FLAG

LSCS FORM

TIME QUEUED
17-0CT-85 16:01

OVERLAY

PAPER TYPE

TIME PRINTED
17-0CT-85 16:05

FILE TYPE
DEFAULT

=
Ll
=
O
2,
@]
7p)
L
&

1.0 Introduction

CFS-20 operates at the level of the TOPS-20 file system.
This 1is accomplished by "distributing™ the file system over
the CFS T"network". This distribution implies several
things:

1. Processors must agree on file operations
previously of concern only to a single processor.

2. The existing file system data base had to be
extended to accommodate additional information.

3. Other, peripherally related, parts of TOPS-20
were affected, e.g. job numbers.

This document will describe the specifics of the CFS kernel,
CFSSRV, as well as the extensions and modifications of the
file system. Since this is a design document, it is assumed
the reader is familiar with the functional specification for
CFS-20.

2.0 CFSSRV

The module CFSSRV contains the kernel, or low-level,

routines that implement CFS-20. The important pieces of
~RCCDY A re:

1. The resource manager/creator
2. The "voter"

3. The SCA connection manager
4, 1Initialization

In addition, it contains a number of "interface" routines
used by other system modules and services for interfacing to
the kernel routines.

2.1 Resource manager

CFS resources are kept in a hash table managed by CFSSRV.
The hash table contains "hash chains" built as collisions
occur. Each entry represents some resource, but the manager
has no inherent knowledge of the actual resource
represented. Each resource block contains identifying
information, state information, and a number of coroutine
addresses that are used when certain events occur.

There are two types of resource blocks: long blocks and
short blocks. A long block is the same as a short block
:xcept that it contains a bit mask representing the forks in
the system. Resources that wish to keep track of blocked
forks, and wish to awake the forks when the resource is

Page 2

available, must use a long block. A block has the following
format:

o e +
! Link word !
T ke +
! root code !
- +
! qualifier !
BT ittt ettt +
! time stamp !
T ittt +
! flags !
e e T +
! resource code !
T e +
! call-back address on available !
e e e +
! vote code and count !
e e - +
! node bit table !
e~ +
! call-back on deassign !
o —— +
! deferred vote data !
e ————————— e +
! deferred wait mask,,owning fork !
e e +
! optional data word 1 !
e e +
! optional data word 2 !
e +
! call-back when vote OK !
e - +
! call-back when opt data present !
T e bt ———m +
! fairness timer !
o +
! revote wait time !
e - +
! back pointer !
e e - - S
! fork bit table if long pkt !
o e +

Each resource has a name that is used to compute 1its hash
address and to identify the resource. The name 1is
seventy-two bits and is contained in the second and third
words of the hash packet. 1In addition, a resource may have
a resource code that is used for various purpose including:

1. Matching during voting

Page 3

2, As a mask during garbage collection and
searching,

The first word of the name, the root code, is normally a
structure name., It is meant to represent a resource class,
such as files. The second word of the name, the qualifier,
distinguishes specific resources within the class defined by
the root name. Therefore, each type of file resource has a
unique qualifier that may be constructed based on the type
of the resource. For example, the file open token,
representing the open state of the file, is simply the
file's index block address. The pair of names defines a
uniqgue and unambiguous resource.

The various call-back routine addresses must be supplied by
the resource requestor. The resource manager has no a
priori information about the actions to be taken for each
resource. Therefore, when the requestor builds a prototype
resource packet, it must fill in any coroutine addresses
that it wishes honored. 1In general, the code that builds
the prototype resource packet 1is located in CFSSRV and
therefore 1is closely allied with the resource manager
itself. Call-back addresses need not be provided. 1In fact,
there are resources, e.g. directory locks, that provide no
call-back coroutines but rely entirely on the default
mechanisms of the manager and the voter.

The resource manager has several entry points. The main
entry 1is CFSGET, but other entries are used if the resource
is known to be local (exclusive to this processor).

The manager is responsible for entering packets in the hash
table. It is the only agent that places new entries in the
hash table.

The flags word contains an "access type" that is wused to
record the level of access of the resource. The manager and
the vote processor use this field to determine if an entry
or a vote request may be honored.

The manager may delete an old, unused entry, if doing so
removes a resource conflict.

