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INTRODUCTION

This manual describes the KB11-A Central Processor Unit, which is the basic component of the PDP-11/45 Pro-
grammed Data Processor System. The purpose of this manual is to:

a. provide an overall understanding of how the KB11-A functions in the PDP-11/45 System.

b. describe how the KB11-A logic works in sufficient detail to enable maintenance personnel to perform
on-site troubleshooting and repair.

Chapter 1 introduces the purpose and use of the KB11-A and describes how the processor interfaces with the
other components and options in the PDP-11/45 System.

Chapter 2 summarizes the KB11-A address modes and instruction set. This summarized information is presented
in Instruction Set Processor (ISP) notation. Complete descriptions and examples are provided in the PDP-11/45
Processor Handbook. )

Chapter 3 describes console control and indicator functions and basic operating procedure. This information is
presented to enable maintenance personnel to perform maintenance tests, using the console switches and indica-
tors, and to load and run the PDP-11/45 diagnostic programs.

Chapter 4 introduces the KB11-A principles of operation to familiarize maintenance personnel with the processor
features and characteristics.

Chapter 5 provides a block diagram description of the KB11-A architecture, including the data paths and the in-
ternal control structure. The notations on the block diagrams included in this chapter provide a key index to the
detailed logic schematics in the KB11-A engineering drawing set.

Chapter 6 presents an analysis of the KB11-A flow diagrams. The flow diagrams, which are included in the
KB11-A engineering drawing set, provide an essential understanding of how the KB11-A executes instructions and
hardware subroutines. Chapter 6 includes an example that traces the execution of a single instruction completely
through the flow diagrams.

Chapter 7 contains a detailed logic description of each of the modules in the KB11-A Central Processor Unit
(CPU). Simplified diagrams of complex logic and sample timing diagrams are included. However, the descriptions
relate directly to the block schematics for each module, which are part of the KB11-A engineering drawing set.
These block schematics are referenced throughout the chapter in a short-form notation. For example, the overall
drawing number for the 8-sheet block schematic of the M8100 DAP module is D-CS-M8100-0-01. In short-form
notation, these sheets are referenced alphabetically as drawings DAPA through DAPJ. This short-form notation is
also used as a prefix for each signal mnemonic, to indicate which block schematic shows the logic that asserts
each signal.
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CHAPTER 1
GENERAL DESCRIPTION

This chapter describes how the KB11-A Central Processor Unit interfaces with other components and options in
the PDP-11/45 System. It also provides a brief functional description of the KB11-A. Additional descriptions of
the KB11-A structure and functions are provided in succeeding chapters.

1.1 SYSTEM DESCRIPTION

A PDP-11/45 System block diagram is shown in Figure 1-1. The system includes the following PDP-11/45 com-
ponents, options, and related peripheral devices:

the KB11-A Central Processor Unit

Unibus A and B, connected to core memory, input/output (I/O) devices, and mass storage peripherals
an MS11 Semiconductor Memory System

an FP11 Floating-Point Processor

a KT11-C Memory Management Unit option (or the SJB module)

saooe

In addition to these components, the system may include additional Unibus-connected components, including
other processors.

1.1.1 The Basic System

A basic PDP-11/45 System is composed of the KB11-A Central Processor Unit, core memory, and 1/O devices,
connected by Unibus A. Such a system can perform virtually all operations that can be performed by any
PDP-11/45 System configuration. Information enters and leaves the system through the peripheral I/O devices
(and the KB11-A console). As the central processor for the system, the KB11-A fetches instructions from mem-
ory and executes the instructions.

Many of the instructions specify operations to be performed on data, which can be data that is stored in the
memory, in the processor, or data transferred with the peripheral device.

When the processor executes instructions, both the instructions (including any address constants used by the in-
structions) and the data are transferred on the Unibus, under the control of the processor. The processor can
also respond to special conditions that can occur at any time (i.e., asynchronously). These conditions can be in-
ternal conditions, such as power failure, bus errors, or stack overflow; or they can be external conditions, which
are indicated to the processor by interrupt operations initiated by the peripheral devices. The processor responds
to these asynchronous conditions by performing a series of data transfers which change the processor’s operating
context. In other words, the processor may execute a different program (or series of instructions) for each type
of asynchronous event, and the processor can save the status of one program for later resumption while running
another program.
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The system jumper board provides a simple, invariable mapping between the 16-bit addresses used by the
KB11-A processor and the 18-bit addresses used on the Unibus. The address mapping is dependent on the three
most-significant of the 16 bits in the KB11-A processor address; if these bits are all 1s, the two most-significant
bits of the Unibus address are forced to be 1s; otherwise, the two most-significant bits of the 18-bit Unibus ad-
dress are forced to be Os.

1.1.2 A Faster Basic System

The data processing capacity of a PDP-11/45 can be increased, for many applications, by increasing either the
speed of the memory or the speed at which data operations are performed.

An MS11 Semiconductor Memory System increases the memory speed in two ways:

a. The access time of the memory is much less (typically 300 ns or less) than the access time of the Uni-
bus memories (typically 500 ns or more).

b. The MS11 is connected to the KB11-A processor by a Fastbus, which provides faster transfer times
than the Unibus.

The FP11 Floating-Point Processor provides faster data manipulation in two ways:

a. Floating-point arithmetic operations can be performed at hardware speed, without the fetching and in-
terpretation of sequences of instructions (i.e., the execution of a subroutine).

b. Other instructions can be executed in parallel with a floating-point instruction, because the KB11-A
processor is free to fetch and execute other instructions while the FP11 processor completes a floating-
point instruction.

Figure 1-1 iltustrates a PDP-11/45 System that includes an MS11 Semiconductor Memory System, and an FP11
Floating-Point Processor. The KB11-A processor performs all data transfers among parts of the system. All ad-
dress information for transfers between the process-or and memory, or between the processor and the Unibus pe-
ripherals, is provided by the SJB system-jumper board. Transfers between the KB11-A processor (CPU) and the
FP11 processor (FPP) do not require address information; instead, the processors use control signals that specify
the type of information to be transferred, and that also control the timing and direction of the transfer.

1.1.3 A Virtual Machine System

The PDP-11/45 computer system is particularly well-suited to a type of operation in which the computer system
provides a “virtual machine” for each user program. In the virtual machine, the user program operates in isola-
tion from all other programs; the computer system provides many high-level services such as device-independent
/O, memory management, program scheduling, and protection of the system from the user program. Many of
the high-level functions are provided by system programs; the KB11-A processor can execute a variety of trap in-
structions used for communication between these system programs and the user program. The processor also has
special operating modes for user programs, in which certain processor operations are prohibited to protect the
system from improper use of these operations.

One of the major functions of the virtual machine is memory management. This can take two forms:

a. The management of a scarce resource; programs larger than the available memory can be run by loading
each part of the program as it is needed.

b. Control of a resource of increased size; although the KB11-A uses only 16 address bits (and can thus
address only 216 locations), other system components use 18 address bits (i.e., there can be 2!8 loca-
tions, or 4 times as many as the processor can address directly), so the processor needs some means of
specifying how the 16-bit addresses are to be mapped into the 18-bit addresses.
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The KT11-C Memory Management Unit is an option that replaces the SJB System Jumper Board to provide both
forms of memory management. By allowing a virtual address space to be mapped partly into the physical address
space, and partly (through non-resident traps) on secondary storage devices, the KT11-C Memory Management
Unit enables the KB11-A processor, with appropriate system software, to simulate a much larger available space.
This requires the use of a mass storage device on the Unibus, as shown in Figure 1-1.

The KT11-C can also be used to map the address space of the processor onto the larger Unibus address space by
converting the 16-bit addresses to 18-bit addresses. The mapping can be changed dynamically, at any time, so
that a program can access the entire Unibus address space a part at a time.

The memory management unit also provides some of the system protection against user programs. The KT11-C
can map different programs into different parts of the physical address space, providing a different context for
each program; this is done so that both user mode and system programs can be in the memory at the same time,
without conflict. In addition, the KT11-C Memory Management Unit provides various types of access protection
to prevent a user from inadvertently altering or destroying valuable data.

When the memory management system is used to control scarce resources, large blocks of data must be trans-
ferred between a mass storage device and the memory. To prevent these transfers from using too large a part of
the processing time, the mass storage device is allowed to conduct the transfers without processor intervention,
using the Unibus. The KB11-A processor arbitrates the use of the Unibus, so that the data transfers between the
mass storage device and the memory are interleaved with the data transfers between the processor and memory.
The mass storage device uses interrupts to inform the processor when the transfer is completed or when an error
occurs.

The control section of the MS11 Semiconductor Memory System has two data transfer ports. One is used by the
KB11-A processor, and the other is connected to Unibus B, so that a mass storage device can transfer directly to

the MS11 memory. The PDP-11/45 System makes use of the two data paths to reduce the interference between

the mass storage device and the processor on the Unibus. This is done as follows:

a.  When the mass storage device is using the Unibus to transfer to, or from, Unibus memory, the processor
can transfer to, or from, MS11 memory without conflict.

b.  There can be up to two memory controllers in the MS11 memory system; when the mass storage de-
vice is operating with one controller, the processor can operate with the other.

These considerations can greatly reduce the system overhead by allowing both the processor and the mass storage
device to operate at maximum speed most of the time. In expanded systems, bus switches can be used to further
improve the capacity for simultaneous operation.

1.1.4 Expanded Systems

The elements that distinguish a PDP-11/45 System have all been introduced in the three preceding paragraphs.
These elements are the following:

the KB11-A Central Processor Unit

the MS11 Semiconductor Memory System
the FP11 Floating-Point Processor

the KT11-C Memory Management Unit

B o

All PDP-11/45 Systems include the KB11-A; however, all other components are optional.

In addition to these components, a PDP-11/45 System can include any Unibus device or memory, and can be
structured to have more than one Unibus.
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A bus switch can be used to separate the Unibus into two parts. Normally, the system operates with the two
parts connected; however, after a data transfer operation has been started between the mass storage device and
the MS11 memory, the bus switch is opened so that the KB11-A processor can transfer data to, or from the Uni-
bus memory without conflicting with the transfers of the mass storage device. This improves the parallel opera-
tion described in Paragraph 1.1.3.

The system shown in Figure 1-1 uses a more-complex bus switch to connect the KB11-A processor and a second
processor to a third shared Unibus. In this multiprocessor configuration, both processors can access the MS11
Semiconductor Memory System, and both processors can control devices on the shared Unibus. One application
for this structure is to have the second processor control the main mass storage device in the system, performing
optimization programs and error recovery. This relieves the KB11-A processor of much of the burden of the
memory management and program swapping functions, thereby allowing the KB11-A to proceed with data pro-
cessing at maximum efficiency.

1.2 FUNCTIONAL DESCRIPTION

The basic functions performed by the KB11-A processor include the following:

manipulating data

transferring data among other devices
fetching and executing instructions
responding to asynchronous conditions

paoow

1.2.1 Data Manipulation

Figure 1-2 is a functional block diagram which illustrates the structure of the KB11-A processor data paths. The
data manipulation elements can perform arithmetic, logic, and.shift operations on data from various sources, and
the result of each data manipulation can be distributed to various destinations. The primary area for the storage
of data in the processor is the general registers, which are used to store data and address constants. Another regis-
ter that is connected to the data manipulation elements is the bus register (BR); this register is a central point in
the data paths because all data that enters the processor from other devices enters through the BR, and all data
that is transmitted from the processor to other devices is transmitted from the BR.

DATA FROM

EXTERNAL

DEVICES

{\r J\/’ ‘\)
DATA
SPECIAL BUS GENERAL
MANIPULATION
REGISTERS REGISTER ELEMENTS REGISTERS

DATA TO :T,\[ ——————-—j/
EXTERNAL

DEVICES

ti-t022

Figure 1-2 Data Paths, Functional Block Diagram

1.2.2 Transferring Data

Data transfers between devices in a PDP-11/45 System take place on the Unibus or for certain devices, connect
directly to the processor (the KT11-C, the FP11, and the MS11 system) on an internal bus or Fastbus. These
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buses are part of the processor. Some Unibus data transfers occur without processor intervention; they are per-
formed by devices that can become Unibus master and can directly provide address and control information. For
most simpler devices (especially memories) and for devices on the Fastbus, the KB11-A processor controls the
data transfers and provides address and control information.

The KB11-A processor provides address information from the general registers; the control signals for data trans-
fer are provided by the control section of the processor. All data that enters and leaves the processor does so
through the BR register. Data transfers can be combined with data manipulation; most PDP-11 instructions pro-
vide the ability to operate directly on data from other devices (such as memory), and to return the data to the
devices in the same instruction.

1.2.3 Handling Instructions

The users specify the data manipulation and transfer operations that the KB11-A processor is to perform by a
series of instructions. The instructions are stored in the memory of the PDP-11/45 System and can be trans-
ferred as data. Each instruction, in turn, must be transferred from the memory to the processor, where it is de-
coded and used to guide the processor in executing a series of operations.

Figure 1-3 illustrates the control section of the KB11-A processor on a functional block diagram level. The con-
trol logic of the processor produces control signals which cause various operations in the data paths of the proces-
sor, and are external to the processor on the Unibus and Fastbus. The states of these control signals are selected
by various inputs. The inputs that are most important in determining the sequence of operations executed for
any instruction are the inputs from the data paths and from the instruction register (IR).

FROM SPECIAL FROM DATA TO DATA
REGISTERS PATHS PATHS
INSTRUCTION 4/\‘
REGISTER
FROM
CONTROL
o [ ]
EXTERNAL
DEVICES \r

1-io2i

Figure 1-3 Control Section, Functional Block Diagram

The data paths’ inputs are selected information about the data that is currently being processed. These inputs are
used as conditions to determine which variation of the instruction sequence should be used. The IR register is
loaded from the same inputs as the BR; however, the outputs of the IR are used only for instruction decoding,
and the IR is loaded only when the data has been fetched specifically as an instruction (i.c., the contents of the
IR are seldom changed when the BR is loaded).
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1.2.4 Handling Asynchronous Conditions

The KB11-A processor responds to various types of asynchronous‘ conditions. In general, the response of the
processor is to store the current operating context (the processor status and the address of the next instruction of
the current program, as well as the operating mode and register set selection), load a new context, and then begin
executing a service program for the recognized condition. The service program begins at an address specified in

the new context information.

This response to asynchronous conditions is controlled by a sequence of signals generated in the control section
of the processor. The control section produces this sequence when certain inputs are recognized, provided that
the processor is in a state where the response is allowed (many asynchronous conditions are ignored until the
processor has completed an instruction). The inputs to the control section that are important for recognizing
these conditions are the inputs from devices external to the processor and the inputs from the special registers.
The special registers are treated by the KB11-A processor as external to the processor; they are loaded from the
BR and read into the BR. These registers include the stack limit and programmed interrupt request registers
which contribute signals used by the control section of the processor to determine what asynchronous conditions
exist. The processor status register is also included in the special registers; it is used by the control section to de-
termine the asynchronous conditions to which the processor should respond.
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CHAPTER 2
ADDRESS MODES AND INSTRUCTION SET

This chapter summarizes the KB11-A Central Processor Unit address modes and instruction set. Its purpose is to
define the KB11-A and provide tabular, quick-reference information. A complete description of KBI11-A address
modes and instructions, with additional details and examples, is provided in the PDP-11/45 Processor Handbook.

Instruction Set Processor (ISP) notation is used to define the processor operations for cach address mode and in-
struction. Table 2-1 defines the modified ISP symbology used in this chapter. Appendix A of the PDP-11/45
Processor Handbook provides a more detailed description of ISP notation.

Table 2-1
ISP Symbology
Symbol Definition
() Defines the limits of an expression, such as word length (15:0).
[ ] Defines the limits of a memory declaration; Mw [SP] specifies the address of the
stack pointer in memory.
“« The expression to the left of this symbol is replaced by the expression to the right

of this symbol,
Z < 1 indicates the Z bit is set,
PC < PC + 2 indicates the program counter register (PC) is incremented by 2.

cat Indicates concatenation; registers to the left and right of this expression are consid-
ered to be 1.
equiv Designates that expressions to the left and right are equivalent.
& Logical AND
OR Logical inclusive-OR
~ Negate
XOR Logical exclusive-OR

Indicates that a reference to the expression with which this symbol is used may
cause side effects, e.g., registers may be changed as a result of the operation.

; Used as a delimiter

;next A sequential delimiter, the operation to the left must occur before the operation to
the right.
m Designates an address mode; address mode 1 is indicated by m = 1.

(continued on next page)



Table 2-1 (Cont)

ISP Symbology
Symbol Definition
rg General register 7 (program counter)
ai Auto-increment; by 2 for word instructions, and by 1 for byte instructions.
T Indicates a result; used many times with limit symbols as an intermediate register
(r15:0).
+ Addition; expression to the left is added to expression to the right.
- Subtraction; expression to the right is subtracted from expression to the left.
X Multiply; expression to the left is multiplied by expression to the right.
/ Divide; expression to the left is divided by the expression to the right.
sign-extend The sign bit of a byte, bit 7, is extended through bits 8 to 15.
Mw Memory word declaration; the address in brackets points to the memory location.
nw’ Indicates next word, as pointed to by the PC with side effects (’). The word is at
the next sequential PC address, or the word pointed to by the next word (dcferred
addressing).
R [dr] Indicates that a register (R) address as a memory declaration is that of a device
register.
D Destination
Db Byte destination
S Source
Sb Byte source

2.1 ADDRESS MODES

The instruction set of the PDP-11/45 implements the flexibility of the general purpose registers through the ad-
dress modes. Table 2-2 lists all the address modes, including the program counter (PC) register address modes.
These address modes, along with the general purpose register designation, determine the instructions’ operands
(source and/or destination) and form part of the 16-bit instruction format (Figure 2-1).



Table 2-2

Address Modes
Mode Designation Symbolic ISP Description
General Purpose Register Addressing
0 register R if (m=0) then Rr{w!1:0); The register (R, Rr) is the operand.
1 register @R or (R) | if (m=1) then M[Rr]; Defer to operand through register
deferred (R, Rr) as addrcss.
2 auto-increment | (R)+ if (m=2) and (rg#7) then Defer to operand through register
(M [Rr]; next (R, Rr) as address, then increment.
Rr < Rr + ai);
3 auto-increment | @(R)+ if (m=3) and (rg#7) then Defer to operand through (R), Mw
deferred (M[Mw [Rr]]; next [Rr] as address, then increment
Rr<« Rr+2; register (R, Rr).
4 auto-decrement | -(R) if (m=4) then (Rr < Rr - ai); | Decrement register (R, Rr), then defer
next M[Rr]; to operand through register (R, Rr) as
address.
5 auto-decrement | @-(R) if (m=5) then (Rr < Rr - ai; | Defer to operand through (R), Mw
deferred next M[MwI[Rr]]); Rr after decrement of register (R, Rr).
6 indexed +X(R) if (m=6) and (rg#7) then Index via register = (R, Rr) by the
M[nw’ + Rr]; amount specified in next PC word (X).
7 indexed @+ X(R) or| if (m=7) and (rg#7) then Defer to operand through index of
deferred @(R) M [Mw[nw’ + Rr]]; register (R, Rr) specified in next PC
word (X) as address.
PC Register Addressing
2 immediate #n if (m=2) and (rg=7) then Defer to operand through PC value
nw’ {w1:0) (next word); next word is immediate
operand.
3 absolute @#A if (m=3) and (rg=7) then Defer via next word (PC address) as
M [nw’] address to operand; absolute address-
ing.
6 relative A if (m=6) and (rg=7) then Relative to PC; uses next word as de-
M[nw’ +PC]; ferred address of operand.
7 relative @A if (m=7) and (rg=7) then Defer relative to PC; uses next word as
deferred M{Mw[nw’ +PC]]; address of deferred address of the op-

erand.

NOTE: The following symbols are used in this table:

R = Register
X, n, A = next program counter (PC) word (constant)
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Figure 2-1 Single and Double Operand Address Modes

2.2 KB11-A INSTRUCTIONS
The KB11-A instruction set is divided into the following six groups of instructions:

a. Double Operand — Arithmetic, logical, and move instructions are included in this group (Table 2-3).

b. Register and Operand — Multiply, divide, and arithmetic shifts that specify a register, and an operand,
are included in this group (Table 24).

c.  Single Operand — Shifts, multiple precision instructions, and rotates are in this group (Table 2-5).

d. Program Control — This group includes all the instructions that explicitly change the PC and processor
status word (PS), such as branches, subroutines, and traps (Table 2-6).

e.  Operate Group — The processor control instructions such as Halt and Wait are included in this group
(Table 2-7).

f.  Condition Code Operators — This group includes the instructions that clear and set the PSW condition
codes (Table 2-8).

The format of each group of instructions is illustrated in Figure 2-2.

In addition to these instructions, the KB11-A decodes all floating-point instructions that are executed by the
FP11-B Floating-Point Processor. The floating-point instruction set is described in the FP1] Floating-Point Pro-
cessor Maintenance Manual, DEC-11-HFPA-D.

24
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Table 2-3
Double Operand Instructions

Mnemonic
Instruction ISP Notation Description
and Op Code
MOV r< S’; next Move source to intermediate register, r.
Move N« {15 Set N if negative.
(Src to Dst) if (r (15:0>= 0) then (Z < 1 else Z < 0), Set Z if 0.
01SSDD V<0 Clear V.
D <1 Transmit result to destination.
MOVB r < Sb’; next Move source to intermediate register, r.
Move Byte N« 1(7; Set N if negative.
(Src to Dst) if (r (7:0) = 0) then (Z < 1 else Z < 0); Set Z if 0.
11SSDD V<0; Clear V.
Db’ «<r . Transmit result to destination.
CMP r{16:0) < § - D’; next Source and destination operands are compared, but unaffected.
Compare Only condition codes are affected, as follows:
(Src to Dst) N < r(15) Set N if r is negative.
02SSDD if (r {15:0) = 0) then (Z < 1 else Z < 0); Set Zif ris 0.
if (S(15Y=~D(15)) & (S (15 XOR 1 (15)) then | Set V if operands have opposite signs and the sign of the source
(V< 1else V<0); is the same as the result, r.
C+r (16 Set C if 17th bit is carry.
CMPB r (8:0) < Sb’ - Db’; next Same as CMP, except operands are bytes.
Compare Byte| N < (7,
128SDD if (r (7:0) = Q) then (Z < 1 else Z < 0);
if (Sb (7)=~Db (7 & (Sb (7) XOR 1 (7) then
(V< 1else V<0);
C<r(®
BIT r< D’ &S’ next Logical AND of source and destination operands.
Bit Test N« {15, Set N if negative.
03SSDD if (r {15:0) = 0) then (Z < 1 else Z < 0); Set Z if 0.
V<0 No overflow.
BITB r < Db’ & Sb’; next Same as BIT, except byte
Bit Test, N« (?;
Byte if (r (7:0) = 0) then (Z < 1 else Z < 0);
13SSDD V<0
BIC r< D’ &~ §’;next AND destination operand with complemented source operand.
Bit Clear N<r1{15; Set N if negative.
04SSDD if (r (15:0) = 0) then (Z < 1 else Z < 0); Set Z if 0.
V< 0; Clear V and put result in
D<r destination address.
BICB r < Db’ & ~ Sb’; next 1 Same as BIC, except byte.
Bit Clear, N« r(?;
Byte if (r ¢7:0) = 0) then (Z < 1 else Z < 0);
14SSDD V «0;
Db<r
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Table 2-3 (Cont)
Double Operand Instructions

Mnemonic
Instruction ISP Notation . Description
and Op Code
BIS r< D’ OR §’; next Inclusive OR of source operand and destination operand.
Bit Set N« r(15) Set N if negative.
05SSDD if (r (15:0) = 0) then (Z < 1 else Z < 0); Set Ziif 0.
V<0 Clear V.
D«r "Put result in destination.
BISB r < Db’ OR Sb’; next Same as BIS, except byte.
Bit Set, Byte | N < r(7);
158SDD if (r (7:0) = 0) then (Z < 1 else Z « 0);
V < 0;
Db «r
ADD r{16:0) < S’ + D’; next Add source and destination to provide 17-bit sum.
Add N <1 (15); Set N if negative result.
06SSDD if (r {15:0) = 0) then (Z < 1 else Z < 0); Set Z if 0.
if (S(15) equivD {15)) & (S {15) XOR r (15)) Set V if both operands were same sign and the result is of
then (V « 1 else V + 0); opposite sign.
C<r(l6); Set C if carry.
D« (15:0 Put result in destination.
SUB r({16:0) <D’ - S’; next Subtract source operand from destination operand.
Subtract N < r(15); Set N if negative results.
16SSDD if (r (15:0) = 0) then (Z < 1 else Z < 0); Set Z if 0.

if (D {15 XOR S{15)) & (D {15) XOR r(15))
then (V « 1 else V < 0);

C «<r(l16);

D« r(15:0

Set V if operands had different signs and result is opposite
sign from destination.

Set C if a carry.

Put result in destination.




Table 2-4
Register and Operand Instructions

if (R[st] (15) = 0) & (x ¢79:48) 0) OR
(R[sr] <15)=1) & (1 (79:48) £ -1)) then
(V< 1else V<0);

N < R[sr] (15

if (D{5)=1) then C« 1 (31);

if (D (5) = 0) & (D (5:0) # 0) then

C <148

if (D{(5:00=0) thenC«0

Mnemonic
Instruction ISP Notation Description
and Op Code
MUL r{31:0) < D’ X R[sr]; next Multiply contents of source register and destination to form
Multiply - 32-bit product.
070RSS if (r (31:0)=0) then (Z < 1 else Z < 0); Set Z if product is 0.
N3l . Set N if product is negative.
if (r (31:00<-21) OR (r 31:0) 2%) then Set C if product is more than 16-bit result.
(C+ lelse C«0); ’ B .
V<0 - No overflow possible; clear V.
R[sr] <15:00 < r (31:16); next Store the high-order result in R.
R{sr OR 1] 15:0) < r (15:0); Store the low-order result in succeeding register if R is even
number. Otherwise, store in R.
DIV r1 (31:0) < R[sr] cat R[sr OR 1]/D’; next- Th§32-bit dividend, R, R OR 1, is divided by source operand
Divide . D. R must be even number.
071RSS r2(15:0) < Rsr] cat R[sr OR 1] -(r1 X D); Determine the remainder.
next N<r1(15); Set N if quotient is negative.
if (r1 (31:0) = 0) then (Z < 1 else Z < 0); Set Z if quotient is 0.
if (D =0) then (C < 1 else C < 0); Set C if divide by 0 attempted.
if (r1 (15)=0) & (r1 (31:16)#0) Set V if divisor is 0, or if the result is too large to be stored
OR as a 16-bit number.
if(r1Q15=1)& (r1 31:16) #¥-1)
OR
if (D=0) then (V< 1 else V< 0);
R[sr] < r1{15:0) Store quotient in R.
R{sr OR 1] <12 Store remainder in R OR 1.
ASH r (79:0) « sign-extend (R[sr] (15:0)X 2 ¢ Contents of R are shifted NN places right or left, where NN
Arithmetic (D’ (5:0) + 32) mod 64); next equals the six low-order bits of DD.
Shift NN =-32 to +31.
072RDD R{[sr] (15:0) < r (47:32); next Store result in R.
if (R[sr] =0) then (Z < 1 else Z < 0); Set Z if result is O.

Set V if sign of register changed during shift.

Set N if result is negative.
Load C from last bit shifted out of register.

(continued on next page)



Table 2-4 (Cont)
Register and Operand Instructions

Mnemonic
Instruction ISP Notation Description
and Op Code
ASHC 1 (95:0) < sign-extend (R[sr] cat Rfsr OR 1] X | Contents of R, and R ORed with 1, form a 32-bit word (R =
Arithmetic 2 1 (D’ {5:0) + 32) mod 64); next 31:16, ROR 1 = 15:0) that is shifted right or left NN places,
Shift specified by six low-order bits of destination operand, DD.
Combined R|[sr] < r (63:48); next Store results in R and R OR 1.
073RDD R|[sr OR 1] «r (47:32); next
if (R[sr] cat R[sr OR 1] =0) then (Z « 1 clse Set Z if result is 0.
Z < 0); .
N « R[sr] (15); Set N if result is negative.
if (r (63> =0) & (r (95:64) # 0) OR Set V if sign bit changes during the shift.
if (r (63 # 0) & (1 €95:64) # - 1) then
(V< 1else V< 0);
if (D¢5Y=1) thenC < r 31); Load C with high order if left shift.
if (D<5=0) & (D (5:0) # 0) then Load C with low order if right shift,
C <64
if (D{5:0)=0) thenC <0 Otherwise, clear C.
XOR r < R[sr] XOR D’; next The exclusive-OR of the register and the destination operand
Exclusive-OR is stored in the destination address.
074RDD if (r =0) then (Z < 1 else Z < 0); Set Z if result is 0.
N<«rdl5; Set N if result is negative.
V<0 Clear V; no overflow possible.
R[sr] <r .
SOB r < R[sr] -1; next Decrement register by 1. If result is not equal to 0, branch.
Subtract R[st] «r;
One and if (r # 0) then (PC < PC -2 X df (5:0)) Subtract 2 X 6-bit offset from PC to get new PC.
Branch
077R offset
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Table

2-5

Single Operand Instructions

Mnemonic
Instruction ISP Notation Description
and Op Code
CLR D’ «0; Clear destination, N, V, and C; set Z.
Clear dst N < 0;
0050DD Z<1;
V<0
C<0
CLRB Db’ < 0; Clear destination byte.
Clear Byte dst | N« 0;
1050DD Z+<1;
V<0
C+0 i
COM r <~ D’; next Complement destination.
Complement | N<r(15); * | Set N if negative.
dst if (r (15:0) = 0) then Z « 1 else Z < 0); Set Z if 0.
0051DD V<0 Clear V.
C <1, Set C.
D<r Put result in destination.
COMB r <~ Db’; next Same as COM, except byte.
Complement | N« r(7;
Byte dst if (r {7:0) = 0) then (Z < 1 else Z < 0);
1051DD V<0
C+1;
Db<r
INC r< D’ +1;next Result is sum of D plus 1.
Increment dst | N < r(15); Set N if negative.
0052DD if (r {15:0) = 0) then (Z < 1 else Z < 0); Set Z if 0.
if (r<15:0) = 1000004 ) then (V < 1 else V < 0); | Set V if result equals 100000, (dst was 077777,).
D<r Put result in destination.
INCB r< Db’ + 1;next Same as INC, except byte.
Increment N« (D,
Byte dst if (r (7:0) = 0) then (Z « 1 else Z < 0);
1052DD if (r (7:0)= 200 ) then (V < 1 else V < 0); Set V if result equals 2004 (dst byte was 177;).
Db<r
DEC 1< D’-1; next Result is destination operand minus 1.
Decrement N« (15 Set N if negative.
dst if (r {15:0) = 0) then (Z « 1 else Z < 0); Set Z if 0.
0053DD if (r {15:0) = 77777) then (V< 1lelse V<0); [ Set Vif result equals 77777 (dst was ]000008)'
D<«r Put result in destination.
DECB r< Db’ -1; next Same as DEC, except byte.
Decrement N<r(D;
Byte dst if (1 (7:0) = 0) then (Z « 1 else Z < 0);
1053DD if (r{7:0) = 1773) then (V « 1 else V < 0); Set V if result is 1774 (dst byte was 000g).

Db<r

2-10
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Table 2-5

(Cont)

Single Operand Instructions

Mnemonic
Instruction ISP Notation Description
and Op Code
NEG r<-D’; next Negate D by 2’s complement.
Negate dst N« 1(15); Set N if negative result.
0054DD if (r {15:0) = 0) then (Z < 1 else Z <« Q); Set Z if 0.
if (£ 15:0) = 100000;) then (V < 1 else V < 0); | Set V if destination operand was 1000004
if (r (15:0) = 0) then (C < O else C « 1); Clear C if result is 0, otherwise set C.
D<r Put result in destination.
NEGB r < -Db’; next Same as NEG, except byte.
Negate Byte N« (7
1054DD if (1 €7:0) = 0) then (Z < 1 else Z < 0);
if (r ¢7:0) = 2004 ) then (V « 1 else V < 0);
if (r (7:0) = 0) then (C < O else C < 1);
Db<r
ADC 1< D’ +C;next Add the C bit to the destination.
Add Carry N<«r(15); Set N if negative.
0055DD if (r {15:0) = 0) then (Z < 1 else Z <« 0); Set Z if 0.
if (r <15:0> = 100000) & (C = 1) then (V< 1 Set V if destination was 077777g and C was 1.
else V < 0); next
if (r (15:0)=0) & (C = 1) then (C « 1 else Set C if destination was 1777775 and C was 1.
C+0);
D<r
ADCB 1< Db’ + C; next Same as ADC, except byte.
Add Carry N« 1D
Byte if (r (7:0) = 0) then (Z « 1 else Z < 0);
1055DD if (r (7:00=200g) & (C = 1) then (V «< 1 else
V « 0); next
if (r¢7:0y=0) & (C = 1) then (C « 1 else C«0);
Db<r
SBC 1< D’-C; next Subtract C bit from contents of destination.
Subtract N« r(15) Set N if negative.
Carry if (r <15:0) = Q) then (Z < 1 else Z < 0); Set Z if 0.
0056DD if (r (15:0) = 100000 then (V « 1 else V < 0); | Set V if result is 1000004 .
if (r {15:0) =0) & (C =1) then (C < 0 else Clear Cif resultis 0 and C = 1.
C<1)
D<r Put result in destination.
SBCB r < Db’ -C; next Same as SBC, except byte.
Subtract N« 1(7;
Carry Byte if (r (7:0) = 0) then (Z « 1 else Z < 0);
1056DD if (r ¢7:0) = 2004 ) then (V < 1 else V <+ 0);

if (1(7:0)=0) & (C = 1) then (C < O else C « 1);)
Db <1 '

(continued on next page)



Table 2-5 (Cont)
Single Operand Instructions

Mnemonic
Instruction ISP Notation . Description
and Op Code
TST r < D’ ~0; next Sets N and Z condition codes according to contents of
Test destination address.
0057DD N <115 '
if (r {15:0) = 0) then (Z « 1 else Z < 0);
V<0
C+«0
TSTB r < Db’ -0; next Same as TST, except byte.
Test Byte N« (7; :
1057DD if (r (7:0) = 0) then (Z < 1 else Z < 0);
V<0
C+«0
ROR r {16:0) < D’ {0) cat C cat D’ {15:1); next 17-bit intermediate result is C and contents of destination
Rotate Right rotated right one place.
0060DD N« {15 - | Set N if high order bit is set.
if (r (15:0>=0) then (Z < 1 else Z < 0); Set Z if result is 0.
C cat D{15:0) < r €16:0; next Put 17-bit result into C bit and destination.
if (N XOR C) then (V < 1 else V + 0) Load V with exclusive-OR of N and C (after rotation is
complete).
RORB r (8:0) < Db’ {0) cat C cat Db’ (7:1); next Same as ROR, except byte.
Rotate Right | N < (7
Byte if (r (7:0)=0) then (Z < 1 else Z < 0);
1060DD C cat Db < r (8:0; next
if (N XOR C) then (V < 1 else V < 0)
ROL r{16:0) < D’({15:0) cat C; next 17-bit result is C and contents of destination rotated left one
Rotate Left bit.
0061DD N «<r {15 Set N if result is negative.
if (r 15:0)=0) then (Z < 1 else Z < 0); Set Z if result is 0.
C cat D +r (16:0); next Put result into C and D. Bit 15 into C bit and previous C bit
into bit 0.
if (N XOR C) then (V + 1 else V < 0) Load V with exclusive-OR of N and C after rotation is
complete.
ROLB r (8:0) « Db’ (7:0) cat C; next Same as ROL, except byte.
Rotate Left N« (D,
Byte if (1 {7:0)=0) then (Z < 1 else Z < 0);
1061DD C cat Db <1 (8:0); next
if (N XOR C) then (V < 1 else V < 0)
" ASR r < D’/2; next Contents of destination shifted right one place (= 2).
Arithmetic C«< D) Least-significant bit loaded into C.
Shift Right N« 15y Set N if result negative.
0062DD if (r {15:0) = 0 then (Z « 1 else Z < 0); next Set Z if result 0.
if (N XOR C) then (V < 1 else V < 0); Load V with exclusive-OR of N and C after shift is complete.
D<+r Put result into destination.

(continued on next page)
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Table 2-5 (Cont)
Single Operand Instructions

Mnemonic
Instruction ISP Notation Description
and Op Code
i ASRB t < Db’/2; next Same as ASR except byte.
| Arithmetic C < Db (0
| Shift Right | N<r(7);
Byte if (r (7:0) = 0) then (Z < 1 else Z < 0); next
1062DD if (N XOR C) then (V < 1 else V < 0);
Db<r
ASL r < D’(15) cat D’<13:0) cat 0; next Shifts contents of destination left one place, but sign bit
Arithmetic “Temains in most sigmificant plage; T T
Shift Left C < D(14); next “Bit 1410adéd iiits T
0063DD N« {15); Set N if result negative.
if (r {15:0) = 0) then (Z < 1 else Z < 0); next Set Z if result 0.
if (N XOR C) then (V < 1 else V < 0); Load V with exclusive-OR of N and C after shift completed.
D<«r Put result in destination.
. ASLB r < Db’ (7) cat Db’ {5:0) cat 0; next Same as ASL, except byte.
i Arithmetic C < Db (6); next
; Shift Left N1 (7
Byte if (r ¢7:0) = 0) then (Z < 1 else Z < 0); next
1 1063DD if (N XOR C) then (V < 1 else V < 0);
R Db<«r
MARK SP « 8P + (2 X df (5:0)); next Adjusts stack pointer by the number of words indicated in the
Mark low 6 bits of the instruction (2 X nn locations).
0064nn PC < R[5] ; next Puts old PC (R5) into PC.
R[5] < Mw [SP]; Contents of old RS popped into R5.
SP<SP+2
MFPI r < D’; next Get destination operand from previous I space.
Move From SP <« SP-2; Push stack.
Previous N« (15 Set N if negative.
Instruction if (r {15:0) = 0) then (Z < 1 else Z < 0); Set Zif 0.
Space V<0 Clear V.
0065DD Mw [SP] <1 Put operand into current address space.
MFPD r < D’; next Get destination operand from previous D space.
Move From SP <~ SP-2; Push stack.
Previous N<r(15); Set N if negative.
Data Space if (r €15:0) = 0) then (Z « 1 else Z < 0); Set Z if 0.
1065DD V<0, Clear V.
Mw [SP] <1 Put operand into current address space.
MTPI r < Mw [SP]; Get data from current stack.
Move To SP < SP + 2; next Pop stack.
Previous N <1 (15); Set N if negative.
Instruction if (r {15:0) = 0) then (Z < 1 else Z < 0); Set Z if 0.
Space V < 0; Clear V.
0066DD D’ «r Move to previous I space destination.

(continued on next page)
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Table 2-5 (Cont)
Single Operand Instructions

Mnemonic

Instruction ISP Notation Description
and Op Code
MTPD r < Mw [SP]; Get data from current stack.
Move To SP <« SP + 2; next Pop stack.
Previous N« r{15) Set N if negative.
Data Space if (r (15:0) = 0) then (Z « 1 else Z < 0); Set Z if 0.
1066DD V+0; Clear V.

D’ «r Move to previous D space destination.

SXT if (N = 1) then (r{15:0) < -1 else r {15:0 < 0); | If the N bit is set, then -1 is placed in the destination operand.
Sign Extend next Otherwise, 0 is placed in the destination operand.
destination if (r{15:0) = 0) then (Z < 1 else Z < 0); Set Z if result is 0.
0067DD D’ «r
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Table 2-6
Program Control Instructions

Mnemonic
Instruction
and Op Code

ISP Notation

Description

BR

Branch
Unconditional
0004 loc

BNE
Branch
Not Equal
0010 loc

BEQ
Branch on
Equal
0014 loc

BGE

Branch if
Greater than
or Equal (zero)
0020 loc

BLT
Branch on
Less Than
0024 loc

BGT

Branch on
Greater Than
0030 loc

BLE

Branch on
Less Than

or Equal (zero)
0034 loc

BPL
Branch on
Plus

1000 loc

BMI
Branch on
Minus
1004 loc

BHI
Branch on
Higher
10101loc

PC < PC + sign-extend (instr {7:0) X 2)

if (Z = 0) then (PC < PC + sign-extend
(instr €7:0) X 2))

if (Z = 1) then (PC < PC + sign-extend
(instr {7:0) X 2))

if (N equiv V) then (PC < PC + sign-extend
(instr (7:0) X 2))

if (N XOR V) then (PC < PC + sign-extend
(instr (7:0) X 2))

if (~Z & (N equiv V)) then (PC < PC + sign-
extend (instr (7:0) X 2))

if (Z OR (N XOR V)) then (PC « PC + sign-

extend (instr {7:0) X 2))

if (N = 0) then (PC < PC + sign-extend
(instr ¢7:0) X 2))

if (N = 1) then (PC < PC + sign-extend
(instr <7:0) X 2))

if ~(C OR Z) then (PC <« PC + sign-extend
(instr ¢7:0) X 2))

Always branch.

PC changed as follows:

Eight least-significant bits of instruction are multiplied times 2
and added to PC with sign extended.

Branch if Z is 0.

Branch if Zis 1.

Branch if N is equivalent to V.

Branch if exclusive-OR of N and V equal 1.

Branch if Z not 0 and N equals V.

Branch if Z equals 1 or if exclusive-OR of N and V equals 1.

Branch if N is 0.

Branch if Nis 1.

Branch if C and Z are 0.
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Table 2-6 (Cont)
Program Control Instructions

Mnemonic
Instruction ISP Notation Description
and Op Code
BLOS if (C OR Z) then (PC < PC + sign-extend Branchif CorZis 1.
Branch on (instr (7:0) X 2))
Lower or
Same
1014 toc °
BVC if (V =0) then (PC < PC + sign-extend Branch if Vis 0.
Branch on (instr (7:0) X 2)) :
Overflow
Clear
BVS if (V =1) then (PC < PC + sign-extend Branch if Vis 1.
Branch on (instr ¢7:0) X 2))
Overflow Set
1024 loc
BHIS if (C = 0) then (PC « PC + sign-extend Branch if Cis 0.
Branch on (instr (7:0) X 2))
Higher or
Same
1030 loc
BLO if (C = 1) then (PC « PC + sign-extend ‘Branch if Cis 1.
Branch on (instr <7:0) X 2))
Lower
1034 loc
JSR SP <« SP -2; next Push contents of R onto stack.
Jump to Mw [SP] < R[sr];
Subroutine R[sr] «PC Store current PC in R.
004RDD PC « D address Load subroutine address into PC.
RTS PC < R[dr]; Load contents of R into PC.
Return from | R[dr] < Mw [SP]; Pop stack pointer into R.
Subroutine SP <SP +2
00020R
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Table 2-7
Operate Group Instructions

Mnemonic
Instruction ISP Notation Description

and Op Code

HALT Off < true Processor halts with console in control. No activities or

Halt instructions can be executed until a console actions restarts

000000 the processor.

WAIT Wait < true Processor relinquishes bus and waits for an external interrupt.

Wait

000001

10T SP « SP -2; next Push PS onto Stack.

1/0 Trap Mw [SP]| « PS;

000004 SP « SP -2; next Push PC onto stack.
Mw [SP] < PC;
PC < Mw [20}; Get new PC from location 20.
PS < Mw [22] Get new PS from location 22.

RESET Init < 1; Send INIT on Unibus for 20 ms.

Reset Delay (20 milliseconds); next

External Bus | Init <0

000005

SPL PS(7:5) « df 2:0) Load threc lcast significant bits, N, into PS.

Set Priority

Level

00023N

RTI PC < Mw [SP}]; Pop PC off stack.

Return from SP « SP + 2; next

Interrupt PS « Mw [SP]; Pop PS off stack.

000002 SP«<SP+2 (RTI permits trace trap.)

RTT PC < Mw [SP]; Pop PC off stack.

Return from | SP < SP + 2; next

Interrupt PS « Mw [SP]; Pop PS off stack.

000006 SP«<SP+2 (RTT inhibits trace trap.)

EMT SP < SP -2; next Push PS onto stack.

Emulator Trap| Mw [SP] « PS;

104 Code SP < SP -2; next Push PC onto stack.

(104000 — Mw [SP] < PC;

104377) PC <~ Mw [30]; Get new PC and PS from locations 30 and 32.
PS < Mw [32]

TRAP SP < SP -2; next Push PS onto stack.

Trap Mw [SP] < PS

104 Code SP <« SP -2; next Push PC onto stack.

(104400 — Mw [SP] < PC;

104777) PC « Mw [34]; Get new PC and PS from locations 34 and 36.
PS < Mw [36]
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Table

2-8

Condition Code Operators

Mnemonic
Instruction ISP Notation Description
and Op Code
CLC if (instr (4) =0 & instr(0) = 1) then C < 0 When bit 4 of the instruction is 0 bits 3, 2, 1, and 0 clear
Clear C corresponding bits in PS.
000241
CLV if (instr @)= 0 & instr (1> = 1) then V < 0
Clear V
000242
CcLzZ if (instr 4) =0 & instr (2> =1) then Z < 0
Clear Z
000244
CLN if (instr ) =0 & instr (3)=1) then N« 0
Clear N
000250
CCC if (instr (4) = 0 & instr (3:0) = 17) then
Clear all (C+0;
Condition V «0;
Codes Z <0;
000257 N <0)
SEC if (instr (4> =1 & instr (0} = 1) then C < 1 When bit 4 of the instruction is 1, bits 3, 2, 1, and 0 set corre-
Set C sponding bits in PS.
000261
SEV if (instr ) =1 & instr (1) =1) then V « 1
Set V
000262
SEZ if (instr ) =1 & instr (¥ =1) then Z «< 1
Set Z
000264
SEN if (instr (=1 & instr (3)=1) then N« 1
Set N
000270
SCC if (instr (4:0) = 37) then
Set all (C«1;
Condition Vel
Codes Z+1;
000277 N<«1)
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CHAPTER 3
OPERATION

3.1 CONSOLE CONTROLS AND INDICATORS

The operator’s control console is shown in Figure 3-1. Control and indicator functions are summarized in
Table 3-1.

TADORESS
NSER § SUPER ¢ KERNEL | PROG PHY

~

{ISER O SUPER D KERNEL D CONS PHY

POWER  LOCK

DATA PATHS L ADRS FPP/CPU

—

BUS REGISTER DISPLAY REGISTER

ADRSERR  RUN PAUSE  MASTER USER SUPER KERNEL DATA

L 252 vanL G neT
LORD. pxaw towT . START
: G ER

Figure 3-1 KB11-A Control Console

Table 3-1
Control and Indicator Functions

Control or Indicator Function

Power Control

OFF Disconnects power from all units except semiconductor mem-
ory system.

POWER Applies power to all units. All console controls are operable.

LOCK Disables all console controls except switch register.

(continued on next page)

3-1



Table 3-1 (Cont)
Control and Indicator Functions

Control or Indicator Function
DATA Display Register 16-bit data display, source selected by data display select switch

as follows:

DATA PATHS Displays current data output of ALU shifter.

BUS REGISTER Displays current contents of bus register A (BRA).

DISPLAY REGISTER Displays current contents of light register located at physical
address 777570.

#ADRS FPP/CPU Displays current floating-point processor ROM address in high

byte, and current central processor ROM address in low byte.

ADDRESS Display Register An 18-bit address display. When the KT11-C Memory Manage-
ment Unit is implemented and enabled, the displayed address is
selected by the adjacent address display select/mode control
switch as indicated in Figure 3-2:

PROG PHY Program Physical Address. Constructed by adding virtual ad-
dress bits VA (12:06) to the contents of a KT11-C page address
register (PAR) to provide physical address bits PA (17:06).

CONS PHY Console Physical Address. After LOAD ADRS, PA (15:06)
equals sum of switches (15:06) and PAR contents; PA (17:16)
equals switches (17:16).

USER I, USER D These six address display select switch positions display a 16-bit
SUPER I, SUPER D virtual address. Address bits 17 and 16 light only if address bits
KERNEL I, KERNEL D (15:13) are lit.

These positions provide console control of the processor mode
(kernel, supervisor, user) I or D space. The same address infor-
mation is displayed for each position.

Switch Register An 18-bit switch bank used to load addresses or data, depending
upon whether LOAD ADRS or DEP switch is operated. The
contents of the switch register are accessed by the processor in
kernel mode at physical address 777570.

LOAD ADRS Loads switch register contents into program counter (PCA). If
KT11-C is not implemented, switch register bits (17:16) are not
used.

EXAM Displays contents of current ADDRESS display (CONS PHY)

in the DATA display. Each consecutive time EXAM is pressed,
the ADDRESS display increments by 2 and the contents of the
next word location are presented on the DATA display.

CONT Causes the processor to continue operation from the point at
which it stopped. Function depends upon ENABL/HALT and
S INST/S BUS CYCLE as follows:

If ENABL: CONT returns bus control from console to the processor and
program operation continues.

(continued on next page)



Table 3-1 (Cont)

Control and Indicator Functions

Control or Indicator

Function

If HALT:

ENABL/HALT

S INST/S BUS CYCLE

START

If ENABL:

If HALT:
DEP

REG EXAM

REG DEP

ADRS ERR

RUN

PAUSE

MASTER

USER

SUPER

Pressing CONT causes processor to execute a single instruction,
if S INST, or continue until a bus cycle has been completed, if
S BUS CYCLE.

ENABL allows processor to run in normal operation. The HALT
position halts the processor and passes control to the console.
HALT affects CONT and START switch functions as described
for those switches.

Allows the processor to step through program operation either
ond instruction at a time (S INST), or one bus cycle at a time
(S BUS CYCLE).

Function depends on ENABL/HALT switch position, as follows:

Pressing START provides system clear and initiates processor
operation at address established by LOAD ADRS function.

Provides system clear only.

When lifted, deposits current contents of the switch register into
the location indicated by the ADDRESS display. Each time
DEP is lifted in succession, the location is incremented by 2 and
the switch register contents are deposited into the next word
location.

Displays contents of the gencral register specified by the four
low-order bits of the ADDRESS display.

Deposits contents of the switch register into the general register
specified by the four low-order bits of the ADDRESS display.

Indicates one of the following abort-condition errors has been
detected:

odd address error

fatal stack violation
non-existent memory addressed
parity error

memory management

o a0 o

Indicates processor is executing program instructions. Indicator
not lit in pause cycle, or while console flag is set.

Indicates processor is in pause cycle, waiting for completion of
Unibus or Fastbus transaction.

Indicates processor is in control of Unibus as master device or in
console mode,

Indicates processor is in user mode. When KT11-C option is en-
abled, all addresses are in user virtual address space.

Indicates processor is in supervisor mode. When KT11-C option
is enabled, all addresses arc in supervisor virtual address space.

(continued on next page)
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Table 3-1 (Cont)
Control and Indicator Functions

Control or Indicator Function

KERNEL Indicates processor is in kernel mode. When KT11-C option is
enabled, all addresses are in kernel virtual address space.

DATA Indicates last memory address reference was D space when lit.
If not lit, last memory address reference was I space.

17 16 15 06|05 00
1 T
PROG PHY <l—l———— PAL17:06> —————»|w— VA <05:00> —bl
\ S\ —
VA<L12:06> PLUS (PAR) PROCESSOR

BAMX <05:00>

17 16[15 06|05 00
T
CONS PHY | \ |+—— PAK15:06 > —————»j4—VA <05:00>—
\ A PN ]
VA<12:06>PLUS (PAR) PROCESSOR

BAMX <05:00>

CONSOLE SWITCHES 17,16
AFTER LOAD ADDRESS

USER, SUPER, 17 16(15 00

OR KERNEL ! .
N | VA : > —_—
10R D POSITIONS | s VA<15:00
- A )
L PROCESSOR

BAMX <15:00>

BITS 17,16 = EX MEM FLG

EX MEM FLG = BAMX <15:13> H=1
11-0843

Figure 3-2 Sources of ADDRESS Display with
KT11-C Memory Management Unit

3.2 POWER ON

When the console power control switch is turned from OFF to POWER, all internal registers.and buses are initial-
ized. A 70-ms delay allows time for magnetic core memory power to stabilize. Power distribution to the MS11
Semiconductor Memory System is not affected.

The power-up initialization logic forces the central processor ROM address to ZAP.00 (CPU uADRS 200). At
that point, the sequence of microprogram-controlled events is determined by the setting of the ENABL/HALT
switch on the console.

3.2.1 ENABL Function

When power is turned on at the console with ENABL/HALT set to ENABL, the processor executes the power-up
microprogram sequence and halts at the address determined by the start vector. The start vector is determined
by jumper connections on DAP Module M8100. On most processors, the jumpers are cut so that the processor is
vectored to virtual address 244, which is the power-fail trap location. For those processors, the ADDRESS
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display will be 30. When the console START switch is pressed, the processor will execute program instruc-
tions, starting at that location.

3.2.2 HALT Function

When power is turned on at the console with ENABL/HALT set to HALT, the processor is forced to ZAP.00 and
then branches to CON.00 (CPU pADRS 170). The processor remains at rest in the CON.00 microstate until a
console control function is initiated. The functions of the console switches are described in the following para-
graphs.
NOTE
If the START switch is pressed while ENABL/HALT is in HALT
position, a console reset occurs. As a result, the processor is sus-

pended in ZAP.00 and the timing generator is cleared. As soon as
the START switch is released, the processor reverts to CON.00.

3.3 CONSOLE OPERATIONS

This paragraph provides additional information on console operations related to processor functions described in
Chapter 6.

3.3.1 HALT Switch Functions

If the HALT switch is pressed while the processor is running, the console flag is set, causing the processor to enter
a rest state at microstate CON.00, at location 170. This microprogram ROM address is displayed in the low byte
of the DATA display when the data display select switch is set to uADRS FPP/CPU. Succeeding operations de-
pend upon console control settings.

3.3.1.1 HALT/CONT with S INST — With the S INST/S BUS CYCLE switch set to S INST, the processor will
execute a single instruction each time the CONT switch is pressed. At the end-of-instruction microstate associ-
ated with each instruction sequence, a strobe occurs to set the console flag and cause the processor to enter the
CON.00 microstate. The time state generator continues to run.

3.3.1.2 HALT/CONT with S BUS CYCLE — With the S INST/S BUS CYCLE switch set to S BUS CYCLE, the
processor will execute the program until the next bus cycle is completed, each time the CONT switch is pressed.
The time state generator is suspended in time state T2 of the next bus cycle after PAUSE.

NOTE
Single-step operations are provided for maintenance operations.
Detailed descriptions of their use with special maintenance
cards are provided in Chapter 4 of the system maintenance manual.

3.3.2 EXAM Switch Functions

Use the following procedures to examine the contents of a memory location or internal register:

Step Procedure
1 Set up address of location or register on switch register.
2 Set address display select switch to CONS PHYS.
3 Set data display select switch to DISPLAY REGISTER.

(continued on next page)
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Step Procedure

4 Press LOAD ADRS switch and check ADDRESS display for selected
address.
5 Press EXAM and observe DATA display.

Each successive time EXAM is pressed, the contents of the next successive word location are displayed. The
ADDRESS display will indicate the location. However, the initial address, loaded into the program counter (PCA)
will not be incremented. If the START switch is pressed, execution starts from the initial address.

3.3.3 DEP Switch Functions

Use the following procedures to deposit data into a memory location or internal register:

Step Procedure
1 Set up address of location or register on switch register.
2 Set address display select switch to CONS PHYSS.
3 Press LOAD ADRS switch and check ADDRESS display for selected
address.
4 Set up data to be deposited on switch register.
5 Lift DEP switch.
6 Set data display select switch to DATA PATHS and check DATA display

for correct input.

Each successive time DEP is pressed, the contents of the next successive word location are accessed. There is no
need to increment the address manually.

NOTE
The address cannot be incremented beyond the current 32K-
word boundary using the step-examine or step-deposit features.

3.3.4 REG EXAM and REG DEP Functions

These switches permit the operator to examine the contents of the general register and to deposit the contents of
the switch register into the general registers. Table 3-2 lists the general register addresses.

