
.... . }
(.

.).., C ! \ \)(, ~"j' .------,

:.-DRAFT .\ - Inte~office Me~~randum ... ' . n r; l i:) l ~/' r 1-.1/ ~. t -J') J E , h" fA ~
'----- .----...... \. . i

(})\ r :.1 \A ~/l ~';)~ \\ I J-O

., II. '/
'('L·r· ,

f Y

!\,\ (I ",9,24i3
,)

SUBJECT: SEGMENTATION DATE: October 14, 1970

TO: Gordon Bell
Dick Clayton

" -, ,
Bruc~,. Delagi
Dave Parnas
Bill Wulf

~ ..

....

FROM: Ad van de Goor
Larry Wade

This memo contains a very pre~.i~inary description of a segmentation, .:

.' ,"

scheme for the PDP-II family.

The scheme attempts to, accomplish thef0l1owing:

1) Increase the user I s virtual atjdress space to 2 l' 24 bytes =

4 million bytes.

2) Give a hardware definition of the "working set" model.
,.

3) Implement "sharing" and"protection~'.

4) Allow processes to handle private I/O devices.

5) The scheme is usable with or without paging.

, I
f

6) Provide efficient protection between processes and different

segments in a process.

7) Provide s~orage efficiency by allowing a large range of

segment sizes.

8) Allow the ussr to work in virtual space only.

9) Provide a physical address space of 21' 25 bytes =

8 million bytes. .. \

I (ii

-: \ J '
II.)L) /" . I ,/ ,

- 2 -

1.0 Basic Solutions 0244

The address generated by the PDP-ll/20 is a l6-bit byte address.

The big.ger meIt}bers of the PDP-II family will interpret this
" , I _

address (now a virtual ~ddre~s) as a two dimensional (segmented)

address as shown in Figure 1. 'The l6-bit virtual address II VA II

is divided into two fields: ..

1) The Working Segment Field "W~;F~'. Th~s, 3-;:-bit field determin.e;;

which of the 8 working segment registers IWSR's" has to be ,

used to form t!le physical address of the data or inst~uctipn ..

The WSR's contain, among other things, pointers to the be-

,ginning (i.e. word 0) of a segmen~. Appendix A lists some

reasons for considering 8 WSR's adequate.

2) The Displacement Field "DF". This. is a l3-bit field which

contains an address relative to the beginning of a segment.

This allows for segment sizes of up to 8K bytes.

virtual address II VA II

~ - ~-,,~ "-----' - '"" . ~
Working
Segment
Field "WSF"

" ,t

Displacement
Field "DF"

FIGURE 1. Intepret~tion of a Virt~al Address.

r

2 a 0245

The formation o,f a Physical Address "PA" is shown in Figure lA.

,I ~ •

The (WSF) of ... the VA is u~ed tp address one of the WSR IS. The
~ .

Segment Address Field "SAF" of the addressed WSR is used together"

ThePA is, as will be shown
....

lat~r, a 25~bit byte addre$~.

The 8 WSR's can be loaded with Segment Descriptor Words "SDW's" ,

from the Segment Table "ST" under control of the process.

1 Note: (X) means "the contents of X" •

.. I
I

VA

WSRO 16

WSR
l

!ISR7

VA = virtual Address
PA = Physi'cal Address
WSF = Working Segment Field
DF = Displacement Field
WSRi= Working Segment Register i
SAF = Segment Address Field

SAF
16

•

~

..

'- ~ -'
,.

~
PA 1---- ----- 25 ..]

~. -'- -

Figure·lA. Formation of a Physi cal Address./·

'.

I~

o
ru
~
0")

1

1-

- 3 -
0247

1.1 The Segment Descriptor Word
, I

The Segment;. Descriptor Yford is a double' word (32 bit's) containi'ng

informatio~ relevant to a particular segment. It contains 5

fields 'as shown in Figure' 2 .. Detailed descriptions are given in
subsequen t se~tions. . .,.
I), Use and validity Field, "UVF". This 4-bit field is the

. ' ,,:
only field which is subject to change during execution of

a segment~ The,UVF consists of two sub-fi~ldf?:

a) The Use Field tlUFtI. This is a I-bit field

which indicates whether the segment has ever

been used.

b) T~e validity Field tlVF'tI. This is a~3-pit field des

cribing the" validity state ol ~egment.These states

will be discussed further on.