2.2 The voter

The voter comes in two parts: the agent that starts votes
on behalf of the resource manager, and the agent that
processes in-coming vote requests and makes replies. The
voter 1is called when a resource is created or whenever its
state changes. The voter is called VOTEW.

A vote request is one of messages that CFSSRV sends to other
CFS systems. The general format of a CFS message is:

Page 4

B e et ettt +
! SCA header !
1]
B T et +
! flags,opcode,unique vote code !
o +
! root code !
o e +
! qualifier !
bt ittt +
! type or answer !
e +
! opt data !
o e +
! opt data !
e +
! str free count for bittable !
e +
! transaction count for bittable !
e ettt +

Reguests, or votes, use the opcode .CFVOT. Vote replies use
the opcode .CFREP. Replies may contain optional data if the
resource is defined as supporting optional data. Examples
of optional data are:

1. EOF values for file resources
2. directory allocation for directory resources

In general, the two opt data words contain a value in one of
the words and a "transaction count" in the other. The
transaction count is used to "age" the data so that the
voter may determine which of the reported values is most
current. It should be noted that in a large CFS
configuration (more than two nodes), a voter may receive
different values for the optional data based on the history
of the resource. Optional data processing is done through a
call-back address, and if that address is not provided in
the packet, any received optional data will be ignored.

The voter sends one vote request to each connected host and
waits for the replies. The interrupt level part of the
voter uses the vote count word in the resource packet to
record replies and the process 1level part of the voter
examines this field to determine when the vote has been
completed. Also, the flags word contains a flag (HSHYES)
that is used to record a "no" reply to the vote.

If the CFS configuration changes during the vote, a "vote
restart” flag will be set in the resource block directing
the voter to restart the vote. This 1is done in 1lieu of

Page 5
keeping state information about the vote. The restarted
sote implicitly cancels the other vote.

The vote processor, the companion routine to the voter, uses
the state information in the resource packet to detemine how
to reply. A reply may be:

1. Unconditional yes. This may result in a
resource being released.

2. Unconditional no.

3. Timed no. This reply has an accompanying retry
time that is stored in the hash packet.

4. Conditional or delayed yes.
The vote processor may use one or more of the call-back
routines in the resource packet while deciding on the reply.
For example, the decision to reply "delayed yes" is made by
the call-back routine when the vote is to be OKed. The
coroutine may direct the vote processor to change the reply
from "unconditional yes" to "delayed yes". This is
typically the case for the file access token resource.
2.3 SCA connection manager
The connection manager is repsonsible for maintaining the
CFS "host tables" and for interfacing to SCA. 1Its duties
are:

1. Connect to all extant host at start-up

2. Connect to newly on-line hosts

3. Closing duplicate connections

4, sending messages and queuing messages upon
credit failures

5. receiving messages.
6. Resending on credit available.

The connection manager maintains four tables that describe
connections to other CFS hosts:

1. CFSHST contains the SCA connect ID
2. CFSHNM contains the processor serial number

3. CFHSTS contains the state of the connection

Page 6

4., CFSNAM contains the DECnet node name

While a connection is being opened, or while a 1listener
exists, the following interpretations apply:

1. 1If CFSHST -1, this is a listener

2. If CFSHNM = -1 and CFSHST<>0 , this is a connect
request waiting for a reply.

All other combinations indicate an unused entry.

The connection manager also maintains a table of previously
seen hosts, OLDTAB. Each time a connection to another
processor is lost, the processor's serial number 1is placed
in OLDTAB. Then, each time a new connection is established,
the processors search OLDTAB to determine whether each has
ever been connected to the other. If both processors
believe that each has seen the other, then the reconnection
cannot be honored because the CFS resources on the
processors have not been correctly coordinated. One of the
processors, therefore, will have to crash.

In order to allow for expected KLIPA reload conditions, the
monitors will T"pause" whenever there 1is a configuration
change. During the pause time, no CFS resources may be
acquired or change state. Therefore, if a reconnection
happens during the pause time, neither system will have to
crash. The pause time is fifteen (15) seconds.

2.4 Initialization

CFS manages its own buffer pool. 1It creates the buffer pool
in its own section, CFSSEC.

CFS creates the buffer pool by touching pages and then
locking them into memory. Therefore, CFS initialization
must proceed in process context.

