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0.0 ABSTRACT 

A floating point format has been adopted for PDP-ll computers 
which features an exponent range of lO±38 and a fraction in 
sign-magnitude form, with 24 bits of precision in the single
precision (2 word) form and 56 bits in the double-pre~ision 
(4 word) form. The following documents are attached as ap
pendixes, to show the history and technical justification 
for this format: 

PDP~ll Floating Pdint Format 

Minutes of PDP-ll Floating Point 
Format Meeting Held 30 Sept. 1970 

Oct. 1, 1970 

Latest Proposal for PDP-ll Floating 
Point Format Sept. 15, 1970 

Minutes of PDP-ll Floating Point 
Package Meeting Sept. 8, 1970 

Objections to 360-Floating Point 
Format Aug. 25, 1970 

PDP~ll Floating Point Format 
. (TM#16 Rev fJ) Aug. 21, 1970 
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SUBJECT: PDP-II Floating Point 
Format 

"-c"'r~ . 
j L~ " 

TO: PDP-ll List C 
PDP-ll Master List 

FRO\1: Hank Spencer 

DFPART~Y'lF~T: Programming 

Yesterday's meeting on this subject agreed to accept the floating 
point format shown below as appropriate for the entire PDP-II 
line. possible alternatives, the rationale for c~oosing this 
one, and its shortcomings are covered in detail 
Technical Memorandum #16. This ~orDat will be 
software in the PDP-ll/20, as a float Doint 
the Fortran Object Time System, and in hardware 

The format: 
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10 

double precision 

sign-magnitude 
form, binary 
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130-31 -001-

October 1, 1970 

Because we limit ourselves to normalized numbers, the tarde 
bit of the fraction magnitude is always 1, therefore, it is not 
represented in this format. Thus the single precision form has 
effectively 24 bits of precision, the double-precision form has 
56 bits. 
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O. 0 ABSTRACT 

The IBM 36~ two and four word (i.e. 32 and 64-bit) floating 
point formats were selected for the PDP-II family. These 
formats consist of a signed 7-bit exponent and a signed 
25 or 57 bit fraction with the quantity expressed by the 
number being the product of the fraction and the number 16 
raised to the power of the exponent. The exponent is ex
pressed in excess 64 binary notation; the fraction is ex
pressed as a hexadecimal number having a radix point to 
the left of the high-order digit. 

fraction sign 
(signed magnitude) 

7-bit exponent 
hex base 
excess 64 
notation 

range: 1.0±76 

I 
, '1 LS,. , __ .. exp 
15 '14 

two 
r··· ~ -'-r "word \. 
~lf.O!' fraction, ~ormat 

flt:.~_ radix po in t ~ \ 
1 

15 
fraction /'6 dec . .. , .--- -... -----. ' ........ --... ~ digit 

accuracy 
r-'-'-"- .. . 
15"-'- .. . 

fraction _ ...... _ ....... _.~ ... _~._~,. ,~ __ ., . "' .. _~._ .. __ .. _4_ ..... _ ._~, __ ~.~ .. -_. .----. . .-- ..... . 
~ 

,.--.---.---------0.--.. - .............. ___ ._ .. _. 
I fraction 1-----..... -... ----... ~ .... --~ .... .,.?.~..,.~-.-. -,"" .-.... 

15 

., 

~ 

four 
word 
format 

16 dec. 
digit 
accuracy 

This format was chosen because it satisfied more of the 
requirements of a "good" format than any of the alternatives 
studied. It 

1) provides an exponent range of 1~±76, adequate for the 
majority of users 

2) provides 6 decimal digits of precision with its short 
(32-bit) format, adequate for most single precision 
uses on small machines 

3) provides compatibility with a major market segment 

4) provides convenience of keeping to byte boundaries 
for ease of software simulation 
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5) provides convenient way of going to double precision, 
no special cases or operations required 

6) provides sign, exponent and high-order fraction in 
one word, simplifying both hardware and software 
operations of tests and comparisons 

7) provides sign magnitude fraction notation which is 
mathematically superior to other forms and is easier 
to manipulate in software simulation 

8) provides excess exponent notation which allows for 
the representation of ~ with the smallest possible 
exponent 

9) provides hexadecimal based exponent which appears to be 
faster to manipulate in software on the average (nor
malization and alignment take longer but the probability 
of their need is much less) and is certainly faster in 
hardware 

10) provides radix point at the left (fractional representa
tion) which is more traditional, more widely understood 
and no reason appears to exist for integer representa
tion on the PDP-II 

11) provides formats that will allow some 32-bit integer 
and floating point instructions to be shared. 