To examine the contents of the general register and deposit the contents of the switch register into the general
register, use the following procedures:

Step Procedure

1 Set the switch register to the general register address.

2 Press LOAD ADRS. The ADDRESS display will indicate the selected register ad-
dress.

3 To examine the contents, press REG EXAM. The contents will be displayed by the
DATA display.

4 To deposit, set the data into the switch register, then press REG DEP. The DATA
display will indicate the deposited data.

NOTE

The REG EXAM and REG DEP switches do not pro-
vide automatic address stepping. Each general register
must be addressed individually, using the LOAD ADRS
switch.
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Table 3-2°
General Register Addresses

Address (octal) General Register Name

0 RO — General Register Set 0

1 R1 — General Register Set 0

2 R2 — General Register Set 0

3 R3 - General Register Set 0

4 R4 — General Register Set 0

5 R5 — General Register Set 0

6 R6 — Kernel Mode Stack Pointer (SP)
7 R7 — Program Counter (PC)
10 RO — General Register Set 1
11 R1 — General Register Set 1
12 R2 — General Register Set 1
13 R3 — General Register Set 1

14 R4 — General Register Set 1

15 R5 — General Register Set 1

16 R6 — Supervisor Mode Stack Pointer (SP)
17 R7 — User Mode Stack Pointer (SP)

3.4 ADDRESS DISPLAY SELECT

The source of the ADDRESS display is determined by the 8-position address display select switch; it depends on
implementation and enabling of the KT11-C Memory Management Unit. For example, the KT11-C option may
be available but is not enabled if bit 0 of KT11-C status register SRO (physical address 777572) is cleared. Figure
3-2 shows the source of the ADDRESS display with memory management implemented and enabled. Virtual ad-
dress (VA) bits are logically identical to processor bus address multiplexer (BAMX) bits. The six low-order bits,
VA (05:00), indicate displacement within a 32-word block and are not affected by relocation or address display
select switch positions.

3.4.1 PROG PHY Function

Use this address display select switch position to display the current 18-bit physical address. The physical address
is constructed by adding virtual address bits VA (12:06) to the contents of the 12-bit page address register (PAR).

3.4.2 CONS PHY Function

Use this address display select switch position to display results of loading an address from the console switch
register. Physical address bits PA (17,16) are generated directly from switch register bits SR (17,16).

37



3.4.3 USER, SUPER, or KERNEL Functions

The ADDRESS display source for each of the USER, SUPER, and KERNEL switch positions is the 16-bit virtual
address VA (15:00). The two most-significant bits are logic 1 if bits 15 through 13 are all logic 1.

The primary purpose of these six mode-related switch positions is to provide direct console-controlled access to
the I and D space PAR groups associated with each mode of operation. The following chart lists the PAR group
associated with each switch position.

Address Display Select Switch Page Address Register (PAR) Group Physical Address Ranges*
USER 1 - UIPARO — UIPAR7 777640 — 777656
USER D UDPARO — UDPAR7 777660 — 777676
SUPER I SIPARO — SIPAR7 772240 — 772256
SUPER D SDPARO — SDPAR?7 772260 — 772276
KERNEL I KIPARO — KIPAR7 772340 — 772356
KERNEL D KDPARO — KDPAR?7 772360 — 772376

*Virtual address bits VA (15:13) select one of eight specific PAR addresses within each group.

NOTE
If the KT11-C option is not implemented, the 16-bit virtual
address, VA (15:00), is always the ADDRESS display source.
Bits 15, 14, and 13 are ANDed to provide bits 17 and 16.

3.5 HOW TO LOAD AND RUN PROGRAMS

Figure 3-3 is a flowchart which shows the procedure required to load and run programs. The following paragraphs
detail the procedures indicated in the flowchart.

3.5.1 Loading the PDP-11 Bootstrap Loader

Use the following procedures to manually load the PDP-11 Bootstrap Loader program, DEC-11-L1PA-LA (Table

3-3): ’
Step Procedure
1 Set ENABL/HALT switch to HALT to give bus control to the console when
powering up the processor. '
2 Turn OFF/POWER/LOCK switch to POWER. Press START to clear system,
including KT11-C option, if implemented.
NOTE

Because the primary purpose of these procedures is
to instruet maintenance personnel in loading and
running diagnostic programs, be sure the KT11-C op-
tion is initially disabled.

3 Set starting address of Bootstrap Loader into the switch register. Be certain that
the correct value of xx is used (017744 for 4K memory, 037744 for 8K memory,
057744 for 12K memory, etc.) (Table 3-3).

4 Set address display select switch to CONS PHY and press LOAD ADRS. The start-
ing address should be displayed by the ADDRESS indicators.

(continued on next page)
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Step

Procedure

Set first instruction of Bootstrap Loader program into the switch register (Table
3-3). Lift DEP switch. The switch register contents should be displayed by the
DATA indicators, with the data display select switch set to DISPLAY REGISTER.

Set contents of the next address of the Bootstrap Loader program into the switch
register and lift DEP switch.

NOTE
It is not necessary to load addresses after the start-
ing address has been loaded because the address is in-
cremented by 2 each time the DEP switch is lifted
sequentially.

Repeat Step 6 to deposit the Bootstrap Loader program. When loading the con-
tents of xx7766, make certain the correct xx value is used. When loading the con-
tents of the last address, make certain the correct device address, yyyyyy, is used,
as indicated in Table 3-3.

Load the starting address of the Bootstrap Loader and use the EXAM switch to
verify that the program has been loaded correctly.

PROGRAM
LOAD

USE ABSOLUTE
LOADER TO —>
LOAD PROGRAM

MAINTENANCE
LOADER TO e
LOAD PROGRAM

USE BOOTSTRAP

DO
YES _~“You HAVE

TO LOAD PROGRAM
ABSOLUTE OR A BOOTSTRAP RO
MAINTENANCE ROM

NO

LOAD ADDRESS
LOAD BOOT AND START

LOADER
PROGRAM

ir-1023

Figure 3-3 Flowchart of Procedure Required to Run a Program



Table 3-3
PDP-11 Bootstrap Loader
DEC-11-L1PA-LA

Address™ Contents Symbolic

xx7744 016701 START: MOV DEVICE,R1
xx7746 000026

xx7750 012702 LOOP: MOV #~LOAD+2,R2
xx7752 000352

xx7754 005211 - ENABLE: INC @R1

xx7756 105711 WAIT: TSTB @R1

xx7760 100376 BPL WAIT

xx7762 116162 MOVB 2(R1),LOAD(R2)
xx7764 000002

xx7766 xx7400

xx7770 005267 INC LOOP+2
xx7772 xx7756

xx7774 000765 BRNCH: BR LOOP

xx7776 yYYyyy

NOTES: 1. The highest available 4K page of memory is represented by xx.
In a PDP-11/45 with up to 28K of memory, the first address of
the Bootstrap Loader is one of the following, depending upon
the total memory available; xx will be the same for all subsequent

addresses.
Available Memory Starting Address
4K 017744
8K 037744
12K 057744
16K 077744
20K 117744
24K 137744
28K 157744

2. Location xx7776 contains device address of paper-tape reader.

3. Use address 177560 for teletypewriter paper-tape reader; use
address 177550 for high-speed paper-tape reader.

* Starting address, xx, is determined by memory configuration,

3.5.2 Loading the PDP-11 Absolute Binary Loadér

Use the following procedures to automatically load the PDP-11 Absolute Binary Loader program, DEC-11-L2PC-LA:

Step . Procedure
1 Set ENABL/HALT switch to HALT and press START to clear the system.
2 Make certain that the PDP-11 Bootstrap Loader has been stored in memory, as

described in Paragraph 3.5.1, or the equivalent ROM bootstrap is supplied.

3 Set starting address of Bootstrap Loader into the switch register. Make certain the
correct value of xx is used (017744 for 4K memory, 037744 for 8K memory,
057744 for 12K memory, etc.) (Table 3-3).

4 Set address display select switch to CONS PHY and press LOAD ADRS. The start-
ing address should be displayed by the ADDRESS indicators.

(continued on next page)
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Step Procedure

5 Set teletypewriter LINE/OFF/LOCAL switch to LINE. This connects the tcle-
typewriter to the processor.

NOTE
If a high-speed paper-tape reader is used instead of
the teletypewriter, make sure that the device address
in the Bootstrap Loader program corresponds to the
device, as described in Table 3-3.

6 Place the PDP-11 Absolute Binary Loader tape in the paper-tape reader, with the
special leader (a sequence of 351 punches) under the reader station. Blank lcader
does not work.

7 Set ENABL/HALT switch to ENABL and press START switch. The tape will
be read into the memory and the processor halts when the entire program is loaded.

3.5.3 Loading the Maintenance Loader

The Maintenance Loader program, MainDEC-11-D9EA, provides an alternate method of loading diagnostic pro-
grams that can be used if the Absolute Binary Loader fails to work because of a hardware failure. This loader
should only be used to load diagnostic programs if the Absolute Binary Loader malfunctions.

Use the following procedures to automatically load the maintenance loader:

Step Procedure
1 Set ENABL/HALT switch to HALT and press START to clear the system.
2 Make certain that the PDP-11 Bootstrap Loader has been stored in memory, start-

ing at address 017744,

NOTE
The Maintenance Loader operates in the lowest 4K
page of memory. If some other page must be used,
several locations must be changed as listed in Table
3-4 after the Maintenance Loader program is loaded.

3 Set starting address of Bootstrap Loader, 017744, into switch register and press
LOAD ADRS.
4 Set teletypewriter LINE/OFF/LOCAL switch to LINE.
5 Place the Maintenance Loader tape in the paper-tape reader.
6 Set ENABL/HALT switch to ENABL and press START switch. The tape will be
read into memory. The processor halts when the entire program is loaded.
NOTE

If the Maintenance Loader is not loaded into the
lowest 4K page of memory, make location changes
listed in Table 3-4 at this time.
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Table 3-4
Maintenance Loader Changes™

Change Contents Of: To:
xx7502 xx7470
xx7510 xx7474
xx7542 xx7475
xx7566 xx7475
xx7624 . xx7776
xx7674 xx7474

Where xx equals: 03 for 4—-8K page
i 05 for 8—12K page
07 for 12—16K page
11 for 16—-20K page
13 for 20—24K page
15 for 24-28K page

*No changes are requircd when Maintenance Loader pro-
gram is loadced into the lowest (0—4K) page.




CHAPTER 4
PRINCIPLES OF OPERATION

The purpose of this chapter is to introduce several concepts used in the design of the KB1 1-A processor and in
the PDP-11/45 System. Some of these concepts are used throughout the descriptions of the KB11-A operation
and implementation; other concepts are presented because they illustrate why the processor has certain features
and is structured the way it is.

The concepts presented in this chapter are general in nature and they apply to many different computer systems.
The specific applications of each concept in the KB11-A processor and in the PDP-1 1/45 System are not all de-
scribed in this chapter. The reader who is primarily interested in the details of the KB11-A operation may wish
to skip this chapter and read just Chapters 6 and 7; the reader who wants an overview of the processor’s structure
may wish to read just Chapter 5. However, many of the concepts introduced in this chapter are used throughout
the succeeding three chapters and are helpful in gaining a complete understanding of the KB11-A processor.

4.1 MICROPROGRAMMING

The KB11-A processor uses a microprogram control section which reduces the amount of combinational logic in
the processor. This paragraph introduces the concept of microprogramming by first describing a digital computer,
then dividing the computer into various parts, and finally, describing how some of these parts differ for a micro-
programmed processor.

4.1.1 Digital Computer Description

Although a computer can effect complicated changes to the data it receives, it must do so by combining a large
number of simple changes in different ways. The part of the digital computer that actually operates on the data
is the processor. (The KB11-A is the processor of a PDP-11/45 computer.) A processor is made up of logical ele-
ments; some of these elements can store data, others can do such simple operations as complementing a data op-
erand, combining two operands by addition or by ANDing, or reading a data operand from some other part of
the computer. These simple operations can be combined into functional groups; such a group is called an instruc-
tion, and it includes operations that read data, operations that combine, change, or simply move the data, and op-
erations that dispose of the data. Instructions can be further combined into programs, which use the combined
instructions to construct even more complex operations.

The logical elements of a processor can only perform a small number of operations at one time. Therefore, to
combine operations into an instruction, the instruction is divided into a series of operations (or groups of opera-
tions that can be performed simultaneously). The processor does each part of the series'in order. One way to
describe how the processor executes an instruction is to call each operation (or group of operations) a machine
state. An instruction then becomes a sequence of machine states which the processor enters in a specific order.
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The processor can be completely described in terms of machine states by listing all the machine states in which
the processor can perform (i.e., all the different operations or groups of operations that it can perform) and all
the sequences in which these machine states can occur. The sequence of machine states is determined by the cur-
rent state of the computer; this includes such information as the instruction being executed, the values of the
data being operated on, and the results of previous instructions.

In terms of the machine state description, the processor can be divided into two parts. The first part, called the
data section, includes the logic elements that perform the operations which make up a machine state. The second
part, called the control section, includes all the logic that determines which operations are to be performed and
what the next machine state should be. The data section and control section are discussed in the following para-
graphs.

4.1.2 The Data Section

Figure 4-1 is a simplified block diagram that shows the divisions of the processor in a digital computer. During
each machine state, the data section performs opcrations selected by signals from the control section. The data
section provides inputs to the control section which help determine the next machine state; the data section also
exchanges data with other devices.external to the processor.

DATA DATA DATA DATA
DATA INTERFACE ROUTING MANIPULATION STORAGE etTIoN
AN S SECTION SECTION SECTION
T I
CONTROL
SIGNAL
DATA L T 1 OUTPUTS
SENSING ' .
INPUTS
SENSING SEQUENCE FUNCTION CONTROL
LOGIC _ CONTROL GENERATOR SECTION

ﬁ CONTROL SIGNAL U
INTERFACE

Figure 4-1 Simplified Processor Block Diagram

1-0962

The data section can be divided into three functional sections; each section is discussed in one of the following
paragraphs.

4.1.2.1 The Data Storage Section — For the processor to combine data operands it must be able to store data
internally while simultaneously reading additional data. Often, a processor stores information about the instruc-
tion being executed, about the program from which the instruction was taken, and about the location of the data
being operated on, as well as a number of data operands. When the processor must select some of the internally
stored data, or store new data, the control section provides control signals which cause the appropriate actions
within the data storage section.



4.1.2.2 The Data Manipulation Section — This section includes the various logic elements that actually change
data. Many of these elements are controlled by signals from the control section which select the particular opera-
tion to be performed. Data manipulation is performed on data being transferred between the processor and the
rest of the system, and on data that remains within the processor. In some cases, the data that remains within the
processor is used to control the processor by providing inputs to the sensing section of the processor control.

4.1.2.3 The Data Routing Section — The interconnections between the logic elements in the data storage section
and the elements in the data manipulation section are not fixed; they are set up as required in each machine state.
The control section generates signals that cause the logic elements in the data routing section to form the appro-
priate interconnections within the processor, and between the data interface and the data storage and manipula-
tion sections.

4.1.2.4 The Data Section in the KB11-A — Paragraphs 5.2 through 5.6 of this manual describe the data section
of the KB11-A on a block diagram level; the paragraph is divided into three subsections which correspond to the
storage, manipulation, and routing sections discussed above.

4.1.3 The Control Section

The simplified block diagram in Figure 4-1 shows that the control section of a processor receives inputs, which
are used by the sensing logic to help select the next machine state, from all parts of the data section of the pro-
cessor. The control section also generates control signals to all parts of the data section and communicates with
other parts of the computer system through control signals. The following paragraphs describe the three parts of
the control section.

4.1.3.1 The Sequence Control Section — The primary control of the processor is the selection of the sequence
of machine states to be performed. This is done by the sequence control section which selects the next machine
state on the basis of:

a.  the current machine state
b. inputs from the data section (such as the instruction type or the data values)
¢. information about external events

The sequence control section maintains information about the current machine state, and receives information
from the data section and the external environment through the sensing section.

4.1.3.2 The Function Generator — In each machine state, the data section performs operations selected by sig-
nals from the control section of the processor. The function generator produces these control signals on the basis
of the current machine state (and sometimes, to a very limited extent, on inputs, from the sensing section, of in-
formation such as the instruction type).

4.1.3.3 The Sensing Logic — In general, the sequence control section requires inputs that select one of a limited
number of machine states to follow the current state. Because the conditions used to distinguish which state
should follow the current state may be different for different current states, the sensing section acts as a selector
to provide only the currently-needed inputs to the sequence control section.

4.1.3.4 The Control Section in the KB11-A — Paragraphs 5.7 and 5.8 of this manual describe the control sec-
tion of the KB11-A processor on a block diagram level. The function generator comprises the microprogram
ROM, its output buffer, and several logic elements that generate control signals based on sensed inputs (notably
through the subsidiary ROMs). The sequence control comprises the microprogram address generation logic. The
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sensing section includes the various logical elements that receive inputs from the data section, especially the
condition-code generator, the subsidiary ROMs, and the branch logic. The external interface includes parts of
the sensing and function generation logic, while the timing module includes part of the lowest level of sequence
control.

4.1.4 Microprogramming in the Control Section Implementation

This paragraph describes two methods of implementing the control section of a processor. The first method,
which is called the “conventional’”’ method for the purposes of this discussion, uses combinational networks, with
many inputs combined in varying ways to produce each output. The second method, which is called “micropro-
gramming”’, replaces most of the combinational networks with an array structure. The array requires a small num-
ber (approximately 10) of inputs to select the output states for a large number (approximately 100) of signals.
Because the array is a regular structure, it is simpler to construct and understand, and less expensive.

4.1.4.1 Conventional Implementation — In a conventional processor, each control signal is the output of a com-
binational network that detects all the machine states (and other conditions) for which the signal should be as-
serted. The machine state is represented by the contents of a number of storage elements (such as flip-flops),
which are loaded from signals that are, in turn, the outputs of combinational networks. The inputs to these net-
works include:

a. the current machine state
b. sensed conditions within the processor
c. sensed external conditions

The number of logical elements in the processor is often reduced by sharing the outputs of networks which gener-
ate intermediate signals needed in the generation of several control signals, or even in the generation of control
signals and machine states. Unfortunately, while this reduces the size of the processor, it increases the complexity
and difficulty of understanding the device because it is no longer obvious what conditions cause each signal. In
addition, the distinction between the sequence control and the function generator is blurred, which makes it more
difficult to determine whether improper operation is caused by a bad machine state sequence or, more simply, by
the wrong control signals within an otherwise correct machine state.

4.1.4.2 Microprogrammed Implementation — The microprogrammed implementation is based on the following
observation: each control signal is completely defined if its value is known for every machine state. The function
generator section can therefore be implemented as a storage device: the storage is divided into words, with each
word containing a bit for every control signal; there is one word for each machine state. During each machine
state, the contents of the corresponding word in the storage element are transmitted on the control lines. For
most control signals, the output of the storage unit is the control signal, and no additional logic is required.

The two tasks of the sequence control section are to select the next machine state, and to provide information
about the current machine state to the function generator. The only information that the function generator in a
microprogrammed processor requires is which word to use as control signals. Therefore, the sequence control
simply provides an address that selects the correct word. The sequence control must also select the address of the
next word to determine the machine state sequence. Because the next machine state is determined in part by the
current machine state, information is stored in the microprogram that helps to select the next state; the micropro-
gram word contains the control signal values and the address and sensing control information required by the
microprogram address generation logic (i.e., by the sequence control).

In a microprogrammed control like the one described above, the two major portions of the control section have
been simplified to regular logical structures. The function generator is entirely separate from the sequence con-
trol, so it is easy to isolate malfunctions to the microprogram storage or to the address generator. In addition,
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the sensing logic is simplified, because each sensed condition is reduced to a single signal and the sensing logic
selects the appropriate signals for the current machine state based on signals output from the microprogram stor-
age. To summarize this discussion, a microprogrammed processor has a simpler, more regular, more easily re-
paired control structure, based on the generation of control signals from stored information, and the selection of
each machine state based on information stored in the current machine state and on information from a simpli-
fied sensing section,

4.2 PARALLEL OPERATION (PIPELINING)

1n a digital computer system, the processor is usually the fastest part of the system. In order to achieve the maxi-
mum speed of operation, all parts of the processor should be used as much of the time as possible. To prevent
the processor from wasting time waiting for other parts of the system, the processor must make use of the exter-
nal data transfer interface as much as possible. Because any one operation that the processor performs uses only
part of the processor’s available resources, the two considerations above require the processor to perform several
operations in parallel.

In general, the sequence of operations required for each instruction uses various parts of the processor at differ-
ent times. Some parts of the processor, such as the program counter, are used only during the early parts of the
instruction; others, like the shift counter, are used only during later parts of the instruction. The processor can
only be fully utilized if different parts of the processor can be used for parts of different instructions during the
same machine state,

When the processor works on the early part of an instruction at the same time that it completes the previous in-
struction, this form of parallel operation is called pipelining. The processor attempts to make continuous use of
the external data interface by fetching each word addressed by the program counter (PC) in succession (incre-
menting the PC during each transfer), on the assumption that the next word required will be the one following
the current instruction. In the pipelining analogy, the processor attempts to fill a pipe, corresponding to the dif-
ferent parts of the processor used successively by each instruction, with a series of instructions.

The current instruction often requires some other words from the external storage. At times, the next instruction
does not follow the current instruction because the PC has been explicitly changed by the current instruction.
When either of these two conditions occurs, the processor must stop the data transfer begun after the instruction
fetch, and begin a data transfer with a different address. In the pipeline analogy, this is a break in the smooth
flow of instructions through the pipe; some time is lost before the pipe drains (the current instruction is com-
pleted) and can be refilled (a new instruction fetched and a transfer begun to read the word following that in-
struction).

A second form of parallel operation occurs in the KB11-A to further improve the utilization of the processor.
Because the processor includes several types of data storage and data manipulation elements, with different inter-
connections, several data transfers can take place within the processor simultaneously. As an example, during the
same machine state that completes an external data transfer, the processor can read a general register into a tem-
porary storage register, and perform an addition that adds a constant to the program counter.

The use of parallel operations within an instruction reduces the number of machine states (and therefore the total
time) required to execute each instruction; the use of pipelining further reduces the number of machine states re-
quired to execute a program by effectively eliminating the elapsed time between many external data transfers.
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4.3 VIRTUAL MACHINES

As described in Chapter 1 (and in more detail in the following chapters), the KB11-A processor can perform
many functions. The processor executes instructions and operates on data, both of which are stored in memory,
and it responds to various asynchronous events. 4

The response to an interrupt or trap is not entirely designed into the processor. Instead, the response is con-
trolled by a series of instructions (a program) which is selected by a simpler hardware response when the asyn-
chronous event is detected. Often, a number of programs are required to respond to a number of events, and the
scheduling, coordination, and interaction of these programs is one of the most important (and difficult) parts of
programming a computer system.

In many applications, the user programs that are written for the system are treated as though they are interrupt
response programs. This is done to simplify the scheduling, to allow each user program to operate with a termi-
nal (some form of character input/output device), and to allow several user programs to operate at once. By run-
ning several programs at once, the processor can be utilized more fully than is generally possible with only one
user program, which would often be waiting while devices other than the processor completed data transfer op-
erations. With several programs to be run, the processor can be switched among the programs so that those ready
to run have the use of the processor while others are waiting. The use of the processor for several programs at
the same time is called multiprogramming.

Running programs in a multiprogrammed system presents several difficulties. Each program can be run at arbi-
trary times, but all the programs must be capable of running together without conflict. A failure in one program
must not be allowed to affect other programs. Each program must be able to use all features of the system in a
simple, easily-learned manner, preferably in such a way that the program does not need to be modified to run in
a different hardware configuration.

These difficulties are overcome by providing each program with a virtual machine. The programmer writes his
program as though it is to run by itself; the program uses any system resources (such as memory or peripheral de-
vices), and the system provides the services necessary to support the program and coordinate it with other pro-
grams in operation. The physical hardware in the system is combined with a control, or executive program to
simulate a more powerful hardware machine; it is for this more powerful, but abstract, machine that the programs
are written.

Based on this discussion, the hardware machine and the executive program must combine to fulfill the following
four major objectives of the virtual machine:

a. Mapping — The virtual machine of the program currently in operation must be assigned to some part of
the hardware machine.

b.  Resource management — The scheduling of programs, and the allocation of parts of the hardware
machine, must be performed by the executive program.

c.  Communication — The virtual machine must be able to request services from the executive program,
and the executive program must be able to transfer data back and forth with the user programs.

d. Protection — The system that supports the virtual machine, and all other virtual machines, must be
protected from failures in any one virtual machine.

Each of these subjects is discussed in one of the following paragraphs.
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4.3.1 Mapping

Each time a program is run (or, if the multiprogramming system is running several programs in a round-robin
manner, each time a program resumes operation), it has some of the system hardware allocated to it. This gener-
ally includes some part of the memory to contain the instructions and data required by the program, some of the
processor’s registers, a hardware stack (which is actually an area in the memory and a pointer to that arca in a
processor register), possibly some peripheral devices, and perhapé a fixed amount of the processor’s time. All of
these allocations must be made in such a way that the hardware machine can then execute the user program with
a minimum of extra operations;i.e., so that the execution of the user program requires as few additional memory
cycles, or additional machine cycles, as possible. Therefore, the allocation is done entirely in the hardware ma-
chine; registers in the hardware contain all the allocation (mapping) information, and all references to virtual ad-
dresses, virtual stack locations, virtual register contents, or virtual devices converted by hardware to physical refer-
ences.

In a PDP-11/45 System, the mapping is done by two devices. The mapping of virtual registers into processor reg-
isters, of the virtual stack, and of the virtual program counter, is done by loading the appropriate values into the
processor registers; one of two sets of general registers can be selected for the user, and the processor has a separ-
ate stack pointer for user mode, while the program counter is changed by interrupt and trap operations and by
the return from interrupt (RTI) or return from trap (RTT) instructions.

The remaining mapping functions distribute the virtual memory into the physical memory. In the physical mem-
ory, many specific addresses are reserved for special functions; the lowest addresses are used for interrupt and
trap vectors, while the highest addresses are used for device registers. Because all the functions that require re-
served addresses in the physical memory are performed either by the physical machine or by the control program,
these addresses need not be reserved in the virtual machine. Therefore, the programs written to be run in the vir-
tual machine can use any addresses; specifically, these programs can start at address 000000 and continue through
ascending addresses to the highest address needed.

In discussions of the virtual memory and the physical memory, it is often necessary to describe the addresses used
to select data items within the memory. The range of addresses that it is possible to use is called the address
space. The maximum range of addresses that can be used in the virtual machine (which in the PDP-11/45 is the
maximum number that can be contained in a 16-bit word) is called the virtual address space, while the maximum
range of physical addresses that can exist in the hardware system is called the physical address space (in the PDP-
11/45 this can be all the addresses expressed by an 18-bit number).

If the user program is to use addresses in the virtual address space that are reserved in the physical address space,
then the virtual address space must be relocated to some other part of the physical address space. In a multipro-
gramming system, several user programs, each in its own virtual address space, may be sharing the physical address
space. Therefore, the relocation of the virtual address space into the physical address space must be variable; each
time a program is run, it may be allocated a different part of the physical address space. The KT11-C provides
the capability of varying the relocation for each user program by storing a map of the memory allocation in a set
of registers.

4.3.2 Resource Management

In a multiprogramming system, each user program operates in a virtual machine that can utilize any of the pos-
sible devices or functions of the physical machine, as well as many functions performed by the executive program.
The resources that exist in the system must be allocated to each user program as required, but without allowing
conflicts to arise where several user programs require the same resources. The physical machine and the executive
program must resolve any protective conflicts by scheduling the resources for use by different programs at differ-
ent times, and must schedule the user programs to operate when the resources are available.
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The management of input/output or peripheral devices is beyond the scope of this discussion, which is primarily
concerned with the basic PDP-11/45 System. Within the system, the two most important resources, which re-
quire the most care and effort to control, are the memory and the processor.

4.3.2.1 Processor Management — The processor can only operate on one instruction at a time (this is not strictly
true, as discussed in Paragraph 4.2, because of the pipelining of instructions and because of the parallel operation
of the FP11 Floating-Point Processor, but these overlapping operations do not affect this discussion). When sev-
eral programs are sharing the use of the processor, the processor operates on each program in turn; either the pro-
cessor is shared among the programs by using periodic interrupts to allow the executive program to transfer the
processor to another user program, or each user program runs to completion before the next user program begins.
To share the processor on a time basis, the executive program must perform the transfer from one virtual machine
to another. Each virtual machine is given control of the physical machine by loading the map of that virtual ma-
chine into the physical machine. That is, the executive program changes virtual machines by changing the con-
tents of the processor registers used by the virtual machine, and by changing the contents of the registers in the
KT11-C which map the virtual address space.

4.3.2.2 Memory Management — Memory management is much more complicated than processor management.
If a program uses a large proportion of the virtual address space, and only a small amount of memory is physically
available in the system, the program may be too large to fit into the memory all at once. Fortunately, in most
programs only a small part of the program (or possibly several small parts, one for the instruction stream and one
or more for blocks of data) is used at any one time. To take advantage of this fact, the virtual address space is
divided into pages so that each page can be mapped separately. Only the pages that are in use in the current in-
struction are required to be in the physical memory during the execution of that instruction.

As described in Chapter 1 of this manual, a system which uses the KT11-C memory management unit to permit
each virtual machine to have a larger address space than the available physical memory must also include a mass
storage device to hold those parts of each virtual memory that are not in the physical memory. As a program pro-
ceeds through a sequence of instructions, it requires different pages of the virtual memory. The memory map in
the KT11-C includes relocation information for each page of the virtual address space, and also includes informa-
tion specifying which pages are currently in the physical memory. If the processor attempts to perform transfers
with a virtual address which is on a non-resident page, the KT11-C stops the execution of the instruction and,
through a trap function, begins the execution of a part of the executive program which transfers the required page
into the physical memory and changes the map in the KT11-C to reﬂect the newly available page.

4.3.2.3 Memory Use Statistics — If it is necessary for the executive program to bring a page into the physical
memory, but all of the physical memory is already in use, the executive program must remove some other page
(from the same virtual machine or, in a multiprogramming system, from some other virtual machine) from the
physical memory. When a page is removed from the physical memory, a copy of that page must be stored in the
mass storage device; if a copy of the page is already on the mass storage device, and none of the data (or instruc-
tions) stored on the page have been changed, the writing of the page onto the mass storage device can be bypassed.
Each time a page must be replaced, the executive program attempts to predict which page is least likely to be used
in the future, so that it will not soon need to be moved back into the physical memory.

The KT11-C Memory Management Unit includes hardware to permit choosing the page to replace and to deter-
mine whether that page must be written onto the mass storage device. Each external data transfer performed by
the KB11-A processor requires that the KT11-C Memory Management Unit convert a virtual address into a physi-
cal address. At the same time, the KT11-C keeps track of which virtual pages have been accessed and which vir-
tual pages have been written into. The executive program operates on the assumption that pages which have been
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recently accessed will also be used soon in the future. To find a page which can be replaced, the executive pro-
gram looks for a page which has not been used, preferably from the address space of a user other than the current
user. If there are no virtual pages currently in the physical memory that have not been accessed, the executive
program looks for a page that has not been written into, to avoid having to copy a page to the mass storage de-
vice. If all the virtual pages in the physical memory belong to the current user, the executive program looks for a
page that has not been used recently, again preferably one that has not been written into. By use of the hardware
memory management unit and of a variety of scheduling and allocation algorithms in the executive program, the
PDP-11/45 System can provide a number of user programs with virtual machines of great power and flexibility,
with a minimum burden on the user program.

4.3.3 Communication

A program running in a virtual machine must be able to communicate with the executive program, to request vari-
ous services performed by the executive program, or to determine the status of the system. The same type of
communication can be used for communication between virtual machines, by providing inter-machine communi-
cation as a service through the executive program. The same hardware functions that provide a means for the
user program to communicate to the executive program are also used by the executive program to determine the
status of the user program when a trap or abort condition occurs.

The user program requests services by executing trap instructions (such as EMT, TRAP, or IOT). Abnormal con-
ditions caused by a program failure, such as an odd address for a word data transfer, or an attempt to execute a
reserved instruction, cause internal processor traps. In either case, the trap function performed by the processor
serves to notify the executive program that an instruction is required.

4.3.3.1 Context Switching — The executive program must then begin executing instructions to perform the re-
quested service or to correct the failure condition, if possible. However, in order for the hardware machine to
operate on any program other than the user program, the mapping information must be changed to reflect the al-
locations used by the new program.

The trapping function performs the change of most of the mapping information. The contents of the program
counter (PC) and the processor status (PS) registers are changed directly; the old contents are stored on a stack in
memory pointed to by a stack pointer, and the new contents are supplied from locations called a trap vector. The
address of the trap vector is provided by the processor and depends on the type of trap instruction or trap condi-
tion, so that for each trap instruction or condition, a different PC and PS can be supplied.

The KT11-C Memory Management Unit stores the maps for both the executive program and one user program, in
separate registers. The processor indicates which map should be used to relocate virtual addresses. During the
execution of instructions (as opposed to the interrupt and trap service function), the address space map to use is
specified by bits 15 and 14 of the PS. These bits also specify which stack pointer register in the processor to use
(there is a separate register for each virtual machine). Because the trap and interrupt service function loads the
PS register with a new value, this function changes almost the entire virtual machine context directly.

The only remaining parts of the virtual machine context that require changes are the general registers in the pro-
cessor. These can be changed either by saving the contents of the registers from the previous virtual machine on
the hardware stack and loading new contents, or by selecting the alternate set of general registers (the processor
has two sets of general registers O through 5). Register set selection is controlled by bit 11 of the PS register, so
this method can be used in conjunction with the trap service function.



To summarize the change of virtual machines, the mapping in the hardware system includes the selection of a
register set, a stack pointer, a program address (in the program counter), an address space, and a processor status.
The trap and interrupt service function, which is performed by the processor as an automatic response to trap an
instruction or abnormal condition, can change all of these selections as follows:

a.  The program counter and processor status are changed directly.
b. Bits 15 and 14 of the PS select the new address space and stack pointer.
c.  Bit 11 of the PS selects the new register set.

The mapping and selection information for the previous virtual machine is completely saved, either by remaining
in unselected portions of the processor and the memory management unit, or by being stored on the hardware
stack. If the selected register set is shared with other virtual machines, the register contents must be changed by
an instruction sequence.

4.3.3.2 Inter-Program Data Transfers — When the new virtual machine begins executing a service program for
the programmed request (if a trap instruction was executed) or abnormal condition (if a trap condition occurred),
the service program must get information from the previous virtual machine. This information may define the
status of the previous virtual machine after an abnormal condition occurred so that the service program can cor-
rect the condition and restore the correct status before returning control to the previous virtual machine. If the
service program is performing a service, the information required from the calling program may define the spe-
cific type of service to perform, or provide the addresses of data buffers, or specify device and file names.

Most information required by the service program is stored in the calling program’s address space. To get this in-
formation, and to return information to the calling program, the service program must be able to operate in the
present address space and transfer data in the previous address space, at the same time. The KB11-A processor
provides instructions to do this.

The special instructions that transfer data between virtual address space make use of the processor status register
to specify which address space is being used by the current virtual machine, and which address space was used by
the previous machine (this is identified by bits 13 and 12 of the PS). The data is transferred between the hard-
ware stack of the current address space and arbitrary addresses of the previous address space. The calculations of
the virtual address in the previous address space are performed by the processor, in the normal data fetch se-
quences, using data in the current address space; i.e., any index constants or absolute addresses used to generate
the virtual address are taken from the current address space, just as the instructions are.

Each virtual address space is divided into an instruction (I) space and a data (D) space, as described in Paragraph
4.3.4. Each I or D space has a full set of 216 virtual addresses. Therefore, the communication instructions are
available in two versions; one to transfer with the previous instruction space, and one to transfer with the previ-
ous data space. A different instruction is needed for each transfer direction, as well, so there are four communi-
cation instructions: move to previous instruction space (MTPI), move to previous data space (MTPD), move from
previous instruction space (MFPI), and move from previous data space (MFPD).

4.3.3.3 Returning to the Previous Context — Because all the mapping and context information for the previous
virtual machine is saved when the trap and interrupt service function sets up a new virtual machine, the hardware
system can resume the execution of any program at the same point that it was interrupted. This is done with a
return from interrupt (RTI) or return from trap (RTT) instruction, which replaces the program counter and pro-
cessor status values of the current virtual machine with the stored values from the previous virtual machine.

The processor status selects most of the mapping information, as described previously, so the return instructions
completely restore the previous context.
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4.3.4 Protection

The hardware system and the executive program must be protected from programming failures in each virtual
machine. In addition, most systems provide protection so that no program operating in a virtual machine can
take control of the system or affect the operation of the system without authorization. A third form of protec-
tion that is useful in a large and complex system is the protection of the executive program against itself. The
executive program is divided into a basic, carefully written kernel, which is allowed to perform any operation,
and a broader supervisor, which can not perform pﬁvileged operations, but which provides various services uscful
to the executive program and to the user programs.

The forms of protection provided include the different address spaces for different types of programs, a variety
of restricted access modes, and restricted processor operations. The address space protection can be used with
any type of program, whether operating in user, kernel, or supervisor mode. The restricted processor operations
are usable only in kernel mode; supervisor mode has the same restrictions as user mode.

4.3.4.1 Separate Address Spaces — The most basic protection against modification of the executive program by
a user program (or of the kernel section by the supervisor section) is the separation of the address spaces. A pro-
gram operating in user mode operates in the user address space. It can not access any physical addresses that are
not in that address space, regardless of their correspondence to addresses in any other virtual address space. The
executive program can prevent a user program from accessing other virtual address spaces through the communi-
cation instructions (MTPI, MTPD, MFPI, MFPD) by forcing bits 13 and 12 of the stored processor status word to
1s (to reflect user mode) before executing an RTI or RTT instruction to return control to the user program. This
forces the previous mode bits in the processor status register to take on user mode, just as the current mode bits
are set to user mode, and the communication instructions operate only within the user address space (Paragraph
4.5).

4.3.4.2 Access Modes — Within one address space, it is often useful to be able to protect certain parts of a pro-
gram from unintentional modification. This can be done by allowing the data in those addresses to be read, but
prohibiting transfers into the addresses. This is known as read-only (or write-protected) access. Areas in a virtual
address space that contains alterable data must permit read/write access, but areas that contain unmodified in-
structions may be read-only.

Another useful form of access protection distinguishes between read accesses that fetch instructions (or address
constants) and any accesses that transfer data. If instructions can be accessed by the processor only as instruc-
tions, they can be executed but can not be read or transferred to any other part of the address space. This pre-
vents the user from determining what the instructions are in order to tamper with the instruction sequence or at-
tempt to modify the program in undesirable ways. This type of access restriction is called execute-only access.

The KT11-C Memory Management Unit provides read/write, read-only, and execute-only access modes in the
PDP-11/45 System. The access mode is stored in the mapping registers along with the relocation information; in
fact, when a page of the virtual address space is not in memory, a special access code that identifies the page as
non-resident is used. The execute-only access mode is not a separate access mode, but is provided by separating
the address space into two address spaces that are used for the different kinds of transfers. One address space is
used for all transfers that fetch instructions, and is called the instruction (I) space, while a second address space is
used for all data transfers, and is called the data (D) space. If the two address spaces are mapped separately, at-
tempts to use the same address for an instruction and for data may address different physical locations. If no ad-
dresses in the D space correspond to the physical addresses used in the I space, then the instructions can not be
accessed as data and an execute-only access mode has been achieved. This mode must be used with caution;
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however, tables that are accessed by indexed address modes must be in D space and MARK instructions, which
are stored on the hardware stack as data and then executed, require the stack to be in the same virtual addresses
in I and D space.

4.3.4.3 Privileged Instructions — Certain PDP-11 instructions that affect the operation of the hardware machine
must be prohibited in the virtual machine. These include the HALT instruction, which stops the physical ma-
chine and thus prevents any virtual machines from operating, the RESET instruction, which stops all input/
output devices, regardless of which virtual machine they are allocated to, and various processor status change in-
structions. These instructions are allowed only in kernel mode so that the executive program can control the en-
tire hardware system; they are ineffective in the supervisor or user mode. The RESET and set priority level (SPL)
instructions are allowed to execute in these modes, but have no effect ; the HALT instruction activates a trap
function so that the executive program may stop all action for the virtual machine that executed the HALT, but
continue other virtual machines.

4.4 RE-ENTRANT AND RECURSIVE PROGRAMMING

A program can generally be divided into routines, each of which performs a function that is built up from a se-
quence of instructions. Often the function performed by a routine is needed in several other routines, so it is de-
sirable to be able to call the routine from many other routines in the program; i.e., the program should be able to
transfer the processor to the instructions that execute the function, and then have the processor resume the exe-
cution of the instructions following the calling instruction. A routine which is called from other routines is said
to be subordinate to those routines and is called a subroutine, the special instructions that transfer the processor
to the beginning of a subroutine and that return the processor to the calling routine are called subroutine linkage
instructions.

4.4.1 Recursive Functions

There are some procedures that are most easily implemented as a subroutine that either performs a part of the
procedure and then calls itself to perform the rest of the procedure, or completes a computation and returns a
partial (and finally, a complete) result. This is called recursive operation. The common example of a recursive
procedure is one that calculates the factorial of a number (the factorial is the product resulting from the multipli-
cation of a number, n, by all smaller numbers). The recursive procedure to calculate a factorial is as follows:

NOTE
This procedure works only if the original number is a positive
integer.

a. Ifnis1 or0,return 1 as the value of factorial n.

b.  If nis greater than 1, compute the factorial of n minus I, multiply that number times n, and return
that value,

For example, to compute the value of factorial 3, the procedure is to compute the value of factorial 2 and multi-
ply by 3. However, the value of factorial 2 is the value of factorial 1 times 2. The value of factorial 1 is found
by Step a to be 1, so the final result is 1 times 2 multiplied by 3, or 6. The same recursion computes the factorial
of any positive integer, in n recursions for a number n.

4.4.2 Use of a Stack in Recursive Routines

When a subroutine is called recursively, the linkage information for each call (the information required to return
to the calling program) must be saved during subsequent calls. Since a recursive subroutine can be called again
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before it returns from the first call, the linkage information should not be stored in a fixed location; instead, it is
stored in an area, with each linkage in a different location and a pointer that identifies the specific location for
each linkage.

Because a subroutine must return control to the routine that called it before that routine can return control to
any routine that called the latter routine, the last linkage which has not been used for a return must be the first
one used; i.e., the linkages must be used in a last-in, first-out sequence. A storage area whose locations are used
for last-in, first-out storage is called a stack; a pointer is used to point to the last entry placed on the stack, and
the subroutine linkage instructions that put information on the stack (a push operation), or remove information
from the stack (a pop operation), change the contents of the pointer so that it always points to the correct word
for the next linkage operation.

In the PDP-11/45 System, one of the KB11-A processor’s general registers is used by the subroutine linkage in-
structions as a stack pointer. This register is called the hardware stack pointer (SP) and it must be initialized to
point to the first word in a stack area. The same stack is also used for storage of context or linkage information
by the trap and interrupt service function, which is described in Paragraph 4.3.3. The traps, interrupts, and sub-
routine calls are all handled in the same last-in, first-out manner,

A subroutine that can be called recursively should not move data into fixed locations, because later executions of
the same subroutine (before the current execution is finished) may also execute the same data transfer instruc-
tions. The best way to keep the data storage for each execution of a subroutine separate is to store the data on
the stack in the same manner as the linkage information.

4.4.3 Re-Entrant Functions

Keeping the data storage separate from the program is particularly important for programs and subroutines that
can be called from more than one virtual machine. If several virtual machines are executing the same program, it
is desirable to have only one copy of the program in the physical memory, and to map each virtual address space
into the same physical address space. However, in a multiprogramming system, one virtual machine may begin
execution of a program and then be interrupted; a second virtual machine may begin execution of the same vir-
tual program and then run out of time; the original virtual machine may resume execution and complete the pro-
gram; and the second virtual machine may resume execution. The programmer can not make any assumptions
about where each virtual machine stops, so the program must be capable of being re-entered at any time, regard-
less of what other virtual machines have done with the program.

Programs designed to store all their data on a stack, so that each virtual machine that uses the program simply
uses a different stack, are called re-entrant programs. A different stack pointer is selected each time a different
virtual machine is selected (if the executive program changes the context of the user virtual machine, to run a
different user, it changes the address mapping of the stack area and the contents of the stack pointer), so each
activation of a program executes the program in complete isolation from other activations by other virtual ma-
chines.

4.4.4 Indexed Addressing of Parameters

When a program or routine calls a subroutine, the calling routine may send data to the subroutine. The amount
of the data to be “passed” to the subroutine may vary, as may the amount of data returned by the subroutine.

By placing all the data on the stack, the amount of data becomes unimportant. The subroutine may read differ-
ent data items on the stack by using the indexed addressing modes with the stack pointer as the base register.
Complex subroutines may require that the last word placed on the stack (the word with the lowest virtual address,
because the stack expands towards low addresses) contain the number of parameters passed so that the program
does not use other data also on the stack but not intended as parameters.
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4.4.5 Separate Stack and Index Pointers

Using the stack pointer as the base address for indexed addressing presents problems if the subroutine must, in
turn, pass data to another subroutine. Each time the first subroutine calculates a parameter for the second sub-
routine, it pushes the parameter onto the stack. The address in the stack pointer changes to reflect the new data
on the stack. As a result, all instructions in the first subroutine which contain index constants are invalid, be-
cause the base value that the index constants are supposed to modify has changed. It would be very difficult, if
not impossible, to write a subroutine that could use different index constants as the stack pointer changes (be-
cause to remain re-entrant, the program cannot change any part of the instruction code). A much simpler solu-
tion is to separate the base register from the stack pointer by copying the stack pointer value into another general
register before using the stack for any other data. This is still re-entrant because any change of virtual machine
also changes the contents of (or the selection of) all the general registers.

The register commonly used as a separate index pointer is register 5. The standard method of calling subroutines
in re-entrant programs uses register 5 as the index pointer, register 6 as the stack pointer, and a word on the

stack (at the address contained in the index pointer) that indicates the number of parameters on the stack. In ad-
dition to providing a straightforward and completely re-entrant structure, this method is completely compatible
with a similar form of non re-entrant subroutine call. The same subroutine can be called both by re-entrant pro-
grams and by simpler programs that are not re-entrant.

4.4.6 Subroutine Call Compatibility

In a non re-entrant program, the parameters passed to a subroutine are placed in-line; i.e., they are in the addresses
immediately following the address of the calling instruction. The subroutine call and return instructions use a reg-
ister to store the program counter value for the calling program; the value in the program counter at the time the
subroutine call Gump to subroutine or JSR) instruction is executed is the address of the word following the JSR
instruction. The standard register specified in JSR instructions is register 5; register 5 can be used as an index
pointer while the stack is used for data storage during the execution of the subroutine. The JSR instruction does
not destroy the previous contents of register 5 when it stores the return address in that register; the previous con-
tents are pushed on the stack, and are automatically restored by a return from subroutine (RTS) instruction.

When the RTS instruction restores the program counter (PC) value stored by the JSR instruction, the calling pro-
gram must have some means of bypassing the stored data to get to the next instruction. The word immediately
following the calling instruction must contain the number of words occupied by the parameters. Both of these
requirements can be fulfilled by placing a branch instruction in the return location; the branch instruction ad-
vances the PC so that the first word after the line parameters, and the offset in the eight least-significant bits of
the branch instruction, contain the number of words (the offset is multiplied by 2 before use to generate a byte
address) used for the parameters.

The calling sequence and in-line parameter structure used by non re-entrant routines permits the subroutine to
return control to the calling routine with an RTS RS instruction. For compatibility, the re-entrant subroutine
call must also permit the same RTS RS5 instruction to perform the return. However, when a subroutine has been
called in a re-entrant manner, R5 points to a location on the hardware stack, not to the calling program. In addi-
tion, the space in the stack area used by the subroutine call must be released (the stack pointer must be adjusted
to point to the first location after the parameter area) so that any additional information on the stack (such as a
return linkage to a routine that called the routine that called the current subroutine) is accessible. Thus, the word
pointed to by R5 should contain an instruction, whose least-significant bits are the number of parameters passed
to the subroutine, which can adjust the stack pointer and also complete the subroutine return sequence.
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4.4.7 The MARK Instruction

The PDP-11/45 System uses the MARK instruction to perform this function. The MARK instruction is depen-
dent on the correct setup of registers 5 and 6 (the index pointer and the stack pointer) for its correct operation.
It is executed after an RTS RS instruction that loads the PC from the index pointer, and loads R5 with the old
PC of the calling routine from the stack. The MARK instruction then adjusts the stack pointer and effectively
performs another RTS RS5 to finally return control to the calling routine.

Figure 4-2 illustrates examples of the two types of subroutine calls for a call with three parameters and the fea-
tures that make them compatible to the subroutine. Figure 4-2A shows the standard non re-entrant call; after the
JSR instruction has been executed, R5 and the SP (R6) point to the location shown. Figure 4-2B shows the cor-

responding situation after the JSR instruction for the standard re-entrant subroutine call. Note the following sim-
ilarities between the two types of calls:

a.

b.

C.

d.

In either case, R5 points to a word that contains the number of parameters in the least-significant bits.

The words following the word pointed to by R5 contain the parameters in ascending order (in the illus-
trations, the addresses increase going from the top of the illustration to the bottom).

The stack pointer (SP or R6) points to the last word on the stack used in the call.

The first word of the stack area used in the call contains the original contents of RS.

When the subroutine executes an RTS R5 as its last instruction, the RTS and the following instruction (either a
BR or a MARK instruction) return control to the address containing the next instruction of the calling routine,
and restore the SP to point to the previous contents of the stack. In the re-entrant case, the RTS instruction does
not restore the PC directly from R5; instead the old PC is moved from the stack to R5, to be moved from RS to
the PC by the MARK instruction.

JSR R5, SUBR

RS —»

BR ,+6

P1

P2

P3

NEXT INSTRUCTION

SP —»l

OLD PC

PREVIOUS CONTENTS

B

MOV R5, —(SP)

MOV P3, —(SP)

MOV P2, —(SP)

MOV P1, —(SP)

MOV # (MARK 3),-(SP)

MOV SP, R5

JSR PC, SUBR

NEXT INSTRUCTION

SP OoLD PC
R5 —» MARK 3
P
P2
P3
OLD RS

PREVIOUS CONTENTS

Figure 4-2 Non Re-Entrant and Re-Entrant Subroutine Calls
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4.5 PROCESSOR STATUS OPERATIONS

The processor status (PS) word contains several types of information that control the operation of the processor,
and of the PDP-11/45 System. Table 4-1 lists the fields within the PS, and the paragraphs of this chapter that dis-
cuss the effect of each field.

This paragraph discusses the interaction of the PS fields with asynchronous events in the PDP-11/45 System and
the changes that occur to these fields as a result of those interactions. The following discussion is divided into
paragraphs according to the fields of the PS word.

4.5.1 Current Processor Mode

The current processor mode selects most of the mapping for the virtual machine and determines whether certain
instructions are effective or prohibited. The processor mode can be set by moving a data word to the PS at its
Unibus address, or through a trap or interrupt service function (which loads a new PS value from the trap orinter-
rupt vector), or through an RTI or RTT instruction (which restores an old PS from the hardware stack).

Programs running in virtual machines should not be allowed to change the contents of this field. If the current
processor mode is changed, the mapping registers in the KT11-C Memory Management Unit that are selected are
replaced by the set for the new mode. The result of attempting to continue with the same PC value in the new
virtual address space is unpredictable.

The entire PS word is protected from direct transfers by being mapped only into the kernel address space. No
other virtual machine has any virtual address that corresponds to the physical address of the PS register, so there
is no way to transfer data to the register through instructions. The new value of the PS used during the trap or
interrupt service function is taken from a vector (whose location is specified by a vector address supplied by the
interrupting device or by the trap recognition logic) that is located in the kernel address space; again, other pro-
grams can not access the vector storage, and thus, can not modify the vector contents to affect the PS value. The
RTI and RTT instruction can only set, and not clear, these bits, so user programs are prevented from entering
other modes while kernel programs can return control to any mode.

4.5.2 Previous Processor Mode

The previous processor mode is used primarily by the communication instructions to define which address space
to communicate with. During user mode operation, these bits are set to reflect user mode, so that the user pro-
gram can not move data into or out of any other address space. These bits are set to reflect the value contained
in the current mode bits prior to an interrupt or trap operation. A special kernel mode data transfer is used to
fetch the new PS value from the vector address; however, bits 13 and 12 of the PS are not loaded from the data
read but from the old value of bits 15 and 14.

During the return from a trap or interrupt service program (via an RTI or RTT instruction), the old PS value is
restored from the stacked value. The previous mode bits are protected in a way that prevents user mode pro-
grams from altering the bits to allow access to other address spaces. This is done by permitting the bits to be set,
but not cleared; since user mode is represented by all 1s, user mode programs can not alter these bits, but other
types of programs can gain access to user address space.
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Table 4-1
Processor Status Fields

Bits Function . Description Refer to Paragraph
15-14 current mode select the processor operating mode: 4.3.3,4.3.4,4.5.1
00 = kernel

01 = supervisor
10 = not used
11 = user

13—-12 previous mode holds the processor mode that was in 4,3.3,45.2
effect prior to the last trap or inter-
rupt, for use in communication

(MT/FP) instructions

11 register set selects one of two register sets for 43.1,43.2,453
general registers 0 through 5

10-8 not used

7-5 priority selects one of eight processor priority 4.5.4
levels that control scheduling of in-
terrupt service routines

4 trace bit controls operation of a trap function 4.5.5
used in program debugging

3-0 condition codes used to store information about the 4.5.6,7.2
value of the result of the last data
operation

4.5.3 Register Set Selection

The register set selection field controls which of two sets of general registers is used. In general, a user program
should use only the register set assigned to it by the executive program; the protection of this field is similar to
that for the mode fields, so user programs should run with register set 1 selected to prevent the user from chang-
ing the selection.

4.5.4 Processor Priority

In a PDP-11/45 System, the processor spends most of its time executing instructions in programs that are running
in virtual machines. However, a certain part of the processor time is spent servicing interrupts from other devices.

The interrupts indicate that the processor must execute an interrupt service routine to control the operation of
the device; for different devices, the interrupts indicate different conditions that have occurred. Different de-
vices can tolerate different amounts of delay before the execution of their service programs; the system uses a
scheduling system to determine which interrupt service programs should be honored first.
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4.5.4.1 Device Priorities — The scheduling system is based on a structure of priorities. Each device that causes
interrupts is assigned to a priority level. When the processor is executing a service routine, the processor priority
is set to the same level as the interrupt that started the service routine; this blocks all interrupts on the same (or
any lower) priority level. Higher priority interrupts are still honored by stacking the context of the current inter-
rupt service routine and loading a new context from an interrupt vector. The use of a hardware stack to store the
context information for interrupted routines permits any number of routines to be nested, because each higher
level routine must execute to completion and exit (through an RTI instruction) before the lower level routine re-
sumes operation. This last-in, first-out discipline corresponds to the operation of the stack.

4.5.4.2 Program Priorities — In some cases, it is desirable to be able to reschedule part of an interrupt service
routine at a different priority. This can occur, for example, when a service routine that normally executes
quickly detects an error that requires a long procedure to correct; the error routine should run at a much lower
priority. It is preferable to schedule the lower priority section separately, and return control to the interrupted
program, so that other high-priority interrupts can be serviced without tying up stack space and other resources
with the current interrupt routine.

4.5.4.3 Programmed Interrupt Requests — The same type of program scheduling is useful to the executive pro-
gram for scheduling different user programs at different priority levels or for scheduling periodic supervisor func-
tions. The KB11-A processor provides a mechanism for scheduling different priority requests, in the form of a
programmed interrupt request (PIRQ) structure. This structure consists of a processor register in which bits can
be set to represent interrupt requests at different priority levels, and an interrupt vector generator that supplies a
fixed vector address whenever the processor honors an interrupt request from the PIRQ register. The PIRQ regis-
ter is intended to be accessed only in kernel mode so that it is protected from alteration by programs operating
in virtual machine; because there is only one request bit for each priority level, there must be a control program
for each level that determines what other programs must be run when the request at that level is honored.

