
\ PDP-K Technical Memoranda #~ 2

-Thll drlwlng end sneelffeatlonl, h.ereln. are the prop
erty of Dlgltll Equ'''~en~ Cor-oraton ~nd s~all not be
reproduced or cop'e or u~d In W o.e or in part. as
the basis for the manufacture or sa:e of items without
written permission.

Title:
Extension of PDP-ll Instruction Set

•

Author (s) : Ad van de Goor

Index Keys: Instruction Sets
Opcode Space
Modes
Stack Operations

Distribution Keys: K

Revision: None

Obsolete: None

Date: 21 January 1970

-1-

0.0 ABSTRACT

Scver~l methods of extending the PDP-Il instruction
sot ore di~cussed. Coding comparisons are made.
Subject to the trivial weighting scheme used, two
solutions were excluded from further analysis
because of their poor performance. The "multiply/
divide" subsolution as discussed in sections 4.4
and 5e4 was the best performer.

-2-

1.0 INTRODUCTJON

A more elaborate vers·ion of the PDP-l1/20 is
considered as a possible candidate-for the
PDP-K. It is felt that if the PDP-K is a
member of the PDP-Il family, sUbstantial
gains could be" obtained from:

1.1 upw-arda program compat.ibili ty

For DEC this would mean a lower total
software investment., and new machin.s
could be introduced mo~e easily as
present PDP-l! software would run on
PDp-x.

For customers this would mean that they
could move to a larger machine without
the direct need for reproqramming.

1.2 Peripheral compatrbility

only one line of peripheral devices" has
to be built. The introd~ction. of a
new machine could be done more easily
for thi. reason. Any new peripheral
device would b. available for the whole
f_l~y.

-3-

2.0 PROBLEMS IN ADAPTING TIlE PDP-ll ARCiITECTURE TO
Au BIGGER MACHINE

~o important problems of the PDP-ll have to be
sol ved in order to meet the PDP-I(requ:ir aments.

2.1 Limited number of instructions and Itmited
amoUilt of opcode apace left. For the PDP-K

. three more class.. of instructions are
conaidered:

2 .1.1. BAE ins truc:tiona , i .•. , rotate/
shift and multiply/divid~ for
16-bit word.~

2.1.2 Double Precision Integer Ari~~c
Instruction ••

2.2 Liaited Address Spa~

The total amount of addre.sable coreory
on the PDP-ll/20 is 65K (l~ • i. 1024) bytes,
or 32K 16-bit words. Por a big 32-bi~
version of the. PDP-ll· this would only mean
l6l(32-bit word. could be addr ••• ed, which
is certainly not adequate for auch •
machill ••

-4-

3.0 PUR~OSE OF MEMORANDUM

The purpose of this memol:;andum is to examine the
suggested methods -of solving the first problems:
extending the basic PDP-ll instruction set. An
acceptable solution. subject to several constraints,
will be sought.

3.1 program compatibility at ~oa.t on the as.embly
language level.. •

3.2 S~licity in programming by .in~1zin9 ~.
number o£ instruction format. and restrictions
imposed on inatructions •

. 3.3 opcode .pace left for future tlXpaftuion.

3.4 Opcod •• of the largest member of the family
have to fit ill the added iD.truction set. thus
miniaiziAq the Dumber of fOrllAta. and making
progr~nq .a.ier.

-5-

4.0 POSSIBLE SOLUTIONS If _

Four possible solutions to the opcode space problem are
shown below. l~ey are followed by a discussion in
se\.~tion 5: o.

4.1 Implement new instructions as "pure stack"
instructions (i.e .. , zero address). Each new"
instrnction can l'lOW be specified with one
combination out of 216. This allows for hundreds
of new instructions. Any binary operation (like
multiply, diviae, etc.), would'take the ~o

.,:-: operands from t.he top of the stack, and leave the
result on the top of the stack. Register 6
would be used as the implied stack pointer.

