
PDP-ll/40 Technical Memorandum#~1\

Title:

Author (s) :

Index Keys:

PDP-ll Floatiug Point Format

Hank Spencer

Floating Point Formats
Exponent Base
Radix Point
Conversion

Distribution: PDP-ll Coordinating Committee
PDP-ll/40Group

Revision 1

Obsolete: None

Date: November 10, 1970

0.0 ABSTRACT

A floating point format has been adopted for PDP-ll computers
which features an exponent range of lO±38 and a fraction in
sign-magnitude form, with 24 bits of precision in the single
precision (2 word) form and 56 bits in the double-pre~ision
(4 word) form. The following documents are attached as ap
pendixes, to show the history and technical justification
for this format:

PDP~ll Floating Pdint Format

Minutes of PDP-ll Floating Point
Format Meeting Held 30 Sept. 1970

Oct. 1, 1970

Latest Proposal for PDP-ll Floating
Point Format Sept. 15, 1970

Minutes of PDP-ll Floating Point
Package Meeting Sept. 8, 1970

Objections to 360-Floating Point
Format Aug. 25, 1970

PDP~ll Floating Point Format
. (TM#16 Rev fJ) Aug. 21, 1970

13 "-3~4·-< ~ ' ..

SUBJECT: PDP-II Floating Point
Format

"-c"'r~ .
j L~ "

TO: PDP-ll List C
PDP-ll Master List

FRO\1: Hank Spencer

DFPART~Y'lF~T: Programming

Yesterday's meeting on this subject agreed to accept the floating
point format shown below as appropriate for the entire PDP-II
line. possible alternatives, the rationale for c~oosing this
one, and its shortcomings are covered in detail
Technical Memorandum #16. This ~orDat will be
software in the PDP-ll/20, as a float Doint
the Fortran Object Time System, and in hardware

The format:

N
I S fc i- If. high ?rdedr ,I
1 ", exponen \.---f,;--- magnl tu e--;,
15 ----~---8--7~6----~------O

40

u::-;c:::d in
in the PDP-l 40.

~---- low-order magnitude - 3
15 0

single
precision

N+2

N+4 lower-order magnitude ,

'------------------~
15 o

N+6 lowest-order magnitude

15 0

S = slgn of fractional portion

Magnitude = size of fraction, unsigned

exponent = binary exponent, excess 128
10

double precision

sign-magnitude
form, binary
ncrTflaliza on

PDP-II Floating Point
Format

- 2 -

130-31 -001-

October 1, 1970

Because we limit ourselves to normalized numbers, the tarde
bit of the fraction magnitude is always 1, therefore, it is not
represented in this format. Thus the single precision form has
effectively 24 bits of precision, the double-precision form has
56 bits.

PDP-Il/40 Technical Memorandum # 16

Ti tIe: PDP-ll Floating Point Format

Author(s) : Ad van de Goor
Jim Murphy
Hank Spencer

Index Keys: Floating Point Formats
Exponent Base
Radix Point
Conversion

Distribution: PDP-II Coordinating Committee
PDP-ll/40 Group

Revision: None

Obsolete: None

Date: August 21, 1970

- 2 -

O. 0 ABSTRACT

The IBM 36~ two and four word (i.e. 32 and 64-bit) floating
point formats were selected for the PDP-II family. These
formats consist of a signed 7-bit exponent and a signed
25 or 57 bit fraction with the quantity expressed by the
number being the product of the fraction and the number 16
raised to the power of the exponent. The exponent is ex
pressed in excess 64 binary notation; the fraction is ex
pressed as a hexadecimal number having a radix point to
the left of the high-order digit.

fraction sign
(signed magnitude)

7-bit exponent
hex base
excess 64
notation

range: 1.0±76

I
, '1 LS,. , __ .. exp
15 '14

two
r··· ~ -'-r "word \.
~lf.O!' fraction, ~ormat

flt:.~_ radix po in t ~ \
1

15
fraction /'6 dec . .. , .--- -... -----. ' --... ~ digit

accuracy
r-'-'-"- .. .
15"-'- .. .

fraction _ _ _.~ ... _~._~,. ,~ __ ., . "' .. _~._ .. __ .. _4_ _ ._~, __ ~.~ .. -_. .----. . .--
~

,.--.---.---------0.--.. - ___ ._ .. _.
I fraction 1-----..... -... ----... ~ --~,.?.~..,.~-.-. -,"" .-....

