Functional Specification for

TOPS20 COMMON FILE SYSTEM

Page 2

1.0 PRODUCT OVERVIEW
1.1 Product Description:

This project is to develop a "Common File System" for
TOPS20. The Common File System capabilities are applicable
to configurations of two or more 36-bit processors, each
with its own main memory, interconnected by a high speed bus
("C1"). The objective of the Common File System ("CFS") is
that disk structures and files within such a system are
available to jobs on all" processors, regardless of the
physical connections of the disk devices. '

1.1.1 Architectural Position -

CFS is a component of “the "loosely-coupled systems"
architecture and is the first piece of that architecture to
be implemented. Some of the other components are:

1. DECnet/CI

2, CI-wide IPCF
3. Cl-wide ENQ/DEQ
4. CI-wide GALAXY -

As can be seen, the ultimate LCS pro uct 1is an extensible
multi-processor system. CFS 1is being implemented first
because it is the most visible of the pieces and because it
provides a useful " extension to TOPS-20 even without the
other LCS components.

1.1,2 Reltationship To Other CI Products -

CFS is indpendent of the other high-level CI protocols.
That 1is, CFS can “exist on a system that does not support
MSCP. All that is required is the SCA 1layer of the CI
protocol., In the following sections, mention is made of
MSCP, the MSCP server and other CI applications protocols.
These references are provided to explain the relationship of
CFS to the other committed CI products, but CFS remains
distinct and independent of them. The specifics of these
other protocols, and any limitations or restrictions, are
described in other documents.

Page 3

1.2 Markets

The Common File System is a general operating. system
capability and 1is applicable to all present DECSYSTEM-20
markets.

1.3 Competitive Analysis

This project provides more and larger. conf;guratlonJ
alternatives than previously available. This project is not
closely related to "distributed processing™ in’ that it is
only applicable to configurations on a CI and therefore
within the 100 meter limit of the CI.

VAX/VMS is developing a means for multiple processors to
reference files on a single disk system; however, the. basic-
difference in filesystem architecture~ between TOPSZO and VM§,
makes the projects somewhat dlfferent .

=0 3T 3y

Related capabilities include "Network File Access" or
other techniques for moving files among nodes of a network.
CFS is a more powerful and transparent form of file access
because it implements all monitor file primitives visible to
the user program and operates over a high speed bus. , -

"Multiple Processors” (implying shared memory as . with
TOPS10 SMP) is a related capability. SMP is a more powerful
approach to the use of multiple processors . in , that it
provides greater transparency and better dynamlcﬂ«load
leveling. There are compensating advantages of CFS over SMR
in the area of failsoft and isolation of failures, and in
the maximum size of confiqurations which can be supported.

1.4 Product Audience

The principal customer for CFS is one who now has, or who
needs, multiple KL-10 processors and wishes to run them as a
51ngle system. Since DEC is not offering a follow-on PDP-10
processor, most, if not all, of the LCG customers fit this.
description.

CFS-20 is meant as a complement to DECnet services, and
in some cases sites with multiple KL10's may find that
sharing via DECnet is adequate.

Page 4

2.0 PRODUCT GOALS

2.1 Performance

1. All unprivileged “monitor calls which affect disk
files on present one-processér TOPS20 systems will work and
will have the intended effect on any disk structure within
the configuration.

2. The overhead associated with maintaining the common
file data base on multiple processors will cause an increase
of not more than 10% in execution time of file primitives
and operations.

3. A processor referencing files on a disk not directly
connected will incur no additional overhead in transferring
data.

We expect to use MSCP (Mass Storage Control Protocol) for
the data transfers to support file operations over the CI.
This will exist on the CI along with other protocols
supporting other functions. MSCP should achieve efficient
use of the CI, low-overhead operation of the monitors, and
high-bandwidth file interchange. File structure information
such as directories and index blocks is passed exactly as
read from disk. By passing TOPS20 file data directly, we
avoid the overhead of copying and conversion incurred with
other protocols.