The other side of CFS initialization is that done when SCA
initializes. CFSSRV is called at CFSINI by SCA when SCA
initializes. However, if CFSCSC has not yet been called,

network.

CFSJYN is the routine called to complete initialization and
to join the CFS network. CFSJYN will only proceed the
second time it is called. That is, it will proceed only
after both CFSINI and CFSCSC have been called. This insures
that both SCA is initialized and the CFS buffer pool has
been created.

3.0 Extensions to existing services

Many of the monitor services have been "extended" to allow

Page 7

for distributed control. In all cases, the code changes
aave been inserting calls to routines in CFSSRV and,
possibly, some reorganization to eliminate a dependency on
NOSKED as a system-wide interlock. For the most part, the
existing monitor services no little about the workings of
CFS except that it 1is a means for acquiring a global
interlock or global resource.

The bulk of the changes have been to PAGEM and PAGUTL (PAGEM
in pre-release 6 monitors). The next most significant set
of changes were to DSKALC to allow for managing the bit
table. Finally, there are scattered changes in various
monitor routines, including MSTR, DISC and MEXEC and DIRECT.

3.1 File system changes

Each OFN has acquired some new state. The word, SPTO2
contains CFS-specific flags as well as a file access state
field. The file access state field reflects the value of
the file's state in the CFS data base and is stored in SPTO2
as well for convenience and efficiency.

Each opened file has at least one, and perhaps two, CFS
resources assigned on the accessing processor. In addition,
each active OFN has a CFS "access token" assigned as a CFS
resource. Therefore, an opened file has one or two CFS file

vresocurces and at least one access token associated with it.
The file resources are:

l. file open token. This is defined by a qualifier
word of the XB address. This specified whether the
file is opened frozen or thawed.

2. frozen writer token. This is defined by a
qualifier word containing the XB address +
<DSKAB_l1>. This resource is present whenever a file
is opened for frozen write access on this processor.
This is an exclusive resource and therefore may be
owned by at most one processor.

The OFN resource is:

The file access token. Each active OFN has one such
resource assigned. It is defined by a qualifier
word containing the file XB + <DSKAB_3>. The access
of the file access token defines the types of
references that processes on the owning processor
may make. Therefore, if the access token specifies
"read only", then only read references may be made
to the data in the file section.

The access specified in the access token is also present in
SPTO2 is the field SPTST. This is so because many of the
file and memory management routines, e.g. the page fault

Page 8

handler, need to insure that the access is proper for the
operation in question. Locating the CFS resource each time
would be too costly, so the CFS state is also kept in a per
OFN data table. 1In order to minimize the chance of error,
only the routines in CFSSRV set and change SPTST.

The access of an OFN is set or changed by the routine CFSAWT
or CFSAWP, The former sets the proper access but does not
"reserve" the resource to this processor; the latter both
sets the access and reserves it, CFSAWT 1is the most
commonly used of the entry points. CFSAWP is used by code
that needs to make many references over a period of time and
does not wish to incur another page fault should the access
be removed during the interval. Examples of this are:

1. During file opening

2. bit table lookup and modification
3.2 Directory locking
Directory locks are now CFS resources. The old LOKTAB and
associated storage are gone, Each time a directory is
locked, a CFS resource is created or modified.
The routine CFSLDR is called to lock a directory, and CFSRDR

is called to unlock a directory. Directory lock resources
are an example of long resource blocks.

A directory lock resource is define

(o

as:

1. root code structure name

2, qualifier

DRBASE + <directory number>

3.3 Directory allocation information

The remaining allocation of a directory is cached in memory
to aid in processing page faults and file page creation.

Since the data is not part of a file, it has to become a CFS
resource,

For each active directory, e.g. there 1is a directory
allocation entry, there is a CFS resource defined by:

1. root = structure name

2. qualifier = DRBASO + <directroy number>
The code that looks up and checks directory allocations now
calls CFSSRV to insure that the resource is held on this

processor. The routine CFSDAU 1is wused for the various
operations on the directory allocation resource.

Page 9

The optional data fields in this resource carry the value of
the remaining allocation.

