

b7 > > > > >
s | > | > > > > > > >
T o
T > > >
oL
—
+ > > | > > > > >
U
o > > > > > > > > >
o | N %
o R > > | > > > >
=]~
ofN« > > >} > >{ > > > > > >
> > 1 > > > > > > | >
) > > >
& >{ > > >
g S>>0 > > = > > >
<x| > > >
“ > >1>1> > > > o> > >
o
> >
NCD
o
OM.,O_, > >
-
o
> > | > > > > >
wmq_, > > >
= > > | > > > > > > >
o
[V} N
x N > > >] > > > > >l o> > > >| > >
w
o | > >] > > > > o> > > > > >
o > > > > > > > o> > > > > >
o | o N & VT & o | a >0 N« oy AT V] w] &
G e MO O, B N o L) S i T
NOIL¥ISNI g3x14 4IHIO

4-48

4.11.2.8

Function

THE DATA DIVISION

REDEFINES

REDEFINES

The REDEFINES clause allows the same memory area to be allocated to
two or more data items.

General Format

level-number data-name-1 REDEFINES data-name-2

Technical Notes

1.

2.

7.
8.

The REDEFINES clause, when used, must immediately follow
data-name-1.

The level-numbers of the data-name-l1 and data-name-2 entries
must be identical.

This clause must not be used for level-number 66 or 88 items.
Also, it must not be used for level-01 entries in the FILE
SECTION; implicit redefinition 1is provided by specifying
more than one data-name in the DATA RECORDS ARE clause in the
FD.

When the 1level-number of the data-names is other than
level-01, the storage area for data-name-2 should be of the
same size or shorter than data-name-1. FILLER items can be
used to comply with this rule.

The REDEFINES entry must immediately follow the entries
describing data~name-2. .

The REDEFINES entry cannot. be a subordinate to the OCCURS
clause.

The redefinition entries cannot contain VALUE clauses.

Data~-name-2 must not be qualified.

THE DATA DIVISION

REDEFINES (Cont.) ,

The following example illustrates the use

entry.

The

the same area in memory.

03 AREA-A USAGE DISPLAY-6.

04 FIELD-1 PICTURE IS X (7).
04 FIELD-2 PICTURE IS A(1l3).
04 FIELD-3.

03 AREA-B REDEFINES AREA-A USAGE DISPLAY-6.

05 SUBFIELD-1 PICTURE IS
S999Vv99 USAGE IS COMP.
05 SUBFIELD-2 PICTURE IS
5999Vv99 USAGE IS COMP.

04 FIELD-A PICTURE IS X(22).
04 FIELD-B PICTURE IS X(5).
04 FILLER PICTURE IS X(9).

REDEFINES
entries shown cause AREA-A and AREA-B to occupy

Note how the length of each area is calculated so that AREA-B
can be defined so that its size is equal to that of AREA-A.

AREA-A: FIELD-1 7 6-bit characters (DISPLAY-6
assumed)

FIELD-2 13 6-bit characters (DISPLAY-6
assumed)

4 6-bit characters (not used
because COMP items must start
at a new word boundary)

SUBFIELD-1 6 6-bit characters (COMP items
occupy one word, or six 6-bit
character positions)

SUBFIELD-1 6 6-bit characters (COMP items
occupy one word, or six 6-bit
character positions)

Total 6-bit characters 36
AREA-B: FIELD-A 22 6-bit characters (DISPLAY-6
assumed)

FIELD-B 5 6-bit characters (DISPLAY-6
assumed)

FILLER 9 6-bit characters (needed to
make AREA-B size -equal to
AREA-A) '

Total 6-bit characters 36

4.11.2.9

Function

THE DATA DIVISION

RENAMES (level—66)

RENAMES (level-66)

The RENAMES clause permits alternate, possible overlapping, groupings
of elementary items.

General Format

66

data-name-1 RENAMES data-name-2 [THRU data-name-3] _.

Technical Notes

1.

All RENAMES entries associated with items in a given record
must immediately follow the last data description entry for
that record.

01 data-name-a

(data description entries)

(level-66 entries associated with this logical record)
01 data-name-b.

Data-name-1 cannot be used as a qualifier, and can be
qualified only by the names of the level-01 or FD entries
associated with it.

Data-name-2 and data-name-3 must be the names of items in the
assoicated logical record and cannot be the same data-name.

Neither data-name-2 nor data-name-3 can have a level-number
of 01, 66, 77, or 88. Neither of these data-names can have
an OCCURS clause in its data description entry, nor be
subordinate to an item that has an OCCURS clause in its data
description entry.

Data-name-2 must precede data-name-3 in the record
description, and data-name-3 cannot be subordinate to
data-name-2. If there 1is any associated redefinition
(REDEFINES), the ending point of data-name-3 must logically
follow the beginning point of data-name-2. When data-name-3
is specified, data-name-1 is a group item that includes all
elementary items starting with data-name-2 (if data-name-2 is

an elementary item) or the first elementary item 1in
data-name-2 (if data-name-2 is a group item) and concluding

with data-name-3 (or the last elementary item 1in
data-name-3) . .

THE DATA DIVISION

RENAMES (level-66) (Cont.)

If data-name-3 is not specified, data-name-2 can be either a
group or elementary item. If it is a group item, data-name-1
is treated as a group item and includes all elementary items
in data-name-2; if data-name-2 1is an elementary item,
data-name-1 is treated as an elementary item with the same
descriptive clauses.

The following examples illustrate the wuse of the RENAMES
entry.

01 RECORD-NAME.
02 FIRST-PART.
03 PART-A.
04 FIELD-1 PICTURE IS ...
04 FIELD-2 PICTURE IS ...
04 FIELD-3 PICTURE IS ...
03 PART-B.
04 FIELD-4 PICTURE IS ...
04 FIELD-5.
05 FIELD-5A PICTURE IS ...
05 FIELD-5B PICTURE IS ...
03 SECOND-PART.
03 PART-C.
04 FIELD-6 PICTURE IS ...
04 FIELD-7 PICTURE IS ...
66 SUBPART RENAMES PART-B THRU PART-C.
66 SUBPART1 RENAMES FIELD-3 THRU SECOND-PART.
66 SUBPART2 RENAMES FIELD-5B THRU FIELD-7.
66 AMOUNT RENAMES FIELD-7.

THE DATA DIVISION

SYNCHRONIZED

4.11.2.10 SYNCHRONIZED

Function

The SYNCHRONIZED clause specifies the positioning of an elementary
item within a computer word (or words).

General Format

SYNCHRONIZED LEFT
SYNC RIGHT

MR-S-1017-81

Technical Notes

1.

2.

This clause can appear only in the data description of an
elementary item.

This clause specifies that the item being defined 1is to be
placed in an integral number of computer words and that it is
to begin or end at a computer word boundary. No other
adjacent fields are to occupy these words. The unused
positions, however, must be counted when calculating:

a. The size of any group to which this elementary item
belongs, and .

b. The computer memory allocation when the item appears as
the object of a REDEFINES clause. However, when a
SYNCHRONIZED item is referenced, the original size of the
item (as indicated by the PICTURE clause) is used in
determining such things as truncation, justification, and
overflow.

SYNCHRONIZED LEFT or SYNC LEFT specifies that the item is to
be positioned in such a way that it begins at the left
boundary of a computer word.

SYNCHRONIZED RIGHT or SYNC RIGHT specifies that the item 1is
to be positioned in such a way that it terminates at the
right boundary of a computer word.

When the SYNCHRONIZED clause is specified for an item within
the scope of an OCCURS clause, each occurrence of the item is
SYNCHRONIZED.

Any FILLER required to position the item as specified is
automatically generated by the compiler. The content of this
FILLER is indeterminate.

THE DATA DIVISION

SYNCHRONIZED (Cont.)

COMP (UTATIONAL), COMP(UTATIONAL)-1l, and INDEX items are
always implicitly SYNCHRONIZED RIGHT, and therefore cannot be
SYNCHRONIZED LEFT.