However, a processor acting as a file server for another
processor will incur overhead for this activity not relating
to jobs running on it. This overhead will involve primarily
instructions executed at interrupt 1level and main memory
space to buffer data being transferred.

CFS supports shared-writable pages (simultaneous write
file access) on multiple processors. This is used for
various internal mechanisms (e.g. directory 1lookup, disk
allocation tables) as well as user program functions. This
type of access generates I0 activity and overhead not
present on single-processor systems. Because data cannot
actually be referenced simultaneously by two processors, it
must be moved from one to another by the operating system.
Users will be advised of this and should arrange
applications so as to avoid frequent write references to the
same data from different processors.

Since the monitor itself uses this facility, we conducted
a study of monitor reference patterns to ensure that this
activity will not be a significant bottleneck. We recorded
monitor reference patterns to directories and disk
allocation tables under actual and simulated loads. This
was done by wusing the SNOOP facility to detect and record
references where the job making the reference 1is different
from the job which made the most recent previous reference.

Page 5

This provides worst-case data on the freguency of moving
nonitor data between processors. We determined that only a:
few (3 or less) directories were referenced sufficiently
often to be of interest. These were all common system
directories (e.g. <SUBSYS>), and the frequency was not so
high as to suggest a problem. This small--additional
overhead is greatly outweighed by the disk space:.savings of
not having to duplicate the SYS: files for each of the CFS
processors.

2.2 Environments

Minimum confiquration requires two processors and a CI.
Each processor must have a connection to the CI. (The
question has been raised as to whether CFS might be operable
over an NI connection. This will not be supported in first
release. There should be no logical reason that NI couldn't
be used, but additional study and experience is necessary to
understand the performance implications. - Additional
implementation work would also be needed.)

Each processor must have its own main memory, swapping
device, boot device, and console.

L W el =

Each processer must have dire
structure. In a future release, it may be possible to
eliminate this requirement. However, there are other
requirements for a directly connected disk (e.g. swapping)

which will also have to be addressed.

The maximum confiqguration for first release of CFS is two
processors; however there shall be no CFS-specific software
limitation on a larger number. This limit is based on our
current knowledge of the CI and the lack of experience with
this architecture. The practical limit may be higher. A
maximum of one CI will be supported for first release.

2.3 Reliability Goals

1. A customer should be able to improve net system
availability of his configuration by use of multiple
processors and the CFS.

2. The CFS should cause no significant decrease 1in the
reliability of each single processor.

3. Failure of one processor will have no effect on other
processors except for file data which is in the memory of
:he failing processor,

Page 6

2.4 Non Goals
l. CFS will support only disks.

2. CFS is not intended to work with operating systems
other than TOPS20 or with machine architectures other than
36-bit.

3. CFS does not provide any automatic balancing of job
load among processors 1in a configuration as does SMP,
However, users should find it convenient to login to the
less 1loaded processor and/or to switch processors (by
logging out and back 1in again) if the 1load becomes
unbalanced.

4, Applications that rely on ENQ/DEQ and OF%DUD are not
supported by CFS.

5. IPCF applications will not communicate over CFS
processors.

3.0 FUNCTIONAL DEFINITION
3.1 Operational Description

TwO Or more processors are interconnected via a
high-speed bus ("CI") having a bandwidth at least comparable
to disk transfer rates. A disk which is to be wused by a
processor must have a direct path to that processor; the
disk must be either on the CI, on a directly connected
MASSBUS, or attached to another KL-10 running an MSCP
server,

Page 7

1
t DISK ! ! DISK !
1 ! 1 !
) 1
! 1
[11 11
11 | [
! KL10 ! ! KL10 ! ! KL10 !
! CPU&MEM ! ! CPUSMEM ! ! CPUSMEM !
'
11 MASSBUS
! !
! MASSBUS !
! DISKS!

One or more logical structures exist on the set of disks.