The kernel program can also vary the processor priority level directly, either by moving data containing a desired
priority to the PS address, or by means of the set priority level (SPL) instruction. The SPL instruction has the
advantage that it modifies only the priority level and that it can be executed with only one memory cycle, while
a data transfer to the PS address requires many more memory cycles and requires additional processing to avoid
changing other parts of the PS word.

4.5.5 The Trace Bit

In some forms of debugging operations, it is useful to be able to trap to a debugging program after the execution
of each instruction in the program being checked. The trace trap is provided to perform this function. The trace
(T) bit in the PS word generates a trace trap, through a fixed vector, whenever it is set to a 1. This trap occurs
after the execution of each instruction while the T bit is set.

The T bit is protected against unintentional modification. It can only be set or cleared during the interrupt or
trap response function, from a vector containing a new PS value; or during the execution of an RTI or RTT in-
struction, from an old PS value on the stack. When data is transferred to the PS address by any other instruction,
the value of the T bit is unaffected despite any value in the transmitted data.

4.5.6 The Condition Codes

The four least-significant bits of the PS word contain the processor condition codes. These bits store information
about the value resulting from any data manipulation during an instruction. The condition codes are not altered
to reflect the results of address calculations, but are changed only when an instruction explicitly operates on an
explicit unit of data.
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The condition codes can also be set to any specific value by transferring a word containing that value to the PS
address. The value of the condition codes are altered by every interrupt or trap response function, and by every
RTI or RTT instruction. In addition, individual condition-code bits may be manipulated directly, with the
condition-code operate instructions. These instructions provide a means to set any one or more of the condition
codes with a single instruction that requires only one memory reference; a similar set of instructions can clear any
one or more bits. The condition codes are used in conditional branch instructions, so the various means of ma-
nipulating the condition codes are useful because they permit setting up the PS word to respond in a particular
way to various branch instructions.

4.6 STACK LIMIT PROTECTION

Each virtual machine, and the kernel mode program, has a separate stack area which is used by the hardware
stack pointer (SP) for that machine. The stack pointer contains the virtual address of the last word of the stack
area used to store data. As more data is stored on the stack, the value in the stack pointer changes to lower ad-
dresses.

The area available for stacked data is not unlimited. If the program continues to add data to the stack, or if an
unexpectedly large number of traps and interrupts should occur, the hardware stack mechanism may attempt to
store data in locations which have been reserved for other uses; this occurs if the stack pointer overflows beyond
the boundary of the stack storage area.

In each of the virtual machines, stack overflow protection can be provided through the memory management
unit. The stack area is placed in a virtual page that is not used for any other data and is isolated from other vir-
tual addresses used by the program. The isolation required consists of an area of non-resident virtual addresses
immediately below the stack area. If the stack pointer moves below the stack area, any memory references using
the contents of the stack pointer as an address will be aborted and trapped to the executive program which can
take corrective action.

This technique can not be used for the kernel mode stack, however, because the response to a stack overflow in
kernel mode is to trap to kernel mode; the trap service operation attempts to push two additional words onto the
stack. Therefore, the processor provides a warning trap when the kernel stack first overflows, and provides an
emergency recovery sequence that is executed whenever the stack overflow becomes severe.

The kernel mode stack overflow detection is based on the stack limit (SL) register. The register permits the stack
overflow address to be adjusted to reflect the position of the stack in the kernel address space. Whenever the
processor initiates a data transfer to store data, based on the stack pointer as an address, the address that is trans-
mitted is compared to the contents of the stack limit register. If the transmitted virtual address is higher than the
contents of the SL, the stack is still within the stack storage area, and the stacking operation is permitted to pro-
ceed. If the transmitted virtual address is less than or equal to the value in the SL, a trap occurs, and the stacking
operation is aborted.

The type of trap that occurs depends on the amount by which the transmitted address is less than the contents of
the SL. The first 16 words directly below the stack area are reserved for stack overflow. If the stack expands
into these words, a special stack overflow trap occurs. This trap uses two of the 16 words for storage, and uses a
vector that initiates a special service program to recover from the stack overflow,

If, however, the stack continues to expand beyond the 16 words reserved for stack recovery operations, an emer-
gency stack trap occurs. This trap ignores the current location of the stack and stores the current program con-
text at addresses 0 and 2. The stack overflow program is then initiated. The 2-word emergency stack is provided
to prevent the stack from continuing to advance into the prohibited area; if the stack is not adjusted to remain
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within the stack storage area before expanding through the 16 reserved words, some failure of the recovery pro-
gram must be suspected and the emergency measures are taken.

The 16 words reserved for the recovery program are called the yellow zone, and the stack overflow trap that
occurs whenever the stack expands into these words is called a yellow zone trap. If the stack expands below the
yellow zone, it enters the red zone, and the emergency réd zone trap occurs. If any type of bus error or memory
management error occurs while the processor is responding to a yellow zone trap, or while the processor is at-
tempting to use the stack pointer as an address (in kernel mode), that error is treated as a red zone error because
the processor may not otherwise be able to recover the correct stack information.

4.7 THE MULTIPLY AND DIVIDE INSTRUCTIONS

Two of the instructions performed by the KB11-A processor are sufficiently complex to require treatment on a
conceptual level as well as on the more detailed level of the implementation used to perform them. These two
instructions are the multiply (MUL) and divide (DIV) instructions.

4.7.1 Number Representation

Before describing the algorithms used for the MUL and DIV instructions, it is helpful to review some aspects of
number representation that are important in the following discussions. Numbers are a means of describing quan-
tities. In a number system (such as the decimal system that we normally use, or the binary system that is used in
digital computers), each number has a unique representation. It is important to distinguish between the quantity
indicated by a number and the representation of that quantity.

For example, the number system used in the PDP-11 computer systems is called the 2’s complement number sys-
tem. The phrase “2’s complement representation® describes the use of this system. The 2’s complement repre-
sentation of the quantity 1 is a string of Os followed by a single 1 in the least-significant position (for a 16-bit
representation, this string is 0 000 000 000 000 001). Similarly, the representation of the quantity minus 1 is a
string of all 1s (for a 16-bit representation, this stringis 1 111 111 111 111 111). There is also a 2’s complement
operation. When the 2’s complement operation is performed on the representation of the quantity 1, the result
is the representation of the quantity minus 1. That is, the 2’s complement (not the representation) of 1 is-1.

Number systems like the decimal and binary systems are called positional representations. The same symbol,
used as a different digit, has a different meaning because of the difference in position within the number. For
example, the 1 in the binary number 10 has the value 2 in decimal representation, but the same symbol 1 in the
binary number 100 has the value 4 in decimal representation. The value of the position, which modifies the
value of the digit, is linked to the value of the base of the number system. Each more-significant position has a
value that is equivalent to the value of the position immediately preceding it, multiplied by the base of the sys-
tem. If the value of the number system base is represented by b, the values of the three least-significant digits of
integer numbers, in ascending order, are 1 (actually b%), b (that is, b'), and b times b (that is b2). Representing
the digits of a number by the symbols a, through a;, the complete representation of a number is:

a,b" +a b1 +.. . +a,b> +a,b' +a,b. The representation consists of n+1 digits, and can express a total of
b1 numbers.

If a positional representation is used only for positive numbers, it can express numbers up to b"*1-1. However,
if the representation uses a complement system to represent negative numbers, the range of numbers that can be
expressed is from -b"*1/2 to +(b"* 1-1)/2. For binary numbers, b is 2, so the range of numbers that can be rep-
resented is from -2" to +2"- 1. As a result, the 2’s complement operation can be expressed as finding 2"~ A,
where A is the original number.

1420



4.7.2 The Multiply Algorithm

The process of multiplication is, effectively, one of repeated addition. One number, called the multiplicand, is
added together a number of times to form a product; the number of times the multiplicand is added to the pro-
duct is determined by the value of the other number. That is, the multiplicand is added as many times as the
value of the multiplier.

Using 16-bit numbers, the largest number that can be represented in the multiplieris 0 111 111 111 111 111,
which can also be represented as 216~ 1. To multiply a number by this quantity would require 26~ 1 additions,
which is too much processing to be practical. Fortunately, there is a much more efficient method that is based
on the principles of positional notation, as discussed in Paragraph 4.7.1.

The multiplier can be represented as the sum of the values of the individual numbers that form the digits of the
number. The multiplicand can then be multiplied by each of the digit values of the multiplier; the resulting par-
tial products are then summed to develop the final product. Each of the partial products has the forma 2". For
16-bit numbers, only 16 partial products are formed, which takes much less time than 216 operations. The gener-
ation of each partial product is divided into two parts: first, the multiplicand is multiplied by 2", and second, the
resulting number is multiplied by the value of the digit, a .

When the digits are treated in sequence, starting with the least-significant digit and working up to the most-
significant digit, the first factor used to form each partial product differs by 2 for successive bits; that is, the mul-
tiplicand times 24 is equivalent to (multiplicand * 23) * 2. Therefore, the multiplicand is multiplied by 2 before
each partial product (except the first) is formed. Multiplication by 2 is the same as shifting one place to the left
in binary number systems.

Each a can only have the value 1 or the value 0. If the value is O, the value of the entire partial product is 0; if
the value is 1, the shifted multiplicand is added to the sum that becomes the final product. Because the multipli-
cand is shifted for each digit of the multiplier, and the shifted multiplicand is added to the product if the corre-
sponding bit of the multiplier is a 1, this algorithm is called the “‘add and shift” multiplication algorithm.

4.7.3 Sign Correction During Multiplication

The 2’s complement representation permits the simplest implementation of logical circuits for addition and sub-
traction, but it requires corrections during multiplication and division operations. As an example of the require-
ment for corrections, the representation of - A is 2"~ A; when - A is multiplied by B, the actual multiplication is
(2"~ A)*B and the result is the representation of 2" B- AB, instead of the representation of ~ AB. Therefore, a
correction factor of ~2"B must be added to the result to generate the correct representation. Table 4-2 illustrates
the corrections required for each combination of signs for the multiplier and multiplicand.

In the KB11-A processor, most of the correction operations are avoided by using a modified representation for
the multiplier. Normally, the multiplier would be considered a 16-bit number, and the 2’s complement represen-
tation of negative numbers would be 216 minus the corresponding positive number. However, for use in the mul-
tiplication, a different 2’s complement representation is available in which negative numbers are represented by
232 minus the corresponding positive number. The advantages of this representation are illustrated by repeating
the example shown in the previous paragraph: the representation of - A is now 232_A, s0 - A times B is equiva-
lent to (232~ A)*B, or 232 B; the factor 232B is shifted beyond the 32-bit product, and does not appear in the
final result, which is just the representation of - AB.

Figure 4-3 illustrates the conceptual hardware structure needed for this multiplication algorithm, using the special
2’s complement representation for the multiplier, and illustrates the algorithm in a flowchart fashion. The
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Table 4-2

Sign Corrections for Add and Shift Multiplication

T Representation | Representation Product as Product .
Multiplication of A of B Generated Should Be Correction
(1 a*B A B AB AB none
Normal -A*B 21-A B 2"B-AB -AB -2"B
2’s Complement . n n N
Representation A*B A 2-B 2"A-AB -AB -2°A
| -A*B 2-A 2"-B ~ 221-2MA-2"B+AB AB +2PA+27B
=
. A*B A B AB AB none
Special 2 5
2’s Complement 4 -A*B 2°0-A B 2°"B-AB ~-AB none
Representation A*B A B MA-AB -AB LN
(see Paragraph 4.7.3) ) e 2
L -A*-B 240-A 2"-B 2°M-2°"B-2"A+AB AB +2"A

NOTES: 1. Subtracting negative numbers is the same as adding positive numbers, so the correction factors can always be generated

by subtracting the appropriate variables.

2. The product is expressed in 2n bits, which can contain numbers up to 2"~ 1. Any factor which is greater than or equal

to 2" can be ignored.

MULTIPLY

CLEAR SUM
LOAD MR

LOAD LOW HALF
OF MR AND
EXTEND SIGN
SHC «— N

SUM «— SUM+ MD

MD<—MD¥%2
(SHIFT LEFT)
SHC «—SHC—1

MR<«—MR/2
(SHIFT RIGHT)

SUM «— SUM-MD

( DONE )

2N

LEGEND: SUM=RESULT REGISTER
MD = MULTIPLICAND
MR = MULTIPLIER

SHC = SHIFT COUNTER

Figure 4-3 Multiply Algorithm and Register Structure
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hardware structure represented in the illustration is not the structure used in the KB11-A processor; that struc-
ture is illustrated in Chapter 6. See the discussion of the MUL instruction in that chapter for more information
on the implementation of the algorithm.

4.7.4 The Divide Instruction

Division is the process of counting the number of times one number (the dividend) can be reduced by another
number (the divisor). The count of the number of reductions is called the quotient and the part of the dividend
that can not be reduced by the divisor is called the remainder. Division is more complicated than multiplication,
for several reasons:

a.  Division produces two results, not one.

b. During multiplication, the maximum result occurs when the maximum number is multiplied by itself,
and this result fits into two words; during division, the maximum result occurs when the largest pos-
sible number is divided by a very small number and the result does not fit into any reasonable number
of words; therefore, the division algorithm must recognize the overflow condition when the quotient
is too large.

c.  During the division process, it is necessary to recognize when the partial remainder is smaller than the
divisor; usually this is done by recognizing when the last reduction passed through 0 and changed the
sign of the remainder. This condition is called underflow and requires that the results of the last reduc
tion be restored in some way.

The simplest division algorithm is to subtract the divisor from the dividend until underflow occurs, restore the re-
mainder, and keep a count of all but the last subtraction for the quotient (this algorithm assumes all positive nuir
bers). This procedure is very tedious, particularly if an overflow condition exists, so a shorter algorithm is used
that is based on the positional representation of numbers.

The result of the division is a quotient that can be multiplied by the divisor to regenerate the dividend (with a
difference equal to the remainder). If, during the multiplication, each bit of the quotient can generate a partial
product that becomes part of the total sum, then during the division, each bit of the quotient can be generated
individually while reducing the partial remainder by an appropriate amount. To determine what the most-
significant bit of the quotient should be, the number that is subtracted from the dividend is equal to the divisor
multiplied by the positional value of the most-significant digit.

Figure 4-4 illustrates the division algorithm. At the beginning of the division, the dividend occupies all of a 2-
word register. The divisor has been multiplied by 2", so that the number which is first subtracted from the divi-
dend is actually the divisor, times the positional value of the most-significant bit. Before each step of the division
the divisor is divided by 2, so that the correct number for generating the next bit of the quotient is formed; the
division by 2 is done by shifting the 2-word divisor 1 bit to the right. In order for the division algorithm to oper-
ate with negative numbers, the reduction that is performed at each step of the division must be the correct oper-
ation to reduce the remainder; if the divisor and the partial remainder (that is, the dividend) have the same sign,
the divisor is subtracted from the remainder, but if their signs differ, the divisor is added to the remainder to re-
duce its magnitude.
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Figure 4-4 Divide Algorithm and Register Structure
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The algorithm that is illustrated does not perform a restoration if an underflow condition occurs. Instead, while
underflow exists, succeeding operations are performed in the opposite manner to complete the restoration; while
an underflow condition exists, the bits of the quotient are set only when the underflow is corrected and are
cleared if the operation does not complete the restoration. If the original divisor and dividend are of opposite
sign, the quotient should be negative, so bits of the quotient are set only if underflow does occur. As a result of
these considerations, the value generated for each bit of the quotient depends on the operation performed and
its results, as follows: )

a. If the operation was a subtraction (the signs of the divisor and the partial remainder were the same),
the quotient bit is set if there was no underflow, and is cleared if there was underflow.

b. If the operation was an addition (the signs of the divisor and the partial remainder were different), the
quotient bit is cleared if there was no underflow, and is set if there was underflow.

The non-restoringdivision algorithm works because an underflow at any step can be corrected to within one mul-
tiple of the divisor by the succeeding steps. This is true because a binary number that is represented by all 1s
changes to a number that is represented by a 1 followed by all Os when the number 1 is added to it. Therefore,
the multiple of the divisor that is subtracted from the partial remainder at any step is only one more multiple of
the divisor than can be expressed by all the less-significant bits of the quotient. The remaining single multiple of
the divisor can be restored by a single operation {which is always an addition, because underflow exists and the
divisor and partial remainder have different signs) following the steps that generate the quotient bits; this step is
also used to correct the remainder.
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CHAPTER 5
BLOCK DIAGRAM DESCRIPTION

This chapter introduces the KB11-A Central Processor Unit architecture by describing the block diagrams, which
show all major logic elements and interconnections in the processor. The description of the processor is divided
into two major sections: data paths, and control. The data paths section includes all logic elements that operate
on data that is used external to the processors. The data paths block diagram is shown in Figure 5-1. The control
section, which includes all logic elements that operate on data used entirely within the processor (control informa-
tion), is shown on the control section block diagram, Figure 5-3. A drawing prefix, which indicates where each
element is shown in the block schematic, is included within each block on the diagrams.

5.1 DATA PATHS BLOCK DIAGRAM

The data paths block diagram (Figure 5-1) includes data storage elements, data manipulation elements, and data
routing elements.

The data storage elements are divided into three groups:

a.  general storage registers (Paragraph 5.2)
b. temporary storage registers (Paragraph 5.3)
c.  special purpose registers (Paragraph 5.4)

The data manipulation logic elements include:

the ALU (Paragraph 5.5.1)

shifter logic (Paragraph 5.5.2)

constant multiplexers (Paragraph 5.5.3)
destination register (Paragraph 5.5.4)
shift counter (Paragraph 5.5.5)

epo o

The data routing logic elements consist of:

a. ALU interface multiplexers (Paragraph 5.6.1)
b. temporary storage register input multiplexers (Paragraph 5.6.2)
c. external interface multiplexers (Paragraph 5.6.3)

5.2 GENERAL STORAGE REGISTERS

This group of registers includes the program counter (PC), three stack pointer registers (SP), and two sets of gen-
eral registers (RO through R5) (Figure 5-2).

5.2.1 Program Counter (PC)

The PC provides the address of the next instruction to be fetched. For some address modes, instructions that
transfer data can consist of more than one word. In these cases, the PC points to each word of the instruction in
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the order that the words are needed. When the PC is used as an address source, the contents of the PC are gated
to the virtual address lines by the bus address multiplexer (BAMX). The PC can be updated while it is being used
as an address source. To accomplish this, the PC is implemented by a buffered pair of registers, so that the PCA
can be loaded with a new value, while the PCB maintains the old value; the PCB can then be loaded from the
PCA when the old value is no longer needed.

The processor can transfer data to the PC from any source that can supply data to the other general registers, and
can transfer data from the PC to the same destinations that can be loaded from the other general registers. Spe-

, cifically, all data loaded into a general register must come through the ALU, which also supplies the inputs to the
PCA. The only exception to this rule is for right shifts and byte swaps. If the processor attempts to right-shift
the contents of the PC, the PCA is loaded from the ALU outputs, not the shifter (SHFR) outputs, so the data in
the PC is unchanged.

During the interrupt and trap service sequences, when new PC and PS values are read from locations specified by
a vector address, the old PC and PS are temporarily stored in the PCB and PCA (during internal machine cycles).
This is the only time that any data, other than the contents of general register 7, is stored in the PCB. However,
the PCA is often loaded in parallel with the general registers so that the PCB can be loaded if the specific register
used is number 7.

5.2.2 Stack Pointers (SP)

The KB11-A has three stack pointer (SP) registers. Each SP is used as the hardware stack pointer during one of
the processor operating modes. The kernel, supervisor, or user mode is selected by two bits in the processor
status (PS) register. All the SP registers are also addressed as general register 6. The selection of a particular SP
register is performed by the general register control logic (Paragraph 5.8.3), depending on the current or previous
processor state. The previous state, which is used during certain cycles of MTPI, MTPD, MFPI, and MFPD (move
to/from previous instruction/data space) instructions, is determined from bits 13 and 12 of the PS, through logic
in the general register control.

The SP registers are implemented in the two general register storage elements. These storage elements are the
general source (GS) registers and the general destination (GD) registers. The two sets of storage elements contain
duplicate copies of all the general registers except the PC. The use of the duplicate copies, and the specific ad-
dresses of the different SP registers within the storage elements, are described in the following paragraph.

5.2.3 General Register Sets

In all instructions that transfer data, each address reference specifies one of eight general registers. The specific
register (of the 16 in the KB11-A processor) used for each reference depends both on the value of the 3-bit regis-
ter specification and on the processor state, as represented by the contents of the processor status (PS) word.

Two of the eight general registers that can be specified in the instruction code are also used by the KB11-A as
special purpose registers, If the register specification has a value of 7, it specifies the program counter (PC) regis-
ter. This always refers to the hardware PC register described in Paragraph 5.2.1. If the specification has the value
6, it specifies the hardware stack pointer (SP) register. One of three hardware registers, within the general regis-
ter data storage elements, is selected depending on the processor mode (Paragraph 5.2.2). If the register specifi-
cation has the value 0 through 5, one of two registers is selected, depending on the register set selection bit (bit
11 in the PS word). Figure 5-2 illustrates the general register selection in the KB11-A processor.
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Figure 5-2 General Register Storage in GS and GD Storage Elements

Each of the 16 general registers is duplicated. The duplication allows the processor to access more than one regis-
ter at a time. Each general register, with the exception of register 7, is implemented by two copies in the two
general register storage elements. The general source (GS) registers include 16 registers allocated as shown in
Figure 5-2. The general destination (GD) registers contain 16 registers used in an identical manner. When data
must be written into a general register, it is written into both copies to ensure that all attempts to read the data
will read the same value. However, by specifying different register addresses to the GS and GD storage elements,
it is possible to read the contents of a different register from each. This feature is used primarily in reading the
contents of the two registers specified by double operand instructions.

Whenever the general registers, as a group, serve as a data source, the PC (register 7) can be selected as one of the

general registers. This is accomplished by selecting the PCB input to the SHFR, and allowing the source or desti-
nation multiplexer to select the SHFR input, if register 7 is selected, and the GS or GD input if any other register
is selected.

5.3 TEMPORARY STORAGE REGISTERS

Temporary storage registers include the source register, the destination register, and the bus register. The source
and destination registers are used primarily with the general register sets. The bus register is used primarily to
communicate with external data handlers.
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5.3.1 Source Register (SR)

The source register (SR) performs two major functions. It is the output buffer for all the general registers when
addressed as the source register in an instruction, and it provides temporary storage during the source data-fetch
operations.

All output from the GS registers must be transferred through the SR. When the PC is selected as a source register,
the data from the PCB is routed through the SHFR to the SR. From the SR, data can be routed anywhere in the
processor through the ALU inputs, or the contents of the SR can be used as an address for external data transfers
through the BAMX. The SR is also used as a temporary storage register during transfers of data within the pro-
cessor; e.g., when the old PC and PS are being stacked during an interrupt or trap service sequence, the SR holds
the vector address. )

The SR is used as a data storage element for intermediate results during instruction execution. The register and
operand group instructions, such as multiply, divide, and the arithmetic shifts, use the SR to hold both operands
and results.

5.3.2 Destination Register (DR)

In addition to performing two functions similar to the major functions of the SR, the destination register (DR)
also operates as a data manipulation element; specifically, the DR is used as a shift register during register and
operand instructions such as ASH, ASHC, MUL, and DIV.

All output from the GD registers (and from the PC, when it is selected as a destination register) must be through
the DR. Data from the DR can be routed anywhere in the processor through the arithmetic and logic unit (ALU),
or used as an address in external data transfers through the BAMX. To transfer the contents of either the SR or
the DR to an external data storage location, the data must first be transferred from the SR or DR through the
ALU to the BR, and then from the BR to the Fastbus or the Unibus.

The DR differs from the SR in its ability to act as a 16-bit, left or right shift register. This is shown in Figure 5-1
by the values of the DRK microprogram field. The DR is used as a control register and to accumulate the less-
significant part of the result during register and operand instructions such as multiply, divide, or the arithmetic
shifts. The DR is also the source for data to be loaded into the shift counter (SC) register.

5.3.3 Bus Register (BR and BRA)

The bus register is the data interface between the KB11-A processor and all external devices. All data entering
the processor data paths, and almost all data transmitted from the processor, is transferred through the BR. The
BR provides many of the inputs to the ALU and is the source of data input to all the special processor control
registers.

Because of the wide utilization of the BR outputs, the BR is duplicated to reduce the electrical loading on the
register outputs. The second copy of the BR is called BRA. In addition, two registers (IR and AFIR), which
share the same inputs as the BR (but are clocked separately), serve to hold instructions and provide inputs to the
instruction decoding circuits.

Data inputs to the processor enter the processor on one of three data buses:

a. The Unibus, which connects the processor to a variety of Unibus devices, including memories, mass
storage devices, and input/output peripherals.

b. The Fastbus, which connects the processor to the high-speed, semiconductor memories.

¢.  The internal bus, which connects the processor to the FP11 Floating-Point Processor, the KT11-C
Memory Management Unit, and some of the special purpose registers.
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Any of these buses can be selected as the input to the BR by the bus register’multiplexer (BRMX). The bus
selected is dependent only on the physical address used in the external data transfer.

The BR can also be loaded from the processor data paths. In data transfers from the processor to an external de-
vice, or to any of the processor control registers, the data is loaded into the BR from the SHFR after passing
through the ALU. The BR is used as a temporary register in the same way as the SR or DR during the execution
of instructions. In particular, the BR accumulates the more-significant half of the result during multiply and
arithmetic shift instructions. ’

The BR can provide outputs to any of the devices on any of the three data buses. Devices on the Unibus use
bidirectional data lines. There are separate data lines on the Fastbus for each direction of transfer. The internal
bus, which is used only for transfers into the BR, is paralleled by data lines for transfers out of the BR.

5.4 SPECIAL PURPOSE REGISTERS

The data section includes a number of special purpose registers that provide control information for use by the
control section, or provide communication between the console and the processor. The majority of these regis-
ters are loaded from, or in conjunction with, the bus register (BR), and can be read into the BR via the internal
bus. These registers include the instruction register, the shift counter, the processor status register, the pro-
grammed interrupt request register, the stack limit register, and the microprogram break register.

5.4.1 Instruction Register (IR)

When an instruction is fetched from an external data storage location, the data word enters the processor through
the bus register multiplexer (BRMX), and is loaded into the BR. To retain the instruction word for decoding
during the execution of the instruction, while releasing the BR for other data transfers that may be required dur-
ing the execution of the instruction, the outputs of the BRMX are simultaneously loaded into the instruction reg-
ister (IR). The IR is clocked only during data transfers that fetch instructions. The BR is clocked during every
external data transfer that brings data into the processor.

To reduce the electrical loading on the outputs of each register, the IR is duplicated. The second copy of the IR
is used only by the fork A logic, which has particularly stringent timing requirements, and is therefore called the
A fork instruction register (AFIR). The primary instruction register (IR) is used with decoding circuits which
operate the subsidiary ROMs, the B and C forks, and a variety of instruction class selectors. All the instruction
decoding logic is shown on the control section block diagram, Figure 5-3, and is described in Paragraph 5.7.

5.4.2 Shift Counter (SC)

The shift counter (SC) is a register that performs a data manipulation function. However, the data loaded into
the SC is used only for processor control information, and can not be transferred out of the SC.

The SC function is to count towards 0. The direction of counting depends upon the current sign of the SC con-
tents. The control data loaded into the SC is considered a repetition count, which indicates the number of cycles
required to execute a complex data manipulation, such as an arithmetic shift or a multiplication. The only indi-
cation that the processor receives of the contents of the SC is an indication that the SC does, or does not, contain
0; the counting function is completely defined once the initial count has been loaded.

5.4.3 Processor Status Register (PS)

The processor status (PS) register contains a number of individual bits. Some of these bits control the operation
of the processor, while others indicate the value of the result of the last data manipulation operation.



In addition to accepting inputs from the BR (Figure 5-1) the PS receives inputs from the condition-code genera-
tion logic. In certain circumstances (the current mode field replaces the previous mode field), some bits of the
PS also receive inputs from other bits of the PS. The outputs from the PS during data transfers can be directed
to the processor data paths through the BR (by selecting the PS inputs to the internal bus (IBS) and the IBS in-
puts to the BRMX), or directed to the Unibus through the P_S inputs to the Unibus A data multiplexer (DMX).
The IBS path is used only for data transfers that implicitly gelect the PS, such as the stacking operations during
interrupt and trap service sequences. When the PS is addressed specifically, the data is transferred on the Unibus,
even if the transfer is to the processor data paths (through the BR).

The specific bit utilization in the PS is detailed in Table 5-1. See Chapter 7 for a detailed description of the con-
trol functions performed by the PS, and the loading and reading control logic that supports the register.

Table 5-1
Processor Status Word Bit Assignments
Bit Name ’ Utilization
15-14 Current Mode Specifies the current processor mode as follows:

a. When PS (15:14) = 00, the processor is in kernel mode;
all operations are legal.

b. When PS (15:14) = 01, the processor is in supervisor
mode; HALT, RESET, and SPL instructions are illegal,
and the SUPER address space is used.

c. When PS (15:14) = 11, the processor is in user mode;
HALT, RESET, and SPL instructions are illegal and
the USER address space is used.

13—-12 Previous Mode Specifies the processor mode prior to the last trap, interrupt,
or loading of the PS; the values are the same as for the current
mode.

11 Register Set Specifies which general register set is used; if PS11=0, register

set O is selected; if PS11=1, register set 1 is used.

10-08 Unused Unused

07-05 Priority Set the processor priority; this priority determines which levels
of programmed and external device interrupt requests are
honored.

04 Trace When PS04=1, the processor traps.the trace trap vector address;
after each instruction fetch; this facility is used for debugging
programs.

03 N This bit is set whenever the result of the last data manipulation

is negative.

02 Z This bit is set whenever the result of the last data manipulation
is 0.
01 A" This bit is set whenever the result of the last data manipulation

is incorrect because of an arithmetic overflow.

00 C This bit is set whenever a carry (generally out of the most-
significant bit) occurs during a data manipulation,




5.4.4 Programmed Interrupt Request Register (PIRQ)

The programmed interrupt request register (PIRQ) allows a program to schedule the execution of various subpro-
grams according to a priority scheme, at the same time allowing various levels of hardware interrupt priority to
interact with the software priority levels. The register stores interrupt requests set by transferring request data
to the PIRQ, and provides information about the requests through encoded data transferred from the PIRQ.

Data is transferred to the PIRQ through the BR whenever the processor recognizes that the physical address is
the address assigned to the PIRQ (address 777772). The transfer is entirely internal to the KB11-A processor.
The contents of the PIRQ are then output into the priority arbitration logic of the processor, which uses the in-
formation from the PIRQ with information from the Unibus and the PS priority level to determine when requests
should be honored.

The data in the PIRQ can be transferred to other devices or to other registers in the processor by generating the
physical address of the PIRQ during an external data transfer. Because the only outputs from the PIRQ are to
the DMX (Unibus A data multiplexer), all transfers which read the PIRQ must be Unibus A data transfers.

5.4.5 Stack Limit Register (SL) .

The KB11-A processor performs hardware stack operations, as described in Chapter 4. Because the number of
locations occupied by a stack is unpredictable, some form of protection against the stack expanding into loca-
tions containing other information must be provided. The basic form of protection is the address relocation pro-
vided by the KT11-C Memory Management Unit; however, if the processor is operating in kernel mode with the
address relocation inhibited, the processor provides for stack overflow detection through the use of the stack
limit register (SL). ’

The SL is an 8-bit register that is loaded from the eight most-significant bits of the BR whenever the SL is
selected by the physical address generated in an external data transfer. This requires the bus address 7777 754
during a byte transfer, or the address 7777744 during a word transfer. The data is transferred directly from the
BR to the SL; no bus operations are required. To read the contents of the SL, however, the SL must be selected
by the DMX and the data transferred from the Unibus to the BR. This requires a Unibus data transfer operation.
Although the SL and the PB registers share a common DMX input, each register uses a different set of eight data
lines, and only one set is selected at a time. Therefore, when the SL is transmitted on the eight most-significant
data lines, all Os are transmitted on the eight least-significant data lines.

5.4.6 Microprogram Break Register (PB)

The microprogram break register (PB) is intended for use as a maintenance tool. When the processor is being
operated under the control of the maintenance card, the processor can be halted during any specific
microprogram state by setting the address of that state in the PB and setting the switches on the card to the
proper positions. During normal operation of the processor, any value can be loaded into the PB without affect
on the operation of the processor. The specific procedures are detailed in Chapter 4 of the PDP-11 /45 System
Maintenance Manual,

The PB is loaded directly from the BR whenever the PB address is generated during an external data transfer.
The PB is an 8-bit register that is loaded from the eight least-significant bits of the BR. When the PB is read,
the data must be transferred through the DMX to the BR by a Unibus A data transfer operation. Refer to
Paragraph 5.4.5 for a description of how the DMX inputs are shared by the SL and the PB. The PB is selected
by physical address 777770.
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5.4.7 Console Switches (SW) and Light Register (LR)

The light register (LR) and the console switches (SW) are not, strictly speaking, data storage elements, but arc
included in this paragraph because they act as a data sink and a data source, respectively.

The console switches are a form of input to the processor. When an external data transfer with the physical ad-
dress 777570 attempts to transfer data into the processor, the value set in the SW is transferred to the BR on the
internal bus. The LR is a form of output from the processor. Any attempt to output to the same physical ad-
dress transfers the contents of the BR to the LR, which can be displayed in the console lights. There are no con-
nections between the LR and the SW, so data stored in onc can not be retrieved from the other. Although both
input and output to the physical address is successful, there is no correspondence between the values output and
the subsequent input data.

5.5 DATA MANIPULATION

The major data manipulation elements in the KB11-A processor are the arithmetic and logic unit, with the ac-
companying constant multiplexers, and the shifter. In addition, two registérs perform specific data manipulation
operations.

5.5.1 Arithmetic and Logic Unit (ALU)

The primary data processing element in the KB11-A (in fact, the only element that can combine two operands

to form a result) is the arithmetic and logic unit (ALU). The ALU can perform a variety of arithmetic operations
on two variables, such as addition or subtraction, and can perform a variety of logical operations on one or two
variables, such as complementing or ANDing. The specific operation performed at any time is selected by the
processor control on the basis of the microprogram word and the current instruction. The manipulated operands
are selected by two multiplexers, one for each of the ALU inputs. The operands can be the contents of the SR,
the DR, the BR, the PCB, or one of a variety of numbers generated by the constant multiplexers.

The output of the ALU passes through the shifter, and can then be routed to any of the general registers, or to
the SR, the DR, or the BR (and the IR, although this is not used). All of these destinations for manipulated
data are internal to the processor; when data is transferred out of the processor, it must go through the BRA.
Note that when the ALU outputs are routed to the program counter (PC), the signal paths do not pass through
the shifter; this means that when certain shift or byte-swap operations are attempted with register 7 as the desti-
nation, the data that enters the PCA is unchanged. For example, an ASR PC instruction is executed as a TST PC
instruction.

5.5.2 Shifter (SHFR)

In general, the data operand formed by the ALU is routed through the shifter (SHFR) to its ultimate destination.
The SHFR can perform right-shift or byte-swap operations on the data, or substitute the contents of the PC for
the ALU outputs. In many cases, where an instruction is performed for an odd-byte destination operand, the
data manipulation required by the instruction is completed in the ALU and the transfer of the result to the odd-
byte data lines is performed in the SHFR, all during one machine cycle.

In addition to its data manipulation (shifting and byte swapping) activity, the SHFR is used as a routing element.
When a general register is transferred to the SR or DR, if that register is register 7 (the PC), the PCB is routed
through the SHFR to the SRMX and DRMX.



5.5.3 Constant Multiplexers (KOMX, K1MX)

The constant multiplexers (KOMX, K1MX) are primarily routing elements, but they can perform certain limited
data manipulation operations. The source and destination constants which can be selected by the KOMX are
numbers generated by the processor on the basis of the instruction type. These numbers are used to add or sub-
tract from addresses during the data fetch sequences. The offsets generated by the K1MX are formed from the
contents of the BR by shifting and sign-extending the least-significant bits of the data word.

5.5.4 Destination Register (DR)

The destination register (DR) is primarily a temporary storage register (Paragraph 5.3.2); however, it is also used
to manipulate the less-significant half of a 2-word operand by performing shifts on the operand. A word of data
that is stored in the register can be shifted one bit to the left or right. The bit that is shifted into the register to
fill the vacated bit position is generated by special logic in the processor, based on the data in the more-significant

word being manipulated and on the instruction type. .

5.5.5 Shift Counter (SC)

The shift counter (SC) performs incrementing and decrementing operations on data loaded into it during the exe-
cution of certain instructions. This register is primarily a processor loop counter register; its data manipulation
capability is a function of its utilization and can not be used for data operands because the SC can not be read.

5.6 DATA ROUTING ELEMENTS

When the processor performs an operation on data operands, the operation is defined by the selection of the
data operands, the storing of the result, and the manipulation of the operands. While the last function is per-
formed by the data manipulation elements, the first two functions are performed by the data routing elements.

Data routing is performed in two ways. First, the selection of inputs to storage and manipulation elements is per-
formed by a variety of multiplexers. Second, the loading of data storage elements is controlled to select which
elements are loaded at any time. Therefore, all operand selection is performed by multiplexers, and all result
storage is performed by generating load signals only for the desired storage elements.

This paragraph describes the multiplexers, which are the data routing elements in the KB11-A processor. The
loading of data storage elements is described in Paragraphs 5.2 through 5.4 The multiplexers are organized in the
following three groups:

a. ALU interface multiplexers (Paragraph 5.6.1)
b. temporary register input multiplexers (Paragraph 5.6.2)
c.  external interface multiplexers (Paragraph 5.6.3)

5.6.1 ALU Interface Multiplexers

The ALU has two sets of inputs and one set of outputs. Each input is connected to a number of data storage (or
manipulation) elements by a multiplexer, and the output is passed through a data manipulation element that acts
as a multiplexer. One of the input multiplexers can select inputs from two other multiplexers. Table 5-2 lists the
inputs and outputs for each of the five multiplexing elements that control the flow of data through the ALU.

5.6.2 Temporary Storage Register Input Multiplexers

Each of the three temporary storage registers (SR, DR, and BR) receives inputs through a multiplexer which
selects one of two or four inputs. Table 5-3 lists the inputs and outputs for each multiplexer.
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Table 5-2

ALU Interface Multiplexers

Multiplexer Output To Input From Type of Input
AMX A input of ALU source register variable operand
destination register variable operand
bus register variable operand
program counter variable operand
BMX B input of ALU source register ' variable operand

KOMX BMX

K1MX BMX

bus register
KOMX
Ki1MX

1
2
source constant

trap vector
start vector

destination constant

variable operand
constants
constants and sign-extended operands

fixed constant
fixed constant
generated constant
generated constant

generated constant
fixed constant

BR (SOB & MARK) shifted and sign-extended operand
BR (branch) shifted and sign-extended operand
SHFR general registers, ALU variable operand (can swap bytes or perform
SR, DR, BR, Disp. right shift)
PC variable operand
Table 5-3
Temporary Storage Register Input Multiplexers
Multiplexer Output To Input From
SRMX source register general source (GS) registers
shifter (SHFR)
DRMX destination register general destination (GD) registers
shifter (SHFR)
BRMX bus register shifter (SHFR)
Unibus
Fastbus (SEMI)
internal bus (IBS)

5.6.3 External Interface Multiplexers

The KB11-A Central Processor Unit external interface is divided into three parts:

a. the explicitly addressed interface

b. the implicitly addressed in
c. the display interface

terface

The explicitly addressed interface is used in all data transfers where the address is specified by the processor. The

address is supplied to the interface through the bus address multiplexer (BAMX), from one of three sources.

These sources are the PC and the two temporary registers, SR and DR, that are used as buffers for the general
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registers. In addition to these inputs, the BAMX can select an input from the exponent arithmetic and logic unit
(EALU) of the FP11. This input is used only to allow this data to be displayed in the console lights during speci-
fic machine states when executing floating-point instructions. Data is supplied to the interface through the data

multiplexer (DMX) for Unibus transfers, and directly from the BR for Fastbus transfers or internal bus transfers.
On data transfers into the processor, one of the three buses is selected by the BRMX.

Implicitly addressed transfers (e.g., to the FP11) do not require"sending an address. The data is transmitted by
sending a load signal to the appropriate device, or to a register in the processor if the transfer is into the processor.
Data is transferred on the internal bus. The internal bus is, therefore, a form of data routing element; selection is
accomplished by gating specific data onto the bus from a device, and by loading only specific registers. The dis-
play interface selects the data that is to be displayed in the console lights. There are two sets of lights which dis-
play program-dependent data; the DATA lights and the ADDRESS lights. The DATA lights display one of four
data words selected by the display multiplexer; the ADDRESS lights display addresses based on the outputs of
the BAMX. Both displays are controlled by switches on the console; note that the ADDRESS display is also af-
fected by the KT11-C option, if it is implemented.

5.7 CONTROL SECTION

The control section of the KB11-A processor determines the sequence of operations performed by the processor,
and controls the interaction of the processor with other devices in the PDP-11 System. Control of the processor
is based on the signals generated by the microprogram read-only memory (ROM), while the control of processor-
system interaction is performed primarily by asynchronous circuits on three control modules.

The control elements shown on the control section block diagram, Figure 5-3, are divided into three groups:

a.  the microprogram ROM, together with the ROM address generation logic and the ROM output buffer
logic

b.  the external interface, which comprises the UBC, TMC, and TIG modules shown at the bottom of the
drawing

c.  the combinational logic circuits that interact with the microprogram outputs and with data from the
data paths section of the processor to generate some of the processor control signals

Each of these three groups is described in the following paragraphs.

5.7.1 ROM Microprogram Control

The microprogram ROM, shown in Figure 5-3, contains 256 stored processor control words. For each processor
machine cycle, one of these storéd words is output to the data paths section and to the other processor control
circuits. The ROM word is divided into fields, and each field controls a different (but always the same for a given
field) part of the processor. A review of the concept of microprogramming is provided in Paragraph 4.1. In
Figure 5-3, each control field is listed by a mnemonic name and by bits of the microprogram word occupied by
the control field. The control selection that is made, or the action that takes place for each value that can be
stored in the field, is listed under the field name. Where possible, the field name and description are placed next
to the logical element controlled by that field. For example, Figure 5-4 illustrates the B multiplexer as shown on
the block diagram, with the BMX control field description to its left.

The microprogram ROM outputs that control other parts of the processor must be stored in a buffer register, so
that the next microprogram word can be selected while the current word is being used. Therefore, a ROM buffer
register (RBR) is provided for these outputs. The three output fields that are used to select the next micropro-
gram word (FEN, BEF, and ADR) are not buffered because they are used immediately and the resulting address
is buffered.

5-12



ozol-u

werger( yoo[g ‘UoI10eg [0I3U0)) JOSSA0I] [BIIU) V-11gY  ¢£-S 2Indig

SNEINN 8
SNELSYS I-1LLN
NO¥3

(98 ‘¥48) SN8INN B

WOY3/0L

SIUNDIS

NO¥4 /01

U

S$37NCOW 1TV 0L -——

(911)

(OWL)
(YO1VH1IBEY ALI¥OINd)

HOLVH¥3N3ID
ONTWIL

TOHLINOD
SNO3NVTIIISIN
QNV SdvHl

=

t

TOYLINOT
3IQSNOD
QGNY SNINN

(o8n)

i

v oL

SY3LS1939
TVYINID -]
oL

{ovyo)

TTOY.LNOD [
¥y3ILS1938

VY3NIO

AHH 310SNOD WOY4

(Qovy) <00:€0> WOy

(QoVvH) <bO:L0>WOH

JU UL DL

(QOVY)  <80:11>WOY
(@ovd)  <24:Gk> NOY
(20vy) <9k6l> WOoY
(02VH) <02:£2> WO
258 5 (00Vy) <b2:L2> WOY
OO
E tL (20vy)  <82:1¢> WOY
198 |
(8oVY) <2E:5E> WoY
B (80VY) <9E:6E> WOM
asse
ave 505 (80VY) <OV:Ev> WOH
ma AU (80VY) <bbilb>WOY
(vovy) <8Y:1G> WOY
100 b (vovy) <Ze:S6> WoY
(vovy) <95'65> WOH
2
‘wovy) (vovy) <09:£9>WOY
usy WO

002

(8 %404 TYNOILIONOD =$S¥10/1d »{S1=438)
9 3¥0J TYNOLLIGNOD=(pl=438 )
S3HONVH8 3TOSNOD=(bl=338)
8 Y¥0J TVYNOILIQNOD %(G=438)

+

¥IJV WOHS

i

f

(ON3 SN8) ON38

3903 TMONMOY
3ONIUIAIY HOVIS
300W 13NN3Y 4T LINT
SOYd ¥VY3ID

3903 TMONNOVY  TIOSNOD
viva ddd av3y

19343¥ ON

log-2¢cl 0D

3SnNvd ONOT Sna

3snvd ON
[eg-0b] (11)

¥M 93Y JA%ONAS dd INAS dd +dI¥| il
()SIus (yo¥a| ot
ssv1/0-| SSY10/Pd— St
— 4 — u
(31— +3S)}*(0)dd (F1+35)*(0)ad[  €b
oua - (9174 TIOSNOD) INOD| 2t
(11080 0#£3§ i
(ONAS dd %03Y 2d)— ONAS dd+dI¥| Ol
[(3NOD+ 1) - »buE)~ — L
3401538 Sd (0) p1u8 B
11010 AI0- |4(NOLLVNILS3G 3148 0J0) 80~ S
N 3002 NOILIGNOD ans_AIO0— v
N38 0>98 0% 0S €
(MLNT +J8Md)- Z 3000 NOILIGNOD H
V#£HS 1°'s'S 300K NOLLVNILS3Q V
N33| wav OV f— — <]
HONVYB [oz+] vuavn [ow+] suavn 1] 438 —
(vvy9) (HO¥T)
WOy
WOy xdviaisans
ANYIQiSENS 3009
v NOTLIGNOD
(H'3'30v4) (808 (224T) (HOMT)
IOULNOD V0¥
v %40z 8 %y04 2 %03 Sty

1

1

43081 ‘ava9)

YOLVH3INID
3000 NOILIONOD

SHLVd V1VQ
SNOIYVA WONd

2d0s8

{ddd A8 QITIOHYINOD) 24
TivQ 208S

I1VG T3NEIA

Tivg 12US

Iwa

o-nmEnO~

9
S
¥
€
2
1

o

108 [¥2-92] (11) Os8

(1dvls sn8) 1sng
3g0Y¥LS Dyl

1SnNg TUYNOIL1ONCY
(13A37 ALr¥oiNd 135) 148
30OW 13N¥3M AT INOD L3S
g3asn LON

NLLY dd WN3

10334V ON

or-am

o-nmTnON

asa [£2-62) (11) OSW

ONILYS SS3¥A0V Ol
[00-20] ¥av

v M¥04 31GVN3 2§ N33
8 Y404 I18YN3 €1 N34
O MHO4 379YN3 I N34

.

NOILIONOD
o1

[21-94] N33

ANYVO (T —=D '31I344VYNN A B*N'Z 20100
0=84HS ¥Z —Z *G3LIT3IVNA A B *I'N 90793

SIXWY A GIHIHS + PIOA— A
SIXNY—D'H3HS 20V N8 Z $0199
0—A 83 'IHS 0V NBZ $G10D
Q378YN3 41 ddd WO¥4 QY0
(d030) NI WONJ ¥10/13§
IN3ON3d30 NOILONHISNI
3ONVHD ON

O-umen On

[2s-¥8] (1) 00

5-13



BMX (T1) 24-20 ﬁ

O KOMX . BMX

1 KIMX (DAPB,C,D)

2 SR

3 BR K K B s
(o] 1 R R
M M
X X

1-0964

Figure 5-4 Control Field Description Example

Immediately after the beginning of a machine cycle, when a new microprogram word is available, the ROM-address
generation circuits begin the calculation of the next ROM ?ddress to be selected. This corresponds to selecting
the next machine state. The generated address is assembleql by the address gating logic and loaded into the ROM
address register (RAR). There are three copies of the RARi to accommodate the output loading required for 16
ROM elements, and to transmit the ROM address to the K'I‘l 1-C paging unit (when it is implemented).

is the address (ADR) field of the current microprogram word. The ADR is ORed with the outputs of the branch
logic, which is controlled by the BEF field of the microprogram word. The branch control logic selects a set of
condition inputs from signals received from the processor data paths, the condition codes, and from the processor
interface modules (specifically, the TMC module). Depending on the state of the selected inputs, the branch con-
trol generates one or two signals that are used to modify th%e ADR.

The address gating logic assembles the address from five set of inputs. The basic input, which is always present,

The three other inputs to the address gating circuits are froin the fork logic. The three forks are similar in imple-
mentation and purpose. Each fork uses combinational logw to decode the instruction type and a variety of pro-
cessor conditions, and generates one of a large number of addresses that is combined with the ADR input by
masking. Each fork can be enabled by one bit in the fork-eﬁnable (FEN) microprogram field; normally all forks
are disabled. No more than one fork is ever enabled at a tirjne.
The fork A logic, used to select the machine state to follow an instruction fetch, requires a separate instruction
register (AFIR) because this fork must operate rapidly and }therefore puts a heavy load on the IR outputs. The B
and C forks decode inputs from the primary IR and use the" outputs of a subsidiary ROM, which decodes some
classes of instructions. These forks are used after a destmamon operand fetch and a source operand fetch,
respectively. ‘1

1
To summarize the operation of the microprogram ROM coﬁtrol logic, during each machine cycle, an address is
assembled from any enabled fork combined with the address field of the microprogram word and any enabled
branches. This address is loaded into the ROM address regiéter to select a new microprogram word. At the be-
ginning of the next machine cycle, the new microprogram wOrd is loaded into the ROM buffer register and the
sequence is continued. :
5.7.2 External Interface Control ‘1
The interaction between the KB11-A processor and the othér parts of the PDP-11/45 System is controlled by
three modules in the processor. These modules include the gasynchronous circuits that perform timing adjust-
ments, the circuits that generate and receive interlocking bu!s control signals, and the basic processor timing cir-
cuits. The functions of each module are discussed in one of the following paragraphs.
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5.7.2.1 Unibus and Console Control (UBC) Module — The Unibus and console control (UBC) module includes
the circuits that control transfers with external devices (and some processor special registers), and the circuits
that allow the processor to be controlled by the console. The data transfer control circuits perform the necessary
operations to gain control of the required data buses, select the address that is to participate in the transfer, and
complete the transfer. The console control circuits provide information to the branch control circuits so that the
microprogram control can be used to execute various console operations.

5.7.2.2 Traps and Miscellaneous Control (TMC) Module — This module is used to recognize a variety of asyn-
chronous conditions and change the sequence of processor operations in response to these conditions. The TMC
module detects various abnormal conditions within the processor, such as power failure, odd address on word
transfers, stack overflow, or reserved instructions. When any of these conditions occur, the processor enters a
trap service sequence of microprogram states, and the TMC module generates a trap vector that is used to transfer
system control to a specific trap service program. The TMC module can also handle a variety of trap-type instruc-
tions, which are legal in programs that use them in a defined manner and that have set up the trap vectors for
those instructions.

The TMC module also performs priority arbitration for Unibus A, which is controlled by the KB11-A processor.
The priority arbitration determines which device shall be bus master, based on the priority level of the bus or
non-processor request, and the priority level of the processor. The processor normally assumes the role of bus
master when no other device is requesting the bus; the processor must be bus master in order to perform any data
transfer on Unibus A. Fastbus transfers can be performed even though the processor is not Unibus A bus master.
One of the devices that can request bus mastership, but only to perform an interrupt operation, is the processor’s
programmed interrupt request (PIRQ) register.

5.7.2.3 The Timing Generator (TIG) Module — The timing generator (TIG) module controls all timing of opera-
tions within the processor. All register loading, all data path transfers, and all microprogram word selection is
controlled by timing signals from the TIG module which gate the control signals to the respective processor ele-
ments. The TIG module contains the processor clock, the time pulse generators that produce timing signals from
the basic clock output, and a variety of control circuits that can stop and restart the clock based on asynchronous
conditions detected by the UBC and TMC modules. The timing of the processor operations thus interacts with
the timing of data transfers in the PDP-11/45 System, and with the console control operations.

5.8 SPECIAL CONTROL LOGIC

There are three special control circuits in the processor which use combinational logic to increase the flexibility
of the processor control. Two of these circuits use subsidiary ROMs to define specific operations for individual
instructions, and the third performs the additional decoding necessary to control the general register sets. Each
of these circuits is described in one of the following paragraphs.

5.8.1 Arithmetic and Logic Unit (ALU) Control

The arithmetic and logic unit (ALU) used in the KB11-A processor can perform 16 different arithmetic operations
and 16 different logical operations. Only a subset of these operations are used in the KB11-A. The ALU control
circuit transforms the ALU microprogram field (which is compressed into three bits, and can only express eight
different operations) into the six control signals necessary to select the appropriate ALU operations. The ALU
control circuit can also substitute control signals derived from a subsidiary ROM (whose output is selected by the
individual instruction being executed) for the signals derived from the ALU field. This allows the same micropro-
gram word to be used for the execution machine state of a large number (32) of instructions.
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The subsidiary ROM is one of two used for a group of data manipulation instructions. When these instructions
are being executed, the subsidiary ROM control converts the instruction type to a 5-bit address that selects one
word in each of the subsidiary ROMs. This word contains the control signals that correspond to the value re-
quired for that instruction. Through the use of the control signals in the subsidiary ROM, any ALU function can
be performed.

NOTE
The SHFR operation is also affected when the output of the
ALU subsidiary ROM is used. See Chapter 7 of this manual
for details of the effects of the subsidiary ROM on the SHFR.

5.8.2 Condition Code Control

The KB11-A processor condition codes are used to store information about the results of each instruction, so that
this information can be used in following instructions. The conditions recorded in the condition-code bits differ
for each instruction type, and often for the part of the instruction being executed. In addition, the sources of
the information to be recorded in the condition codes can vary for different types of instructions.

The condition-code control circuit uses the CCL microprogram field and a subsidiary ROM to determine what
data shall cause each condition-code bit to be set or cleared. For most machine cycles, only the CCL field is re-
quired to determine what function the condition-code control logic performs. When the CCL field contains a
value that specifies that the operation is instruction-dependent, the outputs of the subsidiary ROM (which de-
pend on the current instruction, as described in Paragraph 5.8.1) determine the exact operation.

5.8.3 General Register Control

The KB11-A general registers include two register sets that are duplicated for extra speed in reading the registers.
The selection of registers within each implementation is controlled by the PAD microprogram field, and all input
in the registers is controlled by the PWE microprogram field.

Because the specific register to be selected can depend on the contents of the instruction register (IR), the con-
tents of the switch register (during a console operation), or directly on the PAD field, combinational logic is used
to combine all the different sources according to the requirements of the current machine state. The combina-
tional logic also determines, for conditional write operations, whether the register that is selected is in the general
register set or is register 7 (the program counter). In the latter case, no write operation is done within the general
register storage area.
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CHAPTER 6
MICROPROGRAM FLOW DIAGRAMS

This chapter describes and explains the microprogram flow diagrams that are included in the KB11-A print set.
These flow diagrams illustrate the operation of the KB11-A processor on a machine state level, each operation
shown on the flowchart corresponds to one processor time cycle, which, in turn, corresponds to one cycle of the
microprogram ROM. The information presented on the flowcharts for each microprogram cycle is described in
Paragraph 6.1.