Section 1 of this memo is concerned with the basic consid
erations of floating point formats and contains a set of 
requirements a "good" format has to satisfy. 

Section 2 shows a set of possible solutions and explains 
why the IBM 360 format was selected. 

Section 3 has a list of references togethe.r with the 
alignment and normalization stati.stics as published in 
Sweeney's article. 
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1.0 Basic Considerations 

Some basi.c considerations whi.ch will assi.st in the selec
tion of the floating point format are di.scussed in this 
section. 

1.1 The number of words (Note: words are 16 bits long). 
Looking at the needs of the customers it can be concluded 
that more than one floating point format i.s needed. 

A short format is needed where precision is not of prime 
importance and where speed and/or storage space requi.re
ments are dominant (the majority of the FOCAL and BASIC 
users belong to this group). 

A long format is needed there where a high accuracy is 
the main concern, e.g. inner loops in a matrix inversion 
routine. 

The current PDP-ll/20 format has to be considered a com
promise between the above two format requirements. 

Reasons for having a two and four word format 

1) A 32-bit implementation of a PDP-II, as the PDP-II/60 
is supposed to be, can make very efficient use of a two/ 
four word format. One/two memory cycles are ne.eded 
to store or retrieve the data into or from memory. This 
compared with a 3 word format where always two memory 
cycles are needed. 

2) Indexing can be accomplished more easily because multi
plying the index quantity with a power of two can be 
done through simple shifts. Any format whose lengths 
are not a power of two requires some form of mUltiplica
tion of the index quantity. 

3) Most competitors offer a two and a four word format. 

1.2 Exponent Range 

The lower limit of the exponent range can be determined 
quite easily. Looking at some well known constants, e.g. 
Avogadro's number N=6.0255*10t23 and Planck's constant 
h=1.0545*101-27 it is quite clear that an exponent range 
of 101-38 5 exp..$....101'38 is a minimum requirement. 

The consensus of the marketing inputs was that an exponent 
range of 101'-76 .~-:: exp ,.~ 101'76 was very desirable in order to 
be competitive as well as for scientific reasons. 
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Another point of importance is that by having the expon
ent range big enough for the short as well as· th.e long 
floating point format, conversions between the short and 
long formats are made more easy. 

1.3 Layout of Formats 

A very classical layout is shown in Figure-l. The 
first bit is the sign of the fraction, the next group 
of bits is the exponent (including its sign) follow·ed 
by the fraction 

S exp ! fraction 

Figure-I. Classical Layout 

The main advantage of the above layout is that certain 
instructions do not have to differentiate between a 
floating point number and an integer number of the same 
size, which leads to a savings in hardware. Typical in
structions which can be shared are COMPARE, LOAD, STORE, 
etc. 

A few requirements have to be made of the layout of the 
formats with respect to execution speed of certain instructions. 

1.3.1 Easy conversion between single and double precision. 

In most formats, double precision is formed by appending 
two words (i.e. 32 bits) at the end (i.e. least significant 
part) of the single precision format. Going from double 
to single precision merely means deleting the two least 
significant words assuming the floating point number was 
normalized and the exponent range is the same for the short 
and long formats. 

The IBM 1800 format, as shown in Figure-2 below, is an 
example where conversion to a double precision format would 
cause difficulties because a 32-bit word (assuming a 4-word 
double precision format) would have to be inserted between 
the lowest bit of the fraction and the sign of the exponent. 

o 31 
s fraction s exp 

Figure-2. IBM 1800 Single Precision Format 
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1.3.2 Fast Test and-Compare Instructions 

This requires that most of the relevant informatLon nec"!'" 
essary for testing and comparing is stored in a single, 
preferably the first word of the format. This informa
tion is the sign and the first few high bits of the frac
tion and the exponent. 

The IBM 1800 format of Figure-2 is an example wherein 
compare instructions always both words have to be read 
from memory. 

1.4 Position of the Radix Point 

The more standard way of representing floating point 
numbers is by having the radix point to the left (i.e . 
• X). Some machines (e.g. Burroughs B5000/B5500/B6500/ 
B7500 and the CDC STAR) have the radix point to the right 
(i.e. X.). This allows integers to be a subset of un
normalized floating point numbers. 

It should be noted that having the radix point at the 
right makes the range of floating point numbers asymmetric 
with a bias towards large integers which may be less desir
able. 

The only reason we know of, for having the radix point to 
the right is the possibility of treating integers as float
ing point numbers. In order to allow for this unnormalized 
floating point arithmetic has to be used (like in the STAR) 
or the integer case has to 'treated differently while the 
standard mode is normalized arithmetic (like in the Burroughs 
machines). The latter leads to a more complicated floating 
point unit. 