4.2 Introduce a flag to indicate that the remainder
of the word contai.ninqthe flag (note: remainder
can be == 0) and the next word form a new
instruction. Depending on the length of the
flag. two cases exist. •

Inatruction ",.".,-_._"".., ..
....... [...... :: ==W~=~d=::~=:] 1 - _-_-w=or_d-_-5 =+ =2 =1 ,,- L

16-Bit Flag Bar Instruction

4.2~2 Partial Word Plaq

...
Flag ~New Instruction

iJ.'he advan'tage of thl.. technique ia that
t!wa 1l.8W' instn"Lctiona can have the SUie

aource-dest:ination forma~ as the stand41rd
(i ••• # currrent PDP-ll/20) # instructions.

4.3 Modes

-6-

The disadvantage .is that every new
instruction takes two words. The
partial word flag case offers the
adva~tage of a greater number of
new instructions at the expense of
somewhat more complicated hardware.

A mode is a (hardware) state of the processor
to allow instructions to be interpreted
differently. Basically two kinds of mod ••
have to be recognized:

4.3.1 ~ter and leave modes only with dedicated
commands (i .. e., only switch modes when
an instruction specifi.a to do 80).

4.3.2 Enter mod •• for a specified number of
instruction. after which the mode is
switched back to the standard mode
autOlftatically.

The advantage ~of IROde8 i. that instructions
in any mode are only 1 word long. The
disadvantage is that .peeial inatructions have
to be given to enter. and in the ca •• of 4.3.1.
to leave the mode.

4.4 u •• R ••• rved lIultiply!Divide Space

'these two opeode apac.. are not uaed in the
PDP-ll/20. The to-be-added two-operand
instruction. can be implemented •• aource-
d •• tiAation instructions where the' .f:ack is
one implied operand, and the 8.econd operand
is .pacified with the full 6-bit dEtstinaticm
field ot the instruction. One of the.e 6
bits can be used .s a direction bit such that
operations can have either ~eir source or
destination as the implied stack. This allO\l's
for 32nf'!W instructions to be specified ..

-7-

5.0 EVALUATION OF PROPOS~p SOLUTIONS

When e~aluating the proposed solutions, the irnplementatio:'l
of a 32-bit version of t.he POP-Ii should be included.. Fer
such a" machine. double-preci~ion floating point instruct:i:ons,
together with EAE instructions, operating on 32-bit
registers a.ce desirable, (assuming that these instructions
can operate on registers). This means that opcode space
for those instructions has to be regerved to provide for
their efficient operation.

Simplicity in programming and machine organization dictate
that the number of instruction formats for the three
classes of new instructions. (as discussed in section
2.1), should be minimal. In order to ~ake the extended
instruction set more acceptable, it is very desirable to
make the added instructions fit in currently existing
formats, or add at Most a single new format. Several
coding comparisons are done to assist in the evaluation,
The five problems below (Pl-PS), are considered
representative" The a •• umptions made in codinq the
problems can be deduced frca the listed code i.n Appendi.xes
A-D. The variable. A, B. C, D and E are considered
single precision floating point (32-bit numbers).

P]: A"-B*C
P2: A f (B+C) * (J>+E)
P3: A (i} a (i) *e (1')
P4: A(i) ... B.(i+3) *C{i*5)
P5: A (i, j)+-A (i. j) +8 (i.Jc.) *C (k, j)

/sillple case
ltemporary variable case
/aubscripted case
/mixed arithmetic (::ase
Imultl-d~en8~onal
array case

PS is an exaaple of the inner-loop 8tat.eraent of the
array mul tiplication: ~]...-1)1 * [cJ. l·t is a.swned
that the array bounds are declared frCD 0 to u. For
array B this would be: Real Array 8 (0 - bul, 0 - bti2) ."
The first index of IS 90es t.o bul. the second to bu2.
It will be ••• umed that the index •• are in registers
R:L. Rj. and Rk.

Assuming'that the index •• i and j are in register Ri
and Rj, the value B (i. j) will be address as follows:
Location of B(i.j) :c location of B (i.e., starting
location of aatrix) + i*bul+j).

-8-- ,;.