15

.,

~

four
word
format

16 dec.
digit
accuracy

This format was chosen because it satisfied more of the
requirements of a "good" format than any of the alternatives
studied. It

1) provides an exponent range of 1~±76, adequate for the
majority of users

2) provides 6 decimal digits of precision with its short
(32-bit) format, adequate for most single precision
uses on small machines

3) provides compatibility with a major market segment

4) provides convenience of keeping to byte boundaries
for ease of software simulation

- 3 -

5) provides convenient way of going to double precision,
no special cases or operations required

6) provides sign, exponent and high-order fraction in
one word, simplifying both hardware and software
operations of tests and comparisons

7) provides sign magnitude fraction notation which is
mathematically superior to other forms and is easier
to manipulate in software simulation

8) provides excess exponent notation which allows for
the representation of ~ with the smallest possible
exponent

9) provides hexadecimal based exponent which appears to be
faster to manipulate in software on the average (nor
malization and alignment take longer but the probability
of their need is much less) and is certainly faster in
hardware

10) provides radix point at the left (fractional representa
tion) which is more traditional, more widely understood
and no reason appears to exist for integer representa
tion on the PDP-II

11) provides formats that will allow some 32-bit integer
and floating point instructions to be shared.

Section 1 of this memo is concerned with the basic consid
erations of floating point formats and contains a set of
requirements a "good" format has to satisfy.

Section 2 shows a set of possible solutions and explains
why the IBM 360 format was selected.

Section 3 has a list of references togethe.r with the
alignment and normalization stati.stics as published in
Sweeney's article.

- 4 -

1.0 Basic Considerations

Some basi.c considerations whi.ch will assi.st in the selec
tion of the floating point format are di.scussed in this
section.

1.1 The number of words (Note: words are 16 bits long).
Looking at the needs of the customers it can be concluded
that more than one floating point format i.s needed.

A short format is needed where precision is not of prime
importance and where speed and/or storage space requi.re
ments are dominant (the majority of the FOCAL and BASIC
users belong to this group).

A long format is needed there where a high accuracy is
the main concern, e.g. inner loops in a matrix inversion
routine.

The current PDP-ll/20 format has to be considered a com
promise between the above two format requirements.

Reasons for having a two and four word format

1) A 32-bit implementation of a PDP-II, as the PDP-II/60
is supposed to be, can make very efficient use of a two/
four word format. One/two memory cycles are ne.eded
to store or retrieve the data into or from memory. This
compared with a 3 word format where always two memory
cycles are needed.

2) Indexing can be accomplished more easily because multi
plying the index quantity with a power of two can be
done through simple shifts. Any format whose lengths
are not a power of two requires some form of mUltiplica
tion of the index quantity.

3) Most competitors offer a two and a four word format.

1.2 Exponent Range

The lower limit of the exponent range can be determined
quite easily. Looking at some well known constants, e.g.
Avogadro's number N=6.0255*10t23 and Planck's constant
h=1.0545*101-27 it is quite clear that an exponent range
of 101-38 5 exp..$....101'38 is a minimum requirement.

The consensus of the marketing inputs was that an exponent
range of 101'-76 .~-:: exp ,.~ 101'76 was very desirable in order to
be competitive as well as for scientific reasons.

- 5 -

Another point of importance is that by having the expon
ent range big enough for the short as well as· th.e long
floating point format, conversions between the short and
long formats are made more easy.