6.1 HOW TO READ THE FLOWCHARTS
The succeeding paragraphs describe the flowcharts and the ROM map according to the following three categories:

a. the operations performed by each machine state

b. the microprogram words that are associated with the machine state (i.e., the addresses of the ROM
words containing information about the machine state)

c. the flow of control from each machine state to the possible successor states

The symbols used in the flowcharts can be divided in a similar manner. Each machine state is represented by a
box on a flowchart. The box contains information about the operations that take place during the machine time
cycle for the microprogram word represented by the box. The microprogram word is identified by a symbolic
tag and an octal address directly above the box. In many cases, several microprogram words are used for the same
microprogram state; the name and address of each word is shown above the box, and the contents of each word
are identical (all 64 bits of each word that represents the same state must be identical). During the time cycle for
each microprogram state, the KB11-A processor constructs the address of the next machine state; i.e., the proces-
sor determines the sequence of machine states. The sequence determination is represented on the flowcharts by
the lines of flow; these lines show the variations in machine state sequence that can be affected by branches and
forks.

6.1.1 Machine State Description

On the flowcharts, each machine state is represented by a rectangular box like the one shown in Figure 6-1. A
symbolic notation is used within the box to describe the major operations that occur during the machine state,
while other symbols outside the box are used to describe the machine state sequence and the correspondence of
machine states and microprogram words. This paragraph describes the notation used inside the box; the remain-
der of the flowchart information is described in the following paragraphs.

Each box includes a comment that describes the purpose of the machine state. The comment is at the top of the
box and is separated from the remaining information by a line across the width of the box. In Figure 6-1, the
comment reads SUCCESSFUL BRANCH, FIX PC, which indicates that this machine state updates the program
counter as the result of a decoded branch instruction with the branch conditions met.



BXX.00 (320)

BXX.01 (325)
8XX.02 (326)
BXX.03 (330)
BXX.04 (335)
BXX.05 (336)

SUCCESSFUL BRANCH, FIX PC

t; <BA<PCB>
<SHFR=—PCB+ BXX DISP>

t3 BEND & BRQ STROBE
t5 PCA=— PCB+BXX DISP,

tg PCB < PCA

217

11-0852

Figure 6-1 A Typical Machine State

The remainder of the symbols in the box describe data transfers, data manipulation, and timing operations. Data
transfers move information between data storage and data selection elements in the processor that are represented
by mnemonic names. For example, PCB is an acronym for program counter B, which is the name of a data stor-
age element that usually contains the address of the next instruction to be executed. In a similar manner, BA is
an acronym for the bus address multiplexer, which is a data selection element that selects one of four data items
for use as an address during the current machine state.

Data transfers are indicated by a left arrow (this is the replacement operator of the ISP notation described in the
PDP-11/45 Processor Handbook, DEC 1972). Data transfers to a data storage element update the contents of
the element. The symbols PCB « PCA indicate that the contents of the PCB are replaced by the contents of the
PCA. Transfers to a data selection element indicate that the element selects the contents of the data source, and
that the data is passed to other data elements. The symbols BA < PCB signify that the BA selects an input which
is provided from the PCB; the output of the BA is used as an address during data transfers with external devices.

Data manipulation operations change a unit of information or combine units of information. These operations
are represented by arithmetic and logical symbols that correspond to the operations performed by the arithmetic
and logic unit (ALU), the shifter (SHFR), and various counting and shifting registers. For example, the symbols
PCB + BXX DISP. indicate the binary sum of two data words, one the contents of the PCB, the other formed by a
sign-extension operation on the displacement that is part of the branch instruction word. The source data for a
data transfer operation can be the information resulting from a series of data operations, as in the line PCA «
PCB + BXX DISP..

In several machine states on the flowcharts, the data manipulation operator that is shown is a dollar sign. This
indicates that the specific operation performed is instruction-dependent; a subsidiary ROM provides control sig-
nals to the ALU and SHFR from a word selected by an address that corresponds to the instruction. The dollar
sign is also used to indicate instruction-dependent condition-code load operations. A similar subsidiary ROM pro-
vides control signals that alter the sensing used for the condition codes.

In addition to operations on data, the processor must provide timing control for synchronization with external
events. Some timing operations are used to sense external conditions which are then decoded as inputs to the
machine state sequence control. The symbol BRQ STROBE indicates an operation of this type; the results of
this operation affect the machine state sequence through branches on the BRQ condition. Other timing opera-
tions start or stop asynchronous cycles within the processor; BUST (bus start) and BEND (bus end) control the
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external data transfer cycle, while BUS PAUSE and BUS LONG PAUSE control the processor clock that is used
during machine state execution. While these two cycles must be interlocked in a specific sequence, each cycle
operates asynchronously except at the occurrence of the timing operations that control the interlocking.

The machine state is the basic unit of time in processor operation because each machine state must be executed
completely;i.e., sequence changes can only affect the order of execution of machine states, not the time periods
within the state. However, the machine state is divided into five smaller intervals based on the processor clock.
These smaller intervals provide clock signals that indicate when data may be loaded into data storage elements,
and they are used in synchronization operations.

Each data transfer or manipulation operation, and each timing control operation, occurs at a particular time with-
in the machine state. These times are indicated by lower case “t”’s on the left side of the box. Only the time in-
tervals in which significant operations occur are shown, in order from top to bottom; each interval is identified
by a subscript number. In Figure 6-1, the timing operations BEND & BRQ STROBE occur in the third of five
time intervals, as indicated by the t, at the beginning of the same line in the box; the data transfer operation

PCB < PCA occurs on the clock cycle following the last of the five time intervals, as indicated by the t; on the
same line (t, corresponds to the t, of the next machine state unless the machine state sequence pauses for an ex-
ternal data transfer; in this case, the te operations are not delayed).

In principle, all operations performed by the processor affect the stored information. However, some operations
do not produce lasting effects; these operations are performed only to provide indications of the internal proces-
sor data during maintenance operations. In other words, these operations allow internal data to be displayed
when the processor is being manually clocked using a maintenance module. These operations are distinguished
by angle brackets to indicate that they do not affect any stored information. In Figure 6-1, the operations at t,
are for maintenance purposes only.

6.1.2 Machine State Information in the ROM Map

The symbolic representation used in the flowcharts does not indicate all the operations that occur during each
machine state, nor does it indicate the actual control signals generated to control the operations that are repre-
sented. A more detailed representation of the activity in each machine state is provided by the microprogram
ROM map, which is reproduced in drawing K-CS-M8103-0-1 in the engineering drawing set.

The microprogram ROM contains 256 control words of 64 bits each. The ROM map lists the values of every bit
in every word of the microprogram. The bits are grouped into control fields; each field controls the operation of
one part of the processor as shown on the data paths block diagram, drawing D-BD-KB11-A-02. The value of the
bits in each field is represented by an octal number.

Each microprogram word is represented by one line of numbers in the ROM map. Each word corresponds to a
unique box on the flowcharts; however, each box on the flowcharts may correspond to several words in the ROM
map. The correspondence is indicated in two ways: first, each microprogram word is assigned a symbolic name,
with the names of all the words corresponding to a particular machine state differing only in the last character;
second, the ROM address of each microprogram word is listed above the corresponding box on the flowcharts,
along with the symbolic name. The symbolic names are also shown on the ROM map at the left end of the line
representing the microprogram word.

The box illustrated in Figure 6-1 corresponds to six microprogram words. The symbolic name of the machine
state is BXX.0; the symbolic names of the corresponding microprogram words add a second digit after the period
that serves to differentiate among the actual ROM words. These names, ranging from BXX.00 to BXX.05, are
listed to the left of the sequence flow line above the box. The ROM address of each word is shown in parentheses
to the right of the flow line.
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Each microprogram word contains several fields that are used to calculate the address of the next microprogram
word. One of these fields contains a microprogram address. [This is not the address shown on the flowchart; it is
important to distinguish between the address of the microprogram word and the address in the word. The several
words corresponding to a specific machine state are located at different addresses, but they must all contain the
same address. The address contained in a microprogram word is shown by a number below the lower right corner
of the box, or the address can be found by reading the ROM map line for any of the microprogram words corre-
sponding to the machine state.

When the flowcharts and the ROM map are used to determine the sequence of processor operations, the flow-
charts provide a summary of the important operations and a visual representation of the sequence. After gaining
an overall picture from the flowcharts, examine the ROM map to learn the details of the control signals generated
during each machine state and the exact addresses of the microprogram words accessed.

6.1.3 Machine State Sequence Information

Most machine states specify a unique successor state through a microprogram address in the microprogram word.
However, the sequence of machine states can be varied between machine states; this allows a particular state, or
sequence of states, to be used for several procedures that follow different sequences after that state. For in-
stance, all instruction fetching is done by one sequence of machine states, followed by the sequence that is ap-
plicable for the instruction fetched.

There are two basic ways of determining the next machine state when the sequence is variable. When only a
small number (four or less) of successor states is required, a microprogram branch is performed. A branch modi-
fies the microprogram address contained in the microprogram word on the basis of a pair of sensed conditions, to
create the actual address of the next microprogram word. Figure 6-2 illustrates a branch of this kind. During the
BRK.0 machine state, the address 130 contained in the microprogram word is modified if the console flag
(CONF) is set. The modification affects bit 5 of the address to create the address 170.

When a large number of successor states is required, the address is calculated by combinational logic in the pro-
cessor and replaces a non-significant address contained in the microprogram word. This type of generalized se-
quence selection is called a fork, and is illustrated in Figure 6-3. While machine state FOP.3 is executed, the fork
C logic calculates an address based on the destination mode and instruction type. The current microprogram
word contains the microprogram address 377, which allows the fork address to take on any value. (See Chapter 7
for a description of the address calculation logic.) The forks are also called decision points; fork C is decision
point 1, and is sometimes represented by the tag DPT.01 in the flowcharts.

The operation of the fork logic and the branch logic is normally mutually exclusive. Sometimes, however, it is
necessary to conditionally enable the fork logic; in the example illustrated by Figure 6-4, an extra operation is
sometimes necessary to move an odd byte into the even byte position before selecting a machine state sequence
to operate on the data. The final selection is done by the fork B (DPT.02) logic. The fork B logic is condition-
ally enabled during the machine state preceding the D12.3 state; if the destination address is even (DRO is a 0),
the next microprogram state is selected from the address calculated by the fork B logic. However, if the address
is odd (DROis a 1), the fork B logic is disabled and the address contained in the previous machine state selects
microprogram word D12.30. In this word, the fork B logic is unconditionally enabled. The conditional enabling
of the fork logic therefore saves one machine state cycle time when the extra state is not needed. The address
contained in the machine state preceding D12.3 is 137; the condition that enables the fork also modifies this ad-
dress to 177, which allows the fork B logic to generate addresses ranging from 0 to 177.
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Figure 6-4 Conditional Enabling of Fork Logic

6.1.4 Sequence Symbols in the Flowcharts

The flowcharts illustrate the sequence of machine states with three types of symbols:

a. flow lines

b. connectors, including entry points and off-page connectors
c.  branch conditions

Each of these symbol types is described in one of the following paragraphs.



6.1.4.1 Flow Lines — Figure 6-5 illustrates the types of flow lines used in the KB11-A processor flowcharts.
The normal sequence of flow is vertically, from top to bottom, on a flowchart. The flow lines connect the
boxes that represent the machine states; a vertical line descends from each box to the successor box, as shown in
Figure 6-5(a).
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Figure 6-5 Types of Flow Lines Used in Flowcharts

When the sequence is variable, the flow must show branches or forks. Figures 6-5(b) and 6-5(c) illustrate branches.
In Figure 6-5(b), the flow follows either the vertical or the horizontal path, depending on the matching of condi-
tions specified as shown in Figure 6-6. In Figure 6-5(c), the flow follows one of the two horizontal paths, depend-
ing on conditions. Figure 6-5(d) illustrates the symbol for a fork; one of many paths is selected by uniquely
matching the conditions specified on that path. The horizontal line connecting all the possible paths may con-
tinue over several pages of the flowcharts, through the use of connectors as illustrated in Figures 6-7(c) and 6-7(g).

In some cases, several sequences combine to use the same machine states for common operations. When the se-
quences that combine are close together, on the same page, the combination is shown as flow lines like those in
Figure 6-5(¢). The differing sequences provide descending flow lines that join in a horizontal line from which the
common flow line descends. Another method of illustrating combining flows is shown in Figure 6-5(f).

When several flows all branch to a common set of variable sequences, a flow symbol like that shown in Figure
6-5(g) can be used to illustrate the combination and re-division of the sequences.

6.1.4.2 Connector Symbols — Two types of connector symbols are used in the KB11-A processor flowcharts.
Entry symbols are used to indicate that a particular sequence of machine states may be executed following other
machine states which are not connected to the sequence by flow lines. Figure 6-7(a) through 6-7(c) illustrate
entry symbols for entry points at the beginning of an illustrated sequence to a specific machine state in a



sequence, and to the horizontal line for a decision point or fork flow, respectively. The entry point symbol in
Figure 6-7(a) or 6-7(b) contains the name of the first succeeding machine state, or in Figure 6-7(c), the name of

the fork or decision point.

The second type of connector symbol is the off-page connector. This symbol
is used to terminate a connected sequence on a flowchart and to tell what
machine state is entered next. When a unique state follows the connector,
the symbol is used in the manner illustrated by Figure 6-7(d). When a branch
condition determines the next state, the connector symbol can be used in
this manner or as shown in Figure 6-7(e¢). When the next state is determined
by a fork, the symbol is used in the manner shown in Figure 6-7(f). If a fork
extends over several pages, the connection from each page to the next page
on which the fork appears is shown by a symbol like that in Figure 6-7(g).

An off-page connector contains two pieces of information: first, the connec-
tor lists the machine state or fork to which the sequence goes; second, the
connector indicates the page of the flowcharts on which the succeeding state
or sequence appears. In some cases, the off-page connector is accompanied
by a microprogram address in parentheses. This is the address of the micro-
program word for the next machine state.

6.1.4.3 Branch Condition Symbols — The sequence symbols discussed in the
preceding paragraphs illustrate the variations in flow, but do not indicate
what selects a specific sequence. This is done by listing the conditions for a
specific sequence in the flow line that leads to that sequence. ~
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Whenever possible, the condition that selects a sequence is shown by superimposing the condition on a vertical
flow line, as shown in Figure 6-6(a). This indicates that the condition must be met in order for the sequence to
follow that path. When a branch is shown by a horizontal line, the condition is listed directly above the horizon-
tal line, close to the branch point, as shown in Figure 6-6(b). In some cases, the branch-enable value correspond-
ing to the conditions at a branch point is listed to the left of the flow line, as shown in Figure 6-6(c); the number
in the branch-enable value is the contents of the branch-enable value of the microprogram word corresponding to
the machine state preceding the branch.

6.1.5 Locating a Machine State in the Flowcharts

Several tables are provided in this chapter to assist the reader in finding the paragraphs in the chapter that discuss
any machine state. Table 6-1 lists the machine states in the numerical order of the ROM word addresses; for each
machine state the table lists the mnemonic name of the state, the page of the flowcharts on which it is illustrated,
and the number of the paragraph that describes the state. Table 6-2 contains the same information, but it is or-
ganized differently; the machine states are listed in alphabetical order according to the mnemonic names.

Tables 64 through 6-7 provide information on the machine states entered when the fork logic is enabled. See
Paragraph 6.3 for a description of these tables and an explanation of their use.

6.2 FLOWCHART ORGANIZATION

The KB11-A processor flowcharts are divided into 14 drawings that illustrate portions of the flow. Where pos-
sible, a continuous sequence of machine states is shown on a single drawing. The succeeding paragraphs describe
the machine operations illustrated on each drawing. The description does not attempt to give detailed informa-
tion about each machine state shown on the drawing; this information can be derived directly from the flow-
charts and the ROM map (Paragraph 6.1).

6.2.1 Instruction Fetch

Drawing D-FD-KB11-A-03 (Flows 1) illustrates the instruction fetch sequence, the address calculation sequence
for five of the source modes, a special sequence for the MTPI and MTPD instructions, and the execution of the
branch type instructions.

6.2.1.1 The Fetch States — The basic instruction fetch sequence requires two machine states: FET.1 (fetch)
and IRD.O (IR decode). The FET.1 state completes a data transfer operation, begun during the last cycle of the
previous instruction, which moves the instruction word from an external storage location to the instruction regis-
ter (IR) and bus register (BR), and increments the program counter by 2. If the data transfer is not overlapped
(i.e., if the transfer was not begun before the end of the previous instruction), an additional state is required to
begin the data transfer.

The additional state, FET.0, also checks for asynchronous operations (such as bus requests) that must be per-
formed before beginning a new instruction, and branches to the BRK.0 (break) machine state if necessary. When
the instruction fetch is overlapped, the machine state that begins the data transfer must also perform the same
check.

6.2.1.2 Instruction Decoding — The second state in the basic instruction fetch sequence begins a new data trans-
fer that fetches the word following the instruction word. This data transfer is used for address modes 6 or 7, and
for instructions that do not require other data transfers. In all other cases, this data transfer operation is aborted
by a bus end (BEND) operation in the machine state following the IRD.0 state. During this machine state, the

processor also loads the source and destination registers (SR and DR) with the contents of the general registers
(continued on page 6-15)
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Table 6-1
Machine States According to ROM Addresses

ROM ROM

Mnemonic  Page Address Paragraph Mnemonic Page Address Paragraph
RSD,20 12 29 6,2,11,9 EXM,00 14 271 612,13, 4
pi2,g@ 3 7oL 6412,5,1 RAD,20 14 772 642,133
pi2,m”1 >3 ag2 612,54 DEP,10 14 %73 6,2,13,4
032,80 5 g3 612,5,4 DEP,Z@ 14 774 642,13, 4
D48,88 6 a4 642,62 ROP,28 14 ars £,2,13,3
67,08 6 206 612416,3 CON,18 14 277 6,2,13,6
D67,01 6 087 612,6,3 PUP, 20 12 w9 642,11,3
HLT, 88 3 rL7 6,12,3,4 FOP,08 2 141 612,2,2
RT!,02 2 712 6121243 DVYP,10 9 123 6,2,9.1
TRP,01 12 733 6,2,11,9 DYN,12 © 144 6,2,9.2
TRP,02 12 14 612,119 DVN,2¢ ¢ 125 612,9,2
RES,08 3 215 6,2:3,3 DVN,32 9 126 612,9,2
RTI.01 2 7216 642,2,3 pVYN,72 9 187 £42,9,2
RSD,01 12 17 642,119 pDi2,%2 B 112 6,2,5,1
EXC,80 3 728 6,2,3,2 niz2,8¢ 5 111 6,2,5,1
13,09 1 721 612,4,3 pD3z,92 5 112 6:2,5,1
§13,21 1 722 642,13 n3p,80 5 113 £,2,5,1
545,18 1 ne3 £1241,3 D45,928 6 114 6,246,1
845,00 1 n24 61241,3 D45,88 6 115 612,641
sSVC,60 13 nas 642,124 D67,9¢ 6 116 61246,3
$67,08 2 26 642,241 pD67,80 6 117 612,6,3
$13,10 1 %27 6124143 BRK,20 12 122 642,11,7
EXC,98 3 g3a 642,3,2 D4p,28 6 121 6,2,6,1
TST,00 11 232 612,12,4 SHR,10 11 123 6,2,12,2
TST«10 11 433 642,10, 4 TRP «n2 12 124 642,11,9
JSR, A0 11 234 612,18,6 ove.ee 12 125 642,9,5
JMP, OO 11 235 6,2,12,5 FET,.?5 1 126 £,2,1%1
FOP,40 7 n36 6124745 WAT,32 3 127 612,35
SVC,50 13 737 642,12,3 BRK,12 12 132 6,2,11,2
RYS,20 2 740 692,24 D42 ,30 6 131 642.6,1
SVE,72 13 %41 612,12,4 FXC,18 11 132 6,2,12,1
RSD,@2 12 42 6412,11,9 FOP,10 2 133 6,2:2,2
SPL.28 3 43 612,3,6 EXM,30 14 134 6,2,13,4
MTP,0@ 1 745 612,1.4 ASC,61 7 136 £42,7,4
MFP,80 11 744 502,107 D12,30 5 137 612,5,2
MRK,28 2 247 612412,6 BRK,88 12 147 6,2,11,6
MUL,80 3 59 6,2,3,1 867,20 2 141 642:241
pvs,p@ 3 751 612,3,4 $67,32 2 142 6124241
ASH, 18 7 252 642,731 813,32 2 143 6,2,2,1
ASC, 18 7 753 6:2,7,2 DVD 0BG 1 144 642:9,7
867,19 2 %54 612,241 DVE,20 9 145 6,2,9,3
DVN,48 9 55 6124%,2 813,40 2 146 642,2,1
DVN,5@ 9 n56 61249,2 Dly,32 9 147 6.2,9,3
soB,728 2 a57 6,2,2,5 FSV,.18 12 15a¢ 6,2,11,8
plv,20 9 761 612,941 BRK,32 12 152 6,2,11,6
ASH,08 7 re2 6,2,7,1 EXM, 22 14 153 6,2.13,4
ASC,20 7 G63 6a2071? RRK,28 12 154 6,2_.11',2
sVC,12 13 765 6,2,12,2 RT1.12 2 156 642,2,3
MFP,22 11 66 6,2,18,7 Dio,42 6 157 612,6,4
NEG,00 11 767 6412,10,2 SER,22 12 160 6,2,11,5
EXM,10 14 w74 6,2,13,4 ps59,.20 6 161 6,2,6,1
(continued on next page)
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Table 6-1 (Cont)
Machine States According to ROM Addresses

Mnemonic  Page Al({lgrhedss Paragraph Mnemonic Page Alflgrh:ss Paragraph
pD1o,%@8 6 162 6,2,6,4 BRK,11 12 253 6,2,11,2
NEG,28 11 163 6,2,12,2 plv,i8 9 254 6,2,9,1
FET,24 1 164 612,11 RES,120 3 255 6,2,3,3
plv,7¢ 9 165 642,9,4 pve,3g 12 256 642,9,6
ASH,41 7 166 602,741 . ASH,40 7 257 6,2,7,1
CON,d1 14 167 6:2,13,1 FET,12 1 269 6,2,1,1
D5@,3¢ 6 171 612,6,1 SOB,2¢ 2 262 6,2,2,5
RTI,608 2 172 612,2,3 DVE,12 9 263 6£42,9,2
FOP,38 2 173 61242,2 WAT,12 3 264 6,2,3,5
FOP,20 2 174 6¢2:2,2 FET,29 1 2653 62,141
p12,12 5 175 642,52 MUL,20 8 266 6£,2,8,2
ASC,31 7 176 642,74 ASC,4¢ 7 267 6,2,7,4
D18,60 6 177 61246,4 ADR, 20 14 274 6,2,13,2
ZAP, 20 12 203 6¢2,11,1 NEG, 188 11 271 6,2,12,2
JSRy18 1t 241 612,18,5 DVE,22 9 272 6£¢2,9,1
pey,oe 4 292 6:2,4,2 WAT,11 3 273 §12,3,5
DE7,18 4 223 6,2,4,2 JSR,27 11 274 6,2,12,6
Dop,80 4 204 6,2,4,1 JSR, 38 11 275 602,10, 6
pega,92 4 205 642,4,1 DVC,40 12 276 612,9,6
‘MUL,40 8 206 6:2,8,3 ASH,38 7 277 612,741
ASC,80 7 207 612,7,3 SVe,98 13 299 6,2,12,4
NEG,92 3 217 612,32 NEG,788 3 231 642,3,2
FOP,528 4 211 61244,3 ZAP, 32 12 Y2 6,2,11,1
RT1.20 2 212 612,23 DEP,20 14 g3 6,2,13,4
RT!,30 2 213 £,2,2,3 MFP,92 11 304 6,2,10,7
RTI,428 2 214 612,243 ASH,20 7 @5 642,71
RYT!,58 2 215 6§,2,2,3 ASC,20 7 225 612,7,3
ove,12 10 216 642,9,6 RDP,12 14 327 642,13,3
ove,%2 12 220 6,2,9,7 Di#,5a 6 311 6,2:6,4
30,12 5 221 6,2:5,3 pi2,22 © 312 £,245,2
sVC,82 13 222 6,2,%2,4 piv,68 9 313 6,2,9,3
RTS,10 2 223 612,24 RAD,10 14 214 6,2,13,3
RTS,20 2 224 612,2,4 ZAP,20 12 315 6,2,11,1
FSv,20 12 225 6,2,11,8 FOP,780 4 216 6,2,4,3
ASC,68 7 227 612,7,4 BXX,20 1 220 6,2,1.,5
CON,20 14 230 6,2,13,1 FET,11 1 321 642,1,1
piZ,12 6 231 612644 FET,12 1 222 642,141
plv,20 9 232 612,91 piv,88 9 323 642,9,4
pie,22 6 233 612,64 FET,13 1 324 612,1,1
MRK,28 2 235 £12:2,6 BXX,02 1 226 6,2,1,5
ove,2¢ 12 236 612,96 HLT,12 3 227 692,3,4
FET,07 1 237 6:2,1,1 BXX,23 1 339 612,1,8
BRK.90 12 240 6,2411,2 FET,21 1 231 612,141
ovP,2@ 9 241 642,91 FET,22 1 232 6,2,401
S08,18 2 242 612,2,5 PUP,20 12 333 6412,11,3
DVN,62 9 243 612;9)2 FET.23 1 234 6,2,1,1
FSV,00 12 245 6,2,11,8 BXX,25 1 336 6:2,1,5
MUL,32 8 246 612,8,2 XXX, XX 13 337 2
ASC,30 7 247 612,74 PUP,30 12 47 612,11,3
MFP, 10 11 259 612,18,7 PUP,42 12 341 6,2,11,3
067,12 6 251 612:6,3 RTS,32 2 342 6£,2,2,4
MRK,12 2 252 672,26 I1RD,28 1 343 6,2,1,2
(continued on next page)
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Table 6-1 (Cont)
Machine States According to ROM Addresses

Mnemonic  Page Al;:l)rlgss Paragraph Mnemonic  Page Al:igrlfss
SER,1# 12 344 6,2,11,5 FOP,68 4 362
RSD,1@ 12 345 6,2,11,9 Div,90 9 363
Div,49 9 346 £,2,9,3 XXX, XX 13 264
PUP,10 12 347 6,2,11,3 XXX XX 13 365
pve,79  1a 350 6,2,9,7 piv,58 9 366
Dve,88 1ig 351 6,2,9,7 sSVC,40 13 367
BRK.og1 12 352 6:2,11,2 DvVe,58 1o 370
DUD.1d 19 353 602,9,7 DVE, 608 17 371
TRP,10 12 354 642,11,9 ZAP, 1@ 12 372
sve,ag 13 355 612,312,141 FET,06 1 373
FET,28 1 356 612.1.1 RES,28 3 374
sVC,20 13 357 6,2,12,2 FaR,92 4 375
SVC,30 13 260 642,122 FOP,80 4 376
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Table 6-2
Machine States According to Mnemonic Names

Mnemonic  Page AI;((l)r?ss Paragraph Mnemonic Page Al}lfl)rl\:ss Paragraph
ADR,Q28 14 274 6.2,13}2 n3g,88 5 113 6,2,5,1
ASC,028 7 ris3 6,2,7,2 D32,92¢ 5 112 6.2,5.;
ASC,18 7 753 6,2,7,2 p4g,2¢ 6 121 642,641
ASC,22 7 306 612,7,3 D4g,32 6 131 6,2,6,1
ASC,38 7 247 6,2,7,4 D45,00 6 704 6426, 2
ASC,31 7 176 6,2,7,4 n4s5,21 6 ngs 5,2,6,2
ASC,4p 7 267 612,7,4 D45,8¢ 6 115 6,2,6,4
ASC,608 7 227 642,7,4 pD4s,%2 6 114 642.6,1
ASC,61 7 136 6.2,7)4 ‘ née,.28 6 161 64261
ASC,80 7 237 6412,7,3 pnse,3¢ 6 171 6,2,6,1
ASH,22 7 262 612,71 Dé67,22 6 75 £4246,3
ASH,12 7 252 642:7,1 D67,2L 6 ny7 64,2:6,3
ASH,28 7 325 6424741 067,128 6 251, 61246,3
ASH .32 7 277 6,2,7,1 D67,82 6 117 6412,6,3
ASH, 408 7 257 6,2,7,1 D67,92¢ 6 1146 612:6,3
ASH,41 7 156 6,2¢7:1 DERP,Q0 14 #74 6,2,13,4
BRK,28 12 154 6,2,11,2 DEP,18 14 273 6.2,13,4
BRK.9®m 12 242 6,2,11,2 DEP,20 14 383 6,2,13,4
BRK,22 12 352 6,2,11,2 plv,28 9 761 642,9,1
BRK,18 12 1349 6,2,11,2 piv,1@ 9 254 642,91
BRK,11 12 253 612,112 plv,22 9 232 6,2,9,1
BRK,20 12 129 642,11,7 olv.30 9 147 6,2,9,3
BRK,2p 12 152 612411,6 DIvV.42 9 244 6412,9,3
BRK,80 12 149 612,116 DIv.52 9 266 612,9,3
BXX,31 1 325 6,2,1,5 “plv,78 9 165 6,2,9,4
BXX,22 1 326 6,2,1,5 plv,82 9 323 6,2,9,4
BXX,03 1 354 6,2,1.,5 piv,%2 9 363 6,2,9,4
BXX,74 1 335 612,1,5 pDVEC,20 13 125 642,9,5
BXX,25 1 336 612.1,5 DvVC,.12 1g 216 6£12,9,6
cce,og 3 744 64,2,3,6 pve,20 12 236 6,2,9,6
CON,. 22 14 172 6g2g13,1 pve,32¢ 17 236 612,96
CON,Z1 14 167 6,2,13,1 DVD.19 12 144 642,9,7
CON,14 14 277 6,2,13,6 DVC .40 19 275 6,2,9,6
CON,22 14 232 6,2,13,1 DVD.10 10 353 6,2,9,7
pee,.Re 4 24 642,4,1 pve,58 19 374 6£42,9,7
neg.92 4 25 612,4,1 pve,60 149 371 6,2,9,7
pa7,2a 4 202 812,4,2 pve,7¢ 1o 359 6,2,9,7
pe7,18 4 283 6,2,4,2 pvye,8¢ 19 351 6,12,9,7
pie,ee 6 162 612,6,4 ove,.9¢ 19 220 6,2,9,7
D19,16 6 231 6412,6,4 pVE,z2@ 9 272 64,2,9,1
pip,28 6 233 6)2,6,4 DVE,12 9 263 6,2,9,2
pLe,3¢ 6 122 £,2,6,4 DVE,28 9 145 6412,9,3
D13,40 & 157 by246,4 DVN,2@ 9 261 6,2,9,2
pia,58 6 311 6.2,6,4 DYN,12 9 184 6,2,9,2
DiB,60 6 177 612,64 DYN,20 9 125 6,2,9,2
pL2,2¢ 5 Bl 64245,1 DVN,38 9 136 6:2,9,2
012,91 5 gz 6,2,5,1 DVYN,49 9 55 6,2,9,2
pi2,1¢ 5 175 612,5,2 DYN,58 9 256 6,2,9,2
pi2,20 5 3i2 692,5.,2 DVN,6@ 9 243 6,2,9,2
Di2,3¢ 5 1%7 612,52 DVN,78 9 147 6,2,9,2
D12,78 5 135 612,5,2 DVP,18 9 193 642,91
pL2,8¢ 5 111 6,2,5,1 pvys,sa 3 251 64,2,3,4
p12,92 5 117 612:5,1 EXC,20 11 231 6,2,12,1
p3e,24 S 2p3 6»205)1 EXC,1i2 11 132 6,2,1%:1
p3g,14 5 221 £,2,5,3 EXC,88 3 222 642,3,2
(continued on next page)
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Mnemonic

EXC,90
EXM, a0
EXM,10
EXM,20
EXM, 30
FET, 20
FET.R1
FET,02
FET .23
FET, 24
FET,25
FET,06
FET, 07
FET,08
FET,29
FET,1@
FET,11
FET.12
FET,13
FOP,2@
FOP,12
FOP,20@
FOP, 30
FQP,40
FOP,50
FQP, 6@
FOR,7@
FOP, 80
FOP,902
FSY,20
FSV,102
FSV,20
HLT,20
HLT, 10
IRD, 2@
JMP , 20
JSR, 00
JSR, 18
JSR, 28
JSR, 30
KST,00
MFP,00
MFP,10
MFP,80
MFP,98
MRK, 20
MRK, 32
MRK , 20
MRK , 30
MTP, 20
MTP,10
MUL B0
MUL , 1@
MUL, 20
MUL, 308
MUL , 4@
MUL 5@

“ g
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~ PN

o
R

OO, OMNDNND

ROM

Address

839
271
872
153
134
217
331
332
334
164
126
373
237
356
265
26
321
222
324
101
133
174
173
736
211
362
316
376
375
245
150
225
a1
327
343
435
134
2p1
274
275
76
7566
a6
304
n47
252
235
234
245
151
Y
102
266
246
206
226
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Mnemonic

MUL , 60
MUL , 82
NEG, 20
NEG,10
NEG,20
NEG,70
NEG,90
PUP,00
PUP,10
PUP, 20
PUP,30
PUP, 40
RAD, 2@
RAD,12
RDP, 20
ROP,12
RES, 22
RES .12
RES, 28
RSD, 20
RSD,21
RSD,02
RSD,10
RT!,00
RYY ., 41
RT!,10
RY1,20
RY1,30
RT],40
RT!,50
RT1,60
RTS, 08
RTS,1€
RYS,20
RTS,30
S13,00
$13,01
813,10
S13,2¢
813,30
§13,40
S45,00
545,12
567,00
S67,10
567,20
S67,30
SER,00
SER, 12
SHR, 29
SHR, 12
S0B,00
$08,10
sQ0B,20
SPL,00
SPL, 19
sve,ae

Page

8
3
11
11
11
3
3
12
12
12
12
12
14
14
14
14
3
3
3
12
12
12

[EN
N

NN HEFNNDONNP PP ODDNOMNNMNODNONNDMND NN NN

Address

ROM Paragraph

312
252
r§7
271
163
321
219
192
347
333
340
341
g72
314
z7%
387
715
255
374
41
217
742
245
f12
%16
156
212
213
214
215
172
a4y
223
224
342
721
pee
727
317
143
146
224
723
226
754
141
142
169
344
764
123
@57
242
262
443
361
355

(continued on next page)
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Table 6-2 (Cont)
Machine States According to Mnemonic Names

Mnemonic  Page A[;fi)rrss Paragraph Mnemonic  Page Al;dorheélss
SVeC,12 13 265 6,2,12,2 TST.18 11 733
SVC,20 13 357 6:12,12,2 WAT, 00 3 11
SVC,30 13 360 612,12°2 WAT, 10 3 264
SVC, 40 13 367 6,2,12,3 WAT,11 3 273
svV¢,50 13 n37 6,2,12,3 WAT,20 3 244
SVC, 82 13 725 6,2,12%4 WAT,30 3 127
sve,79 13 ¢4y, 6,2,12,4 XXX, XX 13 337
sve,80 13 222 6,2,12,4 XXX, XX 13 364
SVe,%@¢ 13 3e9 6,2,12,4 XXX, XX 13 365
TRP,01 12 #1413 6,2,11,9 XXX XX 13 377
TRP.P2 12 714 6,2.1109 ZAP, 00 12 L
TRP .02 12 124 6,2,14,9 ZAP, 10 12 372
TRP, 10 12 354 61211179 ZAP,20 12 315
TST,.22 11 232 6,2,10',4 ZAP,30 12 3g2
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specified in the source and destination fields of the instruction; this operation is also done in anticipation of the
use of this data, and in many cases the data loaded into the SR and DR is ignored. However, when the data is
needed, the anticipatory transfers allow the processor to operate at maximum speed.

6.2.1.3 Source Modes 1 Through 5 — The fork A logic is enabled during IRD.0, so the machine state that fol-
lows IRD.0 is determined by decoding the instruction and certain other conditions. Six of the possible sequences
that follow IRD.0 are shown on Flows 1. These include the beginning of the data fetch sequence for all

binary instructions that have a source mode of 1 through 5. If the source mode is 1, 2, or 3, the external data
transfer is restarted with a new address and the incrementation of the source register is started for modes 2 or 3.
If the source mode is 4 or 5, the external data transfer can not be continued until the address has been decre-
mented, so the $45.0 state performs a BEND. After performing the data transfer to fetch the word addressed by
the source register, the sequence conditionally enables the fork C logic. If the source mode is odd, another data
transfer is required to fetch the data addressed by the word just fetched; otherwise the fork determines the next
state.

6.2.1.4 Move to Previous Space Instructions — For an MTPI or MTPD instruction, the MTP.0 (move to previous)
and MTP.1 states read an address from the stack pointer and begin a data transfer operation to fetch a data word
that will be transferred to the destination address. The flow then transfers to the last state of the source-data-
fetch sequence, because this state is common to both the MTP sequence and the normal source data sequence.

6.2.1.5 Branch Instructions — For branch instructions, the fork A logic determines whether the branch is suc-
cessful, and if not, whether a bus request has been sensed. If the branch is successful, the PC must be changed
before the next instruction is fetched; this is performed by the BXX.0 (branch) machine state which aborts the
previous data transfer. This state also strobes any new bus requests. The BRQ STROBE must be performed in
the state preceding the state that starts the instruction fetch; this includes FET.1 (in case the fork A logic returns
control directly to FET.0), the next-to-last state of instructions that overlap the instruction fetch, and the last
state of instructions that do not provide overlap. The machine state following BXX.0 is FET.O.

If the branch is not successful and no bus requests are sensed, the instruction fetch continues the data transfer

begun in IRD.0; if a bus request is sensed, the sequence returns to FET.0 which, in turn, transfers the sequence
to BRK.O. Table 6-3 illustrates the exact ROM words used by each branch instruction for the four possible se-
quences.

6.2.2 Indexed Source Modes and Operate Instructions

Drawing D-FD-KB11-A-03 (Flows 2) illustrates the sequence of machine states for the data fetch for source
modes 6 or 7, for the transfer of floating-point instructions to the FPP, and for the execution of five operate
instructions.

6.2.2.1 Indexed Source Modes — For the indexed source modes, the transfer begun in machine state IRD.0 is
completed and an increment from the source register is added to the data word; the resulting data word is used
for a second data transfer. When this transfer is complete, a conditional fork is used to transfer to the sequence
required for the current instruction, unless an indirect indexed address requires a third data transfer. In the latter
case, the sequence continues through three machine states that are common to the sequences of all indirect source
modes (i.e., modes 3, 5, and 7), and in part to the MTPI or MTPD instruction.

6.2.2.2 Floating-Point Instructions — When a floating-point instruction is recognized by the fork A logic, the
sequence is transferred to the FOP.0 (floating-point operation) state. In this state, the processor restores the PC



to the value used to fetch the instruction, so that this value can be transmitted to the FPP (which stores the value
for use in reporting abnormal conditions during the execution of that instruction, and for restarting the instruc-
tion if interrupted), and notifies the FPP that a floating-point instruction is ready to be processed. The processor
then enters a wait loop, consisting of two machine states, until the FPP acknowledges the FPATTN (FPP atten-
tion) signal and reads the contents of the IR. (The data is actually read from the BR, which at this time contains
the same information.) If the FPP is busy with a previous floating-point instruction, the processor may have to
wait for several microseconds; during the wait period, the processor looks for other external requests and releases
control if any occur, If an interrupt must be processed, the stored PC value allows the floating-point instruction
to be re-fetched after the interrupt service is completed. After the IR and PC have been transferred to the FPP,
the sequence is determined by the fork C logic to perform the address calculation for the floating-point data.

Table 6-3
Branch Sequences
Conditions: Successful ’ Unsuccessful
Bus Request: Present Not Present Present Not Present
Instruction

BCC BXX.03 BXX.00 FET.01 FET.11
BCS BXX.04 BXX.01 FET.03 FET.13
BEQ BXX.05 BXX.02 FET.03 FET.13
BGE BXX.03 BXX.00 FET.01 FET.11
BGT BXX.03 BXX.00 FET.01 FET.11
BHI BXX.03 BXX.00 FET.02 FET.12
BHIS BXX.03 BXX.00 FET.02 FET.12
BLE BXX.05 BXX.02 FET.03 FET.13
BLO BXX.04 BXX.01 FET.03 FET.13
BLOS BXX.04 BXX.01 FET.03 FET.13
BLT BXX.05 BXX.02 FET.03 FET.13
BMI BXX.04 BXX.01 FET.03 FET.13
BNE BXX.03 BXX.00 FET.02 FET.12
BPL BXX.03 BXX.00 FET.01 FET.11
BR BXX.05 BXX.02 (always successful)

BVC BXX.03 BXX.00 FET.O01 FET.11
BVS BXX.04 BXX.01 FET.03 FET.13

6.2.2.3 RTI and RTT Instructions — The RTI and RTT instructions differ only in the clocking of T bit traps
after the data transfers, so the sequence of machine states is identical. This sequence performs two data transfers
to restore the previous PC and PS words from the hardware stack, and performs two increment operations on the
stack pointer. The sequence then continues with an instruction fetch.

6.2.2.4 RTS Instruction — The RTS sequence performs one register-to-register transfer and one external data
transfer to restore the PC and the specified register, and updates the stack pointer (SP) after the transfer. The se-
quence then returns to the instruction fetch machine states.

6.2.2.5 SOB Instruction — The sequence of machine states for the SOB instruction first generates a new PC
value based on the offset in the instruction, and then restores the old PC value if the value in the specified register
will be 0 after decrementing. This is done because the test on the value of the register requires one

machine state in every case, which can be combined with the calculation of the new PC value, and because the
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branch is successful most of the time; thus, the extra machine state to perform the restoration of the old PC
value is executed less often than if an extra state were required when the branch is successful. The SOB sequence
initiates the fetch of the next instruction during the last machine state which also performs the decrement on the
specified register.

6.2.2.6 MARK Instruction — The machine state sequence for the MARK instruction transfers the contents of
general register 5 to the PC, transfers the top word on the hardware stack to register 5, then begins fetching the
next instruction. The operation of the MARK instruction assumes that the instruction has been fetched from the
top of the hardware stack; for a discussion of the purpose and effects of the MARK instruction, see Chapter 4.

6.2.3 No Memory Reference Execution

Drawing D-FD-KB11-A-03 (Flows 3) illustrates the machine state sequences for a variety of instructions that do
not require memory references other than the instruction fetch. A number of sequences are shown that transfer
immediately to machine states on other pages; they are shown only to illustrate the routing from fork A to these
states. These sequences include the breakpoint trap (OP3), IOT trap, the EMT and TRAP traps, and several
groups of reserved op codes, including OP7, OP22, and RSVD. The illegal instructions JMP or JSR, with destina-
tion mode 0, also transfer directly to a point in the trap machine state sequence. The four instructions ASH,
ASHC, MFPI, and MFPD are shown on other pages which do not show the fork A flow line; therefore, off-page
connectors are shown on this drawing for these instructions with destination mode O (for other destination
modes of these instructions, the sequence transfers to the destination address calculation sequences shown on
flowcharts 5 and 6).

6.2.3.1 Multiply and Divide with Destination Mode 0 — For the multiply and divide instructions, a special se-
quence is used when the destination mode is 0. In either case, this sequence precedes the normal sequence for
that instruction. The MUL.8 (multiply) machine state sets up the step counter and transfers to the MUL.1
machine state, because the MUL.O state is used to complete the data transfer begun in the destination data fetch
sequence. In the DVS.0 (divide start) state, the contents of the register specified for the destination operand are
transferred to the BR, which corresponds to the result of the data fetch sequence for other destination modes.

6.2.3.2 E CLASS and Negate Instructions — For the majority of the instructions that operate on data, one ma-
chine state is required to perform the data manipulation. If both the source (if any) and destination modes are
0, the data is already in the SR and DR registers as a result of the IRD.0 state. The data manipulation (selected
by the subsidiary ROM for all except the NEG.B instruction) is performed, the data is stored in the general regis-
ter specified by the destination ficld, and the sequence returns to the instruction fetch. The NEG and NEG.B in-
structions require two machine states because the complement and increment operations can not be performed
on the data during the same state; therefore the external data transfer operation started in the IRD.O state is
aborted (a bus operation can not be carried across more than two machine states) and the sequence returns to
the FET.0 state. The other instructions complete the data operation and return to FET.] unless a bus request
has been sensed; because the transfer to the BRQ service sequence is performed by the FET.0 machine state, the
bus operation must be aborted.

6.2.3.3 RESET Instruction — Three processor control instructions, RESET, HALT, and WAIT, are executed by
sequences shown on this drawing. The RESET instruction transfers general register O to the DR so that the con-
tents of RO can be displayed in the DATA lights of the console during the reset operation, and then triggers the
initialization pulse. The initialization is inhibited if the processor is not operating in the kernel mode; in this
case, the instruction is, in effect, a NOP. The machine state that triggers the pulse recycles to itself until the
pulse (which lasts for 10 ms) is completed, and then returns the sequence to the instruction fetch sequence.
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6.2.3.4 HALT Instruction — The HALT instruction does not actually stop the processor; instead, control is
transferred to the console service sequence, which waits for manual intervention to determine further operations.
This is performed by setting the console flag and then returning to the instruction fetch sequence where the con-
sole flag generates a BRQ, which, in turn, transfers to the break service sequence. The console flag is set only if
the processor is in kernel mode; a branch after the HLT.1 (HALT) machine state transfers control to the trap ser-
vice sequence if the processor is not in kernel mode.

6.2.3.5 WAIT Instruction — The WAIT instruction is used to wait for an asynchronous condition that either ini-
tiates the execution of a service program or enters the console service sequence. The basic wait loop consists of
two machine states, so that the BRQ STROBE in one state is available for the branch in the other state. When
any BRQ is sensed, the sequence goes to the first of two states that test for console requests and then for inter-
rupts or traps (other than T bit traps) that supply vectors. If neither is found, the sequence returns to the wait
loop; otherwise, control is transferred to the appropriate sequence.

6.2.3.6 Processor Status Change Instructions — Two instructions that transfer data from the instruction word to
the PS word are the CCOP instruction and the SPL instruction. The former affects only the condition code bits
(PS(03:00)), and the latter affects only the priority bits (PS(07:05)). In the CCOP instruction, the external

data transfer begun by the IRD.O state is aborted because the processor must maintain the data in the BR register
until the PS word is reloaded. In the SPL instruction, the first state does the actual transfer to the priority. The
second state also begins a new instruction fetch and control transfers to the FET.1 state. SPL is a no-op (no
change to the PS) unless the processor is in kernel mode.

6.2.4 Destination Mode 0 Sequences

Drawing D-FD-KB11-A-03 (Flows 4) illustrates the five sequences used when the destination mode is 0. These
sequences are entered through the fork C microprogram address calculation; this fork is used to determine the
next machine state after a source operand has been fetched. For all instructions except floating-point instruc-
tions, these sequences correspond to, or join, the sequences used when both the source and the destination
modes are 0.

6.2.4.1 Not Register 7 — When the destination specification in an instruction refers to any general register other
than register 7 (the PC), and the other conditions for the sequences shown on this drawing are met, the instruc-
tion is executed by the machine state D00.9 (destination mode 0). If the source address is odd, a byte-swap oper-
ation must be performed on the contents of the BR before the instruction-dependent data manipulation opera-
tion. If the source mode is also 0, no byte swap can be required, and the execution is performed by the EXC.8
(execute) machine state (Paragraph 6.2.3.2).

6.2.4.2 Register 7 — When the destination register is 7, the PC is modified. Because the PC is stored as a separate
register (not in the general register set), the execution is accomplished by the EXC.9 machine state, which re-
quires the source data to be in the SR register. A machine state is therefore required to transfer the source data
from the BR to the SR. A byte swap can be combined with this transfer if necessary.

6.2.4.3 Floating-Point Instructions — For most floating-point instructions, the destination specification refers
to a floating-point accumulator if the destination mode is 0. However, this sequence is also entered for the
CFCC instruction and for the load and store status instructions, for which the destination specification refers to
the general registers if the destination mode is 0. Therefore, if the instruction is a CFCC instruction, the first
machine state transfers the floating-point condition codes from the internal bus to the PS word. The contents of
the DR, which contains the data read from the destination register during the IRD.0 machine state, is transferred



to the BR so that the FPP can read the destination if necessary, and an FPATTN signal is sent. The processor
then waits in a one-machine-state loop which tests for the FP SYNC signal; if the FPP sends a data word to be
stored in the destination register, the FOP.8 (floating-point operation) machine state is entered, otherwise the
sequence returns to the instruction fetch sequence. After receiving data from the FPP, the processor again sends
the FPATTN signal and enters the wait loop; if the FPP is operating with double precision integers, the data re-
ceiving sequence is entered twice and the second word (which is the lower half of the 2-word variable) is stored in
the same destination register, overlaying the first word. When the FPP has no more data to send, the processor re-
turns to the instruction fetch sequence.

6.2.5 Destination Modes 1 Through 3

Drawing D-FD-KB11-A-03 (Flows 5) illustrates the machine state sequences used to fetch data specified by desti-
nation modes 1, 2, or 3. These sequences are entered from one of the two forks; some are entered from the fork

A decision point, for instructions which either do not require a source operand or have a source mode of 0, while
others are entered from the fork C decision point after the source operand has been fetched and placed in the SR.

6.2.5.1 Sequence Entry — For all six of the sequences shown on this chart, the external data transfer begun dur-
ing the IRD.0 machine state is continued, but a BUST is issued to inform the data transfer logic that the address
has changed and that all the deskewing delays must be restarted. The four sequences entered from the fork C de-
cision point also start by transferring the contents of the BR to the SR, so that the source data is available in
both registers; the opposite transfer is performed for the fork A entry if the destination mode is 1 or 2. If the
destination mode is 3, there is no point in loading the BR from the SR because the address fetched by the first
external data transfer is stored in the BR for use in the next data transfer.

6.2.5.2 Destination Modes 1 and 2 — There are two entries from the fork C decision point for address modes 1
or 2 because the source data may be an odd byte which must be swapped. This is the only difference between
machine states D12.0 (destination modes 1 or 2) and D12.9. After one of these states or D12.0 has been com-
pleted, the processor performs a three-way branch, to separate JMP, JSR, and floating-point instructions, and in-
structions that transfer the source operand to the destination unchanged (specifically, the MOV, MTPI, and
MTPD instructions) from all others. For floating-point instructions, the external data transfer is aborted, and the
sequence continues through the fork B decision point to the FOP.4 machine state. For JMP instructions, the se-
quence is directed to the JMP.0 state; for JSR instructions, to the JSR.O state. For the three direct-transfer (O
Class) instructions, the external transfer is forced to be a DATO instead of a DATIP or a DATI, and the transfer
is completed before an instruction-dependent condition-code load operation is performed. The last machine state
in the sequence for O Class instructions also begins the instruction fetch for the next instruction and checks for
asynchronous conditions requiring service.

For all other instructions, the DATI or DATIP transfer is completed, and the fork B logic is conditionally enabled
in machine state D12.1. If a byte swap is needed because the destination address is to an odd byte, the extra ma-
chine state D12.3 is entered, and then the fork B decision point. Note that in all three of the sequences shown
(in machine states D12.6, D12.1, and D12.7) the destination register is incremented by a constant which can be
cither 0, 1, or 2, depending on the address mode and whether a word or a byte operand is being fetched.

6.2.5.3 Destination Mode 3 — The three sequences for destination mode 3 all enter the D30.1 (destination mode
3) machine state, which completes the data transfer, increments the destination register by the necessary amount,
and transfers to the D10.2 machine state, which begins the fetch of the operand addressed by the word just trans-
ferred. Because the first transfer during a destination mode 3 sequence can only be a full word, the increment
used in the register update is always 2, not 1.



6.2.6 Destination Modes 4 Through 7

Drawing D-FD-KB11-A-03 (Flows 6) illustrates six machine state sequences that are used to fetch the destination
operand when the destination address mode is 4, 5, 6, or 7. These six sequences correspond to the six sequences
described in Paragraph 6.2.5 for address modes 1, 2, and 3.

The four destination modes are divided into two pairs: modes 4 and 5, which require that the contents of the
destination register be decremented before the value is used in the external data transfer, are treated by one of
three sequences; modes 6 and 7, which use general register 7 (the PC) first and then use the destination register,
are treated by one of three sequences. In either case, two of the three sequences are entered from the fork C de-
cision point, and one from the fork A decision point. The two fork C entries differentiate between source oper-
ands that require byte swapping and source operands that do not. There can be no requirement for a byte swap
on the fork A entry, because the source operand, if any, must be address mode 0 and the high byte of a register
can not be specified.

6.2.6.1 Fork C Entries for Modes 4 and 5 — Machine states D45.8 (destination mode 4 or 5) and D45.9 differ
mainly in the microprogram addresses contained in the microprogram word. Each state decrements the DR by
the value of the destination constant, which is 1 for a byte operation in mode 4, and 2 for a word operation.
Byte operations in mode 5 use a constant of 2 because the data fetched from the address taken from the DR is, in
turn, used as an address and must be a full word. The state following D45.8 or D45.9 begins the external data
transfer, which may be a DATI, DATIP, or a DATO, depending on the specific instruction. Machine states
D40.3 and D50.3, which follow D45.9, also perform the byte-swap operation on the source operand. In each of
the two sequences, a different path is taken for destination mode 4 where only one data transfer is needed, than
for destination mode 5 where a second transfer is needed. The second transfer is performed by a sequence that
is common for address modes 3, 5, and 7; this sequence transfers the first word that is fetched from the BR to
the DR and then uses the DR as the address for a second transfer.

6.2.6.2 Fork A Entry for Modes 4 and 5 — Machine state D45.0, which is entered from the fork A decision
point, is similar to machine states D45.8 and D45.9, except that a BEND is performed to abort the transfer be-
gun during the IRD.0 machine state. The sequences that follow D45.0 are similar to the sequences that follow
D45.8 or D45.9, except that the source operand, if any, is already in the SR.

6.2.6.3 Destination Modes 6 and 7 Entry — For address modes 6 and 7, the first machine state entered from

the fork C decision point begins an external data transfer, using the contents of the PC as an address, and per-
forms an increment operation on the PC. The entry from the fork A decision point continues the transfer begun
by the IRD.0 machine state, so this entry is to the D67.0 (destination mode 6 or 7) state that follows the first
state for the other entries. The D67.1 machine state adds the contents of the DR to the data read into the BR,
thus performing the indexing operation, and then transfers to a machine state in the flow sequence for destination
modes 4 or 5. The transfer is to D10.3 (a state also used for mode 4) if the mode is 6, or to D10.1 (a state also
used for mode 5) if the mode is 7. The shared sequences perform the remaining one or two data transfers to
fetch or store the actual data word.

6.2.6.4 Ending Sequence — When the last data transfer has been started, all six sequences enter a combined con-
ditional fork and three-way branch that selects the next machine state. For MOV, MTPI, and MTPD instructions,
the last data transfer is a DATO operation, which is completed by machine state D10.4; this state also loads the
condition codes. The processor then returns to the instruction fetch sequence. For all other instructions, the
DATI or DATIP transfer is completed in machine state D10.6, leaving the destination data in the BR and the
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source data in the SR, and the fork B logic is conditionally enabled. If a byte-swap operation is required for the
destination data, the D12.3 machine state, which performs this operation for all destination modes 1 through 7,
is entered.

6.2.7 ASH, ASHC, and Floating-Point Instructions

Drawing D-FD-KB11-A-03 (Flows 7) illustrates the machine state sequences for the arithmetic shift (ASH) and
arithmetic shift combined (ASHC) instructions, and the first machine state of the floating-point instruction ser-
vice after the destination address calculation.

