
.. 

Digital Equipment Corporation 
Maynard, Massachusetts 

laboratory data products 

~nmnomn 

FPP12A 
floating-point 
processor 
user's manual 



1 

• 



D EC-12-HFPPA-A-D 

FPP12A 
floating-point 
processor 
user's manual 

digital equipment corporation • maynard. massachusetts 



Copyright © 1973 by Digital Equipment Corporation 

The material in this manual is for informational 
purposes and is subject to change without notice. 

Digital Equipment Corporation assumes no respon­
sibility for any errors which may appear in this 
manual. 

Printed in U.S.A. 

The following are trademarks of Digital Equipment 

Corporation, Maynard, Massachusetts: 

DEC 

FLIP CHIP 

DIGITAL 

PDP 

FOCAL 

COMPUTER LAB 

1st Edition, January 1973 
2nd Printing, December 1973 



CONTENTS 

CHAPTER 1 INTRODUCTION 

1 • 1 

1.2 

1 • 3 

1.4 

1 • 4. 1 

Scope of the Manual 

Arithmetic Computation with Mini Computers 

Upgrade Mini-Computer By Adding Floating 

Point Arithmetic 

Implementation of Floating Point Hardware 

Type of Access to Data 

CHAPTER 2 DESCRIPTION 

2. 1 

2.2 

2.3 

2.4 

2.5 

2.6 

2.7 

System Description 

Floating Point Number System 

Floating Point Data Formats 

Fixed Point Numbers 

Fixed•Point 24-Bit Data Format 

Active Parameter Table 

FPP12 Register Organization 

CHAPTER 3 PROGRAMMING 

3. 1 

3.2 

3.3 

3.4 

3.5 

Description 

Serial vs Parallel Processing 

Initialization 

IOT Instructions 

IOT List 

iii 

Page 

1-1 

1 .. 1 

1 .. 2 

1-3 

1·3 

2-1 

2-5 

2·6 

2-8 

2-9 

2· 9 

2-12 

3-1 

3-3 

3-4 

3·5 

3·6 



CONTENTS (Cont) 

3.6 Index Registers 

3.7 Instruction Set 

3 .. 7. 1 Data Reference Instructions 

3.7.2 Special Format 1 

3.7.3 Special Format 2 

3.7.4 Conditional Jumps 

3.7.5 Pointer Moves 

3.7.6 Special Format 3 

3.7.7 Operate Group - Special Format 3 

CHAPTER 4 FPP12 PROGRAMMING EXAMPLES 

4. 1 

4.2 

4.3 

4.4 

4.5 

4.6 

4.7 

4.8 

4.9 

4.10 

4. 11 

4.11.1 

Introduction 

Program Initialization 

Index Registers As Address Modifiers and 

Loop Counters 

Use of Index Registers To Create Push•Down Stacks 

Branch Or Jump On Condition Instruction 

Writing Re-entrant Subroutines 

Use Of the FPHLT Instruction 

Debugging FPP12 Programs on Units Attached To 

PDP-12 Computers 

Using The Execute Stop Switch 

Care Necessary In The Use Of Examine And 

Deposit Switches 

Additional Programming Hints 

Illegal Mantissa 

iv 

Page 

3-10 

3-11 

3-12 

3· 1 3 

3·14 

3-14 

3-15 

3-16 

3-17 

4-1 

4-2 

4 .. 5 

4-7 

4-8 

4-8 

4-10 

4-1 0 

4-12 

4-12 

4-13 

4-13 



CONTENTS (Cont) 

CHAPTER 5 HARDWARE DESCRIPTION 

5. 1 

5.2 

5.3 

5.4 

5.5 

5.6 

5.7 

General 

Organization Of Hardware Components 

Major States 

Description Of Registers 

Register Gating System 

Data Break Control 

Modules Introduced In The FPP12 

CHAPTER 6 OPERATIONAL GUIDE USING FLOW DIAGRAMS 

6.1 

6. 1 • 1 

6.1.2 

6. 1 • 3 

6. 1. 4 

6.2 

6.3 

6.3.1 

6.3.2 

6.3.3 

6.3.4 

6.4 

6.4.1 

6.4.2 

6.4.3 

6.4.4 

Using Flow Diagrams 

Timing 

Adder Module 

Mnemonic Variations 

Symbols and Terms 

General Instruction Flow 

Flow Diagrams - Major States 

Initiate 

Fetch 

Exit 

Deposit 

Flow Diagrams - Instructions 

LDA and STR 

ADD/SUB (Floating-point) 

ADD/SUB (Fixed-Point) 

MULTIPLY 

v 

Page 

5·1 

5·3 

5-12 

5-20 

5-22 

5-22 

5·24 

6·1 

6·1 

6-2 

6•3 

6-4 

6-6 

6-6 

6·9 

6·12 

6·17 

6•22 

6·26 

6•26 

6·27 

6·30 

6•30 



6.4.5 

6.4.6 

CONTENTS ( C0~~ 

DIVIDE 

SPECIAL INSTRUCTIONS 

CHAPTER 7 MAINTENANCE GUIDE 

7 • 1 

7.2 

7.2.1 

7.2.2 

7.3 

7.4 

7.5 

7. 5. 1 

7.5.2 

7.5.3 

7.6 

7.6.1 

7.6.2 

7.7 

7.8 

7.9 

Introduction 

Integers And Floating Point Numbers 

FLOAT 

FIX OR INTEGERIZE 

Normalize 

Align 

Understanding Addressing 

DOUBLE WORD example 

SINGLE WORD example 

SINGLE WORD INDIRECT Example 

Understanding Timing and Flows 

TIMING 

FLOWS 

Do It Yourself FPP12 Program 

Break Sequence For Data Referencing Instructions 

Maintenance Logic 

CHAPTER 8 FPP12 INSTALLATION AND ACCEPTANCE 

8.1 

8.2 

8.3 

Description 

Inspection 

Cabinet Installation 

vi 

Page 

7-1 

7 .. 1 

7-2 

7-3 

7 .. 4 

7 .. 7 

7 .. 9 

7-9 

7-10 

7-11 

7-14 

7·14 

7 .. 17 

7-1 9 

7·21 

7 .. 21 



8.4 

8.5 

8.6 

8.7 

8.8 

8.9 

Figure No. 

1 - 1 

1-2 

2-1 

2-2 

2-3 

2-4 

2-5 

5-1 

5-2 

5-3 

5-4 

5-5 

5-6 

5-7 

CONTENTS (Cont) 

AC Power Hook•Up Description 

DC Continuity Check 

Cabling 

Wire Change For Serial Mode 

DC Power Check 

FPP12 Checkout 

ILLUSTRATIONS 

IOT•s Carry Instructions 

IOT's For Control 

PDP-12 System Configuration 

Typical Configuration of the PDP-12 

Multiple Devices 

24•Bit Data Format 

60•Bit Data Format 

Fixed Point 24-Bit Data Format 

PDP-12 Single Cycle Data Break Timing 

PDP-8 Single Cycle Data Break Timing 

FPP12 User IOT Decoder System 

Timing and Enable System in FPP12 

FPP12 Data Flow System 

Timing Diagram Indicating Relationship Between 

Mini States, Major Time States, and the System Clock 

EPM Timing Diagram 

vii 

Page 

8·4 

8-6 

8-6 

8-7 

8· 7 

8-7 

1-4 

1-5 

2·3 

2-4 

2·7 

2-8 

2-9 

5 .. 4 

5-7 

5-8 

5-9 

5-10 

5-11 



6-1 

6· 2 

6-3 

6·4 

6-5 

6-6 

6-7 

6-8 

Table No. 

2-1 

3-1 

3-2 

3-3 

4-1 

6-1 

6-2 

7-1 

7-2 

7-3 

8-1 

8-2 

8-3 

ILLUSTRATIONS (Cont) 

Instruction Chart 

Simplified Initiate Flow 

Simplified Fetch Flow 

Simplified Exit Flow 

Simplified Exit Flow 

Simplified Deposit Flow 

Add/Subtract Block Diagram 

Multiply/Divide Block Diagram 

TABLES 

Active Parameter Table Format 

Instruction Execution Times 

Command Register Setting 

AC After Read Status Instruction 

APT After FEXIT is Example 4-1 

Functions Performed by DEC74181 

Equivalence Between Instructions and Flow Routines 

Break Sequence 

Definition of AC Bits After IOT 6562 Read States 

Definition of AC Bits Before and After IOT 6567 

PDP·8/L, PDP-8/I Positive Bus and PDP-8/E 

PDP·8, LINC-8, and PDP·8/I with Negative Bus 

Module Changes for Negative Bus Computers 

viii 

Page 

6-7 

6· 11 

6·15 

6-19 

6-21 

6·25 

6-27 

6-31 

2-11 

3-2 

3-8 

3-9 

4-5 

6-3 

6-4 

7-23 

7-24 

7·25 

8-1 

8-2 

8-3 



8-4 

Example No. 

4-1 

4-2 

4-3 

4-4 

4-5 

4-6 

4-7 

4-8 

4-9 

TABLES (Cont) 

Power Line Cord Identification 

EXAMPLES 

Sample FPP12 Program 

Move List from ALPHA to BETA Using Index Registers 

Indexed Address Calculation 

Index Register 1 is Used as Both an Address 

Modifier and Counter 

Push-Down Stacks 

Return from Re-Entrant Subroutine 

Test for Illegal Fraction 100000000 ••• 000 

SINE Routine 

Exponential Subroutine 

ix 

Page 

8-5 

4-4 

4-6 

4-7 

4-8 

4-8 

4-9 

4-13 

4-14 

4-16 





CHAPTER 1 - INTRODUCTION 

1.1 Scope of the Manual 

This manual contains information programming and servicing 
the Floating Point Processor (FPP12-A), a peripheral 
device for the PDP-8 Family, Linc-8, and PDP-12 computers. 
Chapter 1 will describe the concept of Floating Point Processors 
in general. Chapter 2 contains a basic system description. 
Chapter 3 contains information for programming with Chapter 4 
having several programming examples. The remaining Chapters 5 
through 7 are geared toward maintenance, but contains useful 
information about the inner workings of the FPP. The 
installation procedure is in Chapter 8. 

1.2 Arithmetic Computation with Mini Computers 

As the task for small machines becomes more complex, their 
performance becomes increasingly inadequate, because their 
instruction set is too basic for efficient program execution. 
In many cases, the mini-computer must execute 100 times more 
code than the computer center machine, for a given task. A way 
of increasing the efficiency of mini-computers is to implement 
hardware floating point arithmetic. Several schemes for 
implementing this hardware are discussed. 

In the past, mini-computers have not proved suitable for complex 
calculations, because they had limited amounts of core and little 
or no mass storage such as magnetic tapes or disc. Adding 
extra core or bulk storage devices to the mini-computer was 
often a tremendous task, because the software supplied by the 
manufacture was not tape or disc oriented. 

Now small computers such as the PDP-12 and PDP-8 are supplied 
with tape or disc operating systems that take advantage of all 
extra core beyond the minimum 4 thousand words. Still, the 
basic mini-computer performs data reduction much slower than 
the large computer center machine. This performance problem is 
due in large part to the fact that the limited instruction set 
of the small computer often requires the mini-conputer to 
execute 100 instructions for every one executed by the computer 
center machine for a typical job. The greater efficiency of the 
large computer instruction set permits the writing of rather 
sloppy compilers which reduce programming efforts and yet still 
performs acceptably time wise. 

Large computer center machines often dedicate a mini-computer or 
equivalent to handling I/O; permitting the arithmetic unit to 
operate for long periods undisturbed by program interrupts. In 

1 "' 1 



the mini-computer, one control and arithmetic unit often handles 
all I/O as well as calculations. The overhead associated with 
performing several tasks results from the necessity of saving 
and restoring CPU conditions each time a job is interrupted 
Even with improved hardware and software monitors that make the 
programming of interrupts transparent, the fact remains that for 
the duration of the interrupt service routine the main calculation 
algorithm is halted. 

1.3 Upgrade Mini-Computer By Adding Floating Point Arithmetic 

It is clear that adding floating point arithmetic instructions 
to current mini-computers will speed up the execution of the 
majority of the data reduction algorithms. The term, floating 
point, implies a movable binary point in a similar manner to the 
movable decimal point in scientific notation. As shown in 
example l, an exponent is used to keep track of the number of 
spaces the binary or decimal point is moved. Given a fixed 
number of bits, it is generally desirable to adjust the fraction 
to eliminate leading zeros. This retains the maximum number of 
significant bits for a given amount of space. 

Example 1: 

234 = 23.4 x 10' = 2.34 x 102 

(1011) = (101.1) x 2 1 = (10.11) x 22 = 0.01011 x 25 

It is generally understood that in the performance of floating 
point arithmetic the hardware will automatically adjust the 
exponent without the programmers intervention. For instance, if 
the programmer request the addition of two numbers that have 
different exponents, the hardware will adjust the fractions of 
the two numbers such that the exponents are equal prior to the 
addition. 

Generally, floating point instructions are "faked" on mini­
computers by the use of software interpreters. These software 
packages are subroutines written in the computers basic assembly 
language that interpret instructions written in a more convenient 
job oriented language. The floating point subroutine supplied 
by Digital Equipment Corporation for its 12 bit computers, is 
called as shown in example 2. In example 2, the subroutine 
float, utilizes the contents of location X + 1 through X + 4 
as arguments. These arguments are interpreted as floating point 
instructions. The argument list can be of almost unlimited 
length because it has a terminator FEXIT which causes the return 



from subroutine as part of the argument list. 

Example 2: 

Loe 
X JMS 
x + 1 
x + 2 
x + 3 
x + 4 
x + 5 

Float 
FGET A 
FMPY B 
FBUT A 
FEXIT 
HLT 

/Jump to floating point interpreter 
/Load A into the floating ac::umulator 
/Multiply the floating AC by B 
/Store the results in A 
/Leave the interpreter and return to X + 5 
/Halt program done 

While these software interpreters are often very flexible they 
require a large number of machine cycles to perform an arithmetic 
operation. 

Another significant problem is that software floating point 
interpreters take up core space which is already at a premium 
in the small computer. 

1.4 Implementation of Floating Point Hardware 

There are a number of ways to implement floating point hardware 
on minicomputers. The most straight forward is to design a new 
computer with the new instructions built-in. This approach 
has basic defects. First, it could completely absolute computer 
installations in the field. Second, a new computer design 
requires engineering consideration of I/0, memory and console 
structure which have been well defined in existing units. Third, 
offering floating point hardware as part of the basic computer 
increases its price for customers who do not need to perform 
sophisticated calculations. For a company that has an ever 
increasing list of similar computers in the field, it is attrac­
tive to offer a field installable option that improves the system 
performance. In this way the customer can gradually convert his 
software to use the new equipment with a minimum of disruptions 
to his existing installation. 

1.4.1 Type of Access to Data 

There are two basic paths for communicating with most 
mini-computers. The most commonly used path for devices 
such as the teletype involves execution of an instruction 
by the CPU which transfers the contents of a register to 
or from the external equipment. This type of operation 
is called programmed I/O and in the PDP-8 or PDP-12 
computer requires the execution of an input/output transfer 
(IOT) instruction. 

1-3 



Bulk storage devices such as disc units that transfer up 
to 100,000 words/second to or from the computer are often 
initialized with IOT instructions, but transfer the bulk 
of data via a direct access to memory (DMA) or data-break 
port. The DMA or data break facility, available on 
almost every mini-computer, permits an external device to 
access memory without affecting the program counter, 
accumulator (s), or instruction register in the CPU. In 
effect, the external device "steals" memory cycles from 
the CPU. The overhead for this type of memory access in 
minimal. In its most efficient form, each memory access 
request by an external device requires only one memory 
cycle. 

A method of implementing floating point hardware (FPH) 
on a PDP-12 or PDP-8 type computer is diagramed in fig. 1. 
The instructions and operand addresses could be conveyed 
to the FPH via IOT instructions while the operand them­
selves would be retrieved directly from memory. 

Figure 1-1 
IOT's carry instructions 

~. 
~, 

c .. - - - Floating .... p ... v .... ¥ 

Memory Point -... ~ -u ,,.. v "II 'Iii. 
v Hardware 

... 
ata retrieved 

via 
single cycle break 

While this design is simple in concept, it does have a 
number of drawbacks. First it requires the execution of 
a number of CPU instructions for every floating point 
operation. Because of this, it does not permit true 
parallel operation of I/O and calculation. This parallel 
operation is important both in data acquisition and data 
display in which the CPU might be called on to write 
data on tape or disc and up-date or refresh a cathode-ray 
tube while performing a calculation. In multi-task or 
time shared environment, input/output is handled by a 
"monitor". Typically, "user" programs are prevented from 
issuing I/0 instructions by a hardware "trap" that 
interrupts any IOT issued by other than the "monitor". 

1-4 



Because the issuance of IOT instructions by the time 
sharing monitor involves complicated record keeping, it 
is doubtful that floating point hardware that requires 
an IOT instruction per floating point instruction, 
would actually be advantageous. 

Viewing the handicaps of IOT's to carry instructions, 
the remaining method was employed to make the floating 
point processor (FPP12) transfer instructions and data 
via the direct access to memory as diagrammed in Figure 2. 

Figure 1-2 

PDP-8 
or 

PDP-12 
. "' 

.... 

~· 
c 
p 

u 

.di 

-
~ 

IOT's for control 

... .. 
~ Memory -.. ... 

--

I i 

"" Floating 
Ill Point ... Processor 

j • llO 

c ata and instruct ions 
retrieved via single 
cycle break 

It is activated by the PDP-8 or PDP-12 CPU through the 
use of programmed input/output transfer (IOT) instructions. 
Once activated, the FPP12 "steals" memory cycles from 
the CPU both for fetching instructions and operands. The 
FPP-12 is a parallel processor with its own instruction 
set, program counter, and accumulator. The FPP12 and the 
CPU simultaneously execute instructions. 

1- 5 





CHAPTER 2 DESCRIPTION 

2.1 System Description 

The Floating Point Processor (FPP12) is a programmable, peripheral, 

digital processor that is attached to the input/output (I/O) bus of 

any PDP-8 family, LINC-8, or PDP-12 Computer. The FPP12 is initialized 

and interrogated as to its status via PDP-8 IOT instructions 

issued on the programmed I/O bus. Once initialized, the FPP12 

operates as a processor, fetching instruction.sand operands via the 

direct memory access bus. 

When activated, the FPP12 steals a maximum of 50 percent of the 

memory cycles from the PDP-12, LINC-8, or PDP-8 type computers. 

For the PDP-12 there are two operating modes, parallel and serial. 

In parallel mode, the FPP12 steals a maximum of every other memory 

cycle from the PDP-12, thus permitting the PDP-12 and the FPP12 

to operate simultaneously. Once initiated in serial mode, the FPP12 

locks out the PDP-12 CPU for the duration of a complete calculation. 

Serial mode increases the FPP12 calculation speed by approximately 

20 percent. 

The FPP12 performs arithmetic operations on floating-point numbers 20 

to 100 times faster and with 100 to 200 fewer memory cycles than soft­

ware interpreters. The FPP12 instruction set facilitates the 

2-1 



programming of complicated algorithms and the building of compilers 

for mathematical languages. Variable length instructions are part of 

a flexible addressing scheme. Direct addressing of 32K of core memory 

is available using a 24 bit instruction format. A 12-bit instruc-

tion format, in which the operand address is relative to a programmable 

bas~register, reduces program length and facilitates re-entrant 

coding. Any eight sequential core locations can be used as an 

index register to modify operand addresses. Index registers are 

adjusted prior to use in address modification, to account for 

the different number of core locations used in the three data format 

permitted by the FPP12. 

A typical system configuration consisting of a PDP-12 and a FPP12 

is shown in Figure 2-1. Note that the PDP-12 computer contains 

two data break ports: one is permanently reserved for tte LINC­

tape control, the other is available for a device, in addition to 

the LINCtape, are attached to the PDP-12, a memory multiplexer 

(DM12) is generally required (see Figure 2-2). 

2-2 



N 
I 
w 

LINCtape 

LINCtape 
Port 

PDP-12 
Memory 
4-32K 
12 bit 
words 

Relays 

L 

I H Crt Display 
N 
c 

% 

nalog to 
Digital conv 

Tele­
type 

R.ea.~~--­

Time 
Inter­
face 
KW12 

PDP-12 
CPU Programmed PDP-8 r/o Bus 

float­
in9 
Point 
Proc. 

FPP12 

External data break bus 

The FPP12 attaches to the EXTERNAL data break and programed 
r/o bus of the PDP-12 computer without additional hardware. 

Figure 2-1 PDP-12 System Conf iguratio~ 



N 
I 

.;::. 

r{LINCtapes 

LINC tape 
PORT 

PDP-12 

f\l\v1 
I-( Relays 

L 

~ rccrt Display 

C na og to 
""'\I Digital conv. 