1.3 Layout of Formats

A very classical layout is shown in Figure-l. The
first bit is the sign of the fraction, the next group
of bits is the exponent (including its sign) follow·ed
by the fraction

S exp ! fraction

Figure-I. Classical Layout

The main advantage of the above layout is that certain
instructions do not have to differentiate between a
floating point number and an integer number of the same
size, which leads to a savings in hardware. Typical in
structions which can be shared are COMPARE, LOAD, STORE,
etc.

A few requirements have to be made of the layout of the
formats with respect to execution speed of certain instructions.

1.3.1 Easy conversion between single and double precision.

In most formats, double precision is formed by appending
two words (i.e. 32 bits) at the end (i.e. least significant
part) of the single precision format. Going from double
to single precision merely means deleting the two least
significant words assuming the floating point number was
normalized and the exponent range is the same for the short
and long formats.

The IBM 1800 format, as shown in Figure-2 below, is an
example where conversion to a double precision format would
cause difficulties because a 32-bit word (assuming a 4-word
double precision format) would have to be inserted between
the lowest bit of the fraction and the sign of the exponent.

o 31
s fraction s exp

Figure-2. IBM 1800 Single Precision Format

- 6 -

1.3.2 Fast Test and-Compare Instructions

This requires that most of the relevant informatLon nec"!'"
essary for testing and comparing is stored in a single,
preferably the first word of the format. This informa
tion is the sign and the first few high bits of the frac
tion and the exponent.

The IBM 1800 format of Figure-2 is an example wherein
compare instructions always both words have to be read
from memory.

1.4 Position of the Radix Point

The more standard way of representing floating point
numbers is by having the radix point to the left (i.e .
• X). Some machines (e.g. Burroughs B5000/B5500/B6500/
B7500 and the CDC STAR) have the radix point to the right
(i.e. X.). This allows integers to be a subset of un
normalized floating point numbers.

It should be noted that having the radix point at the
right makes the range of floating point numbers asymmetric
with a bias towards large integers which may be less desir
able.

The only reason we know of, for having the radix point to
the right is the possibility of treating integers as float
ing point numbers. In order to allow for this unnormalized
floating point arithmetic has to be used (like in the STAR)
or the integer case has to 'treated differently while the
standard mode is normalized arithmetic (like in the Burroughs
machines). The latter leads to a more complicated floating
point unit.

Some interesting problems arise when going from single to
double precision which can be done in two ways.

1) The Burroughs method

Short format Note:
J exp f fraction . = radix point

Long format

exp __ f_r_a_c_t_i_o_n ____ 1 .! fraction

- 7 -

The advantage of going from short to long format this way
is that the exponent does not have to be adjusted.
Disadvantage: the radix point is in the middle
which excludes long integers.

2) The CDC STAR method

short format

! exp I fraction

long format

fraction I. I exp
~----------------~,

This method allows for long integers (the STAR has 24
and 48-bit integers) at the expense of having to adjust
the exponent upon conversion between formats.

Considering the existence of l6-bit integers in the cur
rent PDP-II architecture it is questionable whether the
addition of a 24-bit integer (obtained by having the
radix point at the right) would be of any use. Consid
ering that or the floating point unit has to be more com
plex or unnormalized arithmetic has to be done we would
like to drop this issue from further consideration.

1.5 Representations for Indefinite and Infinity.

The CDC STAR computer allows for representations of infinity
(and indefinite through the condition code) together with
computation rules on these quantities. The advantage is
that a program run does not have to be suspended upon the
occurrence of infinity or indefinite such that other "better
behaving" sections of the program still can produce meaning
ful results. Also interrupts can be avoided this way. This
comes at the expense of more complex hardware (and software
in case of a software floating point package), however,
because the operations +, -, * and / have to be defined for
regular numbers, indefinite and infinity.

The effect of indefinite and infinity can be simulated, to
a large extent, by trapping the occurrence of indefinite
and infinity and allowing for this trap to be passed to the
user. PDP-IO ALGOL will have a feature like this.