Tkl A s

o

11 o¢f these structures are visible to jobs on all of the
processors unless the system administrator specifically
declares particular structures as "exclusive" to a

particular processor.

In order to provide access to Massbus disks connected to
a KL10, the KL10 will act as a logical disk controller on
the CI for the Massbus disks. There 1is no visible
distinction between a disk structure directly connected to a
processor and one which is accessed via another processor.
The wusual monitor calls are used to access files and
structures, and all file open modes are allowed with the
exceptions 1listed below. Shared file access is permitted,
and programs need not be aware that other jobs sharing a
file are on different processors; however, it may be
advisable for reasons of efficiency to avoid simultaneous
modification of a file on different processors.

File facilities specifically include:

l. File naming and 1lookup conventions (GTJFN) -
File names on the common file system include structure,
directory and subdirectories, file name, extension,
generation number, and attributes. Full recognition
and wild-carding is available; name stepping (GNJFN);
normal access to FDB.

Page 8

2. Usual open and close modes (OPENF, CLOSF,
CLZFF).

3. Usual data transfer primitives, both sequential
and random (BIN, BOUT, SIN, SOUT, SINR, SOUTR, RIN,
ROUT, DUMPI, DUMPO).

4, File-to-process mapping (PMAP) including all
modes (shared read, copy-on-write, shared write,
unrestricted read).

5. The device type associated with files on the
common file system is the same as that presently used
for disk.

6. Privileged operations MSTR (mount structure) and
DSKOP.

The above includes all file system primitives relating to
accessing files and transferring data but does not include
other primitives which may use certain file system entities
but which are considered separate and distinct facilities
(e.g. ENQ/DEQ).

3.2 Restrictions

A file open with OF%DUD (don't wupdate disk) on one
processor may not be opened on any other processor. This
results from the fact that processors share file data by
writing any changed files to the disk before passing control
to another processor. Since OF%DUD implies that the disk
copy of a file may not be changed until the user process
approves the change, OF%DUD cannot be supported with CFS.

Other devices such as magtapes and line printers are not
part of CFS and may not be open simultaneously on multiple
processors.

Use of simultaneous write access with active writing of
file data by jobs on different processors requires the
system to move pages among the processors and hence will be
much slower than on a single processor. The write token is
maintained on a per-OFN basis. This means that a program
requiring write access to any one or more pages must have
exclusive access to the entire OFN. Each OFN represents
256K words of the file. For large files, programs on
different processors could be executing simultaneous write
references with no delay if they were referencing data in
different 256K sections of the file.

A structure must be "mounted" on any processor which is
to access files on it. To be physically removed from a
drive, a structure must be dismounted by all processors.

Page 9

The relevant Galaxy components should be modified to provide
aount information from processors other than the one on
which they are running, but this in not planned for FCS of
CFS. Hence an operator will have to query the OPR program
cn each processor to find out what users have the structure
mounted. Each processor will know, however, which other
processors have the structure mounted so that the operator
can quickly determine if the structure can be removed.

Finally, it 1is not possible for two or more CFS
processors to establish an ENQ resource for the same file.
This restriction of ENQ is made to prevent malfunctioning of

programs that rely on ENQ as a file semaphore and will be
removed once the LCS-wide ENQ/DEQ facility is provided.

4,0 COMPATIBILITY
4.1 DEC Products

All program and wuser interfaces are compatible with
previous versions of TOPS20.

Mountable disk structures are compatible with previous
versions of TOPS20.

4.2 DEC Standards

The CFS will use the corporate SCA protocol on the CI bus
and will use a private SYSAP-level protocol.

The CFS will not use DECNET.

4.3 External Standards

None applicable.

Page 10

5.0 EXTERNAL INTERACTIONS AND IMPACT
5.1 Users

All users of the disk file system are potential users of
CFS; however most users will not be aware of or affected by
CFS. Some applications developers will rely on CFS to allow
applications to exist on multiple processors and communicate
through files.