5.1 Pure Stack Operations

In order to make the pure stack operations efficient,
one of the opcode spaces reser"ed for lrtul tiply /d i vide
has to be used for a double move (MOVD' instructions.

MOVD:Move 2 words (32 bit!') from S (OU":cc) D (estination) .
Thia instruction is required especially in a 32-bit
machine. The one bina:cy op::ode .pat.;f! left can be
used to implement the EAE instructions. 1 The
instruction format would be as foll'Ns:

OPERATION DESTINATION

wI 3 (6 -:] 3

...."

3
...................... ___ -""'f'"

RifGISTER

This saae format 1. uae4 for t).e JSR (IIUbroutine eall)
instruction. '!'be EAE instruc1.iona are made to o~rate
on regiat.er8 only.. The regist.er involved is • • peqifi~ by the 3 " reg iaterr.{ bib.

The value of the effective 4.id4r •• a of the ttd •• t.inat;ion U

decerain •• the number of p:isitions to be shifted or
rotated~ Because the aute,·ina_ent and auto
decrement mod •• do not; apply to these in.t.r1.l.ctions,
one of the 2 NOde bit. can b. u.ed to specify a
.ingle or caatbined operati.on, (1 " aea PDP-lO
LSH. LSHC, etc.). Ther ining .p"ea can be
used to implement in.truC1l;i0D8 like EXCHANGE,
REPEAT, etc.

Appendix A give. the coding axaaplea for the fiva
probl.... The handling of ault;.-d~n.ional arrays
i. very cwabersocae becau.. the nddre". computations
have to be done on the stack. Introducing a
aec:cm4 Nt of 16-blt IlNltiply/divicle instructions
iapl ... nted aa the above EA.B ir..atructions will
solve thi. preble. at t:be expI:~.Cl of a BlOre complex
instruction •• t. SubcolUBl Tel'!; 1 MPD of Section
6 show. the iaprov.aent gained b~' thia ..

lExcept for 16-bit mult~ly/divid.

-9-

5.2 Fl199ed Instructions

Th~~ coding examples shown in Ap.Pf,-lndix B are the
same for alternativ£!s 4 .. 2.1 and 4.2.2. 4.2.2 Is
proferable only if the additional opcode space is
neE!ded.. It is su99ttsted that tl'le EAE multiply/
divide instruction \1i11 be implel'lented in the
space "reserved" fo~c them. The EAE rotate/shift
ins'cructions have tfj be implemer ted as .t fla9ged u

instructions, the format would }:'. similar to that
dis~~ssed in section 5~1.1 eXCGlt for the f~ag.
The doUble precision integer an, floating point
inst.ructi<?lls would be implementEd as full S'.'.)'.Z' ce
destination insUructions.

5.3 Modes

Before going into detail, propo •• l 4.3.2 (.'J)t:tinq
the !lOde. for a specific nuaber ·,)f instructions
(N)), will be examined.. 'l'hi. is considerer. less
attractive because of probl_s aJ:'isinq in "-
string of Nl instructions to be focecuted i:. tha
n4IW 1DOde.

• 5 () 3.1 Branchiaq in teras of .ki~\pinCJ ove. a
group of instructions in the spec!;;ied
striDg will cause problema becau ••• i.
not updatedautaaatically.

5.3.2 Progr .. ing will b. YeI:Y difficult because
whea branching' into • aequance of
inauuc:tiofts their mode, (in which those
operate), vill be difficult to determine.

5.3.3 I~ will be diffiealt lor a ~pil.r to
•• t up the right' -N" becau.. it v11l
r.quire sOIDa kind of "look-ahead".

5.3.4 In ca.e of intarrupt./traPili. tha zemainder
of • baa to be .avec! and r •• tored upon
exit: of the interrupt/tzap nrvlce
rout.ina.

lwbere N is an arbitrary' positive number.

-10-

For the reasons above, proposal 4.3.~ will be
dropped. and not considered further.

The extended mode, (Which contains the floating,
double-precision integer instructions, etc.',
is entered by the command Enter Extended Mode
(EEM). The processor stays in this mode until
the instruction Leave Extended Mode (LEM) is
given.

