
INTEROFFICE MEMORANDUM,

DATE: Maroh 4, 1969

eUEJ"",eCT: PDP-li Arohitecture

TO: Nick Mazzarese FROM: Ridk Merrill

cc: Distribution List

I. PRO
/

~rhe instruction set of the new PDP-llis the 'most core
conservative in the 8/16 bit field of small computer,s'.
And it is easy to learn, to program,andt.o debug,.

For purchasers of quantities of oomputers there is a
savings in the cost of memory. For those concer.ned about.
programming oosts and lead times, there are substantial
cost reductions. For anyone who realizes that itdOf$ts
five to ten times as much to program a computer than to
buy it, here is an opportunity to stretch your programming
expertise. The PDP-ll offers the most oost effective .
solution toma~chine control and data processing problems.'

The PDP-ll architeoture is unsurpassed in I/O efficiendY
and completeness. All memory reference instructions are
also general purpose I/O instructions.

II. Codes

Attached is a PDP-ll Assembler Mnemonic Matrix. ThisfoX'lti
of architecture desoription is a oommon denominator for
assembler creation, hardware specifications, and user ,pro-'
gramming. For use in on-line debugging the octal valueS
must be added.

I recommend that a pocket-size Instruction List like the 8's
be c~eated and made available post-haste to one and all. This.
will serve to unify our own internal thinking and allow
customers to evaluate our claims themselves.

The assembler pseudo-ops should also be listed along wit.h" ,the
usual ASCII ,character set.

OIGITAL EQUIPMENT CORPORATION. MAYNARD, MASSAQHUSETTS

-2-

III. PDP-ll Assembler

A name needs to be chosen (perhaps with the help of adver't;.ising)
and a design review scheduled as soon as feasibl,. Three '
letter symbolic mnemonics are not adequate for painless pro':'"
gramming. Most assembler mnemonics are four! We'should'try
for six letters packed. commas should be used as,in,,~the.
coding examples. This facilitates computation ot' .progr~
bytes actually used and makes the, assemblersynt.x deco4e:r
much simpler to build.

IV. FOCAL - 11

Enclosed are three coding examples from the central operations
of the FOCAL interpreter. These are a'bypiealex~:pl.$I;. but
the 11 code isf .. more bit efficient. Overall the 11 could
save 600 bytes over the S. This estimate is bas~d()nthe
fo~lowin9 rough instruction distribution in FOCA$;-8: (octal)

AND - 500 JMP 600
TAD - 1000 lOT 20
DCA - 200 OPRl - 300
JMS - 500 OPR2 - 400

I recommend that FOCAL be translated at once for thePDP~ll.
This will produce several other programs 'and subroutines as
by-products: a PDP-S like editor, a well-debu9gedfl.oa.tihg
point package, and a real-time character-oriented I/6 package.

v. CON

We need a "SWAP halves of the AC" instruction. "TTA n can be
used for this purpose.

We need a "HALT" instruction (lbyte). "TFAti can be used for
this one.

The "Add to Register" instructions need to set a testabl~,
overflow flag without affecting the contents of the AC. "
"INC" should have a similar test.

We need some possibility of multi-level indirect.

There needs to be a way of reading the switch registers!

The index registers are nearly real ones but tl).ey still cannot
truly be used to index, only to point. A true index regi.ter

<oan transform any subroutine, like a double precisiona<ldi
into a table add. i.e. add elements of twotab1es to ,produce
(;llements of a third table. True index registers alsofacilitatf
matrix manipulations.

A solution to the compromise b~tween powerful inde:xregist.ers
and bit efficiency would be an addressing mode b;t in the I/O
area to determine whether the 0 of an indexed instruction
shall be one or two bytes. Thus

LDW Xl, A (two bytes requires Xl (16 bIt's) 'to point

to a table anq A (8 bits) to be the incr·ement •. ltfAuses" 16
bits then Xl'could be the incrementand,;all tab;t:e<re.ferenoes
would be indexed. Xl would then also be used astbe,'::eount
to detect the end of a table operation. For tab~e
this is the optimum bit-efficient approach.

2 byte way (24 bit add)
LDW, (-100)
STW, COUNT

DOUBL:
LOW, (AA) AA is top of list
TTXl
LOW, (BB)
TTX2 LOW, (BC)
~

DOUBL: CCC TTX3

•
•

28 bytes

LDW I
ADW I
STW I
CLA,RAL
ADS I
ADB I
STB I
ATXl I 3
ATX2 , 3
ATX3 , 3
INC, COUNT,
JCFL , DOUBL

Xl , 16
X2 , 16
X3 , 16

Xl , 2
X2 , 2
X3, 2

38 bytes /28 bytes

3 byte way
LDW I (-lOCO'.: t.ab Ie
imTX1~:

ccc
LDW X4, jAtfaster' table'
ADW X4, ',~, B 1·13 ise,n<a ,of list,),
STW X4, IC
CLA,RAL'

ADS x4"A+3
ADB X4, ,:B-¥3
STS X4" C+3 .
ATX1,3
JCFL,!?OUBL,

-4-

Not.ice also that the present method uses three index .
registers while the other uses only one. I recommend that
XR#4 be called XR and when it is used the address fieldls
two bytes" This solution lets us advertise five index.:' i .

re9isters, bit efficiency I true indexing, and staok c,o;ntrol!