6.2.7.1 ASH Instruction — When the machine state sequence for the ASH instruction is entered from the fork B
decision point, the destination data is in the BR register. Theé.six least-significant bits of the destination word are
used as a 2’s complement number which is the shift count for the instruction. This data is loaded into the shift
counter (SC) from the DR, so the DR is loaded from the BR in the first machine state (ASH.0). This state also
maintains the address and transfer (bus conditions) information used during the preceding data transfer, so that
all deskewing delays can be completed. The following state performs the loading of the SC and stops all external
data transfer activity; in a third machine state, the condition codes are loaded based on the value of the word in
the source register, and the shift counter is tested for a O shift count. If the shift count is 0, the instruction is
completed, and the processor returns to the instruction fetch sequence; otherwise, one of two states is entered,
depending on the sign of the shift count. Machine states ASH.3 (arithmetic shift) and ASH.4 perform the actual
shift one bit at a time, and increment or decrement, respectively, the shift counter. These states also load the
KB11-A condition codes with the results of each shift, so that after the last shift the codes are correct, and test
during each cycle to determine whether any further cycles are required. Note that the first change to the SC is
performed in the ASH.3 machine state; all tests are done on the value before any changes are performed, so the
last cycle in ASH.3 or ASH.4 is performed with the SC equal to 0, and the final value in the SC is -0 (all 1s).

6.2.7.2 ASHC Instruction — The ASHC instruction operates in a manner similar to the ASH instruction, with
differences to account for the fact that two words of data are shifted. The first two machine states for the ASHC
instruction perform the same functions as the ASH.0 and ASH.1 machine states, and in addition, load the DR
(after the SC has been loaded from the previous value in the DR) with the contents of a general register which is
selected by ORing the destination register specification with 1. When the destination register specified by the in-
struction is an even-numbered register, the OR produces the number of the next higher numbered register.

6.2.7.3 Condition Code Loading — The third machine state for ASHC instructions performs the first change of
the SC, moves the first data word to the BR, loads the condition codes, and tests for a 0 SC, just as machine state
ASH.3 does. However, if the SC is 0, the sequence continues with the ASC.8 (arithmetic shift combined) ma-
chine state, instead of returning immediately to the instruction fetch sequence. This state is required to test the
second data word, so that the Z condition code can be set on the contents of both words. The ASC.8 machine
state also starts the next instruction fetch, so the processor transfers to either FET.1 or BRK.O rather than FET.O0.

6.2.7.4 ASHC Processing — If the SC is not 0, the ASC.2 machine state is followed by the ASC.3 or ASC.4 state.
These states perform the same operations as the corresponding states for the ASH instruction, and also cause
shifting of the DR (which can be shifted internally, without passing the data through the ALU or SHFR). The bit
shifted into the DR is selected by processor hardware. When the SC does reach 0, the next machine state is
ASC.6, which performs the same operations as ASC.8, but also stores the second word from the DR into the ap-
propriate general register.
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6.2.7.5 Floating-Point Instructions — When the fork B logic decodes a floating-point instruction, the FOP.4
(floating-point operation) machine state is entered. This state aborts the last external data transfer started by the
destination-data-fetch sequence, and sends the destination address, not the destination data, to the FPP. The se-
quence then continues with the floating-point service machine states to perform whatever operations are required
by the FPP.

6.2.8 Multiply Instruction

The sequence of machine states shown on drawing D-FD-KB11-A-03 (Flows 8) performs a multiplication opera-
tion on two words of data, one from a general register and the other in a word specified by a destination field
and fetched into the BR. The results of the muitiplication are stored in two general registers; one is the register
specified in the instruction, and the other is a register whose number is formed by ORing 1 with the number of
the specified register (Figure 6-8). (If the specified register has an odd number, only one register is used.)

SR (MULTIPLIER) J

(SIGN OF SR }
OR
SIGN OF BR) |

BR (PRODUCT) H DR (MULTIPLICAND)J

11-0845

Figure 6-8 Multiply Instruction

The multiplication is performed by an add and shift algorithm as described in Chapter 4. However,’in the imple-
mentation used, several features of the algorithm are obscured by stratagems used to reduce the amount of logic
necessary for the operation. The two most important stratagems are the use of a 16-bit multiplier instead of a
32-bit multiplier, and the accumulation of the broduct in a register that expands from 16 bits to 32 bits as the
multiplication proceeds.

The multiplication algorithm described in Chapter 4 uses a 32-bit multiplier because the double-length multiplier
reduces the need for corrections for negative numbers. However, the 32-bit multiplier differs from the original
16-bit multiplier only in having the sign extended into 16 additional bits of greater significance. The effect of
this difference on the partial products generated during the multiplication is simply to make the partial product
take on the same sign as the multiplier. During the multiplication, therefore, whenever a new partial product is
formed by adding the multiplier to the current partial product, the sign of the multiplier is shifted into the partial
product after the addition.

As shown in Chapter 4, the maximum number of significant bits in the multiplier (not counting the extended

sign) is 16; therefore, the multiplier is loaded into the source register (SR), and all sign extension is done during
the shifting of the product. The number of significant bits in the product varies during the multiplication, in-
creasing by one for each cycle; the number of bits in the multiplicand, which must be saved for future cycles, is
reduced by one each cycle. The DR performs two functions: at the beginning of the multiplication, it holds the
16-bit multiplicand, but as the multiplicand is shifted out of the DR, each vacated bit is used for the expanding
product. Because the bits available are the most-significant bits of the DR, while the product expands by adding
bits to the most-significant end, the product is stored by shifting it, as it expands, from the BR into the DR. In-
stead of shifting the SR with respect to the BR (as the multiplier shifted with respect to the product in Chapter 4),
the BR shifts with respect to the SR.
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6.2.8.1 Multiplication Setup — The multiplication sequence begins with two machine states that set up the four
registers (BR, SR, DR, and SC) used in the sequence, and perform the first test and shift on the DR. Note that
all branches refer to the state of the DR and the SC at the beginning of the machine state preceding the branch,
not the values in the registers at the end of that state. The operand supplied by the destination-data-fetch se-
quence is loaded into the DR. and the SC is loaded with the octal value 17 in machine state MUL.O (multiply).
In machine state MUL.1, the BR is cleared; the other operand is assumed to be in the SR as the result of the
IRD.0 machine state.

6.2.8.2 Multiplication Process — The multiplication proceeds through 15 cycles of shifting performed by ma-
chine states MUL.2 and MUL.3. The branch conditions that select which of these two states is entered are the
appropriate conditions to determine whether an addition and shift, or just a shift, is performed.

6.2.8.3 Multiplication Cotrection — Following the 15 cycles of shifting, either state MUL.2 or state MUL.4 is
entered, depending on the need for a correction. The total number of shifts performed during a multiplication
is 16 for the BR and 17 for the DR; however, only the last 16 shifts transfer significant bits to the DR.

The MUL.2 or MUL.4 machine state stores the more-significant half of the result into the register specified by
the source field, and sets the condition codes on the value of this word. The MUL.S machine state stores the
less-significant half of the result in the register whose number if formed by ORing the source ficld with 1; if an
odd register is specified, this value replaces the more-significant half of the result, which is lost. This is done be-
cause many multiplications produce a result which can be contained in only one word, and this result is preserved
by this action. The condition codes are altered to represent the value of the entire result; if all 32 bits are 0, the
Z bit is set, and if the result can not be contained in one word, the C bit is set.

The final state of the muitiply sequence returns either to the instruction fetch sequence, or, if an asynchronous
condition needing service was sensed by the BRQ STROBE in machine state MUL.2 or MUL.5, to the break ser-
vice sequence.

6.2.9 Divide Instruction Sequence

The divide (DIV) instruction is executed by the longest and most complex sequence of machine states used in the
KB11-A processor. This sequence is illustrated on two drawings. Drawing D-FD-KB11-A-03 (Flows 9) shows
the register setup, the first two overflow tests, and the cycle of states that performs the actual division. Drawing
D-FD-KB11-A-03 (Flows 10) shows the quotient and remainder sign corrections and the final overflow test.

The division is performed by a non-restoring divide algorithm that is described in Chapter 4. The hardware imple-
mentation (Figure 6-9) uses the SR to hold the divisor and begins with the dividend in the BR and DR registers.
The BR contains the more-significant half of the dividend, while the less-significant half is in the DR. Each cycle
of the division shifts the dividend one bit to the left and shifts the next bit of the quotient into the least-
significant bit of the DR. When the division terminates, the quotient is in the DR and the remainder is in the BR.

The non-restoring divide algorithm can operate with positive or negative operands; however, the KB11-A always
operates on a positive dividend to simplify the detection of underflow. The divisor may have either sign. The
first two machine states of the division sequence test for a Q divisor or a negative dividend, and set up the SR and
DR registers. If a O divisor is sensed, the division is aborted and the C, V, and Z condition codes are set to indi-
cate that an error has occurred.
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Figure 6-9 Divide Instruction

6.2.9.1 Initial Setup — If the dividend is negative, a sequence is entered to complement the dividend. Note that
the branch on the N condition code occurs after machine state DIV.2, although the condition code is loaded in
state DIV.1 (divide), because the branch condition must be available at the beginning of the machine state in
which the branch is used. Similarly, the branch on the Z condition code after state DIV.1 uses the condition
code value set by state DIV.0, not the new value set by the DIV.1 state.

6.2.9.2 Negative Dividend Processing — The sequence beginning with machine state DVN.O (divide negation)
generates the 2’s complement of the 2-word dividend as follows:

a.  The 2’s complement of the less-significant word is formed by first clearing the DR, then subtracting
the SR, which contains the low order word, from the 0 in the DR. The DR is cleared so that a subtract
from 0, which requires only one machine state, can be used; normally a 2’s complement is generated
by forming the 1’s complement and then incrementing, as shown for the remainder correction steps.
The 2’s complement of the less-significant word is stored in the register which originally held the less-
significant word.

b.  Machine state DVN.2 generates a carry from the less-significant word to the more-significant word.
That is, if a carry-out of the most-significant bit of the ALU occurs during the operations (which is re-
peated in machine state DVN.2),a 1 is shifted into the DR.

¢. A lissubtracted from the DR. If a carry occurred in Step b, the DR contains 0 and the 2’s comple-
ment of the more-significant word is formed; if no carry occurred, the DR now contains a - 1, which
cancels the carry insert during the subtraction in machine state DVN.4, and the 1’s complement of the
SR is formed. This is the correct result if there is no carry.

After the 2’s complement of the dividend is formed, the DVN.5 machine state begins the restoration of the divi-
sor to the SR and the dividend to the BR and DR. However, if the dividend is still negative, which occurs if the
dividend was the maximum negative number (because the 2’s complement notation can express one more nega-
tive number than positive number, the largest negative number complements to itself), the division can not be
performed and the sequence is aborted.

6.2.9.3 Overflow Test and First Cycle — After the setup is completed, the processor enters the DIV.3 machine
state with a positive dividend in the BR and DR, 174 in the SC, and the divisor in the SR. The next portion of
the sequence performs the first cycle of the division and performs a test for overflow. This test is based on the

fact that if underflow does not occur during the first cycle, the quotient is too large to be expressed in 16 bits.

If the instruction is not aborted because of overflow, the processor enters the DIV.7 machine state to begin the
main divide cycle.
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6.2.9.4 Division Process — The test for underflow that determines whether machine state DIV.8 or state DIV.9
is entered is based on the following considerations:

a. If the divisor is negative, adding the divisor to the dividend should produce a result closer to 0 than the
original dividend. If the result is negative, underflow has occurred and a 0 is shifted into the DR.

b. If the divisor is negative and the dividend is also negative, an underflow condition already exists. The
divisor is subtracted from the dividend to return the dividend to a positive number. If the result is still
negative, a 0 is shifted into the DR; if the result is positive, the underflow has been corrected andalis
shifted in. )

c. For a positive divisor and dividend, a subtraction is performed. If the result is positive, a 1 is shifted
into the DR, but if the result is negative, underflow has occurred and a 0 is shifted in.

d. If the divisor is positive and the dividend is negative, an addition is performed to correct an existing
underflow. If the result is positive, the underflow has been corrected and a 1 is shifted into the DR,
otherwise a O is shifted in.

As a result of these considerations, the processor enters machine state DIV.8 if the divisor is positive and there is
no underflow (DRQ is a 1), or if the divisor is negative and there is underflow (DRO is a 0). State DIV.8 performs
a subtract operation and shifts the carry-out of the ALU into the DR. (A carry-out of the most-significant bit of
the ALU indicates that underflow has occurred; if an uncorrected underflow existed, the carry indicates that it
has been corrected.)

If the opposite conditions exist (SR is positive and DRO is 0, or SR is negative and DRO is 1), state DIV.9 is en-
tered and an addition is performed, followed by a shift of the DR. Note that the cases for which a carry-out of
the most-significant bit of the ALU exists are equivalent to the cases described above for which the least-
significant bit of the DR is set.

6.2.9.5 Remainder Storage and Sign Check — After the divide cycle has been performed 15 times (the first divi-
sion cycle, and the first decrement of the SC, is performed in machine states DIV.3 through DIV.6), the DVC.0
(divide correction) machine state writes the remainder from the BR into the appropriate general register, and
transfers control to one of four machine states, depending on whether a remainder correction is required and
whether the quotient has the correct sign.

6.2.9.6 Remainder Correction — If, after the last division cycle, the least-significant bit of the quotientis a 0, an
underflow condition still exists. This condition can be corrected (unless an overflow condition also exists) by
adding a positive divisor or subtracting a negative divisor to correct the remainder. This is done by machine state
DVC.1 or DVC.2. If no remainder correction is needed, or following the remainder correction, the DVC.3 or
DVC.4 machine state begins the complementing of the remainder in case the remainder has the wrong sign. The
current value of the remainder is not disturbed until a determination is made of the appropriate sign.

6.2.9.7 Quotient Sign Change — If the N condition code is set, the original dividend was negative. The comple-
mented remainder, which is negative because the corrected remainder is positive (if all underflow conditions are
corrected), is stored as the final value of the remainder. If both the dividend and the divisor were positive, the
quotient, which is also positive (the most-significant bit of the quotient must be positive or an immediate over-
flow condition aborts the division), is written into the appropriate general register. Similarly, if both dividend
and divisor are negative, the quotient should be positive and is written in its present form.

If the original signs of the dividend and divisor were different, the quotient should be negative. The quotient is
complemented by the machine states DVC.8 and DVC.9; one special case in which the quotient is the most nega-
tive number is considered an error.
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6.2.10 Memory Reference Execution Sequences

Drawing D-FD-KB11-A-03 (Flows 11) illustrates nine sequences that execute the data manipulation stages of a
variety of PDP-11 instructions, when those instructions require external data transfers to complete the instruc-
tion execution. These sequences are entered from the fork B decision point.

6.2.10.1 Standard Execution — The majority of the PDP-11 instructions are executed by the EXC.0 (execute)
machine state. When this state is entered, the source operand,; if any, is in the SR, and the destination operand is
in the DR. The EXC.0 state performs one data manipulation operation and loads the condition codes; both the
operation performed and the condition-code loading are controlled by subsidiary ROMs (i.e., they are instruction-
dependent). For any instruction that is operating'on an odd-byte destination operand, the EXC.O state performs
the byte-swap operation in the SHFR automatically.

The EXC.0 machine state also begins an external data transfer operation that is completed in the EXC.1 machine
state; this operation transfers the result data to the destination address, which is taken from the DR.

6.2.10.2 Negate Instructions — Several instructions, which are otherwise treated in the same manner as those
executed by the EXC.0 state, must be executed separately. The negate and negate byte (NEG.B) instructions re-
quire two machine states for execution because the 2’s complement of a number is formed by first generating the
I’s complement and then incrementing that value. After the negation is performed and the condition codes
loaded, the processor performs a byte swap if the destination operand is an odd byte, and starts an external data
transfer that is completed in machine state EXC.1.

6.2.10.3 Shifter Instructions — Two instructions, which are normally executed by the EXC.0 machine state, use
the SHFR to perform a right shift. These are the ASR 2nd ROR instructions. When these instructions operate on
a destination operand taken from an odd-byte location, a second machine state is required to perform the byte
swap, which also requires the SHFR. Therefore, the SHR.O (shift right) machine state performs the same actions
as the EXC.0 state, except that no external data transfer is begun and no byte swap is performed. These func-
tions are performed by the SHR.1 machine state. No conflict occurs for the ASL and ROL instructions because
left shifts are performed by the ALU, not by the SHFR.

6.2.10.4 Test Instructions — The three instructions that set the condition codes without modifying any stored
data, TST, CMP, and BIT, are executed by machine states that do not start an external data transfer for the data
operand. To further speed up the operation of the processor, a test is made to determine if the previous data
transfer used only the Fastbus. If this is the case, the bus address and control lines do not need to be maintained
in their previous conditions, and the fetch of the next instruction is started. When the data transfer uses the Uni-
bus, the bus address and control lines must not be modified until all deskewing is completed, so the sequence
transfers to the FET.0 machine state after the TST.O (test) state.

6.2.10.5 Jump Instruction — The jump (JMP) instruction performs only one operation; it sets a new value in

the program counter (PC). The value loaded into the PC is the destination address, not the destination data word.
The last external data transfer to fetch the data word is aborted, the PC is loaded, and a transfer to the instruc-
tion fetch sequence is performed by the machine state JMP.0 (jump).

6.2.10.6 Jump to Subroutine Instruction — The jump to subroutine (JSR) instruction performs two data trans-
fers in addition to loading the PC. The contents of a register specified by the instruction are saved on the hard-
ware stack, and the previous value in the PC is saved in the specified register. The JSR.0 (jump to subroutine)
machine state aborts the last external data transfer, loads the destination address into the PCA (but does not
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load the PCB from the PCA, so that the PCB can be stored in the general register), and loads the SR with the con-
tents of the specified register. The JSR.1 machine state transfers the SR to the BR, which is the register that
holds data to be transmitted during external data transfers, and loads the DR with the contents of general register
6, the stack pointer (SP). JSR.2 decrements the SP by 2 (to allocate a word at the top of the stack for the data
to be stored); the new value is stored in the SP and in the DR for use in the external data transfer begun in JSR.3.
The JSR.3 state also transfers the contents of the PCB to the specified general register and loads the PCB from
the PCA. The data transfer begun in the JSR.3 state is completed by the SVC.0 (service) machine state, which
performs the same function for interrupt and trap sequences.

6.2.10.7 Move From Previous Space Instructions — The MFPI or MFPD instruction transfers data from the desti-
nation address to the hardware stack; it acts like a “push” instruction. If the KT11 Memory Management Unit is
operating, the address space from which the destination data is taken may differ from the address space that the
data is pushed into, but this does not affect the operations within the processor. The MFP.0 state is entered with
the data to be transferred in the BR; this state loads the condition codes and loads the SR from the hardware
stack pointer. The MFP.8 machine state is entered if the destination mode is 0; this implies that the data isin a
general register. This data is loaded into the DR while the bus operation started by the IRD.0 machine state is
aborted. The MFP.9 machine state transfers the DR to the BR and loads the SR from the stack pointer. The se-
quence for destination mode 0 then joins the sequence for the other address modes.

6.2.11 Break Conditions Sequences

Drawing D-FD-KB11-A-03 (Flows 12) illustrates three sequences that are used to set up the new processor state
in response to various asynchronous requirements and to execute services for some of these requirements.

6.2.11.1 Abort Sequence — The major machine state sequence illustrated is entered after an operation is aborted
(at machine state ZAP.0) or in response to an external bus request or internal console request (at machine state
BRK.0). If an operation is aborted, the processor stops any external data transfers in machine state ZAP.0 and
control transfers either to the ZAP.1 machine state or to the BRK.0 (break) machine state. If the aborted opera-
tion was a data transfer attempting to store the processor status word (this occurs if a trap or interrupt service se-
quence caused a stack limit, bus error, or relocation address error trap), the old processor status word is rewritten
from the BR to the PS by a sequence of three machine states. The machine state sequence then rejoins the main
sequence through state BRK.O.

6.2.11.2 Break Sequence — In the BRK.O state, the processor transfers the PC value to the SR in case the PC
value must be stacked, and strobes the bus data into the BR in case an interrupt operation has supplied an inter-
rupt vector. The BRK.O state also determines whether the console flag is set. This flag can be set by a HALT in-
struction, by the HALT switch on the console, or by a parity error in the solid state memory. Once the console
flag is set, it remains set until cleared by a START or CONT switch operation. The processor cycles in the
CON.0 machine state when the flag is set.

If the BRK.O state has been entered with the console flag not set, the sequence continues with the BRK.1 ma-
chine state, which loads the DR from the BR in case the BR contained an interrupt vector, and performs a 4-way
branch that depends on the type of condition that caused the sequence to be entered.

6.2.11.3 Power-Up Sequence — If the break condition is a power-up request, the power-up sequence is entered
starting at machine state PUP.O (power up). This sequence loads the DR from the hard-wired start vector and
then loads the PC and the PS from the addresses pointed to by the start vector. The previous contents of the PC
and PS are not stacked because they are not significant, and because the stack pointer is also not reliable;
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a power-up sequence must assume that all registers have been altered when the power to the processor has been
off. The RTI.5 major state is entered because it performs the operations required to complete the sequence; it
loads the PS with the data loaded into the BR during state PUP.4 and the sequence then continues until a new in-
struction is fetched.

6.2.11.4 Internal Traps — Internal traps are those conditions that, when recognized by logic in the processor,
cause the abortion of a sequence or the abortion of the next instruction fetch. Trap-type instructions are handled
by the sequence beginning with the TRP.0 (trap) machine state. The internal traps are divided into two groups;
one group includes all errors that cause a failure of a stacking operation and require the use of an emergency
stack, while the other group handles all trap conditions that use the normal hardware stack.

6.2.11.5 Stack Errors — When a stack limit error occurs, or a bus error or memory management error on a stack-
ing operation occurs, this error must be serviced without the use of the normal hardware stack. Therefore, an
emergency stack is set up, using only the two words at addresses 0 and 2. The stack pointer is loaded with the
value 4 because the stacking operation decrements the stack pointer by 2 before each stacking transfer. This
value is generated by loading 2 into the SR, then adding 2 again and storing the sum in the stack pointer. The
stack error sequence then joins the internal error sequence at machine state BRK.8.

6.2.11.6 Internal Vector Generation — For all internal traps, the BRK.8 machine state sets a trap vector in the
DR, and loads the BR with the old PS word. The BRK.3 machine state then begins an external data transfer to
load the PC with the value stored at the trap vector address, and loads the PCA from the BR so that the BR can
be used to receive the new PC word. The processor now has the old PC in the PCB register and the old PS in the
PCA register. The external data transfer is completed and the remainder of the trap or interrupt service sequence
is performed by the SVC machine states (Flows 13).

6.2.11.7 Interrupts — All external break conditions, other than the ones discussed above, are assumed to be in-
terrupts from other devices. These conditions supply an interrupt vector on the bus data lines; this vector has
been loaded into the BR, and then into the DR, by the BRK.0 and BRK.1 states. The BRK.2 machine state loads
the BR from the old PS word, in the same way as the BRK.8 state, and tests for a valid break condition. If no
condition exists, the processor returns to the instruction fetch sequence through the RTI.6 machine state, which
clears the various flags that might have caused a break condition to be sensed. If the break condition is valid, the
BRK.5 machine state begins the interrupt service sequence.

6.2.11.8 Floating-Point Instructions — When the execution of a floating-point instruction by the FPP has been
initiated, the processor enters a floating-point service sequence, beginning with machine state FSV.2 (floating-
point service). When this state is entered, the DR contains a destination address and the floating-point instruc-
tion has been transferred to the FPP. The FSV.2 machine state performs no operations; the BRQ STROBE is re-
quired only for the last state preceding the instruction fetch sequence. The processor waits, repeating the FSV.2
state, until the FPP sends a synchronization signal, and then performs a bus transfer if the FPP requests one, or
returns to the instruction fetch sequence if no operation is required.

If an external data transfer is required, the FPP sends a request at the same time as the FP SYNC. The transfer
may be in either direction; from the FPP to the external storage locations, or from storage to the FPP. In the
FSV.0 machine state, the FPP supplies the bus control signals and a bus operation is started using the address in
the DR. The BR is loaded from the internal bus, in case the FPP is supplying a word of data for transmission to a
storage location; if this occurs, the bus control signals supplied by the FPP also gate the contents of the BR to the
external bus.
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The FSV.1 machine state completes the bus operation and loads the BR from the external bus, in case the opera-
tion is a transfer to the FPP. If the transfer is an FPP, the data is gated from the BR onto the internal bus for use
by the FPP, and the FPP can read the data when the FPATTN signal is transmitted. The DR is updated in case
the FPP requires additional words of data. The general register specified in the instruction, from which the DR
was loaded, is not accessed because the general register was updated by the total amount necessary during the des-
tination address calculation states. After each transfer, the processor waits for the FP SYNC signal before pro-
ceeding.

6.2.11.9 Trap Instructions — For trap instructions, the sequence used to initiate the trap service sequence differs
from the sequence for internal trap conditions in two respects. First, this sequence must abort any bus operations
that have been started; second, the sequence does not generate an acknowledge signal to clear all internal trap
conditions. Therefore, two machine states that are otherwise similar to BRK.8 and BRK.3 are used for trap in-
structions; these are TRP.0 and TRP.1, respectively. The same service sequence is used following TRP.1 as follow-
ing BRK.3.

6.2.12 The Service Sequence

The machine states illustrated on drawing D-FD-KB11-A-03 (Flows 13) perform the stacking of the old processor
state and the loading of a new processor state for various trap and interrupt conditions. The sequence performs
four external data transfers, in the following order:

a. The word addressed by a vector in the DR is read and transferred to the PC.
b. The word following the first word in the address space is read and transferred to the PS.

¢.  The old PS, which has been stored first in the PC, then in the BR, is written in the top word of the
hardware stack.

d. The old PC, which has been stored first in the DR, then in the BR, is written in the new top of the
hardware stack.

The processor stores the old values until the new values are loaded into the correct registers so that the new PS
value can specify the processor operating mode, and therefore, the processor stack pointer (SP) to be used in
storing the old values.

6.2.12.1 PC Fetch — The first machine state of the sequence, SVC.0, completes the first data transfer, reading
the new PC into the BR from the external bus. The vector address used in the transfer is in the DR; the next ad-
dress is calculated by adding 2 to the value in the DR and this address is stored in the SR.

6.2.12.2 PS Fetch — The next two states of the sequence, SVC.2 and SVC.3, perform a second external data
transfer using the SR as an address source. The new PS value is read into the BR; the previous contents of the BR
have already been loaded into the PC, while the old PC has been transferred to the DR. The double buffering of
the PC allows the PCB register to hold the old PS word, while the PCA holds the new PC.

6.2.12.3 Stacking Setup — The SVC.3 machine state loads the PS from the BR and saves the previous processor
mode in the PS. The SVC.4 state prepares the processor for the third external data transfer by moving the old PS
value from the PCB to the BR and reading the SP specified by the new PS word into the SR for use as an address.
In the SVC.5 state, the SP is decremented by 2 to point to the new top of the stack, and the new PC value is
loaded into the second PC register.
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6.2.12.4 Stacking the Old Values — The SVC.6 and SVC.7 states perform the third external data transfer, writing
the old PS from the BR to the top of the hardware stack. The SP is again decremented by 2, to point to the next
top of the stack for the old PC word; this value does not disturb the SR which is being used as the address source
during the transfer. As the transfer is completed, the old PC is transferred from the DR to the BR, and the DR is
loaded with the final value of the SP, so that the SVC.8 and SVC.9 machine states can perform the final data
transfer to push the old PC onto the top of the hardware stack. Finally, the processor returns to the instruction
fetch sequence to fetch the instruction pointed to by the new PC.

6.2.13  Console Operation Sequences

Normally, the KB11-A processor performs operations specified by stored programs and operates in a continuous
sequence without manual intervention. However, the processor can be controlled manually by the console
switches; these switches signal the processor to perform certain operations that are executed by the machine state
sequences illustrated on drawing D-FD-KB11-A-03 (Flows 14).

6.2.13.1 Processor Rest State — In order for the processor to perform any console switch operations, the pro-
cessor must be in the console state CON.O (console) to recognize which operation is required and to enter the ap-
propriate machine state sequence. The CON.O state is entered whenever a halt instruction is executed (in kernel
mode), the HALT switch on the console is set (and the PANEL LOCK switch is off), or a memory parity error
occurs (and parity halt is enabled). In any of these cases, the sequences that transfer to the CON.O state load the
current PC into the SR and the contents of general register 0 into the DR.

A special 10-way branch is used to select the machine state sequence following the CON.O state. The branch de-
codes the console switches and the previous console operation to select a sequence; if no switch is activated, the
processor loops in the CON.O state. Each switch activation causes one execution of the corresponding sequence;
no further sequences are executed until the switch is released and any switch is again activated.

Many of the sequences shown on this drawing require data supplied from the console. This data is supplied by a
set of switches on the console, through the BR register; the BR is loaded from the switches during the CON.0
(console) state.

6.2.13.2 Load Address Function — The console operations that transfer data to the processor or to storage lo-
cations require an address to specify the location where the data is stored. This address is taken from the SR reg-
ister. The SR can be loaded with a new value by the load address (LOAD ADRS) function, which is executed by
the ADR.O (address) machine state. This state transfers the contents of the BR (which is equivalent to the value
in the switch register) to the SR; it also loads the PCA register so that any START sequence following the load
address sequence uses the address that was loaded for the first instruction fetch. Following the ADR.O state, the
processor enters the CON.2 state to clear the switch activation and return to the CON.O state. The new address
is in the SR and the DR is unchanged.

6.2.13.3 Register Examine and Deposit — Console operations can also be used to read the contents of, or load a
new value into, either the external storage locations or the processor general registers. The general register opera-
tions utilize the address stored in the SR by transferring the contents of the SR to the IR, which permits decod-
ing the least-significant bits of the address as a register number. The specific register addressed can be loaded
from the BR, or the contents of the specific register can be transferred to the DR and displayed during the
CON.O state. If the PC (general register number 7) is addressed, both the PCA and the PCB are loaded, which de-
stroys the old PC value at the time of the halt. Following any operation on a general register, the SR contains
the address which specified the register and the DR contains the current contents of the register.
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6.2.13.4 Memory Examine and Deposit — The external stbrage locations can be examined and loaded in the
same manner as the general registers. In addition, the storage examine (EXAM) and deposit (DEP) functions can
be repeated, with automatic adjusting of the address in the SR, to access successive words of the storage address
space. The address incrementation is controlled as follows: whenever the EXAM or DEP switch is activated, the
processor determines whether the previous console operation was the same operation currently being requested; if
it was, the address is incremented before the external data transfer occurs (the function is examine step or deposit
step); otherwise, no incrementation takes place (the function is examine or deposit).

The deposit function, which begins with the DEP.1 machine state, performs an external data transfer, specifying
a DATO bus operation, and uses the SR as the address and the BR as the data. The deposit step function uses the
same machine states, following the DEP.0 (deposit) state, which increments the SR. Following either function,
the SR contains the address into which the data was deposited and the DR contains the data that was transferred.

The examine function, which begins with the EXM.1 (examine) machine state, performs one external data trans-
fer, specifying a DATI bus operation; the address is taken from the SR and the data is loaded into the BR. An
additional state, EXM.3, is required to load the DR from the BR. The examine step function uses the same ma-
chine states preceded by the EXM.0 state to increment the SR. Following either sequence, the SR contains the
address which was read and the DR contains the contents of that address.

6.2.13.5 Start Operation — The KB11-A processor can re-enter the normal instruction interpretation mode as
the result of either of two console switch operations: The START switch operation forces the next instruction
to be taken from the address specified by a previous LOAD ADRS or REG DEP switch to register 7 operation; if
no LOAD ADRS or REG DEP operation was done, the processor continues with the next instruction following
the instruction executed before the processor entered the console mode. The continue operation always con-
tinues with the instruction following the one executed immediately before entering console mode, unless general
register 7 has been explicitly modified.

The KST.0 (key start) machine state executes the start function by loading the PCB from the PCA register and
transferring to the RES.0 (reset) machine state; the latter state begins a sequence that initializes the state of the
processor and the system before fetching the next instruction from the address loaded in KST.0

6.2.13.6 Continue Functions — The CON.1 (continue) machine state returns the processor to the instruction
fetch sequence by a sequence that consists of the BRK.1, BRK.2, and RTI.6 machine states. If the console
ENABL/HALT switch is in the ENABL position, the processor continues with the normal operation sequences; if
the switch is in the HALT position, and the console S INST/S BUS CYCLE switch is in the S INST position, the
processor returns to the CON.0 state after the execution of one instruction.

If the console switches are in the HALT and S BUS CYCLE positions, the KB11-A processor does not enter the
console states. Instead, the processor clock actually stops in the machine state following the completion of an
external data transfer. No console operations other than a CONT (which simply restarts the processor clock) can
be performed.

6.3 FOLLOWING AN INSTRUCTION THROUGH THE FLOWCHARTS

The preceding section described the flowcharts in detail, in the order of the appearance of the machine state se-
quences on the drawings. To follow a particular instruction through the flowcharts, the reader must know which
machine state sequences apply to that instruction in the particular state of the processor; specifically, the reader
must know which machine state will be entered from various fork decision points.
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The tables and diagrams in this paragraph are designed to help the reader determine the exact sequence of ma-
chine states for a particular instruction. Starting with either the binary code of an instruction or the symbolic
name of the instruction, the reader can determine what machine state is entered from each decision point, and
what branches are taken at some of the primary branch points within the sequences shown.

Figure 6-10 illustrates the correspondence between the binary value of a 16-bit word and the instruction that is
represented by that value. If the reader is starting from a binary code (e.g., if the reader is stepping through the
machine states using the maintenance module manual clock, and has an instruction in the IR (and the BR) at the
end of the FET.1 machine state), the procedure to determi/ne what instruction the code represents is as follows:

a.  Starting with the most-significant bit of the instruction code, look down the corresponding column of
Figure 6-10 to find the number that matches the value of that bit in the instruction.

b.  The horizontal line to the right of that number leads to another vertical column, for the next most-
significant group of bits in the binary code. Look down that line to find the number that matches the
value of the corresponding bit or bits in the instruction.

c¢.  Repeat Step b for each portion of the binary code until the last number is followed by the symbolic
name and structure of an instruction instead of a horizontal line. That instruction corresponds to the
given binary code.

When the symbolic code for an instruction is known, the reader can find that instruction in Table 6-4, which spe-
cifies the machine state sequences used to execute that instruction. The table is in alphabetical order according
to the mnemonic codes used for the instructions, and lists both the instruction classes, if any, and the machine
states entered from various decision points, when used. The instruction classes are groupings of the instructions
according to properties of the execution sequences (e.g., I, P, and O Class instructions perform a DATI, DATIP,
or DATO bus transfer as the last transfer of the destination data fetch sequence). While the fork A decision point
is used by all instructions (the fork A decision point follows the instruction fetch sequence and is, in effect, the
instruction decoding system), not all instructions use the fork B or fork C decision points; those which do not

are indicated by the entry “not used” in the appropriate column.

Whenever possible, the entry for each active decision point specifies a machine state by its symbolic name, with
the number of the flowchart where that state is illustrated in parentheses. If a particular machine state depends
on additional conditions, those conditions are shown preceding the corresponding machine state and are separated
from the state by a colon. There are four groups of conditions where the number of machine states that can be
entered is too large to be shown directly in the table; these conditions are indicated as follows:

a. In the fork A column, the entry “see Table 6-5” refers to Table 6-5, which illustrates the machine
states entered for various source modes.

b. In the fork A column and in Table 6-5, the entry “see Table 6-6"" refers to Table 6-6, which illustrates
the machine states entered for various destination modes.

c. In the fork A column, the entry “fetch” in the entries for branch instructions indicates a transfer to
FET.0 if asynchronous requests require service, and to FET.1 if no asynchronous requests are sensed.

d. In the fork C column, the entry “see Table 6-7" refers to Table 6-7, which illustrates the machine states
entered for various destination modes.

To follow an instruction through the flowcharts, first find the instruction in Table 6-4, using Figure 6-10 if neces-
sary. Then, using Tables 6-5 and 6-6 if necessary, follow the instruction through the instruction fetch sequence,
the fork A decision point, and the machine state sequence following that decision point. The conditions at any
branches in that sequence can be determined from the current processor state; if the branch conditions depend
on the instruction class, see Table 6-4. As the machine state sequence passes through other decision points, use
Table 6-4 and Table 6-7 as necessary to determine the next state at each decision point.
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Figure 6-10 Determination of an Instruction from the Binary Code
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Table 6-4

Microprogram Instruction Properties

Instruction Class Fork A Fork B Fork C
ADC or ADCB P,.E see Table 6-6 EXC.0(11) not used
ADD P,E see Table 6-5 EXC.0(11) see Table 6-7
ASH none see Table 6-6 ASH.O(7) not used
ASHC none see Table 6-6 ASC.0(7) not used
ASL or ASLB P,E see Table 6-6 EXC.0(11) not used
ASR or ASRB P,E see Table 6-6 DRO(1):SHR.O(11), not used

DRO(0):EXC.0(11)

BCC none BCOK:BXX.0(1), not used not used
-BCOK:fetch

BCS none BCOK:BXX.0(1), not used not used
-BCOK:fetch

BEQ none BCOK:BXX.0(1), not used not used
-BCOK:fetch

BGE none BCOK:BXX.0(1), not used not used
-BCOK:fetch

BGT none BCOK:BXX.0(1), not used not used
-BCOK:fetch

BHI none BCOK:BXX.0(1), not used not used
-BCOK :fetch

BHIS none BCOK:BXX.0(1), not used not used
-BCOK:fetch

BIC or BICB P,E see Table 6-5 EXC.0(11) see Table 6-7

BIS or BISB P,E see Table 6-5 EXC.0(11) see Table 6-7

BIT or BITB LE see Table 6-5 FAST:TST.1(11), see Table 6-7

-FAST:TST.0(11)

BLE none BCOK:BXX.0(1), not used not used
-BCOK:fetch

BLO none BCOK:BXX.0(1), not used not used
-BCOK:fetch

BLOS none BCOK:BXX.0(1), not used not used
-BCOK:fetch

BLT none BCOK:BXX.0(1), not used not used
~BCOK:fetch

BMI none BCOK:BXX.0(1), not used not used
-BCOK:fetch

BNE none BCOK:BXX.0(1), not used not used
-BCOK:fetch
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Table 6-4 (Cont)
Microprogram Instruction Properties

Instruction Class Fork A Fork B Fork C
BPL none BCOK:BXX.0(1), not used not used
-BCOK:fetch
BPT none TRP.0(12) not used not used
BR none BXX.0(1) not used not used
BVC none BCOK:BXX.0(1), not used not used
-BCOK :fetch
BVS none BCOK:BXX.0(1), not used not used
~-BCOK:fetch
ccop none CC0.0(3) not used not used
CLR or CLRB P,.E see Table 6-6 EXC.0(11) not used
CMP or CMPB LLE see Table 6-5 FAST:TST.1(11), see Table 6-7
-FAST:TST.0(11)
COM or COMB P,E see Table 6-6 EXC.0(11) not used
DEC or DECB P,E see Table 6-6 EXC.0(11) not used
DIV 1 DMO:DVS.0(3), DIV.0(9) not used
-DMO;
see Table 6-6
EMT none TRP.0(12) not used not used
FLOATING POINT F FOP.0(2) FOP.4(7) DMO:FOP.5(5),-DMO;
see Table 6-7
HALT none HLT.0(3) not used not used
INC or INCB P,E see Table 6-6 EXC.0(11) not used
10T none TRP.0(12) not used not used
JMP J DMO:TRP.0(12), JMP.0(11) not used
-DMO;
see Table 6-6
JSR J DMO:TRP.0(12) JSR.O(11) not used
-DMO;
see Table 6-6
MARK none MRK.0(2) not used not used
MFU I DMO:MFU.8(11), MFU.0(11) not used
-DMO;
see Table 6-6
MOV O,E see Table 6-5 not used see Table 6-7
MOVB E,P see Table 6-5 not used see Table 6-7
MTU (0] MTU.0(1) not used see Table 6-7
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Table 6-4 (Cont)
Microprogram Instruction Properties

Instruction Class Fork A Fork B Fork C
MUL I DMO0:MUL.8(3), MUL.0(8) not used
-DMO;
see Table 6-6
NEG or NEGB P DMO:NEG.7(3), NEG.0(11) not used
-DMO;
see Table 6-6
RESET none RES.0(3) not used not used
ROL or ROLB P,E see Table 6-6 EXC.0(11) not used
ROR or RORB P,E see Table 6-6 1 DRO(1):SHR.O(11), not used
DRO(0):EXC.0(11)
RTI none RTI.O(2) not used not used
RTS none RTS.0(2) not used not used
RTT none RTI.O(2) not used not used
SBC or SBCB P,E see Table 6-6 | EXC.0(11) not used
SOB none SOB.0(2) not used not used
SPL none SPL.0(3) not used not used
SUB P,E see Table 6-5 EXC.0(11) see Table 6-7
SWAB P,E see Table 6-6 EXC.0(11) not used
SXT P,E see Table 6-6 EXC.0(11) not used
TRAP none TRP.0(12) not used not used
TST or TSB ILE see Table 6-6 FAST:TST.1(11), not used
-FAST:TST.0(11)
WAIT none WAT.0(3) not used not used
XOR P,E see Table 6-6 EXC.0(11) not used
Table 6-5 Table 6-6
Fork A Binary Fork A Unary
Source Mode Machine State Destination Mode Machine State
0 see Table 6-6 0 (DF7 + BRQ):EXC.9(3),
-(DF7 + BRQ):EXC.8(3)
1 S13.0 (1) 1 D12.0 (5)
2 S13.0 (1) 2 D12.0(5)
3 S13.0(1) 3 D30.0 (5)
4 S45.0 (1) 4 D45.0 (6)
5 S45.0 (1) 5 D45.0 (6)
6 S67.0 (2) 6 D67.0 (6)
7 S67.0 (2) 7 D67.0 (6)
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Table 6-7

Fork C Binary
Destination Mode SRO Machine State
0 0 DF7:D07.1(4), -DF7:D00.9(4)
1 DF7:D07.0(4), -DF7:D00.8(4)
1 0 D12.8 (5)
1 D129 (5)
2 0 D12.8 (5)
1 D12.9 (5)
3 0 D30.8 (5)
1 D30.9 (5)
4 0 D45.8 (6)
1 D45.9 (6)
5 0 D45.8 (6)
1 D45.9 (6)
6 0 D67.8 (6)
1 D67.9 (6)
7 0 D67.8 (6)
1 D67.9 (6)

6.4 AN INSTRUCTION EXAMPLE

This paragraph traces one instruction through a sequence of machine states to illustrate the process of finding
each machine state and using the flowchart and ROM map information to understand the operations performed
by the processor. The example instruction and the environment in which it is executed is shown in Figure 6-11.

AN AN AL2767 AG5A315 AgM109 Ccmp #1955 CHAK

.
.
.
.

A 1€ ARRARRD CHAR: «WORD G

Figure 6-11 Instruction Execution Example

Immediately before the processor begins the machine state sequence for this instruction, the program counter
(PC) contains the value 10004, the processor status word contains the value 000340, there are no bus requests or
other asynchronous conditions, and the processor is about to enter the FET.0 machine state. In this state, a
DATI bus operation is begun, using the contents of the PC as the address.

The next machine state entered is FET.1. In this state, the PC is updated (the new value is loaded into the PCA
and does not disturb the PCB, which is still being used for the address in the data transfer) and the word that is
read is loaded into the IR and BR. The PCA now contains 1002, the IR and BR contain 022767, and the PCB
still contains 1000; finally, after the bus operation is completed, the PCB is updated to 1002.
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The third machine state entered is IRD.0. In this state, the fork A logic is enabled. According to Figure 6-10, the
binary number in the IR represents a CMP instruction; the entry for this instruction in Table 6-1 refers to Table
6-2, which indicates that for a source mode of 2 (as specified by the third octal digit of the instruction), the next
machine state is $13.0. The IRD.0 machine state also loads the SR and DR with the updated PC value (1002),
and begins a new DATI operation with the updated PC (1002) as the address.

In the S13.0 machine state, the second DATI is restarted, using the contents of the SR as the address (in this case
the address does not change from the IRD.O state to the S13.0 state, but when the source register is not register 7,
the address generally changes). The contents of the SR (1002) are incremented by 2, and this value is written
back into the PCA and PCB, which now contain 1004.

The fifth machine state entered for this instruction is the S13.1 state. In this state, the second DATI is completed,
with the data that has been read loaded into the BR register. The new contents of the BR are 15 (the contents of
the word following the instruction). The DR is loaded ‘with the updated contents of the register specified by the
destination field of the instruction (because this is register 7, the DR is loaded from the PCB); the new contents

of the DR is 1004.

For a source mode of 2, the branch condition in S13.1 enables the fork C logic. The entry for the CMP instruc-
tion in Table 6-1 refers to Table 6-4, which indicates that, for a destination mode of 6 (as specified by the fifth
octal digit of the instruction), the next machine state is the D67.8 machine state, which is shown on drawing
D-FD-KB11-A-03 (Flows 6). This machine state transfers the BR to the SR, and begins the third DATI bus oper-
ation, using the contents of the PCB as the address.

The next machine state is the D67.0 state, which completes the third DATI and increments the PCA by 2. Be-
cause the DR is intended to reflect the current contents of the specified register, the DR must also be updated to
reflect the new value in the PC, which is 1006. The data read into the BR is 100.

Following the D67.0 state, the processor enters the D67.1 'state, where the PCB is loaded from the PCA and the
contents of the BR is added to the contents of the DR. The result (1106) is loaded into the DR. The branch con-
dition in this machine state selects the D10.3 state to follow the D67.1 state.

In the D10.3 machine state, the processor begins a fourth bus operation, using the contents of the DR (1106) as
the address. The type of bus operation performed depends on the instruction class; according to Table 6-1, a
CMP instruction is an I Class instruction, so a DATI operation is begun. This machine state also loads the BR
from the SR, so that both registers contain a 15.

Following the D10.3 state, the next state entered depends on the instruction class. A CMP instruction is not F,1J,
or O Class, so the D10.6 state is entered. This state completes the fourth DATI operation, loadiﬁg the contents
of the location addressed by the DR (location 1106) into the BR (which now contains all 0s). The old contents
of the BR are selected by the data paths and can be displayed in the console data lights by selecting the data paths
input to the lights.

The D10.6 machine state branch condition enables the fork B logic. The entry for a CMP instruction in Table
6-1 indicates that the next machine state is TST.0 (assuming that the KB11-A processor is operating with core,
rather than solid state memory). This machine state is illustrated on drawing D-FD-KB11-A-03 (Flows 11).

The CMP instruction does not alter any data words, so no further bus operations are required. The TST.0 ma-
chine state maintains the state of the bus address and control lines, to prevent deskewing problems, and performs
instruction-dependent data operations and condition-code loading. Specifically, the BR is subtracted from the SR
and the condition codes are loaded as in a MOV instruction on the output of the SHFR. A BRQ STROBE is per-
formed so that the branch in the next machine state (which is FET.0) can be performed. The final values of the
condition codes are as follows: the N bit is cleared, the Z bit is cleared, the V bit is cleared, and the C bit is cleared.
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CHAPTER 7
LOGIC DESCRIPTION

This chapter describes the KB11-A logic in sufficient detail to allow maintenance personnel to review the pur-
pose and function of the logic shown on each sheet of the block schematics. The text makes maximum reference
to the block schematics and is organized on a sheet-for-sheet basis with those drawings wherever possible. Short-
form drawing references are used throughout the text. For example, ‘‘drawing DAPA” refers to the first, or A,
sheet of the DAP module block schematic. This is the same convention used in the drawings to indicate the
source of a signal as part of its mnemonic. Thus, the signal RACA UBRK H is generated as shown on sheet A of
the RAC module block schematic.

7.1 DAP MODULE M8100

The Data Paths (DAP) Module M8100 contains most of the data paths logic elements, including the bus register;
A, B, and bus address multiplexers; the ALU; and the shifter.

7.1.1 Bus Register

Drawing DAPA illustrates the bus register (BR). The BR is implemented by three 6-bit data latches that receive
data from the bus register multiplexer (BRMX). Only 16 bits of data are stored. The complement of bit 14 is
also stored in the BR for use on the RAC module as a microbranch condition. DAPA BR (03:00) H are also
brought to module pins; these signals are used to directly load the processor condition codes (on drawing IRCH)
from bus data.

The register is loaded on the low-to-high transition of the clock input. The signal RACA UBRK H enables the
clock input. The register is then clocked by either clock pulse TIGC T1 L for data path control, or by UBCB
BUS LOAD L for a DATI bus long pause operation.

7.1.2 A, B, and Bus Address Multiplexers

Refer to drawings DAPB, DAPC, and DAPD. Each multiplexer selects one of four inputs, depending on the
state of a pair of microprogram bits. The six least-significant bits of each multiplexer are shown on DAPB; the
next six most-significant bits are shown on DAPC, and the four most-significant bits are shown on DAPD. The
relationship between the AMX, BMX, and BAX microprogram bit values and the input selected is shown on
DAPB for each multiplexer.

The A multiplexer (AMX) selects the A inputs to the arithmetic and logic unit (ALU). The source register (SR)
and destination register (DR) are used to buffer the outputs of the processor general register and for temporary
storage of operands fetched from bus locations.



The B multiplexer (BMX) selects the B inputs to the ALU. The constant multiplexers (KIMX and KOMX) sup-
ply small address increments, vector addresses for internal traps, and calculated offsets for instructions that make
relative changes to the PC. The KOMX generates only positive values up to 10. Negative values are generated by
using the ALU in subtract mode, so only the four least-significant bits are implemented; the eight most-significant
bits are generated by sign-extension logic for sign extension when moving a byte (MOVB) to a general register.
The K1MX generates only even numbers, so K1IMXO00 is always 0.

Several bits from the AMX and several bits from the BMX are brought to module pins. These signals are con-
nected to the IRC module for use in generating processor condition codes.

The bus address multiplexer (BAMX) selects the source of'the 16-bit virtual address transmitted by the proces-
sor during data transfers.

Refer to drawing DAPC. The BMX has separate selection signals for the high byte and the low byte. The pur-
pose of this division is discussed in the description accompanying drawing DAPD.

The K1MX input to BMX11 and BMXO0S is inhibited when the start vector input to the K1MX is selected. The
start vector may take on either values of less than 2004 or values between 773200 and 773374 inclusive; the
higher set of values is generated by providing sign extension for the start vector and blocking bit 11 and bit 08
to generate 3200 instead of 7600.

Drawing DAPD illustrates the four most-significant bits of each of three multiplexers; the A multiplexer (AMX),
the B multiplexer (BMX), and the bus address multiplexer (BAMX).

The operation of the BMX is complicated by the requirement for separate control of each byte. The micropro-
gram bits that control the BMX are passed directly to the low-byte multiplexers, but are inhibited from the high-
byte multiplexers by GRAA SGNEX MOVB L. This signal indicates that a single byte of data is being transferred
to a processor general register; the sign is extended using the high byte of the KOMX input, which is selected
when DAPD BMXS1 HIB L and DAPD BMXS0 HIB L are not asserted.

Drawing DAPD also shows the logic used in the constants multiplexer KOMX. The relationship between the KMX
microprogram control bits and the input selected is shown on the drawing. The source and destination constants
are generated on the IRC module. The remaining constants (values of 1 or 2) are generated by directly wiring a
logic 1 to the appropriate bit positions. The value 2 constant can be inhibited when doing floating-point bus
operations and the FRMJ FP ADDR INC L signal is not asserted. The KOMX outputs are brought to |module

pins because the value output by the KOMX during register modification (in address calculations) is sent to the
memory management status register 1 (drawing SSRF in the KT11-C engineering drawing set).

DAPD KOEX H acts as a sign-extend signal for the KOMX input to the BMX. This sign extension is not used with
the KOMX itself, but with the bus register or source register input when a byte is being sign-extended during a
MOVB to a register.

If the memory management unit is not enabled, DAPD EX MEM FLAG H is used to extend the 16-bit virtual ad-
dress to an 18-bit physical address. If DAPD BAMX (15:13) H are all 1s, the two most-significant bits of the 18-
bit physical address SAPJ PA (17:16) H are also set to 1. Otherwise, the two bits are set to 0. When the memory
management unit is active, only the 16-bit virtual address is used.

7.1.3 Constant Multiplexer 1 (K1MX)

Refer to drawing DAPE. The constant multiplexer 1 (K1MX) generates vector addresses and calculates program
counter offsets. The multiplexer is controlled by the two KMX microprogram bits as shown on the drawing.



The start vector is used to fetch a new program counter (PC) and processor status (PS) during the power-up se-
quence. The value of the start vector (SV) is selected by jumpers on the module, as shown in the upper-left sec-
tion of drawing DAPE. A jumper in place generates a 1.

Start vectors (and trap vectors) always begin on even word boundaries (that is, with address bits‘01 and 00 both 0).
DAPE SV (06:02) select a vector address within a range, while SV07 is used to select either the range from O to
174, or the range from 773200 to 773374. The range selection is accomplished by sign-extending the start vector
to all bits except bit 11 and bit 08 (drawing DAPC).

The trap vector (TV) is used to select a new PC and PS following a trap operation. The trap vectors for a variety
of internal conditions are defined by the logic in the lower-left corner of the drawing. The chart on DAPE defines
the specific vector for each condition. If none of these conditions is present, but the processor is doing a trap op-
eration, the trap vector is set to 4. This occurs for non-existent memory references, memory parity errors, odd
address errors, fatal stack violation errors, and executing the Halt instruction in user or supervisor modes of oper-
ation. The K1MX constants for EMT and TRAP instructions are one-half their assigned values. This is because
they are executed by the same machine states (Flows 12) that cause reserved instructions to be left shifted (so
that vector 4 forms vector 10).

The third input to K1MX, BR <(07:00) H, is used for the offset in subtract 1 and branch (SOB), and MARK in-
structions. This offset is always in full words and is always a positive quantity that is subtracted from the PC in
the ALU. Because all PDP-11 Systems use byte addresses, the offset, as it appears in the instruction, must be
multiplied by 2 to generate the proper value to be subtracted from the PC. This is done by shifting the 6-bit off-
set 1 bit to the left. For example, bit BROO is the input to the multiplexer for bit 01. The BR is used because it
contains the same value as the instruction register (IR) at the time of the PC modification, and is directly acces-
sible to the data path logic.

The fourth input to K1MX is used for the offset in successful branch instructions. The branch offset can be either
positive or negative; the value taken from the instruction is first multiplied by 2 (shifted left) and then sign-
extended, and the resulting 16-bit number is added to the PC. The branch offset can have values from +127,, to
-128,, words; BR (06:00) provides 27 or 128 numbers, and the left shift provides word (rather than byte) ad-
dresses.

7.1.4 Arithmetic Logic Unit, Shifter, and Program Counter

7.1.4.1 Arithmetic Logic Unit (ALU) — Refer to drawings DAPF and DAPH. The ALU does most of the data
manipulation in the processor. It operates on two 16-bit words of data and a carry input to produce one 16-bit
word of data and a carry output. The carry signals are not active when the ALU is operating in the logical mode.
Drawing DAPF shows the low byte and DAPH shows the high byte.

The 16-bit ALU is implemented with four 745181 4-bit Arithmetic Logic Units. Each 745181 includes look-
ahead carry generation for the four bits. A second level of look-ahead carry generation is provided by the
74182-1 carry generator. The carry-propagate (P) and carry-generate (G) outputs of each 74S181 (except the
most-significant four bits) are connected to the corresponding inputs of the 74182-1, and the carry outputs of the
74182-1 are connected to the appropriate carry inputs of the ALUs. The least-significant bit carry input is con-
trolled by GRAA ALUC H, based on the output of the subsidiary instruction-dependent ALU control ROM.

The ALU can perform any one of 16 logical functions (each output bit is dependent only on the corresponding
input bits) or any one of 16 arithmetic functions (each output is dependent on the corresponding input bits and
on a carry propagated from less-significant bits). The selection of a particular function is controlled by five sig-
nals from the GRA module which select the mode (arithmetic or logical) and the function. The functions used in
the KB11-A are charted on drawing DAPF. The complete 74S181 truth table is listed in Appendix A of the
PDP-11/45 System Maintenance Manual.



The function select inputs, S(3:0), of the ALUs require three unit loads each. Therefore, the function and mode
select signals from the GRA module drive two sets of inverters. One set supplies control signals to the low-byte
ALUs, while the second set supplies control signals to the high-byte ALUs. This reduces the fanout requirements
on each inverter to an acceptable level; e.g., DAPF LS3 H and DAPH HS3 H are logically identical.