In regard to 4.3.1, subroutine calls and
interrrupt/traps cause problems typical for modes
in saving/restoring the mode and entering the
routine (subroutine or interrupt/trap service
routine), in the correct mode. The interrupti
trap case is the easiest one~ The mode. can be·
preserved in a dedicated bit in ~e Central
Processor status Register(pS). Entering the
interrupt/trap service routine in the right mode
can be done similarly by storing the mode of
that routine in the PS interrupt/trap vector.
The correct mode will then be entere~
automatically upon interrupt.

Entering a s·ubroutine in the desired mode in a
p~ogram cOMpatLble way can be done by taking the
lowest bit (bit 0) of the subroutine address as
the "ode bit. In the current PDP-ll/20, this
bit has to be equal zero because the aubroutine
address is a word address. By defining a MO"
in bit 0 of the subroutine addX'e ••• s the
st.andard' MOde,· program caapatibility is preserved.

Saving/restoring the mode upon • subroutine calli
exit i. JIUlch more difficult. The only hardware
.olu~ion found thu. far i. to .tore the mode on
the stack in a separate word. The new JSR would
then store 2 worda on the .tack: ~he register
to be saved and the .ode. Proqrams making use
of the knowledge that oaly 1 word gets stored
on tht: stack by ~ JSl\ have to be modified .

• A program compatible software solution to the
mode problem is to have the called subroutine
take care of the mode handling by restoring the
mode (upon exit). which existed prior to the
call of the subroutine. A possible way of dOing
thi~ is by having the existing mode. prior to

-11-

all calls for a given subroutine, fixed, such
that the subroutine only has to match the mode
upon exit to the existing (fixed) mode at call
time.

It is suggested that the multiply and divide
instructiona, (opera~in9 on 16-bit integers)#

·be ~plement.d in the space reserved for th~m~
and all other instructions be implemented in
the extended mode.

Appe-,dix C shows the coding exaaapl... They
suggest that an instruction to enter the
ext.ended mode for a single instruction is very
u8eful. The column EEMl (Enter Extended Mode
for 1 In8truction), of Table 1, Section 6,
shows this.

5.4 Use Mutt iply/Divide Space

one of the two binary opcode apaces haa to be
used to impl..ant the EAE instruction. .a
d •• cribed in •• etion 5.1. The remaining
ins~ctioDS have to implemented with the
.tack •• an aplied operand as discu •• ed in
sect.lOll 4.40 CodinCJ example. u. given in
Appedix D. '1'bey ahO'll, like the "pure .tack"
case, that handl.inq _lti-dilllenaional array.
i. CWlber~. !'be imp-mv.-nts made by
addift9 a •• t of 16-bit multiply/divide
inatruction •••• s"99Mted in section 5 ~ I,
are shown in aubcolQIIID MJID of 'hbl. 1,
Section 6.

-12-

6.0 COMPARISON OF PROPOS~D SOLt~IONS

Table 1 'ShO"NS the t~esults of the five problems for the
st!ven J proposed solutions. Four quantifiers are used
for each problem to measure the quality of the solutions.

6el The ~wnber of Instructions

It is quite well known that the probability of
making a programming error increases more than
linear with the number of instructions, \apart
from their complexity), thus. "good" solution
should have a low number of instxuctions.

6.2 The Number of words2

This is the number of words needed to core the
algorithms given in the appendix... This ia
an import,mt criteri\Jll, especially on a small
aachine. For a 32-bit ... chine the number. have
to be divided by 2.

6. 3 The Number of MeMOry Reference.