Some interesting problems arise when going from single to 
double precision which can be done in two ways. 

1) The Burroughs method 

Short format Note: 
J exp f fraction . = radix point 

Long format 

exp __ f_r_a_c_t_i_o_n ____ 1 .! fraction 



- 7 -

The advantage of going from short to long format this way 
is that the exponent does not have to be adjusted. 
Disadvantage: the radix point is in the middle 
which excludes long integers. 

2) The CDC STAR method 

short format 

! exp I fraction 

long format 

fraction I. I exp 
~----------------~, 

This method allows for long integers (the STAR has 24 
and 48-bit integers) at the expense of having to adjust 
the exponent upon conversion between formats. 

Considering the existence of l6-bit integers in the cur
rent PDP-II architecture it is questionable whether the 
addition of a 24-bit integer (obtained by having the 
radix point at the right) would be of any use. Consid
ering that or the floating point unit has to be more com
plex or unnormalized arithmetic has to be done we would 
like to drop this issue from further consideration. 

1.5 Representations for Indefinite and Infinity. 

The CDC STAR computer allows for representations of infinity 
(and indefinite through the condition code) together with 
computation rules on these quantities. The advantage is 
that a program run does not have to be suspended upon the 
occurrence of infinity or indefinite such that other "better 
behaving" sections of the program still can produce meaning
ful results. Also interrupts can be avoided this way. This 
comes at the expense of more complex hardware (and software 
in case of a software floating point package), however, 
because the operations +, -, * and / have to be defined for 
regular numbers, indefinite and infinity. 

The effect of indefinite and infinity can be simulated, to 
a large extent, by trapping the occurrence of indefinite 
and infinity and allowing for this trap to be passed to the 
user. PDP-IO ALGOL will have a feature like this. 

The introduction of indefinite and infinity introduces 
several special cases which will make floating point arith
metic more complicated, also the reasons why STAR and the 
CDC 6600 have such features do not apply to the PDP-II 
family. Therefore, the above features are not considered 
necessary. 
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2.0 Possible F1oatin<J Point Formats 

2.1 

Four floating point formats are considered in this section. 
Each format has a short (32-bit) and a long (64-bit) ver
sion. 

The CDC STAR Format 

3 

f S I exp 

16 

24 

f:::~~;:-"I . Short format· 

48 
~~. ~ .. ", .. -.~ ..•. -".~ .. ", . .,..--~.--

fraction "'''I ,. Long format 

The radix point is to the right. The exponent and the 
fraction are 2's complement numbers. The normalization is 
binary. 

Disadvantages: 

1) The exponent range of the short format is not very big. 

2) Because of the 2's complement notation for the exponent 
and their representation of zero and infinity, software 
simulation will be costly. . 

3) The 16 bit exponent in the long format will be objection
able for customers because they rather have more signifi
cant digits then such an unusual large exponent range. 
The PDP-lOI's long format is different from that of the 
PDP-IO because customers wanted the extra bits where a 
dummy exponent was stored to be used for more precision. 

4) Conversion between the single and double precision formats 
requires exponent adjustments. 

2.2 The Byte-Exponent Format 

8 24 

1 S I exp I S 1 fraction Short format 

8 56 
.... -.. """~ ..... -- ............... ~ 

! s exp Long format 
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In order to get the required exponent range with the 
above format, quad normalization (i.e. radix = 4) has 
to be used. Considering the PDP-ll/20 instruction set 
quad normalization is practically as difficult as hex 
normalization. Furthermore, by not having the classical 
layout of Figure-l the economy of sharing some 32-bit 
integer with 32-bit floating point instructions is lost. 

2.3 The Binary Exponent Format 

9 22 
...•..•.•. ~ ...• -.. \'--.. ' . 

1 / .. ~. 

I S f sl exp L fraction ~ __ ~ ____ ~~ ______________________ ~I Short format 

9 54 

1 .r r /" 

! s I sf exp fraction Long format 

Because of the 9-bit exponent binary normalization can be 
used to get the required exponent range. Considering the 
PDP-II/20's byte oriented instruction set, packing and 
unpacking of this format is more difficult. 

Keeping to byte boundaries: 

This section illustrates the penalties (time and core) 

in going to greater than byte sized exponent fields. 

The problems occur mostly in the loading and storing 

operations in the floating point package. 

Let·s take two hypothetical formats and compare the 

code necessary to break them down for processing: 

I 

3 words 
6.9 usecs 

SI 
15 

R.O. Mantissa.] 