An item subordinate to one containing a VALUE clause cannot
be SYNCHRONIZED.

Only DISPLAY-6, DISPLAY-7, DISPLAY-9, or COMP-3 items can be
SYNCHRONIZED.

4.11.2.11

Function

THE DATA DIVISION

USAGE

USAGE

The USAGE clause specifies the format of a data item in computer

storage.

General Format

COMPUTATIONAL
Ccomp

COMPUTATIONAL-1

COMP-1

COMPUTATIONAL-3
] CoMP-3

DISPLAY
DISPLAY-6
DISPLAY-7
DISPLAY-9
INDEX
DATABASE-KEY
DBKEY

MR-S-1018-81

Technical Notes

1.

The USAGE clause can be written at any level. If it is
written at a group level, it applies to each elementary item
in the group. The USAGE clause of an elementary item cannot
contradict the USAGE c¢lause of a group to which the item
belongs.

Note that the recording mode of a file determines how the
data 1is recorded on the external medium. The recording mode
can be inferred from the usage mode of the data records, but
the reverse 1is never true. The usage of a data record is
never inferred from the declared recording mode of the file.

The implied USAGE of a group item is DISPLAY-7 if the first
elementary item subordinate to it is declared as DISPLAY-7,
or DISPLAY-9 if the first elementary item subordinate to it
is declared as either DISPLAY-9 or COMP~-3; otherwise, its
USAGE is DISPLAY-6. However, if the /X switch is included in
the compiler command string, the default USAGE is DISPLAY-9.

USAGES of DISPLAY-6, DISPLAY-7, and DISPLAY-9/COMP-3 cannot
be mixed. However, USAGES of COMP, COMP-1 and INDEX can be
mixed with the aforementioned USAGES.

This clause specifies the manner in which a data item is
represented within computer memory.

THE DATA DIVISION

USAGE (Cont.)

COMPUTATIONAL (COMP)

COMP is equivalent to COMPUTATIONAL.

A COMPUTATIONAL item represents a value to be wused 1in
computations and must be numeric. Its picture-string can
contain only the symbols: 9 8 VvV P. Its value is
represented as a binary number with an assumed decimal
point.

If a group item 1is described as COMPUTATIONAL, the
elementary items in the group are COMPUTATIONAL.
However, the group itself is not COMPUTATIONAL and cannot
be used as an operand in arithmetic computations.

COMPUTATIONAL items of 10 or fewer decimal positions are
SYNCHRONIZED RIGHT 1in one computer word. Computational
items of more than 10 decimal positions are SYNCHRONIZED
RIGHT in two full computer words.

The following illustrations give the format of a
COMPUTATIONAL item.

r—— sign
0 1 I-WORD COMPUTATIONAL ITEM 3
r——— sign
0 1 35
'—— not used)
01 . 35
2.WORD COMPUTATIONAL ITEM MRS 101601

THE DATA DIVISION

USAGE (Cont.)

COMPUTATIONAL-1 (COMP-1)

a.

b.

COMP-1 is equivalent to COMPUTATIONAL-1.

A COMPUTATIONAL-1 item can contain a value, in £floating
point format, to be used in computations. It must be
numeric. A COMP-1 item must not have a PICTURE.

If a group item 1s described as COMPUTATIONAL-1, the
elementary items within the group are COMPUTATIONAL-1.
However, the group item itself is not COMPUTATIONAL-1 and
cannot be used as an operand in arithmetic computations.

COMPUTATIONAL~1 items are SYNCHRONIZED 1in one full
computer word.

The following illustration gives the format of a
COMPUTATIONAL-1 item.

sign

binary
cxponent

01 9 35
MR-S-1020-81

mantissa

>
1

57

THE DATA DIVISION

USAGE (Cont.)

5. COMPUTATIONAL-3 (COMP-3)

/

COMP-3 is equivalent to COMPUTATIONAL-3.

A COMP-3 item's picture string can contain only the
symbols 9 S V P. 1Its value is represented as a packed
decimal number with an assumed decimal point.

If a group item is declared as COMP-3 the -elementary
items 1in the group are COMP-3. However, the group item
itself is not COMP-3 and cannot be used as an operand in
arithmetic computations.

The maximum size of a COMP-3 item is 18 decimal digits.
The following illustration gives the format of a COMP-3

item. Note that bits 0, 9, 18 and 27 of the word are not
used.

4 89 13 17 18 22 2627 31 35
MR-S-1021-61

COMP-3 items can be SYNCHRONIZED LEFT or SYNCHRONIZED
RIGHT.

COMP-3 items can share a computer word with other COMP-3
items or with DISPLAY-9 items. However, COMP-3 items
always begin at one of the following bit positions in a
word: 1, 10, 19, 28.

The actual size of a COMP-3 item in memory 1is at least
four bits larger and can be nine bits larger than the
number of character positions because the sign is stored
in the last four bits of the item and the item is stored
right justified on a nine-bit byte boundary.

The octal values 12, 14, and 16 represent plus signs and
the octal values 13 and 15 represent minus signs. The
octal value 17 represents the non-printing plus sign.
Although octal 12, 14 and 16 represent plus signs, the
sign given to the ©positive result of any arithmetic
operation is 14. Similarly, the minus sign given to the
negative result of any arithmetic operation is 15.

The non-printing plus sign is actually an absolute value
indicator. Any positive or negative number which is
moved into an item with this sign receives this sign. 1In
arithmetic computations and numeric editing operations,
items containing the nonprinting plus sign are treated as
positive.

THE DATA DIVISION

USAGE (Cont.)

DISPLAY-6

a.

DISPLAY is equivalent to DISPLAY-6 when the /X switch is
not given in the compiler command string.

b. A DISPLAY-6 item represents a string of 6-bit characters.
Its picture-string can contain any picture symbols.
Refer to Appendix B for the -SIXBIT collating sequence.

c¢. DISPLAY-6 items can be SYNCHRONIZED LEFT or SYNCHRONIZED
RIGHT, as desired. Otherwise, they can share a computer
word with other DISPLAY-6 items.

d. The illustration below given the format of a DISPLAY-6
word.

0 6 12 18 24 30 35
MR-8-1022-81

e. If the USAGE clause is omitted for an elementary item,
its USAGE is assumed to be DISPLAY-6 if the /X switch has
not been included in the compiler command string.

DISPLAY-7

a. A DISPLAY-7 item represents a string of 7-bit ASCII
characters., Its picture-string can contain any picture
symbols.

b. DISPLAY~7 items can be SYNCHRONIZED LEFT or SYNCHRONIZED
RIGHT, as desired; otherwise, they can share a computer
word with other items. If the item is SYNCHRONIZED
RIGHT, the last character of the item ends in bit 34 of a
computer word.

c. The illustration below gives the format of a DISPLAY-7
word.

0 7 14 21 28 35
MR-S-1023-81

DISPLAY-9

a. DISPLAY is equivalent to DISPLAY-9 when the /X switch is
included in the command string to the compiler.

b. A DISPLAY-9 item represents a string of EBCDIC

characters. Its picture string can contain any picture
symbol.

THE DATA DIVISION

USAGE (Cont.)

10.

DISPLAY-9 items can be SYNCHRONIZED LEFT or SYNCHRONIZED
RIGHT as desired; otherwise, they can share a computer
word with other DISPLAY-9 OR COMP-3 items. If the item
is SYNCHRONIZED RIGHT, the last character of the item
ends in bit 35 of a computer word.

The maximum length of a DISPLAY-9 item is 4,096
characters.

The illustration below gives the format of a DISPLAY-9
item. Note that bits 0, 9, 18, and 27 are not used.

f.

§9

2627 35
MR-5-1024-81

If the USAGE clause is omitted for an elementary item,
its USAGE is assumed to be DISPLAY-9 if the /X switch has
been included in the computer command string.

INDEX

a.

An elementary item described as USAGE INDEX is called an
index data-item. It 1is treated as a COMP item with
PICTURE S9(5) and can be used as a COMP item.

An index data-item must not have a PICTURE.