3.4 Bit table management

The global interlock for a bit table is the file access
resource itself. When a system wishes to gain exclusive
access of the bit table, it simply calls E€FSAWP requesting
write access to the bit table file. Write access is
translated into "exclusive" access in the CFS resource.

Once the access token is reserved with write access, no
other processor may gain access to the resource.

This interlock was accomplished this way for two reasons:

1. In order to modify the bit table, the processor
must have exclusive access anyway, so at some point
the bit table file's access token would have to be
set to exclusive access

2. This avoids unnecessarily 1long delays in
processing page faults on the bit table, and might
even avoid a page fault altogether.

3.5 file token management

The file access token is the most interesting of the CFS
resources, and the most important as well. It 1is
interesting because of the complexity required to manage it
and of the amount of asynchronous activity dedicated to this
management.

Appendix A is a long, informal description of file resources
with particular emphasis on the file access token. Rather
than duplicate appendix A here, this section will cull the
salient points in an effort to describe the actions required
to manage the token.

If a system is required to give up access to a file section,
or to downgrade its present access, DDMP must run. This
operation occurs during the vote processor's operation and
is triggered by the "vote OK" call-back. Note that this
call-back also changes the reply from "unconditional yes" to
"delay yes".

For a downgrade operation, i.e. from write to read, DDMP
must run to write any modified pages to the disk. Once this
is completed, CFSFOD is called to send the "cancel delay"
message.

If the processor must give up all access, i.e. the other
processor requires write access, DDMP must run to write all
modified pages to disk and to delete any copies of the file
data in local storage. Once this is completed, CFSFOD is

Page 10

called as above.

While DDMP is operating on behalf of CFS, the bit SPTFO is
set in SPTO2 to indicate that no accesses should be honored

for any other fork. This bit is honored by the page fault
handler.

3.6 Structures

Structure mounting is included in the operations managed by
CFS. This is necessary in order to coordinate access to the
structure by the various CFS processors.

CFS requires that each mounted structure be mounted with the
same access by all accessing processors, and that the
structure have the same "alias" name on all of the accessing
structures. These are accomplished by creating the
following CFS resources:

1. Structure name. This is a resource defined as
follows

a. root = structure alias
b. qualifier = STRCTN
C. unique code = drive serial number

2. drive serial number. This is a resource defined
as follows:

a. root = drive serial number
b. qualifier = STRCTK
c. unique code = alias name

These two resources, if successfully acquired, meet the
guarantees stated above. The access type, that is whether
the structure is shared or exclusive, is controlled by the
DSN resource only. The name resource is always created with
full sharing.

When a structure's access type 1is changed, that 1is from
shared to exclusive or from esclusive to shared, the routine
CFSSUG need only change the DSN resource.

Since CFS matches a structure with a DSN, it 1is important
that if the structure is moved to another drive that the CFS
resources be renamed. This is accomplished by having PHYSIO
call CFSSRV at CFSRDN describing the o0ld and new UDB for the
disk pack. CFS will then update its data base to reflect
the new conditions.

4.0 Operational aspects

Page 11

The implementation of a multi-processor system implies some
oSperational controls outside of the file system. In
particular, the system date and time must be coordinated and
kept synchronized among the processors.

This is accomplished by means of a CFS message sent to any
newly added node. The opcode for the message is .CFTAD. As
a result of this, a system may discover the date and time
even though its front-end processor does not know the
current date and time.

Should CFSSRV receive a date and time message, it simply
stores it in a predefined location and waits for "job 0" to
discover it. The current system date and time is changed by
job 0 only.

5.0 Temporary features

Because CFS is only one part of the LCS product, and because
other necessary pieces are not yet available, several
"features" have been provided to smooth the transition from
a single processor file system to a distributed file system.
As the other LCS services become available, these temporary
services will be superceded.

5.1 ENQ/DEQ

In order to avoid a malfunction of a program performing
simultaneous update coordination with ENQ/DEQ, there is a
temporary CFS resource representing the ENQ on a file.

Each time an ENQ file resource is first requested (i.e. an
ENQ 1lock block is created), CFSENQ is called to register an
exclusive CFS resource for the file. The resource 1is:

l. Root code structure name

2. qualifier = XB + <DSKAB_2>

If the requesting processor succeeds in creating the
resource, then the ENQ will be allowed. If the processor
cannot create the CFS resource, i.e. some other processor
indicates "no", the ENQ is denied.