7-
0 

Tele­
type 

Real 
time 
Inter­
face 

KW12 

4-32K CPU 
Memory tj PDP-12 

12 bit Programmed PDP-8 I/O Bus 

words 

Data 
1-------+ Break 

.__ _____ --1 Prior-
~ ity 

External Data Break Bus Multi­
plexer 

DM04 or 
DM12 

Z56K-~"~~, 

fixed 
m~ad 
Disk 

RF08 

BOOK 
Remove­
a'J:?l e 
Disk 

RK08 

Figure 2-2 Typical Configuration of the PDP-12 
Multiple Devices 

Float­
ing 
Point 
Proc. 

FPP12 

~ 



On the PDP-8, PDP-8/I, and PDP-8/L Computers, only one direct memory 

access port is available: attaching on FPP12 and DECtape, for example, 

requires a memory multiplexer (DMOl or DM04). Each data break de­

vice has its own memory port on the PDP-8/E computer; therefore, a 

separate memory multiplexer is not required for up to 12 separate 

data break devices. 

2.2 Floating Point Number System 

The term floating point implies a movable binary point similar to the 

movable decimal point used in scientific notation. An exponent is 

used to keep track of the number of spaces the binary or decimal 

point is moved. 

Examples of scientific notation: 

234 = 23.4 x 10
1 = 2034 x 102 

Examples of binary floating-point notation: 

(1011) = (101.1) x 2
1 = (10.11) x 2 2 = (1.011) x 2 3 

(1.011) x 2 3 = 0.1011 x 2
4 = 0.01011 x 2

5 

In the example of binary floating-point notation given above, 

there are four significant bits. However, in the last term, the 

fraction that multiplies the exponent contains six bits. Given 

a fixed number of bits, it is desirable to adjust the exponent 

and the binary point to eliminate insignificant leading ones and 

zeros. This adjustment retains the maximum numerical significance 

for a given format length. The FPP12 normalizes as the last step 

in every floating-point arithmetic operation. 

2-5 



2.3 Floating Point Data Formats 

There are two floating-point data formats available; the standard 

24 bit format, and the optional 60 bit format referred to as the 

extended precision mode (EPM) • 

With the FPP12, the number range is 2+2047 to 
2

-2048; precision is 

maintained at 24 bits or 60 bits through the number range. Ex­

ceeding the upper limit, 2+2047, causes the FPP12 to interrupt the 

PDP-12 CPU and set its exponent overflow status bit. A calculation 

resulting in a exponent smaller than 2-2048 is an exponent under­

flow that can cause a program interrupt. At initialization, the 

programmer has the option to request that the underflow trap be 

ignored, in which case the result of calculation in which underflow 

occurred is set to O. 

Floating Point 24-bit Format 

The floating-point data format used by the FPP12 in Fig 2-3 below, 

is identical to the format used by the PDP-8 floating-point system 

(DEC-08-YQYB-D). There is a 12-bit signed 2's complement exponent 

and a 24 bit signed 2's complement mantissa. 

2-6 



Is "l EXPONENT 

0 11 

c I MSW OF MANTISSA 

t 11 
Binary roint 

LSW OF MANTISSA 

12 23 

Figure 2-3 24-Bit Data Format 

The FPP12 carries all calculations to 28 bits of precision, then 

rounds up to 24 bits after normalization. After rounding, the 

result is rechecked for proper normalization prior to completing 

the instruction. 

Floating-Point 60-bit format 

The 60-bit data format is referred to as the extended precision 

mode (EPM). As shown in Fig. 2-4 below, there is a 12-bit signed 

2's complement exponent and a 60-bit signed 2 1 s complement mantissa. 

I s [ EXPONENT 
0 11 

I s I MSW OF MANTISSA r ot 11 
Binary Point 

I LSW OF MANTISSA I 
' 12 23 

2-7 



I LSWl of MANTISSA I 
24 35 

[ LSW2 of MANTISSA 

36 47 

LSW3 of MANTISSA 

48 59 

Figure 2-4 60-Bit Data Format 

Unlike the standard 24-bit format, the extend precision does not 

carry calculation beyond its determined word length of 60 bits. 

Typically, the extended presision mode parallels the operation of 

the standard 24-bit format with the exception of rounding. The 

differences will be viewed throughout this manual between the 

standard floating point and the optional EPM. 

2.4 Fix~d Point Numbers 

In fixed point arithmetic, the precision of a number varies with 

the numbers magnitude. For those calculations where full 24-bit 

precision is not necessary and where core space is at a premium, 

the FPP12 can be used in fixed-point 24-bit mode. 

2-8 



2.5 Fixed-Point 24-Bit Data Format 

Each operand consists of a 24-bit signed 2's complement fraction 

as shown below. 

Is I 
o. t . 
Binary Point 

11 

12 23 

Figure 2- 5 Fixed Point 24-Bit Data Format 

Each calculation is carried to 28 bits of precision and rounded 

to 24 bits but no normalization is performed. Therefore, leading 

zeros occur which reduce the precision of subsequent calculations. 

Calculations resulting in a fraction overflow cause the FPP12 

to initiate a program interrupt with the fraction overflow status 

bit set to 1. 

2.6 Active Parameter Table 

The Active Parameter Table (APT) (refer to table 2-1) contains in-

formation necessary for starting or restarting an FPP12 program. 

The APT is defined as 8 consecutive core locations (standard 

floating point) or 11 consecutive core locations (extended 

precision mode). The APT pointer is set to point at the first 

2•9 



location of the APT. The initialization procedure for the FPP12 

includes two IOT instructions that; sets up the command register, 

and sets the 15-bit APT pointer to the first location of the APT, 

shown as location P in table 2-1. Following the second IOT, the 

FPP12 picks up the contents of the APT via data breaks. When the 

FPP12 performs an EXIT, the current contents of the APT overlay the 

initial APT contents. 

The APT performs three services for the programmer. 

a. It reduces the number of IOT's necessary to initialize the 

FPP12. This reduces the CPU program overhead which is critical 

in multitask and time-shared environments. 

b. It automatically saves the status of interrupted FPP12 

programs. 

c. It provides convenient access to the information necessary for 

debugging FPP12 programs and determining the cause of FPP12 

"error" exits such as exponent overflow, underflow, or attempted 

division by 0. 

With the exception of the operand address, all parameters contained 

in the APT are picked up when initializing the FPP12. The operand 

address is stored for the use of the CPU program when the FPP12 

exits. 

2•10 



LOCATION 

p 

p + 1 

p + 2 

p + 3 

N 
I p + 4 

I .... .... I p + 5 

p + 6 

p + 7 

p + 8 

p + 9 

p + 1.0 

NOTE: 

I 
I 

I 

I 

I 

I 

ACTIVE PARAMETER TABLE FORMAT 

Field Bits 
of Operand 
Address 

Field Bits 
of Base 
Register 

Lower 12 bits of FPC 

CONTENTS 

Field Bits of 
Index Register 
Location 

Lower 12 bits of Index Register 0 location X 0 

Lower 12 bits of Base Register 

Lower 12 bits of operand address 

Exponent of FAC 

MSW of FAC 

LSW of FAC 

LSWl of FAC ~ These locations only 
accessed in EPM 

II 
LSW2 of FAC 

LSW3 of FAC 
~ 

APT address points to location P. 

TABLE 2-1 

Field Bits 
of FPC 



2.7 FPP12 Register Organization 

There are eight registers in the FPP that are of interest to the 

programmer. The functions of these registers, named below, 

will be discussed through out this manual. 

Register Function 

Floating Point Accumulator (FAC)------ 36-bit register split into 12 

bit exponent and 24 bit fraction, 

or 72 bit register split into a 

12 bit exponent and 60 bit frac­

tion if equipped with the extend­

ed precision logic. 

Index Register Address Pointer (XO)--- Contains the 15 bit core loca­

tion of index register O. 

Base Register (P0) ------------------- Contains the 15 bit base address 

used in calculating single word 

addresses. 

Floating Point Program Counter (FPC)-- Contains the 15 bit address that 

is the location of the next FPP12 

instruction. 

Active Parameter Table Pointer (ADRS)- Contains the 15 bit address of 

the first location of the active 

parameter table (APT) • This 15 

bit address is loaded via two IOT's. 



REGISTER FUNCTION 

Active Parameter Table Pointer ------- The first IOT must be FPCOM for 
(ADRS) continued -

loading the field bits of the 15 

bit address. The second IOT 

must be FPST which loads bits 

03-15 of the 15 bit address. 

The IOT FPST then starts the FPP. 

Command Register (CR) ---------------- The command register is loaded 

with an IOT instruction. The 

command register selects FPP12 

operating modes, sets the FPP12 

interrupt enable, chooses the 

important parameters to be saved 

in the APT, and fixes the most 

significant 3 bits of the 15 bit 

APT pointer. 

Status Register (SR)------------------ The status register may be inter-

rogated by the CPU to determine 

the cause of an exit operation by 

the FPP12. The status register 

also indicates if the FPP12 is in 

the run or (run) /\ (FPAUSE) state. 

2-13 



REGISTER FUNCTION 

Operand Address Register (OP ADDRS)--- The operand address register:' is de­

posited in the APT and contains one 

of the following. 

2-14 

1!.:. If the last address-bearing 

instruction prior to the exit 

was of the data reference class, 

the operand address register 

contains the 15 bit address of 

the least significant word of 

the operand. 

b. If the last address-bearing in­

struction prior to the exit 

was an executed jump instruction, 

the operand address register con­

tains the jump address. 

c. If after initialization an exit 

is performed prior to the execu­

tion of a jump or data reference 

instruction, the operand address 

register contains the FPC 

originally set by the APT. 

d. The instructions SET BASE (SET B) 

and SET X 0 REGISTER (SET X) have 

no effect on the operand address 

register. 



CHAPTER 3 PROGRAMMING 

3.1 DESCRIPTION 

The FPP12 is initialized and interrogated by PDP-8 type IOT 

instructions. Once started, the FPP12 operates much like an 

actual processor, fetching instructions and operands and storing 

results in the PDP-8 or PDP-12 core memory. Data breaks or 

"stolen" memory cycles are generally requested by the FPP12 as 

needed. The maximum number of breaks requested is generally one 

per regular PDP-8 or PDP-12 instruction. This means that while 

the FPP12 is operating, PDP-8 or PDP-12 programs can be run 

simultaneously at 50 to 70 percent of normal speed. Typically 

LINCtape, display, analog data acquisition, and other forms of 

I/O can be performed by the PDP-12 Computer while the FPP12 is 

calculating. 

An optional mode is available to the FPP12 attached to a PDP-12 

Computer. For calculations where the maximum FPP12 program speed 

is required, setting the proper command register bit (refer to 

Table 3-2) locks out the PDP-12 processor during FPP12 program 

execution. Using the "lock out" mode on the PDP-12 speeds up 

FPP12 programs by 15 to 20 percent (refer to Table 3-1). 

3-1 



w 
I 

N 

TABLE 3-1 

Instruction Execution Times* 

Serial Mode Parallel Mode** 

Instruction Octal Code Fixed-Point Floating Point Fixed-Point Floating Point 
Execution Execution Times Execution Execution Times 
Time (_rS) (,,.US) Time ()AS) ()A.S) 

24-BIT 6,0-BIT 24-BIT 6,0'-BIT 

FLDA 0200+X 12 14 23 14 16 27 
FADD 1200+X 13 19 28 14 21 32 
FSUB 2200+X 13- 19 28 14 21 32 
FDIV 3200+X 26 3,0 52 27 32 55 
FMUL 4200+X 25 29 53 27 3,0 56 
FADDM 5200+X 17 26 44 22 29 5,0 
FSTA 6200+X 12 14 23 14 16 27 
FM ULM 7200+X 29 35 68 32 39 75 

*All times were measured using the single-word direct reference format. Timing tolerance is + 2 0%. 

**For these measurements the PDP-12 was performing mostly single cycle instructions. 



3.2 Serial vs Parallel Processing 

The most efficient use of resources occurs when the CPU and 

FPP12 are programmed to operate in parallel. For instance, in 

the display oriented research analysis (DORA) program which 

faciliates display interactive manipulation of data files, the 

PDP-12 refreshes a CRT display, performs Teletype®, LINCtape, 

and disk I/O, and samples knob and sense switch positions while 

the FPP12 is performing floating-point arithmetic. Because the 

FPP12 and the CPU access the same core memory, the communication 

methods are virtually unlimited; either processor can alter the 

other's program or data. Usually the CPU is assigned the job 

of scheduling and I/O, while the FPP12 performs complex arithmetic. 

However, in the DORA program, the FPP12 schedules I/O by passing 

parameters to the PDP-12 CPU. 

There are occasions when it is desirable to complete an FPP12 

calculation between operations performed by the CPU. Setting 

the appropriate command register bit in the FPP12 permits serial 

operation with the PDP-12 Processor. In serial mode, the PDP-12 

CPU is locked out from the executing instructions while the FPP12 

is operating. 

There is no provision for a true serial mode for an FPP12 on 

a PDP-8 type processor. The fastest wait loop for a PDP-8, 

·::--.. 
~)Teletype is a registered trademark of Teletype corporation. 

3-3 



PDP-8/I, LINC-8 or PDP-BL Computer consists of a JMP instruction with 

the programmed interrupt facility enabled, because data breaks 

can occur only between complete instructions. On the PDP-8/E 

Computer, the data break facility is structured so that data 

breaks may occur after any major state or multistate instructions. 

Therefore, the particular CPU program in progress does not affect 

the FPP12 instruction execution time on a PDP-8/E Computer. 

3.3 Initialization 

To execute the first instruction of any program, the FPP12 must 

have the 15-bit core address of the first instruction that is 

contained in the first two locations of the APT. The contents 

of other locations of the APT are often useful in starting a 

program and essential in restarting an interrupt task. Once 

the appropriate parameters are placed in an APT table by the CPU, 

two IOTs must be issued. FPCOM (6553) loads a command register 

and the most significant 3 bits of the APT pointer. The signi­

ficance of the bits in the command register is shown in Table 3-2. 

FPST (6555) loads the least significant 12 bits of the APT 

pointer and starts the FPP12. Once initiated, the FPP12 will 

execute instructions until: 

a. An error condition, such as exponent overflow, occurs. 

b. An FEXIT instruction is encountered. 

3-4 



c. An FPHLT IOT is issued by this CPU. 

d. An I/0 preset is issued by the CPU. 

e. The CPU encounters any type of halt. 

3.4 IOT Instructions 

A complete list follows of IOT instructions with device code 

55 that apply to programming the FPP12. IOT instructions with 

device code ~6 are relegated to maintenance programs with the 

exception of the 6567 load shift counter instruction which has 

been expanded to select the extended precision mode if imple­

mented. The use of maintenance IOTs is presented in Chapter 7. 

If a conflict exists between the FPP device select codes and 

the device select codes of another peripheral, the conflict 

must be resolved in the hardware by altering wired connections 

in either the FPP12 or the conflicting device. It is recommended 

that the FPP12 device codes not be altered because of the 

necessity of changing extensive diagnostic and system software. 

However, the logic to be altered in changing device codes is 

found on Prints FPP12-0-CI1, FPP12-0-CI2, and FPP12-0-CI3. 

3-5 



3.5 IOT List 

Mnemonic Octal Code 

FPINT 6551 

FPICL 6552 

FPCOM 6553 

FPHLT 6554 

Function 

Skip when the FPP12 Interrupt Request 
flag is set. 

Unconditionally reset the FPP12 
including all flags. To the FPP12, the 
IOT FPICL is the same as I/0 preset. 

If the FPP12 is not in a Run state and 
the FPP12 Interrupt Request flag is 
not set, the FPP12 command register 
is loaded with the contents of the 
AC*. If the FPP12 is in a Run state, 
or if the Interrupt Request flag is 
set, the FPCOM instruction is ignored. 
See Table 3-2. 

Force the FPP12 to exit, dump its 
status in the APT, and set the Interrupt 
Request flag at the end of the current 
instruction. The FPHLT instruction is 
used to abort an FPP12 program in a 
multijob environment or in software 
debugging. The following special 
features apply to the FPHLT instruction. 

a. If FPHLT is issued prior to the 
FPST instruction, the FPP12 will 
execute only one instruction after 
initiation and then exit with the 
FPC pointing to the succeeding 
instruction. This facilitates 
single stepping through an FPP12 
program under CPU control. 

b. If the FPP12 is in a Pause state, 
the FPP12 will exit with the FPC 
pointing at the pause instruction. 
This means that if a job was aborted 
in a Pause state it will be resumed 
in a Pause state. 

3-6 



FPST 

FPRST 

FPIST 

Select 
Extended 
Mode 

6555 

6556 

6557 

6567 

c. Normally, if an exit is forced by 
FPHLT, AC02 will be set to a 1 when 
either read status FPRST or FPIST 
is issued. However, if the forced 
exit causes the FPP12 program to 
abort while an FEXIT instruction 
is being executed, the CPU forced 
exit flag is cleared. Thus, the 
CPU forced exit flag is an absolute 
indicator that a program was pre­
maturely aborted. 

If the FPP12 is not running and the 
Interrupt Request flag is not set, 
the least significant 12 bits of the 
APT pointer are set to the contents 
of the AC and the FPP is started. If 
the FPP12 is in a Run state, but paused, 
the FPST instruction will cause the 
FPP12 to continue. Otherwise, the 
FPST instruction has no affect on the 
FPP12. If the FPST instruction causes 
the FPP12 to start or continue, the 
CPU will skip the instruction following 
FPST. 

Read the FPP12 status register into 
the AC. FPRST may be issued at 
anytime. 

Skip if the FPP12 Interrupt Request 
flag is set. If the skip occurs, 
read the FPP12 status register in 
the AC and clear the status flags 
and the Interrupt Request. 

Selects the extended precision mode 
provided the AC=4¢¢¢, the FPP is not 
in the Run state, and the FPP is 
equipped with the extended precision. 
The AC is cleared at the completion 
of this instruction. 

The 6567 command must be executed after 
the FPCOM (6553) if the EPM is desired 
as the FPCOM selects either Fixed-Point 
or Floating Point (24-bit) modes which 
will reset the EPM flop. The 6567 is 

also used as a Maintenance IOT. 

3-7 



Table 3-2 

Command Register Setting 

.,._, --~~~~~~~~~A~C~~-B-_i_'_t ___ *~~~~l~~~~~~~~~~~~~F~u~_r_.1._c ___ t~i~o~n~~-w-_h ___ e~n~~A~_c _____ B~i~t~~-s-_e ___ t~~t~o~~-1-_-_-_-_-_-_-_-_~---_- __ --"_-" __ "_____________ J 
AC bits 0-11 have the following function when the FPCOM IOT is issued 

!------------+--------------------------------------- "-"" 

0 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

Select fixed-point mode upon initiation. 

Exit if exponent underflow occurs. Otherwise, set 
result of calculation and continue. 

Forbid access to 4K memory fields other than the 
field that is occupied by the last location of 
the APT. 

Enable CPU program interrupt when FPP12 Interrupt 
Request flag is set. Skip is always enabled. 

Do not store operand address on exits. The operand 
address is never retrieved on initiate. 

Do not store the address of index register 0 from 
or in the APT. 

Do not store the base register from or in the APT. 

Do not store the FAC from or in the APT. 

Lock out the PDP-12 processor during FPP12 program 
execution. Unused on PDP-8 FPP12 systems. 

Most-significant 3 bits of APT pointer. 

Note: Setting bits 4-7 of the command register speeds up exit 
operations. Setting command register bits 4-7 does not 
alter the relative position of items on the APT. In 
multijob environments, command register bits 4-7 are 
typically set to zero. 

*AC refers to the PDP-12 or PDP-8 accumulator while FAC refers 
to the FPP12 accumulator. 

3-8 

I 

1 



Table 3-3 

AC After Read Status Instruction 

·------------·-·· 

AC Bit Function if AC Bit Set to 1 
-·--·----~-----------··--·-·-----··--·-· ----

0 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

Fixed-point mode. 

Trapped instruction caused exit. 

FPHLT instruction caused exit. 

Attempted divide by 0 caused exit. The FAC was 
not altered. 

Fraction overflow in fixed-point mode caused exit. 

Exponent overflow caused exit. 

Exponent underflow has occurred. Exit on exponent 
underflow is optional. 

Unused 

Unused 

Extended-precision mode. 

The FPP12 is currently paused. 

The FPP12 is currently in a run state. 

3-9 



3.6 Index Registers 

Any core location may be used as an index register. The core 

address of the current index register 0 is stored in the XO 

register. The XO register is initially set from the APT, but 

may be altered by the SET X instruction. Index register X is 

in location xo+x, where x = 0, ••.• ,7. 

Accessing an array of data points requires incrementing the 

address of the current point by the data length to yield the 

address of each successive point. Index registers are used to 

accomplish this address modification. The index register is 

incremented by one to access each successive point, but it is 

multiplied by the data length, six for extended precision, three 

for floating point and two for fixed point. This quantity is 

used as the displacement from the address specified in the instruc­

tion to yield the address of the current point. Adjusting of 

index registers simplifies "skipping" through data arrays and 

permits a single index register to be used as both a loop counter 

and address modifier (see Example 4-2). Pre-incrementing is 

selected by bit 5 of data reference instructions types a and c. 

Instructions are available for setting, testing, and performing 

arithmetic on index registers. In particular, the instruction 

3-10 



ADDX, which adds the contents of bits 12-23 of the instruction 

to the contents of the index register specified by bits 9-11 

of this instruction, is useful in manipulating "push-down stacks•. 