If a group item is described as 1INDEX, the elementary
items within the group are treated as INDEX. However,
the group item itself is not INDEX and cannot be used as
an operand in arithmetic statements.

Index data items and index-names (defined in the OCCURS
clause by the INDEXED BY option) are equivalent.

If an index-name is defined in an OCCURS <clause, it
cannot be defined elsewhere.

DATABASE-KEY

A.

b.

DATABASE-KEY and DBKEY are equivalent and
interchangeable.

An item described as USAGE DATABASE-KEY is treated as a
COMP item with PICTURE S9(10) and can be used as a COMP
item.

da.

THE DATA DIVISION

USAGE (Cont.)

The item with USAGE DATABASE-KEY must not have a PICTURE.

An item with USAGE DATABASE-KEY is primarily used in
programs accessing data bases through the Data Base
Management System (DBMS). This item can be used to store
the value of a data base key. All data base keys are
assigned by DBMS and cannot be changed by you. Refer to
the DBMS Programmer's Procedures Manual for more
information about DBMS.

>
|

61

VALUE

THE DATA DIVISION

4.11.2.12 VALUE

Function

The VALUE clause defines the initial value of WORKING-STORAGE items,
and the values associated with condition-names (level-88).

General Format

Format 1:

[VALLE 1S T1iteral]

Format 2:

VALUE IS
VALUES ARE

} literal-1 [THRU literal-2]

[,Htera1-3 [THRU 1itera1-4]]...

MR-S-1025-81

Technical Notes

1.

2.

Format 2 can be specified only for level-88 items.

In the FILE SECTION, the VALUE clause can be used only with
level-88 items. In the WORKING-STORAGE SECTION, it can be
used at all levels, except level-66. It must not be stated
in a data description entry that contains an OCCURS clause or

. that is subordinate to an entry containing an OCCURS clause.

Also, it must not be stated 1in an entry that contains a
REDEFINES clause or that is subordinate to an entry that
contains a REDEFINES clause.

If the VALUE clause is used at a group level, the 1literal
must be a figurative constant or a nonnumeric literal.. The
group item is initialized to this value without consideration
for the individual elementary or group items contained within
this group. No VALUE clauses can appear at subordinate
levels within the group.

If no VALUE clause appears for a WORKING-STORAGE item, the
initial value of the item is unpredictable.

THE DATA DIVISION

VALUE (Cont.)

More information concerning Format 2 can be found under
"condition~-name (Level-88)" in this chapter.

The VALUE clause must not conflict with other clauses in the
data description entry or in the data description entries
within the hierarchy of the item. The following rules apply:

a. If the category of an item is numeric, all 1literals in
the VALUE <clause must be numeric. All literals in a
VALUE clause must have a value within the range of values
indicated by the PICTURE clause; for example, an item
with PICTURE PPP9 can have only the values in the range
.0000 through .0009.

b. If the category of the item is alphabetic or
alphanumeric, all 1literals in the VALUE clause must be
alphanumeric literals. The literal is aligned according
to the normal alignment rules (see "JUSTIFIED") except
that the number of characters in the 1literal must not
exceed the size of the item.

c. If the category of an item is numeric-edited or
alphanumeric-edited, no editing of the value is performed
in the VALUE clause.

d. The USAGE of the literal agrees with the USAGE of the
item. Thus, if the item has USAGE DISPLAY-6, the literal
also has USAGE DISPLAY-6 and its value must contain legal
SIXBIT characters.

The figurative constants SPACE(S), ZERO(E)(S), QUOTE(S),
LOW-VALUE(S), and HIGH-VALUE(S) <can be substituted for a
literal. If the item is numeric, only ZERO(E) (S),
LOW-VALUE(S), and HIGH~-VALUE(S) are allowed.

THE DATA DIVISION

REPORT SECTION

4.12 REPORT SECTION

The REPORT SECTION contains the descriptions of one or more reports
and the report groups that make up each report.

Report groups are the basic elements of a report. Each report group
is divided into report lines, which are in turn divided into fields.
The report groups that can appear in a report are:

REPORT HEADING Printed once at the beginning

REPORT FOOTING Printed once at the end

PAGE HEADING Printed at the beginning of each page

PAGE FOOTING Printed at the end of each page

DETAIL Printed for each set of report data

CONTROL HEADING Printed at the beginning of each detail

report group when a control break occurs

CONTROL FOOTING Printed at the end of each detail report
group when a control break occurs

The detail report groups contain the data items that constitute the
report. Data items within a detail group can be designated by the
programmer as controls., These control items are in descending order
of rank from FINAL, through major, intermediate, to minor. Each time
a control item changes, a control break is said to occur; the control
footings for the detail group are printed, and control headings for
the next detail group are printed before the next detail group is
printed. A FINAL control break occurs twice during the generation of
a report, before the first detail line is printed and after the last
detail line is printed. The most major control breaks least often and
the most minor control breaks most often. If the most minor control
field breaks, the control footing for that control field is generated,
and the control heading for the next detail group for that control is
generated. If a more major control field breaks, the control footings
for all fields more minor than that which broke are generated,
starting with the most minor and continuing up to the control footing
for the control that broke. The control headings are then printed
starting with the control field that broke and continuing through the
most minor control field. An example of a skeleton report follows.

REPORT HEADING

PAGE HEADING

CONTROL HEADING (FINAL)
CONTROL HEADING (MAJOR)
CONTROL HEADING (MINOR)
DETAIL GROUP

CONTROL FOOTING (MINOR) (control break occurred)
CONTROL HEADING (MINOR)
DETAIL GROUP

THE DATA DIVISION

REPORT SECTION (Cont.)

CONTROL FOOTING (MINOR)

CONTROL FOOTING (MAJOR) (control break occurred)
CONTROL HEADING (MAJOR)

CONTROL HEADING (MINOR)

DETAIL GROUP

.

CONTROL FOOTING (MINOR)

CONTROL FOOTING (MAJOR)

CONTROL FOOTING (FINAL) (control break occurred)
PAGE FOOTING

REPORT FOOTING

Within a report file, more than one report can be written. If more
than one report 1is written in a file, the names of all the reports
must be specified in the REPORTS clause of the file description entry,
and a unique code must be specified for each report by means of the
CODE clause in the Report Description fo each report. The code must
also be identified in the SPECIAL-NAMES section of the ENVIRONMENT
DIVISION.

To print one of the reports within a report file, you enter the
filename and the <code of the desired report into the queue for the
line-printer spooler, LPTSPL. LPTSPL copies the report lines with the
designated code to the line printer, but does not erase the lines from
the file. The file is entered into the line-printer queue by means of
the PRINT monitor command. The code 1is specified by the /REPORT
switch in the Queue command string.

PRINT filespec/REPORT:code

Only the first 12 characters of the code are accepted in the PRINT
command string.

Included in the description of a report are the number of lines on a
report page, where headings should begin on the page, where footings
should end, the column on the page where each item in a report group
is to be placed, and the number of lines that are left between report
groups.

To cause a report to be printed, in addition to specifying its format
and data 1in the DATA DIVISION, you must include certain verbs in the
PROCEDURE DIVISION. These verbs are: INITIATE, which initializes the
report and sets sum counters to zero; GENERATE, which causes report
groups to be generated on specified control breaks; and TERMINATE,
which ends the report. An additional statement, USE BEFORE REPORTING,
causes a programmer-specified procedure to be performed before a
report group is produced.

THE DATA DIVISION

REPORT DESCRIPTION (RD)

4,12.1 Report Description (RD)

Function

The Report Description furnishes information concerning the physical
structure for a report.

General Format

RD report-name

[CODE mnemonic-name]
{CONTROL IS } {1dentif1er-1 ,identifier-2 ... }
CONTROLS ARE FINAL Eidentifier-l [,identifier-z] ..T

[P GE

{Hm}sI/S\RE% integer-1 {Hﬁéiﬁ

[HEADING 1nteger-2] [FIRST DETAIL 1nteger-3]

[LAST DETAIL integer-4] [FOOTING integer-S]] .

MR-S-1026-81

Technical Notes

1.