2) Software Use Field tlSUFtI. This 4:"'bit' field allows for

16 encoded states four of which are assigned already

and describe the movability and size flexibility of a
segment~

a) Move Freely (ca~ be swapped out) .
b) Move in core only' (cannot be swapped out) .
c) Do not move (specifically for segments containing

r/o addresses).' .
d) Do allow size, changes (e.g. for the stack segment) •

3) Access Control' Field!' .. ACF" •

This is a 3-bit field describing whether Read, write and

Execute are allowed.

All changes are done under hardware control.

, '

- 4 -

0248
4) Segment Length Field "SLFII. This is a S-bit field

descr,ibing th~ length of the s~gment.
", .. '

5) Segment Address Field ~.iS·AFIi. This l6-bit field contains

a pointer to physical.word 0 of the segment .

. '"
1.1.1 The validity States

I.

The 8 possible validity states are encoded in the validity

'I

field VF. These 8 s,tates are listed in Table 1 below. The

column "core assigned" indicates whether any physical core has

been reserved., The column "core valid" indicates whether the

assigned section of core contains valid information. The

column "valid copy" indicates whe-ther a backup .copy (on the

disk/drum) is avail~le.

In order to get a better understandin9 of Table 1, the state

transitions of Table 2 should be consulted.
SDW

~ ~ ----.....

I 4 I 4 I 3 I 5 I 16 I
UVF SUF, ACF SLF, .. '· SAF

SDW = Segment Descriptor Word
UVF = Use and validity Field ",'
SUF = Software Use Field
ACF = Access Control Field
SLF = Segment Length Field
SAF = Segment Address Fielq,

Figure 2. Layout of a Segment Descriptor Word.

- 5 -

CORE 'CORE VALID TRAP AFTER
ASSIGNED VALID COpy WRITE

0 No ~~ No ~

./ . "
~ 1 No Yes

" f_ :

2 Yes Yes No No

3 Yes No No No

4 Yes No Yes No

5 Yes Yes Yes No

6 Yes No Yes Yes ,.

.
7 Yes Yes Yes Yes

, ,

, "

,Table 1. ,The, 8 validity States

,

0249

COMMENT
Empty
Segment
Segment on

backup storage
Core copy I.
only .
Core reserve
for segment
Core, rese.rve
& backup cop
available
State after

d

d

Y

transfer fro m
backup

READ OR
EXECUTE

0
0 Trap

1
1 Trap

2 2

3
3 Trap

4
4 Trap

5 5

6
6 Trap

7 7

, . ,
\

WRITE
,0

Trap

.-: i
, Trap

2

2

2

2

2
Tral?

2
Trap

.,

- 6 -

R/W

.' "

./

,.r-6' ,

/' ,)
R UA'~<:://

I 7

f o'

; ~ R
1.....1

R/W

NO~E: R = Read or ·Execute
W = write
Trap is an ACTION - not
a state.

Table 2. Validity state Transition Table &
Flow Diagram

0250

1.1.2

-' 7 - 0251

The Access Control states

The acces,s .. c:optro,l state of a segment is de~cribed in the 3-bit

access cont~ol. field "ACF ,i ~ Table 3, below, shows the 8 states.

''U

I

.-

READ WRITE EXECUTE COMMENT

""",.
T~is state allows

0 ~ ",. for passing segments

",. ~
Execute only

1 X segment

",- ",-
write only

2 W segment

/
Useful?

3 W X

". Read only data
4 R .".. """,. segment .

"Normal" shared
.5 R ~ X S~C'TTT'\ent

~
R/W Data

6 R W .. Segment
"Garden Variety"

7 R W X Segment

'rable 3 .. -Access Control States

- 8 -
0252

1.1.3 The Segment Length
.' , }

This is de~.cribed in th.e 5-qit segment length field '''SLF''.

Small segments are incorporated for storage efficiency and to

allow for "private; I/O", e'.g.·, to. allow users in a time-sharing

.. ".
system ~o have .. their own I/O qeyices. The meaning of the encoded

bits is as shown in Table 4 below.

'I

(SLF) = 0 means that the segment descriptor word~is void,

i.e. it does not describe a segment.

(SLF) = 15 indicating a shared segment, means that the SDW

points to a string of SDW's .(of length 1 or more) the last

one of which contains the actual length of the ,segment.

For the smaller segments., the length is a power of 2. The bigger

segments, however, have a size which is a multiple of,256 words

for storage efficie~cy reasons. (See Section 5.0)

, ,t'

. :
\ .
4 I

f

; .

The maximum size of a segment can be derived from the 13-bit displace-

ment field of Fig~re 1. By requiring that any item in the segment

be direct, byte addressable tlle 13-bit displacement has to be in-

terpreted as a 13-bit,byte address, limiting the maximum segment

size to 212 = 4096 words.
.> "

(SLF)

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

LENGTH OF SEGMENT
~IN WORDS

in.va1id seqrnent
,,'

1

2
¥

4

"

8

16

32

64

128

'\

~
,NOT USED

t

)
....

shared seqrnent

-,9 -

.