5.2 Products That Use This Product

The following may use CFS: RMS, DIF, language OTS's.

5.3 Products That This Product Uses
The following hardware components are required:
KLIPA (CI20) - Interface between KL10 and CI bus.

KL10 Microcode - modifications to support "write
access in CST".

The following software modules are required:
KLIPA driver

and time. Systems Communications Services (SCA/SCS).
The following are optional MSCP driver
MSCP server

5.4 Other Systems (Networks)

The CFS is not visible to other network hosts; the files
in the CFS disk structures may be accessible by remote nodes
as provided by other facilities (DAP, NFT, etc.) Each
processor in a CFS configuration is a separate network node
with its own node name.

The CFS itself does not use node names to reference files
and hence is independent of any constraints or requirements
of network node naming.

Page 11

5.5 System Date And Time

The CFS systems guarantee that they all use the same date
and time. This requirement insures that files written on
one of the processors will have a creation date and time
consistent with the other CFS processors. If the processors
were allowed to have different date and time values, many of
the file-oriented utilities would malfunction. -

This is accomplished by having the systems inform each
other whenever the local date and time is changed. Also, a
newly loaded system will use the date and time provided by
the other CFS systems. This last item implies that a CFS
system loaded while at least one other CFS system is already
running will not have to prompt the operator for the date
and time. 1In order to make the start-up dialog seem the
same, the system will type:

The date and time isS: XXXXXXXXXX

where it now prompts for the date and time. This also
serves as a check on the date and time.

3.6 Job Numbers

The CFS systems must use a mutually exclusive set of job
numbers, This is because many system utilities, and user
programs, include the job number in the name of "session"
files and other per job data to avoid conflicts among jobs
using the same file directories. CFS systems, therefore,
will acquire a set of global job numbers to use and will
insure that no other CFS system uses those numbers. This
implies that the wuser-visible job number, as seen in a
SYSTAT command, may not correspond to the monitor's internal
representation for that job. However all JSYSes that either
provide or accept a job number will be modified to account
for the the new gloabl job numbers.

5.7 Interprocessor Communications

CFS provides only sharing of files. Without some
ancillary capability, such as DECnet, processes on different
CFS processors have now way of exchanging "events" such as
interrupts. Processes on the same processor have a choice
of several IPC mechanisms, such as

l. DECnet

Page 12

2. IPCF
3. ENQ/DEQ
4, THIBR/TWAKE

All of these provide inter-process events (viz. interrupts)
and may also '"carry" some amount of data (e.g. an IPCF
message). However, CFS provides a data carrying mechanism,
namely shared files, but it provides no intrinsic event
generator.

CI/DECnet is the ideal mechanism for a CFS IPC. However,
Cl/DECnet may not be available with the first release of
CFS. Therefore, there will be no reliable IPC for use by
"distributed" applications.

It is possible, however, to implement THIBR/TWAKE across
CFS processors. This 1is true because CFS will guarantee
that the job numbers used by the various processors are
mutually exclusive of one another.

Presently, there is no commitment to provide a CFS-wide
TWAKE (THIBR needs no changes), but the work reguired is
modest.

5.8 Data Storage, File/Data Formats, And Retrieval

The CFS requires an open file data base which is resident
in each processor of a configuration. 2-4 words per OFN are
required. Other resident storage requirements are one page
(512 words) or less. As a side effect of allowing all
processors access to all mounted structures, it may be
desirable to build standard monitors with a larger number of
mountable structures than at present.

The file structure will be identical with previous
releases of TOPS20.

Files may be saved and restored with DUMPER without
regard to which processor DUMPER 1is run on, except that
DUMPER must be running on the processor which has direct
connection to the required tape drive,

5.9 File And Data Location

CFS is unaware of the physical 1location of file data.
That is, a shared file may be located on a CI disk, a shared
Massbus disk or on a disk accessed by the MSCP server.