.page
Appendix A

CFSSRV is a lock manager. The locks it manages represent
resources in the system, but CFSSRV is not aware of the
mapping of lock to resource. The mapping, or meaning, is
made by the creator of the resource.

Tiles are a resource with CFS locks. Each file has the
following CFS locks:

. open type

Page 12

. Write access
. ENQ/DEQ lock

In addition, each of the sections of the file, represented
by an OFN, has an access token. Therefore a file has up to
512 access tokens.

When a file is opened, the "open type" and "write access"”
lock are acquired. The "open type" is either”

. shared read (frozen)
. shared read/write (thawed)
. exclusive (restricted)
. promiscuous (unrestricted)
The word in parentheses represents the argument to OPENF%.

I1f the opener requests "frozen write" access, then if the
"open type" lock 1is successfully locked, i.e. no one has
the file open in a conflicting mode, the "write access" lock
is acquired. This is an exclusive lock that represents the
single "frozen write" user of the file. The lock is held by
the system that has the file opened "frozen write".

Each of the locks described above apply to a file, that |is
something described by an FDB. In addition to these, each
file has some number of OFNs, one for each file section that
is in use. Therefore, a file may have up to 512 OFNs or
file sections.

Each active OFN has an "access token" lock. The access
token represents the ability of the system to access the
data described by the OFN. The access token may be held in
one of the following modes:

. place-holder
. read-only
. exclusive (read or write)

A read-only access token may be held by any number of
systems simultaneously. An exclusive token is held by only
one system. A "place-holder" access token is an artifact
that permits the CFS systems to agree on the end-of-file
correctly. It also has some ramifications for bit table
access tokens that will be described later. Place-holder
tokens are also an optimization to avoid reallocating tokens
that have been "lost" to another system.

The file access token is the most fundamental CFS 1lock in

Page 13
that it is used not only to control simultaneous access to
1ser files, but also to manage directories and bit tables.

The access token state transition table is given below, with
the action required to make the designated state change

\
\ new read exclusive place-holder
\
\
old \
read nothing vote DDMP*
exclusive DDMP* * nothing DDMP*
place-holder vote vote nothing
Where:
vote means that the other CFS systems must be asked for

permission to make the state transition. Voting is
a fundamental operation of CFSSRV and is done by a
software implemented broadcast.

ODMP* means that DDMP must run and remove all of the OFN's
pages from memory and update the disk copy of any
modified pages.

DDMP** means that DDMP must run to update to disk any
modified pages and any in memory pages must be set
to "read only". This latter operation is performed
by clearing the CST write bit. The CST write bit
has been implemented in KL paging explicitly to
support loosely-coupled multi-processors.

While DDMP is performing a CFS-directed operation, all pages
of the OFN are inaccessible to any other process. This is
achieved by a bit, SPTFO, set in SPTO2 by DDMP.
Access permission to a file moves among the CFS systems on
demand. Each system must remember its state of the token so
it may respond to requests for the access permission.
The token consists of:

. The structure name

. the OFN disk address

. a flag bit to indicate this is the access token

. State

Page 14

. end-of-file pointer
. end-of-file transaction number
. fairness timer
. the OFN this token is for
and, if this is a token for a bit table:
. Structure free count
. structure free count transaction number

The fairness timer is a CFS service that allows a resource
to be held on a node for a guaranteed interval. Therefore,
the owner need not lock the resource and arrange to unlock
it later. Rather it simply places the guarantee interval in
the resource block and the CFS protocol takes care of the
rest.

Place-holder tokens exist principally to hold the values
associated with the end-of-file pointer and with the
structure free count. It is important that these be held by
each system, because the owner of the OFN token may crash
and therefore the last known state of these quantities must
be remembered so that the remaining nodes may have the best
possible value for them. The transaction count is intended
to determine whose value is the most recent should the owner
not be present to contribute the current value. During the
voting for acquiring a token, these values are passed among
the CFS nodes, and the node conducting the vote retains the
values associated with the largest transaction number.

The file access token represents the rights that a system
has to access a file section. That 1is, the token is
associated with the file's contents.

However, the owner of a file, 1i.e. the system holding
exclusive rights to access the file, also has the right to
modify the file's index block. The owning system may add
pages to the file or delete pages from the file.