The introduction of indefinite and infinity introduces
several special cases which will make floating point arith
metic more complicated, also the reasons why STAR and the
CDC 6600 have such features do not apply to the PDP-II
family. Therefore, the above features are not considered
necessary.

- 8 -

2.0 Possible F1oatin<J Point Formats

2.1

Four floating point formats are considered in this section.
Each format has a short (32-bit) and a long (64-bit) ver
sion.

The CDC STAR Format

3

f S I exp

16

24

f:::~~;:-"I . Short format·

48
~~. ~ .. ", .. -.~ ..•. -".~ .. ", . .,..--~.--

fraction "'''I ,. Long format

The radix point is to the right. The exponent and the
fraction are 2's complement numbers. The normalization is
binary.

Disadvantages:

1) The exponent range of the short format is not very big.

2) Because of the 2's complement notation for the exponent
and their representation of zero and infinity, software
simulation will be costly. .

3) The 16 bit exponent in the long format will be objection
able for customers because they rather have more signifi
cant digits then such an unusual large exponent range.
The PDP-lOI's long format is different from that of the
PDP-IO because customers wanted the extra bits where a
dummy exponent was stored to be used for more precision.

4) Conversion between the single and double precision formats
requires exponent adjustments.

2.2 The Byte-Exponent Format

8 24

1 S I exp I S 1 fraction Short format

8 56
.... -.. """~ -- ~

! s exp Long format

- 9 -

In order to get the required exponent range with the
above format, quad normalization (i.e. radix = 4) has
to be used. Considering the PDP-ll/20 instruction set
quad normalization is practically as difficult as hex
normalization. Furthermore, by not having the classical
layout of Figure-l the economy of sharing some 32-bit
integer with 32-bit floating point instructions is lost.

2.3 The Binary Exponent Format

9 22
...•..•.•. ~ ...• -.. \'--.. ' .

1 / .. ~.

I S f sl exp L fraction ~ __ ~ ____ ~~ ______________________ ~I Short format

9 54

1 .r r /"

! s I sf exp fraction Long format

Because of the 9-bit exponent binary normalization can be
used to get the required exponent range. Considering the
PDP-II/20's byte oriented instruction set, packing and
unpacking of this format is more difficult.

Keeping to byte boundaries:

This section illustrates the penalties (time and core)

in going to greater than byte sized exponent fields.

The problems occur mostly in the loading and storing

operations in the floating point package.

Let·s take two hypothetical formats and compare the

code necessary to break them down for processing:

I

3 words
6.9 usecs

SI
15

R.O. Mantissa.]

JJ

.1 exponent JL.O.Mantissa I
15 7 ~

MOV
MOV
MOV

f
"CLRB
SWAB
CLRB

(Rl)+,R4
@Rl, R5

R5, Rl
Rl
R5
R5

8 bit exponent

iH.O. Mantissa

iexponent

: L • 0 • Ma n +: ; ~ c: .::.

- 10 -

2 1L._s ... I __ H_._o ___ M_a_n_t_i_s_s_a---,'

15 ~
9 bit exponent

'exponent)L.o.Mantissal

15 6 ~

MOV (Rl)+, R4 iH.O_ Mantissa
MOV @Rl, R5
MOV RS, Rl

6 words §IC #177, R1
13.4 usecs SWAB R5

ROL R5
Ie #777, R5

iexponent - L.O. Mantissa bits

iL.O. Mantissa - exponent bits

- 11 -

2.4 The IBM 360 Format

This format is shown in section~. Because so many people
are concerned about hex normalization due to the claimed
loss of accuracy, this point deserves some attention.

The 360 single precision format, as shown in section ~,
has 24 bits of mantissa not including the sign bit.
Because of hex normalization, ho,,,,ever, a normalized number
can have the three leading mantissa bits equal to "000"
such that the worst case precision of the mantissa for
normalized numbers is 24-3 =21 bits, which is more than
6 decimal digits.