Page 13

This latter case, that of the MSCP server, should be used
only when absclutely required. That is, if the file could
be located on a CI disk or a shared Massbus disk, it should
be. Files accessed through the MSCP server impose a
significant burden on the processor running the server, and
if such files are accessed frequently, the result may well
be unacceptable. Clearly, files that must reside on PS:
structures and must also be shared may by shared only
through an MSCP server. However, such files should not be
frequently accessed by other processors.

It is, for example, entirely inappropriate to place all
of the SYS: files for all of the CFS processors on disks
that must be accessed be the MSCP server.

5.10 Protocols
CFS will use the corporate SCA protocol on the CI bus.

CFS will use a private protocol for control of file
openings, structure mounts, file state transitions, etc.
There is no present corporate protocol which supports these
functions.

The CFS protoccl uses only SCA messages. The generail

cormat of a CFS message is:
DEFSTR CFUNQ,SCALEN, 35,18 s NUMBER OF THIS VOTE OR REQ UNIQUE CODE
DEFSTR CFCOD,SCALEN,17,6 ;OPCODE FOR VOTING

.CFVOT==1 ; VOTER

.CFREP== ;REPLY TO VOTE

.CFRFR==3 ; RESOURCE FREED

.CFCEZ==¢4 ;SEIZE RESOURCE

.CFBOW==5 ;Broadcast OFN change

.CFBEF==6 ;Broadcast EOF
DEFSTR CFFLG,SCALEN,11,12 ;Flags
DEFSTR CFODA,SCALEN,O0,1 ;Opt data present
DEFSTR CFVUC,SCALEN,1,1 ;Vote to include HSHCOD
CFROT==SCALEN+1 ;ROOT CODE FOR THIS VOTE
CFQAL==SCALEN+2 ;QUALIFIER CODE FOR THIS VOTE
CFTYP==SCALEN+3 ;Vote reply or request type
CFDAT==SCALEN+4 ;Optional data, it present
CFDT1==SCALEN+5 ; second word of optional data
CFDSTO0==CFDT1+1 ;STR free count in bit table
CFDST1==CFDSTO0+1 ;Transaction count of CFDSTO

This format is used to both request CFS resources and to
reply to resource requests.

The SYSAP name for CFS is: LCS20SCFS. This name
iniquely identifies the TOPS-20 CFS SYSAP for a homogeneous
CI environment. Since there is no central registry of SYSAP
names, configuring a CI with other processor types (e.g.

Page 14

VAX) may result in confusion of names and protocols.

5.11 Protocol Operation

The CFS protocol is a "veto" protocol. That 1is, each
request must be approved by all of the CFS processors or it
is disallowed. Therefore, a single dissenting processor is
sufficient to refuse a request.

Each processor is required to remember only the resources
it owns. Therefore, when it "votes", it expresses only the
relationship of the request to its own resources,

Consequently, each processor must be polled every time a CFS
resource change is to occur.

5.12 Modifications To MSTR

The MSTR JSYS has been modified to allow structures to be
declared to be "shared" or "exclusive". A shared structure
may be mounted by other CFS processors, whereas an exclusive
structure may be mounted only on this processor.

The structure status bit, MS%EXL declares that a
structure 1is to be mounted exlusively and is returned with
the appropriate value with the structure status.

Also, there is a new MSTR function, .MSCSM, that change's
the shared/exclusive attribute of a mounted structure. The
calling sequence is:

MSTR

ACl: -2,,.MSCSM
AC2: ADDR

ADDR: device designator
ADDR+1: new attribute

5.13 CFS Components

CFS 1is 1implemented throughout the TOPS-20 monitor.
However, the code specific to the CFS protocol is contained
in the module CFSSRV., CFSSRV is the CFS SYSAP as well as a
collection of routines to interface to the preexisting
TOPS-20 services. CFSSRV uses the following SCA call backs:

1.