OFNs are treated specially in TOPS-20. Unlike the file's
data pages, an OFN may not be discarded when the system
gives up its access to the file and read from its home on
the disk when the access is reacquired. An active index
block, represented by an OFN, contains paging information
that must be retained while the file is opened. For this
reason, a system needs to be informed if the index block
contents are changed by another system.

This information is disseminated in CFS by a broadcast
message. Each time a system writes a changed index block to
disk, it informs all of the other CFS systems by a broadcast

Page 15

message. Note that this broadcasting is done only when the
changed index block is written to disk, and not each time
the index block is modified. A broadcast message is used
instead of including this in optional data with the access
token for reasons explained in a 1later section of this
document.

When a CFS system receives such a message, it sets a status
bit in the apporpriate OFN so that the next time a process
attempts to reference the OFN the following will happen:

. the disk copy of the index block is examined.
. for each changed entry, update the local OFN

This reconciliation of the index block with the local OFN is
accomplished by the routine DDXBI.

RESOURCE ACQUISITION AND UPDATING

CFS resources are acquired and changed in response to
requests from other parts of the monitor. Rather than
describe each one, it will be instructive to consider how
the file related resources are acquired, maintained, and
destroyed.

vhen a file is opened, and the first OFN is created, ASOFN
will create the static CFS resources: open type and, if
appropriate, the frozen writer token.

Anytime an OFN is created, be it in response to opening the
file, or one of the "long file" OFNs, ASOFN will create the
access token,

The access token state is verified by various of the file
system and memory management routines. The most common
place for this is in the page fault handler. The two
exceptions to this are for a bit table access token and a
long file "super index block". The bit table token is
acquired and "locked" when the bit table lock is locked and
released only when the bit table is unlocked. The token for
a super index block is occasionally acquired in DISC by the
routine (NEWLFT) that creates new long file index blocks.
In theory, these exception cases need not be exceptions.
That is, the code could simply rely on the normal management
of the token during page faults to insure data integrity.
However, in these cases, the code must perform multiple
operations on the file data "atomically". That is, it must
modify two or more pages, or it must "test and set" a
location with the assurance that no other accesses to the
data occur between the steps. On a single system, this is
done by a NOSKED to prevent any other process from running.
in an LCS environment, NOSKED is not sufficient (although it
is necessary!). Another form of interlock must be used to
prevent a process on another system from examining or

Page 16

modifying the data. It turns out that the access token
satisfies this need quite well.

The above discussion implies that the page fault handler,
when it acquires an access token for an OFN, does not "lock"
the token on the system. That is, the token is acquired but
not "held". This may result in the token being preempted by
another system before the process is able to reexecute the
instruction that caused the page fault. The "fairness"
timer in the token resource is one attempt to minimize such
thrashing.

The access token is acquired on the following conditions:
. when an OFN is being created
. when the OFN is locked

. when a page fault occurs because the current
access is not correct

The current state of the token is kept in the CFS resource
block as well as in the OFN data base. The field, SPTST, is
the current OFN state of an OFN. The values are:

0 => no access

.SPSRD => read only

.SPSWR => read/wvwrite
SPTST is modified by the routines in CFSSRV that are called
to set the state of the file. The values are set here, and
not in PAGEM, PAGFIL or PAGUTL because the OFN state must be

set while the CFS resource block is interlocked against
change.

The routines to modify the state of an OFN token are:
. CFSAWT - acquire token but don't hold it
. CFSAWP - acquire token and hold it

TOKEN MANAGEMENT

Once a token is "owned" on a system, it will remain in that
state until it is required on another system. That is, if
the token is held for read/write access (exclusive), then
all references to the pages of the OFN will succeed without
CFSSRV being invoked.

If a token must be revoked because another system needs it,

CFSSRV signals DDMP to process the data pages. This is done
by:

Page 17

. Setting bits in the field STPSR in the OFN data
base.

. Setting the OFN's bit in the bit mask OFNCFS.
. Waking up DDMP.

The field STPSR is a two-bit quantity indicating the type of
access required by the requesting system. DDMP's action is
as follows:

read-only needed:

Write all modified pages to the disk. Clear all of
the CST write bits in all in-memory pages.

read/write needed:

Write all modified pages to disk. Flush all "local"
copies of data including any copies on the swapping
space. Swap out the OFN page if it is in memory
(actually, simply place it on RPLQ).