In addition to the data and carry outputs, each ALU element has a comparator output which indicates (if the
ALU is in subtract mode) that the two inputs are equal. These outputs, which are open-collector driven, are wire-
ANDed for each data byte to generate equality signals that are used in forming the condition codes.

DAPF A = B (7:0) H indicates that the inputs to the low data byte are equal.

DAPF A = B (15:0) L indicates that the inputs to the entire word are equal. DAPH BUS A = B (15:8) H is the
wired-AND of the A = B outputs for the high-byte ALUs on drawing DAPH,

7.1.4.2 Shifters and Program Counter — The output of the ALUs are routed to the shifters (SHFR) and to the
program counter (PC). The program counter is implemented as a double-buffered register, to permit the contents
of the PC to be changed while the previous contents are being used as the address in a data transfer. The double
buffering requires two registers, PCA and PCB. The PCA register is loaded directly from the ALU under control
of a clocking signal that is enabled by a microprogram bit. The outputs of the PCA go only to the PCB, which
has a separate clocking signal under separate microprogram control.

The shifter (SHFR) is a 4-input multiplexer that provides unshifted, right-shifted, and byte-swapped inputs from
the ALU, and can also accept the contents of the PCB as an input. The output of the SHFR is directed to the
general registers, the source and destination registers, and the bus address of bus data lines. The shifter output
provides the console data display referred to as DATA PATHS. Left shift operations are performed in the ALU
by using the A plus A mode. The sum of A added to A is equivalent to the product 2A, which in turn is equiva-
Ient to shifting A (as a binary number) one bit to the left.

Special operations are required in the shifter for the most-significant bit of each byte. The shifter logic for data
bits 7 and 15 are shown separately on drawing DAPJ.

7.1.4.3 Shifter Logic — Refer to drawing DAPJ. The most significant bit of the shifter is SHFR 15. The shifter
inputs are similar to the inputs for other shifter bits when the byte-swap or unshifted ALU inputs are selected.
However, the input used when the right shift mode is selected is dependent on the instruction being executed.
Normally, on a right shift operation, the sign of the data word is extended. This is done by routing ALU15 (the
most-significant, or sign, bit) to the right shift inputs of both DAPJ SHFR 15 and DAPH SHFR 14. For right ro-
tate (ROR and RORB) instructions and multiply instructions, this procedure is modified by forcing a second level
2-input 74S157 multiplexer to select GRAJ SHFR DATA H instead of DAPH PCB15 H. The signal GRAJ SHFR
DATA consists of the carry (C) bit for the rotate instruction; for the multiply instruction, the input is used to
extend the sign of the result during the calculation and to correct the sign on the cycle if necessary.

The shifter logic for data bit 7 must operate the same as the normal bits for word data, and as the most-significant
bit for byte data. The right shift input must be able to receive one of three values; ALUOS8 for word data; ALUO7
for byte shifts, if not a rotate instruction; or the carry (C) bit for an RORB instruction. This is accomplished by
multiplexing the C bit with the PCB input and forcing the SHFR to accept input B for an RORB instruction; for
any other byte shift, the SHFR is forced to accept input C, the no shift input, so the SHFR07 and SHFRAQ7
both receive ALUO7. SHFRA15 and SHFR15 signals and SHFRAO7 and SHFRO7 signals are logically identical
and appear only for additional loading capacity.

7.1.4.4 Program Counter Clocks — Refer to drawing DAPJ. The two PC registers are clocked separately. The
PCA register is clocked when pulse TIGD T5 H, enabled by the microprogram bit RACA UPCA H, produces
DAPJ CLKPCA H.
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DAPJ CLKPCB H is controlled by two bits of the microprogram word. In addition to directly enabling the clock
signal on the pulse TIGC T1 H, the control bits can selectively enable clocking of the PCB, but only if the register
selected by an instruction is register 7, the PC. To determine which register is selected by the instruction, IRCB
SRCF7 H and IRCC DSTF7 H are generated if the corresponding register-select bits in the instruction register are
set. When the processor updates the contents of a register during an address calculation, the updated contents
are clocked into the PCA register. If the selected register is register 7, the updated contents can be clocked into
PCB on the next cycle. The PCA register is clocked on time pulse T5 and the PCB register is clocked on the fol-
lowing time pulse T1.

7.1.4.5 Control Signals — Refer to drawing DAPJ. The remaining logic on this drawing generates four signals
that are used in generating the processor condition codes and one signal that is used in 2-word left shifts:

a. DAPJ AMX SIGN H is the sign of the A input to the ALU. This signal corresponds to AMX15 if the
processor is operating on word data, or to AMX07 if the processor is operating on byte data.

b. DAPJ ALU SIGN H is the sign of the ALU output; it is taken from ALU15 for word data or from
ALUOQ7 for byte data.

c. DAPJ A=B(15:8) + BYTE H indicates either that the high data byte is all Os or that the processor is
operating on byte data. This signal is used in determining whether all the active data is Os for the Z
condition code.

d. DAPJ ALUCN L is the carry output of the active portion of the ALU; it takes the carry output from
the high byte for word data or the carry output from the low byte for byte data. This signal is used to
generate the carry (C) condition code.

e. DAPJ LEFT DATA H is the input to the least-significant bit of the destination register (DR) during
left shifts that shift both the ALU data and the destination register. Normally, this input is O for left
shifts, but during the execution of the divide instruction (DIV), the input receives the carry output of
the ALU.

7.2 GRA MODULE M8101

The General Registers and ALU Control (GRA) Module M8101 contains the general register and ALU control
logic. The SR, DR, and SC registers are also included on this module.

7.2.1 Arithmetic and Logic Unit Control

Refer to drawing GRAA. Data manipulation is performed in the KB11-A processor by an arithmetic and logic
unit (ALU) that can combine two operands in various ways or perform operations on either operand singly. Dur-
ing each machine cycle, the operation performed by the ALU (and the operation performed on the ALU output
by the shifter) is selected by a set of control signals from the GRA module. The logic that generates these con-
trol signals is shown on this drawing.

During most machine cycles, the ALU and the shifter (SHFR) are controlled directly by the bits in the ALU and
SHF fields of the main ROM microprogram word. However, if the value of the ALU control field is 7, the con-
trol signals are generated from the outputs of the subsidiary ALU control ROM, located on the GRA module.
This feature is called the instruction-dependent control of the ALU.

There are eight control signals generated on this drawing (as well as several signals used to generate other data
path control signals). These eight signals include:

a. GRAA ALU(<S3:S0) L
b. GRAA ALUCH

c¢. GRAAALUML

d.

GRAA SHFRS (S1:S0) L



GRAA ALU INS DEP L controls two 745158 multiplexers that select the source of these ALU control signals.
When the signal is high, the main ROM ALU and SHF fields are the source. If the ALU field is 7, GRAA ALU
INS DEP L selects the subsidiary ROM on the GRA module.

7.2.1.1 Non-Instruction-Dependent Control — The ALU control field in the main microprogram ROM is a 3-bit
field that controls the values of six control signals. There is not a one-to-one relationship between the ROM bits
and the control signals, and not all possible combinations of control signals can be generated. Each control signal
is, in general, the result of decoding the ROM bits and sensing selected inputs from the condition codes and the
instruction decoding. Table 7-1 shows, for each value of the ALU control field, the operation performed by the
ALU and the states of the ALU control signals necessary to select that operation. The numbers at the bottom of
the columns indicate which ALU control field values generate each signal. The logic connected to the non-
instruction-dependent inputs of the multiplexer generates the signals for the values shown.

Table 7-1
Non-Instruction-Dependent ALU Control Signals
UALU Operation S3 S2 S1 SO M Cin
0 not A L L L L H
1 B H L H L H
2 A (plus carry) L L L L L L
3 A plus B (plus carry) H L L H L L
4 not used
5 A plus A (plus carry) H H L L L L
6 A-B L H L H
7 instruction-dependent

7.2.1.2 Instruction-Dependent Control — When the ALU control signals are instruction-dependent, each of the
six signals is controlled by a separate output signal from the subsidiary ALU control ROM shown on drawing
GRAA. The two signals, ALUSO and ALUS1, unconditionally take on the value of the ROM outputs. The other
two select signals, ALUS2 and ALUS3, are blocked when the SWAB instruction is being executed. The SWAB
instruction does not have a unique ROM word, and uses the same word as the ASL instruction with some of the
control signals modified in this manner. The ALU control ROM map is shown on drawing GRAK.

The ALUM (mode control) signal is taken directly from the ROM except when the SXT instruction is executed
with the sign bit set. The value stored in the subsidiary ROM for the SXT instruction causes the ALU to gener-
ate a logic 0. When the mode bit is forced off, the ALU generates an arithmetic minus 1. The mode bit is also
forced off (arithmetic mode) for the ROL, ADC, and SBC instructions, to force the ALU into the A plus A mode.
The combination of both ROMM and ROMC asserted is used to indicate that special treatment of the carry bit
is necessary.

The generation of the ALU C (carry-in) signal is modified for two classes of instructions. The DIV and ASHC in-
structions operate on 2-word operands, and the instruction-dependent state is one that shifts the two words left.
The carry-in must take on the state of the most-significant bit of the less-significant word. For the ADC and
ROL instructions, a carry insert signal is generated if the C bit is set; for the SBC instruction, the signal is gener-
ated if the C bit is cleared. This data-dependent carry generation is controlled by the assertion of both ROMM
and ROMC, as described in the previous paragraph.

GRAA SGNEX MOVB is generated when a MOVB instruction is being executed. This instruction is used to ex-
tend the sign of the byte into the high byte when the destination is a general register.

GRAA WORD + OB SWAP L and H indicate that the significant SHFR outputs include the high byte, and the
sign of the output is bit 15 (rather than bit 7).
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The SHFR control signals, GRAA SHFRS0O and SHFRS1, are normally derived directly from the main micropro-

gram ROM. When the ALU control signals are instruction-dependent, these signals are also instruction-dependent
and are taken directly from the subsidiary ALU control ROM. For the SWAB instruction, and for certain instruc-
tions that require a byte swap during execution, these signals are forced low to generate the swap-byte control of

the SHFR.

7.2.2 Shifter Zero Detection

Refer to drawing GRAB. The GRAB Z DATAZ2 L logic on this drawing detects all Os data at the shifter (SHFR)
outputs. Depending on the operation being performed, either the entire word of data or only one byte of data
may be significant. For word data, the two wire-ANDed circuits must both detect all Os. For normal byte oper-
ations, only the low byte (SHFRQ7 through SHFR00) must be all 0s. During operations on odd bytes or during
a SWAB instruction, only the high byte is tested. A fourth input, enabled by IRCF CHECKZ H, is used when the
final result is two words to clear the 0 (Z) bit if the second word does not contain all Os. If the second word is all
0Os, the Z bit retains the previous value. Thus, only if both words are all Os will the Z bit be set.

7.2.2.1 Left Save — GRAB LEFT SAVE (1) H and its complement are used during the divide instruction to de-
termine, after each subtraction cycle, whether the next cycle should also subtract. The signal DAPJ LEFT
DATA H is the carry-out of the ALU.

7.2.2.2 0Odd Byte Destination — GRAB OBD (1) H and its complement are used to indicate that the destination
address in the DR register points to an odd byte. This flip-flop is clocked at the same time as the DR register and
receives the same input when the DR is in the load mode.

7.2.3 General Register Address Logic

Refer to drawing GRAC. The logic shown on drawing GRAC generates signals that control the selection of one
of 16 general registers in each of two scratchpad memories in the KB11-A processor. The processor has two sets
of eight registers, from a programmer’s point of view, but each set is duplicated so that two registers can be read
at one time. When data is written into a register, both sets must access the same register; however, there is no
logical protection against addressing different registers during writing. The microprogram is responsible for select-
ing an input to the register address generators that generates two identical addresses.

7.2.3.1 Source and Destination Address Multiplexers — The microprogram selects the sources of the scratchpad
addresses. The microprogram includes a 3-bit PAD field that selects one of seven sets of sources; the value of 3
in the PAD field is not used. Some of the sources are constants, and are generated by +3V and OV inputs to the
GDAM and GSAM multiplexers; others are taken from the IR source and destination register specifications of
the instruction. The chart on drawing GRAC illustrates the source selected for each value in the microprogram
PAD field.

As indicated by these charts, the multiplexer control is required to gate seven sources through a 4-input multi-
plexer. For four cases, the GDAM and GSAM multiplexers operate alike:

a. For a microprogram PAD field value of 0, both multiplexers select the register specified by the source
field, using the A inputs.

b. For a value of 2, both multiplexers address register 5, using the C inputs.
c. Foravalue of 5, the address is taken from the destination field, using the B inputs.

d. For a value of 7, the D inputs generate an address of 6.
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If the microprogram PAD field contains a value of 6, all the multiplexers are disabled. As a result, the address of
register 0 is selected.

For the two remaining PAD field values, 1 and 4, the operation of the multiplexers is altered. If the PAD field
value is 1, destination register address multiplexer GDAM uses input B, but source register address multiplexer
GSAM uses input A. This is done by forcing the SO input of the source multiplexer to a 0. If the PAD field value
is 4, GRAC PLUS 1 L is generated. This signal is ORed with the least-significant bit of the source field from the
IR to force an odd register address. This is used in the MUL, DIV, and ASHC instructions. GRAC PLUS 1 L is
generated for other control field values, but these values select other multiplexer inputs and are not affected by
this signal.

7.2.3.2 General Register Set Selection — The most-significant bit of the scratchpad address selects which general
register set is used. This selection is, in general, done by the multiplexer, but in several special cases the processor
forces the selection of general register set 0, which includes the kernel mode stack pointer.

Part of the general register set 1 selection logic is shown on drawing GRAB. General register set 1 can be selected
as the source set by bit 11 of the processor status word if RO through RS5 is specified. These same requirements
apply to selection of general register set 1 as the destination set. If the general register selection bit in the PSW is
set, then general register set 1 is used for both source and destination when general registers RO through RS are
specified as source or destination. In the user and supervisor modes, specifying R6 as the source or destination
will select general register set 1. This forms general register address 16 in supervisor mode. If the processor is in
user mode, bit 0 is forced to create general register address 17. If general register 6 is specified in a Move From
Previous Space (MFP) instruction, the register address used is determined by the previous processor mode, as in-
dicated by bits 13 and 12 of the PS.

NOTE

In an MFP instruction, the source is always specified in the
field normally designated as destination. The destination is
the current mode stack.

For the address sources that are variable (the source and destination fields), the register set is selected by a corre-
sponding variable signal. That is, when the register address is taken from the source field, GRAB SRC SET 1 L
selects the register set, and when the address is taken from the destination field, GRAB DST SET 1 L selects the
register set. For the constant input 6, the register set is selected by current processor mode, to select the correct
stack pointer; for the constant input 5, the register set is selected by PS11, which indicates which general register
set is in use. (This input is used for the MARK instruction.) These inputs are forced to 0 during the console op-
erations, register examine and register deposit, so that the console operations can explicitly select the desired reg-

ister set.

When console operations that access the general registers are performed (REG DEP, REG EXAM), the register is
selected by the four least-significant bits of the switch register. The switch register is loaded into the IR, so that
the destination field inputs to the address multiplexers (which are taken from IR 02:00)) can be used to select
the register within a set. The set is selected by gating IR03 directly to the most-significant bit of the pad address.

7.2.3.3 General Register Control Signals — Refer to drawing GRAC. GRAC GD6 L is used to indicate that the
processor is using the stack pointer; this signal qualifies the stack limit logic.

GRAC T6 L and GRAC GATE T6 H are used to clock data after the end of a machine cycle. Because the proces-
sor timing cycle can stop for bus operations, condition code clocking must be done by this signal to avoid losing
the new condition code values before the processor is restarted.
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GRAC GRWE HIB L and GRAC GRWE LOB L are the write-enable signals for the high and low bytes of the gen-
eral registers, respectively. These signals are generated directly from the PAD write-enable bits in the main micro-
program word. A conditional write operation is done only if the conditions are met. An unconditional write
operation is done unless inhibited by the memory managemént unit, which inhibits changes to processor data if it
aborts an instruction. The conditions for generating each write-enable signal are shown by charts on drawing
GRAC. Writing into the general registers is done at the end of a machine cycle (indicated by the TS pulse). The
write-enable signal is latched to provide sufficient time for the write operation to take effect, and the latches are
then cleared by the T6 pulse.

GRAC GRAO L through GRAC GRA3 L are sent to the KT11-C Memory Management Unit to indicate which
registers have been altered during the execution of an instruction. This information is stored in memory manage-
ment status register SR1 and can be used by the processor to recover from an instruction abort.

7.2.4 General Registers, Source and Destination Multiplexers, and Registers

Refer to drawings GRAD, GRAE, GRAF, and GRAH.

7.2.4.1 General Registers — The processor uses two copies of the two sets of general registers. These two copies
are provided to enable the processor to read two different general registers simultaneously. This is done when the
processor reads the two registers specified by the source and destination fields in an instruction. The two copies
of the general registers are therefore called the general source (GS) and the general destination (GD) registers.
The register sets operate separately only for reading; when data is written into a register, it is written into both
the GS and the GD register simultaneously.

The data input to the general registers is the output of the shifter (SHFR). The SHFR outputs are also brought
directly to the source and destination multiplexers.

The general registers are implemented in two sets of four 64-bit random access memories that are arranged in six-
teen 4-bit words. Each general register is made up of one word from each of four memories, so that the same
word selection signals are sent to all four memories for one copy of the registers. A different set of selection sig-
nals can be sent to the second copy of the registers while reading, but this must not occur when data is being
written,

7.2.4.2 Source and Destination Multiplexers — The data input to the general registers is the output of the shifter
(SHFR). The SHFR outputs are also brought directly to the source and destination multiplexers, which can
select either the SHFR data or the general register output data. Because the register memories output comple-
mented data, the SHFR data is inverted before going to the multiplexers, which invert the data to return it to
normal polarity.

7.2.4.3 Source Register (SR) — The outputs of each multiplexer are connected directly to the corresponding
register. The source register (SR) is clocked on the pulse TIGC T1 H if enabled by the microprogram bit RACA
iUSRK H. The outputs of the SR are routed to the ALU input multiplexers and to the bus address multiplexer.
Bit O of the SR is also sent to the IRC module for use in one of the microprogram address generation circuits, the
‘fork C, for odd-byte source branches.

7.2.4.4 Destination Register (DR) — The destination register (DR) can be loaded with a left shift of one bit, a
right shift of one bit, or no shift. The shift inputs are used when the processor must operate on two words of
data at the same time (for example, during 2 multiply or divide instruction) and the operation includes shifting.
The DR is implemented with 4-bit registers that have six input signals. Each bit of storage can be loaded from
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one of three of the six signals; the three inputs for each bit overlap with the three inputs for the next bit. Which
input is loaded into the DR is selected by the signals RACA UDRKO0 H and RACA UDRKO1 H from the micro-
program DRK field.

The outputs of the six low-order bits of the destination register, DR {05:00, are routed to the shift counter input
The shift counter is used in multiple step instructions, including multiply, divide, and arithmetic shift (ASH or
ASHC) to count the number of steps that are done; for the arithmetic shift instructions, the desired shift count

is loaded from the six low-order bits of the destination word and the shift is performed on registers specified by
the instruction.

7.2.4.5 Control Logic — The source multiplexer (SRMX) and destination multiplexer (DRMX) are controlled by
GRAC SRMX SEL and GRAC DRMX SEL. Each signal is generated by a logic circuit controlled by two micro-
program bits which combine with the register selection field of the current instruction to select either the SHFR
output or the general register output. When the instruction selects register 7 (the PC), the multiplexer selects the
SHFR input because the data is read from the PCB register through the SHFR, not from the general registers. In
addition, the DRMX control bits can also select an all Os input to the DR. This is implemented by directly clear-
ing the DR. The signal GRAD CLRDR L is generated during the period between time pulses 3 and 5, if multi-
plexer control signals RACA UDRX00 H and RACA UDRXO1 H are asserted.

7.2.4.6 Special Signals — Refer to drawing GRAE. GRAE SR EQ ONE L is asserted if the value in the SR is a
positive 1 (0 000 000 000 000 001). The two flip-flops shown check for all Os in data bits 1 through 15. The
outputs of the general registers are inverted, so a low signal represents a 1; any 1 clears the flip-flop because the
input is inverted. The flip-flops are clocked by the same signal that clocks the SR. The 1 bit in SROO is taken
from the SR output and ANDed with the flip-flop outputs. This signal is routed to the RAC module for use in
the microprogram branch control. GRAE SR LEQ ZERO H is generated if the contents of the SR are either all
0Os (SROO does not contain a 1 and the two flip-flops are both 1s) or negative (SR15, the sign bit, isa 1).

7.2.4.7 SR15 and DR15 — Refer to drawing GRAH. Both SR15 and DR15 are available in normal and comple-
mented form. GRAH SR15 L is used on drawing GRAE to generate GRAE SR LEQ ZERO H, and is used on
drawing GRAJ to generate SHFR DATA for the multiply instruction and to control the operation of the divide
instruction. This signal is also routed to the RAC module as one of the microprogram branch conditions.

GRAH DRI15 is routed to the IRC module for use in generating the carry (C) condition code during a multiply
instruction.

7.2.5 Shift Counter

Refer to drawing GRAJ. The shift counter (SC) is used to count the repetitive cycles of data manipulation in the
multiply (MUL), divide (DIV), arithmetic shift (ASH), and arithmetic shift combined (ASHC) instructions. The
SC is used with the microprogram branch facility. When the branch-enable bits of the current microprogram
word select the SC sensing signals, the next microprogram word selected is a function of the present SC contents.
SC loading and counting is under direct control of the SHC bits in the current microprogram word. The SC can
be loaded with a value from the six least-significant bits of the DR (for ASH or ASHC instructions) or with a con-
stant 17, (for MUL or DIV instructions).

The actual value loaded into the counter is the 1’s complement of the selected input. The selection of inputs is
done by a wired-OR for the four least-significant bits (note that the OR forces these inputs to all Os, not all 1s),
while the four most-significant bits are blocked (to force all 1s) for the constant input. When the variable input
is selected, the inputs to the five least-significant bits are inverted; the three most-significant bits are an extended
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The direction of counting is dependent on the current sign of the SC. If the SC has been loaded with a positive
value (because the SC always contains the complement of the desired number, the sign is negative), the SC counts
up to bring the complement closer to 0.

The test for SC=0 tests SCO5 directly, and can only be true if SC05=1. The MAX/MIN output of the lower four
bits of the SC is dependent on the UP/DOWN (DN) input. When the input is high, the output is true if the
lower four bits are all 1s. Therefore, the signal GRAJ SC=0 L is generated only when the contents of the SC are
all 1s (the 1’s complement of 0).

The SC is clocked by a signal generated from two of the central processor timing pulses and enabled by the micro
program shift counter control. The clock signal is a pulse lasting from the beginning of the T3 timing pulse to the
beginning of the T5 pulse. This circuit generates a long pulse that is needed in driving the counters used

to implement the SC.

7.3 IRC MODULE M8102

The Instruction Register Decode and Condition Code (IRC) Module M8102 contains the instruction register and
condition-code logic elements. The fork B and fork C decode logic is also included on the IRC module.

7.3.1 Instruction Register (IR)

Refer to drawing IRCA. The 16-bit IR is made up of 74574 D-type flip-flops. Data inputs are applied on bus
multiplexer lines PDRA BRMX ¢15:00) H. The IR clock, IRCA CLKIR L, is only enabled when the micropro-
gram IRK field is logic 1. When enabled, data will be clocked into the IR at time pulse T1 for data path control
or by UBCB BUS LOAD for bus long pause DATI Unibus cycles.

7.3.2 Fork B Logic

Drawing IRCB illustrates logic that decodes the contents of the IR, and logic that generates microprogram ad-
dresses for two groups of instruction types. The instruction register decoding is in two parts; several binary-to-
decimal decoders that recognize specific values in IR fields, andi combinational logic that converts specific field
values into instruction groups. The instruction groups are given mnemonics that represent the individual instruc-
tions and classes of instructions that generate each signal. These mnemonics, and the instructions for which each
signal is generated, are listed on the drawing.

7.3.2.1 Fork B Instructions — These signals are used to generate microprogram addresses through the fork B
logic (drawing IRCB) and through the fork C logic, shown on drawings IRCC and IRCD. In addition, these sig-
nals are used to control the data paths through signals generated by logic shown on drawing IRCC.

The fork B logic generates microprogram addresses that are used to select the next machine state after the desti-
nation operand has been fetched. For each instruction that operates on a destination operand, there is a unique
microprogram word that controls the execution of the operation for that instruction. The majority of these in-
structions are included in the P Class group. The P Class instructions are executed by a single microprogram
word that is stored in ROM location 031, with the exception of the NEG, ASRB, and RORB instructions. The
exceptions are made because these instructions can not do a byte swap during the execution cycle, and must use
other machine states that permit a separate byte-swap operation for odd-byte data.

7.3.2.2 Fork B Multiplexer — The fork B addresses are generated by a 748157 2-input, 4-bit multiplexer, and by
two additional gates. IRCB BO RABO04 L is connected to ROM address bits 4 and 5, to generate ROM addresses
ranging from 60 to 67. IRCB BO RABO3 L is connected to ROM address bits 3 and 4, to generate ROM ad-
dresses ranging from 31 to 36. The ROM addresses used by the fork B and the instructions executed by each ad-
dress, are listed in Table 7-2.
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Table 7-2
Fork B Instructions and Addresses

Instruction ROM Address Instruction ROM Address

P Class 031 MUL 060
TST.B+BITB+CMPB 032 DIV 061
(-FAST) ASH 062
TST.B + BIT B + CMP B 033 ASHC 063
(FAST) ASRB + RORB 064
JSR 034 . MFU 066
IMP 035 NEG 067
F Class 036

The fork B multiplexer operates in an inverted mode. When an input is low, the outputis a 1. Thus, when the
multiplexer is disabled for a NEG instruction, the outputs are all 1s; this generates address 67. For all other ad-
dresses, the inputs are selected by a signal that is generated for the MUL, DIV, ASH, ASHC, ASRB, RORB, and
MFP instructions. When this signal is asserted, the B inputs of the multiplexer are used; RAB04 is forced to a
logic 1 by a OV input. Conversely, the A inputs are used for F Class, J Class, K Class, and most P Class instruc-
tions; RABO4 is forced to a O by a +3V input. The instructions that use the A inputs of the multiplexer also as-
sert IRCB BO RABO3 L.

IRCB BO RAB (02:00) L are generated by connecting the instruction group signals to the multiplexer inputs in
the order required for each signal. Table 7-3 lists the signals generated for each ROM address.

Table 7-3
Fork B Address Generation
Address A Inputs B Inputs Other
031 RABQO RABO3
032 RABOI RABO3
033 RABO1 Bl RABOO, RABO3
034 RABO2 RABO3
035 RABQ2 B1 RAB0OO, RABO3
036 RABO1, RABO2 RABO3
060 RABO4
061 RABO0O, RAB04
062 RABO1, RAB04
063 RABOO, RABO1, RABO4
064 RABO2, RAB04
065 not used not used
066 RABO1, RAB02, RAB04
067 forced forced

7.3.3 Fork C Logic

Refer to drawing IRCC. The logic shown on this drawing decodes the address modes and register specifications

of the current instruction, and generates signals that control register selection and address calculation in the pro-
cessor. The logic also generates addresses for the fork C microprogram address logic. The fork C selects the ad-

dress of the next microprogram address when a destination operand must be fetched.
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7.3.3.1 Fork C Instruction — Two 8251-1 BCD-to-Decimal Decoders are used to recognize the source and destina-
tion modes, respectively, by decoding each 3-bit IR field. The source and destination modes determine the oper-
ations performed in the fetching of operands; these signals are used throughout the IRC module. Destination
mode O is also used to separate the fork C addresses for this mode and all other destination modes, by connect-

ing IRCC DSTMO L to the fork C input for bit 7 of the ROM address (as shown on drawing RACL) and connect-
ing IRCC DSTMO H to the input for bit 6. In this manner, the fork C generates microprogram addresses ranging
from 202 to 211 for destination mode 0, and microprogram addresses ranging from 110 to 117 for other destina-
tion modes.

The exact address generated by the fork C logic depends on:

a. the specific destination mode and the necessity for an odd byte swap, for a non-zero address mode

b. whether the instruction is a floating-point type instruction, the necessity for an odd byte swap, and, if
the instruction is not a floating-point type, whether the PC is used as the register for destination
mode 0

7.3.3.2 Fork C Multiplexer — The fork C multiplexer is a 745157 4-bit 2-Line-to-1-Line Multiplexer that is con-
trolled by IRCC DSTMO L. Recognition of destination mode O generates the four low-order bits of the micro-
program address for the fork C. The two high-order bits are directly controlled by the destination mode and bits
4 and 5 are always 0. Bit 3 of the address is always a 1 if the destination mode is not O (the input is a ground
which generates a low output, which asserts the input to the microprogram address assembly logic on drawing
RACL). For destination mode 0, bit 3 is controlled by the instruction class; the bit is set for F Class instructions
and clear for all others. Table 7-4 summarizes the fork C multiplexer outputs.

Table 74
Fork C Multiplexer Outputs
Fork C ROM Address .
L Fork C Microprogram
Destination | \r 1i51ever | DSTMOL | Constant L CO RAB Address
Mode Input
07 06 05 04 03 02 01 00 State Loc
0 A H L L L L L H L DO07.00 202
0 A H L L L H H D07.10 203
0 A H L L H L L D00.80 204
0 A H L L H L H D00.90 205
0 A H L H L L H FOP.50 211
1,2 B L H L L H L L L D12.90 110
1,2 B L H H L L H D12.80 111
3 B L H H L H L D30.90 112
3 B L H H L H H D30.80 113
4,5 B L H H H L L D45.90 114
4,5 B L H H H L H D45.80 115
6,7 B L H H H H L D67.90 116
6,7 B L H H H H H D67.80 117
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7.3.4 CCL Decoding

The condition code load (CCL) field of the ROM is decoded as shown on drawing IRCF to determine how the
PSW condition code bits are to be altered by each microprogram. The CCL field is summarized in the following
chart: ’

RACA UCCL
Output Asserted IRCF: Function
02 01 00
0 0 0 CC NON AFF L No change
0 0 1 CC INSDEP H Instruction-dependent. Condition codes determined by
subsidiary CC CNTL ROM.
0 1 0 (IRCH SETCC H)* Set or clear CC; dependent upon IR.
0 1 1 CCFPLOAD L Load CCs from floating-point processor
1 0 0 CCLD4 Z and N: ACC SHFR
CandV: 0O
1 0 1 CCLD5 Z and N: ACC SHFR
C: AMXI15
V: Vold + (AMX ¥ ALU)
1 1 0 CCLD6 N, C, and V: not affected
Z: Z* SHFR =0
1 1 1 CCLD7 Z,N, and V: not affected
C: carry

* Generated on drawing IRCH.

IRCE WOB CARRY H WORD OR ODD BYTE CARRY

C<—CARRY IRCE LOB CARRY H LOW BYTE CARRY:C4—AMX07

IRCF CCLD 7 L
IRCH CMOD 1 H
IRCC CC INSDEPA NQ}—D GRAA AMX O*ASH L
DAPJ ALUCN L
| " _IRCF CEN1 H=ENE*CC INSDEPA  IRCH CMODO H
IRCH ENC H {>o—

GRAD DROO H

o IRCF
CDATA L

CCLD 7+ROM 100:C=ALUCN
ASH: C+=AMX00

ROM D10:C+— ALUCN

IRCH CMODO H ASHC:C+-DROO

MUL: C=—X

LOAD PS + LOAD FCC

CCLD6 + CC NON AFF + ROM101:
NON- AFFECTED

l ) IRCF CEN2 H=ENC*CC INSDEPA%* -CMOD1
-DR15%Z {1)+ (DR15#BR=-1 SAVE (1} H)=IRCF X L

IRCE CC  BR H=(PS LOAD+LOAD FCC)
ENC*CC
INSDEPA % MOD1 DAPA BROO H

IRCH CMOD1 H—

IRCF CC NON AFF L.
IRCF CCLD6 L

IRCE PS LOAD L
IRCHC( H
IRCE LOAD FCC L 11-0793

Figure 7-1 Sources of C Bit Data, Simplified Diagram
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7.3.5 CBit Data

The C (carry) bit of the PSW is set when a processor operation causes a carry out of the most-significant bit. The

logic that generates the C bit data is shown on drawing IRCF. Figure 7-1 is a simplified diagram of the logic that
asserts IRCF CDATA L. Each AND gate input covers a group of instructions that could cause a carry. The nota-
tion adjacent to each AND gate indicates the conditions or instructions that enable the gate and the resultant C

bit source that asserts IRCF CDATA L.

Table 7-5 lists the instruction-dependent CC CNTL ROM outputs that control the C bit for each group of instruc-
tions. IRCE WOB CARRY H and IRCE LOB CARRY H are derived from a 745153 multiplexer. These C bit in-
puts are determined from AMX 00, AMX 07, or AMX 15, as listed in Paragraph 7.3.8.

Table 7-5
C Bit Data Sources
CC Control ROM
Instruction IRCF CDATA L
CMOD1 CMODO ENC Source
ROR.B, ASR.B 0 0 C < AMX00 (VMODO=1)
ROL.B, ASL.B 0 0 C <~ AMX08 (WORD)
C < AMXO08 (OB)
ASHC 0 1 C < DROO
COM.B, NEG.B, 1 0 C <« -ALUCN
SBC.B SUB
MUL 1 1 C«-X
CLR.B, ADC.B TST.B 0 0 C <« ALUCN
CMP.B, ADD
ASH 0 0 C < AMXO00
MFP, MTP, SXT
INC.B, DEC.B
MOV.B, BIT.B, BIC.B 0 ! non-affected
BIS.B, XOR
DIV 1 0 C+1
. C<«0if-DR15
SWAB C+«0
Condition-Code Load Signals
IRCF CCLD4 C+«0
IRCF CCLDS C < AMX15
IRCF CCLD6 non-affected
IRCF CCLD7 C < ALUCN
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7.3.6 N Bit Data

The N (negative) bit of the PSW is set when a negative result is produced by a processor operation. The logic that
generates the N bit data is shown on drawing IRCF. Figure 7-2 is a simplified diagram of the logic that asserts
IRCF NDATA L. Each AND gate input decodes a particular group of instructions or processor operations for
which a negative result might be obtained. -

For most of the instructions, the CC CNTL ROM outputs IRCH MODZN H and IRCH ENZN H are asserted.
These control outputs condition the NDATA logic to examine the SHFR output to determine when the N bit
should be set.. For word or odd-byte operations, the input A logic tests SHFRA15, and sets N accordingly. For
byte operations, the input C logic tests SHFRAOQ7. These inputs control the N bit for most operations.

The input B logic tests for CMP.B instructions. Under these conditions, if SHFRA1S5 is 0, the N bit is set, and if
SHFRAL1S is 1, the N bit is cleared. Input D covers all cases where the N bit is not affected by the current opera-
tion, and is therefore reloaded with the previous content, IRCH N(1) H. Input E allows IRCF NDATA L to be
asserted by BRO3 for load PS and load FCC functions. Table 7-6 summarizes the sources of N bit data.

Table 7-6
N Bit Data Sources
. ) CC Control ROM IRCF NDATA L
nstruction Source
MODZN ENZN
CMP.B 0 1 N« 1if-SHFRA15=1
N < 0if SHFRA15=1
DIV 0 0 non-affected
MUL 1 0 non-affected
all other instruction- 1 1 N« 1if SHFRA15=1
dependent codes (word or odd byte)
N« 1if SHFRAO07 =1
(byte)
SWAB N <« 1if SHFRA08 =1
Condition-Code Load Signal
IRCF CCLD4 N «if SHFR =0
IRCF CCLD5 N« if SHFR=0
IRCF CCLD6 non-affected
IRCF CCLD7 non-affected
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7.3.7 Z Bit Data

The Z (zero) bit of the PSW is set when the result of a processor operation is 0, The Z bit data that controls the
condition code is generated by logic on drawings IRCF and GRAB.

Figure 7-3 is a simplified diagram of the logic that asserts IRCF ZDATA1 L and GRAB ZDATAZ2 L. These out-
puts are clocked into the Z1 and Z2 flip-flops, whose contents are ORed to provide the Z bit of the PSW condi-
tion code.

7.3.7.1 ZDATAL1 Sources — The input gates that assert IRCF ZDATAI1 L cover the special conditions that con-
trol the Z bit, independent of the SHFR outputs being eqdal to 0. For example, during the DIV instruction exe-
cution, MODZN and ENZN are both low and the Z bit is set. For the special case of the CMP.B instruction, the
logic tests for the SHFR output = 1 condition to determine the Z bit. The other input gates that assert IRCF
ZDATAL1 L test for load PS or load FCC operations and operations that have no affect on the Z bit. Under the
former conditions, the Z bit is loaded from BR02 and under the latter conditions, the Z bit is unchanged [Z(1) H
controls ZDATAL1]. These special conditions are summarized in Table 7-7.

7.3.7.2 ZDATA2 Sources — The logic that generates GRAB ZDATA2 L tests the SHFR output for 0. The open-
collector inverters function as 0 detectors for SHFR (15:08) and SHFR (07:00). The enabling inputs IRCE EN
HIB H, IRCE EN LOB H, and IRCE EN WORD H are used to test each byte of the SHFR separately, or together.
The additional GRAB ZDATA?2 gate tests the SHFR output word for 0 under CCLD6 or MUL conditions. If the
SHFR output is 0, the previous Z bit condition, Z(1)H, controls the new Z bit.

Table 7-7
Z Bit Data Sources

CC Control ROM

Instruction Z Data Source
MODZN ENZN
CMP.B 0 1 Z <« 1if SHFR =1
MUL 1 0 Z < 2(1)Hif SHFR =0
DIV 0 0 Z+«1
SWAB Z < 1 if SHFR (07:00)=0
all other instruction-dependent codes 1 1 Z <« 1if SHFR=0

Condition-Code Load Signals

IRCF CCLD4 Z<1if SHFR =0
IRCF CCLD5 Z < 1if SHFR=0
IRCF CCLD6 Z<+<Z(1)H if SHFR =0
IRCF CCLD7 non-affected
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7.3.8 V Bit Data -

The V (overflow) bit of the PSW is set when a processor operation results in an arithmetic overflow. The logic
that generates the V bit data is shown on drawing IRCE. The V bit is affected by two broad categories of instruc-
tions: arithmetic operations, and word or byte operations. The results of these operations and other special
cases determine IRCE VDATA L. To simplify the desctiption, arithmetic operations, and special cases are
grouped as VEN1 inputs (Paragraph 7.3.8.1). Word and'j byte operations are grouped as VEN?2 inputs (Paragraph
7.3.8.2). Table 7-8 summarizes the V bit data sources of both groups.

Table 7-8
V Bit Data Sources
CC Control ROM
Instruction IRCE VDATA L Source*
VMOD1 | VMODO | ENV
VEN1
INC.B, ADC.B 0 0 0 V «<~-A*ALU1S
DEC.B, SBC.B 0 1 0 V < A*-ALU15
NEG.B, ADD 1 0 0 V « A*B*-ALU15 + -A*-B*ALU1S5
SUB, CMP.B 1 1 0 V< A*B*~ALU15 + -A*B*ALUILS
VEN2
MFP, MTP, SXT, CLR.B, COM.B, 0 0 1 V<0
TST.B, MOV.B, BIT.B, BIC.B,
BIS.B, MUL, ASH, ASHC, XOR
DIV 0 0 1 V<1
ROL.B, ASL.B 1 0 1 V < SHFRAI1S5 ¥ AMX15
ROR.B, ASR.B 1 1 1 V < SHFRA1S5 ¥ AMX00
Condition-Code Load Signals
IRCF CCLD4 V<0
IRCF CCLDS ’ (VEN2) V < Vold + (SHFRA1S ¥ AMX15)
IRCF CCLD6 (VEN1) non-affected
IRCF CCLD7 (VEND) non-affected

*A = DAPJ AMX SIGN H
B = DAPD BMX15 H (word) or DAPC BMXO07 H (byte)
ALU15 = DAPJ ALU SIGN H
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7.3.8.1 VENI1 — Figure 7-4 is a simplified diagram of the V bit data sources that are grouped in the VEN1 cate-
gory. A 748153 Dual 4-Line-to-1-Line Multiplexer is used to select the most-significant BMX bit for the arith-
metic operations that involve the B input. These are NEG,B, ADD, SUB, and CMP.B, as indicated in Table 7-8.
For these instruction-dependent codes, the CC CNTL ROM asserts IRCH VMOD1 H, which gates the BMX out-
puts to the multiplexer inputs, and IRCE VEN1 L, which enables the multiplexer. IRCD BYINA H selects
BMX15 or BMXO07 as the most-significant bit. IRCH VMODO H selects the BMX bit or its complement at each
output, as shown on the multiplexer truth table in Figure 7-4.

The notation on Figure 7-4 indicates the conditions and functions for which each AND gate input asserts IRCE
VDATA L.

For INC.B, ADC.B, DEC.B, and SBC.B instruction-dependent codes, CC CNTL ROM output IRCH VMOD1 H is
low. As a result, the BMX multiplexer outputs are always 0. For these instructions, B is eliminated from the
source function, as listed in the source column of Table 7-8.

7.3.8.2 VEN?2 — Figure 7-5 is a simplified diagram of the V bit data sources that are grouped in the VEN2 cate-
gory. A 748153 Dual 4-Line-to-1-Line Multiplexer selects the most-significant AMX bit for the word, odd-byte,
or byte operations. The multiplexer truth table is shown on Figure 7-5. The multiplexer is only enabled by
CCLD5 or those instruction-dependent codes for which the CC CNTL ROM asserts IRCH VMODI1 H and IRCH
ENV H. Asindicated in Table 7-8, these instructions inch-.lde ROL.B, ASL.B, ROR.B, and ASR.B. For these in-
structions, the notation on Figure 7-5 indicates the conditions and functions for which each AND gate input as-
serts IRCE VDATA L.

For the majority of the instructions included in the VEN?2 group of Table 7-8, VMODI is low. As a result, the
AMX multiplexer is not enabled and none of the AND gate inputs will be enabled because IRCE VEN2 L is not
asserted. Therefore, processing these instructions clears the V bit.

7.3.9 Condition Code Storage

Refer to drawing IRCH. The circuits shown on the top half of this drawing are used to store the processor con-
dition codes; the remainder of the drawing shows circuits concerned with the subsidiary ROMs used in condition
code calculation, instruction decoding, and arithmetic and logic unit (ALU) control.

The four condition-code bits, N, Z, V, and C, are stored in the four least-significant bits of the processor status
(PS) word. The remaining bits of the PS, and the PS loading and reading logic, are on the PDR module and are
shown on drawing PDRD. The condition codes are normally loaded to reflect the result of each instruction that
operates on data. When this is done (by clocking the data inputs to each flip-flop), each bit takes on the value of
the corresponding signal from the condition code generation logic on drawings IRCE and IRCF. Two Z bit flip-
flops, provided to avoid the delay of a final stage OR gate before the clock time, are shown on drawing IRCF.
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7.3.9.1 Clocked Inputs — IRCH CCLK H clocks the condition-code flip-flops immediately following each ROM
cycle (T6 is the T1 of the following cycle) except when the clock is inhibited by a value of 2 in the condition
code (CCL) bits in the microprogram. In many cases where the condition codes are clocked, individual bits may
remain unaffected by loading the bit from itself, through the combinational logic that generates the condition
codes.

7.3.9.2 BR Inputs — The condition code flip-flops can be loaded directly from the BR. This is done whenever
the bus address transmitted by the processor addresses the low byte of the processor status (PS) word. UBCC CC
DATA (1) H indicates this condition and is used to gate the BR bits into the direct-set and direct-clear inputs of
the flip-flops. Complements are applied to set and clear inputs, so that each flip-flop is correctly set or reset.

7.3.9.3 1R Inputs — A third method of modifying the condition codes allows bits to be set or cleared directly
from the instruction. The four least-significant bits of the IR are connected to either the set or the clear inputs
of the flip-flops, but not both. The selection of inputs is done by two enabling signals that are generated from
opposite polarities of IR04. The same polarity inputs from the IR are used for either setting or clearing; only
bits which are 1sin the IR are altered, and the remaining bits are not affected.

When the condition codes are set or cleared from the IR, the normal clocking of the flip-flops is inhibited. When
the condition codes are loaded from the BR, the loading signal is present beyond the time when the data inputs
are clocked, so the BR inputs take precedence. Unless one of these two conditions is true, the normal clocked
input is used.

The Z bit is stored in two flip-flops shown on drawing IRCF. The flip-flop outputs are ORed to generate the
value of the condition-code bit. If either flip-flop contains a 1, the Z bit is considered to be a 1. Both flip-flops
are set or cleared together when either the BR or the IR bits are transferred to the condition codes. The signal
DPCC Z (0) H is not used.

7.3.9.4 Condition Code Subsidiary ROMs — The logic on the lower half of drawing IRCH is used to generate
addresses for the subsidiary ROMs (CC CNTL, INSTR DECODE, and ALU CNTL). The subsidiary ROMs con-
tain values for different instructions, so the addresses that are generated correspond to individual instructions.
The IR provides all inputs to the address generation logic.

Each subsidiary ROM contains 32 8-bit words. The 32 addresses are organized as follows:

a.  Addresses 0—7 are used for instructions with op codes containing 06 in IR (14:09). These include the
rotates, shifts, MARK, MFP, MTP, and SXT.

b.  Addresses 10—17 are used for instructions with op codes containing 07 in IR (14:09). These are the
unary instructions.
¢ Addresses 20—27 are used for binary instructions (IR {14:12) contains any value from 1 to 6).

d.  Addresses 30—37 are used for the register destination instructions, which have a 7 in IR {14:12). These
include multiply and divide, the long shifts, and XOR.

NOTE
All addresses for the subsidiary ROM words are in octal.
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7.3.9.5 ROM Address Multiplexer — The ROM address is generated by two 745153 multiplexers for the low
four bits, and by an OR gate for the most-significant bit. The address signals are IRCH SUBROMA4 H through
IRCH SUBROMAO H. For the 05 and 06 class instructions, the four least-significant address lines are driven
directly from IR <09:06) through the C3 inputs of the multiple%rs, and SUBROMAA4 is not asserted. For the reg-
ister destination instructions, SUBROMAA4 is asserted, SUBROMA3 is driven by a +3V input to the multiplexer,
and the remaining three address bits take on the value of IR {11:09) through the C2 inputs of the multiplexer.
For binary instructions, the C1 inputs of the multiplexer are used; SUBROMA4 is asserted and SUBROMA 3 is
clear. This data is summarized in Table 7-9.

Table 7-9
Subsidiary ROM Address Sources
ROM Address
Instruction Class Mxéléigzt:xer Input Subsidiary ROM Address Source
IRCA IR (14:12) Selected
S1 SO A4 A3 A2 Al A0

05 and 06 class H H C3 0 IR09 IR0O8 IRO7 IR06
IR<14:12) (0)H
register destination H L C2 1 1 IR11 IR10 IR09
IR(14:12>)(1)H
binary class L H C1 1 0 IR14 IR13 IR12
-IR(14:12> () H
~-IR{14:12)(1)H
not used L L Co

The SUB instruction is treated specially, to separate the ADD and SUB instructions when generating ROM ad-
dresses. Both SUB and ADD would normally generate ROM address 26 (the op codes differ only in bit 15).

When the SUB instruction is decoded, the four least-significant bits of the ROM address are forced to Os to gener-
ate address 20. Addresses 27, 35, and 36 are not used. For the SWAB instruction, which is not in any of the four
groups that generate ROM addresses, the contents of the IR generate the same ROM address that is used for the
ASL instruction. The signal IRCH SWAB L is used to distinguish between the two instructions. The UALU sig-
nals are used to recognize that the ALU control is instruction-dependent, and that the outputs of the ALU con-
trol ROM on drawing GRAA are active.

7.3.9.6 Subsidiary ROMs — The CC CNTL and INSTR DECODE ROMs shown on drawing IRCH generate sig-
nals that are used to control the condition-code generation only when the main microprogram ROM contains a 1
in the CCL bits and are used for further instruction decoding. Each ROM is a DM8598 integrated circuit that
stores 256 bits in 32 8-bit words. A complete list of subsidiary ROM addresses and functions is shown on drawing

IRC].
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7.4 PDR MODULE M8104

The Processor Data and Unibus Registers (PDR) Module M8104 contains the logic elements that form the pro-
cessor data registers and the Unibus registers. 1\
7.4.1 Bus Register Multiplexer

Refer to drawing PDRA. The bus register multiplexer (BRMX) selects one of four inputs to the BR. These in-
puts, PDRA BRMX (15:00) H, are also used to load the IR. Table 7-10 lists the BRMX inputs.

Table 7-10
BRMX Input Sources
Input Control Description
DAPF, H,J SHFR(15:000 H RACA UBRX L output of the shifter, contains results of last
data manipulation by the processor
SMCE MEM D (15:00) H TMCF SELMEM L data from high speed semiconductor memory
BUS INTD (15:00) H TMCF SELINT L data from internal processor or memory

management unit, switch register, or floating-
point processor

BUSA BUS D (15:00) L none Unibus data

The BRX bit in the microprogram selects the shifter output when 1. TMCF SELMEM L and SELINT L are de-
rived from a Fastbus device or address response. The Unibus is selected by default if no other bus is directly
selected.

The drawing also shows the inverters that receive the internal bus data. Both the internal bus and the fast mem-
ory bus are terminated at the multiplexer; the Unibus is received through standard Unibus receivers and is termi-
nated separately by an M930 Bus Terminator module.

7.4.2 Bus Register A and Light Register

Refer to drawing PDRB. The output of BRMX is loaded into BR and IR. The primary BR, which is used as a
source of data input to the arithmetic and logic unit (ALU), is on the DAP module and is shown on drawing
DAPA. However, for timing considerations and to reduce the number of pins used on the DAP module, a copy of
the BR (called BRA) is made and distributed to:

KT11-C Memory Management Unit
FP11 Floating-Point Processor

MS11 Semiconductor Memory System
Operating System Tester (option)
Unibus (via a multiplexer on PDRE)

cpp o

The four least-significant bits of the BRA are also routed to the IRC module for use in direct loading of the pro-
cessor condition codes; the condition codes are part of the processor status (PS) word, and the remainder of the
PS is shown on drawing PDRD. All active bits of the PS can be loaded from the BRA.

The light register (LR) is primarily a maintenance tool. It is directly loaded from the BRA whenever a DATO
data transfer to the bus address of the switch register (177570) takes places. The contents of the LR can be dis-
played in the console data lights by setting the DATA display select switch to DISPLAY REGISTER.
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Drawing PDRB also illustrates a set of inverters used to provide buffered outputs from the BRA to the many in-
puts it drives in the memory management unit and the semiconductor memory system.

7.4.3 Program Break Register

Refer to drawing PDRC. The program break (PB) register is used as a maintenance aid, to enable checkout of the
microprogram operation and to allow control of the processor operation by stopping the processor in a specified
microprogram state, -

The PB is an 8-bit register that is loaded by moving data to physical address 777770. The contents of this register
are continuously compared to the microprogram ROM address RAR (07:00) by two 7485 4-bit comparators. The
comparators generate the signal PDRC PB CMP H whenever the two numbers are equal. When the processor is be-
ing controlled by a maintenance module, this signal can be used to stop the processor at T2 of the specific micro-
program state. This allows examination of certain specific machine states without manually clocking the proces-
sor through all the intervening states.

PDRC PB CMP H is ANDed with TIGA T1 (1) H to provide TIGB PB SYNCH H, which can be used as a synchro-
nization point for oscilloscope loops during maintenance tests.

7.4.4 Stack Limit Register

Refer to drawing PDRC. The stack limit (SL) register is an 8-bit register that is loaded by moving data to physical
address 777775. The contents of this register are compared with the eight most-significant bits of the bus address
being transmitted by the processor. These eight bits specify a 256-byte (128-word) boundary, below which the
kernel stack must not store any data. This means that (ignoring the effects of virtual memory) whenever an ad-
dress is transmitted while the processor is using the kernel stack pointer register 6 as the address source, and the
operation is not DATI, this address must not refer to any location below the boundary set by the SL.

The comparator that checks the address against the SL generates one of two signals: PDRC STACK LIMIT H or
PDRC RED ZONE H.

PDRC STACK LIMIT H indicates that the address is addressing a 128-word block beginning at the stack limit. If
the error detection circuit on the TMC module determines that the address is to one of the 16 words at the top of
this block (with the highest addresses), the reference is considered to be a yellow zone, or non-fatal reference.
Upon completion of the instruction or trap sequence, the processor will trap, using the trap vector stored in ker-
nel virtual location 04, to a routine that must correct the stack problem. However, if the address refers to a loca-
tion below the top 16 words of the block, the reference is considered a red zone, or fatal error; the processor per-
forms an emergency recovery by:

a.  aborting the instruction or trap sequence immediately
b. storing the current PC and PS in locations 0 and 2
¢. using the trap vector at location 4

PDRC RED ZONE H indicates that the processor is addressing a location below the stack limit (in a 128-word
block below the boundary). This is always a red zone error.

Note that for both signals, the data transfer operation is considered an error only if the address is derived from
the kernel stack pointer register 6. This is determined by the logic on the TMC module (Paragraph 7.6.5.1).

When the memory management unit is in operation, any bus error or memory management abort that occurs dur-
ing an address reference derived from kernel stack pointer register 6 is treated as a red zone stack error, regardless
of the value in the stack limit register.
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The SL is initialized to a value of 0. With this value, any stack reference to an address below 000400 is an error.
References to addresses between 000377 and 000340 are yellow zone errors, and references to addresses 000337
or below are red zone errors. )

7.4.5 Program Interrupt Register

Refer to drawing PDRD. The program interrupt register (PIR) provides a means of scheduling software routines
through the same priority structure used to control hardware interrupts from peripheral devices.

The PIR is divided into two parts: the 7-bit PIR and the encoded value of the highest request level, the PIA. The
PIR register is used to generate interrupt requests at seven of the eight possible priority levels in the PDP-11 Sys-
tem. The requests are compared with the current processor priority stored in PS (07:05); if a PIR request is higher
than the current processor priority, the processor traps at the end of the current instruction, using the interrupt
vector at location 240. The PIR request levels relate to processor priority levels 1 through 7. There is no PIR re-
quest corresponding to priority 0 because the processor priority can never be lower than 0, and such a request can
not be honored. A PIR request is of higher priority than any bus request at the same or lower priority.

The PIA encoder generates a 3-bit number that represents the highest level request stored in the PIR. This num-
ber is transmitted on two sets of data lines whenever the processor reads the PIR word. The three PIA signals are
connected to the DMX inputs (drawing PDRE) for bits 7 through 5, so that the programmer can move the low
byte of the PIR word into the processor status register and thus set the processor priority to the level of the re-
quest honored if desired. This locks out all requests on the same level or below. The same three bits are also
routed to the DMX inputs for bits 3 through 1;in this position the encoded value can be used as an index con-
stant in dispatching to an interrupt service routine for the appropriate priority level request.

7.4.6 Processor Status Register

Refer to drawing PDRD. The PS stores several types of data that are dependent on the process being performed.
This data must be stored whenever the processor changes processes; typically, this occurs every time there is an
interrupt or a trap. Because the contents of the PS control many parts of the operation of the processor, modifi-
cations of the contents are carefully controlled.

The four fields of information in the PS are:

the processor condition codes

the trace (T) bit

the processor priority

the processor mode control and register set selection bits

a0 o

7.4.6.1 Condition Codes — Refer to drawings IRCF and IRCH. The condition codes occupy bits 3 through O

of the PS register. The logic that senses the data conditions and stores the selected indications is on the IRC mod-
ule; the gates that control the reading of the condition codes onto the internal data bus are shown on drawing
PDRD. When the PS is explicitly addressed at physical address 777776, the data transfer is on the Unibus; the
internal bus is used only under direct microprogram control.