Page 15

.SSMGR message received

2.
.SSPBC port broke connection
3.. |
.SSCTL connect to listen
4,
.SSCRA connect response available
5.
.SSMSC message/datagram send complete
6.
.SSNCO node on-line
7.
.SSNWO node off-line
8.
.SSOSD OK to send data
9.
.SSRID remote initiated disconnect
10.

.SSCIA credit available

In addition, CFS uses the following SCAMPI routines:

1. §SC.sOA
2. SC.RCD
3. SC.CON
4. SC.DIS
5. SC.SMG

6. SC.RMG

Page 16

7. SC.LIS
8. SC.REJ
8. SC.ACC

SCAMPI must reliably inform CFS of any CI configuration

changes, 1including newly established or failed port-to-port
VCs.

The remaining CFS code 1is found 1in-line as part of
existing TOPS-20 file system services.

CFS uses only SCA messages.

5.14 Significant Data Structures

The advent of CFS creates the following new data
structures and conventions:

1. A new per-OFN word, SPTO2
2, directory locks are now CFS resource blocks

3. directory allocation entries are now CFS resource
blocks

4, frozen write file openings create two resources

5. other file openings create only one resource

6. each OFN has a CFS "access token" as a CFS resource
7. each mounted structure creates two CFS resources

8. BAT block locks are CFS resource blocks

Note that in some cases the CFS resource replaces the
existing lock, viz. directory locks, and in other cases the
CFS resource exists as a "copy" of the information, viz.
structure mounts, so that the CFS protocol service can
manage the resource locally. In principle, there 1is no
difference between these kinds of resources, and only the
higher-level monitor code that creates the CFS resource
knows which kind each is.

The bundled CFS, that is the release 6 monitor without
CFS support, still uses CFS to manage the "changed" monitor
resources, However, in many cases, as with the file
resources, the CFS resource 1is not created as it is not
needed for any internal monitor coordination.

Page 17

5.15 1Interfaces To CFSSRV
CFSSRV contains a number of jacket routines that
interface between the TOPS-20 file system and the CFSSRV
resource manager. The sigificant interface routines are:
CFSAWT/CFSAWP

T1l/ OFN
T2/ access needed

Returns: - +1 always
Called to manage the access token
CFSLDR/CFSRDR

Tl/ Structure number
T2/ directory number

Returns: +1 always

Lock/unlock directory

CFSSMT
T1/ Structure number
T2/ access needed
Returns: +]1 failed. Access invalid

+2 success
Mount strcuture
CFSSDM
T1l/ Structure number
Returns: +1 always
Dismount structure
CFSSUG

T1l/ Structure number
T2/ access

Returns: +1 can't change access
+2 success

Change structure access
CFSGFA

T1l/ Structure number

Page 18
T2/ XB address
T3/ Access type

Returns: +1 access conflicts with other system(s)
+2 success

Acquire file open locks
CFSFFL

T1/ Structure number
T2/ XB address

Returns: +1 always
Delete file open resources
CFSFWL

Tl/ Structure number
T2/ XB address

Returns: +1 always
Free frozen write resource
CFSGWL

Tl/ Structure number
T2/ XB address

Returns: +1 conflict with other CFS system
+2 success

Acquire frozen writer resource

As these jacket routines are really an integral part of
the file system, the interfaces to these routines are really
internal file system conventions and not external
interfaces. Therefore, the detail of how these interfaces
work is beyond the scope of this functional document.

5.16 PHYSIO Services Required

CFSSRV requires a routine in PHYSIO to request that
dual-ported disks not be accessed by this processor. The
call is:

CALL PHYMPR

Page 19

Returns: +1

Also, it requires a routine to cancel the action of
PHYMPR:

CALL PHYUPR
Returns: +1

In addition to these, CFS requires that PHYSIO and its
lower 1level drivers correctly support access to dual-ported
Massbus disks. In particular, work must be completed in
managing dual-ported disks and in insuring that the port is
released at the proper times.