2.

The order of appearance of the optional clauses is
immaterial.

A fixed data-name PAGE-COUNTER is automatically generated for
each RD entry.

Its function is to contain the current page number of a
report. It 1is a COMPUTATIONAL item; its size is equal to
the size of the largest field that refers to it in a SOURCE
clause. The contents of the PAGE-COUNTER are set to 1 by the
INITIATE statement.

The fixed data-name LINE-COUNTER is automatically generated
for each RD entry. 1Its function is to contain the current
line number within a report page. It is a COMPUTATIONAL
item; its size is based on the number of lines specified in
the PAGE-LIMIT clause.

THE DATA DIVISION

REPORT DESCRIPTION (RD) (Cont.)

PAGE-COUNTER or LINE-COUNTER can be referenced as if it were
any data-name. It must be qualified by the report-name if
more than one RD entry is present in the program.

Each of the above clauses appears on the following pages.

THE DATA DIVISION

CODE

4.12.1.1 CODE

Function

The CODE clause defines a unique string of one or more characters that
is affixed to each line of the report.

General Format

CODE mnemonic-name

Technical Notes

1. This clause is necessary only if more than one report is to
be written in a single file.

2. Mnemonic-name is defined in the SPECIAL-NAMES paragraph of
the ENVIRONMENT DIVISION.

3. The character string represented by mnemonic-name is affixed
to the beginning of each report line, and is used to uniquely
define the lines of separate reports written in one file.

4. The number of characters represented by mnemonic-name must be
the same for the codes of all reports in the same file.

4.12.1.2

Function

THE DATA DIVISION

CONTROL(S)

CONTROL (S)

The CONTROL clause indicates the identifiers that control the printing
of totals in the report.

General Format

{ CONTROL

CONTROLS ARE

IS identifier-1 [,identifier-2]

} FINAL
FINAL,identifier-1 [,identifier-2]

MR-8-1027-81

Technical Notes

1.

2.

The CONTROL <clause 1is required when CONTROL HEADING or
CONTROL FOOTING report groups are specified.

The identifiers specify the "~control hierarchy for this
report. They are listed in order from major to minor; FINAL
is the highest level of control, identifier-1 1is the major
control, identifier-2 is the intermediate control, etc. The
last identifier specified is the minor control.

Identifiers must not be defined in the Report Section.
Identifiers can be gqualified, but they cannot be subscripted
or indexed.

THE DATA DIVISION

PAGE LIMIT
4.12.1.3 PAGE LIMIT
Function

The PAGE

LIMIT clause indicates the specific 1line control to be

maintained within the presentation of a report page.

General Format

e |

LIMIT IS | .
LIMITS ARE} integer-1 {LINES

LINE

[HEADING integer-Z] [FIRST DETAIL integer—3}

[LAST DETAIL integer‘-4] [FOOTING 1nteger-5]

MR-S-1028-81

Technical Notes

1.

2.

The PAGE LIMIT clause is required when page format must be
controlled by the Report Writer.

All integers must have a positive value 1less than 512.
Integer-2 through integer-5 must not be greater than
integer-1.

If absolute line spacing is indicated for all report groups
(see the LINE NUMBER and NEXT GROUP clauses Sections 4.12.2.3
and 4.12.2.4 respectively), integer-2 through integer-5 need
not be specified.

The integers specify line numbers relative to the beginning
of a page.

The HEADING clause specifies the first line of a page to be
used; no line precedes integer-2.

The FIRST DETAIL clause specifies the first line of the first
DETAIL or CONTROL print group; no DETAIL or CONTROL group
precedes integer-3.

The LAST DETAIL clause specifies the last line of a DETAIL or
CONTROL HEADING report group; no such group extends beyond
integer-4.

The FOOTING clause specifies the last line number of the last
CONTROL FOOTING report group; no CONTROL FOOTING group
extends beyond integer-5.

THE DATA DIVISION

PAGE LIMIT (Cont.)

If any optional clause is omitted, a value is assumed for its

integer.
integer-2:
integer-3:

integer-4:

integer-5:

The default values are:

Default is 1

Default is the value of integer-2

Default is the wvalue of integer-5 if
specified; 1if integer-5 is also omitted, the
default is the value of integer-1

Default 1is the value of integer-4 if
specified; if integer-4 1is omitted, the
default is the value of integer-1.

THE DATA DIVISION

Report Group Description (RD)

4.12.2

Functi

The Report Group Description entry specifies the

format

Genera

Option

01

Report Group Description
on
of a particular report group.
1 Format
1:
;data—name-l]

integer-1
LINE NUMBER IS¢ PLUS integer-2
NEXT PAGE

integer-3
NEXT GROUP IS < PLUS 1nteger-4}
NEXT PAGE

REPORT HEADING
RH
PAGE HEADING

O

{CONTROL HEADING}
HocH FINAL

=
m

TAIL

%

PAGE FOOTING
PE

REPORT FOOTING
RE

[
(=124

FINAL

\

[USAGE 15]

4-72

1dentifier-1}

NTROL FOOTING} {identifier-Z}

MR-8-1029-81

characteristics

and

THE DATA DIVISION

Report Group Description (RD) (Cont.)

Option 2:
level-number [data-name-l]
[QLAHE_NHEN ;ggg]
[ggggmu NUMBER IS integer-l]
[ggggg INDICATE]

[P} ero]

integer-2
INE NUMBER IS < PLUS integer-3
NEXT PAGE

[{P§ETURE} IS character-string}

[RESET ON {;?ﬁgtifie”'l]

SOURCE IS identifier-2
UM identifier-3 [,identifier-4] ... [UPON data-name-2Z]
VALUE IS literal-1

DISPLAY
] DISPLAY-6
DISPLAY-7 -
DISPLAY-9

MR-S-1030-81

THE DATA DIVISION

Report Group Description (RD) (Cont.)

Technical Notes

1.

Except for the data-name, which when present must immediately
follow the level-number, the clauses can be written in any
order.

In order for a report group to be referred to by a PROCEDURE
DIVISION statement, it must have a data-name.

All elementary items must have a PICTURE clause and one of
the clauses SOURCE, SUM, or VALUE.

For a detailed description of the BLANK WHEN ZERO, JUSTIFIED,
PICTURE, VALUE, and USAGE clauses, see the pages following
the Data Description Entry.

The data-name need not appear in an entry unless it is
referred to by a GENERATE or USE statement, or reference is
made to the SUM counter.

If the 0l-level item is elementary, the clauses in Format 2
can be used in addition to the clauses in Format 1.

The remaining clauses are described in detail on the
following pages.

4.12.2.1

Function

THE DATA DIVISION

COLUMN

COLUMN

The COLUMN NUMBER clause indicates the column on the printed page in
which the high-order (leftmost) character of an item is printed.

General Format

COLUMN NUMBER IS integer

Technical Notes

1.
2.
3.

Integer must have a positive value less than 512.
This clause is valid only for an elementary item.

Within a report group and a particular LINE NUMBER
specification, COLUMN NUMBER entries must be indicated from
left to right.

If the COLUMN NUMBER clause is omitted, the elementary item,
though included in the description, is suppressed when the
report group is produced at object time.

THE DATA DIVISION

GROUP INDICATE

4.12.2.2 GROUP INDICATE

Function

The GROUP INDICATE clause indicates that this elementary item is to be
produced only on the first occurrence of the item after any CONTROL or
PAGE breaks.

General Format

GROUP INDICATE

Technical Notes

1. This clause can only be used at the elementary level within a
TYPE DETAIL report group.

2. A GROUP INDICATEd item is presented in the first detail 1line
of a report after any control breaks and after any page
breaks; 1t is suppressed at all other times.

THE DATA DIVISION

LINE NUMBER

4.12.2.3 LINE NUMBER
Function
The LINE NUMBER clause indicates the absolute or relative line number

entry in reference to the page or the previous entry.

General Format

integer-1
LINE NUMBER IS PLUS integer-2
NEXT PAGE

MR-5-1031-81

Technical Notes

l. Integer-1l and integer-2 must be positive integers with values
less than 512. Integer-1 must be within the range specified
by the PAGE LIMITS clause in the RD entry.