Section 2.3 shows a floating point format with binary
normalization and the same exponent range as the 360
format. The format of section 2.3 has 22 bits of mantissa,
not including the sign bit.

So the worst case precision for normalized numbers, assum
ing the format of section 2.3, is 22 bits. This is only
one more bit as that for the IBM 360 format and also only
6 decimal digits.

Considering the normalization and alignment statistics of
Sweeney's article the loss of significance because of hex
normalization and alignment is lessened because of its
lower probability of occurrence.

The total n~~ber of normalized floating point numbers for
the IBM 360 format is:

(2 for positive and negative) * (number of possible
exponents) * (number of hex normalized numbers)=
2*21-7.*21'20* (1+2+4+8) =15 *2~28

The total number of normalized floating point numbers for
the format of section 2.3 is:

2*2~9*2t21=2~3l=8*2f28

From the above it can be seen that although the 360 worst case
precision is one bit less, it allows almost twice as many
numbers to be expressed in normalized form.

People from the Lawrence Radiation Laboratory in Livermore,
Calif. came to the conclusion that the differences between
hex and binary normalization were minimal, which supports
our argument.

- 12 -

It should be noted that the IBM 360 format is quite well
known; it is not only supported by IBM but also by RCA
(Spectra Series), XDS (on the Sigma 5/7 in a slightly
modified way) and SEL's System 86.

Probability of less normalization and alignment shifts
with non-binary based exponents:

When a non-binary based e~ponent format is used, software
simulation is slightly more costly corewise and also
slower in the normalization and alignment processes. The
core cost does not appear to be prohibitive and if these
procedures are centralized will be an insignificant part
of the total package.

With regards to execution time, one must look beyond com
paring the time for binary normalization (alignment) versus
the time for non-binary normalization. One must consider
the probability of having to normalize or align with the
different exponent bases. D. W. Sween,ey in his article
shows statistically that there will be considerable less
need to normalize (align) as one increases the exponent
base.

Referencing the table from D. W. Sweeney's article, let
us look at and compare the time require~ents of binary and
hexadecimal normalization:

Binary:

The mantissa to be normalized is in 2's complement
form, thus as soon as bits 15 and 14 of the high order
mantissa (R2) word differ the number is normalized.
Negative power of 2, (21N) , are special cases.

M.NORL:
M. NOR2:

M.NOR4 :
M.NOR3 :

M. RET2:

DEC
ASL
ROL
BVC

BCC
TST
BNE
SEC
ROR
INC
INC
SEC
ROR
ROR

- 13 -

R3
R4
R2
M.NORL

M.NOR3
R2
M.NOR4

R2
R5
R3

R2
R4

idecrement binary exponent
ishift low order fraction
ishift high order fraction
inot normalized if C and bit
i15 is alike
ispecial -(2tN) check

ibranch if not -(2~N)
jrestore to l4~9~9

ito avoid overflow problem

irestore negative sign
iC to bit 15 (sign)

execution time: a) positive number l4.4+n(9.5) usecs
20.8+n(9.5) usecs
29.2+n(9.5) usecs

b) negative number
c) - (2'tN)

where n = number of bit shifts needed
to normalize the number

Hexadecimal:

This method assumes eith.er

1) signed magnitude representation of the mantissa

or

2) 2'5 complementing negative numbers prior to
normalization

M.NOR2: BIT #74~~~,R2
BNE M.RET2
ASL R4
ROL R2
ASL R4
ROL R2

ASL R4
ROL R2
ASL R4
ROL R2
DEC R3
'R"R M.NI"''r''''

iHEX -- 74~~JJ
iNORMALIZED
iLOW ORDER FRACTION
iHIGH ORDER FRACTION

iDECREMENT EXPONENT

- 14 -

Execution Time: 7.~+n(3~.3)usecs

where n = number of field shifts required
to normalize the number

One can see that the critical loop times differ considerably
(9.5 usecs and 3~.3 usecs); however, these times are mis
leading for two reasons:

1) 9.5 is a bit coefficient and 3~.3 is a field
(4 bits) coefficient.