JJ 

.1 exponent JL.O.Mantissa I 
15 7 ~ 

MOV 
MOV 
MOV 

f
"CLRB 
SWAB 
CLRB 

(Rl)+,R4 
@Rl, R5 

R5, Rl 
Rl 
R5 
R5 

8 bit exponent 

iH.O. Mantissa 

iexponent 

: L • 0 • Ma n +: ; ~ c: .::. 
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2 1L._s ... I __ H_._o ___ M_a_n_t_i_s_s_a---,' 

15 ~ 
9 bit exponent 

'exponent)L.o.Mantissal 

15 6 ~ 

MOV (Rl)+, R4 iH.O_ Mantissa 
MOV @Rl, R5 
MOV RS, Rl 

6 words §IC #177, R1 
13.4 usecs SWAB R5 

ROL R5 
Ie #777, R5 

iexponent - L.O. Mantissa bits 

iL.O. Mantissa - exponent bits 
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2.4 The IBM 360 Format 

This format is shown in section~. Because so many people 
are concerned about hex normalization due to the claimed 
loss of accuracy, this point deserves some attention. 

The 360 single precision format, as shown in section ~, 
has 24 bits of mantissa not including the sign bit. 
Because of hex normalization, ho,,,,ever, a normalized number 
can have the three leading mantissa bits equal to "000" 
such that the worst case precision of the mantissa for 
normalized numbers is 24-3 =21 bits, which is more than 
6 decimal digits. 

Section 2.3 shows a floating point format with binary 
normalization and the same exponent range as the 360 
format. The format of section 2.3 has 22 bits of mantissa, 
not including the sign bit. 

So the worst case precision for normalized numbers, assum
ing the format of section 2.3, is 22 bits. This is only 
one more bit as that for the IBM 360 format and also only 
6 decimal digits. 

Considering the normalization and alignment statistics of 
Sweeney's article the loss of significance because of hex 
normalization and alignment is lessened because of its 
lower probability of occurrence. 

The total n~~ber of normalized floating point numbers for 
the IBM 360 format is: 

(2 for positive and negative) * (number of possible 
exponents) * (number of hex normalized numbers)= 
2*21-7.*21'20* (1+2+4+8) =15 *2~28 

The total number of normalized floating point numbers for 
the format of section 2.3 is: 

2*2~9*2t21=2~3l=8*2f28 

From the above it can be seen that although the 360 worst case 
precision is one bit less, it allows almost twice as many 
numbers to be expressed in normalized form. 

People from the Lawrence Radiation Laboratory in Livermore, 
Calif. came to the conclusion that the differences between 
hex and binary normalization were minimal, which supports 
our argument. 
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It should be noted that the IBM 360 format is quite well 
known; it is not only supported by IBM but also by RCA 
(Spectra Series), XDS (on the Sigma 5/7 in a slightly 
modified way) and SEL's System 86. 

Probability of less normalization and alignment shifts 
with non-binary based exponents: 

When a non-binary based e~ponent format is used, software 
simulation is slightly more costly corewise and also 
slower in the normalization and alignment processes. The 
core cost does not appear to be prohibitive and if these 
procedures are centralized will be an insignificant part 
of the total package. 

With regards to execution time, one must look beyond com
paring the time for binary normalization (alignment) versus 
the time for non-binary normalization. One must consider 
the probability of having to normalize or align with the 
different exponent bases. D. W. Sween,ey in his article 
shows statistically that there will be considerable less 
need to normalize (align) as one increases the exponent 
base. 

Referencing the table from D. W. Sweeney's article, let 
us look at and compare the time require~ents of binary and 
hexadecimal normalization: 

Binary: 

The mantissa to be normalized is in 2's complement 
form, thus as soon as bits 15 and 14 of the high order 
mantissa (R2) word differ the number is normalized. 
Negative power of 2, (21N) , are special cases. 



M.NORL: 
M. NOR2: 

M.NOR4 : 
M.NOR3 : 

M. RET2: 

DEC 
ASL 
ROL 
BVC 

BCC 
TST 
BNE 
SEC 
ROR 
INC 
INC 
SEC 
ROR 
ROR 
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R3 
R4 
R2 
M.NORL 

M.NOR3 
R2 
M.NOR4 

R2 
R5 
R3 

R2 
R4 

idecrement binary exponent 
ishift low order fraction 
ishift high order fraction 
inot normalized if C and bit 
i15 is alike 
ispecial -(2tN) check 

ibranch if not -(2~N) 
jrestore to l4~9~9 

ito avoid overflow problem 

irestore negative sign 
iC to bit 15 (sign) 

execution time: a) positive number l4.4+n(9.5) usecs 
20.8+n(9.5) usecs 
29.2+n(9.5) usecs 

b) negative number 
c) - (2'tN) 

where n = number of bit shifts needed 
to normalize the number 

Hexadecimal: 