3.7 Instruction Set 

The FPP12 instruction set is divided into two basic classes: 

data reference instructions and special instructions. Data re-

ference instructions are those that operate on the three data formats 

specified in Paragraph 3.7.1. Data reference instructions include 

the basic arithmetic operations plus load and store. All other 

instructions are special instructions that include index registers 

modifiers, jumps, pointer moves, and the operate-type instructions. 

Three types of data reference instructions are available: 

a. 24-bit instruction with a 15-bit absolute address. 

b. 12-bit instruction with 7-bit relative address. 

c. 12-bit instruction with a 3-bit relative address that 
specifies a 15-bit indirect address. 

Full indexing capability is available for types a and c. The 

determined operand address points at the exponent of the operand 

in floating-point mode and at the most significant word of the 

operand in fixed-point mode. 



3.7.1 

The instruction set is presented in detail in the following 

paragraphs. The instruction format follows each group of 

instructions. Unless otherwise noted, instructions executed 

in the extended precision mode perform exactly to the description 

given for floating-point mode. 

DATA REFERENCE INSTRUCTIONS* 

OP Code Mnemonic 

0 FLDA C (Y)'"t FAC 

1 FADD C(Y)+c(FAC)-tFAC 

5 FADDM C (Y) +c (FAC).., Y 

2 FSUB C{FAC)-C(Y)-)FAC 

3 FDIV C (FAC) /C (Y)-+FAC 

4 FMUL C (FAC) *C (Y)..,FAC 

7 FMULM C (FAC) *C (Y) .>rY 

6 FSTA C (FAc)..i,oy 

Data Reference Instruction Formats 
~·---O-P_C_O_D_E __ -,.---1-.,..---o-...,---+--.-----x----,---A-D_D_R_E_S_s_ j 

0 2 3 4 5 6 8 9 

ADDRESS 

12 
DOUBLE-WORD DATA REFERENCE INSTRUCTION 

Y=C (bits9-23) +M* (C(X+XO) +c (bit5))~ (X) 

*In fixed-point mode the exponent of the FAC is never altered. 

3·12 

11 

23 



OP CODE 0 1 OFFSET 

0 2 3 4 5 12 

SINGLE-WORD DIRECT REFERENCE 

Y = c (base register) + 3 (offset) 

OP CODE x J OFFSET 

0 2 3 4 5 6 8 9 11 

SINGLE-WORD INDIRECT REFERENCE 

Y + C (bits 21-35 of C (base reg.) +3* offset)) 
+ (M) * (C (X + XO) + C (bit 5)) ~ (X) 

J' (X) = 1 if x ~ 0 

M = 2 
3 
6 

3.7.2 Special Format 1 

OP Code 

2 

7 

Mnemonic 

JXN 

Trapped 
Instruc­
tions 

and 

if 
if 
if 

0 if x = 0 

fixed-point mode 
floating-point mode 
extended-precision mode 

The index register X is incremented if 
bit 5 = 1 and a jump is executed to 
the address contained in bits 9-23, if 
index register X is nonzero. 

The instruction-trap status bit is 
set and the FPP12 exits causing a 
PDP interrupt. The unindexed operand 
address is dumped into the APT. 

3• 13 



OP CODE 0 + x ADDRESS 

0 2 3 4 5 6 8 9 11 

ADDRESS 

12 23 

SPECIAL FORMAT 1 

3.7.3 Special Format 2 

OP code Extension 

0 10 

0 11 

3.7.4 Conditional Jumps 

Mnemonic 

LDX 

ADDX 

Function 

The contents of the index register 
specified by bits 9-11 are re­
placed by the contents of bits 
12-23. 

The contents of bits 12-23 are 
added to the index register 
specified by bits 9-11. 

Jumps, if performed, are to the location specified by bits 

9-23 of the instruction. 

OP Code Extension Mnemonic Function 

1 0 JEQ Jump if FAC = 0 

1 1 JGE Jump if FAC ::> 0 

1 2 JLE Jump if FAC:::::: 0 

1 3 JA Jump always 

3· 14 



OP Code Extension Mnemonic Function 

l 4 JNE Jump if FAC ~ 0 

l 5 JLT Jump if FAC i:.. 0 

l 6 JGT Jump if FAC ;> 0 

l 7 JAL Jump if impossible to fix the 
floating-point number contained 
in the FAC~ i • e •I if the exponent 
is greater than (23)10· 

NOTE: In EPM, the jumps look at a 6¢-bit FAC. 

3.7.5 Pointer Moves 

OP Code Extension 

l 10 

1 11 

1 13 

l 12 

Mnemonic 

SETX 

SETB 

JSR 

JSA 

3-15 

Function 

Set XO to the address contained 
in bits 9-23 of the instruction. 

Set the base register to the 
address contained in bits 9-23. 

Jump and save return. Jump to 
the location specified in bits 
9-23 and the return is saved in 
bits 21-35 of the first entry 
of the data block. 

An unconditional jump is deposited 
in the address and address + 1, 
where address is specified by bits 
9-23. The FPC is set to address 
+ 2. 



OP CODE 0 

0 2 3 

I 
12 

3.7.6 Special Format 3 

OP Code Extension 

0 1 

0 2 

0 EXTENSION F 

4 5 8 9 11 

y 

23 

SPEC-IAL FORMAT 2 

Mnemonic 

ALN 

ATX 

Function 

The mantissa of the FAC is 
shifted until the FAC exponent 
equals the contents of the index 
register specified by bits 9-11. 
If bits 9-11 are zero, the FAC 
is aligned so that the exponent = 
(23)1o·* In fixed-point mode, 
an arithmetic shift is performed 
on the FAC fraction. The number 
of shifts is equal to the absolute 
value of the contents of the 
specified index register. The 
direction of shift depends on the 
sign of the index register contents. 
A positive sign indicates a shift 
toward the least significant bit, 
while a negative sign indicates a 
shift toward the most significant 
bit. The FAC exponent is not 
altered by the ALN instruction in 
fixed-point mode. 

The contents of the FAC are fixed 
and the least significant 12 bits 
of the mantissa, bits 12-23, are 
loaded into the index register 
specified by bits 9-11. In 
fixed-point mode the least signi­
ficant 12 bits of the FAC, bits 
12-23 are loaded into the specified 
index register by the ATX instruction. 

*Setting the exponent= (23) 10 integerizes or fixes the floating-poin_ 
number. The JAL instruction tests to see if fixing is possible. 

3-16 



OP code 

0 

NOTE: 

Extension Mnemonic 

3 XTA 

Function 

The contents of the index register 
specified by bits 9-11 are loaded 
right-justified into the FAC 
mantissa, bits 12-23. The FAC 
exponent is loaded with (23) 10 
and then the FAC is normalized. 
This operation is typically 
termed floating a 12-bit number. 
In fixed-point mode, the FAC is 
not normalized. The least 
significant three word of the 
FAC, bits 24-59 are cleared. 

The ALN, ATX and XTA instructions, when in the extended precisic 

mode, will fix or float the FAC based on (23) 1% not (59) 1~. 

The entire FAC will be shifted during the ALN and ATX instructions. 

0 4 

0 5 

0 6-7 

0 12-17 

1 14-17 

NOP 

START 

The single-word instruction performs 
no operation. 

E Start extended-precision mode. 

reserved 
These codes are reserved for 
instruction set expansion and 
should not be used. 

3.7.7 Operate Group - Special Format 3 

OP Code Extension 9-11 Bits 

0 0 0 

3-17 

Mnemonic 

FEXIT 

Function 

Dump active registers 
into the APT, reset the 
FPP12 RUN flip-flop to 
the 0 state, and interrupt 
the PDP-12 processor. 



OP Code Extension 9-11 Bits Mnemonic Function 

0 0 1 FPAUSE Wait for synchronizing 
signal. IOT FPST (6555) 
will restart the ins true-
ti on following FPAUSE. 

0 0 2 FCLA Zero the FAC mantissa 
and exponent. 

0 0 3 FNEG Complement FAC mantissa. 

0 0 4 FNORM Normalize the FAC. In 
fixed-point mode FNORM 
is a NOP. 

0 0 5 START Start floating-point 
F mode. If issued in 

extended precision mode, 
the C(FAC) is rounded to 
24 bits. 

0 0 6 START Start fixed-point mode. 
D 

0 0 7 JAC Jump to the location 
specified by the least 
significant 15 bits of 
the FAC mantissa. 

OP CODE o 1 o EXTENSION F 

0 2 3 4 5 8 9 11 

SPECIAL FORMAT 3 

3-18 



CHAPTER 4 FPP12 PROGRAMMING EXAMPLES 

4.1 INTRODUCTION 

Programming examples for the Floating Point Processor 

and a procedure for initializing the FPP12 are contained 

in this chapter. Several examples are provided that 

utilize index registers. A re-entrant sine subroutine 

illustrates a technique for writing re-entrant code. 

Program debugging techniques are discussed in detail. 

The mnemonics and syntax used in this chapter are con­

sistant with those of the FPP assembler. A complete 

description of the assembler can be found in the manual 

entitled, FPP Assembler Manual, DEC-12-AQZA-D. A math 

package for the FPP is described in a manual entitled 

FPP Support Library (DEC-12-YEXA-D). There is also 

a Real-Time Programming System (RTP.S) with ASA standard 

Fcrtran IV available for the FPP12. This system approaches 

or exceeds the performance of many larger systems. RTPS 

Fortran IV is an extension to the OS/8 system software 

(see OS/8 Software Support Manual DEC-08-MEXB-D) and 

as such uses many of the existing OS/8 programs, particu­

larly the keyboard monitor, command decoder and editor. 

The reader interested in the RTPS should acquire the 

RTPS Fortran IV users Manual (DEC-08-LRTPA-A-D) which 

4-1 



describes both the RTPS Fortran IV operating system 

and the RTPS Fortran IV language with many programming 

examples. 

4.2 PROGRAM INITIALIZATION 

Each FPP12 program consists of one or more instructions 

and an Active Parameter Table (APT). Upon initialization, 

the APT (refer to Table 2-1) contains the initial setting 

of important FPP12 registers. Whenever the FPP12 finishes 

or aborts a program, the APT is updated before the CPU 

is interrupted. 

The CPU program in Example 4-1 starts the FPP12 in floating 

point mode with the APT pointer set to location 01000, 

which is word 1000 of field O. The FPP12 normally does 

not recognize page or field boundaries. If the APT 

started in location 07777, the least significant 12 bits 

of the FPC would be found in location 10000. 

4-2 



In Example 4-1, the FPP12 will pick up locations 02000, 

02001, 02002, 02003, 02005, 02006, and 02007 of the APT. 

Note that the operand address, location 02004 in this 

example, is never retrieved from the APT by the FPP12. 

After retrieving the contents of location 02007, the 

FPP12 will fetch its first instruction from location 

01000. The 4 in the second digit of the contents of 

location 01000 indicates that the instruction is a 

2-word, direct addressing, data reference instruction. 

The 0 in the first digit of location 01000 indicates that 

the instruction is an FLDA. Bits 9-23 of the instruction 

specify the address, which is not indexed when bits 6-8 

are all zero. After fetching the address, the FPP12 will 

break to 12000, 12001, and 12002 to load the operand into 

the FAC. 

After retrieving the least significant word of the FAC 

from location 12002, the FPP12 will fetch another instruction 

from location 01002. The instruction in location 01002 

is an FEXIT, equivalent to a halt instruction for the 

CPU. Prior to stopping, the FPP12 dumps the current APT 

over the initial APT, beginning with the least significant 

word of the FAC in location 02007 and ending with location 

02000. The APT at the completion of the FEXIT instruction 

is shown in Table 4-1. 

4-3 



/Sample program to initialize FPP12 

00020 2000 

I A Sample 

ORG 

APTPT, 

ORG 200 
BEGIN, 

/FPP12 Program is below 

Loe Contents 

01000 
01001 

01002 

0401 
2000 

0000 

/ Active parameter table 

Loe 

02000 
02001 
02002 

Contents 

0 
1000 
3000 

ORG 12000 
12000 0002 
12001 3000 
12002 0000 

TAG, 

00020 

APT 

CLA 
FPCOM 
TAD APTPT 
FPST 
HLT 
FPINT 
JMP. -1 
HLT 

3.0 

/Psuedo OP sets assembler orgin 
at location (20) of field 0. 
/Pointer to APT 8 

/Clear AC 
/Load O's to FPP12 command register 

/St APT points to 02000 and start 
/if no skip FPP12 is not ready 
/Wait to be started 

/Program done 

ORG 02000 

FLDA TAG 

FEXIT 

ORG 02000 

APT, 0000 
1000 
3000 
4000 

/Load contents of 
/location TAG into 

FAC 
/Dump APT 
/into core and 
interrupt CPU 

/most sig bits 
/FPC 
/XO 
/Base 
/Operand address 
/FAC EXP 
/FAC MSW 
/FAC LSW 

/constant (3.0) 10 

Example 4-1 Sample FPP12 Program 

4-4 



Table 4-1 

APT After FEXIT is Example 4-1 

02000 1000 /current Field Bits 
02001 1003 /current FPC 
02002 3 000 /X¢ 
02003 4000 /Base 
02004 2002 /Operand address 
02005 0002 /exponent 
02006 3000 /MSW 
02007 0000 /LSW 

Only after dumping the APT is the FPP12 Skip or Interrupt 

flag set. In Example 4-1, the CPU executes a WAIT loop 

while the FPP12 is operational. It would be far more 

efficient for the CPU to perform some other task, such as 

tape or Teletype I/O, while the FPP12 is calculating. 

4.3 INDEX REGISTERS AS ADDRESS MODIFIERS AND LOOP COUNTERS 

The FPP12 program in Example 4-2 moves a list of (200) 8 

floating point numbers from an area of core starting at 

location ALPHA to an area starting at location BETA. Note 

that index registers are used both for loop counting and 

address modification. Index register 1 is set to -1 and 

index register 0 is set to -200 using the LDX instruction. 

Index register 1 is incremented prior to use as an ad-

dress modifier for the FLDA instruction at location LOOP. 

Index register 0 is used as a loop counter by the JXN 

instruction. 

4·5 



BEGIN, 

LOOP, 

ALPHA, 

BETA, 

LDX -1,l 
LDX -200,0 
FLDA ALPHA, l+ 

FSTA BETA, 1 

JXN LOOP, 0+ 

FEXIT 

ORG 4000 

ORG 6000 
0 

/set index register l =-1 
/set index register~= (-2¢¢) 8 /first C(l = x¢_ = C(l +x¢) 
+l Then load FAC from loc. 
ALPHA+ C(l + X¢) *3 
/Store FAC in loc BETA + C 
(1 + x¢) *3 
/first C (X¢ + ¢) = C(X¢ + ~) ~ 
+l 
/then go to loop if C (X¢ + ¢)±_¢ 
/trap to CPU 

Example 4-2 Move List from ALPHA to BETA Using Index Registers 

It is possible to use the same index register as a loop counter 

and as an address modifier, because of the method used in the 

FPP12 hardware to calculate indexed addresses. In the process 

of formulating an address, the FPP12 checks to see if indexing 

is required. If indexing is required, the contents of the 

specified index register are retrieved and "adjusted" by the 

appropriate multiplier, which is 6 for extended-precision mode, 

3 for floating-point mode and 2 for fixed-point mode. Then 

the adjusted index register is added to the unindexed address 

and the resulting addition, initially performed with 24 bits of 

precision, is truncated to 15 bits by dropping the 9 most sig-

nificant bits of the result. Example 4-3 illustrates the 

standard method of indexed address calculation. If it is 

necessary to use index register 5 as a loop counter, additional 

care must be used in selecting the pointer to list A contained 

in the instruction. Consider the case where the loop counter 

is set to (-200) 8 . Then the pointer to list A must be modified 

to be A+ M(C (I) + (10000)
8 

. C(I) is the initial setting of 

the index register and M is the number of 12-bit bytes in the 

4-6 



data word. Example 4-4 is similar to Example 4-2; however, 

only one index register is used. 

Initially X@ = 14003 

C(X0+5) = 0001 

Instruction FLDA A,5 

A is location 12003 

0451 
2003 

Address calculation proceeds as follows: 

1. The contents of (XO + 5) are retrieved and 
multiplied by three. 

2. The "adjusted" index register is added to 00012003 
the unindexed address to yield 00012006. 

3. This address is truncated to 12006. 

Example 4-3 Indexed Address Calculation 

4.4 USE OF INDEX REGISTERS TO CREATE PUSH-DOWN STACKS 

The subroutines in Example 4-5 illustrate the use of the ADDX 

instruction in creating push-down or Last-in-first-out lists. 

The PUSH routine is called with an argument in the accumulator. 

The POP routine returns with elements removed from the stack 

in the accumulator. These subroutines are designed to be 

called with the JSA instruction which places an unconditional 

jump to the return in the first two locations of the subroutine. 

The PUSH and POP subroutines in Example 4-5 are valid for either 

fixed-point,.floating-point mode or extended-precision mode, as 

long as second and additional calls are in the same mode as the 

very first call. 

4-7 



BEGIN, LDX -COUNT, 1 

LOOP, FLDA ALPHA -(M* COUNT-K),l 
FSTA BETA+ M* (COUNT-K),l 
JXN LOOP, l+ 

M = 3, if floating point mode 
2, if fixed point mode 

K = 10000 

Example 4-4 Index Register 1 is Used as Both an Address Modifier 
and Counter 

PUSH, 0 
0 
FSTA STACK, 2+ 
JA PUSH 

POP, 0 
0 
FLDA STACK, 2 
ADDX -1, 2 
JA POP 

/Place contents of AC in stack 
/Return from subroutine 

/Retrieve item from stack 
/Decrement stack pointer 
/Return from subroutine 

Example 4-5 Push-Down Stacks 

4.5 BRANCH OR JUMP ON CONDITION INSTRUCTIONS 

Seven conditional jump instructions are provided in addition 

to the JXN instruction. Six of these, JEQ, JGE, JLE, JNE, and 

JGT, test the FAC mantissa, The seventh, JAL, executes a jump 

if the FAC cannot be represented as a (24) 10 bit binary number. 

This occurs when the FAC exponent is greater than (23) 10 or 27
8

. 

4.6 WRITING RE-ENTRANT SUBROUTINES 

A re-entrent subroutine is one in which the code is not altered 

during execution. This property permits the interruption of a 

task which is executing a given re-entrant subroutine and the 

starting of another task that uses the same subroutine. The ad-

vantage of re-entrant coding is that two or more jobs can use 

the same subroutine without concern as to when a given job is 

interrupted. 

4-8 



The single-word data reference instructions and a re-entrant 

jump to subroutine facilitate the writing of re-entrant codes. 

With the JSR instruction, the return address is saved in bits 

21-35 of the location pointed at by the contents of the base re-

gister. If it is necessary to store temporary values during sub-

routine execution, single-word instructions should be used. This 

will force addressing to be relative to the base register setting. 

Each task will have a unique base register setting; therefore, 

the effective addresses for temporary storage for each task 

will have a unique base register setting; therefore, the effective 

addresses for temporary storage for each task will be unique, 

even though the off sets for the data instructions are never 

charged in the pure subroutine. The return from the re-entrant 

subroutine consists of the two instruction sequence, FLDA ALPHA 

JAC, shown in Example 4-6. JSR causes the return address to 

be deposited into the first location of the data block, ALPHA, 

which is defined by the base register. The return address is 

deposited into the FAC with the instruction FLDA ALPHA. The 

JAC instruction actually executes the return jump by setting 

FPC equal to bits 9-23 of the FAC mantissa. 

I Main Prog 

MPROG, JSR SUB 
FEXIT 

SUB, FLDA ALPHA 
JAC 

Base ALPHA 
ALPHA, ------

/Jump to sub prog. 

/Load return address 
/Jump to the address contained in 
/bits 9-23 of the FAC fraction 

Example 4-6 Return from Re-Entrant Subroutine 

4-9 



4.7 USE OF THE FPHLT INSTRUCTION 

The FPHLT IOT (6554) permits the CPU to force the abortion of a 

running FPP12 program or to force the FPP12 to execute one in-

struction each time it is initialized. In a multitask or time-

shared environment, it is often necessary to suspend a calcu-

lation prior to completion. When debugging a program, it is 

often desirable to examine the results of each instruction's 

execution. 

If FPHLT is issued while the FPP12 is executing a program, that 

program, will be aborted at the end of the current FPP12 in-

struction. The FPP12 will dump the current APT in core and then 

cause a CPU program interrupt. If the current instruction is 

anything except FEXIT, status bit 02 will be set to 1 if FPHLT 

forced the FPP12 to stop program execution. 

Issuing FPHLT prior to FPST will cause the FPP to initialize, 

execute one instruction, then exit. By repeating this procedure 

the CPU can force the FPP12 to single step thnough a program. 

4.8 DEBUGGING FPP12 PROGRAMS ON UNITS 
ATTACHED TO PDP-12 COMPUTERS 

The PDP-12 console (described in the PDP-12 System Reference 

Manual)is a powerful tool for debugging FPP12 programs. Using 

the switches, one can single step through FPP12 programs, ob-

serving the transfers between the PPP and the PDP-12 memory on 

the console lights. Alternatively, the FPP12 program can run 

until a specific memory address is accessed, in which case the 

computer will halt, permitting the console light to be examined. 