The number of memory references bot.."t for a 16
and 32-bit machine a.re included in the tables
because they are important indicators for the
execution times of the alqorithatl. The
numbers in Table 1 are derived under the
following assumptions:

6. 3.1 The. tack is suppaeeel to be in ccx-e
aemory. (Section 6.4 di.cu •••• the
results when this aS8U11lption is not
made) •

6.3.2 For the two operaad exteJlde4 iuuuctions
the arithNetie unit i. 8Upposed to behave
•• :foll0W8f 1) read. both operands into
it. internal ~egi.ter.1 2} it performs
t.1le required operation (e.g. F"MUL, FADD):
and J) it stor •• the results ba.ck.. In
caa~ of different assumptions the numbers
in the table can be adjusted accordingly.

lpOUI: :nain ,.olution_. f:l'.lr .. of which have •• 'ubeollltion.
2words are considered to be 16 bit. long-

-13-

6.4 Number of Memory References With A Hardware Stack
•

The idea is to implement. the top Ml words of the
~tack in flip-flop registers. From Table 1 it
can be seen that the execution speed increases
for almost all problems and solutions. Those
solutions making hea.V)' use of the stack gain
m~st.

lPJ)r simplicity M is supposed to be such that in Ilona
of the problems the stack "overflOW'." into cora.

TABLE 1 - CODING RESULTS OF PROBLEHS pl + pS

_________ ---------r------..,..-----------...----. ------.. ------- ..
1,P-:-:;F·l~r.\1-r ~RE STACK MODE MULTIPLY/DIVIDE ,_

. ~~~~~·.'!~HS _l_~_AN_'_T_I_F_I_ER--__ ~-,---:M:'-:PD-:--:----I:_F_LAG __ ._-t-____ :~_E~E-M_-~_l-_-:_-_ ... _+_------+-r----l'-t_P_D·=====-,~~'"
: 1 # of Instructions !

of \vorc]s
#; of ~1emory Ref
#- c f r-:emory Ref

with Hardware
stack

~ 4
7. 7
~5/12.51 25.12.5

13/6.51 13/6.5

2
8
18/9

18/9

4
a
18/9

18/9

I 4
a
18/9

18/9

3
6
20/10

12/6

3
6
20/10

12/6
--------+-----------+----+------t--------+----4------I-------+----_ .. _.

.2 # of Instructions
tt of Words
~ of Memory Ref
~. of Memory Ref

With Hardware
stack

8
13
51/25.5

23/11.5

8
13
51/25.5

23/11.5

5
17
43/21.5

35/17.5

7
14
40/20

32/16

7
14
40/20

32/16

6
11
41/20.5

21/10.5

6
11
41/20.5

21/10 .. 5

r---·--···---··r--·-------r----;----+----+----t------+---~-.J.-----
3

5

13/6.5

of Instructions 21
#: of Words 28
of M0mo r y Ref 74/46
0f f\h·1r.10ry Ref I

4
7
25/12.5

11/6 .. 5

19/9.5

15
22
46/23

2
8
18/9

4
8
18/9

18/9

12 18
21 .24
37/18.5 40/20

4
8
18/9

15
21
37/18.5

3
6
20/10

16
23
55/30.5

~
6
20/10

12/6

7
12
26/13

13
20
40/20

I

28/14
;

'10' ,'j (:) 2C)/14. 5 32./1.6 29/1 .. 1.5 .il /1 t;. 5 .. ?~'.·/~·; ' .. " I ."
: " I . ,I ~ J }

____________ ---.L' ______ ~ ___ ______'__ ___ ~ ___ ~ ____ ~_~ _____ _

-15-

Table 2 gives a ratin9 summary of Table 1, the
rating is from 1 {lowest" to 7 (highest). ,When
two solutions have equal rating, they both get
the same number being the average rating when
they would not have been equal.

The problems pl - P3 are very similar in
nature, therefore a summarized rating is given
in the fir~t part of Table 2. Similarly_ for
P4 - PS in the second part of Table 2. The
third part of Table 2 is a summary of the
previous ~ tables assuming equal weights for
the two previous groups of problems. Part 4
of Table 2 is merely the sum of the first two
quantifiers of the third part. 1 For a small
machine, the number of -instructions and the
number of words are the most important criteria.
for selectinq the best solution. On a bigger
machine. execution speed is beCCIDing important ..
Part 5 of Table 2 is such an indicator. Its
entrie. are the sums of the fir.~# second, and
fourth quantifiers of part 3. It i. assumed
that on the bigger machine the top of the
stack "is impleaent.ed in hardware.

lAg.in here, foe .~licity rea.ons, equal weight. are
assumed.