2) Probability of not having to normalize is
in favor of hexadecimal exponentiation:

Using D. W. Sweeney's normalization shift
frequency table and expanding it to number
of shifts * probability *9.5 or 3~.3, one
can see that hexadecimal exponentiation
provides for shorter time spent in the
normalization routine:

binary: 91.81 * 9.5 = 872.195

hex: 18.46 * 3~.3 = 559.338

The lessening of alignments has another significant offshoot:
"less bits of prec1s10n are shifted right out of the calcu
lation." This fact may go a long way to compensate for the
loss of precision due to the 71 form of normalized numbers.

2.4.1 Hardware Implications

The floating point format is not expected to have a big in
fluence on the hardware cost of the processor (assuming
hardware floating point). The implications of selecting the
360 format are that paral1el-shift-by-four (left and right)
shift paths are desirable for fast normalization and alignment.
Again considering the normalization and alignment statistics
of Sweeney's article it can be stated that the average float
ing point execution times will be better than with binary
normalization.

- 15 -

3.0 References

1) Sweeney, D. W. "An Analysis of Floating-point Addition".
IBM Systems Journal, Vol. 4, No.1, 1965.

2) Goldberg, B. "27 Bits are not Enough for a-Digit
Accuracy". CACM, Vol. 10, No.2, Febr. 1967.

3) Knuth, D. E. "Seminumerical Algorithms" Volume 2 of
"The Art of Computer Programming", Addison-Wesley
Publishing Co., Reading, Mass.

4) Burroughs B5500/B65000 Programming Manual.

5) CDC STAR Floating Point Format Description.

- 16 -

Alignment shift frequencies for various radices

Radix
Shift 2 4 8 10 16 32 64

0 32.64 38.24 45.77 47.15 47.32 52.52 55.84
1 12.11 18.54 19.77 23.22 26.02 26.37 26.64
2 8.61 12.83 11.02 11.27 10.47 5.92 3.77
3 6.72 9.87 6.26 3.26 2.24 1.82 2.35
4 7.17 3.04 1.73 1.39 1.31 2.08 1.98
5 3.88 2.05 1.10 0.93 1.70 1.87
6 4.39 1.01 0.80 1.54 1.24
7 4.82 0.72 1.52 1.28
8 1.29 0.63 1.00
9 1.28 0.94

10 1.31 0.72
11 0.48 0.97
12 0.58 0.74
13 0.38 0.27
14 0.38
15 0.32
16 0.33
17 0.32
18 0.40
19 0.48
20 0.36
21 0.53
22 0.48
23 0.33
24 0.36
25 0.36
26 0.19

over 9.50 9.43 10.04 9.96 9.70 9.42 9.42

- 17 -

Normalization shift frequencies for various radices

Radix
Shift 2 4 8 10 16 32 64

result 0 1.42 1.42 1.42 1.42 1.42 1.42 1.42
overflow 19.65 10.67 6.52 7.19 5.50 5.69 2.60

0 59.38 72.11 79.40 79.80 82.35 83.86 87.36
1 6.78 7.96 8.75 8.04 7.29 5.99 6.04
2 3.47 3.35 1.64 1.55 1.38 0.87 1.23
3 2.35 1.49 0.38 0.28 1.01 0.88 0.47
4 1.91 0.34 0.43 1.03 0.30 0.41 0.88
5 1.06 0.14 0.71 0.16 0.32 0.88
6 0.56 0.92 0.25 0.25 0.43
7 0.48 0.18 0.22 0.28
8 0.16 0.13 0.28
9 0.14 0.15

10 0.08 0.18
11 0.09 0.17
12 0.32 0.27
13 0.55 0.52
14 0.16
15 0.02
16 0.04
17 0.09
18 0.08
19 0.07
20 0.12
21 0.07
22 0.07
23 0.00
24 0.11
25 0.16
26 0.52