While the computer is halted, memory may be examined and altered with 

4-10 



the switch register without disturbing the program counters 

associated with either the CPU or the FPP12. IOT instructions 

may be issued with the console switches that examine registers 

within the FPP12. 

If the stop switch is raised during the execution of a FPP12 

program, the PDP-12 will stop at the end of a complete instruction 

or a data break caused by some external device such as the 

FPP12. Depressing the continue switch with the stop switch 

raised causes the execution of one CPU instruction or one data 

break for each actuation of the continue switch. Operating in 

this mode, the FPP12 will receive one data break for each CPU 

instruction. This means that every other time the continue switch 

is depressed a data break will occur. Whenever the break in-

dicator light is lit, the MA and MB lights on the console refer 

to the data break address and memory buff er contents associated 

with the FPP12 program*. The single step switch causes similar 

results, except the halts occur at the end of each major state 

of the CPU instructions. The single step switch is useful when 

the CPU program that runs in parallel with the FPP12 program 

contains tape instructions. The stop switch has no affect for 

the duration of LINC tape instructions, or more exactly, if the 

inprogress light is lit. (IP) 

If bit 8 of the FPP12 command register is set to 1, the CPU will 

be locked out while FPP12 programs are executing. This is ~e-

f lected in the fact that the break light will stay on 

* For the sequence of breaks for instructions and major states, 
see Chapter 7.8. 

4°11 



continously as the continue switch is actiated. 

4.9 USING THE EXECUTE STOP SWITCH 

If the execute stop switch is raised the PDP-12 will halt when­

ever the memory location whose address is contained in the left 

switches is accessed during any cycle except a CPU fetch cycle. 

Setting the left switches to the first location of the next APT 

to be used and raising the execute stop switch causes the PDP-12 

to halt following the first FPP12 data break following FPST IOT. 

4.1~ CARE NECESSARY IN THE USE OF EXAMINE AND DEPOSIT SWITCHES 

Some care is necessary when using the examine and deposit 

switches, if they are to be used while a FPP12 program is tem­

porarily halted. Problems arise because of the logical imple­

mentation of the break field register within the PDP-12. The 

4K memory field examined on the first push of the examine 

switch following a program may be the field into which the FPP12 

was breaking when the program stop occurred. To be sure that 

the proper data for an examine operation is displayed in the 

MB register, the examine switch should be actuated twice for 

the first operation following a program stop. When the com­

puter system is restarted, the first PDP-12 cycle following an 

examine or deposit operation will be a break cycle if the FPP12 

is requesting a data break. To ensure that the FPP12 breaks to 

the proper 4K memory field, the last operation after any series 

of examines and deposits must be a fill; fill-step. This se­

quence should be addressed to a non existant memory field or a 

unimportant core location. 

4·12 



4.11 ADDITIONAL PROGRAMMING HINTS 

4.11.1 Illegal Mantissa 

In the 2's complement number system the number consisting of 

a one followed by twenty-three zeros is an illegal number 

because it and its 2's complement are both equal to -1. The 

FPP12 logic will not allow this number to be generated as 

the result of any calculation. For instance, if -1/2 is 

added to -1/2 the result shows up in the FPP as -1/2 *2 or 

-1. It is possible for this number to arise in other than 

calculations. For instance, it is possible to intentionally 

place a number into core memory from the CPU's switches. The 

routine in Example 4-7 illustrates a test for the illegal 

fraction. 

/The value in location A possibly has an illegal fraction. 

BEGIN, 

GOOD, 
BAD, 

FLDA 
JGE 
FNEG 

JLT BAD 

FEXIT 
FEXIT 

A /Get C (A) 
GOOD /If C(A) 0 all is OK 

/Form 2's complement of fraction 

/Number is OK 
/Number has illegal fraction 

Example 4-7 Test for Illegal Fraction 100000000 ... 000 

Example of Re-Entrant Sine and Exponential Subroutines 

Examples 4-8 and 4-9 contain the FPP code for calculating 

SINE (X) and X (X**Y). The comments indicate what each step 

of the routines is doing. Both subroutines are written in 

the mnemonics and syntax of the FPP assembler. 

4·13 



0001 
0002 
0003 
0004 
0005 
0006 
0007 
00Hl 
0011 
0012 
0013 
121014 
0015 
0016 
12112117 

0020 

QHl21 

0022 
0023 

0024 
0'2125 

112500 0201 
H501 e.100 
10502 7777 
H51Z3 Hl61 
1051214 e512 
1051215 101"1 
10506 0603 
10507 0003 
rn510 e100 
H511 eice0 

0026 H512 3401 
10513 rt:607 

0027 10514 6201 
1210312: 10515 1071 

1es16 e606 
0031 10517 0010 
0032 10520 0004 
0033 10521 2201 
0034 10522 0003 
0035 10523 1001 

Hi524 ;1)603 
0036 10525 4401 

ies26 e6e7 
0037 10527 6201 
121040 
012141 
0042 
0043 10530 2401 

10531 0612 
0044 10532 1051 

10533 e543 
0045 10534 6201 
0046 U535 2101 

10536 0541 
0047 H'537 1031 

H54f21 0544 
0050 10541 0100 

10542 7777 

I SINE USES THE 1ST 3 ENTRIES IN 
I THE BLOCK AND !NOEX REG. 0,1&2 
I X IS PASSED THROUGH THE 2NO ENTRY 
I IN THE BLOCK AND SINCXl IS RETURNED 
I THROUGH THE SAME LOCATION 

ORG 10500 
BASE 0 
X=1•3 
XSQR=2•3 

I CALCULATE ABSOLUTE VALUE OF X.INOEX 
I REG 0 SET TO 0 INDICATES SIGN OF X 
I WAS NEGATIVE 

SINE, FLDA X 
LOX -1,0 /INITIATE INOEX REG 1 

MOO, 

JGT CAL 

JEQ DONE. 

FNEG 
LDX 0,0 

/GO TO CAL IF X IS POSITIVE 

/GO TO DONE IF X IS 0 

/NEGATE F'AC 
/SET INDEX REG TO 2ERO 

I REDUCE X TO IST CYCLE USING THE 
I IDENTITY SIN<X>=SIN<N•2•PI•X) 

CAL, FDIV TWOPI /DIVIDE X SY 2•PI 

FSTA X 
JAL ERROR 

ALN ~ 
FNORM 
FSUB X 
FNEG 
JEQ DONE 

FMUL TWOPI 

FSTA X 

IX IS TOO LARGE 

/GET INTEGER PART 

/GET FRACTIONAL PART 
/SINC2•PI•N> IS tERO 

/NORMALI2E TO BETWEEN 0 AND 2•PI 

I REDUCE X TO 1ST HALF CYCLE USING 
I THE IDENTITY SlN(Xl=-S!N<X~Pll FOR 
I PI<X<=2•PI 

FSUB PI 

JLT PCHECK 

FSTA X 
JXN RESET10+ 

JA PCHECK+1 

RESET, LOX •:1, 0 

/IF X IS LESS THAN PI GP TO PCHECK 

/SET X TO X-PI 
/IF INDEX REG 0 WAS -1 SET TO 0 AND 

/GO TO PCHECK+l 

/IF INDEX REG 0 WAS 0 SET IT TO -1 

Example..f-8 SINE Routine (Sheet 1of2) 

4-14 



0052 
0053 
005 4 
0055 
0056 

0057 

0060 

0061 
0062 

0063 
0064 

006 5 
0066 
0067 
0070 

0071 

0072 
0073 
0074 
0075 
0076 

0077 
0Hl0 

0101 

:21 H'!2 
0103 

0104 
21105 
01':16 
0107 
0110 
0111 

0112 

0113 

0115 

0116 

0117 

H543 e201 
10544 2401 
H545 i?615 
10546 1e21 
11~547 e555 
HO: 550 0401 
10551 ~·612 
1':'552 2201 
1e553 1031 
10554 0556 
H555 e.201 
10556 3401 
10557 0615 
10560 6201 
H561 4201 
H562 6202 
H'.563 eu1 
U.:564 7774 
H565 V'11Z2 
10566 7777 
H."567 v,002 

H570 1521 

10571 0620 
1'!572 4202 
1(,573 2111 
10574 e·570 
1'~575 1401 
H576 0615 
H 577 42e,1 
10600 2001 
10601 0603 
Hl602 012103 
Hl603 6201 
10604 ?201Z 
10605 ~007 
H'.606 0e00 
10607 01UJ3 
H'6H 3110 
10611 3756 
H'.612 VJ002 
10613 3110 
H'.614 3756 
H'615 e12101 
10616 3110 
10617 3756 
H.'620 7764 
10621 2366 
H622 5615 
10623 7771 
H624 5466 
10625 6317 
10626 ?775 
H'.627 2431 
10630 5053 
10631 C000 
10632 5325 
H'F-~~ t;:4;;>t?i 

I REDUCE X TO 1ST QUARTER CYCLE USING 
I ThE IDENTITY S!N(X):SINCPI-X> FOR 
I Pll2<X<=PI 

PCHECK, FLDA X 
FSUB PIBY2 /IF X IS LESS THAN OR EQUAL TO PI/2 

PALG1 

JLE PALG 

FLOA PI 

FSUB X 
JA PALG+l 

FLDA X 
FOIV Pl8Y2 

FSTA X 
FMUL X 
FSTA XSQR 
LOX -4,1 

LOX -1' 2 

FCLA 

/GO TO PALG 

/REPLACE X WITH PI-X 

/NORMALirE X TO BETWEEN 0 & 1 

/CALCULATE xu2 
/SET UP INDEX REG 1 

/SET UP INDEX REG 2 

I CALCULATE SINCX)=CCCCC9*C2*X/Pl>•*2 
I +C7>•<2•X/Pl)*•2+C5l•(2*X/Pil**2 
I +C3l•C2*XIPI>••2+Pl>•2•X/PI 

LOOP, FAOD C9,2+ /ADD C9 ON 1ST PASS, C7 ON 

FMUL XSQR 
JXN LOOP11+ 

FADD PIBY2 

FMUL X 
JXN DONE10 

F"NEG 
DONE, F'STA X 

FLDA 0 
JAC 

ERROR, F'EX IT 
TWOPI, 3,1415926•2,0 

PI, 3,1415926 

PIBY2, 3,1415926/2,0 

C7, -4,6737656E-03 

C5, +7,9689679E-02 

C3, -6,4596371E-01 

2r~o PASS, ECT. 

/~ULTIPLY PARTIAL SUM BY X•*2 
!GO TO LOOP 4 TIMES 

!GO TO DONE IF X WAS POSITIVE 

/~JEGATE ANSWER 
/STORE ANSWER 

/RETURN TO CALL 
/EXIT ON ERROR 

Example 4-8 SINE Routine (Sheet 2 of 2) 

4-15 



00:211 
0002 
Kll1l 03 
0004 
0005 
0006 
e.1007 
f2H'lUl 
!2li1l11 
12l012 
0013 
0014 
0h5 
111016 
0017 
2'02:21 
0021 
0022 
0023 H)500 0201 
0024 10501 0Hl3 

10502 7777 
0025 10503 1041 

12504 0511 
0026 10511l5 0411l1 

10511l6 0601 
0027 10507 1031 

10510 0573 
0030 10511 1061 

112512 0516 
0031 te513 0103 

10514 0000 
0032 10515 &:1003 
0033 Hl516 4401 

10517 0576 
012!34 1~5 20 6203 
012135 Hl521 0401 

10522 0601 
0036 Hl523 6204 
0037 10524 0203 
0040 10525 0010 
0041 10526 0020 
0042 11C'527 0110 

10530 eeHH 
0043 
0044 
111045 
0rtl46 
0047 10531 0004 

0050 H?.532 2203 
0051 te533 0003 

0052 1fl534 6 2 lil1 

I EXP USES THE lST 6 ENTRIES IN 
I THE BLOCK 
I INDEX R[G, 0 MUST BE SET TO THE 
I POSITION OF THE EXPONENT OF THE 
I 5TH ENTRY IN THE BLOCK 
I X IS PASSED THROUGH THE 2NO ENTRY 
I IN THE BLOCK AND EXP<Xl IS RETURNED 
I THROUGH THE SAME LOCATION 

ORG 10500 
BASE 0 
X:: 1 •3 
F=1*3 
FSQR=2•3 
TEMp::3113 
!DX0=4•3 

I CALCULATE THE ABSOLUTE VALUE OF X 
I INDEX REG 3 SET TO l2l INOICATES THAT 
I THE SIGN OF X WAS NEGATIVE 

EXP, FLDA X - /GET X 
LOX ~113 /INITIATE INDEX REG 3 TO ~1 

JNE NtRO 

FLDA Kl 

/GO TO N~RO IF X IS NOT EQUAL TO tERO 

/SET FAC TO 1 

/RETURN TO CALL 

Ni!RO, 

JA RETURN 

JGT GHERO /GO TO GTtERO IF X WAS POSITIVE 

/SET INDEX REG 3 TO l2l TO !NDICATE LOX e:,3 
X WAS NEGATIVE 

FNEG /NEGATE THE F AC 
G THRO, FMUL LG2E /MULTIPLY X BY LOG2(E) 

I 
I 
I 
I 

FSTA TEMP 
FLDA Kl 

F'STA l OXIZI 
FLDA TEMP 
ALN 0 
ATX 12 

ADDX 110 

/STORE RESULT TEMPORARILY 

/SET IDXl2l TO 1=2**1*1/2 

/FAC::N::INTEGER PART OF X*LOG2(E) 
/IDX0=20N111/2 
/IDX0=2**(N+1l•1/2:2•*N 

THE 5TH ENTRY IN THE BLOCK 
CONTAINS 2••N WHERE N IS THE 
INTEGER PART OF X*LOG2(E) 
FIND F:FRACTIONAL PART OF X•LOG2(E) 

FNOR~ /FAC CONTAINS INTEGER PART OF 

FSUB TEMP 
FNEG 

FSTA F 

X•LOG2<El 

/FAC CONTAINS FRACTIONAL PART OF 
X•LOG2(E) 

Exomple•-9 Exponential Subroutine (Sheet 1 of 2) 

4-16 



12112154 I CALCULATE 2••Fil+2*(A•F+B•F••2+ 
121055 I C/CD+fu2) 
12112156 Hl535 4201 FMUL, F 
12112157 10536 621212 FSTA FSQR /FSQRv:Fo2 
0121612l Hl537 141211 FADD D 

10540 0620 
0061 10541 6203 FSTA TEMP /TEMP:Q+F'02 
0062 10542 12141211 FLDA c 

10543 0615 
0063 10544 321213 FDIV TEMP /FAC=C/CD•F•*2l 
0064 10545 2201 FSUB F 
12112165 10546 1401 FADO A 

10547 0607 
0066 10550 621213 FSTA TEMP /TEMP=A·F'•C/(O+F*•2l 
0067 10551 0401 f"LDA 8 

10552 0612 
0070 10553 4202 FMUL FSQR 
0071 10554 121213 FADO TEMP 
0072 10555 6203 FSTA TEMP /TEMP=B•F••2•A-F+C/CD+F••2l 
121073 10556 0201 FL.DA x 
012174 10557 4401 FMUL K2 /F'AC=2•F 

10560 0604 
12112175 10561 3 2fZI 3 rD IV TEMP 
012176 H'l562 1401 FADD Kl /FAC=1+2•F'/(8•F••2•A-r+C/(D+f••2>> 

Hl563 061211 
012177 I CALCULATE EXPCX>=2••(X~LOG2CE)): 
011210 I C2••N)•H2••f) 
0101 10564 4204 FMUL I DX121 
121102 10565 2031 JXN RETURN13 /GO To RETURN Ir X WAS POSITIVE 

10566 121573 
121103 I CALCULATE EXPC·X>=1/EXP(X) 
121104 10567 6201 FSTA x 
0105 10570 0401 FLDA K1 

10571 0601 
0106 10572 321211 FDIV x 
0107 10573 621211 RETURN, FSTA x /STORE RESUL.T IN x 
121110 10574 0200 FLOA 0 
0111 10575 0007 JAC /RETURN TO CAL.L 
11l112 10576 0001 LG2E1 1.442695 

10577 2705 
1060121 2434 

0113 10601 0001 Kl, 1'0 
10602 2000 
H603 000i21 

0114 1061214 01211212 K21 2'121 
H61215 21211210 
1061216 01210121 

21115 1061217 12101217 A, 9. 954596E +01 
1061121 312170 
10611 571213 

IZl116 10612 7774 s, 3,465736E·IZl2 
1!0613 2157 
1!0614 5161 

121117 10615 1Zl12112 c, 6,179723E+02 
10616 2323 
1121617 7434 

0121:5 1062121 1211211217 0, 8,74175IZIE+l1l1 
10621 2566 
10622 5341 

Example..f-9 Exponential Subroutine (Sheet 2 of 2) 

4-17 





CHAPTER 5 HARDWARE DESCRIPTION 

5.1 GENERAL 

The FPP12 is a peripheral processor that attaches to both the 

programmed I/0 bus and the data break I/O bus. Figure 2-1 shows 

a typical configuration of an FPP12 attached to a PDP-12,with 

several other peripherals. It is of major importance to fully 

understand the difference between the I/O bus of the PDP-12, 

LINC-8, PDP-8, PDP-8/I, PDP-8/L, and PDP-8/E Computers. All 

of DEC's 12-bit computers share a compatible I/0 structure. Most 

peripherals such as the FPP12 are nearly plug-in compatible with 

all of these computers. Major differences are listed below: 

a. PDP-8/L, PDP-8/E, PDP-12, and some PDP-8/I's have what is 

referred to as a positive I/O bus which implies that the 

I/O signal levels are TTL compatible. The PDP-8, LINC-8, 

and some PDP-8/I's have a negative I/0 bus which implies 

that the I/O signal levels are 0 and -3V with reference to 

chassis ground. Bus driver and receiver modules in the 

FPP12 are selected for either positive or negative bus 

computers. 

5-1 



b. The sense of the IOP pulses is inverted on those computers 

with a negative I/O bus. To account for this, certain wiring 

changes must be made on FPP12 logic to convert it to negative 

bus units. These changes are detailed in Chapter 8. If 

the original purchase order for the FPP specifies an 

FPP12-AN, the negative bus changes will be factory installed. 

c. Data break timing on the PDP-12 Computer differs slightly 

from data break timing on the PDP-8 type computers. On the 

PDP-12, the trailing edge of ADDRESS ACCEPT indicates memory 

buffer strobe; on the PDP-8s, PDP-8/I, PDP-8/L, and PDP-8/E 

the leading edge of BUFFERED TIME STATE 3 indicates memory 

buffer strobe. The line that carries the signal BUFFERED 

TIME STATE 3 on the PDP-8 type computer is the same one that 

carries BUFFERED TIME STATE 5 on the PDP-12 Computer. 

Therefore, the FPP12 wired in the positive-bus PDP-8/I, 

PDP-8/L, and PDP-8/E configuration will operate on a PDP-12 

but will not achieve optimum performance. 

d. Raising pin Nl6V2 of the I/O cable on a PDP-12 Computer will 

lock out the CPU. The FPP12-AP will utilize this 

option when command register bit 8 is set to l. Time compari­

sons are shown in Table 3-1. On computers other than the 

PDP-12, pin Nl6V2 is used for different purposes. Therefore, 

run FOSU2 - B03V2 is deleted in the FPP12 when it is configured 

5-2 



for processors other than the PDP-12. 

Data break timing diagrams for the PDP-12 and other Family of 

8 Computers are shown in Figures 5-1 and 5-2. 

5.2 ORGANIZATION OF HARDWARE COMPONENTS 

Floating Point Processor System organization is shown in 

Figures 5-3, 5-4, and 5-5. The User IOT Decoder System (see 

Figure 5-3) describes the simplest communication path between 

the CPU and the FPP12. IOT (device code 55) instructions of 

interest to systems programmers are described in detail in 

Chapter 3. Maintenance IOT's (device code 56) are described 

in Paragragh 7.9. 

The FPP12 Timing and Enable system are shown in Figure 5-4. 

The Major State and Time Slot generator provides up to 2¢ 

major time states in any 8 major or enable states. Each major 

time state contains 4 mini states: therefore, a total of 416 

time slots are provided by the FPP12 timing system. The timing 

diagram for the state generator is shown in Figure 5-6. Figure 

5-7 displays the extended-precision timing diagram. Typically 

at any one instant of time, one or two gates in one of the 8 

state enable sections is qualified. A qualified gate in the 

5·3 



Ul 
I 

.i:::. 

TP2 TP3 TP4 TP5 TP2 TP3 TP4 TP5 TPI TP2 
COMPUTER TIME I I I I I I I I 

TPI 

PREVIOUS I 
C'YCLIE + BREAK CYCLE NEXT CYCLE 

+3 
BREAK REQUEST SIGNAL 

!INPUT TO PROCESSOR! 
SAMPLED AT OF.i+-PAUSE 

GND BY PROCESSOR " ___ .., ...... , I SIGNAL MUST GO T0+3V AT START Of AODRESS ACCEPT 
PULSE IF NEXT CYCLE IS NOT TO BE A BREAK 

SAMPLE BREAK SYNC FLIP FLOP 
!INTERNAL) 0 SET AT SAMPLE Tl ME I AT TP I 

I -I 
I 

USED TO SELECT BREAK CYCLE AT TP I 

CYCLE SELECT 
!SAMPLE TO PROCESSOR! 