2. The LINE NUMBER clause must be given for each report line of
a report group, and must be specified at or before the first
elementary item that contains a COLUMN clause of each report
line. If an item does not contain a COLUMN clause and the
LINE NUMBER clause is specified for it, no printing is done,
but the - LINE NUMBER clause causes vertical spacing to be
done.

3. If a LINE NUMBER clause is specified for an item, all entries
following that item, up to but not including the next item
with a LINE NUMBER clause, are presented on the same line.

4. A LINE NUMBER at a subordinate level c¢can not contradict a
LINE NUMBER at a group level,

5. Integer-1 indicates that the current line is to be presented
at that line number.

6. PLUS integer-2 indicates that the LINE-COUNTER 1is to be
incremented by the value of integer-2, and that the current
line is to be presented on the 1line specified by the new
value of the LINE-COUNTER.

7. NEXT PAGE is used to indicate an automatic skip to the next
page before the <current line is presented. If there is no
PAGE-LIMIT clause, there is only a skip to the top of the
next page. However, if there is a PAGE-LIMIT clause, after
skipping to the next page, the Report Writer spaces as
follows:

THE DATA DIVISION

Type of Line . Space To

Detail, control heading, First detail line
control footing

Report heading, report Heading line
footing, page heading

Page footing Footing line

4.12.2.4

Function

THE DATA DIVISION

NEXT GROUP

NEXT GROUP

The NEXT GROUP clause specifies the spacing condition following the
last line of the report group.

General Format

integer-1

NEXT GROUP IS PLUS integer-2

NEXT PAGE

MR-$-1032-81

Technical Notes

1.

2.

The NEXT GROUP clause can appear only at the 01 1level of a
report group.

Integer-1 and integer-2 must be positive integers with values
less than 512. 1Integer-1 cannot exceed the number of lines
specified by the PAGE LIMIT clause.

Integer-1 specifies a line number to which the LINE-COUNTER
is set after the group is presented.

PLUS integer-2 specifies a relative line number that
increments the LINE-COUNTER by the value of integer-2 after
the group is presented. 1Integer-2 is the number of 1lines
skipped following the last line of the report group.

NEXT PAGE indicates an automatic skip to the next page after
the group is presented.

RESET

4.12.2.5

Function

THE DATA DIVISION

RESET

The RESET clause indicates the CONTROL data-item that causes the SUM
counter to be reset to zero on a control break.

General Format

RESET ON {

identifier-1
FINAL

MR-5-1033-81

Technical Notes

1.

2.

Identifier-1 must be one of the identifiers associated with
the CONTROL clause in the RD entry.

The RESET clause can be used only in conjunction with a SUM
clause at a CONTROL FOOTING elementary level.

Identifier-1 must be a higher 1level (more major) control
identifier than the control identifier associated with this
report group.

After a TYPE CONTROL FOOTING report group is presented, the
sum counters associated with that group are automatically set
to zero, unless an explicit RESET clause directs that the
counter be cleared at a higher level.

THE DATA DIVISION

SOURCE

4,12.2.6 SOURCE

Function

The SOURCE clause indicates the source of the data for a report item.

General Format

SOURCE IS identifier

Technical Notes
1. The SOURCE clause can only be given at the elementary level.

2. Identifier must indicate an item that appears in the FILE or
WORKING-STORAGE SECTION.

3. When the report group is presented, the contents of this
report item are replaced by the contents of identifier.

4-81

SUM

4.,12.2.7

Function

THE DATA DIVISION

SUM

The SUM clause indicates the items to be summed to produce the source
of data for a report item.

General Format

SUM identifier-1 [,identifier-Z] [PON data-name-l]

MR-8-1034-81

Technical Notes

1.

2.

A SUM clause can appear only in a TYPE CONTROL FOOTING report
group.

Each identifier must indicate a SOURCE item in a TYPE DETAIL
report group, or a SUM counter in a TYPE CONTROL FOOTING
report group.

If the SUM counter is referred to by a PROCEDURE DIVISION or
REPORT SECTION statement, a data-name must be specified for
the item. The data-name then represents the summation
counter automatically generated by the Report Writer; that
data-name does not represent the report group item itself.

A summation counter is incremented just before the
presentation of the identifiers. Any editing of the SUM
counters is done only when the sum item is presented; at all
other times it is treated as a numeric item.

If higher-level report groups are indicated in the control
hierarchy, each 1lower level that is figured into the sum is
summed into the higher 1level before each lower 1level 1is
reset, that 1is, counters are rolled forward prior to the
reset operation.
:)

The UPON option is required to obtain selective summation for
a particular data item that is named as a SOURCE item in two
or more TYPE DETAIL report groups. Identifier-1 and
identifier-2 must be SOURCE data items in data-name-1;
data-name-1 must be the name of a TYPE DETAIL report group.

When the UPON option is used, summation occurs only when a
GENERATE statement references data-name-l. It does not occur
during summary reporting (refer to the GENERATE statement in
the PROCEDURE DIVISION).

The identifiers cannot be subscripted or indexed.

THE DATA DIVISION

4.12.2.8 TYPE

Function

TYPE

The TYPE clause specifies the particular type of report group that is
described by this entry and indicates when the report group is

generated.

General Format
REPORT HEADING

RH
PAGE HEADING

py {SONTROL HEADING| | identifier-n}

DE {QQNIBQL_EQQILNQ} {Eiﬁgtifier-n}

PAGE _FOOTING
PE

REPORT FOOTING
RE

\
Technical Notes

MR-S-1035-81

l. RH is an abbreviation for REPORT HEADING;
PH is an abbreviation for PAGE HEADING;
CH is an abbreviation for CONTROL HEADING;
DE is an abbreviation for DETAIL;
CF is an abbreviation for CONTROL FOOTING;
PF is an abbreviation for PAGE FOOTING;
RF is an abbreviation for REPORT FOOTING.

2. 1If the report group is described as TYPE DETAIL, the GENERATE
statement in the PROCEDURE DIVISION directs the Report Writer

to produce the named report group.

3. The REPORT HEADING entry indicates a report group

that 1is

produced only once at the beginning of a report, during the
execution of the first GENERATE statement. There can be only

one report group of this type in a report.

4. The PAGE HEADING entry indicates a report group

that 1is

automatically produced at the beginning of each page of the
report. There can be only one report group of this type in a

report.

5. The CONTROL HEADING entry indicates a report group

that 1is

produced at the beginning of a control group for a designated
identifier. 1In the case of FINAL, it is produced once before
the first control group during the execution of the first

GENERATE statement. There can be only one report
this type for each identifier and for FINAL.

4-83

group of

THE DATA DIVISION

TYPE (Cont.)

The CONTROL FOOTING entry indicates a report group that 1is
produced at the end of a control group for a designated
identifier, or that is produced only once at the termination
of a report in the <case of FINAL. There can be only one
report group of this type for each identifier and for FINAL.
In order to produce any CONTROL FOOTING report groups, a
control break must occur.

The PAGE FOOTING entry indicates a report group that is
automatically produced at the bottom of each page of the
report. There can be only one report group of this type in a
report.

The REPORT FOOTING entry indicates a report group that is
produced only once, at the termination of a report. There
can be only one report group of this type in a report.

Each identifier, as well as FINAL, must be one of the
identifiers associated with the CONTROL <c¢lause in the RD
entry.

CHAPTER 5

THE PROCEDURE DIVISION

The Procedure Division specifies the processing to be performed on the
files and the file data described in the Environment and Data
Divisions. The Procedure Division contains a series of COBOL
procedure statements which describe the processing to be done.
Statements, sentences, paragraphs, and sections are described in
Section 5.1. Sections are optional and permit a group of consecutive
paragraphs to be referenced by a single procedure-name. Sections can
also be used for segmentation purposes (see Section 5.3,
Segmentation). If any section appears in the Procedure Division, then
all paragraphs must appear within a section.