J

0253

The numbers 16-31 in the
,SLF indicate the following
lengths:

1
4

,,-

, '

(X-IS) * 256 where 16~ X ~31

This .al,IQW'~ for 256 word pa9~s.

Table. 4. Interpretation of the Segment Length.

0254
- 10 -

1.1.4 The Segment Address

-
The physical address of,the tirst word (i.e. word 0) 'of the

~ .
segment is contained in the l6-bit.segment address field

"SAF". 'The interpretation of this 16-bit quantity is as

follows.

1) If l~(SLF) ~8 then the l6-bit quantity is interpreted

"I

t ,,"

~ ,
f

as a word address. This means that "small" segm~nts •

(i. e. those with a length between 1 and 128 words) have

to be located in the first 65K words of core memory.

2) If (SLF) >' 15 then the l6-bit quantity is interpreted as

a "pag,e address", i.e. an address of a 2.56 word quantity .

.
This allows for .,a maximum physical word address of 2 f' 16 *

2 l' 8 = 2 l' 24 words or 21' 25 bytes.

2.0 Layout of the' Segment Table

The Segment Table "STI! contains all the segment descriptor

words "SDW'S'~ belonging to a certain process.
,*

The ST, itself, is a seg:ment ·and its maximum size, therefore, is

limited to 21' 13 bytes = 4K words. Considering the length of

a SDW (4 bytes) the' ST cah contain 2 1'll=2K SDW I S maximally.

This gives a maximum virtual memory per process of: (max. segment

size) * (max. # of segments) = 2 l' 13 * 2 1'11 = 2 ~ 24 bytes.

- 11 - 0255

The layout of the ST is shown in Figure 3. The top 16 words

of the ST are not used to store SDW's for reasons to be ex-

-
plained later. Currently these words are used as follows. . ,

, .,<

1) The first· 8 words (WO-W7) ~re used to contain

'Segment Numbers "S#I.S". A S# of j in wi of Figure 3
• 'l.

indicates that WSi?i, is loaded with SDW#j. So the , i

I.

S#IS loaded into WO-W7 of the ST indicate the SDW's

,
the WSR's are loaded with. Because the ma~imum

of SDW's in a ST is 21' 11 a S# does not have to be

bigger th~n 11 bits.

2) Word #108 (W10) contains the stack pOinter (R6) when

the process is inactive .

. '

3) The remainder of the words (WII-W17) are reserved

for software Use.

, .

- 12 -

025,6

32 bits

(11 bits I 16 bits) .~,~\~~-----) ~~------~~~~----~7

' ..
~wl

..
wo • · • S#· · S# · 0
W2 W3 · · . •

, .
"

• ~. S# · S# · • 4
W4 • vis •

• ·S# . " . ', ..
S# • 10

W6
,.

W7 • · "-· :'t
·S# ,-.. S# •

.. I

14 I

W10 R6 W1l
, 20

W12 W13
24

W14 W1S
30

W16 W17
34

Segment Descriptor Word #0 40
r

Segment Descriptor Word #1 . 44

4 4 1 S 3 16

.'

SDW #N-2

SDW #N-1

Segment Descriptor Word #N

Figure 3. Layout of Segment Table

- 13 - 025>,

3.0 Master Control Process "MCP"

This p~ocess has the authority to allocate and de-allocate

resources ih the system~ ~re management and the creation. and

deletion of segments belong to, its'responsibility. This is the
;

only process which is allowed to add, delete, or modify ST's
. ~.

, I

and SDW' s." Other processes have no control oyer their ST and \ •
• \ ' I. : 4 If

, SDW' s.

Every process in the system is completely specified by its ST. '

When a process is in control, a hardware register, the Segment

Table Pointer "STP", points ,to the ST of the process. The STP

is a 2l-bit register (see Figure 4) and has the s~e layout as

the low order 21 bits of the SDW of Figure 2 •
. '

STP ~I _5 -.J--I __ 1_6 ____ 1
SLF SAF

SLF = Segment Length Field
STP = Segment Table Pointer
SAF = Segment Address Field

Figure 4. Layout of ,the Segment Table Pointer "STP"
{

The MCP has a special segment, called the Segment-Segment

Table, "SST", which contains Seg;nent T~}e Descriptor Words

"STDW's" pointing to 'all 'processes in the system, including

the MCP. The location of the SST is known to the MCP because

0258
- 14 -

it is one of its segments. Figure 5 shows the layouts of the
, ,

different' tables~' The SST contains M STDW's indicating that
,,'

, ,"

~ ..

there are M processes in the system. , '

Process Q IIPr,Q" is the MCP. Note that the SST is the first
.• 'It

~ ,

segment in the MCP' s ST and is t~erefore. un9.e~ complete contr0t-\,~

of the MCP. It is quite obvious that the SST should not be a

shared segment~ The process in control is Pre 1 because the

STP (Segment Table pointer) points to it.