B-BREAK SIGNAL 
!OUTPUT TO l/0 DEVICE) 

3 CYCLE 

1 CYCLE 

+~ 

GNO 

+3V 

:..,..__ ~~~tCLAEL~YATH:~~WIRED FOR A GIVEN DEVICE 

r= START Of BREAK CYCLE END OF BREAK CYCLE =1 
ADDRESS TPI BY EARLIEST TIME POSSIBLE TO REMOVE ADDRESS IS AT START OF BREAK CYCLE 

DATA ADORESS 
INPUT LEVELS 

(INPUT TO PROCESSOR) GNO --------

EXT. MEM. I READ AT 

READ ~ PROCESSOR 

ADDRESS ACCEPT PULSE 
!OUTPUT TO l/O DEVICE) 

TRANSFER DIRECTION 
(INPUT TO PROCESSOR) 

*DATA SIGNAL INPUT TO MB 
!INPUT TO PROCESSOR) 

OUTPUT DATA AllAILABLE IN MB 
!OUTPUT TO l/O OElllCEI 

+311 

GND 

IN (+311) 

OOT(GNDl 

AVAIL (+3111 

NOT AVAIL (GNO) 

-IL(+311) 

NOT AW.IL (+311) 

NO REQUEST (+3V) 
MB INCREMENT REQUEST 

!INPUT TO PROCESSOR) 

BTS ~ 
!OUTPUT TO 110 DEVICE) 

REOUEST (GHO) 

+3V 

GRN 

I TPI -TP3 ! 

I LATEST POSSIBLE TIME IS TP2 ----®"@A" CAN OiAHGE ANYTIME AFTER TP 3 

~~Tu~s~:T~s~~'p~ TIME TO SPECIFY ..Wh 

AVAILABLE AT TP 3 ..... TIME DURING WHICH DATA MUST EIE STRO&EO BY I/O DEVICE 

MUST OCCUR ONLY WHEN B BREAK• I TPI 

TP3 

I 

STS2 
!OUTPUT TO l/O OEVICEl 

+3V 

GNO 
I J l _ _J I..___ 

*WORD COUNT OVERFLOW 
(OUTPUT TO l/ODEVICE) 

+311 

GND 

*SIGNAL NOT USED FOR OUTPUT TRANSFERS 
SHOWN FOR REFERfNCE ONLY 

** 

OCCURS IF MEMORY INCREMENT IS At:OUESTED 
ANO THE WORD COUNT DVERf'LOWS 

Off-PAUSE OCCURS 200ns BEFORE TP5. IF IOP INSTRUCTION IN PROCESS, 
QH tQP SAMPLES BREAK RfOUESI. 

Figure 5-1 PDP-12 Single Cycle Data Break Timing 

12-0129 



U1 

• 
U1 

BREAK REQUEST SIGNAL 
(INPUT TO PROCESSOR) 

BREAK SYNC FLIP FLOP 
(INTERNAL) 

CYCLE SELECT 
(SAMPLE TO PROCESSOR) 

B-BREAK SIGNAL 
(OUTPUT TO 110 DEVICE) 

DATA ADDRESS 
INPUT LEVELS 

(INPUT TO PROCESSOR) 

ADDRESS ACCEPT PULSE 
(OUTPUT TO 110 DEVICE) 

TRANSFER DIRECTION 
(INPUT TO PROCESSOR) 

*DATA BITS MB 
(INPUT TO PROCESSOR) 

*OUTPUT DATA AVAILABLE IN MB 
(OUTPUT TO l/O DEVICE) 

COMPUTER TIME 

GND 

-3V 

0 

3 CYCLE=OV 

1 CYCLE=-3V 

GND =I 

-3V=O 

GND= I 

-3V=O 

GND 

-3V 

OUT (GND) 

IN (-3V) 

AVAIL,(GND) 

NOT AVAIL. (-3V) 

AVAIL (GND) 

NOT AVAIL (-3V) 

* INCREMENT REQUEST REQUEST (GND) 
(INPUT TO PROCESSOR) 

TP1 TP2 TP3 TP4 TP1 TP2 TP3 TP4 TPI TP2 

I I I I I I I I 
PREVIOUS CYCLE BREAK CYCLE NEXT CYCLE 

I 

~ SAMPLED AT TPI BY PROCESSOR SIGNAL MUST GO TO -3V AT START OF ADDRESS ACCEPT PULSE IF NEXT CYCLE IS NOT TO BE A BREAK 
I 

SET AT TPI 
I 

SAMPLE AT TP 4 --0-: USED TO SELECT BREAK CYCLE AT TP 4 

I 

:..--- SAMPLED AT TP3, TYPICALLY HARDWIRED FORA GIVEN DEVICE 
I 

b START OF BREAK CYCLE END OF BREAK CYCLE =1 
READ AT TP4 

BY PROCESSOR EARLIEST TIME POSSIBLE TO REMOVE ADDRESS IS AT ADDRESS ACCEPT PULSE 

I TP4-TP1 I 
0 35-0.4511• 

I 

SAMPLED AT TP 2 BY PROCESSOR _..: 

LATEST POSSIBLE TIME TO SPECIFY __.,.: 
INPUT DATA IS 500 n s BEFORE TP 2 1 

AVAILABLE AT TP 2 

r----
~ CANCHANGEANYTIMEAFTERTP2 OF BREAK CYCLE 

SAMPLED AT TP 2 BY PROCESSOR 

TIME DURING WHICH DATA MUST BE STROBED BY 1/0 DEVICE 

MUST RISE EARLIER THAN TP 4 
GATED IN PROCESSOR BY 
B BREAK= 1 MUST FALL BY TP 4 

NO REQUEST (-3V) ----------------------' 

BTS 3 
(OUTPUT TO 110 DEVICE) 

BTS 1 
(OUTPUT TO 110 DEVICE) 

*WORD COUNT OVERFLOW 
(OUTPUT TO 110 DEVICE) 

GND 

-3V 

GND 

-3V 

GND 

-3V 

I I 
_J ··----- · ~---- --1 r 

*SIGNAL NOT USED 
SHOWN FOR REFERENCE ONLY 

Negative I/O Bus & Logic 

PULSE OCCURS IF MEMORY 
INCREMENT IS REQUESTED 
AND THE WORD OVERFLOWS 

Figure 5-2 PDP-8 Single Cycle Data break 

B/!-0139 





U1 
I 

U1 
Ill 

TPI TP2 TP3 TPI TP2 TP3 TP4 TPI TP2 

COMPUTER TIME I I 
TP4 

I I 

BREAK REQUEST SIGNAL 
{INPUT TO PROCESSOR) 

BREAK SYNC FLIP FLOP 
{INTERNAL) 

CYCLE SELECT 
(INPUT TO PROCESSOR) 

B-BREAK SIGNAL 
(OUTPUT TO 1/0 DEVICE) 

DATA ADDRESS 
INPUT LEVELS 

(INPUT TO PROCESSOR) 

ADDRESS ACCEPT PULSE 
(OUTPUT TO I /0 DEVICE l 

TRANSFER DIRECTION 
(OUTPUT TO PROCESSOR) 

DATA BITS TO MB 
(INPUT TO PROCESSOR) 

*OUTPUT DATA AVAILABLE IN MB 
(OUTPUT TO 1/0 DEVICE) 

PREVIOUS CYCLE BREAK CYCLE----------- NEXT CYCLE 

+3V 

:-a- SAMPLED AT TPI BY PROCESSOR 

GND --._-----------------~ 
SIGNAL MUST GO TO +3V AT START OF ADDRESS ACCEPT PULSE IF NEXT CYCLE IS NOT TO 
BE A BREAK 

0 

+3V 

GND 

+ 3V=O 

GND=I 

+3V=O 

GND= I 

+3V 

GND 

SET AT TP I 

1 CYCLE 

3 CYCLE 

I 

I 

SAMPLE AT TP 4 -: - USED TO SELECT BREAK CYCLE AT TP4 

)4-- SAMPLED AT TP 3 TYPICALLY HARD-WIRED FOR A GIVEN DEVICE 

READ AT TP4 
BY PROCESSOR 

j+-- START OF BREAK CYCLE END OF BREAK CYCLE_.,. 

- EARLIEST POSSIBLE TIME TO REMOVE ADDRESS IS AT ADDRESS ACCEPT PULSE 

IN(+3V) SAMPLED AT 1 F-- - - - - - - - - - - - - -
OUT(GND) J_ - - - - - - - - - - - - I TP2 BY PROCESSOR----: ~N~H~G~NYTI~ A=E~~OF BREAK CYCLE -

+3V=O SIGNALS MUST BE t3V 
LATEST POSSIBLE TIME TO SPECIFY UNLESS B BREAK IS 
INPUT DATA IS 500 NS BEFORE TP2 PRESENT 

GND =I 

+ 3V=O 
AVAILABLE AT TP2 TIME DURING WHICH DATA MUST BE STORED BY 1/0 DEVICE 

GND =I 

* INCREMENT TO REQUESJ? REQUEST(+:3V) 
(INPUT TO PROCESSOR) MUST FALL EARLIER THAN TP4 

GATED IN PROCESSOR BY 
B BREAK= I 

BTS3 
(OUTPUT TO 1/0 DEVICE) 

BTS I 
(OUTPUT TO 1/0 DEVICE) 

*WORD COUNT OVERFLOW 
(OUTPUT TO l/0 DEVICE) 

REQUEST (GND) 

+3V I L___ 
GND HHH I I I 
+3V 

GND 

+3V 

GND 

*SIGNAL NOT USED FOR INPUT TRANSFERS: 
SHOWN FOR REFERENCE ONLY 

PULSE OCCURS IF MEMORY 
INCREMENT IS REQUESTED 

-ANO THE WORD OVERFLOWS 

Positive I/O Bus & Logic 

Figure 5-2 PDP-8 Single Cycle Data Break Timing 
SI-0137 



state enable system may conditionally qualify any number of 

Register Gates. A conditionally qualified register gate causes 

a register transfer on the next clock pulse. It is appropriate 

to observe that the FPP12 logic is fully clocked, i.e., all flip­

flops change state on the occurrence of a pulse from the system 

clock generated by a free-running RC oscillator adjusted to a 

frequency of 5 mHz (200 ns). 

The FPP12 data flow system is shown in Figure 5-5. In some 

respects FPP12 architecture is similar to the PDP-8 in that major 

registers are multiplexed through a central arithmetic logic 

unit. However, FPP12 logic design is based on the use of medium­

scale integrated circuit technology (MSI). The Operand Address 

Register, Program Counter (FPC), and APT pointer are formed 

from 4-bit binary up/down counters. This permits the incrementing 

of address registers and the performance of arithmetic operations 

on data variables simultaneously. The arithmetic logic unit 

consists of seven or sixteen (EPM) 24-pin MSI devices that can 

each perform all 16 Boolean and 16 different arithmetic functions 

on two variables. Full carry-look-ahead permits the addition 

or subtraction of two variables in under 100 ns. 

5-6 



Ul 
I 

-...] 

FPP12 USER IOT DECODER SYSTEM 

Status Reg 

(FPRST) + FPIST) (Interrupt ~~~~~~~~~~~~~~~~~..;:::.I/O Bus 

I (Interrupt) (FPIST +FPINT) + (RESTART) + (START) ) Sk. B 
I I ip us 

CPU IOP Pulses 
~ CIOT ~ Decoder 

l 
I (Not Run) (Interrupt Clear) >start FPP12 

FPAUSE 
Restart 

Buffered MB Bits 3-11 

-
~ I Data 

Switch CPU Buffer AC 

(FPCOM + FPST) (Not Run) (Interrupt Clear) 'APT Pointer 

I I (FPCOM) Not Run) (Interrupt Clear) ) Command Register 

(FPICL) +(I/O PRESET)+(FPIST) (Interrupt Set) )Global Reset 

Figure 5-3 FPP12 User IOT Decoder System 



I ... INITIATE "' - DATA BREAK - II' .. 
F.N~BLES CONTROL 

- FETCH -
ENABLES II' 

.... 
MAJOR EXECUTE 6 .. COUNTERS ... 
STATE ENABLES II - AND -
& H REGISTER REGISTERS . 
TIME Ill GATING P-t SLOT PROCESS ... . .. 
GENERATOR .. ENABLES ... ARITI-IlYIET IC 

~ LOGIC 
"' 

UNIT 
~ 

DEPOSIT 
A . ENABLES I 
v 

' 
. 

G • o . . . ~. fl' EXIT .. "' 
EXTENDED RNABLES 

.. 
DIGITAL 

MODE -. MULTIPLEXER MAJOR -
• SPECIAL ;; 

STATES 
AND TIME . 
STATES · ENABLES ' 

TMSC 
... EXECUTE - ENABLES 

T L SYS EMC OCK -

Figure 5-4 Timing and Enable System in FPP12 

5-8 



FAC 
FPP12 AC 

x¢ 
Index 
Register 
Pointer 

Base 
Register 

MQ 
Register 

Shift 
Counter 

FPP12 DATA FLOW SYSTEM 

A 
Digital~~-- Registe 
Data 
Mux 

CPU Memory Buf • 

Fig. 5-5 

5-9 

B 
egiste 

Data Break 
Data Lines 

0 
Registe 

Operand 
Add 
Reg. 

ata 

r 
reak~ 

Program Addres~ 

Counter 

APT 
Pointer 



v 
CLOCK __n_r u-

\ 
ADVANCE 

MINI 1 

MINI 2 

MINI 3 

MINI 4 

STATE CHANGE 

D (1) . 

4 MINI PULSES r 
RESET CHANGE 

INCREMENT I 
INDEX 

ZERO 

0 STATES 

STROBE STATES 

STROBE 

LOAD STATE 

4 MINI 
STATES 

-55-

l<O 
STATE ADVANCE? 

'~~ 
LJ Lr Lr 

~ Lr u-
, 
~ 

• ,_ -
f 
I 

I 
I 
I 

r --
t 

I 
I 
I 
I 

--.. -.... -- .. - • L ·-
I 
I 

I --
I 

I 
I 

Lr 

L 
1 

.. -l 

=i 
I --

0 

l --. 

=i 

L.J -

AT THIS TIME, IF 
ZERO OR STROBE 
GO HIGH, INCREMENT 
IS RESET 

ONLY ONE OF INDEX, 
¢ STATES, OR LOAD STATE 
GOES LOW DEPENDING ON 
WHICH OF INCREMENT, 
ZERO, OR STROBE IS 
HIGH 

ANY STG TIME ST ATE I I 

l I i 
I I 

Fig. 5.6 

Timing diagram indicating relationship between 
mini states, major time states, and the system clock. 

5-1 0 



mini states no Advance 
state "± mini SL:ites 

No state advance? 

STG 10 MKZ 
clock (5MHZ) 

SGB Mini 
state 4 

TMSC set SPECIAL 
ST or TMSC 
SET EXECUTE 

SGB pulse 4~~~~--.1r--l~,-------~·-·-·--..-.------·-·--·-•-a•,,_., •• ...... ·--~·~·~•--'r-1~:~--~..---....................................... -
TMSC EPM TMG ON is a i 
result of SPECIAL ST f 
or TMSC EXEcun:----------1 

(DTsables time states o-15 ana STG 
INCREMENT)on the; STG print. 

-:~TMsc' DISABLE 
STATES ends EPM 
TMG 

SGB D ( 1) 

! 
; 

;..---~~D (1) disables time states f.1-1..1J.1J-~-1. 
bein decoded 

TMSC BIT 
INSERT / Set at mini state 2 Shifts a 1 in 

for time states. 
l
e Wi 11 sh~ft zeros 'in 
, ™G .00 l,;;; not true. 

I ( 

until EPM 

TMSC STATE 
CLK EN 

TMSC elk 
state 

TMSC CLR State 

TMSC ST 0 

Advance 

SGB mini 
state 1 

SGB mini 
state 2 

[ Always happens ~ 
~on this edge shifts bit into LSB' 
re . ( ST0) if not CLR STATE L. 

; I ' l : i l 

r • 1' ~t~ ~'IIAT~ ·dncondltiona1,ry ~~s 4 
1-..1 €hift reg .. if TMSC EPM TMG ON is 

rue. ! 

Shift~ LSB 
toward MSB (ST 

' i ______ , .. __ . ____.J 1-

.i---------': ---r---r-
l SGB mini 

state 3 

TMSC st 1 
------+-____ ,_...,.,..,,,..,.,....,:s,_.• ---""!"''WJ...,..!tett_""M"......,ojo'M" ... l _., .... 111,..~r-·""'"'"""'',__j,__ .J'""! _____ ...,......,. __ 

TMSC disabl.e.,,-­
states 

FIGURE 

. I 
I 

This signal will disable TMSC EXECUTE ---
or TMSC SPECIAL ST wl1 .. ~ ~i.~,C;b ... l~S... ( ''\ 
EPM timin'g-:- --------------

5-7 EPM TIMING DIAGRAM 

5-11 



5.3 MAJOR STATES 

The FPP12 logic is organized into eight major states: 

INITIATE 

FETCH 

PROCESS 

EXECUTE 

DEPOSIT 

EXIT 

TMSC EXECUTEl. 
SPECIAL ST J EPM 

With one exception, if any major state flip flop on print CNR 

is set, the FPP12 will be actively calculating. If all major 

state flip-flops are reset, the FPP12 will be inactive. The 

single exception has to do with the instruction FPAUSE, which 

causes the FPP12 to wait for a synchronizing signal before 

proceeding. 

The FPP12 operations that occur in each major state are detailed 

below: 

INITIATE: INITIATE major state begins at the trailing edge of 

IOP 4 when IOT instruction 6555 is issued by the CPU, 

if the FPP12 is not running and the FPP12 Interrupt 

Request flag is reset. During INITIATE, the contents 

of the APT are retrieved. 

5-12 



FETCH 

NOTE: Only the first two locations of the APT 

must be used as these contain the 15-bit initial 

setting FPP12 program counter (FPC). The fifth 

location of the APT, the operand address, is not 

retrieved during INITIATE. 

Following the completion of INITIATE,the FPP12 always 

proceeds to FETCH time state O. 

Schematic drawings for INITIATE are found on prints 

ARS2 and SSG. 

During FETCH, preliminary decoding of instructions 

occurs. Instructions that require only one major 

time state to be completed, such as FCLA, are completely 

finished during FETCH State O. Special instructions 

that require more than one major time state, such as 

ALN, or more than one memory cycle, such as ATX, 

cause the FPP12 logic to go from FTECH State 0 to 

PROCESS State 1. All data reference instructions 

require FETCH to continue beyond FETCH State 0 in 

order to calculate the operand address. At the end 

5-13 



PROCESS 

EXECUTE 

of the FETCH cycle for all data reference instructions, 

a transfer is made to EXECUTE State 0, with the 

Operand Address Register appropriately loaded. 

FETCH begins in State 0 and ends when the address 

calculation is complete. FETCH schematics are found 

on prints FTHl through FTH3. 

Most special instructions that require more than one 

major time state or more than one memory cycle are 

completed in PROCESS. With the exception of NORM 

and XTA, the FPP12 returns to FETCH State 0 after 

the completion of PROCESS. Processing for XTA and 

NORM is completed in DEPOSIT. PROCESS begins in major 

time state 1. PROCESS schematics are found on prints 

SPil through SPI3. 

The execution of all data reference instructions 

begins during EXECUTE. FLDA and FSTA are completed 

during EXECUTE. For all other data reference instruc­

tions the FPP12 proceeds to DEPOSIT at the completion 

of EXECUTE if no EXECUTE error is encountered. 

EXECUTE errors are defined as: 

a. An attempt to divide by zero. 

b. A fraction overflow in fixed-point mode. 

5·14 



EXECUTE 

DEPOSIT 

At the completion of EXECUTE for instructions other 

than FLDA and FSTA, the un-normalized result of any 

calculation is stored in the O register and the 

exponent is locatedin the MQLSW. The exponent 

contained in the MQLSW is the operand exponent for 

FMUL, FMULM, and FDIV and the resultant exponent 

before normalization for FADD, FADDM, and FSUB. The 

shift counter is 0 if no fraction overflow occurred, 

and 1 if a floating-point fraction overflow occurred. 

EXECUTE schematics are found on prints ASTO through 

AST3. 

DEPOSIT begins in major time state 11 and ends in 

major time state 15. As DEPOSIT is the only function 

performed during these time states, DEPOSIT enables 

shown on prints DEPl through DEP3 are not gated with 

the DEPOSIT flip-flop found on the CNR print. During 

DEPOSIT the following functions are performed in the 

order listed: 

a. The results of all floating-point arithmetic 

calculations are normalized. The number of 

shifts is stored in the shift counter. 

b. The normalized result is rounded to 24 bits. No 

rounding in EPM. 