6.0 RELIABILITY/AVAILABILITY/SERVICEABILITY (RAS)
6.1 Failures Within The Product

Failures within the CFS-specific software will most
likely cause a crash of one processor in a multi-processor
environment. Such failures may include 1loss of recently
modified file data. Failures which affect inactive files or
file directories are possible, but should be no more

acand

f 1iand Fthan aé e
- b C\ductlh LiiQil 4. b)l- i o

6.2 Failure Of A CFS Processor

Operation of CFS should permit crash of one processor for
any reason without 1loss of other processors in the
configuration. CFS relies on SCAMPI to detect a processor
failure and consequently the CFS protocol has no mecahnism
for 1idle polling. If a processor fails, the other
processors will be unaffected, except that the CFS code on
each of the surviving processors must "renegotiate" any
outstanding requests for file accesses.

A processor may be brought on 1line without restarting
other processors in the configuration.

Any disks which are available only via a failed processor
will be unavailable so long as that processor is
inoperative. 1If such disks are dual-ported to a different
processor, they may be mounted via that processor and remain
in use although all open files must be re-opened.

With HSC50, most disk errors will not be seen by the
processor(s). All recovery and logging will be handled by
-he HSC50. Any disk errors that are reported to the
processor will be logged in the system error file for that
processor., Disk errors occurring on pages that are being

Page 20

"passed through" a processor (e.qg. a KL10 servicing a
request for a Massbus disk) will be logged on the processor
to which the disk is directly connected. 1If a hard failure
occurs such that the server processor must inform the
requesting processor that the request could not be
completed, then the requesting processor will also 1log the
failure.

6.3 CI Failures

Should the CI fail, or should a processor's KLIPA fail,
the CFS processors must insure that data on shared disks is
not corrupted. This is accomplished as follows.

If a processor detects it is no longer connected to the
CI it must refrain from referencing any sharable disks. A
sharable disk is any HSC-based disk or any dual-ported
MASSBUS disk. A processor is considered no longer attached
to the CI if it cannot send a "loopback" message to itself.

Should a processor's KLIPA fail, and then be restarted
(e.qg. by reloading the microcode), the processor will not
be able to continue running if there are other CFS
processors on the CI. This prohibition avoids the problem
of the system rejoining the CFS network having stale data
about the CFS resources, or having data about a previous
incarnation of the network.

Should a processor be "cut off" from the CI indefinitely,

it may continue running but without being able to access
sharable disks.

6.4 Testing For Errors

CFS will be run in the DVT environment so that it may be
evaluated with regard to faults.

Many of the "normal" CFS errors may be tested without
explicit fault insertion. The following simple procedures

tests much of the CFS error recovery code
1. halt one of the CFS processors
2. bring up a new CFS processor

3. reload one of the KLIPAs

Page 21

7.0 PACKAGING AND SYSTEM GENERATION
7.1 Distribution Media

CFS is an unbundled product. Each monitor has the bulk
of the CFS support, but non-CFS monitors have a dummy
version of the CFSSRV protocol module. CFS sites will
receive a separate tape containing the proper CFSSRV.

7.2 Sysgen Procedures

Only CFSSRV differs from a bundled to an unbundled
monitor. The SYSFLG switch, CFSSCA specifies the type of
monitor.

7.3 Bundled And Unbundled CFS Systems

There is no protection in the monitor for running a
bundled and an unbundled monitor on the same CI. This is
particularly important for F-S procedures as the KLAD
monitor may not be compat1ble with the system environment,
Running a mixed conflguratlon is potentially catastrophic as

€ile structures may be destroyed.

8.0 REFERENCES

1. Functional Specification for Loosely Coupled Systems
(LCS) - Fred Engel, 30 April 1980

2. LCG CI Port Architecture Specification, 11-July-83
(KReenan)

3. LCS and the Common File System (Memo) - Dan Murphy,
15 Jan 1980

4, CFSDOC (memo) - Arnold Miller

-

	01
	02
	03
	04
	05
	06
	07
	08
	09
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21