~~.f - RATING SUMMARY OF COR.JNG PROBLEMS

! ~~" r~~'---'--<~f-OOANT I F I ER T -- J M~r~';!PLY~P;"' "'p

PURE STACK MODE
~ ___ '''''''''r~

EEMI MPD 1,:.·· .. ,·t~~t:'l\1" I

I
t "\.,)dJ.,;~ .. a .. } I-'_ , .. ______ . ___ -+-----+---~-+_-----+-.---+-----'i----'--::-+---MPD FLAG . - --

I

1'/ ,. P3 !:~! :~!r~C:::n.
1 i # of Memory Ref I ! with Hardware
I I stack
r----.--<.... j. -------00+---
I
' 2 I # of Instructions

P4 ~ P5 I # of Words
I I # of l'-iemory Ref

l
' 1 # of Memory Ref

1 With Hardware / I . ~ /
I Stack 2 '2 ~ . ..,.5 3.5 1/1 •

I ~~---'I-~ of Instruct::. 2.;-' I !.~" -'-1 ~4 .. 5.5 I
I pl ~"" I~5 # of' wo,rds 5.5 . '. I 9.5 6 4.5

I # of Memox'y Ref 2.5/2"~5 4~5/445 11 .. 5/11 .. 5 11/11
of Memory He! I

j with Hardware,

1.5 145 7 3~5

4.5 4.,5 11 2.5
1.5/1,,5 11.5/1.5 5/5 6.5/6.5

I

4.5/4 .. 5 4.5/4~5 1/1 2 .. 5/2.5
-..:~r.- '"

1 4 .. 5 1 2
1 5 5 2
1/1 3/3 6.5/6.5 4.5/4.5

3.5 5.5 5 .. 5
2.5 6.5 6.5
6.5/6.5 3.5/3,,5 3,,5/3~5

2.5/~.S 6.5/6 .. 5 6.5/6,,5
.r-., 7II!J1

•• 5 3 6
5 3 "1
6 .. 5/6.5 2/'1. 4.5/4,,5

3 .. 5/3.5 5/5 7/7 ._----t----,-......... ---..,.-,~-
7,.5
7~5
13/13

8.5
9.5
5,,5/5.5

6/6 11.5/11~5

1) .. 5
.. SIB

13, S/13 " 5
_.-+ ________ , __ -+ __ ~. ___ .. __ o

I 4 # of Instructions

l
' + Number of ,

Words e I 15. 5 20 10.0 15.0 I 18.0

I .~ # ~i~e=~~w:~! -- r I i , ___ '''-0_,",_' .---~&--... ---~
2S

L_l-=a_Ck___ ; 14.5, 26_~~_5 ___ ._~l.5 .2LJ_.29·_~ __ L.38~_-.

-17-

7 .0 CONCLU§1m!

Lookinq a'/; 'l'able 2, part 4 and 5, it can be conAluded
that tl~e9uDsolution8, (i.e~, MPD for "pure stacks. and
··multiply/(.~ividet!, and EEMl for "mod."), are a big
improvemorr; over their umain t

• solutions. This,
because i)f the ~proved handling of multl-d~en8ional
arrays, ~18 price paid for this. however. is a more
complex i~8truction set (i •••• adding a duplicate
set of iE-bit multiply/divide instructions to operate
on reqis·.!er o~ enter the extended mode for a single
instruction) . ,

The rnaj .. l solutions "pure .t.ack" and -mode- have the"
low.at rating and, can therefore be excluded from
furthe: consideration. .

In order to make a definite commitment 1:0 any of the
ramai.ninq five solutions, mo,re research should be
,lone in determining the weights of the problems and
~ei9hts of the quantifier ••

Fr(J.m the results, this far however, the following
can be said:

7.1 The Mmode" subsolution haa to look much better1
• in order to be a candidate because of the

aode probl... in subroutines. The sU99ssted
hardware solution i. such that the price of
s~ring the IIOde on the .tack haa to be paid
ADiAYS. Also, in prOCJrams which do not make
u •• of the mode. (i •••• all current PDP-ll
!Ioftwar.). For this reason the sU9gested
.oftware solution is • better candidate
because there, t.he price i. only paid when mod.. are uaed.

lWhen the proper weight. u:e fouac!.