5-15 



EXIT 

c. For FMUL and FMULM the FAC exponent is added to 

the MQLSW. 

d. For the FDIV instruction the MQLSW is subtracted 

from the FAC exponent. 

e. The contents of the shift counter are added to 

the un-normalized exponent. 

f. If the exponent resulting after normalization 

is within bounds, -2048 to +2047, the resultant 

answer is stored in the FAC for all operations 

except FADDM and FMULM. For FADDM and FMULM, 

the resultant answer is stored in the addressed 

location. After storing the resultant answer, 

the FPP12 returns to FETCH State 0, unless the 

IOT FPHLT was issued by the CPU during the current 

instruction. 

g. If the exponent is not within bounds after normal­

ization the appropriate status bit is set and the 

FPP12 enters EXIT State O. DEPOSIT schematics 

are found on prints DEPl through DEP3. 

During EXIT the current APT is deposited into core 

over the initial APT. Only the first two locations 

of the APT must be deposited7 the other locations 

are optional according to the command register setting. 

The items in the APT are always located in the same 

5· 16 



position relative to one another. If the prograrmner 

chooses not to deposit the operand address the fifth 

location of the APT is simply skipped. The field bits 

of the base register, XO, and FPC are the first 

retrieved on INITIATE and last deposited during 

EXIT. 

EXIT is entered for any of the following conditions: 

a. A FEXIT instruction is encountered. 

b. A fraction overflow occurs in fixed-point mode. 

c. An exponent overflow or underflow occurs in 

floating-point mode. If EXIT is entered for an 

exponent underflow cormnand register bit 1 is tested. 

If it is set to 1, the EXIT is continued. If it 

is set to 0, the result of the previous calculation 

is set to 0 and the FPP12 returns to FETCH State 0. 

If an exponent underflow occurs, status bit 6 is 

set as an indicator, even if cormnand register 

bit 1 is set to O. 

d. An attempt to divide by 0 is made. 

e. A FPHLT IOT is issued by the CPU. 

At the end of EXIT the FPP12 halts in major time state 

0 with all major state flip-flops reset. The FPP12 

5-17 



TMSC EXECUTE 

SPECIAL ST 

skip f set and CPU progrwn interrupt 

is actuated if command register bit 3 is set to 1. 

All data reference instructions set TMSC EXECUTE 

during CNR EXECUTE in the extended precision mode. 

This will occur at major time state ¢, 1 or 2 of 

CNR EXECUTE depending on the instruction. The sole 

purpose of TMSC EXECUTE is to activate the gating nec­

essary to pick up or store in core the least sig­

nificant three words of the operand or FAC, bits 

24-59. At the completion of TMSC EXECUTE, which 

is always at the end of TMSC ST 2, control returns 

to the next major time state in CNR EXECUTE with 

the exception of the STR instruction which returns 

to FETCH state zero. 

When in the extended precision mode1 SPECIAL ST 

can be set during INITIATE, FETCH, DEPOSIT and 

EXIT major states. Below is a description of the 

uses of SPECIAL ST for the major states indicated 

above: 

a. INITIATE - SPECIAL ST is set at the end of 

INITIATE state 5 to activate the necessary gating 

to pick up, from the APT, FAC bits 24-59. 

Control is returned to INITIATE state 6 at 

its completion. 

5·18 



b. FETCH - SPECIAL is set at the end of FETCH 

state 6. At this point the contents of the 

specified index register have been multiplied 

by 3 or by six in EPM. At the completion of 

SPECIAL ST TMSC ST 0 control is returned to 

FETCH state 7. 

c. DEPOSIT - SPECIAL ST is set at the end of 

DEPOSIT state 13 to allow bits 24-59 of the 

result to be stored in core when doing an 

FADDM or FMULUM instruction. Control returns 

from SPECIAL ST TMSC ST 2 to DEPOSIT state 14. 

d. EXIT - SPECIAL ST can be set during EXIT if 

in EPM for two different reasons as follows: 

1. EXIT and SPECIAL ST are set simultaneously 

when the exit occurs for reasons other than 

exponent underflow not trapped. SPECIAL ST 

allows the FAC, bits 24-59, to be stored 

in the APT provided command registers 

bit 7 is not set. After the four TMSC time states 

control is returned to EXIT state zero. 

2. SPECIAL ST is set at the end of EXIT 

state 1 when exponent underflow is t'~ 

cause of the exit and the underflow is 

not trapped and it was an FADDM or FMULM 

insiruction that resulted in the exponent 

underflow. SPECIAL ST will allow for the 

result, bits 24-59, to be zeroed in memory. 

5-19 



Note that both TMSC EXECUTE and SPECIAL ST are functions of the 

extended precision mode. 

5.4 DESCRIPTION OF REGISTERS 

Most major registers of the FPP12 are cribed in Paragraph 2.7. 

The MQ, shift counter, A register, B register, and O register are 

hidden from the prograrnmer. Their characteristics are as follows: 

MQ The MQ is a 28~bit or 6¢-bit* parallel­

serial input, parallel output, left-right 

shift register. During multiplication, 

the MQ contains the absolute value of the 

multiplier mantissa. During division, 

SHIFT COUNTER 

A REGISTER 

AND 

B REGISTER 

the MQ temporarily contains the un-normal­

ized absolute value of the quotient. 

When entering deposit, the MQLSW contains 

the un-normalized resultant exponent for FADD, 

FADDM, and FSUB and the operand exponent for 

FMUL, FMULM, and FDIV. The MQ is found on 

print MQRl. 

The SHIFT COUNTER is a 7-bit binary up/down 

counter. As its name implies, it is used to 

count shifts. The SHIFT COUNTER is found on 

print CAR6. 

These 28-bit or 60 bit* registers are inputs 

to the arithmetic loqic unit (ALU) of the 

Ml90. The A register is a 28-bit or 6 ¢bit* 

storage register; the B register is a 28 bit 

5-20 



or 6¢ bit* parallel-serial input parallel out-

put shift register that shifts towards the 

least significant bit. 

0 REGISTER The O register is the 28-bit or 6¢-bit* 

output buffer for the Ml90. It is a parallel-

serial input, parallel output shift register 

that shifts towards the most significant 

bit. 

The A, B, and O Registers are found on the AMSW, ALSW, EXT, ALSl*, 

ALS2* and ALS3* prints. 

The following registers (listed below with the prints on which they are 

found) were described in Paragraph 2.7. 

*EPM 

FAC 
XO REGISTER 
BASE REGISTER 
FPC 
APT POINTER 
OPERAND ADDRESS 

CAR 
CAR 
CAR 
CAR 
CAR 

2, CAR3, EAC l* and EAC 2* 
4 
5 
1 
1 

REGISTER CAR 1 
STATUS REGISTER CAR 8 
COMMAND REGISTERCAR 8 
FIR CAR 7 

The operand address register, the FPC, and the APT pointer provide the 

addresses for data breaks. These registers are attached to a digital 

multiplexer that drives the EXT address lines of the CPU. The FAC, 

XO register, base register, O register, MQ, and shift counter feed 

the digital multiplexer that loads the A and B Registers. The FIR 

is the floating instruction register which holds the instruction that 

was loaded at FETCH state ¢. 

5-21 



5.5 REGISTER GATING SYSTEM 

The OR gates in the register gating system found on prints RGl through 

RGlO funnel enables from many sources into signals that, when added 

with a clock pulse, cause a register action. This action can be a 

load, shift, count, or a clear. The signals that actuate the data multi­

plexer are found on prints RG7 through RGlO, and MXEN. The multiplexer 

gates are enabled for at least the duration of a mini time state. The 

time from the beginning of the mini time state until the clock pulse, 

shown on Figure 5-6, is allowed for the data to settle on the register 

inputs. 

5.6 DATA BREAK CONTROL 

The FPP12 accesses core memory via the single-cycle data break facility. 

The data break control serves the following functions: 

a. Channels data break and direction requests to the CPU from 

the state enables. 

b. Gates the proper address register onto the EXT ADD bus of the 

CPU. 

c. Gates the proper data register onto the EXT DATA bus of the 

CPU if an input break is required. 

d. Synchronizes the FPP12 time state generator to the particular 

CPU memory timing to which the peripheral is attached. 

The synchronizing logic for the data break control is shown on print 

DBCl. The signal DBCl REQUEST BREAK L requests the data break from 

the processor. This signal is actuated by the conditon: 

(REQ BRK CYCLE (1) H) (ADD ACCEPT (~)Hl--/ PDP-12s 

5·22 



OR 

(REQ BRK CYCLE (1) H) (Cil BREAK (,0) H) ---:-> PDP-8s 

The first term is the output of a flip-flop that permits the FPP12 

to remember that it is currently requesting a data break. The 

second term is the signal from the CPU that a break is not in 

progress. Once the break cycle begins, noted by the disquali­

fication of Break (0) H, the FPP12 break request must be removed. 

This is the sequence for PDP-8s. ADD ACCEPT is used on PDP-12s 

to permit the CPU lock out mode to function. 

In the lower right-hand side of the DBCl prints there is a signal 

DBCl ENAB DATA H. The equation for this signal is: 

(BREAK (1) H! (DBCl REQ BRK CYCLE (1) H) +Cl2 MAINT READ L 

The signal DBCl ENAB DATA H permits the placing of data on the 

I/O bus during the break cycle requested by the FPP12. The DONE 

flip-flop, which is clocked by the trailing edge of ADDRESS ACCEPT 

in the PDP-12 or the rising edge of BTS3 in the PDP-8, restarts 

the FPP12 timing chain. 

A data break may be initiated by any of the function enables placing 

a low level on the input of three sets of OR gates found on DBC2. 

These OR gates funnel break requests to the DBCl REQ BRK CYCLE 

flip-flop and choose which of three address registers to use for 

the break address. 

5-23 



A data break for the purpose of retrieving data from core memory 

is an OUTPUT BREAK. A data break for the purpose of storing data 

in core memory is an INPUT BREAK. If a core memory location 

is incremented an INCREMENT BREAK is performed. The FPP12 data 

source for INPUT BREAKS is selected on DBC3. 

There are seven data sources used for INPUT BREAKS as shown on 

prints DBC3 and DBL. They are: the field bits of the APT, the 

operand address register, the least significant word of the B 

multiplexer, and the most significant word of the A multiplexer, 

and in EPM the least significant three words of the B multiplexer. 

If the data source selected for an INPUT BREAK is either the A 

or B multiplexer, an additional eight possibilities exist. The 

actual data source is resolved on prints RG7 through RGlO and DBL. 

5.7 MODULES INTRODUCED IN THE FPP12 

There were three etch boards and five new modules introduced for 

the FPP12. The following list shows the module number and the func-

tion of these modules. 

Module No. 

Ml55 

Ml90 

Ml91 

M238 

Function 

One of 16 decoders using 74154 IC decoders. 

4-bit arithmetic logic module using 74181 
arithmetic logic unit integrated circuit. 

Two carry look-ahead 74182 ICs for the 74181. 

Two separate 4-bit synchronous binary up/ 
down counters with separate up and down clocks. 
Uses two 74193 ICs. 

5-24 



M245 Two separate, 4-bit parallel-serial input, 
parallel serial output shift registers. 
Uses two 8271 ICs. 

The Ml91, M238, and M245 use a common etch board, the 50089 12, 

which is a mount for 2-16 pin dip packages with pin 16 reserved 

for +5V and pin 8 reserved for ground. The Ml55 is constructed 

on a 24-pin DIP mount, the 5008908. The Ml90 is a unique module 

layout containing 8 ICs including the 24-pin arithmetic logic unit. 

Full specifications for new MSis may be found in either the DEC 

specification file or from the manufacturer's catalog. The 74182, 

74181, 74193, and 74154 res are listed in catalog number CC301 

by Texas Instruments Inc. The 8271 and the 8291 (74197 from TI) 

are listed in Signatic's MSI Specifications Handbook, DCL Vol. II. 

All five of the modules introduced with the FPP12 are tested on 

Digital Equipment Corporation's computerized module tester. 

5-25 





CHAPTER 6 - OPERATIONAL GUIDE USING FLOW DIAGRAMS 

6.1 Using Flow Diagrams 

6.1.1 

The flow diagrams are the key to troubleshooting the FPP12 

logic. In order to understand the flow diagrams, it is 

necessary to understand the timing generator and the register 

structure. It is recommended that the reader thoroughly 

study Chapter 5 of this manual before attempting to under­

stand this section. Also there are additional aids in 

Chapter 7, Paragraph 7.6. 

Timing 

A brief review of the timing generator is presented here. 

The timing generator has the following properties: 

1. There are 2¢ possible major time states. These 

are named State O through State 15 on the STG 

print and TMSC ST~ through ST 3 on the TMSC print 

if the EPM logic is implemented. 

2. The timing generator can be forced to jump to any 

state; that is, if the timing generator is in 

State 3, the next state could be State 11 if the 

proper enables are generated. If EPM timing is 

activated, a signal called TMSC EPM TMG ON will 

disable the time state generator on the STG print 

and the effective time state is then the TMSC 

time state shown on the TMSC print. 

6-1 



6.1.2 

3. During the time a state is enabled, four different 

enabling pulses are generated; they are called Mini 

State 1 through Mini State 4. These pulses occur 

sequentially and are one clock cycle long. The end 

of the major time state occurs at the end of Mini 

State 4 and the next major time state is enabled 

at the trailing edge of the next clock cycle. 

When a state is entered, the timing generator stops 

until it receives a timing advance. When the advance 

is enabled, the four mini states are generated. 

During an output break cycle, Mini State 1 is 

used to enable the clocking of the data from the 

MB into the appropriate register. 

Adder Module 

The characteristics of the Ml90 are important also in under­

standing the flow diagrams. Recall that there are three 

registers; the outputs of the A and the B registers are co­

nected to the two inputs of the ALU, DEC 74181. The output 

of the ALU is connected to the input of the 0 register. 

The A, B, and 0 registers each have unique properties. The 

A register can be loaded with the true or the complemented 

value of the inputs. The B register is a shift register that 

can be shifted toward the least significant bit; the 0 reg­

ister that can be shifted toward the most significant bit. 

It is important to realize the many functions that the DEC74181 

can perform. The functions used in the FPP12 are listed 

in Table 6-1, along with the enables that are required to 

perform the function. 

6-2 



Table 6-1 

Functions Performed by DEC74181 

83 82 s so Inhibit Carry 
Carry IN 

A minus B -?O L H H L L H 

A plus B 7 0 H L L H L L 

A plus A ~ 0 H H L L L L 

A :;>o H H H H L L 

A plus 1 70 H H H H L H 

Logical 1 70 L L H H H -

B ~O H L H L H -

Logical 0 70 H H L L H 

Note that the function B minus A cannot be performed. In order to 

do this the l's complement must be loaded in A, A plus B with a carry 

insert enabled, and the result loaded into 0. 

6 .1. 3 Mnemonic Variations 

There are a few variations between 

the mnemonics given on the FPP12 instruction card, manual, etc. 

and those of the flows and prints. Consult table 6-2 for the 

proper equivalencies. 

6-3 



Table 6-2 
Equivalence Between Instructions and Flow Routines 

Instruction Flow Diagrams 

FEXIT EXT 
FPAUSE PSK 
FCLA CLR 
FNEG NEG 
FN()RM NRM 
STARTF STF 
STARTD STD 
JAC RTN 
ALN ALN 
ATX ATX 
XTA XTA 
FNOP NOP's 
LDX LDX 
ADDX ADX 
JEQ JMPS 
JGE JMPS 
JLE JMPS 
JA JMPS 
JNE JMPS 
JLT JMPS 
JGT JMPS 
JAL JMPS 
SETX MUX 
SETB MVP 
JSA JSB 
JSR JMK 
JXN JXN 

6 .1. 4 Symbols and Terms 

For one who is not familiar with the FPP12 Flow diagrms, 

there may be some terms, symbols, or operations that should be re-

viewed which have substantial importance in understanding the flows. 

A general list is supplied below with their meaning. 

6-4 



-> 

~} 
> 
~ 
< 
< 
X (N) ->Y (N-1) 

X (N) "+Y (N+l) 

A 

B 
0 

~~ 
FPC 
FAC 
EPM 
FB 
FIR 
MQ 
ADRS 
BRK 
MSW 
LSW 
OP 
ALU 
INC 
DEC 
ADDR l 
AD DRS 
SIGN EXTEND 

A decision for "yes" or "no" depending 
on the test labeled inside the diamond. 

Slash indicates a note describing 
current operation or branch or decision. 

TO 

Not or compliment 

Greater than 

Greater than or equal to 

Less than 

Less than or equal to 

The number in register X goes to 
register Y shifted left by one. 

The number in register X goes to 
register Y shifted right by one. 

A register ( feed the arithmetic 

B register ( element 
O register contains the result of 
the arithmetic element. 
Shift counter register 
Index register pointer 
Base register pointer 
Floating-point program counter 
Floating-point accumulator 
Extended-precision mode 
Field bits 
Floating-point instruction register 
Multiplier/quotient register 
APT address register 
Break cycle 
Most significant word 
Least significant word 
Operand 
Arithmetic logic unit 
Increment 
Decrement 
Address 

Takes the state of the most significant 
bit (bit 12) of the least significant 

6-5 



RESULTS TO MEM 

6.2 General Instruction Flow 

word and forces that state to the 
most significant word. 

Examples: 

B 
7777 

Refers to the FADDM or FMULM 
instructions which are to put the 
answer (result) into memory. 

Before tackling the flow diagrams for the instructions, 

examine figure 6-1. This chart was provided for a better 

understanding of the relationships between major states and 

instructions. Using the chart, one may observe any instruction 

from fetch, through the sequential major states that follow 

until the instruction terminates. 

6.3 Flow Diagrams - Major States 

In this segment of Chapter 6, we will discuss the major states 

INITIATE, FETCH, DEPOSIT, and EXIT. The major states PROCESS 

and EXECUTE are not discussed since they are best described 

in conjunction with the instructions that use those states. 

It is possible to give a word by word description of each major 

state, mini state and clock pulse, however, it appears that 

this information is easily available on the flows. We therefore, 

will discuss the reasoning behind the operations illustrated 

on the flows. In addition, simplified flow diagrams are 

included in this manual for further support. 

6·6 



----~~----·'°"''---------~-~ .. -~ .... M•••' ~··--- '•• < ~~~ ...... ·- •'• ···-

Major 

states 

DATA REFERENCE 

f 

f ADD/FADDM/FSUB 

CHART 6-1 

INSTRUCTION CHART --r 
- ... 1-- SPECIAL_ _1.NS.~.~-~~.'!'-~_9~~---·- _ --·--· .. ·----· _ ... _ j 

I FORMAT 1 I FORMAT 2 I 
FDIV FMUL. /FMUL~l~~;~ij,-~.-~--,.-;· -;~~ .. ----t~~-;-1 J~~-~---.,.i.--~~~----l .. ~-TB·-·T-;~-;--~

1
JSA-·--

FETCH 

I · r· --f l 
1 

, 1: 1r -· !1···~· _ 1 1 fr !l l 
· , , "' jiL } 1 r .Jr 1l · : ! ; . I .JL - l - l ! - - ·1 i l ! -, I I 

~· ~ ---=.:L +-_:~ , ~---=:L t__;i., : I i i no JMPI ' i I I 
SPECIAL c:.,, EME'.. 1. E.P.M. .. ! ~ : E.IB E15Hl . ! 1 I I go to I I 1 I 1 j 

""4*- : I __J I ~-. ' _J_ CTI I I ' FETCH I I I 
-;;;;~~TE ~· .~ I . . ..... .. re I r 1, + ii~- - ~- : :·. : ' : i . . . .. . I : : i Tjk ... ·l 
------ • _ : ~ 1 I I . · ~ I , 
.TMSC_EXEQJIE I -Zf1- ; I ! PM I ! \ EPM I : I I I I I l I I ' ~ r· +· ~· , I. I I I 

' I I' ,___::::r-- I I ' ! 
' '. 

1 
1 

1 ~ I - 1 Go to I ! i I I j I 
' ' -----.) I . 1(- ' [ i . I 

-- : Go to~---- f I. : . r -'FETCH 1' . ·I··. I - - .. , . ..,, .. t ·j 
FETCH : I l . I I I <f--- {--< ' . . ' I I 

DEPOSIT . ~---- I f-- I I I . , I j 

SPECIAL ST I EPM ~PMI I EPM I i I i ., I I I I l I 

PROCESS 

O'\ 
I 

-..J 

1-:-- - ' 1- -·- I I I I I I I I 

Go ~o -- Go -t~I 'Go -t; I : : I I I I I ~ l : J : 

l 
I 

4 l 'I -~ 
- I ·--- I _£ I 

_r--- ' ~ I E PM I ~ -Y.-M- I I E PM ' ----.- J 
__J'.;_4P__ I ~ I ~- ---::_~ 
----- ! ,r J .r,-- · 1 

£ 
1 

0 to Go to I 
~~t:~ Stop ret~~. l ~ekh.ST_OPL 

....... ff : ...... v ~ 

~t~l ~~t~~I ~~t~; ~~~~~~t1~~~~i1~t~ 

I 
I 

i I ' I I I 

1 ............ J ... _ 
'!l_ 

Stop 

~A decision was made 

LEGEND: Not using this major state~ 1 Using this major state~ 

I 
I 
I ~re-enter sequence 



MAJOR 
STATES 

FETCH 

PROCESS 

DEPOSIT 

EXIT 

C'I 

• 
00 

ALN 

Go To 
:Fetch 

FIGURE 6-1 (Cont) 

.-1NSTR:U:CT.IQN _CW\.RT 
SPECIAL INSTRUCTIONS 

FORMAT 3 t---·-- --,·------· - ·-r--·--- ___ .. _______ .._ ______________ .. _______ ,. _____ ·t··· 

I ATX J XTA i NOP :sT~RT FEXIT FPause ,FCLA FNEG '.FNORM ---· 1-r·r1 ·1···~rr- lr-,· +=- · §~r;Q~STr ~ T 

-,Go To 

i 
I 
I 
I 

J 

Fetch 

I Go To IGo To !Go To 
Fetch !Fetch ! Fetch i I ' I 

i I I ! , . ····· . ... -1 - -r--
, I I 

I . - I -
I Go To : Go To : Go To 

. , __ j f ~:!;gh ____ j~_tQ.b,___ ------+··--· Fetch_; I ! . , 

I I 
i Go To I 
I Fetch i 

l. 
! 