The first entry in the Procedure Division of a source program must be
the division-header. The next entry must be either the DECLARATIVES
header (see the USE statement, Section 5.9.42), or a paragraph-name or
section~name.

PROCEDURE DIVISION EJSING data-name-1 Eata-name-Z:l]
[:PECLARATIVES.
{ section-name SECTION [}egment-numbeﬁ:] . declarative-sentence

[}aragraph-name. [}entencé] ...:] R }

END DECLARATIVES.
{ section-name SECTION [Eggment-number:]

[:paragraph-name. Esentence:] :]

Only in a subprogram can USING clauses appear 1in the PROCEDURE
DIVISION header.

} MR-5-1036-81

When a program-name is specified in a CALL statement in a calling
program, control is transferred to the beginning of the executable
code in the subprogram (that is, the Procedure Division).

The identifiers in the USING clause indicate those data items in the
called program that can reference data items in the calling program.
The order of identifiers in the CALL statement of the calling program
and in the PROCEDURE DIVISION header of the called program is
critical. The items in the USING clauses are related by their
corresponding positions, not by name. Corresponding identifiers refer
to a single set of data that is available to both the <c¢alling and
called programs.

THE PROCEDURE DIVISION

The number of identifiers in the USING <clause in the PROCEDURE
DIVISION header must be 1less than or equal to the number of
identifiers in the USING clause in the CALL statement in the calling
program.

5.1 SYNTACTIC FORMAT OF THE PROCEDURE DIVISION

The PROCEDURE DIVISION consists of a series of procedure statements
grouped into sentences, paragraphs, and sections. By grouping the
statements in this manner, reference can be made to them by a
procedure-name (that 1is, a paragraph-name or a section-name). The
order in which procedure-statements are executed can be controlled by
using the sequence-control verbs ALTER, GO TO, and PERFORM.

5.1.1 Statements and Sentences

Statements fall into three categories: imperative, conditional, and
compiler-directing, depending upon the verb used. Verbs, in turn, are
also classified into certain categories. These categories- and their
relationship to the three statement categories are given in Table 5-1.

Table 5-1
Procedure Verb and Statement Categories

Verb Verb Category Statement Category

ADD ARITHMETIC IMPERATIVE
COMPUTE
DIVIDE

MULTIPLY
SUBTRACT

ALTER SEQUENCE-CONTROL IMPERATIVE
CALL

ENTER

ENTRY

EXIT PROGRAM
GOBACK

GO TO
PERFORM

STOP

EXAMINE DATA MOVEMENT IMPERATIVE
MOVE

SET
STRING
UNSTRING

THE PROCEDURE DIVISION

Table 5-1 (Cont.)
Procedure Verb and Statement Categories

Verb Verb Category Statement Category

CANCEL MISCELLANEOUS IMPERATIVE
EXAMINE
FREE
MERGE
RELEASE
RETAIN
RETURN
SEARCH
SORT
TRACE

GENERATE REPORT IMPERATIVE
INITIATE
SUPPRESS
TERMINATE

ACCEPT I-0 IMPERATIVE
CLOSE
DELETE
DISPLAY
OPEN
READ
REWRITE
SEEK
WRITE

IF CONDITIONAL CONDITIONAL

cory COMPILER-DIRECTING| COMPILER-DIRECTING
EXIT
NOTE
USE

5.1.2 Sentences

A statement or sequence of statements terminated by a period forms a
sentence. Sentences are classified into the same three categories as
statements.

An imperative sentence consists solely of one or more imperative
statements. Except for 1imperative sentences containing one of the
sequence-control verbs, control passes to the next procedural sentence
following execution of the imperative sentence. If a GO TO or STOP
RUN statement is present in an imperative sentence, it must be the
last statement in the sentence.

THE PROCEDURE DIVISION

A conditional sentence performs some test and, on the basis of the
results of that test, determines whether a true or a false path should
be taken. A conditional sentence is one that contains the conditional
verb (IF) or one of the option <clauses ON SIZE ERROR (used with
arithmetic verbs), AT END (used with the READ verb), or INVALID KEY
(used with the READ verb for mass storage devices).

A compiler-directing sentence consists of a single compiler-directing
statement. Compiler-directing sentences are used to indicate the end
point of a PERFORM loop (EXIT), insert comments in the PROCEDURE
DIVISION (NOTE), copy library entries (COPY) and specify procedures
for input-output errors and label handling (USE) . Generally,
compiler-directing sentences generate no object program code.

5.1.3 Paragraphs

A single sentence or a group of sequential sentences can be assigned a
paragraph-name for reference. The paragraph-name must begin in Area A
(see Chapter 1) and terminate with a period. The first sentence of
the paragraph can begin after the space following this period or it
can begin on the next line, beginning in Area B.

A paragraph-name must be unique within its section, but need not be
unique within the program. A non-unigque paragraph-name must be
qualified by its section-name except when it is referenced from within
its own section.

5.1.4 Sections

A single paragraph or a group of sequential paragraphs can be assigned
a section-name for reference. The section-name must begin in Area A,
be followed by the word SECTION, and optionally, followed by a
priority number, and terminated by a period.

section-name SECTION nn.

If the section-name is in the DECLARATIVES portion, it can not have a
priority number. A USE statement can appear following the terminating
space after the period.

The section-name applies to all paragraphs following it until another
section-header is encountered.

All section-names must be unique within a program. Sections are
optional within the PROCEDURE DIVISION, but if a DECLARATIVES portion
is used there must be a named section immediately following the END
DECLARATIVES statement.

When a section-name is referenced, the word SECTION is not allowed in
the reference.

THE PROCEDURE DIVISION

5.2 SEQUENCE OF EXECUTION

In the absence of sequence-control verbs, sentences are executed
consecutively within paragraphs, paragraphs are executed consecutively
within sections, and sections are executed consecutively within the
PROCEDURE DIVISION (with the exception of sections within the
DECLARATIVES portion, which are executed individually when the related
condition occurs).

5.3 SEGMENTATION AND SECTION-NAME PRIORITY NUMBERS

COBOL source programs canh be written to enable certain portions of the
PROCEDURE DIVISION code to share the same memory area at object run
time, thus decreasing the amount of memory required to run the object
program, though not the time. The method wused to achieve this
reduction is called segmentation.

Segmentation consists of dividing the PROCEDURE DIVISION sections into
logically related groupings called segments. The programmer defines a
segment by assigning the same priority~-number (a priority-number
follows the word SECTION in the section-header, and can be in the
range 00 through 99) to all the sections to be included 1in that
segment; these sections need not appear consecutively in the source
program.

Segments are classified 1into three groups, depending upon their
priority-number. These three groups are described in Table 5-2.

Table 5-2
Types of Segments

Priority Number Type Description

None, or 00 up to Resident This segment is always resi-

SEGMENT-LIMIT Segment dent in memory and is never

minus 1 overlaid.

SEGMENT-LIMIT Nonresident; These segments are non-

up to 49 ALTERed GO resident and are brought
TOs retained into memory when needed.

Any ALTERed GO TOs retain
their most recently set

values.
50 through 99 Nonresident; These segments are also non-
ALTERed GO resident and are brought
TOs reset into memory when needed.

Any ALTERed GO TOs do not
retain their latest wvalues,
but are reset to their
original setting each time
the segment is entered from
another segment.

THE PROCEDURE DIVISION

In addition to the resident segment, all data areas described 1in the
DATA DIVISION are resident at all times. Thus, memory can be thought
of as being divided into two parts:

1. A resident area, in which reside all data areas and the
resident segment, and

2. A nonresident area, equal to the size of the largest
nonresident segment, into which each nonresident segment is
read when needed. Since each nonresident segment reads into
the same memory area, any previous nonresident segment in
that area is overlaid and must be brought in again when it is
to be executed again.

The resident segment should consist of those sections that constitute
the main portion of the processing. Infrequently-used sections can be
allocated to the nonresident segments. :

NOTE

Non~-resident code can never be
shareable.