This method assumes eith.er 

1) signed magnitude representation of the mantissa 

or 

2) 2'5 complementing negative numbers prior to 
normalization 

M.NOR2: BIT #74~~~,R2 
BNE M.RET2 
ASL R4 
ROL R2 
ASL R4 
ROL R2 

ASL R4 
ROL R2 
ASL R4 
ROL R2 
DEC R3 
'R"R M.NI"''r'''' 

iHEX -- 74~~JJ 
iNORMALIZED 
iLOW ORDER FRACTION 
iHIGH ORDER FRACTION 

iDECREMENT EXPONENT 
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Execution Time: 7.~+n(3~.3)usecs 

where n = number of field shifts required 
to normalize the number 

One can see that the critical loop times differ considerably 
(9.5 usecs and 3~.3 usecs); however, these times are mis
leading for two reasons: 

1) 9.5 is a bit coefficient and 3~.3 is a field 
(4 bits) coefficient. 

2) Probability of not having to normalize is 
in favor of hexadecimal exponentiation: 

Using D. W. Sweeney's normalization shift 
frequency table and expanding it to number 
of shifts * probability *9.5 or 3~.3, one 
can see that hexadecimal exponentiation 
provides for shorter time spent in the 
normalization routine: 

binary: 91.81 * 9.5 = 872.195 

hex: 18.46 * 3~.3 = 559.338 

The lessening of alignments has another significant offshoot: 
"less bits of prec1s10n are shifted right out of the calcu
lation." This fact may go a long way to compensate for the 
loss of precision due to the 71 form of normalized numbers. 

2.4.1 Hardware Implications 

The floating point format is not expected to have a big in
fluence on the hardware cost of the processor (assuming 
hardware floating point). The implications of selecting the 
360 format are that paral1el-shift-by-four (left and right) 
shift paths are desirable for fast normalization and alignment. 
Again considering the normalization and alignment statistics 
of Sweeney's article it can be stated that the average float
ing point execution times will be better than with binary 
normalization. 
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Alignment shift frequencies for various radices 

Radix 
Shift 2 4 8 10 16 32 64 

0 32.64 38.24 45.77 47.15 47.32 52.52 55.84 
1 12.11 18.54 19.77 23.22 26.02 26.37 26.64 
2 8.61 12.83 11.02 11.27 10.47 5.92 3.77 
3 6.72 9.87 6.26 3.26 2.24 1.82 2.35 
4 7.17 3.04 1.73 1.39 1.31 2.08 1.98 
5 3.88 2.05 1.10 0.93 1.70 1.87 
6 4.39 1.01 0.80 1.54 1.24 
7 4.82 0.72 1.52 1.28 
8 1.29 0.63 1.00 
9 1.28 0.94 

10 1.31 0.72 
11 0.48 0.97 
12 0.58 0.74 
13 0.38 0.27 
14 0.38 
15 0.32 
16 0.33 
17 0.32 
18 0.40 
19 0.48 
20 0.36 
21 0.53 
22 0.48 
23 0.33 
24 0.36 
25 0.36 
26 0.19 

over 9.50 9.43 10.04 9.96 9.70 9.42 9.42 
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Normalization shift frequencies for various radices 

Radix 
Shift 2 4 8 10 16 32 64 

result 0 1.42 1.42 1.42 1.42 1.42 1.42 1.42 
overflow 19.65 10.67 6.52 7.19 5.50 5.69 2.60 

0 59.38 72.11 79.40 79.80 82.35 83.86 87.36 
1 6.78 7.96 8.75 8.04 7.29 5.99 6.04 
2 3.47 3.35 1.64 1.55 1.38 0.87 1.23 
3 2.35 1.49 0.38 0.28 1.01 0.88 0.47 
4 1.91 0.34 0.43 1.03 0.30 0.41 0.88 
5 1.06 0.14 0.71 0.16 0.32 0.88 
6 0.56 0.92 0.25 0.25 0.43 
7 0.48 0.18 0.22 0.28 
8 0.16 0.13 0.28 
9 0.14 0.15 

10 0.08 0.18 
11 0.09 0.17 
12 0.32 0.27 
13 0.55 0.52 
14 0.16 
15 0.02 
16 0.04 
17 0.09 
18 0.08 
19 0.07 
20 0.12 
21 0.07 
22 0.07 
23 0.00 
24 0.11 
25 0.16 
26 0.52 