,.

.'

'I I'

li- - - --.

/
SST

-- n ::: :: ~-t~~n~~_~)
~

,

j)----[-'~ f STDW #M~-=h

- , \':,
I..L ___ ,~

I:
STD'

, !
i

-,
I
I

SST = Segment Segment _ Table
STOW= Segme~t Table Descriptor

Word
MCP
ST
SOW
STP

•
= Master control Process
= Segment Table
= Segment Descriptor Word
= Segment Table Pointer

_~ 1

\.
/

ST of Pre 0
~~\

\

\
16 reserved ,

words .)

Sow #0 i-----

--~----- -) ~:l 1. . Seg.

CSDW#~N~_j- _~ #1 .~:
SDW #1 j-----

,

) ! Seg ..

". '#No.

ST of Pr. 1
,.

.----'---_ .. _. -~ ,-·f. rseg~--:-l
1#0 · I

, ___ sow #0
SDW #1-__ ., .~f.~ r seg: I · - [::J \#1 Seg. \

. . ' #N1 t SDW # Nl ···~·~~I ./
I - .- \ r ~

, ,.

! I !

ST ~_~_~_r. M -,
- I

I
1

... j ~:~:-##O ..1 . . ---------. -) ~eg .. - -

_~~ 1 I I~ #

t
: --;~--.. --.---~.~·~~vr--~I-) I !~g.; , .. _0,

-~.-~ #,~~ • ___ . _0.- ~,1

Figure 5. Layout of SST and ST Tables.

a
M
0')

a

I-'
lJ1

- 16 - 0261

4.0 Interruptability

Fast interrupt response is a requirement especially.because th~,
.,'

machine might b~ used in real~time applications. The a:ate of a.

running proce .. ss is determined by the following:

1) The program counter "pe"

2) The stack pointer "SP"

3) The program status word "PS"

4) The location of the ST which is the (STP)

5) The contents of the 8 WSR·s

6) The contents of the accumulators "AC.s"

The interrupt response time can be divided into two groups:

1) The time 'needed to save the current status, called

"Save Time".

2) The time needed to set up the new status, called

the "Restore Time".

4.1 Reduce save Time

In order to reduce the Save Time, the following two facilities
i

are introduced: ·

1) The saving of t~e. AC·s' is done optionally through

Save AC·s bit HSAC" in the PS word (see Figure') .
/

/

, .
'"

- 17 - 0262

2) The saving of the WSR's is made not necessary because

o'f the scheme discussed below. 'In order to allow for ',"
~ . .

this, two requirements have to be satisfied.
; ,

. a) Duplicate co~ie~ of the contents of the WSR's

have to be avaflabJ:e in core memory.

b) Knowledge as to which' SDW' s "are ~'l~aded in

which WSR's has to be available to 'allow 'for

a correct restore operation.

Part a) is satisfied by guaranteeing that the (WSR's) are

always the same as the corresponding SDW,' s in the ST. This

can be done relatively easily" at the expense of very little

overhead becaus~ the SDW's do not change very often when they

are loaded in the WSR's. Only 4 b,its of the SDW can change

while a "segment is working" (i.e. loaded in a WSR). These

are the Use and validity bits (s~e section 1.1)

al) The Use bit changes,at most, once while the segment

is working, ',namely When it is used the first time.
, ,

a2) The ,validity ,bits can change only a few times after

which they end up in a stable state or cause a trap

(see Table 2} .

Because the changes mentioned under al and a2 are so in-

frequent, they are made in the WSR and the corresponding

SDW simultaneously (i.e. in a non-interruptable sequence).

- 18 -
0263

Part b) is. satisfied by reserving in the ST 8 words which
... ·:.1 I

contain .. the SDW #' s loaded in -the corresponding WSR' s '" I /I"

(see Figure 3).

The addit~ohal requir~~~n~~~n loading a WSR is that the
. t

SDW # has to be loaded in the .corres.ponqi'~g entry in the
i •

ST.