5.4 ARITHMETIC EXPRESSIONS

An arithmetic expression is an identifier of a numeric elementary
item, or a numeric literal, or such identifiers and literals separated
by arithmetic operators.

Algebraic negation can be indicated by a unary minus symbol.

5.4.1 Arithmetic Operators

There are five arithmetic operators that can be wused in arithmetic
expressions. They are represented by specific character symbols that
must be preceded by a space and followed by a space.

Arithmetic Operator Meaning

Addition or unary plus
Subtraction or unary minus
Multiplication
Division

* Exponentiation
Exponentiation

SoRNL ¥ |+

5.4,2 Formation and Evaluation Rules

The following rules for information and evaluation apply to arithmetic
expressions.

THE PROCEDURE DIVISION

1. Parentheses specify the order in which elements within an
-arithmetic expression are to be evaluated. Expressions
within parentheses are evaluated first. Within a nest of
parentheses, the evaluation proceeds from the elements within
the innermost pair of parentheses to the outermost pair of
parentheses. When parentheses are not used, or parenthesized
expressions are at the same 1level of inclusiveness, the
following hierarchal order of operations is implied:

First: unary +, unary -

then *% and * (exponentiation)

then * and / (multiplication and division)
and then + and - (addition and subtraction)

2. When the order of a sequence of operations on the same
hierarchal 1level (for example, a sequence of + and -
operations) is not completely specified by use of
parentheses, the order of operations is from left to right.

3. An arithmetic expression can begin wiph one of the following:
(- + variable
and can end only with one of the following:
) variable
4. There must be a one-to-one correspondence between left and

right parentheses in an arithmetic expression; each left
parenthesis must precede its corresponding right parenthesis.

5.5 CONDITIONAL EXPRESSIONS

A conditional expression causes the object program to select between
alternate paths (called the true and false paths) of control depending
upon the truth value of a test, Conditional expressions can be used
in conditional (IF) statements and in PERFORM statements (options 3
and 4). A conditional expression can be one of the following types:

Relation condition (greater than, equal to, less than)
Class condition (numeric or alphabetic)
Condition-name condition (level-88 conaition-names)
Switch-status condition (SPECIAL-NAMES paragraph)

Sign condition (positive, negative, zero)

Each of these types is discussed below.

5.5.1 Relation Condition

A relation condition causes a comparison of two operands, each of
which can be an identifier, a literal, a figurative constant, or an
arithmetic expression. Comparison of two numeric operands is
permitted regardless of their formats as described by their respective
USAGE clauses. Comparison of two operands is permitted 1if each 1is
DISPLAY-6, DISPLAY-7, or DISPLAY-9.

THE PROCED&RE DIVISION

A numeric-edited operand can not be compared to a numeric operand. An
alphanumeric operand can not be compared to a numeric operand unless
the alphanumeric operand contains no characters other than numeric
digits. For example, the statement:

IF NUM < "2".
is permissible but the statement:

IF NUM < "2.0".

is not.

5.5.1.1 Format of a Relation-Condition - The general format for a
relation condition is

identifier-1 identifier-2

literal-1 ; literal-2
arithmetic-expression-1 relational-operator arithmetic-expression-2
figurative-constant-1 figurative-constant-2

MR-5-1037-81

The first operand is called the subject of the condition; the second
operand 1is called the object of the condition. Either the subject or
the object must be an identifier or an arithmetic expression.

5.5.1.2 Relational Operators - Relational operators specify the type
of comparison to be made in the relation condition. Relational
operators must be preceded by a space and followed by a space.

Relational Operator Meaning

IS [NOT] GREATER THAN Greater than, not greater than
IS [NOT] > THAN

IS [NOT] LESS THAN Less than, not less than
IS [NOT] < THAN

IS [NOT] EQUAL (EQUALS) TO Equal to, not equal to
IS [NOT] = TO

5.5.1.3 Comparison of Numeric Items - A comparison between two
numeric items determines that the algebraic value of one item is less
than, equal to, or greater than the algebraic value of the other item.
The 1length of the operands is not significant. Zero is considered a
unique value; +0 and -0 are equal. Unsigned operands are considered
positive. Blanks and tabs are ignored when a numeric item is compared
to zero. Since blanks and tabs make an item alphanumeric, a true zero
condition can be established by an alphanumeric test followed by a
comparison with zero.

THE PROCEDURE DIVISION

5.5.1.4 Comparison of Alphanumeric Items - For operands whose
category 1is alphanumeric (or where one operand is numeric and the
other is alphanumeric), a comparison results in the determination that
one of the operands is less than, equal to, or greater than the other
operand with respect to a specified collating sequence of characters
(see Appendix B). The size of an operand is the total number of
characters in the operand. Blanks and tabs are not ignored when an
alphanumeric item is compared to ZERO. The presence of either blanks,
tabs, or both in the operand causes the test result to be NOT EQUAL.

There are three cases to consider: operands of equal length, operands
of unequal length, and operands with differing justification.

1l. Operands of equal 1length - If the operands are of equal
length, characters in corresponding character positions of
the two operands are compared, starting at the higher-order
(leftmost) end and continuing through the low-order end. If
all pairs of characters compare equally through the 1last
pair, ‘the operands are considered to be equal. 1If they do
not all compare equally, the first pair of unequal characters
encountered 1is compared to determine their relative position
in the collating sequence. The operand containing the
character that is positioned higher in the collating sequence
is considered to be the greater operand.

2. Operands of unequal length - If the operands are of unequal
length, the comparison of characters proceeds from the
high-order end to the low-order end until either

a. A pair of unequal characters is encountered, or
b. One of the operands has no more characters to compare.

If a pair of unequal characters is encountered, the
comparison is determined in the manner described for
equal-sized operands.

If the end of one of the operands 1is encountered before
unequal characters are encountered, this shorter operand is
considered to be less than the 1longer operand unless the
remaining characters in the longer operand are spaces, in
which case the two operands are considered equal.

3. If one operand 1is right-justified and the other is
left-justified, they are compared just as they appear in the
record. That is, PICTURE XXX, VALUE "B" and PICTURE XXX,
VALUE "B", JUSTIFIED RIGHT are not equal because the first
appears in the record as B and the second as B.

5.5.2 Class Condition

The class condition tests the contents of an item for being’ wholly
alphabetic or wholly numeric.

THE PROCEDURE DIVISION

5.5.2.1 Format of a Class Condition -

. ALPHABETIC
identifier IS [EQI]‘{NumERIC }

MR-5-1038-81

5.5.2.2 Restrictions - The item named by identifier must be
described, implicitly or explicitly, as DISPLAY, DISPLAY-6, DISPLAY-7,
or DISPLAY-9. The NUMERIC test cannot be applied to an item described
as alphabetic. The ALPHABETIC test cannot be applied to an item
described as numeric. A compiler diagnostic results if either of the
two previously mentioned tests are attempted.

5.5.2.3 The ALPHABETIC Test - The ALPHABETIC test result is TRUE when
the item <consists of characters from the alphabet (A through Z) and
the space or tab.

5.5.2.4 The NUMERIC Test - The NUMERIC test result is TRUE under the
following conditions:

1. For alphanumeric and unsigned numeric items, each character
must be a digit (0 through 9). No signs are permitted.
Spaces and tabs cause the test result to be FALSE.

2. For signed numeric items, the sign can have only one of the
three following representations: a leading graphic sign ("+"
or "="), a trailing graphic sign, or a trailing embedded
sign. All other characters must be digits. Spaces or tabs
cause the test result to be FALSE.

NOTE

An alternative form of NUMERIC test can
be selected by a switch setting during
system installation, which causes
leading and trailing blanks and tabs to
be ignored. This alternative form 1is
described in Appendix D.

5.5.3 Condition-Name Condition
In a condition-name condition, a conditional variable 1is tested to

determine whether or not 1its wvalue 1is equal to one of the values
associated with a condition-name (level-88).

5.5.3.1 Format of a Condition-Name - The general format for a
condition-name is

[NOT] condition-name
If the condition-name is associated with a range of values, then the

conditional variable 1is tested to determine whether or not its value

5-10

THE PROCEDURE DIVISION

falls within this range, including the end values.