-18-

7.2 The at flag" 3Ql.ution is advisable only when it
is expected that. the use of tl'8 'f flagged If
instructions (i.e. those of cl,ss 2.1.2 and
2.1" 3 of sect.ion 2) is low.>

7.3 The. most p remising solution thi"i far is the
"multiply/div·id." subsolution.. It consistentl~l
scorad highest or second highest

pl:

P2:

P3~

P4:

-19-

APPENDIX A

PURE STACK CODING EXAMPLES

'.
now
ItOVD
}'MUL
~OVD

}\.
M(\1D
M(lD
F}!)D

MelD
MO'D
FAC

"1,
MOD

c, - (SP)
B. - (SP)

(SP) +,A

---(SiC) * (D+E)

8. -. (SP)
c, - (SP)

D, (SP)
E, -(SPj

A(.i) .. ~-8 (1) *c (1)

MOV)
MOV)
PMtl~
MOV)

A(i,

MOV
AD!>
M'J\'l'
MOV
MOV
lHUL

MOV
MOVD

FMUL
MOVD

C (Ri) .. - (S')
B (R1), - (8P)

(SP) +, A CRi)

~-B (1+3) *C (1*5) ...
Ri.a.
*3. Ra
8 (Ra). - (I.)
Ai. - (S.'
.s~ - (IP)

(SP)+. RII
C(Ra). - (SP)

(SP)+, A(ai)

. .

/move C to the stac:k
/fMlve B to the .tack
/floating .nltiply B*C
latore result in A

/f19atiog add B+C

/float.iDg add 0+.
/flo&t1ng lMIltiply (I>+E). (:a+e)

/a.~ indeK i 1. in register ai

/110". C(i) to the .tack

/iadex 1+3 fOftle4

/caapu~e 1*5 .ad 1.... 1 word result
OD top of af:ack

/st:ore renlt

P5:

-20-

APPEND IX A (CONT •)

A(i, j)......- A{i, j) +8 (i,k) *C(k, j)

MOV
MOV
IMUL
MOV
ADD
MOVD
MOV
MOV
lMUL
MOO
ADD
MOVD
FMUL
MOY
MOV

lMUL
MOV
ADD
MOV'D
FADD
MOW

Ri, - (SP)
#bul. - (SP)

(SP) +, Ra
Rk, Rs
B(Rs), - (SP)

Rk. - (SP)
#cul, - (SP)

(SP) +, Rs
R.i, R8
C(Rs) I - (SP)

a'" --, (SP)
#aul, - (SP)

(SP} +, Ra
Rj, Rs
A(R8). -. (5P)

(SP) +, A(Rs}

IRs contain. index for array B
/put B (i,k) on stack

IRs contains index for array C

/R- contain. index for array C

I.tore r •• ult

-21-

APP~IX B

FLAGGED INSTRUCTIONS CODING EXAMPLES

PI: A ~ B*C

MOVD

FMUL
B,A
C,A

p2: A ------(B+C)* (D+E)

MOVO
FADD
MOVD

FADD
FMUL

B,A
C,A
D, - (SP)
c, (SP)
(SP) +,A

P3: A{i} ------B(i).C(i)

MOVD B(Ri), A(Ri)
FADD C(Ri), A(Ri)

P4: ACi) ------B(i+3)*C(i*5)

NOV Ri, as
ADD *3, b
MOVD· B(Ra), A(Rl)
NO" Rt, Rs
MOL *5, R.a
FMUL C(Ra), A(Ri)