4.2 Reduce the Restore Time

The restore time can be reduced by

1) Conditionally restore the AC's. This is done through

the Restore AC bit "RAC" in the PS woro. (see Figure 4) .

2) Selectively.restore the WSR's·. This is done through

an 8-bit mas,k, the Restore WSR mas,k "RWSR" I in the

virtual Memory Descriptor "VMD" of Figure 5.

3) Conditionally Chang~ Address Space.

This is done through the change address space bit

"CAS" in the VMD. 'The exact operation of this bit

needs some more work~

'. "

0264
19

PS

-------~------~-~~----------------~ .. :Ii(~c
. [SAC

6
3 1111111111 I
P TNZVC

t fl t -'

''U
. I

"
.' ,-

SAC = Save ACts

RAC = Restore AC's

P = Priority

T = Trace

N = Negative

Z = Zero

V = Overflow

C = Carry

PS = Program Status Word

Figure 4." Layout of the Program Status Word

- 20 -
0265

5.0 In terrupts and ,Traps

, I

The interrup,t and trap v~ctor.s, as currently exist on' the PDP-Il/20, . .
have to be redefined in order to guarantee efficient operation.

Instead of thei"old" inte~rupt/trapvectors consisting of a

• 'l.

PC ~nd a PS"word, we will p.~w have a virtual Memory Descriptor
. ,. ... \

f

UVMD" , see Figure 5. These VMD's ate located in physical core,

,
they are also 2 words, long, and can therefore repl~ce the

interrupt/trap vectors.

The VMD contains all the information ~ecessary to start a process

operating in virtual memory, rather than interrupt/trap handlers

operating in physical address space. ~he above feature allows

processes to handle their own interrupts/traps.

VMD

RWSR
CASF
STLF
STAF

VMD

~
--. ~

8 12 1 1 I
5 I ,16

RWSR r ~ STAF
CASF STLF

= virtual. Memory 'Descriptor
= Restore Working Segment Register Mas~
= Change Address Space Field
= Segment Table L'ength Field
= Segment Table Address F·ield

Note: The STLF is similar to the SLF.
The STAF is similar to the SAF.

Figure 5. Layout of the virtual Memory Descriptor

- 21 - 0266

The saving of the state of an inter~upted process consists

of. the following steps. . . , ',' ~ ,
.'-

'.'

1) Test the -SAC bit in the PS (see Figure 4) and

. condibionally 'pusJi i;he AC' s' on the stack of the

in~errupted procep~.
.....

,\ I,

2) Push the PC and PS on the stack of the interrupted

process.

3) Store SP in WIDS of the ST of the interrupted process.

4) Invalidate the WSR·s by cl~aring them. This is to

safeguard the interrupting process from accidentally

being able to access the interrupted,. pr9Ces.s· s VM

space. .'

Restoring the state of the interrupting process consists

of the following'steps.

1) Store (STP) in a temporary location IITSTP'·.

2) pick ,up VMD from interrupt/trap vector and store it

in the STP.

3) Store (TSTP) in 'W"12 and W13 of the ST of the

interrupting VM space.,

4) Restore R6 from WID of the ST of ... the interrupting

process.

026'1
- 22 -

5) Pop PS and PC.

6) Test RAC bit of popped PS .and conditionally ~estore

the AC's,by popping them from the stack.

7) . Selec~ively restore the WSR's under control of the

RWSR mask in the '\fMD. . ~

I.

t 4"

4 I
f

6.0 Indirect Addressing and Shared Segments

6.1

Instruction as well 'as data addresses are virtual 'addresses

"VA's". Because the (WSF's)l can be different for instructions

and data, instructions and addresses can come from different

segments The two possible cases for direct addressing are

shown in Figure 6.

Indirect Addressing

Indirect Addressing is handled in a way very similar to direct

addressing. Now, however, three VA's are genera1;.ed: 1 for the

instruction; 1 for the indirect address; and 1 for the data.

This leads to the five pos$ible addressing cases shown in

Figure 7.

1 See Figure 1 and lA.

, .

Se . a)
'Instruction

Data

Case 1
Instruction &"
Data in same
Segment

,.

..

23

Seg. a Seg. b
Instruction Data

~

Case 2
Instruction & Data in
different Segments

Figure 6., Direct Addressing Cases

Case 1

Seq. a
Instr.

data

ind. ptt'. --?

Case 2

Seq. b
~'Ind. Ptr.

I
Case 4-

Seq.' b

data

Se . a
Instr.

Seg. a
Instr.

Seq. b
-) Ind. Ptr.

Case 5

Figure 7. Ind·irect Addressing Cases

Case 3

Seq. c

data

0268

I,,'

, '