The rules for comparing a conditional variable with a condition-name
value are the same as those specified for relation conditions.

The result of the test is true if one of the values associated with

the condition-name equals the value of its associated conditional
variable.

5.5.4 Switch-status Condition

A switch-status condition determines the on or off status of a
hardware switch.

5.5.4.1 Format of a Switch-Status Condition - The general formats for
a switch-status condition are

Format 1:

[ugI] condition-name

Format 2:
mnemonic-name IS [NQIJ {Q%F}

Format 3:

SWITCH (integer) IS [HQI] {8%5}

MR-S-1039-81

In format 1, condition-name is associated with a SWITCH IS ON or OFF
STATUS <clause in the SPECIAL-NAMES paragraph of the ENVIRONMENT
DIVISION.

In format 2, mnemonic-name is associated with a SWITCH (not an ON or
OFF STATUS) in the SPECIAL-NAMES paragraph of the ENVIRONMENT
DIVISION.

In format 3, integer must be in the range from 0 through 35.

In format 1, the result of the test is true if the switch is [NOT] set
to the position associated with the condition-name.

In formats 2 and 3, the result of the test is true if the switch |is
[NOT] set to the position specified in the condition.

5.5.5 $Sign Condition

The sign condition determines whether or not the algebraic value of a
numeric operand is less than, greater than, or equal to zero.

THE PROCEDURE DIVISION

5.5.5.1 Format of a Sign Condition - The general format for a sign
condition is:

arithmetic-expression

{identifier } IS [NQI] {Egéi%i&%}

The POSITIVE test result is TRUE if the identifier or
arithmetic-expression is algebraically greater than zero. The
NEGATIVE test result is TRUE if the identifier or
arithmetic-expression is algebraically less than zero. The ZERO test
result is TRUE if the identifier or arithmetic-expression is equal to
zero or contains all spaces, all tabs, or a combination of spaces and
tabs. However, any spaces or tabs makes an item alphanumeric.

5.5.6 Logical Operators

The interpretation of any of the above conditions 1is reversed by
preceding the <condition with the logical operator NOT. Any of the
above types of conditions can be combined by either of two logical
operators. A logical operator must be preceded by a space and
followed by a space.

Logical Operator Meaning

OR Entire condition is true if either
or both of the simple conditions
are true.

AND Entire condition is true if both of
the simple conditions are true.

’

5.5.7 Formation and Evaluation Rules

A conditional expression can be composed of either a simple-condition
or a compound-condition. A simple-condition is one that performs a
single test. A compound-condition is one that contains a string of
simple~conditions <connected by the 1logical operators AND, OR. A
compound-condition can contain any combination of types of conditional
expressions (relational, class, <condition-name, switch-status, and
sign).

The evaluation rules for conditions are analogous to those given for
arithmetic expressions, except that the following hierarchy applies:

arithmetic-expressions
all relational operators
NOT

AND

OR

Parentheses can be used either to improve readability or to override
the hierarchy given above. Each set of conditions within a pair of
parentheses 1is reduced to a single condition. When this is
accomplished, reductions which cross parentheses are done.

THE PROCEDURE DIVISION

You can use parentheses in arithmetic expressions to specify the order
in which elements are to be evaluated. Expressions within parentheses
are evaluated first; within nested parentheses, evaluation proceeds
from the 1least inclusive set to the most inclusive set. In the
absence of parentheses or when parenthesized expressions are at the
same level of inclusiveness, the following hierarchical order of
execution is implied:

lst - Unary plus and minus

2nd - Exponentiation

3rd - Multiplication and division
4th - Addition and subtraction

NOTE
The precedence of wunary minus over
exponentiation is different from
algebraic notation, and from some other
programming languages. If the

data-names A and B have the values 3 and
2 respectively, then the COBOL statement

COMPUTE C = - A ** B

yields C as 9 (not -9 as in algebra).

Examples:

1. Using parentheses for ease of reading.
The following expression

A =BORC>DAND F < G AND H IS ALPHABETIC OR I IS
NEGATIVE

can be parenthesized for readability without changing 1its
effect as shown below:

(A = B) OR (C > D AND F < G AND H IS ALPHABETIC) OR (I
IS NEGATIVE)

If all the conditions within any of the three sets of
parentheses are true, then the entire conditional expression
is true.

The diagram below illustrates the effect of this statement
and the order of evaluation.

THE PROCEDURE DIVISION

True

'gth

H
ALPHABETIC

True

|
NEGATIVE

MR-5-1041-81

2. Using parentheses to override normal order of evaluation.

To illustrate this usage, a compound-conditional is shown in three
forms, each accompanied by a flow diagram showing the result of each.

F1 =F2 AND F3 = F4 OR F5 = F6 AND F7 = F8

False
Path

True
MH-8-1042-81

THE PROCEDURE DIVISION

F1=F2 AND (F3 = F4 OR F5 = F6 AND F7 = F8)

False
"\ Path

False

Faise
Path

MR-S-1043-81

5.5.8 Abbreviations in Relation Conditions

When "a string of consecutive relation conditions appears in a
statement, abbreviations can be wused, in certain cases, for any
relation condition other than the first. The subject, or the subject
and relational operator, or the subject, relational operator and
logical connective can be omitted. 1In each of these cases, the effect
of the abbreviated relation condition is as if the omitted parts were
the same as those in the nearest preceding complete relation condition
within the same sentence. There are two valid forms of abbreviation.

1. Abbreviation 1
If the subject 1is identical 1in a series of relational
conditions, it can be omitted in all the relational
conditions except the first.
Example: A = B ORA < CAND A =D ORA = E
can be abbreviated to
A = BORK CAND = D OR = E

THE PROCEDURE DIVISION

2. Abbreviation 2 _
If subjects and relational operators are identical in a
series of relational conditions, they can be omitted in all
the relational conditions except the first.
Example: A = BOR A = C AND A =D OR A = E
can be abbreviated to
A = B OR C AND D OR E

5.6 COMMON OPTIONS ASSOCIATED WITH THE ARITHMETIC VERBS

Associated with the five arithmetic verbs (ADD, COMPUTE, DIVIDE,
MULTIPLY, and SUBTRACT) are two options: the ROUNDED option, and the
ON SIZE ERROR option. These two options are described here to avoid
the necessity of including their descriptions with each of the
arithmetic verbs.

If the ROUNDED option is specified, the absolute value of the item is
increased by 1 1if the leftmost truncated digit is greater than or
equal to 5.

Example: wvalue: 567.8756
resultant-identifier picture: 999v99
stored result without
ROUNDED option: 567.87
stored result with
ROUNDED option: 567.88

When the low-order positions in a resultant-identifier are represented
by the symbol P in the PICTURE associated with the
resultant-identifier, rounding or truncation occurs relative to the
rightmost integer position for which storage is allocated.

Example: value: 5388
resultant~identifier picture: 99PP
stored result without
ROUNDED option: 53
stored result with
ROUNDED option: 54

5.6.1 The ON SIZE ERROR Option

If, after decimal point alignment, the number of significant digits in
the result of an arithmetic operation is greater than the number of
integer positions provided in the result-identifier, a size error
condition occurs. Division by zero always causes a size error
condition. The size error condition applies to both the intermediate
results and the final result of an arithmetic operation. If the
ROUNDED option is specified, rounding takes place before checking for
size error. When such a size error does occur, the subsequent action
depends upon whether or not the ON SIZE ERROR option is specified.

If the ON SIZE ERROR is not specified and a size error condition
occurs, the value of the resultant-identifier is unpredictable, and no
additional action is taken.

THE PROCEDURE DIVISION

If ON SIZE ERROR is specified, and a size error condition occurs, then
the values of the resultant-identifier(s) affected by the size errors
are not altered. Values for resultant-identifier (s) for which no size
error condition occurs are unaffected by size errors that occur for
other resultant-identifier(s). After completion of the execution of
the arithmetic operation, the statement(s) after ON SIZE ERROR is
e