Once DDMP has performed the necessary operation, it <calls
CFSFOD. This routine will set the OFN state and the
resource state appropriately as follows:

read-only requested:

set OFN state to .SPSRD and set resource state to
"read".

read/write requested:

set OFN state to 0 and set resource state to
"place-holder".

CFSFOD also copies the current end-of-file information from
OFNLEN into the resource block and finally it sends the
"condition satisfied" message to the requestor.

While DDMP is performing its work on behalf of CFS, it sets
the bit SPTFO in the OFN data base. This bit is examined by
the page fault handler, and by CFSAWP/CFSAWT to see if the
OFN is 1in a transition state. If SPTFO is set, and the
process requiring the OFN is not DDMP, then the process is
blocked wuntil SPTFO is cleared by DDMP. In order to
facilitate identifying DDMP from all other processes, a new
word has been added to the PSB called DDPFRK. 1If DDPFRK is
non-zero, then the current process is indeed DDMP and SPTFO
should be ignored.

JNUSED RESOURCES

Whenever a node replies "no" to a request, it remembers in

Page 18

the associated resource block the node(s) that have been
rejected. The only reason for wunconditionally denying a
request is that the resource is "held" 1locally. 1If a
resource cannot be granted because of the fairness timer,
the "no" response includes an optional data word of the time
the resource is to be held. Therefore, the requestor knows
precisely when to request the resource anew.

When a held resource 1is "released" (or undeclared), CFS
examines the rejection mask for the resource. For each node
identified in the mask, a "resource released" message is
sent indicating that this 1is a propitious time to try to
acquire the resource. There is no guarantee the new request
will be granted as the resource could be held again, or
another node could have requested, and been granted, the
resource first.

DELETING FILE RESOURCES

The access token is deleted whenever the associated OFN is
deassigned.

The static file resources are released when the file 1is
closed. This is performed in RELOFN.

CHANGES TO EXISTING CONCURRENCY CONTROL SCHEMES

As a result of CFS, much of the concurrency control in
TOPS-20 has become distributed. In some cases, this has
been done by creating a companion resource to an already
existing one. As example of this is the file open mode
resource described above.

In other cases, existing locks have been replaced by CFS
resources.

The decision as to which technique to employ was made on a
case-by-case basis. The significant criterion was how easy
it was to eliminate the existing concurrency control and
replace it with the CFS management. The file resources
proved difficult to do. However, there are two important
pieces of the monitor's structure that were easily and
efficiently replaced: directory locks and directory
allocation tables.

Directory locks are now CFS resources. A directory lock
resource contains:

. the seventy-two bit identifier
. owning fork

. access type

Page 19

. share count
. waiting fork bit table

In fact, a directory lock resource is the sole instance of a
"CFS long block". .

Directory locks are always acquired for exclusive use.
However, wunlike file access tokens, directory locks are
never granted "conditionally". This is because directories
are files, and the directory contents are subject to
negotiation by the associated file access token. That is,
acquiring exclusive wuse of the directory lock resource is
independent of acquiring permission to read or write the
directory contents. When some process on the owning system
attempts to read or write the directory contents, it must
first acquire the file access token in the proper state.
Although this sounds somewhat inefficient, 1i.e. requiring
the node to acquire two independent resources, it is in fact
a remarkably efficient adaptation of the CFS resource
scheme. This 1is so because a node need not know how the
directory contents will be wused when it acquires the
directory lock. That is the way the lock was handled before
CFS, and preserving this convention means that the code to
acquire the directory 1lock wunder CFS is as efficient as
possible. The state of the file access token, and
tonseguently the degree of sharing of the directory
contents, is determined by how the contents are referenced
and not by how the directory is locked. This means that a
process may lock the directory lock without knowing how it
will reference the associated data, and its reference
patterns determine what other negotiations are required.

The directory allocation table is a local "cache" for the
information normally stored in the directory. Each active
OFN is associated with a directory allocation entry. Each
entry 1is for exactly one directory. The entry, before CFS,
contained: structure number, directory number, share count,
and remaining allocation.