/move B to A

/A =- B+C now

/top of the stack is C+D

/move.B(i) to A(i)
•

IRa i. a acratch regiater

/index for B (1+3) exaputed

P5: A(l, j) ----A(i. j)+ 8 (l,1tl * C(k, j) ,

MOV al, .a
MUL 1IN1, ...
ADO alt. .. linda for .(i,k) ccaputed
MOVD B(R.). - (SP)
MOV Jtlc. •••
KUL #cul, Ita
ADD Rj, R8 / index 10% C (k, j) COIIIp\lted
FMUL C (Ra), (SP)·
r«:JlI Iti. R8
NUL kul, .a
ADD Rj. R8 lineSex
PADD (8P) +, A(R8)",

-22-

APPENDIX C

MODE CODING EXPMPLES

pl: A'" R*C

EEM /enter extended mode
MOVD B.A
FMUL C,A
LEM /leave extended mode

p2: A .. (B+C) * (D+E)

EEM /enter extended mode
MOVD a,A
FADD C,A
MOVD D" - (SP)
!'ADD c, (SP)
PMUL (SP) +, A
LEM /leave extended 1BOd.

P:i: A(1) ... & (1) *c (i)

BDI
IIOVD .(al), A(Ri)
!'MOt:.. e{ltl), A (Ili)
LEN

1*4: A(i) ... B (i+3) *C(i*S)

MOV Ri,Ra
ADD .3, RtI
£EM

. J«>VO • (as) , A(Ri)

LEN
MOV Ri, R8
MOL *5" R8
EEN
FMUL C(R.), A(Ril'
LDl

p'; • ,,' . A(.i, j) .. ACi, j) + Bti,x) * C(k,j)

MOY -Ri, b
MOL *bul, b
ADD Rk, ••. lindex for B (i,k) c01I.pUted
£EM
MOVO BCRa), - (SP)
LEN •

MaV Rk. RII -
MUL *<:aI, b
ADD Itj, b /index for C (k, j) coaputed
EDt
F'r.1UL C(RS)~ (SP)

P5: Cont.

LEM
MOV
MUL
ADD
EEM
FADD
LEM

-23-

AVPENDIX C

MODE CODING EX~lPLES

Ri, Rs
#aul, Rs
Rj, Rs

(s P) + , A (Rs)

/index for A(i,j) computed

pi: A -

~10\''D

FMUL
MOVD

p2: A
MOVD
FADD
MOVl)

FADD
FMUL
MOVD

p3: A (i~ .--

MOVD

FMUL
t-10VD

P4: A{i)

MOV

AD;)
MOVV
~'1()V

I~~t;L

~·~C-J

F~~; rr
.J-,-"

r-tOVD

P5: A{i, j)

MOV

11-ruL
Me)V

ADD
MOVD

MOV

lMUL
MOV
ADD
FMUL
MO\t

IMUL
MOV
ADD
FADD
MOV'!)

. T '

. - ~~*C

R, - (SP)
c, (~~P)
(SP)+,A

(B+C) * (D+E)

B,-(SP)
c, (SP)

D,-eSP)
L, (SP)
(Sr·') +, (SP)

(:;p~ +,1\

B (i) * C (i)

B (Ri) , - (SP)
C (Ri) , (SP)

(SP) +" A (Ri)

SCi"'3) + C(i* 5)

Hi, Rs
:: 3, Rs
B(Rs), - (SP)
Ri, - (SP)
;t5, (SP)

(SP) +, Rs
C (Rs) , (SP~
(SP) +, A (Ri)

- .l\{i,j) + B(i,k)

Ri, - (SP)
~ibul, (SP)

(S p) +, Rs
Rk, Rs
B{Rs), - (SP)
Rk., - (SP)
~cul, {SPj

(SP)-+-, Rs
Rj, Ps
C(Rs), (SP)
Ri, - (SP)
~nulk (SP)
(SP) +,Rs
Rj, Rs
A(Rs), (SP)
(5 P) 4o, A(Rs)

""~ove B to the sta·~k
/multiply c with t0P of t::e :~t(L·".
,/move result to A

/index i+) in Rs

/index i*5 in Rs

'* C',k,j)

/index f.or B(i,1<) comput(';!d

/index for C(k,j' computed

,Jindex for A (i., j) computed