Go * fGo To . pO 1 I 
. etch . ;Fetch \-+---

I 
i 

1 
I 

- I 
GoTo l 

I 

jFetch 
' 

·-

* If in EPM, the hardware forces a FNORM instruction. Control goes 
to FNORM in Process State 1. The purpose will be to round up FAC 
Bit 24 in the Deposit State. 



6.3.l Initiate 

A simplified INITIATE flow is shown in Figure 6-2. The 

INITIATE flow is perhaps one of the most straight-forward 

in the package. There is only one decision made, and that 

test is performed at the end of state 5 for the extended pre­

cision mode. The object of INITIATE will be to do 7 or 10 

(EPM) out-breaks for data, to be loaded into the so called 

"active registers" in the FPP. The first break will pick up 

the field bits for the operand address, base register, index 

register and FPC. Note that only the base and index register 

field bits are loaded from the MB during time state ¢. The 

FPC field bits are loaded from the AMSW to the OP ADDRS register 

and FPC register during state 1. The ADRS register is incre­

mented to point to the core location that contains the lower 

12 bits of the FPC. In state 1 a break to this location picks 

up its contents and loads them to the ALSW. Note the reason for 

the described data flow is because there is no method of loading 

the FPC directly from the MB. The entire A register is then 

transferred to the O register, then to the OP ADDRS, and finally 

to the FPC (CARl print). The ADRS is incremented to point 

to the core location that contains the index register pointer. 

State 2 will break to transfer the contents of MB to the 

index register (CAR4 print). The ADRS is incremented to 

point to the core location that contains the base register 

pointer. State 3 will break and transfer the contents of the 

MB to the base register (CARS print). The ADRS is incremented 

twice to point to the core location that contains the FAC 

EXP. This is done because the operand address if picked up, would 

6-9 



have no mean because it will be calculated for each instruction. 

The break in state 4 will transfer the contents of the MB to 

the FAC EXP. The ADRS is incremented to point to the core 

location which contains the FAC MSW. The break in state 

5 will load the MB to the AMSW. Since the MB cannot be 

loaded directly to the FAC, the data will be loaded in the follow­

ing fashion: MB to the respective A register. A register 

to the O register and O register to the FAC FRACTION. These 

last two operations are accomplished in INITIATE STATE 6. 

A decision is also made in state 5 which directs the FPP to 

pick up the least significant three words of the FAC if 

in the EPM or just to pick up the FAC LSW. In the event of 

EPM, the ADRS register is incremented twice to point to the 

memory location that contains the first word of the least 

significant three of the 60-Bit FAC. TMSC SPECIAL ST along 

with TMSC ST ~' 1 and 2 request breaks to get data for the 

FAC'S least significant three words. The ALS 1, 2 and 3 

will hold the contents of the respective MB. At the end of 

TMSC ST 2, the ADRS is decremented by three to point to 

the core location that contains the FAC LSW and TMSC SPECIAL ST 

is zeroed and control returns to INITIATE STATE 6. The break 

in state 6 will load the contents of the MB to ALSW, take the 

entire A register (AMSW, ALSW, ALSl, ALS2 and ALS3) and load 

it in the 0 register and finally the entire FAC FRAC is loaded 

from the o register. Control now goes to Fetch state ¢. 

6-10 



State O 

State 1 

State 2 

State 3 

State 4 

State 5 

TMSC 
Special ST 
State 0 

TMSC 
Special ST 
State 1 

TMSC 
Special ST 
State 2 

State 6 

FIGURE 6-2 

Simplified Initiate Flow 

Initiate) 

Break using ADRS to pick 
up FLD bits for OP ADDRS, 
Base Reg, Index Reg and 
FPC 
INC ADRS 

.i. 
BreaK using ADRt> to picK 
up lower 12 bits of the FPC 
INC ADRS 

.J. 
BreaK using ADRS to pick 
up lower 12 bits of Index 
Reg 0 
INC ADRS • Break using ADRS to pick 
up lower 12 bits of the 
Base Reg 
INC ADRS Twice .. 
Break using ADRS to pick 
up the FAC exponent 

INC ADRS 
.L 

Break using ADRS to pick up 
FAC MSW 
INC ADRS 
INC ADRS again if EPM 

...... 
Break using ADRS to pick up 
FAC LSWl 
INC ADRS 

• Break using ADRS to pick 
up FAC LSW2 
INC ADRS 

J, 
Break using ADRS to pick up 
FAC LSW3 
DEC ADRS 3 Times 

L -
Break using ADRS to pick up 
FAC LSW 

I 
r 

6-11 

Not EPM ... .. 
1 1. EPM Only 

1 

1 

~ 
I Fetch 
~tate 

....__ 



6.3.2 Fetch 

Since the primary function of FETCH, other than strobing 

the instruction from core to the FIR, is one of address calcu­

lation, it is suggested that one familiarize himself with the 

different addressing modes described in Chapter 7, Paragraph 

7.5. Aided with this understanding and the simplified FETCH 

flow, Figure 6-3, the FETCH flow diagram should be much more 

meaningful. 

FETCH state ~ requests an out-break using the contents of the FPC. 

The contents of the MB represent the instruction which is loaded 

into the FIR. In state ~ FIR bits 3 and 4 are decoded for 

special instructions (3&4=~) or double word instructions 

(3=1&4=~4 Multible state special instructions go to PROCESS 

state 1 at the end of fetch state zero. Double word instruc­

tions jump to FETCH state 4 as there is no off set calculations to 

be done. The FAC EXP is tested for being greater than, (27)
8 

to be used later by the JAL instruction in PROCESS state one 

if the current instruction is a JAL. Fetch state 1 will multiply 

the off set by three. The off set for single-word direct is 

made up of FIR bits 5-11 and the offset for single-word 

indirect is made up of FIR bits 9-11. State 2 will add this 

offset to the base pointer and put the result in the OP ADDRS. 

The OP ADDRS is then incremented for one of the following reasons: 

a) MUL/DIV instructions pick up the MSW of the operand before 

the exponent. Remember the base points to a table of 

three consecutive word quantities determined by the 

off set. The order of data is EXP - MSW - LSW. 

6-12 



b) FIXED-POINT mode does not touch the exponenL 

c) Single-word indirect instructions will use the 

last two words of the three word quantity in the 

base as a base operand address. 

Single-word direct instructions (FIR 4=1 and FIR 3=0) go to 

EXECUTE at the end of state 2. State 3 will break using the 

OP ADDRS to pick up the field bits (MB~9-MB11) of the base 

operand address. This value is saved in the MQ register for 

possible adjustment by the specified index register. 

The specified index register is also calculated in state 3. 

This is done by adding FIR bits 6-8 to the index register 

pointer. State 4 will break using the OP ADDRS to pick up 

the last word of the three word quantity and this data will 

make up the lower 12-bits of the operand address. 

The OP ADDRS register is loaded with the specified index register. 

State 5 will index the contents of the specified index 

register if FIR 5=1. State 6 will pick up the contents 

of the specified index register provided the specified index 

register is nonzero. These contents are multiplied by 2, 3 

or 6 depending on the mode. Two if fixed-point, three if 

floating-point and six if extended-precision mode. If EPM, the 

result is doubled again in TMSC SPECIAL ST j\ TMSC STATE ~. 

This has the effect of multiplication by six. Control is then 

transferred to FETCH state 7. State 7 will take the multiplied 

contents of the index register and add this to either the 

contents of the MQ (single-word indirect) or the contents 

of the address indicated by FIR bits 9-11 and the contents 

6-13 



the memory location one greater than the instruction. 

(double-word). This result is loaded to the OP ADDRS and is the 

operand address which points to the data. In the case of 

MUL/DIV the OP ADDRS wants to be pointing to the MSW of data 

and not the exponent. Control now transfers to EXECUTE 

state ~· 

6-14 



STATE ¢ 

FETCH 

FIGURE 6-3 
SIMPLIFIED FETCH FLOW 

BREAK USING FPC TO 
PICK UP INSTRUCTION 

SPECIAL INSTRUCTION 

DOUBLE WORD 

STATE 1 ,..,...------.11111-------

STATE 2 

STATE 3 

STATE 4 

STATE 5 

MULTIPLY OFFSET BY 3 

ADD MULTIPLIED OFF­
SET TO BASE REG 

PUT RESULT IN THE 
OP ADDRS REG 

ADD 1 TO OP ADDRS REG 
IF MUL OR DIV OR FIXED 

POINT OR SINGLE WORD 
IND REC 

SINGLE WORD DIRECT 

BREAK USING OP ADDRS 
TO GET FLO BIT WHERE 
DATA IS LOCATED.SAVE 

THIS ADDRESS IN MQMSW 

BREAK USING OP ADDRS 
TO GET 12-BIT ADDRESS 

WHERE DATA IS STORED 
SAVE THIS ADDRESS IN MQLS 

LD OP ADDRS REG WITH 
SPECIF ED INDEX R G 

DO NOT INDEX 

USING OP ADDRS DO A 
INCREMENT BREAK TO 

THE CONTENTS OF THE 
SPECIFIED INDEX REG 

SPECIFIED INDEX'~EG ~ 
CONTINUE FETCH STATE 

6·15 

1. REMEMBER THIS 15-BIT 
ADDRESS MAY LATER BE 
MODIFIED BY THE SPECI­
FIED INDEX REGISTER. 

2. THIS DOES NOT MEAN 
THE CONTENTS 



STATE 6 

TMSC 
SPECIAL ST 
STATE f1 

STATE 7 

FIGURE 6-3 (Continued) 
SIMPLIFIED FETCH FLOW 

~INUED FROM FETCH S ATE 5 

----
BRE.t\K USING OP ADDRS 

TO GET CONTENTS OF 
SPECIFIED INDEX REG 

MULTIPLY CONTENTS BY 
2 IN FIXED POINT BY 
3 IN FLOATING POIN~ 

1-..liQ~-- 3. 
~--EPM MULTIPLY _......-3 

NT~- AGAIN BY 2 
6 -
~IS SPECIFIED INDEX R ~G 

SINGLE WORD INDIRECT 

\Ir 

BREAK USING FPC TO GET 
ADD~ESS !?_;f:TS 12-23 

Ii:'!_C .. F~Q...__- ' . 

TAKE FLD BITS IN FIR9- TAKE THE CONTENTS 

EP M ONLY 

OF 
FIRll AND THE 12-BIT THE MQ REG AND ADD 

ADDRESS ABOVE (BITS 12-23 IT TO THE MULTIPLIED 
AND ADD THEM TO THE CONTENTS OF THE SPECI-

MULTIPLIED CONTENTS OF FIED INDEX REG 
THE SPECIFIED INDES REG 

~ 
I -· PUT RESULT IN OP ADDRS -,..- •<M-.... u -

_,,_,,....,....,,,. ____ 

IF MUL OR DIV INC OP ADDR~ - --~-

6-16 



6.3.3 Exit 

On the Exit major state, there are two major directions of 

flow. 

a) Exit for exponent-underflow not trapped. 

b) All other exits except the above. 

We will not discuss the flow for exponent-underflow not trapped. 

This flow is best described in the simplified EXIT flow for 

exponent underflow Figure 6-5. Figure 6-4 supports the 

description given for EXIT major state in general. 

The first thing the EXIT major state must do is determine if 

in the EPM. If so, the TMSC SPECIAL ST flip-flop is set and 

a series of three in-breaks is conunenced for the purpose of 

storing the least significant three words of the FAC in core. 

This sequence only takes place after the ADRS register has 

been incremented by 3, (Done in TMSC ST~) as it will always 

point to the memory location of the FAC LSW after INITIATE, 

and provided the conunand register bit 7 is not set. If 

command register bit 7 is set, which specifies not to store 

the FAC, timing is advanced just to state 1, then to state 2 

and finally to state 3. The ADRS is decremented in each time 

state of EXIT except state 7. If the FAC is stored, non 

EPM exits will store the FAC in core starting with the FAC LSW 

in state ~ of EXIT. Timing will then advance through state 1 and 

2 to deposit the FAC MSW and FAC EXP. Unlike INITIATE, the 

OP ADDRS location in the table is accessed in state 3, provided 

the conunand register bit 6 is not set. The break will take 

the current contents of the OP ADDRS to the MB and advance 

6-17 



to state 4. State 4, if conunand register bit 5 is a zero, 

will request a break and deposit the current contents of the 

base (P4) register to the current core location. Timing will 

again advance to state 5 where the contents of the index register 

will be stored in core provided conunand register bit 4 is not 

set. The remaining two time states 6 and 7 will always request 

breaks to store the contents of the FPC and field bits respectively. 

At the end of state 7 the interrupt request flag is set and all 

activity stops in the FPP. 

6-18 



TMSC 
SPECIAL 
ST STATE 
0 

TMSC 
SPECIAL 
ST STATE 
1 

TMSC 
S.PECIAL 
ST STATE 
2 

TMSC 
SPECIAL 
ST STATE 
3 

STATE 0 

STATE 1 

STATE 2 

STATE 3 

STATE 4 

FIGURE 6 - 4 

SIMPLIFIED EXIT FLOW 

[ EXIT ) (all ex 
I Not EPM tr a pp 

VI" 

If CR 7 not set and in _1 
EPM then INC ADRS 3 ,_ 

times 

J, 
Break using ADRS to -1 
store FAC LSW3. -
DEC ADRS 

l 
Break using ADRS to -1 
store FAC LSW2 -
DEC ADRS 

! 
Break using ADRS to -1 
store FAC LSWl -
DEC ADRS 

•• • 
Break using ADRS to I 
store FAC LSW if CR7=0 
DEC ADRS 

i 
Break using ADRS to 
store FAC MSW if CR7=~ 
DEC ADRS 

J, 
Break using ADRS to 
store FAC EXPif CR7=~ 
DEC ADRS 

~ 
If CR 6 not set then 
break using ADRS and 
store OP address 
DEC ADRS 

~ 
If CR 5 not set then 
break using ADRS and 
store base address 
DEC ADRS 

• Continue exit state 5 
6•19 

ists except underflow not 
ed) 

1. EPM only 



STATE 5 

STATE 6 

STATE 7 

FIGURE 6-4 (Continued) 

Simplified Exit Flow 

Continued from exit state 4 

IF CR 4 not set then 
break using-ADRS and 
store index reg.pointe 
DEC ADRS 

Break using ADRS and 
store lower 12-bits 
of FPC. 
DEC ADRS 

Break using ADRS and 
store FLD bits of op 
ADDRS, base reg. index 
re • and FPC. 

6-20 



STATE ,0 

STATE 1 

TMSC 
SPECIAL ST 
STATE ,0 

TMSC 
SPECIAL ST 
STATE 1 

TMSC 
SPECIAL ST 
STATE 2 

STATE 2 

FIGURE 6-5 
SIMPLIFIED EXIT FLOW 

EXIT (EXIT BECAUSE OF UNDERFLOW NOT TRAPPED 

ANSWER STORED IN FAC 

IF IN EPM INC 
OP ADDRS AGAIN 

REAK USING OP 
,0~MB (LSW3 

EC OP ADDRS 3 TIMES 

REAK USING OP A 

EC OP ADDRS TWICE 

GO TO 
FETCH 

STATE ,0 

ZERO THE FAC 

NOT EPM 

1 1 EPM ONLY 

1 

l 

6-21 



6.3.4 Deposit 

At the end of any arithmetic calculation, the FPP can perform 

any number of the following operations depending on the mode 

and instruction: 

a) Normalization 

b) Rounding off the result 

c) Checking for fractional overflow 

d) Calculating the exponent 

e) Storing the result in memory 

f) Checking for exponent overflow or underflow 

These operations are done in the DEPOSIT Major state as shown 

by the simplified DEPOSIT flow Figure 6-6. The DEPOSIT 

major state is enabled by causing the timing generator to jump 

to State 11. 

When state 11 is enabled, the O register (Contains result) 

is shifted toward the most significant bit until the number is 

normalized: (See Chapter 7, Paragraph 7.3). This is indicated 

in the flows by O(N)--->OCN-1). The 2's complement of the 

number of shifts required is tallied in the SC. When the number 

in the O register is normalized, the timing generator is 

advanced and the four mini states are generated. At this point, 

if bit 24 in the BEXT (EXT print) is set, it will be rounded 

up to bit 23. Note -- if in DEPOSIT because of the START F 

instruction in EPM, rounding will take bit 24 of the FAC 

and round up via bit 24 of the BEXT. After rounding a test 

6·22 



for overflow is made. The only case where overflow can occur 

is if the number before rounding is 3777 7777. By adding 

one to the least significant bit (Bit 23}, the result would 

be 4000 0000. A sign change from positive to negative has 

occurred. This causes an exit in fixed-point mode and in 

floating-point mode; the result would be shifted right one 

position and one would be added to the exponent. (Actually 

the SC temporarily holds this adjustment.) At the end of 

time state 11, the time state generator is advanced to one 

of the following: 

a) Time state 12 if an overflow is detected from rounding. 

b) Time state 13 if results to memory. 

c) Time state 14 if none of the above. 

State 13 will break to memory at the OP ADDRS to deposit the 

least significant word of the result if doing an FADDM or 

FMULM instruction. If in the EPM, the next break will be 

to store the LSW 3 of the result. This is done by enabling 

TMSC SPECIAL ST /\ TMSC ST 0 which requests a break at the 

OP ADDRS which was incremented by 3 in state 13. Following 

TMSC ST ¢, TMSC ST 1 and TMSC ST 2 will force breaks to store the 

LSW 2 and LSWl of the result at the adjusted OP ADDRS. 

After the LSW 1 is stored in core, control returns to state 

14 of DEPOSIT with the OP ADDRS pointing at the memory location 

to which the MSW of the result will be stored. A break to 

this location is performed to store the MSW. DEPOSIT major 

state is completed for fixed-point numbers at this point. 

So fixed-point mode will go to FETCH state 0 at the end of 

state 14. With floating-point numbers, the exponent is calculated 

6-23 



for MUL/DIV and the contents of the SC are added to the 

exponent. State 15 either stores the exponent in core, if 

result to memory, or in the FAC EXP. It also will detect 

exponent overflow or exponent underflow. This means that 

the resultant exponent has exceeded the most positive or most 

negative value. (See Chapter 2, Paragraph 2.3}. If this value 

is exceeded, control is transferred to EXIT state zero. If 

no overflow or underflow, control is transferred to FETCH 

state zero. 

6-24 



state 11 

State 12 

State 13 

TMSC 
special st 
State 0' 

TMSC 
Special st 
State 1 

TMSC 
Special st 
State 2 

State 14 

State 15 

FIGURE 6-6 

Normalize number 
Round up bit 24 of 
the ext. re . 

not result 

must exit if rounr'linq gives over 
flow in fixed point mode 

Adjust fraction if 
overflow 

Not add or mul to memory 

Break at Op address. 
to store LSW of result '2 
dee Op addrs if not EPM 
If EPM inc Op addrs 
3 times 

Break at 09 address ,,.......2, 3 
to store LSW3 of result 
DEC Op address 

Break at Op addrs 
to store LSW 2 of result ...-2 ,3 
DEC Op addrs 

Break at op addrs 
to store LSWl of result - 2, 3 
DEC Op addrs twice 

Break at op addrs to 
store MSW of result -..... 
i--~~~~~~~~~--~~~ 2 
DEC Op addrs 
Calulate or adjust 
exp 

Break at 
to store exp. 
Test for exp overflow 
or underflow 

overflow r underf w 

6-25 

1 No rounding EPM 

2 Only for add to 
memory or mul tipl~ 
to memory 

3 EPM only 

Result to the FAC 

Fixed-

Adiusted exp to 
fac exp 



6.4 Flow Diagrams - Instructions 

6. 4 .1 

In the following paragraphs we will discuss the flow diagrams 

for the data reference instructions. It is felt that the 

special instructions are more easily understood than the data 

reference instructions, therefore, those flows will not be 

covered. 

LDA and STR 

The LDA flow diagram is executed during the EXECUTE major state. 