The condition codes are loaded automatically with the results of most data manipulations. In addition, the
codes can be manipulated by a microcoded instruction that can set or clear individual condition code bits. Any
operation that transmits data directly to the processor status word inhibits the setting of the condition codes be-
cause the data transmitted is loaded into PS (03:00) directly. This is done for move instructions that address the
PS, RTI instructions that pop a value off the hardware stack into the PS, or interrupt service sequences that load
the PS from the interrupt vector.
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7.4.6.2 T Bit — The trace (T) bit is provided as a software diagnostic aid. When this bit is set, a processor trap
will be vectored through location 14. This trap occurs at the end of the instruction that is being performed when
the T bit is being set, unless:

a. The instruction is a return from trap (RTT) instruction. In this case, the trap is delayed until the end
of the following instruction.

b. Some other trap or interrupt condition is honored. In this case, the PS containing the T bit is pushed
onto the stack and all trace operations are deferred until the PS word is popped off the stack at the
end of the trap or interrupt service routine.

The T bit can not be set by moving data to the PS; the only way the T bit can be set is by popping a word off the
hardware stack with bit 4 set. This can be done with an RTI or RTT instruction. The purpose of inhibiting other
methods of loading the T bit is to protect the user from inadvertently setting the T bit while changing the pro-
cessor priority or condition codes.

7.4.6.3 Priority Bits — The processor priority is stored in PS (07:05). The 3-bit priority field is interpreted as
one of eight priority levels. This level is compared with other requests for control of the system. These requests
can be external to the processor, in the case of Unibus requests, or internal, in the case of program interrupt re-
quests. In general, the purpose of requesting control of the system is to interrupt the current processor program
and run a service routine or higher priority program before returning control to the interrupted program. De-
vices that need the use of the Unibus request Unibus control on a non-processor request (NPR) level that is ef-
fectively higher than any processor priority; but these devices must not perform the INTR bus operation with-
out gaining control of the Unibus via a BR level.

The processor priority level may be set by directly transferring data to the PS, by popping a new PS from the
hardware stack, or by loading the PS from an interrupt or trap vector. In addition, the processor priority may be
explicitly set by the set priority level (SPL) instruction. While in all other cases the priority is set from data bits
7 fhrough 5, in the SPL instruction, the priority is loaded from bits 2 through 0. A 2-input multiplexer controls
the loading of the priority flip-flops from the appropriate source. In user mode, the processor priority can only
be changed by a transfer to the explicit address of the PS (777776). This is possible only if memory management
mapping allows it.

7.4.6.4 General Register Set Bit — This bit indicates general register set 0 (when cleared) or general register set 1
(when set). For an explicit reference to the PSW, it is loaded from BR11 and may be set or cleared. For implicit
operations, such as RTI, it can only be set, allowing the kernel some control over which register set user or super-
visor mode programs can use.

PDRB BR11A H is used to direct-set PS11 at time T4 if the microprogram IBS value is 2.

7.4.6.5 Previous Mode Bits — PS bits PS13 and PS12 store the processor mode previous to the last interrupt or
trap. Data is clock-set or direct-set into these flip-flops from BRA or PS (15:14). For example, PS13 and PS12
can be set or cleared by operations that explicitly reference the PSW; they are loaded from BR13 and BR12,
They can only be clocked and set by implicit references, unless operating in the kernel mode. This allows a ker-
nel mode program to return to kernel, supervisor, or user mode; a supervisor mode program to return to super-
visor or user mode; and a user mode program to only return to user mode. A user or supervisor mode program
can not use the RTI instruction to enter the kernel mode. When a new PS is loaded from the trap or interrupt
vector, the old contents of PS15 and PS14 are loaded into PS13 and PS12.
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7.4.6.6 Current Mode Bits — PS bits PS15 and PS14 control and indicate the current processor mode. The
source of input data is always BR15A and BR14A, whether the PS is loaded by an RTT or RTI instruction, or if
a new PS is loaded from a trap or interrupt vector, or explicitly referenced. These bits can only be set by implicit

references.

7.4.6.7 Read PS — The entire PS word can be gated to the internal data bus by PDRD READ PS H, which is
generated by a microprogram IBS field value of 3. This value is used in microstates RSD.00, RSD.02, BRK.20,
BRK.80, TRP.00, TRP.01, TRP.02, and HLT.00 to get the current PS into the BR.

7.4.7 Unibus A Data Multiplexer

Drawing PDRE shows the Unibus A data multiplexer (DMX), which selects one of five data sources within the
processor for transmission on the Unibus A data lines, BUSA D (15:00) L. The five registers that can be read by
the Unibus are:

a. busregister A PDRB BR(15:00) AH

b. stack limit register PDRC SL (07:00) H (HI BYTE) and program break register PDRC PB (07:00) H
(LO BYTE)

c. program interrupt register PDRD PIR (15:09) (1) H and PIA code PDRD PIA (02:00) H
d. processor status register PDRD PS (15:11) (1) H, priority bits, and condition codes

One of the five registers is selected by selecting one of the four multiplexer inputs and then enabling one or both
bytes of the DMX. The DMX selection chart is shown on drawing PDRE. When the BR, the PIR, or the PS is ad-
dressed, the logic on the TMC module selects the corresponding DMX input and enables both bytes; for the SL or
the PB, the same DMX input is used, but only the high byte is enabled for the SL and only the low byte for the
PB.

The byte enabling signals also prevent the processor from putting any data on the Unibus A data lines except
when one of these registers is selected.

7.4.8 Display Multiplexer

Drawing PDRF shows the display multiplexer that selects one of four inputs for the data display lights on the
console provided with the KB11-A processor. The display multiplexer is implemented with eight 745153 Dual
4-1ine-to-1-Line Multiplexers that are controlled by two display-select signals from a 4-position switch on the
console.

The display selected for each switch position is described in Table 7-11.

7.4.9 Console Interconnections

Drawing PDRH shows the interconnections between the processor and the switch register and data display lights
on the console.

Connector J1 is the physical connection; there are 18 signal lines from the console switches, 16 signal lines to the
console from the display multiplexer, and two signals from the multiplexer control switch on the console. SSRB
SRO MODE 0 H is one of the inputs that indicate the mode to the console.

The 16 least-significant bits of the switch register SWR (15:00) can be gated onto the internal data bus. This is
done whenever an instruction attempts to read data from the switch register address (TMCD SW ADRS L) or dur-
ing console operations when the switch register is gated onto the internal data bus by TMCF READ SW L (IBS = 1).
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Table 7-11

Display Multiplexer
PDRH DISP DATA
Switch Position Description
SEL1 SELO
BUS REGISTER H H bus register A PDRB BR (15:00) A H
DATA PATHS H L shifter outputs DAPH SHFR (15:00) H
DISPLAY REGISTER L H light register, which is provided for maintenance purposes
and is loaded by addressing the switch register
#ADRS FPP/CPU L L processor ROM address RACD RAR <07:00) AH into low
byte
floating-point processor ROM address FRMB CRAR (7:0)
(1) H into high byte

7.5 RACMODULE M8103

The ROM and ROM Control (RAC) Module M8103 contains the main microprogram ROM elements and ROM
address control logic, including the fork A instruction decode logic, the A fork instruction register (AFIR), and
the microprogram branch control logic.

7.5.1 ROM Address Register (RAR)

Refer to drawings RACA through RACD. There are three copies of the RAR. In addition to the two copies
(RARB and RARA) used to provide sufficient fanout for the 16 ROM ICs, a third copy (RAR) is used to trans-
mit the current microprogram word address to the KT11-C ROM. Each of the three copies has seven clearable
bits; the 21 clearable bits are stored in four of the 6-bit registers, leaving three bits unused. Drawing RACA shows
one of the four registers, containing five bits of the RARB copy. The remaining two bits are in a register shown
on drawing RACC. Each of the three most-significant bits is implemented by a single flip-flop that can be direct-
set by the signal RACA ZAP L. This signal also clears all other RAR bits.

The RAR is normally loaded from inputs generated by the microprogram address selection logic shown on draw-
ing RACL. Under exceptional circumstances, the RAR is forced to address 200 by clearing all but the most-
significant of the eight bits, and setting that bit. To permit setting the most-significant bit, it is implemented by
a separate flip-flop. The remaining seven bits are implemented by 6-bit registers of the same type used for the
ROM output buffer.

RACA ZAP L is the signal used to force the processor into a known state to start the processing of traps, power-
up sequences, and various types of aborts. Among the conditions that can generate this signal are:

a. power-up sequence or start sequence (ROM INIT)

b.  bus errors or processor traps (TMCC ABORT H and RACB UBSDOI1 H indicate that the processor is
pausing for a bus operation. The signal TIGD TS2 L remains asserted longer than the pulse TIGCT3 L
that clocks the RAR, and ensures that the ZAP signal overrides the normal address.)
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7.5.2 Microprogram ROM and Buffer Register

All control signals that are dependent only on the machine state (i.e., that are not dependent on asynchronous
signals or on data inputs) are derived directly from the outputs of the microprogram ROM. The ROM contains
256 64-bit words; during each processor cycle, one word is fetched from the ROM and stored in a buffer register.
The outputs of the buffer register are transmitted to the other modules of the processor to act as control signals
or to be used in combinational logic that generates control signals for all processor operations.

The ROM is implemented by 16 type 74187 256-word X 4-bit read-only memories. The buffer register is imple-
mented primarily by 745174 D-type hex flip-flop registers. (Some bits are implemented by individual flip-flops
to provide separate input clocking or greater output load capacity.)

The ROM itself is implémented with open collector outputs that require termination by resistive dividers which
maintain a +3V signal level when the ROM outputs are not low.

Various ROM bits are clocked into the output buffer register at different times. Most bits are clocked by the
processor T1 pulse, while others are clocked by the T2 pulse. Certain bits are clocked on the trailing edge of the
T1 pulse to allow slightly more time for the processor to complete operations started by the previous machine
cycle (Figure 7-6 and Table 7-12).

BUFFER
CLOCK
TIMING _
IBRK | BRX l SRX | ORX I SRK | DRK ceL | PCA l PCB l SHF;
2 83 62 80 58 57 55 52 5 79 as
SHF | IRK
|
T FALLING* 47 PWE | PAD
!
46 44 BSD | BAX I 188 l SHC | acrg
41 39 37 35 33 32
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30 27 24 22 20 18 16
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15 14 13 iz 8 0

11-0795

Figure 7-6 Sequence of ROM Bit Clocking

The buffer register shown on drawing RACA is clocked by the T2 pulse; none of the control signals transmitted
from the 18 bits of storage on this drawing can be assumed to have settled before the T3 pulse.

Five output signals are derived from the contents of a buffer register that is clocked by the falling edge of the T1
pulse, rather than the leading edge (drawing RACB). These signals (two pad write-enable and three pad address
lines) control the writing of information into the processor general registers. The data is transferred into the reg-
isters by clocking it on the T1 pulse, so these signals must not change until after the T1 pulse has occurred.

One of the 6-bit registers shown on drawing RACC stores the output of bits 34 and 32 through 28 of the ROM.
Bit 33 is stored in a separate flip-flop. This permits the buffer register to transmit both polarities of the signal
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USHCO00, with no additional signal delays. The shift counter logic, which is shown on drawing RACM, is on the
same module as the ROM, so the USHC signals are not brought to pins. Bit 27 of the ROM, which generates
UMSCO00, is also stored in a separate flip-flop to generate both polarities.

Table 7-12
Microprogram Bit Usage

Bit Positions Contents Clocked At
63 bus register clock (UBRK) T2
62 bus register multiplexer (UBRX) T2
61-60 source register MUX (UBRX) T2
59-58 destination register MUX (UDRX) T2
57 source register clock (USRK) T2
56-55 destination register clock (UDRK) T2
54-52 condition-code load (UCCL) T2
51 program counter A CLK (UPCA) T2
50—49 program counter B CLK (UPCB) T2
48—-47 shifter control (USHF) T2
46 instruction register CLK (UIRK) T2
45-44 pad write-enable (UPWE) T1 falling
43—41 scratchpad address (UPAD) T1 falling
40-39 bus delay (UBSD) T1
38-37 bus address multiplexer (UBAX) T1
36-35 internal bus (UIBS) T1
34-33 shift counter (USHC) T1
32-30 bus control (UBCT) T1
29-27 miscellaneous control (UMSC) T1
26—-24 bus conditions (UNSC) Tl
23-22 A multiplexer (UAMX) Tl
21-20 B multiplexer (UBMX) T1
19-18 constant multiplexers (UKMX) T1
17-15 arithmetic logic unit cont (UALU) T1
14 fork C enable (UCFEN) not buffered
13 fork B enable (UBFEN) not buffered
12 fork A enable (UAFEN) not buffered
11-08 branch-enable (UBEF) not buffered
07-00 microprogram address (UADR) not buffered

The microprogram bits which are used to calculate the new ROM address are used only on the RAC module, so
they are not brought to module pins. However, several of the branch-enable signals are required either in both
polarities or with greater fanout capacity; UBEF03, UBEF01, and UBEF00 are buffered by more than one gate.

7.5.3 Fork A Instruction Decoding

Normally, the address of the next microprogram word is derived from the contents of the microaddress field
(UADR) in bits 7 through 0 of the current microprogram word. Two branch selectors allow 2-way or 4-way
branches on the conditions of various processor circuits and on the contents of various data registers. For most
decision points encountered during the flow of machine states, this branch capability is sufficient.
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In certain situations, particularly after an instruction or data has been fetched by a state sequence that is common
to many instructions, it is necessary to select a next machine state that is unique to one or a small class of instruc-
tions. This requires a much wider branching capability. In the KB11-A processor, this capability is provided by
the fork logic. Each of the three forks generates one of a large number of possible addresses, based on the decod-
ing of the instruction, the address modes, and various processor status indications. When a fork is enabled by the
corresponding fork-enable bit of the microprogram, the address generated by the fork is loaded into the ROM ad-
dress register instead of the contents of the microaddress field.

7.5.3.1 Decode Logic — Refer to drawing RACE. The logic illustrated on this drawing is part of fork A. This
fork operates as the instruction decoder of the processor. Immediately after the instruction has been loaded into
the instruction register (IR), fork A begins to generate an address. Because this address must be available within
one machine cycle, fork A is designed to operate at maximum speed. Therefore, the amount of decoding is mini-
mized; classes of instructions are recognized and the bits that differentiate members of the class are used directly
as low-order bits of the generated address.

This technique can be understood by examining the address utilization by the forks. As an example, consider the
selection of addresses by fork A for the group of instructions ranging from HALT to RTT. The binary op codes
for all these instructions are identical except for the three least-significant bits. When the fork A decode logic
recognizes that all but the three least-significant bits are 0, bit 3 of the ROM address is set, and the three least-
significant bits of the op code become the three least-significant bits of the address.

7.5.3.2 Address Bit Generation — The logic shown on drawing RACE generates address bits for certain classes of
instructions. These bits are then ORed with other signals that generate the same bits for other classes of instruc-
tions to generate the fork A address. The address is then combined with the address from the microprogram in a
bit-clear operation that is explained in Paragraph 7.5.8 and shown on drawing RACL.

The signal names indicate the use of each logic circuit as follows:

a.  The fork signals that are connected to the microaddress logic on drawing RACL have names that in-
clude RAB (for ROM address bit), followed by the number of the address bit to which the signal is con-
nected.

b. In some cases, a signal is connected to more than one address bit because the same conditions generate
both bits, as described in Paragraph 7.5.3.5 and shown on drawing RACL.

c.  Many RAB signals are connected to the same address bit. They are distinguished by a letter that tells
which fork generates the bit, and where more than one signal can be generated for the same fork. Thus,
the signal RACE A0 RABOO is one of several signals used by the fork A logic to generate bit O of the
address.

7.5.3.3 RACE A0 RAB (02:00) — RACE A0 RABOO L, RACE A0 RABOI L, and RACE A0 RABO2 L are used
to generate microprogram addresses 001 through 007. No other fork A bits are enabled when these gates are en-
abled. The enabling conditions for all three signals are identical, except that each signal corresponds to a different
bit of the instruction register. The IR bits passed through the AND-NOR gates are the destination mode bits.

These three signals generate addresses for a class of instructions that require destination address calculation (DAC),
but no source address calculation. If the destination mode is 0, the destination data is in the destination register
and no address calculation is required.
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This group of microprogram words is used for the following groups of instructions:

a.  All single operand instructions (with op codes of 05 or 06); this includes the instruction group from
CLR to ASL (in both word and byte foyrms), the variable address-space moves, SXT, and XOR. These
instructions are recognized by their op codes and generate the signal RACE RCLASS H.

b. The register and memory instruction group, which includes MUL, DIV, ASH, and ASHC. When one of
these instructions is decoded, the signal RACE (MUL:ASHC + MFP) H is generated.

c. Any double operand instruction with a source mode of 0. Because the source data is already in the
source register, it is not necessary to do the source data fetch. These instructions generate the signal
RACE BIN*SMO H.

d. The three instructions JMP, JSR, or SWAB. These three instructions use the same address calculation
as the single operand instructions. The signal RACE JMP + JSR + SWAB H is generated.

7.5.3.4 RACE A0 RABO03 — RACE A0 RABO3 L is generated for the following groups of instructions:

a. Branch instructions accompanied by a bus request (BRQ); these instructions generate fork A addresses
ranging from 330 to 336.

b. The six instructions which have 16-bit op codes, ranging from 000000 to 000006; these instructions
range from HALT to RTT and use microprogram addresses 010 through 017 (017 is for a reserved op
code that traps through location 4).

c¢.  Any DAC class instruction (except JMP or JSR, and MFP or NEG) with a destination mode of 0; these
instructions generate microprogram addresses 030 and 050 through 053.

7.5.3.5 RACE A0 RAB04 — RACE A0 RABO4 L is generated for any branch instruction. This signal is an input
to bits 6 and 7 of the microprogram address, and to bit 4; as a result, all branch instructions generate fork A ad-
dresses with these three bits set (addresses between 320 and 336).

7.5.3.6 RACE A0 RABO5 — RACE A0 RABOS L is generated for MUL, DIV, ASH, and ASHC instructions with
a destination mode of 0, and for SOB instructions. RACE BIN L eliminates the binary instructions from UCLASS
This RAB signal is also connected to RABO3 to generate addresses ranging from 050 to 057.

7.5.4 Fork A Circuits

The logic illustrated on drawing RACF is a part of fork A that generates microprogram addresses during instruc-
tion decoding (Paragraph 7.5.3). RACE A1 RABOO L, RACE A1 RABO! L,and RACE A1 RABO2 L generate the
three least-significant bits of the ROM address for the classes of instructions described in the following paragraphs.

7.5.4.1 HALT Through Op Code 7 — The seven instructions are all op code (HALT through Op Code 7). These
instructions generate microprogram addresses ranging from 010 to 017; the 1 in bit 3 of the address is generated
by RACE A0 RABO3 L.

7.5.4.2 X Class — The X Class instructions, MARK, MFP with a destination mode of 0, and MTP, gencrate ad-
dresses of 074, 046, and 045, respectively. RABO?2 is forced to a 1, and the two low-order bits are the comple-
ments of the corresponding bits from the instruction register. This inversion is done to permit sharing the group
of microprogram addresses with the RTS through condition-code operate (CCOP) instructions; both CCOP and
MARK have an op code with the least-significant octal digit a 4. Bit 5 of the address is set by RACF A2 RABOS L.
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7.5.4.3 U Class — U Class instructions include two groups: the binary instructions (with any source mode
except 0, because that source mode is handled by either the DAC or the E Class groups, depending on the destina-
tion mode); and the MUL, DIV, ASH, and ASHC instructions with a destination mode of 0. The binary instruc-
tions use four microprogram addresses, one for each pair of source modes (source mode 1 is treated as a pair,
although source mode 0 is handled separately). The address for each pair, except source mode 1, has a 0 in the
least-significant bit and the two most-significant bits of the source mode in address bits 1 and 2. Source mode O
has a 1 in bit 0, and the other two bits are treated in the same manner. Bit 4 of the addresses (which range from
021 to 026) is set by the signal RACH A1 RAB04 L. For the remaining four instructions, the least-significant
octal digit of the op code (IR (11:9)) generates the three least-significant bits of the address (050 through 053);
bits 3 and 5 of the address are set by the signal RACE A0 RABOS L.

7.5.4.4 RTS Through CCOP — For the instructions ranging from RTS to the condition-code operators (CCOPs),
the least-significant octal digit of the op code (IR (5:3)) generates the three least-significant address bits. The
logic is complicated because a CCOP instruction may have any value between 4 and 7 in IR (5:3); therefore, the
two least-significant bits are forced to 0 if any of these values is present. Address bit 5 is set by the signal RACF
Al RABO5 L; this signal is not generated if IR ¢5:3) contains a 1, because this is not a valid op code and the corre-
sponding ROM address is not generated.

7.5.4.5 RACF A2 RAB03 — RACF A2 RABO3 L distinguishes between E Class instructions by generating ad-
dress 030, instead of address 020, for instructions with either a bus request or a destination register 7.

7.5.4.6 TRUE 1:2 — RACF TRUE! H and RACF TRUE?2 H are used in the generation of addresses for branch
instructions. These signals are mutually exclusive because they are generated for opposite polarities of IR15. In
each case, if the branch condition specified by IR {10:09) is met, as determined by the four AND gates, the signal
is asserted. Neither signal is asserted for a BR instruction, which is recognized directly because IR08 is a 0 and
neither TRUE signal is asserted (Paragraph 7.5.5).

7.5.5 Fork A Logic

The logic on drawing RACH is a part of the fork A logic that generates the next microprogram address during in-
struction decoding.

The IR09A and IR10A flip-flops shown on this drawing are used to provide additional fanout capacity for the

A fork instruction register (AFIR) (drawing RACJ), which is used to provide for the loading of the IR signals used
by fork A logic. The data inputs and clocking signal for these flip-flops are identical to the signals used in the cor-
responding AFIR bits. The outputs of these flip-flops are distinguished from the outputs of the corresponding
AFIR bits by the A following the bit number.

RACH PSWAB H is used to distinguish between the SWAB instruction and the JMP and JSR instructions; these
three instructions are generally treated together.

RACH BIN*(-SMO01) L is used to recognize binary instructions with source modes 2 through 7. Source mode 0
is handled as a DAC class instruction, as shown on drawing RACE.

RACH NEG.B*DMO H is generated for a NEG or NEGB instruction with destination mode 0, because the NEG
instruction is executed separately from all other single operand instructions. This signal directly generates address
bit 7 by asserting RACH AO RABO7 L, and also asserts address bit 6 by generating RACH A2 RABOO L, which is
an input to RACL RADRO6 H. This signal generates ROM address 300. ‘

RACH DF7 + BRQ H is used for E Class instructions.
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RACH A2 RABOO L is generated for floating-point instructions (address 101); branch instructions that generate
the TRUE1 signal (addresses 321, 325, 331, and 335); and the NEG.B instructions (address 300), as discussed
previously. This signal also generates bit 6 of the address.

RACH A1 RABO4 L is generated for binary instructions with: both source and destination modes O (addresses
20 and 30; any source mode except O (addresses 21, 22, 24, and 26); R Class instructions with destination mode 0,
except MFP and the NEGB instructions (addresses 20 or 30); or SWAB instructions with a destination mode of 0
(also addresses 20 or 30). ’

7.5.5.1 Branch Instruction Address Generation — RACH A2 RABO2 L and RACH A2 RABO1 L are used to gen-
erate addresses for branch instructions. IR08 is used in branch instructions to negate the branch conditions speci-
fied by IR (10:09); when this bit is set, only branch instructions which generate neither TRUE1 nor TRUE2
succeed. Because TRUEI and TRUE2 are mutually exclusive, there are only three possible combinations of the
two signals; these three are then treated differently depending on the value of IR08, generating six possible values
of RABO2 through RAB0O. If IR08 is a 0 and either TRUE signal is asserted, the branch fails; if IRO8 isa 1 and
a TRUE signal is asserted, the branch succeeds. The result is reversed for opposite combinations. The six possi-
bilities are further divided by the presence or absence of a bus request to form 12 separate cases. Each of these
12 cases generates a different microprogram address. This is done only to allow the fork A logic to operate at
maximum speed; many of the ROM words thus addressed have common contents.

7.5.5.2 Disable BUST — After the processor fetches an instruction, a second bus transfer is usually started

to fetch the word in the address following the instruction because this word is usually needed by the processor.
However, if this word is not needed, a new bus cycle with a different address is started in a later machine state. If
a bus cycle is started unnecessarily during the instruction decode (IRD.00) state, and the address selected is in the
semiconductor memory, the memory must complete the unnecessary memory cycle before it can start any other
cycle. The signal RACH DIS BUST L is used to prew}ent starting the unnecessary cycle in cases where it is known
that the cycle is unnecessary. There are three conditions under which this signal is generated:

a. The current instruction is a double operand (BIN) instruction, and the source mode is 1, 2, or 3.

b. The current instruction is a branch or conditional branch (BR INST) instruction, and there is a bus re-
quest waiting to be honored.

¢. The next machine state must begin the fetch of a destination operand in destination mode 1, 2, or 3.

7.5.6 A Fork Instruction Register

Drawing RACJ shows the A fork instruction register (AFIR), which is the second copy of the IR in the processor.
The primary IR is on the IRC module and is shown on drawing IRCA. The AFIR is used to provide the fanout
capability needed by the fork A logic, and to provide slightly faster operation by eliminating the signal transmis-
sion delays for signals from a register on another module.

The AFIR clock signal is generated by a logic circuit identical to the IR clock circuit. The duplication is for pur-
poses of speed and loading. The IR is clocked whenever the IR clock microprogram bit is set and either a Tl or a
BUS LOAD pulse is generated.

7.5.7 Microprogram Branch Logic

The KB11-A processor is controlled by words fetched from a microprogram ROM; each word represents a ma-
chine state. The sequence of machine states is controlled by the sequence of ROM words fetched. Normally,
each ROM word contains the address of the next word to be fetched. When it is necessary to provide for
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alterations in the sequence of machine states, two bits of the address contained in the current ROM word can be
altered by inputs that sense processor conditions and data values. The altered bits select diffcrent addresses de-
pending on their final vatues, so that up to four different addresses can be selected. This 4-way branch permits a
wide variety of machine state sequences to use the same microprogram words.

In the KB11-A, the two bits that can be altered by branch conditions are bits 5 and 4 of the microprogram ad-
dress. Therefore, when a branch is used, the addresses selected for different conditions differ by 20 or 40. There
are 16 sets of branch conditions. One of the 16 sets is selected by the four branch-enable bits in the current mi-
croprogram word.

The outputs of the branch logic are two signals; each signal is ORed with the corresponding bit of the micropro-
gram address from the current ROM word. Normally, when the 4-way branch is used, bits 5 and 4 of the stored
address are both 0s, and the two branch signals select one of four addresses. If only a 2-way branch is desired,
one of the stored address bits is set to a 1, and the corresponding branch bit is ignored, because the result of the
OR is always a 1.

If all of the branch-enable bits in the current microprogram word are 0s, no branch conditions are used. The
branch signals are always Os, so the final address bits reflect only the state of the stored address. In effect, this
disables the branch logic.

For 12 of the remaining 15 branch-enable values, there are two signals representing processor conditions, such as
reset in progress (RIP) or step counter negative [SC05(1)], or data values such as source register negative (SR15).
A 16-way multiplexer, implemented by two levels of 4-way multiplexers, selects one pair of input signals to be-
come the branch signals, RACK BRCAB 05 L and RACK BRCAB 04 L. The first level of multiplexers is con-
trolled by three of the four branch-enable bits; the most-significant bit selects one of two, 4-way, 2-bit multi-
plexers, and the two least-significant bits select one of four inputs for each of the two outputs. There are only
two outputs active at a time because one of the multiplexers is disabled. The remaining branch-enable bit selects
two of the four outputs from the first level multiplexers; one from each multiplexer. Only one of these can be
active, so that input becomes the branch-enable bit. Table 7-13 lists the source of RACK BRCAB 05 L and
RACK BRCAB 04 L.

When the branch-enable codes have a value of 3 or 15, no branch inputs are supplied (the multiplexer inputs are
grounded), so no branching occurs.

When the branch-enable bits have a value of 14, the normal branch logic again produces no branch signals (the in-
puts to the multiplexer are grounded) but the console branch logic is enabled. This logic varies the values of ad-
dress bits 7, 6, 2, 1, and 0, depending on the console operation being performed. Logic on the UBC module en-
codes the operation selected by the console switches, and this value selects the appropriate address. Console
operations use microprogram addresses 070 through 077 and 270.

7.5.8 Microprogram Address Assembly

Refer to drawing RACL. The logic on this drawing combines the five sources of microprogram address informa-
tion to generate the address of the next microprogram word. These five sources are:

a. the three forks that generate different addresses during instruction decoding and operand fetching
b. the branch inputs from the microprogram branch and console branch logic shown on drawing RACK
¢. the microaddress bits from the current microprogram word

Each of the three fork inputs is controlled by a separate fork-enable bit in the current microprogram FEN field.
The fork A enable is unconditional, while the fork B and C enables are conditional if certain branch-enable states
exist. Only one fork is enabled at a time, and during most machine cycles all the forks are disabled. The branch
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inputs, on the other hand, are never disabled; when branching is not desired, all the branch inputs are forced
to a non-interferring (0) state.

Each bit of the microprogram address is generated by a negative input NOR-AND gate. The gate has four input
NOR gates; one is used for each fork, and the last gate is used for the stored address and the branch inputs. All
four gates must be qualified to assert the output of the AND ga'te; therefore, if any one of the input gates is dis-
abled (has all inputs high), the AND gate has a 0 output.

Table 7-13
Branch Signal Sources

RACK BRCAB 05 L RACK BRCAB 04 L OsRAC%SBEFOIFPUTgo
Always asserted (GNDO09) Always asserted (GNDO09) 0 0 0 0
IRCD DM357 H GRAE SR EQ ONE L 0 0 0 1
IRCF Z2 (1) H UBCC (PWRF + INTR) L 0 0 1 0
GRAJSC=0L GRAJ SCO5 L 0 0 1 1
GRAJ DIV SUB L IRCHN () H 0 1 0 0
GRAB OBD (0) H GRAJ DIV QUITL 0 1 0 1
DAPA BR14 L SSRA PS RESTORE (1) H 0 1 1 0
Always asserted (GNDQ9) TMCB BRQ * - (T + CONF) L 0 1 1 1
RACK SYNCBRC 10(1)H RACKFPREQL + 1 0 0 0

RACK SYNC BRC10 (0) H
GRAJSC=0L GRAD DROO H 1 0 0 1
TMCA CONF (1) H TMCB BRQ TRUE L 1 0 1 0
TMCB PF(0) * (SF + TF) H TMCB PF(0) * (SF + -TF) H 1 0 1 1
Always asserted (GNDO09) Always asserted (GND09) 1 1 0 0
IRCB FJ CLASS L IRCCOCLASS L 1 1 0 1
GRAD DROO H GRAH SR15 H 1 1 1 0
RACK SYNC BRC10 (1) H RACK SYNC BRC10 (0) H + 1 1 1 1
FRMF FP REQ WR L

When a fork is disabled, the fork-enable signal is a low, enabling the corresponding input of each AND gate. If all
three forks are disabled, the corresponding three input gates on each AND gate are enabled, and the AND gate
takes the state of the fourth input gate. This gate generates the OR of the stored address and any active branch
inputs. If the branch inputs are all Os (low), the address assembly logic transmits the stored address unchanged
(except for the inversion performed by the NOR gate).

As a general rule, all but one of the four input gates are forced to a 1, and the AND gate follows the state of the
remaining input gate. When a fork is enabled, the stored address inputs must be forced to all 1s to avoid forcing

the corresponding output bit to a 0.
NOTE
All fork B addresses are between 0 and 077; therefore, in some
cases where fork B is enabled, bits 6 and 7 of the stored address
may be 0 without affecting the operation of the fork.
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There is some interaction between the fork and branch logic. The fork B enable signal is unconditional, except
when the branch-enable bits in the current microprogram word have the value 15 or 05. If the branch-enable bits
have the value of 15, the fork B enable signal is generated only during the execution of F Class (floating-point) or
J Class (JMP or JSR) instructions; if the branch enable is a 5, the fork B enable is generated only if the destination
operand is not an odd byte. Similarly, the fork C enable is unconditional unless the branch-enable value is 14; in
that case, the fork C is enabled for direct address modes (modes 2, 4, and 6) and disabled for indirect address
modes (3, 5, and 7). The conditional enabling of forks B and C is usually used to permit one extra machine state
before the use of the fork address. The fork is conditionally enabled with a branch condition. If the branch fails,
the fork address is used, but if the branch succeeds, the fork is unconditionally enabled in the new microprogram
word.

In many cases, particularly for fork A, there is more than one input signal for the same input gate. Only one of
the inputs to a particular gate is active at a time, because the logic that generates the input signals has mutually

exclusive conditions. The NOR gate acts as the last stage of a combinational network. The primary reason for

combining this OR function with the address assembly is to preserve the speed of operation of the forks,

For more information on the fork and branch logic, and on the source of the stored microaddress, see the text ac-
companying the drawings listed in Table 7-14.

Table 7-14
Address Assembly Sources
Input Drawings Paragraph
fork A RACE, RACF, RACH 7.5.3-7.5.5
fork B IRCB 7.3.2
fork C IRCC 7.3.3
branch RACK 7.5.7
microaddress RACD 7.5.1

7.6 TMC MODULE M8105

The Trap and Miscellaneous Control (TMC) Module M8105 provides the trap and miscellaneous control logic
functions for the KB11-A. These functions include priority arbitration logic (drawings TMCA and TMCB) and
most of the control logic required to execute the break conditions shown on flow diagram 12. Stack error and
bus error detection logic is shown on drawings TMCC and TMCD. In addition, the logic required for numerous
miscellaneous control signals used throughout the system is included on the TMC module.

7.6.1 Request Storage

The request storage register is made up of three 745174 chips, shown on drawings TMCA and TMCB. The con-
sole flag (CONF) flip-flop (drawing TMCA) can be considered as part of the request storage register. The bus re-
quests that are stored are listed in Table 7-15 in the order of their assigned priority. The priority arbitration logic
decides which trap, program interrupt, or bus request to honor. If an abort or power-fail condition is detected,
the bus request storage register will be cleared. ‘

7.6.1.1 BRQ Clock — Refer to drawing TMCE. When the BRQ STROBE control signal is decoded from the
current microprogram MSC field, the processor strobes all end-of-instruction requests. TMCE BRQ STROBE H
is gated with TMCC STROBE INH L and TS3 to generate TMCE BRQ CLK H. This clock pulse strobes any re-
quest into the priority arbitration network.

7.6.1.2 Priority Clear — When an abort condition occurs, the priority arbitration storage flip-flops are cleared to
ensure that only the abort will be serviced. However, if a power-fail trap is being serviced and a stack-limit-red
condition occurs, the requests are not cleared. Under these conditions, the power-fail vector location is still used,
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Table 7-15
Processor Service in Order of Priority

Order Condition Input Output* Result*
1 console flag UBCF S/INST L TMCA CONF (1) H do console control
function
2 memory management SSRD MEM MGMT TMCB SEGT L trap (250)
traps TRAPL TMCA HONOR SEGT H
3 warning stack TMCD SL YEL TMCA HONOR SLY H trap (4)
violation
4 power fail UBCE PDNF (1) H TMCA HONOR PWRF L trap (24)
5 floating-point FP EXC TRAPL TMCA HONOR FPTRAP L | trap (224)
exception trap FRHH
CPLEV 7
6 priority interrupt PDRD PIRIS (1) H TMCA HONOR PIR7 L trap (240)
request PIRQ7
7 bus request, level 7 BUSA BR7 L TMCA HONOR BR7 L interrupt
interrupt
CPLEV 6
8 priority interrupt PDRD PIR14 (1) H TMCA HONOR PIR6 L trap (240)
request PIRQ6
9 bus request, level 6 BUSA BR6 L TMCA HONOR BR6 L interrupt
interrupt
CPLEVS
10 priority interrupt PDRD PIR13 (1) H TMCA HONOR PIRS L trap (240)
request PIRQ5
11 bus request, level 5 BUSABRS L TMCA HONOR BRS L interrupt
interrupt
CP LEV 4
12 priority interrupt PDRD PIR12 (1) H TMCA HONOR PIR4 L trap (240)
request PIRQ4
13 bus request, level 4 BUSA BR4 L TMCB HONOR BR4 L interrupt
interrupt
CPLEV 3
14 priority interrupt PDRD PIR11 (1) H | TMCB HONOR PIR3 L trap (240)
request PIRQ3
CPLEV 2
15 priority request PDRD PIRIO (1) H | TMCB HONOR PIR2 L trap (240)
PIRQ2
CPLEV 1
16 priority request PDRD PIR09 (1) H TMCB HONOR PIR1 L trap (240)
PIRQI
17 T bit set and not RTT | PDRD PS04 (1) H TMCB HONORTL trap (14)

and -(IRCD RTT L)

* Only if no higher priority rcquest has been received.
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but the otd PS and PC are pushed into locations 2 and 0. (Refer to the stack errors path of branch enable BE13,
shown on the break conditions flow diagram 12.) TMCC ABORT CLR, which generates TMCC PRIORITY CLR,
also sets the BLOCK STROBE flip-flop. TMCC BLOCK STROBE (1) is used to inhibit the BRQ STROBE that
occurs during microstate ZAP.00 from clocking in any new requests prior to acknowledgement of the abort.
Once UBCN ACKN B H occurs for all aborts other than a stack error or power fail, BLOCK STROBE is cleared to
allow service of an interrupt upon completion of the abort service routine (SVC.90) prior to the fetch of the next
instruction.

For stack errors and power fail aborts, BLOCK STROBE remains set until the fetch of the next instruction,
blocking BRQ STROBE in both ZAP.00 and SVC.90 microstates, which prevents any requests from being
strobed prior to the fetch of the next instruction. BLOCK STROBE is cleared in the FET.00 microstate by the
BCT value 3 (clear flags). Thus, the BRQ STROBE in ZAP.00 is used only during the power-up, to check for the
console S INST/S BUS CYCLE switch in the S INST position and the console HALT/ENABL switch in the
HALT position. In this case, the console flag (CONF) is set and the processor is placed in console mode, instead
of executing the power-up sequence.

7.6.1.3 Power Fail Clear — UBCE PF CLR (1) L is used to clear the priority request register upon completion of
honoring a power fail to allow the next instruction to be fetched.

7.6.1.4 Internal Bus Initialization — UBCE INT BUS INIT L clears the request storage register as a function of
initialization and the RESET instruction.

7.6.2 Priority Arbitration

The priority arbitration logic shown on drawings TMCA and TMCB ensures that a trap, program interrupt, or bus
request will only be honored if no higher-priority request is present. The results of the priority gating are listed
in Table 7-15.

The processor priority field of the processor status word [PDRD PS (07:05) (1) H] is decoded on TMCB to block
levels so that external devices on those levels can not interrupt the processor with a request for service. For
example, if the priority field contains 5, TMCB BLOCK LEV (5:2) L outputs are asserted. These outputs inhibit
any service request below BR6 from being honored. Only external devices that have a priority higher than 5 can
interrupt the current processor operation.

7.6.3 Control Logic

Refer to drawing TMCB.
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7.6.3.1 BRQ TRUE — At least once per instruction (except an SPL), the processor, during numerous micro-
states (FET.00, for example), checks for the BRQ condition. If a request is to be honored, the processor will
then branch to BRK.01; otherwise, it continues through the normal flow sequence. The logic that generates the
BRQ condition is shown on TMCB. When any of the request-honor outputs listed in Table 7-15 go low, TMCB
BRQ TRUE is asserted. This signal is used to determine Branch Enable 12 throughout the flow diagrams.

7.6.3.2 Enable Vector — ENB VEC (1) H is ANDed with the honored trap request to provide an output that
will generate the vector address for that trap. ENB VEC is set upon entering the INTR PAUSE state, provided
the processor is not servicing a bus request. The vector used during the servicing of a bus request is clocked into
the BR during the INTR sequence on the Unibus. Table 7-16 lists the output asserted for each honored trap re-
quest and the ultimate trap vector that is generated.

Table 7-16
Trap Vectors Enabled

Trap Request Honored Output Trap Vector™
TMCA HONOR FPTRAP H TMCB FPTRAP L 244
TMCA HONOR SEGT H TMCB SEGT L 250
TMCA HONOR PWRF H TMCB PWRF L 24
TMCB HONOR T H TMCB TOK L 14
TMCB HONOR PIRQ H TMCB PIRQ L 240

(OR of PIR(7:1))

* Trap vector generator is shown on drawing DAPE.

When ENB VEC is set, TMCB TRAP INH L is asserted. This output inhibits instruction trap vectors from being
gated into the K1MX while the non-instruction trap vector is taken. Any abort condition will also assert TMCB
TRAP INH L with the TMCC BLOCK STROBE (1) H signal. ENB VEC is cleared by UBCB ACKN B H once the
vector is clocked into BR.

7.6.3.3 Branch Enable 13 (BE13) — The logic that controls microbranch-enable BE13 is shown on TMCB. All
of the errors and requests that might be honored to cause an internal trap are ORed to provide an output called
TF (and its complement,-TF). The 74H50 gates provide the following two outputs: TMCB PF (0) * (SF+ TF)H
and TMCB PF (0) * (SF +-TF) H. These outputs control which of four microbranch paths will be followed:

a. PUPF (1) — If the power-up flag is set, neither output will be asserted. Microstate PUP.00 (100) will
be entered.

b. TF — When the power-up and stack error flags are both cleared [PUPF (0) L and ~-SERF (1) L] and a
trap condition exists, only the TMCB PF (0) * (SF + TF) H output will be asserted. This output causes
microstate BRK.80 (140) to be entered.

¢. ~TF — When the power-up and stack error flags are both cleared and no internal trap conditions are
present (-~ _TF), only the TMCB PF (0) * (SF +-TF) H output will be asserted. This causes microstate
BRK.20 (120) to be entered.

d. SF — If the stack error flag is set, SERF (1) L will assert both outputs. This will cause the SER.00
microstate (160) to be entered.
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The following chart summarizes BE13 microbranch control

Output*
Condition ROM Address
A B
PUPF (1) H 0 0 100 — power up
-TF 0 1 120 — interrupts, passive release, and
console continue
TF 1 0 140 — internal traps
SERF (1) H 1 1 160 — stack red errors

*A = TMCB PF (0) * (SF +TF) H
B = TMCB PF (0) * (SF +~TF) H

7.6.4 0Odd Address Error

The odd address error detection logic is shown on drawing TMCC. An odd address error will be detected if an
attempt is made to reference a word at an odd address. There are exceptions for certain operations where an odd
address is legal during the execution of a word instruction.

When the address is odd, byte address bit DAPB BAMXO00 H is high. If IRCD BY IN H is not asserted, indicating
that the instruction is not a byte instruction, TMCC ODD ADRS ERR L is asserted. Thus, during any non-byte
instruction, a high byte address will be detected as an odd address error.

If the ROM bus condition field is decoded to indicate the bus transaction is not BSOP1 or BSOP2, and is not
SRC1 DATI or SRC2 DATI, then it must be either DATI (BSC 0), kernel DATI (BSC 2), FC (BSC 4), or DATO
(BSC 5). Under any of these conditions, a high byte address will produce an ODD ADRS ERR, even during byte
instructions. During DATI or SRC1 DATI with SM357, an odd address error is detected if BAMXOO is high.

An odd address is legal only during BSOP1, BSOP2, SRC2 DATI, or SRC1 DATI* — SM357.

7.6.5 Fatal Stack Violation

The SL RED signal is asserted when a fatal stack violation (red) is detected. The stack limit protection logic is
shown on drawing TMCD. The three conditions that will cause the TMCD SL RED L error signal to be asserted
are shown in Figure 7-7.

7.6.5.1 Red Zone or Stack Limit Violation — The high byte of the virtual address of all stack-pointer-related
DATO, DATOB, and DATIP operations performed in kernel mode is compared with the contents of the SL
(stack limit) register. If the high byte is less than the contents of the SL, a fatal stack violation is detected.

Under these conditions, PDRC RED ZONE H is asserted. If the stack error flag is not already set, or the BLOCK
STROBE flip-flop is not set, (Paragraph 7.6.7.4), TMCD SL RED L will be asserted when timing pulse TIGD T5 H
goes high. This is done to prevent red zone error detection while the emergency stack (locations 2 and 0) is being
used during the service of a red zone stack error. A latching gate keeps TMCD SL RED L low until the stack
error service routine is completed and UBCB ABORT ACKN L goes low.

If the high-order virtual address is equal to the SL contents, PDRC STACK LIMIT H is asserted. If the BAMX
{07:05) H bits are not equal to 7 (16 words), the virtual address is below the 16-word yellow zone boundary. The
~TMCD YEL ZONE H level is ANDed with PDRC STACK LIMIT H to qualify that input, and TMCD SL RED L
will be asserted when timing pulse TIGD T5 H goes high.
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Figure 7-7 Red and Yellow Stack Violations

7.6.5.2 Internal Address Violation — When the address of any internal register is decoded from the PA (17:09) H
and BAMX (08:01) H inputs to the 74155 chip, TMCD INTERNAL ADRS H is asserted. This signal is used to
assert TMCD SL RED L (Figure 7-7). This protects the internal register locations from being inadvertently in-
cluded in the stack.

7.6.6 Warning Stack Violation

The yellow warning stack violation detection logic is shown on TMCD. This stack limit protection logic is only
enabled during stack-pointer-related DATO, DATOB, and DATIP bus operations, as is the case for SL RED.
Under these conditions, TMCC KERNEL R6 (1) H and RACB UBSDO1 H are both high (Figure 7-7). If the high-
order byte of the virtual address VA (15:08) is equal to the contents of the SL, PDRC STACK LIMIT H is high.
If BAMX <07:05) H is 7, the address is within the 16-word yellow zone. As a result, the SL YEL flip-flop is set

at T2.

7.6.7 Abort Detection
The five conditions that cause an immediate abort are:

odd address error

fatal stack violation (red)
memory management abort
timeout

parity error

epo o

The logic that detects odd address errors and fatal stack violations is located on the TMC module and described
in preceding paragraphs. Parity and timeout error detection logic is located on the UBC module and described in
Paragraphs 7.2.9 and 7.7.7. The memory management abort logic is located on the SAP and SSR modules and
described in the KT11-C Memory Management Unit Maintenance Manual.
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The five abort-causing inputs are ORed, as shown on TMCC, to assert TMCC ABORT H. Instruction execution is
interrupted at T2 of the next pause cycle if any of these inputs is asserted. Any of the five conditions that assert
TMCC ABORT H will also prevent the MSYN flip-flop on UBCB from being direct-set and inhibit the CONTROL
OK from semiconductor memory. The TMCC ABORT H level is applied to UBCA to assert UBCA SSYN
RESTART H after the address deskew delay. At the same time, TMCC ABORT H generates ROM address 200,
ZAP.00.

7.6.7.1 KERNEL R6 — The KERNEL R6 flip-flop detects that a reference to the kernel’s stack is being made
and used to enable the stack limit error detection logic. All DATO, DATOB, and DATIP references are gated
against the following conditions:

a.  The PAD address being referenced is 6,and the SR or DR is being used as the input to the BAMX.
b. The ROM bus control code indicates a stack reference during a JSR (BCT = 5).

7.6.7.2 Address Error Flag (AERF) — The pu}pose of the address error flag (AERF) flip-flop is to test for any
type of address error, including odd address error, Unibus timeout, or memory management aborts. Odd address,
timeout, and memory management abort signals are ORed. If any of these types of address errors are detected,
or the CNSL ACT and KERNEL R6 flip-flops are not set, the AERF will be direct-set at time state TS2 of the
pause or long pause cycle.

7.6.7.3 Stack Error Flag (SERF) — The SERF f{lip-flop is set when any stack error is detected. Red fatal stack
violations (SL RED) and yellow warning stack violations (SL YEL) are two stack error conditions. In addition,
memory management abort conditions or bus errors detected during the pause cycle of a kernel R6 reference will
also set SERF. Red fatal stack violations, memory management aborts, or bus errors will set SERF immediately
at time state TS2 of the current pause cycle, when TMCC CLK FLAGS H goes high. These conditions demand
immediate stack error service. If a yellow warning stack violation is detected, the SERF will not be set until the
current instruction is completed; then TMCA HONOR SLY H and UBCB ACKN B H will clock and set SERF.
SERF (1) His one of the inputs that control the BE13 microbranch-enable logic, directing the processor to the
stack errors path if a red error is detected. For yellow errors, it prevents any BRQ STROBE from clocking in the
new request until after the next instruction is fetched.

7.6.7.4 Block Strobe — BLOCK STROBE is used to inhibit BRQ STROBE from strobing any requests if an
abort condition occurs. It is used with PRIORITY CLR to prevent any trap vectors from being asserted or any
traps from being honored while an abort condition is being serviced. It prevents the BRQ STROBE from occur-
ring in either microstate ZAP.00 or in SVC.90. The reason BRQ STROBE is inhibited during ZAP.00 is to pre-
vent requests from being strobed into the priority arbitration logic after PRIORITY CLR has cleared the storage
register for service of an abort. The reason BRQ STROBE is inhibited during microstate SVC.90 is to disable the
servicing of any requests once a stack error or power fail has occurred until after the execution of the next in-
struction.

If a fatal stack error occurs during the execution of a power-fail sequence, the PS and PC associated with the
fatal stack violation are saved in locations 0 and 2. A new PS and PC are established as determined by the power-
fail vector at location 24. The power-fail trap vector (24) is generated because TMCA HONOR PWRF H and
SERF (1) H assert TMCB PWRF L.

7.6.8 Internal Address Decoder

Refer to drawing TMCD. A 74155 Dual 2-Line-to-4-Line Decoder is used to decode internal register addresses
from PA {17:06) H and BAMX (05:01) H. For any internal register address (77777X), the A1l input goes low
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when UBCA CPBSY B H goes high. The A0 input will not be qualified because BAMX 07 H is high. DAPB
BAMX €02:01) H are applied to the select inputs. Depending upon these two low-order address bits, the Al in-
put will be demultiplexed to one of four outputs as indicated in the following chart.

DAPB BAMX
Register Address Output Selected Function Asserted
02 01 -
777770 L L 1FO PB ADRS L
777772 L H 1F1 PIR ADRS L
777774 H L 1F2 SLADRS L
777776 H H 1F3 ST ADRS L

If the switch register address (777570) is decoded, DAPC BAMX 07 H will be low. Under these conditions, if
TMCE GET OFF H is not asserted, a high level will be applied at the AO input and the Al input will also be high
(disqualified). The low-order bits DAPB BAMX (02:01) H will be low and the 2F0 output at pin 7, TMCD SW
ADRSL, will be asserted. TMCD SW ADRS H is gated with SSRK KT11C FAST (1) L to inhibit switch addresses
from the internal bus during KT11-C register operations, because the physical address lines can change while
KT11-C registers are being addressed.

7.6.9 DMX Select

Refer to drawing TMCD. The decoded internal address outputs are used to provide TMCD DMX S1:S0 H,
which select the appropriate register to be gated onto the Unibus during a DATI or DATIP transaction, as shown
on drawing PDRE. The selection lines are used with TMCD HI BYTE EN H and TMCD LO BYTE EN H to mul-
tiplex five registers onto the Unibus, as indicated in the following chart.

TMCD DMX
Register
S1 SO
L L BR
L H SL (HI BYTE EN only)
L H PB (LOW BYTE EN only)
H L PIR
H H PS

7.6.10 Bus Condition Multiplexer

Refer to drawing TMCE. The bus condition multiplexer decodes the class of the current instruction and the Uni-
bus condition-code field of the ROM to provide TMCE C1 H and TMCE CO H. These outputs are used to gener-
ate Unibus control signals C1 and CO, as shown on drawing UBCC. BSCMX is a 74S153 multiplexer shown on
drawing TMCE. RACC UBSC <02:00) H are used to generate TMCE (C1:CO0) H as shown in the following chart.
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TMCE
BSC Field Conditions
Ci Co
0-3 0 0 BSC = 0—3 are all DATI operations. The
bus condition multiplexer is not enabled.
4 1 0 DATO if FPC1 = |
0 0 DATIif FPC1 =0
5 1 0 BSC = 5 is always DATO and C1 is forced
to 1.
6 0 1 P Class asserts CO for DATIP.
1 0 O Class asserts Cl1 for DATO.
7 1 0 BSC = 7 always forces C1 to 1 for DATO.
1 1 . BYIN asserts CO for DATOB.

7.6.11 Miscellaneous Control and Bus-Delay Signals

The miscellaneous control signals generated by the combinational logic shown on drawing TMCE are used
throughout the TMC module and are issued to other modules in the processor, memory management unit, and
floating-point processor. The RACC UMSC ¢02:00) outputs of the ROM MSC field are clocked out at time state

T1 and the appropriate inputs will be available when TMCC TS3 CLKA H goes high. The logic is straightforward
and the conditions required to assert each miscellaneous control signal output can easily be determined by in-
spection of input signal mnemonics. Table 7-17 lists the functions of the control and bus delay signals generated
by the logic shown on drawing TMCE.

7.6.12 Internal Bus Signals

The IBS field is decoded from the ROM to provide RACB UIBS <01:00), which control the internal processor
bus. If either of these bits are high, the internal bus is required for internal processor operation and TMCF GET
OFF H will be asserted. This prevents external devices such as the memory management unit from placing data
on the internal bus.

When the IBS field is 1, and UBCJ DDC STOP L is asserted and TMCF DDC ATTN L is sent to the DEC Data
Center (DDC) terminal. This enables the DDC to put its address onto the Unibus D lines to be strobed into the
BR. If DDC STOP L is high, TMCF READ SW L will be asserted. This signal gates SWR <15:00) input from the
console switch register to the internal bus.

7.6.13 Bus Register Multiplexer Control

The logic for the BRMX select is generated on drawing TMCF. Because the internal selection is a function of the
address presently being asserted, there are cases where the bus input is needed and the address is not known.
These cases occur during the INTR transaction on the Unibus and during DDC transactions, when the address is
asserted on the Unibus. Thus, during INTR PAUSE or DDC ATTN, TMCF SELINT L and TMCF SELMEM L
signals are inhibited. The SELMEM signal is also inhibited when an internal address or internal bus command is
issued. The bus register multiplexer is shown on drawing PDRA.
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Table 7-17

TMCE Control and Bus Delay Signal Functions

Signal Function
Miscellaneous Control Signals

TMCE BRQ CLK Strobes end-of-instruction requests into the priority
arbitration logic shown on TMCA and TMCB.

TMCE BEND CLR Stops Unibus and Fastbus memory cycles when fur-
ther address calculation is requred.

TMCE SET PRIORITY Enables loading BR(2:0) into PS(7:5) for SPL (Set
Priority Level) instruction.

TMCE BUST OUT Generated by ROM to start bus cycle.

TMCE FLOATING ATTN Signals FPP that, address, instruction or data is
ready to be taken.

TMCE SET CONF Sets CONF if HALT in kernel mode, parity error,
or console reset occurs.

Bus Delay Signals
TMCE BUS LONG PAUSE Indicates second half of bus cycle and that address
‘ lines will change immediately upon exiting present
ROM state. Stops timing in T5 of Unibus operation
to allow address deskew to be completed.

TMCE INTR PAUSE+ Signifies beginning of service routine. Enables bus
grants to occur or trap vector to be enabled.

TMCE PAUSES Indicates second half of bus cycle. Enables signals
such as MSYN and CONTROL OK. Causes timing
generator to wait for SSYN at T2 of Unibus cycle
or at TS of Fastbus cycle.

TMCE INTR CLR Clears CP BSY if bus operation is aborted and

notifies FPP that CPU is servicing interrupt.
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7.7 UBC MODULE M8106

The Unibus and Console Control (UBC) Module M8106 provides Unibus, Fastbus, and console control logic func-
tions for the KB11-A processor. The Unibus control functions are compatible with all Unibus devices. Complete
descriptions of the Unibus are provided in the PDP-11 UNIBUS Interface Manual. A short summary of Unibus
transactions is provided in Appendix D of the PDP-11 Handbook. These manuals provide general overall descrip-
tions of Unibus operations. The UBC module also contains control logic for the Fastbus interface with floating-
point and high-speed metal-oxide semiconductor (MOS) and bipolar memory.