Under CFS, an active allocation entry contains: structure
number, directory number, share count, and pointer to the
CFS resource block. The CFS resource block contains,
besides the normal CFS control information, the remaining
allocation for the directory and a transaction number. The
transaction number serves the same purpose as the
transaction number associated with a file end-of-file
pointer.

CFS may have an "unused" resource block for a directory
allocation entry. That is, even though there is no active
directory allocation entry, there may be a CFS resource
block representing the directory. This is because CFS
attempts to retain knowledge of resources for as 1long as
possible to avoid having to vote when some process wishes to

Page 20

create the resource anew. However, CFS will destroy any
unused resource allocation entry that 1is requested by
another system.

TRANSACTION NUMBER

The optional data items, "end-of-file pointer” and
"structure free space", have an associated value called the
"transaction number”.

One either uses centralized or decentralized control in a
"loosely-coupled multiprocessor”™ system. 1In a centralized
system, control information and updating is coordinated by a
master. Transactions are "serialized" by virtue of having a
single owner for the resoruce and therefore a single manager
of the resource data. In a decentralized system, the
various systems share the ownership of resources and use
some sort of T"concurrency control" technique to manage
resources.

CFS is a decentralized system. A resource is not owned or
managed by any particular system, but rather the
responsibility for the resource is passed from system to
system as required. As such, it may not always be possible
to uniquely identify a particular system as the owner. This
may cause a problem when a system needs to become the owner,
and therefore must determine the current status of the
resource in question.

There are two possibilites that a nascent owner may
encounter:

. The previous owner is present and indentifiable.
. There is no system that is the previous owner
and of this latter case:
. the existing control information is accurate
. the existing control information in not accurate.

Clearly, if the previous owner is present, the new owner has
all of the information it needs to proceed with its
transaction.

If the previous owner cannot be 1identified, then the new
owner must be able to determine which of the systems has the
current control information about the resource. It may be
that none of them has, and this is a problem that exists
even on a single-processor system. The result of such a
problem may be "lost pages", inconsistent data bases and
other such phenomena. As in a single-processor system, the
problem occurs because the resource control information is
lost as an effect of a system crashing.

Page 21

In order to determine the most up-to-date information about
a resource, each system maintains a transaction count along
with the information. Whenever it acquires information with
a larger transaction count than its own value, it knows that
information is more current and it must replace its own copy
with the new data and count. Whenever a system unilaterally
changes its copy of the control information, it must also
increment the associated transaction count. Since a system
may perform such an wupdate only when it has write or
exclusive access to the resource, the system need change the
transaction count only when it must downgrade its access.

Due to the nature of the CFS voting and resource management,
it is possible for a system to acquire a resource but to
receive a different value for the resource control
information from each of the other systems (this will happen .
only if the owner crashed. If the owner didn't crash, then
at least two of the other systems must have the same control
information and transaction count). In this case, the
transaction counts are used to identify the most up-to-date
value.

The transaction count is really a "clock" that is used to
"time-stamp" information, When systems communciate with
one-another, they synchronize the clocks by sending each
other the current counts. Most network concurrency schemes

ise clocks for similar purposes, and most of the uses and
implementations are considerably more exotic than this one.
However, since CFS needs the <clock only to determine
relative ages, and not absolute ages, of information, this

simplified clock is adequate.

An alternative to using transaction counts is to "broadcast"
changes to resources. This has the disadvantage that it is
costly in both processor and communications time and
resources, However, CFS does use broadcasting in a few
cases where the lack of up-to-date information could result
in data being destroyed. The two cases are:

. an OFN being modified and written to disk

. an EOF value being written into the directory copy
on the disk

As both of these represent changes in the permanent copy of
the resource, it is essential that all of the other systems
have current copies or knowledge of the update.

CFS MESSAGE SUMMARY

Items marked with a "*" are sent as broadcast messages.

‘1, request resource (vote)

2. reply to request:

Page 22

a. unconditional yes
b. wunconditional no
c. no with retry time
d. conditional yes

3. resource available

4, condition satisfied

*5,. OFN updated

*6. EOF changed

In addition, each message type may carry specific optional
data items, up to four words of optional data per message.

	00
	01
	02
	03
	04
	05
	06
	07
	08
	09
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22