The new design negates all arguments;o.r hexadec~mai ~'ep.e-
sentation. I recommend that octal be 'used. . 1.<:

TRAP must effectively execute a JSR I,(3) 'so thatth'ere ':JMiy.
be several simultaneous breakpoints. This for both logi~al
complexity and so that both halves' ofa WOrd may be·,-t::tapP·ed.

."

."

*

PDP-11 Assembler Mnemonic Matrix

MEM REF

liD -B
ST -w
AD
CP

AND
INC
JMP
JSR

OP.R

NOP
TRAP
IAC
CMA
Nl~G

MIse

SWAP
CX,,,L
ATA,Q

CLA
CML
CCC
RAR
RAL

I
C:,.

Xl ,Q

X2 I (0)
X3 ,"Q"

;:I~ .'~)
l:l. \ .

relative or page zero
immediate
immediate literal ascii
immediate number

REGISTER

AT -Xl ,c$Q
TT -X2
TF -X3
PU -X41-\Z.. (inde!. .stack)
PO -XS (PC and jump) -

~PC (£,ondition ,Sodas
-CC

/

Jump_ on conditions ""rue or False

l '

PUA JCT -Z -S -L
JCF 6. 6. 6

,0 relativg or zero
POA
XTR,Q

condition Codes

Ilo flag, Z,S,L!priorities

All mnemonics are recognizable by only first three lettet;s plus
register designator or conditon codes.

Machi~e Organization

Eight hardware registers:

Accumulator AC
program Counter PC
priority and

condition codes CC
Index Registers Xl

X2
X3

Stack Index XS
True Index XR

Addressing modes (automatic)

bytes not deferred

Immediate 3 EFA-next location

Relative to P 2 EFA=(PC)+OFFSET

Page Zero 2 EF~=,0J1JOFFSET

Indexed Xl,X2,X3,XS 2 EFA=(IR)+OFFSET

Indexed XR 3 EFA=(XR)+POINTER

,otes:

deferred

EFA=(ne,xt location)'

EFA=«PC) +OFFSET)

EFA :r:,(~f60FFSET)

EFA=:(' ('IR) +OFFSET)
//

EFA=(("R,l +POINTER)

OFFSET is an 8 bit quantity (7 bits magnitude, 1 bi~ s1qn):and is
the second byte of the two byte instruction.

For Page Zero references, OFFSET is considered an 8 bit quantity which,
forms the least significant byte of an addressof,which thernost;'
significant byte is all zeroes. Page zero is ,thus 25,6 bytes "
long. •

IR refers to the index register which is desired to be used in the
address pomputation. It may be Xl, X2, X3; or XS.

POINTER is a 16 bit quantify for absolute address of tables indexeQ
by XR.

The internal registers of the processor may be explicitly addr~!3sed
by external devices, but may not be explicitly addressed in a program
execution of a memory reference instruction. This is to simplif,y .
hardware.

Transfer to/from register (using accumulator) (1 byte)

Typical Execution:

push/pop Group

"j"

TTXl = A ---:;. Xl

TFXl = XI~ A

(1 byte)

Typical Execution:

PUXL = (Xl) --:;; «S» (S) + 2 ~ s

POXl = (S)-2 ~ S , «S».- ~ .•.. (Xl)

condition Jump (2 byte) (Second byte is signed byte which is add.d,
to P if testis true)

JCT Z,N,L (logical or) may be micro-programmed
may be m.icro-progr amlJled . JCF Z,N,L (logical and)

JFS I/O Flag set
JPR I/O Flag reset

Interrupt Process

PC ----. (S)
C .--+ (8+2)
80 ~ (8+3)

(8)+4 ~ S

Double precision add

CCC
LDW
ADW
STW
CLA,RAL
ADW
ADW
STW

, Al
, A2

Al

, 81
8

, 81

1clear link
7add var;:
7 use X~", X\Yas.: AC

il :~

To store on another stack

PUSHF: PUX4
PtJXS
POX4
POXS
LDB, (-4)
TTXl
LOW I Xl, FLAC+4
PUA
ATX1, 1
JCFZ .-5
PUX4
PUXS
POX4
POXS
POPJ

7table Bort and branch routine - FOCAL

, oalling sequence:

,JSR I, [SORTB]

, (LISTA)

1 (LISTS-LIBTA)

SORTI3:

SORT:

JCTZ , 0+3

LOB, CHAR

NEG

STB,

POX2

T2

LOW I X2, 1

TTX3

LDB X3,~

1 parens indicate two bytes.

return if not in list

,use AC or CHAR

:page zero reference

:save search character

1pick up list address

JeTS ,SORTX :neg quantity signifier

ADS I T2

ATX3 I 1

JCFZ , SORT

TFX3

ADWI X2, 2

TTX3

7end of list.

7update pointer

,final branch address

JMP I X3,_ 7transfer to that location

:de£ault exit

SORTX: ATX2,4 7not in list

JMP I X2/'~

:100*(31*8-26*12)/31*8=-25%

'1'0 simulate a flJMS"

PUSHJ SUB

SUB: POPA
STW I (~)

LOW, SUB+2
TTPC

Roger Cady
Alan Kotok
Bruce Oelagi
Allan Kent
Dave Gross
Tom Eqgers
George Thissel
Larry McGowan
John Cohen
Harold McFarland
Jim O'Loughlin
Don Langbein
Tom Stockebrand
Ken Larson