7.7.1 Bus Control Introduction

When the KB11-A processor requires a memory reference to fetch or execute an instruction, the Unibus and
Fastbus control sequences are initiated. Fastbus devices will decode the address lines while Unibus control is be-
ing obtained and before the 150-ns deskew delay is completed. If the address applies to a Fastbus device, that
device will respond in time to inhibit the Unibus MSYN signal and a Fastbus control sequence will occur. The
Fastbus control sequence is described in Paragraphs 7.7.4 through 7.7.6. If no Fastbus device responds before
deskew is completed, the Unibus MSYN signal is asserted and the Unibus control sequence continues. The Uni-
bus control sequence is described in Paragraph 7.7.2. All KB11-A memory references consist of BUST and
PAUSE cycles.

7.7.1.1 BUST (Bus Start) Cycle — When BUST is decoded from the ROM MSC field of a microstate, address
lines are asserted and a memory management delay is provided. An attempt to gain control of the Unibus is ini-
tiated and when, if successful, an address deskew delay is initiated. During this cycle, the processor and memory
management logic tests for odd address and page address errors and fatal stack limit violations.

7.7.1.2 PAUSE Cycle — Errors are acted upon during the PAUSE cycle. If an error has been detected, MSYN
(Unibus) and CONTROL OK (Fastbus) will not be asserted. The error condition restarts the timing generator
and forces the ROM to ZAP.00 (200). If no errors are detected, MSYN or CONTROL OK is issued and the data
transfer occurs. The two types of PAUSE cycles are bus pause and bus long pause; the type is determined by the
ROM BSD field for each machine state.

a. bus pause: If the address and C lines are to remain the same upon entering'the next ROM machine
state, bus pause (BSD = 2) is specified because the Unibus address deskew can be completed during the
next ROM state.

b. bus long pause: If the address and C lines are to be changed upon entering the next ROM state, bus
long pause (BSD = 3) is specified. Under these conditions, all Unibus address deskew delays are
completed before leaving the current ROM state (TS restart).

7.7.1.3 Unibus Control — BUST is decoded from the ROM at T1. A delay is provided when the KT11-C Mem-
ory Management Unit option is implemented. During this time, TIGA STOP T3 L is asserted. During this delay,
the processor asserts the address lines and control lines.

7.7.2 DATI and DATIP Unibus Transactions

The UBC logic that initiates and controls DATI and DATIP Unibus transactions is described in the following
paragraphs. The descriptions are presented to follow DATI and DATIP sequences. Much of the logic is common
to DATO and DATOB Unibus transactions, which are described in Paragraph 7.7.3.
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7.7.2.1 CPBSY — TMCE BUST H and TIGD T3 B H set GET BUS. When all current NPR requests have been
honored, UBCA UNIBUS RELEASE H will be high. UBCA UNIBUS RELEASE = —)D SACK + NPR + NPG +
BBSY). Under these conditions, GET BUS sets CPBSY. The processor now has control of the Unibus and asserts
BUSA BBSY L.

7.7.2.2 Address Deskew — CPBSY and GET BUS will assert UBCA DESKEW ADRS H when SSYN from the
previous Unibus transaction is negated (-SSYN) and the current Unibus transaction is a DATO or DATOB or
immediately if the transaction is DATI or DATIP.

The deskew register shown on drawing UBCB consists of six D-type flip-flops provided by a 74S174 IC. The
UBCA DESKEW ADRS H signal is applied to the DS input. The flip-flops are clocked by TIGC TF L. The period
of TIGC TFL is 30 ns. The UBCA DESKEW ADRS H input is propagated through the deskew register by five
successive clock pulses so that after a 150-ns delay, UBCB DESKEW COMP H is asserted.

7.7.2.3 MSYN — The delay provided by the deskew register allows for worst-case signal skew and allows time
for internal logic in slave devices to decode the address. UBCC SSYN B L assures completion of the previous Uni-
bus transactions. (For DATI transactions, address deskew may be completed prior to the removal of SSYN from
the preceding bus cycle.) Assoon as UBCB DESKEW COMP H is asserted, the MSYN flip-flop will be direct set,
if no errors are detected.

The MSYN flip-flop and error condition gate are shown on UBCB. TMCE PAUSES B H and UBCA TS2 CLK H
must be asserted. MSYN will be set if none of the following errors has occurred:

odd address error

memory management abort
stack limit red

parity error

aooe

If any of the above errors is detected, MSYN can not be set. An error condition restarts the timing generator and
forces the ROM to ZAP.00. Also, MSYN can not be set if the Fastbus is in use (TMCF FAST L must be high). As
previously stated, when a Fastbus device is addressed, that device will assert TMCF FAST L and inhibit MSYN.

The conditions that cause the MSYN flip-flop to be cleared are determined by the type of bus transaction that is
in progress. Typically, for DATO bus transactions, MSYN is cleared when the SSYN signal is received from the
slave device. For DATI and DATIP transactions, MSYN is cleared by the BUS LOAD signal (if bus long pause) or
at T1 of the next ROM cycle (if bus pause). These conditions are described in the following paragraphs. If a non-
existent memory is addressed, MSYN will be cleared by UBCB TIMEOUT H.

7.7.2.4 Bus Pause and DATI — In the pause cycle (UBSDO1 H) of a Unibus transaction (- TMCF FAST L), the
TIGA STOP T3 L signal is asserted to stop the timing generator and wait for the slave device to respond with
SSYN (Figure 7-8). When the slave device receives MSYN, it completes a read cycle, outputs data on the D lines,
and asserts SSYN. When the processor receives BUS SSYN L, it asserts UBCC SSYN B H.

Refer to UBCA. UBCC SSYN B H is ANDed with UBCB MSYN (1) H to provide UBCA SSYN RESTART H,
which restarts the timing generator by inhibiting TIGA STOP T3 L. As the timing generator advances to time
state TS1, TIGB T1 B L asserts UBCB CLK BR H to clock the data from the slave device into the BR. The ROM
state BRK bit must be a 1 to allow the BR CLK to be asserted. The TIGB TS1! L signal asserted at this time is
used as the clock to clear the MSYN flip-flop. CPBSY is cleared on the following T4.

7.7.2.5 Bus Long Pause and DATI or DATIP — During a bus long pause DATI or DATIP Unibus transaction, the
timing generator is restarted when BUSA SSYN L is received from the slave. However, because a bus long pause
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is in effect, TIGA STOP T1 L is asserted. RACB UBSD 00 H and TIGA UBSD 01 H are high until UBCA BLP
DESKEW is true, at which time the TIG resynchronizes and issues T1 , which clears CPBSY and removes the
A and C lines. The purpose is to allow an additional 75 ns for address deskew after MSYN is cleared during a bus

long pause Unibus transaction. The sequence is described in the following paragraphs and shown in the DATI
bus timing diagram (Figure 7-9).
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Figure 7-8 DATI Unibus Timing Diagram

7.7.2.6 BUS LOAD — During a DATI or DATIP with a bus long pause, MSYN remains set until the BUS LOAD
flip-flop is set. Refer to UBCB. BUS LOAD is set one clock pulse after TS (GRAC T6 L) to allow completion of
write-to-scratchpad for the previous cycle before the IR and BR are loaded with new input data. UBCB BUS
LOAD H direct-clears MSYN. When this happens, all inputs are qualified to assert UBCA BLP DESKEW H.

UBCB BUS LOAD L asserts UBCE CLK BR H at this time, provided the ROM state BRK bit is 1.

7.7.2.7 BLP DESKEW — The purpose of BLP DESKEW is to allow 75 ns for address deskew before address
lines are removed from the Unibus. The logic that initiates bus long pause deskew timing is shown on drawing
TIGA. With TMCE BUS LONG PAUSE H asserted, the signal UBCA BLP DESKEW H will be asserted as soon as
the MSYN flip-flop is cleared, because GET BUS is cleared and CPBSY is still set. The UBCA BLP DESKEW H
signal is used on TIGA to disable STOP T1 and restart the timing generator. As a result, a 75- to 100-ns delay is
provided. This period of time is allowed for address deskew before timing restarts because the A and C lines will
change upon exiting the pause cycle. When UBCA BLP DESKEW H is asserted, the next T1 time state sets BLP
CLR, which clocks and clears CPBSY (drawing UBCA).

7.7.2.8 BUSA BBSY L — The BUSA BBSY L signal is asserted when the CPBSY flip-flop is set, as shown on draw-

ing UBCA. While the BUSA BBSY signal is asserted, the UNIBUS RELEASE H signal is inhibited. During the bus
long pause cycle of a bus transaction (other than DATIP), the following T1 clears CPBSY and allows UBCA
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UNIBUS RELEASE to be asserted. During a bus pause, CPBSY is cleared after the timing generator is restarted,
when TIGB TS4 L causes UBCA TS4 CLK H of the next ROM state to be asserted. The removal of BUSA BBSY
from the Unibus allows a previously-granted device to take control.
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Figure 7-9 Unibus DATI Bus Long Pause Cycle, Control Timing

7.7.2.9 TIMEOUT — The TIMEOUT logic shown on drawing UBCB terminates the Unibus transaction if an
SSYN response is not received within 10 or 5 us after the MSYN flip-flop is set.

The UBCB MSYN SET H signal, which is asserted when MSYN sets, is applied to the D input of the TIMEOUT
flip-flop. At the same time, it is applied to the 74123 one-shot. If the 74123 is not direct-cleared within 10 or
5 us, the output will clock the TIMEOUT f{lip-flop. If the slave device returns the SSYN signal within a normal
time, UBCC SSYN B L will clear the one-shot and prevent the TIMEOUT flip-flop from being set.

If BUSA SSYN L is not received within 10 or 5 us, the TIMEOUT flip-flop gets set and a trap to location 4 occurs.
Once the trap vector has been clocked into the DR, the next ROM state BCT field asserts UBCB ACKN L, which
clears TIMEOUT.

7.7.3 DATO and DATOB Unibus Transactions

Initial Unibus control functions for DATO and DATOB transactions are identical to those described for DATI
and DATIP. The sequence is initiated by BUST at TS1. Refer to the DATO/DATOB timing diagram in Figure
7-10. During the KT11-C delay, the Unibus address and control lines are asserted. After the KT11-C delay, the
timing generator starts and at TS3, TMCE BUST OUT initiates the processor’s attempt to get control of the Uni-
bus by setting GET BUS. If the Unibus is already busy, there will be a delay until UNIBUS RELEASE H is as-
serted before CPBSY will set. When BUSA SSYN L from the previous Unibus transaction is negated, UBCA
DESKEW ADRS H is asserted. The deskew delay lasts for 150 ns. During this time, the Unibus address, control
and data lines are asserted. If the address is that of a Fastbus device, or internal register, or if a bus error or page
address error occurs, MSYN can not be set. Otherwise, MSYN is set 150 ns after CPBSY.
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Figure 7-10 DATO and DATOB Timing Diagram

The addressed slave device receives the control and MSYN signals, strobes in the word (or byte) of data, and as-
serts BUS SSYN L. When the processor receives BUSA SSYN L, it asserts UBCC SSYN B L, which in turn asserts
UBCA SSYN RESTART H to restart the timing generator.

UBCC C1 B H is asserted for DATO or DATOB. Therefore, when TIGB TS4 L goes low, UBCC MSYN CLR H s
asserted; this clears MSYN. Because the timing generator must resynchronize when BLP DESKEW is asserted,
three time periods (90 ns) will elapse before T1 is issued. This allows the slave device deskew time before
the address, data, and control lines will be removed. When the slave device sees MSYN fall, it drops SSYN.

7.7.4 Fastbus Transactions

Fastbus transactions are initiated in the same manner as Unibus transactions. When BUST is decoded from the
MSC field of the ROM for a particular microstate, STOP T3 L is asserted for a KT11-C delay. During this time,
the Fastbus address and control lines are asserted. If the address is that of a Fastbus device (such as semiconduc-
tor memory, KT11-C, or an internal register), TMCF FAST L asserts UBCB FAST H, the signal UBCB NOT UNI L
asserts UBCB CLR UNI H, and CPBSY is cleared at T2. The Unibus control sequence is terminated and TMCF
FAST L prevents MSYN from being set.

UBCB CLR DESKEW L is used to restart A + D + C deskew for special-case DATO transactions. For semicon-
ductor memory storage, the data need not be present in the BR until CONTROL OK is issued. However, for Uni-
bus operations, the data must be present prior to the start of the 150-ns address deskew. For certain DATO op-
erations (SHR.10, EXC.00), the data is not loaded until T1 of the pause cycle; the Unibus deskew must not be
restarted. Therefore, for BSOP2 (DATO and DATOB) and BSOP1 DATO operations, if the BRK ROM bit was
true in the previous cycle, UBCB CLR DESKEW L is asserted at T2 and the deskew is restarted.
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7.7.5 Fastbus DATI and DATIP

After the KT11-C delay, the timing generator advances to TS3 and TMCE BUST OUT L is asserted. Refer to the
timing diagram shown in Figure 7-11. Assume that the address was located in a semiconductor memory. During
the remainder of the BUST cycle, the semiconductor memory control decodes the address and responds with
SMCF MEM L. When the processor receives this input, it asserts TMCF MEM H and TMCF FAST L.
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Figure 7-11 DATI and DATO Fastbus Control

The processor enters the pause cycle and checks for errors. If no bus errors, stack limit red errors, or parity

errors are detected, TMCE BEND ERR L will be high. If no page address abort condition is detected by the
KT11-C logic, SSRCKT11C ABORT FLG L is asserted (drawing UBCA). As a result, CONTROL OK is set at

T3 of the pause cycle. The CONTROL OK output indicates to the semiconductor memory control that the con-
trol lines are stable. The signal is used to latch decoders in the semiconductor memory control. The memory
proceeds to do a read operation and then asserts the SMCA MEM SYNC (B) L, indicating that the data is ready.
TIGA STOP T1 L is asserted until SMCA MEM SYNC (B) L is received. The timing generator is suspended in TSS.
When SMCA MEM SYNC (B) L is asserted, the timing generator restarts. TIGB T1 L clears CONTROL OK. When
it does, the semiconductor memory control logic drops SMCA MEM SYNC (B) L.

7.7.6 Fastbus DATO and DATOB

The DATO cycle for Fastbus transactions is similar to the DATI cycle; the difference is that data lines are as-
serted at time T1 of the ROM state with the BRK bit set to 1. SMCA MEM SYNC (B) L is asserted by the mem-
ory control logic as soon as the data is taken. If this happens prior to TS5 of the pause cycle, TIGA STOP T1 L
will not be asserted and the processor timing generator is not suspended in TS5.
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7.7.7 Parity Error Logic

Refer to drawings UBCB and TMCE. A parity error on the Unibus A is indicated by BUSA PA L high and BUSA
PB L low. The parity error causes UNI PERF (Unibus parity error flag) to be set when MSYN is cleared. UNI
PERF (1) L asserts UBCB PARITY ERR SET L during the pause cycle, which sets the console (CONF) flag and
halts the CPU. If the semiconductor memory control logic detects a parity error, SMCB PERF L sets a flip-flop
that asserts UBCB PARITY ERR L. This is one of the bus error inputs that generate an abort, as shown on draw-
ing TMCC.

The semiconductor memory control EHA and EHB (enable halt) flip-flops may be set under program control to
assert SMCB PE HALT L if a parity error is detected. This input also asserts UBCB PARITY ERR SET L, which
sets the console flag and halts the CPU. Thus, if either a Unibus A parity error or SMCB PE HALT L is asserted,
the processor will be vectored to trap when the CONT switch is pressed.

7.7.8 NPR and NPG

Refer to drawing UBCD, which shows the NPR (non-processor request) and NPG (non-processor grant) logic.
Any Unibus A device can assert the BUSA NPR L input, which takes precedence over any processor request for
use of the Unibus. UBCC DATIP L and UBCE ACLO B L inhibit NPRs. DATIP is used to inhibit setting the
NPR flip-flop to improve the NPR latency. TMCC FREE CLK (1) H, which is independent of any processor time
state, will set NPR when UBCD NPR RQ L is asserted.

If the processor is not in the process of servicing a bus request, NPG will be set on the next UBCD GRANT

CLK L pulse. Thus, the processor asserts the UBCD PROC NPG H onto the Unibus to the device that is request-
ing Unibus control simultaneously. The NPG flip-flop remains set until the device responds with a SACK signal.
The UBCA D SACK (delayed SACK) then clears the NPR flip-flop and the device scheduled to become the new

master waits for the BBSY to be cleared so that it can become master and assert BBSY.

At the time NPG is set, UBCD GRANT L is asserted to begin the NO SACK timing sequence described in Para-
graph 7.7.9.1.

7.7.9 Priority Bus Requests

The priority arbitration logic on TMCA and TMCB checks bus requests against the priority established by the
processor status word. When a bus request on one of levels 4 through 7 is honored, UBCD EXT BRQ H is as-
serted as shown on drawing UBCD. Nothing happens until the processor enters time state TS2 of the interrupt
pause cycle. When no NPR is present, the SERVICE BR flip-flop will be set by the next TMCE FREE CLK (1) H
clock pulse. As a result, the GRANT BR flip-flop will be set on the following TMCE FREE CLK (1) H transition.
UBCD GRANT BR(0) H is the select input to a 74157 data selector. When GRANT BR is set, the B inputs
(honor bus requests) are selected to provide the processor bus grant outputs. Thus, if the priority arbitration
logic issued TMCA HONOR BR 5 L, UBCD PROC BG 5 H will then be asserted.

7.7.9.1 NO SACK — At the time GRANT BR or NPG is set, UBCD GRANT L is asserted to initiate the NO
SACK timeout sequence. UBCD GRANT H is applied to a 74123 one-shot. A 5- to 10-us delay is provided be-
fore the 74123 output clocks and sets the NO SACK flip-flop. If no BUS SACK signal is received by this time,
the UBCD NO SACK (1) L signal clears the NPG and GRANT BR flip-flops.

7.7.9.2 INTR RESTART — There are two ways to restart timing after a device gains bus control with one of the
BR levels. The logic that generates INTR RESTART H is shown on drawing UBCA. The UBCA INTR
RESTART H signal is usually asserted by UBCC INTR B L. Under normal conditions, the device may perform
several transfers before asserting BUS INTR L.

7-56



If a device does not respond to BG by asserting SACK within 5 to 10 us, the NO SACK flip-flop will clear. The
bus grant signal is cleared and restart is accomplished. .

A passive release will also cause the timing to restart. When GRANT BR is set, UBCD GRANT BR H will set the
PASSIVE flip-flop. The delayed SACK response from the device, D SACK L, clears the GRANT BR flip-flop.
When the device drops BBSY, upon completion of the last data transfer, the UBCA INTR RESTART H signal is
asserted. The PASSIVE flip-flop will be cleared by TIGD T5 L.

7.7.10 Interrupt Flag

Refer to drawing UBCC. When a device which has becn selected as bus master asserts BUSA INTR L, it initiates an
interrupt bus transaction. When the processor receives BUSA INTR L, the INTRF (interrupt flag) flip-flop is set,
which asserts UBCC (PWRF + INTR) L. At the same time, UBCC INTR B L restarts timing by asserting UBCA
INTR RESTART H.

The processor waits until T1 for deskew to ensure that all bits of the interrupt vector address are available on the
D lines. When TIGC T1 B H goes high, the interrupt vector is loaded into the BR from the D lines and the INT
SSYN (internal slave sync) flip-flop is set. When INT SSYN sets, it asserts BUSA SSYN L, which is sent to

the interrupting device. As a result, the interrupting device clears BUSA INTR L, the D lines, and BUSA BBSY L
This is an active release of the Unibus by the interrupting device.

When the BUSA INTR L input to the processor goes high, UBCC INTR B L goes high. Because the MSYN flip-flop
is cleared at this time, the INT SSYN flip-flop will be direct-cleared when UBCC INTR B L goes high. Therefore,
the processor clears BUSA SSYN L and enters the interrupt sequence.

7.7.11 Internal SSYN

Refer to drawing UBCC. Any DATI or DATO transaction that involves the processor internal registers (PS, PIRQ,
SL, PB) is initiated in the same way as a Unibus transaction with an external device. However, the processor Uni-
bus control logic must also provide the SSYN responses.

The internal register address is ANDed with UBCA CPBSY B H on TMCD to assert TMCD INTERNAL ADRS H.
After time is allowed for address deskew, the MSYN flip-flop will be set, and therefore, UBCB MSYN SET H is
asserted. UBCC CLK SSYN H clocks BR and a 50-ns delay is provided to allow the priority arbitration logic to
settle, if the processor status word was changed. Then, the INT SSYN flip-flop will be set, which causes the BUSA
SSYN L signal to be asserted. Then, UBCC SSYN B H asserts UBCA SSYN RESTART H to restart timing. MSYN
is cleared at time state TS1. When UBCB MSYN (0) L goes low, the INT SSYN flip-flop is direct-cleared.

7.7.12 Data Transfer Control Decoding

The Unibus control logic decodes control signals TMCE CO H and TMCE C1 H to assert the BUSA CO L and BUSA
C1 L control signals. The control line bus drivers are shown on drawing UBCC. The processor only controls these
Unibus control lines when the CPBSY flip-flop is set. The inputs are ANDed with UBCA CPBSY B H. Note that
the drivers for the Fastbus control signals UBCC MEM BUS CO L and UBCC MEM BUS C1 L are always enabled.
Decoder logic is included to provide the DATI, DATIP, DATO, and DATOB control signals required on the UBC
module. Decoding is summarized in the following chart.
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TMCEC1 H TMCECOH Output Asserted

UBCC DATI L: datain

UBCC DATIP L: data in, pause
UBCC DATO L: data out

UBCC DATOB L: data out, byte

oefi== ol o
ol ol o

7.7.12.1 HI BYTE/LO BYTE — When a data-out bus transaction is in progress, UBCC DATO L always asserts
both the UBCC HI BYTE H and UBCC LO BYTE H signals (drawing UBCC). If the bus transaction is a data-out
byte, only one of these signals is asserted. If the byte address bit DAPB BAMX 00 H is high, the high-order byte
is addressed and UBCC HI BYTE H is asserted. Conversely, if DAPB BAMX 00 H is low, the low-order byte is
addressed and UBCC LO BYTE H is asserted.

7.7.12.2 CC DATA — The purpose of the CC DATA flip-flop is to jam-set the N, Z, V, and C condition code
bits into the PS register when an explicit reference is made to the PS word. When UBCC LO BYTE H is asserted
(DATO or DATOB) and the PS address is decoded, the CC DATA flip-flop D input goes low. As soon as MSYN
sets, CC DATA is clocked and set. As a result, the BR bits (03:00) are jam-set into the PS bits (03:00). Thus, the
arithmetic result of the operation is not clocked into the condition codes; instead, the data being read into the PS
is maintained true while the normal T1 condition-code clock is overridden.

7.7.13 Power Control

The power supply provides two control signals to the processor on the Unibus,,BUSA AC LO L and BUSA DC LO
L. The BUSA AC LO L is asserted by the power supply to indicate that power failure is imminent. From the
time that BUSA AC LO L is asserted, the power supply can continue at full load for about 2 ms. The BUSA DC
LO L is an independently-detected signal that indicates one or more of the regulated dc output levels is dropping.
In the event of AC power failure, the BUSA DC LO L signal follows the BUSA AC LO L signal within a few milli-
seconds. The BUSA AC LO L and BUSA DC LO L signals control the power-down and power-up logic shown on
drawing UBCE.

7.7.13.1 Power Down — Refer to the timing diagram shown in Figure 7-12. When BUSA AC LO L is asserted,
the PDNF (power-down flag) flip-flop will be direct-set because BLOCK DOWN is cleared during normal opera-
tion. PDNF is applied to the priority arbitration logic on TMCA. When the PDNF is acknowledged, the BLOCK
DOWN flip-flop is set. If no higher-priority flag is raised (CONF or SL YEL), the priority arbitration logic asserts
TMCA HONOR PWRF L. The processor traps to location 24 and starts the power-fail sequence. UBCB ACKN

B H is asserted as a result of decoding ACKN from the BCT field (6) of the ROM. This sets the BLOCK STROBE
flip-flop on TMCC. When BRQ STROBE occurs at the end of the service flow (SVC.90), TMCC AC CLEAR L is
asserted. TMCA HONOR PWRF L and TMCC AC CLEAR L assert UBCE ACKN PWRF H, which sets the PWR
CLR flip-flop, which clears the priority arbitration flip-flops shown on drawing TMCA.

The UBCE ACKN PWRF H pulse is applied to a 74123 one-shot to initiate a 2-ms timing delay. After 2 ms, the
DC LO one-shot is triggered to assert the BUSA DC LO L signal. By this time, all of the internal trap and service
routines have been completed. No further bus transactions can occur when BUSA DC LO L is asserted.
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UBCE DC LO B H sets the ALLOW UP flip-flop; it also sets BLOCK DOWN. The UBCE DC LO B H signal as-
serts the following initializing signals:

a. UBCE INT BUS INIT L — clear internal registers PS, PIRQ, SL and PB, and the priority arbitration
flip-flops

b. UBCE ROM INIT H — forces ROM to ZAP.00 (200) and sets timing generator to T4
c. UBCE INIT — clears processor, floating-point processor, and KT11-C.
d. BUSA INIT L — initializes Unibus

These signals initialize the processor in preparation for the power-up sequence.
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Figure 7-12 Power-Down/Power-Up Sequence

7.7.13.2 Power Up — When AC power is restored, the power supply will remove the BUSA DC LO L and BUSA
AC LO L signals. The BUSA DC LO L signal will go high before BUSA AC LO L. When BUSA AC LO L goes
high, the UBCE ALLOW UP (1) H signal starts the RESTART time delay by triggering the 74123 RESTART
one-shot. This time delay allows 70 ms for the magnetic core memory internal power supplies to power up.
During this delay interval, the low output from the RESTART one-shot asserts all the initializing signals to in-
hibit all processor activity. After the RESTART interval, the processor proceeds with the power-up micropro-
gram routines. At T2 of PUP.00, ACKN is decoded and at TS3, UBCB ACKN H will be asserted; this clears
ALLOW UP and PUPF. When PUPF is cleared, UBCE PUPF (0) L initiates a 2-ms delay by triggering the

74123 DOWN DLY one-shot. For this period of time, BLOCK DOWN remains set and prevents any BUSA AC
LO L assertion from setting PDNF. This ensures that the processor will complete the power-up sequence before
another power-down is initiated.
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7.7.14 Initialization

The initialization logic is shown on drawing UBCE. There are three basic sources of initialization: the console
START switch, the power-down/power-up control logic, and the reset instruction in kernel mode.

7.7.14.1 Power-Down/Power-Up — The power-down/power-up control logic asserts the initialization signals as
shown in the timing diagram. The UBCE INIT H level is typical; it is asserted from the time BUSA DC LO L is
asserted until the RESTART signal goes high. )

7.7.14.2 CNSL RESET — When the processor is halted and the START switch is asserted, UBCF CNSL RESET L
asserts the initialization signals. The primary purpose is for maintenance, if the processor or a device hangs the
Unibus or microprogram.

7.7.14.3 START — The console START switch sets the START FLAG flip-flop. It also asserts UBCE STATUS
CLR L. During machine state RES.10, the BCD field is decoded to provide code 4, INIT IF PS14 (0). AtTS3,
therefore, the RESET one-shot is triggered to begin a 10-ms delay. During this time, the true output is ANDed
with START (1) H to assert UBCE START INIT L and UBCE INIT H. These initializing signals are used to ini-
tialize all processor, memory management, and floating-point modules. At the same time, the O output of the
RESET one-shot asserts BUSA INIT L to initialize all devices on the Unibus, and UBCE INT BUS INIT L to ini-
tialize any registers that use the internal data bus.

7.7.14.4 RESET ABORT — When the 10-ms RESET one-shot is fired, a 1-us RESET ABORT one-shot is also
fired. The output is used to clear the RESET one-shot if a power fail occurs after the first 1 us of the initializa-
tion interval.

7.7.14.5 RESET in Progress — When a reset instruction is executed and state RES.10 is entered in the kernel
mode, the RESET one-shot will be triggered. The 0 output will go low to assert UBCE INT BUS INIT L, UBCE
RIP + FP SYNC L, and BUS INIT L. UBCE RIP + FP SYNC L is used in microbranch-enable BEOO to keep the
ROM cycling in RES.20 until the 10-ms delay is completed. The microbranch-enable is shared with FP SYNC.
During FP instruction executions, the processor waits for FP SYNC once FP ATTN has been sent.

7.7.15 Console Switch Inputs

The console switch inputs are connected to the UBC module as shown on drawing UBCJ. The switch control in-
puts are used to clock and set associated flip-flops in the console control register (drawing UBCF). When any
flip-flop is set, UBCF ACT H is asserted. If HALT and S INST CYCLE switches are set, UBCF S/INST L will be
asserted. This level is used to condition the CONF flip-flop on TMCA. At the end of an instruction, when the
processor checks for bus requests, CONF will set. CONF must be set before the console START switch can
clock and set the START bit.

7.7.15.1 DEC Data Center Inputs — The UBC/DEC Data Center interface is shown on drawing UBCJ. When
DDC STOP L and DDC BEGIN L are asserted from the DEC Data Center, the START bit of the console control
register will be set. When DDC STOP L and DDC LOAD L are asserted from the DEC Data Center, the CNSLO7
(load address) bit will be clocked and set.

7.7.15.2 Console Control Register — The console control register will be cleared at the end of each console con-
trol sequence (microstate CON.20). At T2 of this microstate, RACC UBCT ¢02:00) are decoded to assert UBCF
ACKN LEVEL H (010 = CNSL.ACKN). When UBCA TS4 CLK H goes high, all console control register flip-flops
are direct-cleared.
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An interrupt or initialize signal will also clear most of the console control register bits. The only exception is
START. UBCE DC LO B L is the only other condition that can clear the START bit.

7.7.16 Console Control Decoder

The states of the console control register flip-flops are decoded to provide the microstate address of the console
control function. The console function and associated microstate address bits are tabulated on UBCH. The de-
coder logic asserts UBCH CNSL (07, 02, 01, 00 H outputs, which are clocked into a storage register at TS3 of
the last microstate of a control function sequence. The purpose of this 4-bit register is to hold the microstate ad-
dress of the previous console operation. EXAM STEP and DEP STEP can not be entered unless enabled by the
preceding console operation.

7.7.16.1 EXAM and STEP EXAM — The microstate address for these functions is formed indirectly. If no
other control register flip-flop is set, the UBCH EXAM + STEP EXAM H output will be asserted when the UBCH
STRB FTIN H clock input occurs. This allows the EXAM function to be initiated. It also gates UBCF EXAM

(1) H to UBCH CNSLO0O H to produce the EXAM STEP microstate address as the next console function.

The REG EXAM console function is decoded directly from UBCF REG EXAM (1) H, which asserts microstate
address bit 1 (RAD.00 address 072).

7.7.16.2 DEPOSIT and STEP DEPOSIT — The DEPOSIT console function can be initiated directly by UBCF
DEPOS (1) H. Initially, UBCH STEP DEP + DEP L will be high and microstate address 073 will be asserted
when the DEPOSIT flip-flop sets. When it does, microstate address 073 is generated. As a result, the storage reg-
ister holds the complement 1100. Therefore, UBCH STEP DEP L is asserted. This asserts UBCH STEP DEP +
DEP H. The next DEPOSIT control function will actually be a STEP DEPOSIT with microstate address 074 be-
ing generated. Under these conditions, the storage register holds the complement 1011. This content will assert
UBCH DEP L, which also asserts the UBCH STEP DEP + DEP H. Thus the microstate address will remain 0100
each time a DEPOSIT is initiated.

The REG DEPOSIT (075), START (076), CONTINUE (077), and LD ADRS (270) microstate addresses are en-
coded directly from the associated control register outputs.
7.8 TIG MODULE M8109

The Timing Generator (TIG) Module M8109 provides the timing generator logic elements for the KB11-A.

7.8.1 Timing Sources

The three sources of KB11-A timing are the crystal clock, the R/C clock, and the MAINT STPR switch SO (on
the maintenance card). These timing sources are shown in drawing TIGB.

7.8.1.1 Crystal Clock — The crystal clock provides a constant square wave output of 33 MHz. The oscillator
frequency is determined by the LC tuned-collector network and stabilized by the crystal connected between
emitters. An offset network in the base circuits ensures that the oscillator will start when +5V is applied to the

7.8.1.2 R/C Clock — The R/C clock is provided for maintenance test purposes and is available only when the
maintenance card is plugged into the CPU backplane. The frequency of the square-wave output, TIGB RC H,
can be adjusted as high as 37 MHz by varying potentiometer R104 in the RC feedback network. Thus, the clock
pulse period can be narrowed to approximately 27 ns to test for race conditions in the logic.
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7.8.1.3 MAINT STPR Switch — The third source of timing is the manually-operated single-step MAINT STPR
switch SO, located on the maintenance card. This switch is only enabled when maintenance card switches S2 and
S3 are both set to 1.

7.8.2 Source Synchronizer

The timing source synchronizer is shown on drawing TIGB. The purpose of the source synchronizer is to select
only one timing source at any given time and inhibit the two remaining sources. The synchronizer prevents
cycles of improper length and ensures that TIGB SOURCE CLOCK L starts in the high (non-asserted) state when
switching between sources. Timing source selection is determined by the setting of switches S1, S2, and S3 when
the maintenance card is plugged in. If the maintenance card is not installed, the crystal clock is the only source
of timing. The following paragraphs describe timing source selection when the maintenance card is plugged in.

7.8.2.1 Crystal Clock Selection — When maintenance card switch S3 is not set, XMAA S3 L is high. When the
RC EN and MS EN flip-flops are not set, the XTAL SYNC flip-flop is set by the next TIGB XTAL L pulse going
high. With maintenance card switches S1 and S2 not on, MS EN will be cleared, as will RC SYNC and RC EN.
Therefore, XTAL SYNC is set, and on the next TIGB XTAL H going low, XTAL EN flip-flop will be set. Asa
result, the source multiplexer output, TIGB SOURCE CLOCK L, will follow the XTAL H input to the XTAL EN
flip-flop.

Note that XTAL EN (1) L inhibits XMAA S3 H inputs to the RC EN flip-flop. Therefore, the XTAL SYNC flip-
flop must be cleared before a timing source change can be accomplished. The RC EN and MS EN gating input to
the XTAL SYNC flip-flop ensures that these sources have been disabled before XTAL EN is allowed to gate the
XTAL H pulse through the source multiplexer.

7.8.2.2 RC Clock Selection — The RC clock is selected as the timing source when maintenance card CLK switch
S3is on RC, and S2 and S1 are both set to 0. The XMAA S3 L input is low and the RC SYNC flip-flop will be
set by the next TIGB RC L pulse going high. As a result, the RC EN flip-flop will be set by the following TIGB
RC H clock pulse going low. The source multiplexer output, TIGB SOURCE CLOCK L, will then follow the
TIGB RC H input. TIGB XTAL EN (0) H and TIGB MS EN (0) H are fed back to inhibit TIGB RC SYNC D in-
puts to ensure that the enable flip-flops are cleared before the timing source can be changed.

7.8.2.3 MAINT STPR Selection — The maintenance card S2 and S1 switches are both set to 1 to allow single
timing pulses to be generated by MAINT STPR switch S4. The XMAA S1 L and XMAA S2 L inputs are both
low. The resultant input to the MS EN flip-flop D input causes the flip-flop to be set on the next TIGB XTAL H
clock input. On the following TIGB XTAL H and TIGB RC H clock pulses, the XTAL SYNC and RC SYNC flip-
flops will be reset. Succeeding clock pulses will then reset the XTAL EN and RC EN flip-flops. MS EN (1) H is
ANDed with STEP (1) H to assert the TIGB SOURCE CLOCK L output of the source multiplexer. Each time
momentary MAINT STPR switch S4 is pressed, the STEP flip-flop toggles.

NOTE
The MAINT STPR switch must be actuated twice to complete
a single TIGB SOURCE CLOCK L output pulse.

Removing the S2 or S1 input conditions the MS EN flip-flop to be cleared on the next XTAL H clock pulse, go-
ing low. MS EN (0) L direct-clears STEP to condition it for the next time the SING TP function is selected.

7.8.2.4 Synchronization — The feature of the source synchronizer is that the output level is maintained high
(non-asserted). The sample timing diagram shown in Figure 7-13 shows the TIGB SOURCE CLOCK L output as
the maintenance card CLK switch is changed from XTAL to RC. With the XMAA 83 L input low (RC clock
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selected), the XTAL SYNC flip-flop is cleared on the next TIGB XTAL L clock pulse going low. One XTAL H
clock pulse later, XTAL EN will be cleared, enabling the D input to the RC SYNC flip-flop. The next time TIGB
RC H goes low, RC SYNC will be set. The difference in XTAL H and RC H pulse widths is exaggerated in Figure
7-13 to indicate that the clock pulses are completely independent. Note that the SYNC and EN flip-flops are
clocked on the trailing edge of the source clocks so that the gating level to the source multiplexer is always re-
moved as the clock input is non-asserted. This provides a clean leading edge for TIGB SOURCE CLOCK L. Note
also that only half a clock period is available for the enable flip-flop to change state and gate the associated clock
source through the multiplexer. The synchronizer output will remain high the first time the MAINT STPR switch
is actuated. :

XTAL H

XMAA S3 L Egza (

XTAL SYNC {

)
XTAL EN lj -

RC H

RC SYNC

)
RC EN <
SOURCE I | | | I \-| l
CLOCK L
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Figure 7-13 Timing Source Synchronization

7.8.3 Phase Splitter/Buffer

The phase splitter/buffer, shown on drawing TIGB, is driven by TIGB SOURCE CLOCK L from the source syn-
chronizer to produce timing pulse outputs TIGB CLOCK L and TIGB CLOCK H. The TIGB CLOCK L output
pulses are in phase with TIGB SOURCE CLOCK L.

7.8.3.1 Level Converter — Transistors Q65 and Q66 convert the TIGB SOURCE CLOCK L output to the level
required at the phase splitter inputs. A low input at the base of Q65 causes all the emitter current to flow
through Q65. With the +V reference voltage applied at the base of Q66, no current flows through Q66 and R122.
Thus a low input provides a low output. When TIGB SOURCE CLOCK L goes high, Q65 cuts off, and the +V
reference causes current flow through Q66 and R122 to provide a high output.
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7.8.3.2 Phase Splitter — The phase splitter consists of two emitter-coupled 2N3009 transistors, Q61 and Q62,
At rest, with no output signal from the source synchronizer, Q61 is forward-biased. A fixed bias at the Q62 base
holds that transistor cut off. Under these conditions, the TIGB CLOCK H output provided by buffers Q53 and
Q54 will be low because Q61 will be conducting. Q54 will be turned on.

When TIGB SOURCE CLOCK L starts to go low, as the result of a clock pulse, the base of Q61 goes negative
with respect to the Q62 base. More current flows through Q62, causing a greater voltage drop across the Q62
collector resistors, R109—R111. Less voltage is developed across common emitter resistors R89—R96, increasing
the forward bias on Q62. As a result when Q62 starts to conduct more current, Q61 just as quickly starts to cut
off. The circuit is a differential amplifier that responds to slight changes of the input signal at high speed. When
TIGB SOURCE CLOCK L starts to go positive, Q61 turns on and Q62 cuts off just as fast. The switching action
of Q61 and Q62 follows the TIGB SOURCE CLOCK L signal with only about 1-ns difference between TIGB
CLOCK H and TIGB CLOCK L.

7.8.3.3 Buffers — Each buffer stage consists of a 2N3009 and a 2N4258 transistor. When Q61 turns off as a re-

sult of a low source synchronizer output, Q53 is biased on émd Q54 is cut off. Thus, the TIGB CLOCK H output
goes high, which is 180° out-of-phase with the TIGB SOURCE CLOCK L input. At the same time, Q62 turns on
and the positive collector cuts off Q55 and forward biases Q56. Therefore, TIGB CLOCK L goes low, which is in
phase with the TIGB SOURCE CLOCK L input from the source synchronizer.

7.8.4 Timing Generator

The timing generator is shown on drawing TIGA. It consists of five J-K flip-flops, T1 through TS5, connected as a
ring counter. The flip-flops are initially direct-cleared by TIGA ROM INITA L, which is asserted by UBCE ROM
INIT H. This initializing signal is provided when the START switch is pressed, while the ENABL/HALT switch is
in HALT, to produce a system clear. It is also provided if a power failure occurs, as described in Paragraph
7.7.13. A time state diagram is shown in Figure 7-14.

NOTE
Unless otherwise indicated, consider TIGB XTAL H as the tim-
ing source for normal processor operation.

When the timing generator has been initially cleared, a high input is provided at the J input of T4. This condition-
ing input is produced by T1 (0), T2 (0), and T5 (0). When TIGA ROM INIT L sets INIT SYNC, it resets T4.
After TIGA ROM INIT L, the next positive-going transition of TIGC TPB L resets INIT SYNC. This allows T4

to be set by the next negative-going transition of TIGC TPB H. T4 will be set by the next TIGB TP H negative-
going transition as shown in the timing diagram. The conditional J input to the T4 flip-flop ensures that the coun-
ter will remain in sequence. T4 will reset on the next TIGB TP H clock pulse. As long as the conditional inputs
STOP T1 L or STOP T3 L are not asserted, the timing generator operates as a synchronous ring counter that con-
tinuously cycles through the five time states shown in Figure 7-14. The flip-flop associated with each time state
will remain set for one time period (typically 30 ns). The minimum machine cycle time is approximately 150 ns.
The purpose of the STOP T1 and STOP T3 signals is to prevent the processor from entering these time states
under certain conditions. The various conditions that cause TIG STOP T1 L to be asserted are described in Para-
graph 7.8.5. The various conditions that cause TIGA STOP T3 L to be asserted are described in Paragraph 7.8.6.

NOTE

The timing generator counter outputs are not sufficiently ac-
curate for use by the processor. Therefore, high-speed switches
are used to provide the accurate timing pulses and time state
levels required. The high accuracy timing pulse generators are
described in Paragraph 7.8.7. The time state generators are de-
scribed in Paragraph 7.8.8.
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Figure 7-14 Time State Diagram

7.8.5 STOPTI1

There are five conditions that can assert the TIGA STOP T1 L signal. If any of these conditions exist, TIGA
STOP T1 L remains low, TS remains set on succeeding clock pulses, and T1 can not be set. The processor is sus-
pended in time state TS5 until all conditions that assert TIGA STOP T1 L have been resolved. Then the D input
to the T1 SYNC flip-flop goes high and it will be set the next time TIGB TPB L goes high. As a result, the D in-
put to T1 is enabled so that T1 sets on the next TIGB TP B H negative-going transition.

The combinational logic that produces STOP T1 L is shown on drawing TIGA. The following paragraphs de-
scribe each of the conditions that can assert TIGA STOP T1 L.

7.8.5.1 Not In T4 or T5 — If the timing generator is not currently in T4 or T5, TIGA T5 (0) H and TIGA T4
(0) H assert TIGA STOP T1 L, preventing the counter from proceeding into T1. TIGA STOP T1 L is asserted
most of the time as a function of the counter.

7.8.5.2 Semiconductor Memory Delay — When the semiconductor memory is accessed, TIGA STOP T1 L will
be asserted during a bus pause or bus long pause cycle until SMCA MEM SYNC B L is received, provided no abort
has occurred.

7.8.5.3 Conventional Memory Delay — During a bus long pause cycle on the Unibus, TIGA STOP T1 L will be
asserted until UBCA BLP DESKEW H qualifies the D input to UNI DLY and it is set by the next time pulse. An
abort will also cause the stop condition to be negated.

7.8.5.4 Operating System Test — The OST option will assert the PHKA STOP T1 L input under certain condi-
tions.
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7.8.5.5 Single Cycle Mode — When the processor is halted and placed in the S BUS CYCLE mode of operation
from the console, the SNGCY flip-flop is direct-set to assert TIGA STOP T1 L and cause the processor to halt
after each single bus cycle is completed. When the CONT switch is pressed, the CONT flip-flop is set on the next
TIGB TPB L pulse going high. This enables the K input to the SNGCY flip-flop so it will reset on the next TIGB
TPB H pulse going high. This allows the processor to enter T1 and proceed through another bus cycle. As soon
as T1 is entered, the flip-flop controlled by the CONT switch is reset. The CONT flip-flop resets on the next
clock pulse and the SNGCY flip-flop is again set on the trailing edge of that clock pulse. As a result, TIGA STOP
T1 L is again asserted to stop the processor after a single bus cycle.

While TIGA STOP T1 L is asserted, TS will remain set until the stop condition is negated. T5A, however, is not
controlled by STOP T1 L and will remain set for onlyYone time period. Thus, only one TS timing pulse is pro-
duced during any stop condition. When the stop condition is negated, T1 will set and T5 will clear.

7.8.6 STOP T3

There are seven conditions that can assert the TIGA STOP T3 L signal, If any of these conditions exist, TIGA
STOP T3 L remains low, T2 remains set on succeeding clock pulses, and T3 can not be set. The processor is sus-
pended in time state T2 until all conditions that assert STOP T3 L have been resolved. The combinational con-
trol logic that produces STOP T3 L is shown on drawing TIGA. The following paragraphs describe each of the
conditions that can assert TIGA STOP T3 L.

7.8.6.1 Not In T2 — Any time the processor is not in time state T2, T2 (0) H will assert TIGA STOP T3 L.

7.8.6.2 Single Cycle — When the SNGCY flip-flop is set, TIGA STOP T3 L is asserted. The flip-flop will be
direct-set under control of the S BUS CYCLE and HALT switches on the console. The TIGB SINGLE CY L sig-
nal that direct-sets the flip-flop will not be asserted until time state T3 of a bus pause or bus long pause cycle.

7.8.6.3 ROM + UPB — Maintenance card switch inputs XMAA S1 L and XMAA S2 L are decoded by an
exclusive-OR gate that provides TIGB ROM + UPB H if either is set. Setting S2 alone selects a single ROM cycle;
setting S1 alone selects a microprogram break (UPB). The logic is shown on drawing TIGB. When TIGB ROM +
UPB H is asserted, the ROM + UPB flip-flop is set by the next TIGB TPB L clock pulse going low. This condi-
tions a J-K flip-flop on TIGA, which is set on the trailing edge of that clock pulse and causes TIGA STOP T3 L.
Each time the CONT switch is pressed, CONT (1) H causes the timing cycle to proceed.

7.8.6.4 Bus Pause or Long Pause Delay — During a bus pause or bus long pause cycle that does not involve fast
memory, TIGA STOP T3 L is asserted until the slave device clears SSYN. The processor will not proceed into
time state T3 until the data transfer is available to clock into the BR.

7.8.6.5 Interrupt Pause Delay — During an interrupt pause to service an external break request, STOP T3 L is as-
serted until the UBCA INTR RESTART H signal is asserted. The conditions that cause INTR RESTART are de-
scribed in Paragraph 7.7.9.2.

7.8.6.6 Operating System Tester — The operating system tester (OST) option will assert the PHKA STOP T3 L
input under certain conditions.
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7.8.6.7 KT11-C Delay — During a BUST, TIGA STOP T3 L will be asserted when the SSR DLY flip-flop is set.
The purpose of the delay is to allow time for the physical address to be propagated through the page address path
of the KT11-C unit before the processor enters time state T3.

NOTE
If the KT11-C option is not installed, SSRB ENABLE T3
DLY H is grounded by the SJIB module and the SSR DLY
flip-flop is never set.

When the KT11-C option is enabled and a conditional BUST is sensed by the KT1 1-C, SSRB ENABLE T3 DLY H
will condition SSR DLY to be set. SSR DLY will then be set when the processor enters time state T2. SSR DLY
(1) H and TIGA T2A (1) H assert TIGA STOP T3 L. TIGA T2A (1) H is high for one time period. There are
several processor operations that cause a conditional BUST cycle to be initiated. If certain conditions are met,
RACH DIS BUST L is asserted to discontinue the BUST cycle. Therefore, under these conditions, TIGA STOP
T3 L is only asserted for one time period while T2A is high.

If RACH DIS BUST L is not asserted, the BUST cycle is to continue. The duration of STOP T3 is then deter-
mined by SO and S1, operating as a counter to control the delay. Jumper W3 is installed at the factory to pro-
vide a delay of three time periods. S1 is set two clock pulses after T2 and T2A. After the third clock pulse, SSR
DLY is reset. During that interval, STOP T3 is asserted by SSR DLY (1) H and RACH DIS BUST L high

(- RACH DIS BUST H). As aresult, T3 is set by the fourth clock pulse after T2 is set, providing three time peri-
ods of delay. If the KT11-C is not enabled, SSR DLY will not occur.

7.8.7 Timing Pulse Generators

As indicated in Paragraph 7.8.4, the switching times of the flip-flops used in the timing generator ring counter are
not very precise; therefore, the flip-flop states are not used directly for processor timing. Instead, high-speed
transistors are used to generate the timing pulses. The timing pulse generator schematics are shown on drawing
TIGC.

Each of the timing pulse generators gates the phase splitter/buffer clock pulse output with a time state generator
output to generate the timing pulse associated with that state. Figure 7-15 is a sample timing diagram that shows
how the T1 time state is gated with CLOCK H and CLOCK L to provide the T1 H and T1 L timing pulse outputs.

I‘_TYPICALLY
30ns

CLOCK L L%]{_%IIWIIILI
won_ T B H T L
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Figure 7-15 Timing Pulse Ceneration
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7.8.7.1 Positive Timing Pulse Generators — Refer to TIGC T1 H circuit. In the quiescent state, the driver stage
bias holds Q10 cut off and Q9 turned on so the associated TP H output is low. Each timing pulse generator is en-
abled by the associated time state output. For example, when TIGA T1 (1) H is asserted, Q40 is cut off and Q39
saturates. When TIGB CLOCK H goes high, the positive-going pulse is gated through Q39 to the bases of Q10
and Q9. As a result, Q10 conducts and Q9 is turned off to produce the leading edge of the TIGC T1 H clock
pulse.

7.8.7.2 Negative Timing Pulse Generators — Refer to TIGC T1 L circuit. The negative pulse generator circuits
operate in a manner similar to the positive pulse generator described in Paragraph 7.8.7.1, except that comple-
ments of the enable and clock inputs are used and transistor types are reversed. For example, in the quiescent
state, Q12 is on and Q11 is off. When TIGA T1 (1) L is asserted, Q42 is cut off and Q41 saturates. When TIGB
CLOCK L goes low, the negative-going pulse is gated through to the bases of Q12 and Ql1. Asaresult, Q11 con-
ducts and Q12 is turned off to provide the leading edge of TIGC T1 L.

7.8.8 Timing State Generators

The timing state generators provide the time state signal levels TS1 L through TS5 L used throughout the system.
For examptle, TS2 L through TS5 L are used by the memory management to provide internal relocation timing.
Refer to drawing TIGE.

Each time state level is provided by a pair of cross-coupled gates connected to operate as a high-speed flip-flop.
Initially, all flip-flops are cleared by TIGA ROM INIT B L. When each timing generator flip-flop sets, the true
output is ANDed with TIGB TPB H to set the associated time state flip-flop. Each flip-flop remains set for two
clock periods. For example, TIGE TS1 L remains low until T3 (1) His ANDed with TIGB TPB H to reset the
flip-flop. Figure 7-16 illustrates the relationship between the time states. The leading and trailing edges of these
time state signals are dependent upon the accurate TPH time pulses rather than the less accurate timing generator
flip-flops. In general, the TS levels are used where timing is not critical.

s
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Figure 7-16 Generation of Time States
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7.9 CONSOLE LOGIC

The console logic is located on the KNL console module and shown on drawings KNLA, KNLB, KNLC, and
KNLD. The following paragraphs describe data address display select and mode select functions controlled from
the console.

7.9.1 Switch Register and Data Display

Figure 7-17 is a simplified diagram of console switch register and data display functions. Complete circuit details
are shown on drawings KNLA, PDRB, and PDRH.

7.9.1.1 Switch Register Inputs — KNLA SWR 17:00) H are connected to the PDR module by the KNL/PDR
interface cable, PDRH SWR (17:16) H are used only for addresses. PDRH SWR (15:00) H are gated to the
BRMX by TMCF READ SW L or TMCD SW ADRS L. TMCF READ SW L is asserted only during microstate
CON.00. TMCD SW ADRS 5 L is asserted when. the switch register address is specified.

7.9.1.2 DATA Display — The data display is controlled by a 4-position rotary switch that determines the select
inputs to the 7458153 multiplexers shown on drawing PDRF. The data source selected by each switch position is
shown in Figure 7-17 and listed in the following chart.

Switch Position Data Source Drawing Reference

BUS REGISTER bus register A PDRB
DATA PATHS shifter output DAPF, H,J
DISPLAY REGISTER | light register PDRB
#ADRS FPP/CPU floating-point ROM address FRMB
(high byte)
central processor ROM address RACD
(low byte)

7.9.2 Address Display and Control

Figure 7-18 is a simplified diagram that shows the sources of the address display bits. Complete circuit details
are shown on drawing KNLB. The address display is controlled by the 8-position address select switch that also
provides console control of the processor mode.

7.9.2.1 Address Bits (05:00) — The console ADDRESS indicators always display DAPB BAMX (05:00) H. Thesc
low-order address bits are not affected by relocation.

7.9.2.2 Address Bits (15:06) — The source of these address display bits is controlled by the address select switch.

In the PROG PHY position, physical address bits SAPY PA (15:06) H are the source. For any other address select
switch position, virtual address bits SAPH VA (15:06) H are the source.
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7.9.2.3 Address Bits {17:16) — The source of these address bits is determined by the address select switch and
the console switches:

a. CONS PHY — Switch register bits KNLA SWR (17:16) H are selected as the address when the address
select switch is set to CONS PHY. The current switch settings are stored as SAPK SR (17: 16 H when
the LOAD ADRS pushbutton is pressed.

b. PROG PHY — When the address select switch is set to PROG PHY, physical address bits SAPJ PA
(17:16) H are selected and displayed. For relocated addresses, these bits are provided from the KT11-C
PAR. Otherwise these bits are derived from the EX MEM FLG signal. DAPD EX MEM FLG H is as-
serted only when DAPD BAMX (15:13) H are high.

7.9.3 Console Mode Control

The console address select switch also functions as a mode control. Figure 7-19 is a simplified diagram of the
mode control logic. Complete console circuit details are shown on drawing KNLB. Inputs from the console
switch are encoded on the KNLB DISP ADRS SEL (2:0) H lines. The select code is listed on drawing KNLB.
These lines are decoded on the SAP module, where KERNEL, SUPER, and USER I or D selections are ORed
and gated to the appropriate space control flip-flop by UBCF CNSL ACT (1) H.

7.10 SIB MODULE M8116

If the KT11-C Memory Management Unit is not implemented in the PDP-11 /45 System, SJB Module M8116 is
installed in slot 14 of the CPU backplane. Drawing STBA shows the address drivers that provide the output levels
required by Unibus A and the address display indicators. The control inputs required for proper KB11-A opera-
tion without the KT11-C option are generated as shown on drawing SJBB.

When the KT11-C option is implemented, the SJB module is replaced by SAP Module M8107, and SSR Module
M8108 is installed in slot 13.
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CHAPTER 8
MAINTENANCE

The KB11-A Central Processor Unit is an integral part of the PDP-11/45 System. Most of the maintenance
information that applies to the KB11-A, as well as to the basic PDP-11/45 System and options, is provided in
Chapter 4 of the PDP-11/45 System Maintenance Manual. That information includes coverage of the diagnostic
programs, use of the maintenance card and extender boards, margin tests, and integrated circuit removal and re-
placement procedures.

Chapter 4 of the PDP-11/45 System Maintenance Manual also includes a series of test procedures to be performed
if the KB11-A fails to execute the initial diagnostic program, Unconditional Branch Test, MAINDEC-11-DOAA.
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