If the FPP is in floating-point mode the contents of the three 

sequential memory locations defined by the contents of the 

OP ADDRS are loaded into the FAC. In fixed-point mode, only 

the contents of two sequential memory locations are loaded 

into the FAC. In the extended precision mode the contents 

of six sequential memory locations are loaded into the FAC. 

Since the MB cannot be directly loaded into the FAC FRAC, 

it must be assembled into the respective A register 12-bits 

at a time. During the last break cycle in state 2 of EXECUTE 

the entire A register is then loaded into the O register 

and then the O register is loaded into the FAC FRAC. The STR 

flow diagram is basically the reverse process of the LDA. 

The STR flow diagram is implemented during the EXECUTE major 

state. In this case, the appropriate 12-bit bytes of the FAC 

are stored in the memory location defined by the OP ADDRS register. 

6-26 



6. 4. 2 

Add 

ADD/SUB (floating-point) 

A block diagram of the FPP's ADD/SUB is shown in Figure 6- . 

The flow diagram is implemented during the EXECUTE major state 

of an FADD, FADDM, or FSUB instruction, when the FPP12 is in 

floating-point mode. In order to add or subtract two floating-

point numbers, the exponents must be aligned; that is, the 

fractional part of the number with the smallest exponent must 

be shifted right and the exponent incremented until the two 

exponents are equal. 

FIGURE 6-7 

Add/Subtract Block Diagram 

or 
Subtract 

PM 

Break Break Break Break Break Break 
To Pick To Pick To Pick To Pick To Pie To Pick 
up EXP Up MSW Up LSWl Up LSW2 Up LSW3 Up LSW 
of Op er of Oper- of of of of Oper-
and Tes and Test Operand Operand Operand· and Test 
for Lar for Op er for OPS 
gest and Over = 0 or 
EXP. Shift over 

State 1 TMSC Ex- TMSC EX- TMSC Ex- State 2 
State ecute ecute 

State 1 State 2 

1. Operand cannot be aligned on the FAC. 
2. FAC cannot be aligned on the operand, or one of the 

operands equals zero. 

6-27 

lign 
the Nos., 

o the 
dd or 

Sub & Ad 
just Nos. 
if Over 
flow 

3 



Since the A register cannot be shifted, the fraction of the number 

with the smallest exponent must be loaded into the B register. 

This is done in the following fashion. During State O Mini 

State 1 and 2 the difference between the FAC exponent and the 

operand exponent is calculated and stored in the o. The 

operand exponent is stored in the MQLSW for future reference. 

The sign of the difference is used to determine which exponent 

is larger and, hence, which fraction must be loaded into the 

B register. The absolute value of the difference is also 

loaded into the SHFT CNTR which is subsequently used to deter­

mine the number of times the B register is shifted. During 

State 0 Mini State 3 and 4, the number of shifts required is 

checked to determine if it is more than (27)
8

; that is, if the 

fraction to be shifted will be completely shifted out of the 

B register. The OVERSHFT flip-flop, (ASTl NO SHFT) which is 

set during State 1 Mini State 2, is used to indicate that the 

required number of shifts is greater than (27) 8 . 

State 1 and State 2 are used to fetch the most significant 

two words of the operand fraction and TMSC State ~: 1 and 2 

get the least significant three words. In the case of FSUB, 

where the operand exponent is greater than the FAC exponent, 

the l's complement of the operand fraction is loaded into the 

A. This is necessary since the ALU cannot perform the operation 

B minus A. 

6·28 



Before the B is shifted, the fraction of the number with the 

largest exponent (which is stored in the A register) is checked 

to make sure that it is nonzero. This prevents the loss of 

significance when a number with a nonzero exponent and a zero 

fraction is added to or subtracted from another number. 

If the fraction of the number with the largest exponent is 

zero, the fraction stored in the B register is loaded into the 

O register and its associated exponent is loaded into MQLSW and 

the DEPOSIT major state is enabled. 

When State 3 is enabled, the B register is shifted toward the 

least significant bit. The number of positions is determined 

by the number contained in the SHFT CNTR. When shifting is 

completed, the timing is advanced and Mini State 1 is used 

to perform the required operation between the A and B registers. 

If the operation causes an overflow condition, adjust the fraction 

one bit position right and setthe SHFT CNTR to 1. 

At the end of State 3, the result of the addition or subtraction 

of the aligned fractions is stored in the 0 register, MQLSW 

contains the value of exponent of the aligned fractions, and 

SHFT CNTR contains a 0 or contains a 1 in the case when the 

fraction of the result was shifted right. The DEPOSIT major 

state is entered to perform the normalization, rounding, ex­

ponent calculation, and storage of the result. 

6-29 



6. 4. 3 

6. 4. 4 

ADD/SUB (Fixed-Point) 

This flow diagram refers to the EXECUTE state of an FADD, 

FADDM, or FSUB instruction, when the FPP12 is in fixed-point 

mode. If the result is greater than 37777777) or less than 
8 

40000001)
8 

the fraction overflow bit (bit 4 of the status regis-

ter) is set and the EXIT major state is enabled causing the 

FPP12 to halt. 

MULTIPLY 

A block diagram of the multiply is shown in Figure 6-8. 

The MULTIPLY flow diagram details the algorithm used by the 

FPP12 to perform floating-point and fixed-point multiplications. 

The absolute values of the two fractions are multiplied 

together to give a positive result which is negated if either 

but not both of the fractions are negative. The absolute 

value of the operand fraction is loaded in the MQ during 

State 0 and State 1. If the FAC fraction is negative, the 

complement is loaded in A and a CARRY INSERT is generated when 

A and Bare added during the multiply cycle so that the 2's 

complement of the FAC fraction is added to the contents of the 

B register. 

The multiplication of the two fractions is performed in State 

2. Each cycle of the algorithm requires two clock pulses. 

The first clock pulse is used to load A plus B into the O 

register and to decrement the SHFT CNTR. The second clock 

6-30 



FIGURE 6.8 

Multiply/Divide Block Diagram 

_Multiply 
or 

Divide Not EPM 

Break Break Break 
To 0 0 

Pick u Pick up Pick up 
MSW of SWl of LSW2 of 
Operand per and Operand 

State 0 TMSC Ex- TMSC Ex-
ecute ecute 
State 0 State 1 

1. Fixed point numbers 

Break Break 
To 0 

ick up 
SW of 

per and per and 

TMSC Ex- State 1 
ecute 
State 2 

6- 31 

Do the Break 
Multiply To 

or Pick up 
Divide EXP of 

Operand 

State 2 State 3 



6. 4. 5 

pulse also shifts the MQ toward the least significant bit, 

which brings the next binary bit of the multiplier into the 

23rd or 59th position for testing on the next cycle. The final 

product is stored in the B register. 

The remaining time states used in MULTIPLY store the product 

in O and load the operand exponent in the MQLSW for use in the 

DEPOSIT cycle. 

DIVIDE 

A block diagram of the FPP's DIVIDE is shown in Figure 6-8. 

The Divide algorithm used in the FPP12 is shown in the DIVIDE 

flow diagram. Again, the divide routine makes both the divisor 

and the dividend positive, calculates the quotient, and negates 

it if either but not both of the divisor or the dividend was 

negative. 

During State 0 and State 1 and TMSC ST~, 1 and 2, the FAC and 

the absolute value of the operand fraction are loaded into the 

A and the B registers, respectively. During State 2, the division 

of the fractions occurs. Again, like the MULTIPLY algorithm, 

two clock cycles are required for a shift cycle of the divide 

algorithm. During the first half of the cycle, the divisor 

is subtracted from the current remainder (which is stored in 

the A register) and, if the result is positive (CARRY OUT = 1), 

the difference is loaded into the O register and a 1 is shifted 

into the least significant bit of the MQ. During the second 

half of the cycle, the new remainder is multiplied by two and 

stored in the A register. The 0 register is also shifted 

6-32 



6.4.6 

left so that the contents of the A and 0 registers are the 

same. If the result of the trail subtraction is negative 

(CARRY OUT=O), a zero is shifted into the least significant 

bit of MQ and the current remainder, which is stored in both 

the O and the A registers, is multiplied by two. This multi-

:tiication is done by shifting the 0 register. The second half 

of the cycle then loads the contents of 0 register into the 

A register. The 28-bit or 60-bit (EPM) quotient is found 

in the MQ when division is complete. The remaining time states 

used in the divide routines load the MQ into the o, and the 

operand exponent into the MQLSW. During State 2 Mini State 

3, the quotient is divided by two and a one is loaded into the 

shift counter if the first subtraction gave a positive result. 

This will occur if the dividend is greater than the divisor. 

SPECIAL INSTRUCTIONS 

The remaining flow diagrams are those associated with the in­

structions that use Special Format 1, 2, and 3. Four of these 

instructions (FEXIT, FCLA, STARTF, and STARTD) are performed 

completely in FETCH State O. All of the conditional jumps 

are also completed in FETCH State O, if the condition is not 

true; that is, if the jump is not performed. In all other 

cases, the PROCESS major state is entered at the beginning of 

State 1. Table 6-2 shows the equivalence between the instruc­

tion mnemonic and its corresponding flow diagram heading. 

6-33 





CHAPTER 7 -- MAINTENANCE GUIDE 

7.1 INTRODUCTION 

This chapter is designed to assist a technically involved individual 

in solving hardware problems who may or may not of had training on 

the FPP12. ~here are some very important concepts and operation 

that must be understood before one can effectively fix an FPP12. 

These will be discussed in the following paragraphs along with several 

maintenance tips. 

7.2 INTEGERS AND FLOATING POINT NUMBERS 

It is very important for the user to understand the binary floating 

point (Binary point) number system and how the FPP adapts itself 

to this system. One of the most important concepts is, that a 

number in floating point format is a fraction and not an integer. 

This number is justified on the binary point which is to the right 

of the sign bit (Bit ¢) of the 24 or 6¢-bit (EPM) mantissa. The 

magnitude of this fraction is maintained in the exponent. It is 

easier to understand binary floating point if one understands 

scientific notation in the decimal system. For example, the decimal 

number of 3,¢¢¢ can be represented in an unlimited number of ways. 

DECIMAL 3.Xl03= 30.Xl02= 300.Xl0
1

= 3,000.XlOO= 30,000.XlO-l 

With binary floating point format, the similar relationship illus-

trated below exists with the value of six. 

2 1 0 -1 
BINARY .11X2 3= l.1X2 = ll.X2 = 110.X2 = 1100.X2 

7-1 



There are two operations (Float and Fix) used frequently in the 

FPP that convert integers to fractions and fractions to integers. 

They are discussed next. 

7.2.1 FLOAT 

When a number is floated, it is converted for its integer form into 

the fractional floating point format. This is done by placing the 

number of bits of the word length (mantissa is (27)
8

) into the ex­

ponent and then shift the mantissa left until all the nonsignificant 

ones or zeros (See Paragraph 7.3) are eliminated. 

1. The exponent is decremented by one for each shift until 

the fraction is normalized. 

2. Let's take the integer one and float it. 

EXPONENT ( S) 

.0 .0 .0 .0 

0027 

0026 

0025 

0002 

0001 

MANTISSA 
MSW 

000,000,000,000, 

o.oo,ooo,ooo,ooo, 

0.00,000,000,000, 

o.oo,ooo,ooo,ooo, 

l 
o.01,000,ooo,ooo, 

o.10,000,ooo,ooo, 

LSW 
000,000,000,001 

000,000,000,001 

000,000,000,010 

000,000,000,100 

! 
000,000,000,000 

000,000,000,000 

START 

SHIFTS 
---(8) 

1 

2 

25 

26 

The number one is now in correct floating point format. To better 

understand this fraction we will look at its fractional value. 

s 1/2 1/4 1/8 1/16 1/32 1/64 1/128 1/256 
0001 0. 1 0 I 0 0 0 I 0 0 0 I --- ETC. 

7·2 



Note that the above number is equal to one. 

0.10 x2 1 = 01.0 x2° or 1 

7. 2. 2 FIX OR INTEGERIZE 

When a fraction is fixed, it is converted to an integer. This is the 

reverse process of FLOATING an integer. To integerize a floating 

point number the exponent is adjusted to (27)
8 

and the fraction is 

shifted right depending on the difference of its exponent and (27) 8 . 

This difference is loaded into the shift counter and decremented 

until the shift counter is equal to zero. If the exponent is greater 

than (27)
8

, the floating point number is impossible to fix (Too large 

an integer for 23 bits). The JAL instruction tests to see if fixing 

is possible. Observe the fixing of the floating point fraction below. 

(Notice that the value of the fraction is equal to seven: 0.111X23 = 

7 or Olll.X2o). 

EXPONENT ( SHIFT CNTR( 8 ) MANTISSA 
8) 

MSW LSW 

0003 11 f1 f1 f1 0.11,100,000,000, 000,000,000,000 START 

0027 0024 0.11,100,000,000, 000,000,000,000 exponent 
difference(24 

0027 0023 0.01,110,000,000, 000,000,000,000 Shift 1 

0027 0022 o.oo,111,000,000, 000,000,000,000 2 

0027 0001 o.oo,ooo,000,000, 000,000,001,110 23 

0027 0000 0.00,000,000,000, 000,000,000,lll 24 

At the end of the 24th shift the fraction has been integerized and 

is equal to seven. 

7-3 



7.3 NORMALIZE 

Normalize eliminates nonsignif icant leading zeros or ones. To accompli~ 

this, the number (mantissa} is shifted to the left until one of the 

following conditions is true. 

a. Bits~ and 1 are different (O.l or 1.0) 

b. Only bits ~ and 1 of the entire fraction are equal to ones. 

For each shift the exponent is decreased by one. Note that the value 

of the number is not affected because the exponent keeps track of the 

direction and number of shifts. Notice that the normalized number 

can be shifted to the right to regain the exact starting value. 

Also remember the MSB is the sign bit and the binary point is always 

to the right of the sign bit. 

Observe the examples below based on a six bit mantissa and a twelve 

bit exponent. 

7 .. 4 



EXPONENT* MANTISSA START . 1 . 2 . 3 . 
a) ...rSIGN BIT . .,-., -SIGN BIT 

000,000,000,000 0.00,101 x 
lll,111,111,111 0.01,010 x 
111,111,lll,ll,0 0.10,100 x 

Pos. nos 
b) eliminate 

000,000,011,001 0.00,011 leading ,0' s x 
000,000,011,000 0.00,110 x 
000,000,010,111 0.01,100 x 
000,000,010,11,0 0.11,000 x 

c) 
000,000,000,010 1.11,101 x 
000,000,000,001 1.11,010 x 
000,000,000,000 1.10,100 x 
lll,111,111,111 1.01,000 x 

Neg. nos 
eliminate 

d) lll,lll,111,101 1.11,000 leading l's x 
lll,111,111,100 1.10,000 x 

*Each step (shift) is actually counted in the shift counter 

(CAR 6 PRINT) and when the number is normalized, the contents 

of the shift counter is added to the exponent. 

The example program below illustrates the usefulness of having 

normalized numbers. The registers used, are only three bits long 

with a four bit exponent. 

Program sequence 

1. A X B = PRODUCT 1 

2. AX PRODUCT 1 = PRODUCT 2 

3. AX PRODUCT 2 = PRODUCT 3 

7-5 



Example 1 with no normalization of results 

1. 

2. 

EXPONENT 
.g""""'Sign 
0,000 
0,000 
0,000 

0,000 

(4 Bits) 

,---sign 
1/2 

~i;~ 
B = 0 .10 
A = 0 .10 

PRODUCT 1 = 0.01 
A= 0.10 

PRODUCT 2 = 0.001 

Value of each bit 
in Fraction with 
zero exponent 

1/2 x 1/2 = 1/4 

1/4 x 1/2 = 1/8 

t..__significant digit is lost 
Notice that the significant bit of Product 2 has fallen into oblivion 
and that our answer has been eliminated with nonsignificant zeros. 
Two ways of preventing this loss, are to make the registers longer 
or to normalize the product after each multiply. Example 2 illustrates 
the use of normalizing the product. 

Example 2 

~Sign 1/2 
EXPONENT (4 Bits) lJ;:i;~ ,,.......sign 

1. 0,000 B = 0.10 1/2 x 1/2 = 1/4 
0,000 A = 0.10 
0,000 PRODUCT 1 = 0.01 

2. 1,111 PRODUCT 1 Normalized = 0.10 1/4 x 1/2 = 1/8 
A = 0.10 

1,111 PRODUCT 2 = 0.01 
3. 1,11,0 PRODUCT 2 Normalized = 0.10 1/8 x 1/2 = 1/16 

A = 0.10 
1,11,0 PRODUCT 3 = 0.01 
1,1,01 PRODUCT 3 Normalized = 0.10 Final PRODUCT 

If the exponent of product 3 was adjusted to zero, the actual fractional 

value would look something like this: 

EXPONENT MANTISSA 

1,1,01 0.10 = 0,000 

_.. .......................................... Sign 
-----1;2 
-----1/4 

lr----1/8 
~----1/16 

o.ooo! 

Normalize is done at the completion of every floating point arithmetic 

operation in DEPOSIT state 11. 

7·6 



7.4 ALIGN 

Align is used to shift the FAC mantissa right or left. This is 

usually performed for purposes of fixing, aligning exponents 

(Make the exponents equal) and for general shifting. In fixed-

point mode the direction and number of shifts of the mantissa, de-

pends on the contents of the specified index register. In floating-

point mode, the FAC is shifted until the FAC exponent equals the 

contents of the specified index register. If the specified index 

register is index register zero, the FAC is shifted so that its 

exponent is equal to (27}8. This will intergenize or fix a 

fraction. (Paragraph 7.2.2) Examples of the ALIGN instruction 

are shown below. 

Examples in floating-point 

EXPONENT c (INDEX) MANTISSA 

1 0000 0003 0.11,010 No • to be aligned .J.. • 

0003 0.00,011,1 Aligned 
t LOST 

2 . 0015 0013 0.00,101 No. to be aligned 
0013 0.10,100 Aligned 

3 . 0025 Align on Index ~ 0.10,100 No. to be aligned 
0027 0.00,101 Aligned 

In fixed point mode the sign bit of the contents of the index 

register determines ~he direction of the shifting. 

7-7 



Examples in fixed-point 

C(INDEX} MANTISSA 
Shift 3 left 

1. 0003 0.10,100 
0.00,010 

2. 7776 0.00,110 Shift 2 right 

0.11,000 

Align is also done during each add and subtract instruction if the 

exponents are different, as you cannot add or substract numbers with 

unlike exponents. This is accomplished by aligning the number 

with the smaller exponent to that of the larger exponent. An example 

is shown below. 

Example of an Add instruction. 

EXPONENTS OPERANDS 

A = X'.0,02 ,0.1,0,1,0,0 
B = .0 .0 .0.0 ,0. 11, 1,0,0 --- Align on the larger A 
B = .0.01'~ .0. ,0,0, 111 Aligned on A 

A = 00,02 0. 1,0, 1.0.0 2 1/2 
B = 0002 + 0.}1,0,111 + 7/8 
ANS = 0002 :0.11,:011 3 3/8 

7-8 



7.5 UNDERSTANDING ADDRESSING 

A thorough understanding of the addressing schemes is a must if one 

is to be effective in diagnosing hardware bugs. If instruction bits 

3 or 4 or both are equal to a one, then one of these address schemes 

is selected. These are the Double-word, Single-word and Single-

word indirect. This Chapter will illustrate and describe the operation 

of the addressing schemes by examples using the FLDA (Load the FAC 

from memory) instruction in the standard floating-point mode. 

7.5.1 DOUBLE WORD example 

Y = C(bits 9-23) + M* [C(X+X~) + C(bit 5)] r[; (X) 

General 
Form 

FLDA 
Example 

PP CODE 
0 - 2 

Parameters are: 

1 
3 

X,0 is assigned to 1,0,0,0 
X3 points to 1,0,03 

+ l x 
4 5 6 

1,0,03/,0,0,01 1 before indexing 
1,0,03/,0,0,02 2 after indexing 

I ADDRESSj 
8 9 11 12 

17,0,06/ ,0,0,01 
17,0,07/ 2,0,0,0 
1701,0/ ,0,0,0,0 

Data to be loaded into FAC 

7-9 

~DDRE~S I 
23 



Steps for calculating address 

1. Bits 3 and 4 decode as a double-word instruction. 

2. The address of X~ has previously been set to field ~ location 

l~~~ for this example. Bits 6-8 are selecting index register 

three. So we are concerned with the contents of 1,0,03 which 

will later modify the address in bits 9-23. However, if 

bits 6-8 were equal to zero, bits 9-23 point to the operand 

directly. (FAC EXP) 

3. The contents of X3 are to be indexed because bit 5 is set. 

The FPP now breaks to l~,03 and does an MB Increment, so lo-

cation l~,03 now contains ,0,0,02. 

4. A break to the specified index register (X3) will now pick 

up its contents and multiply this by 2, 3 or 6 depending on 

the mode; in fixed-point by 2, floating-point by 3 and in 

extended-precision by 6. In this example 2 is multiplied by 

3. 

5. The result, 6, is then added to bits 9-23 which was equal to 

field 1 location 7,0,0,0. The operand address is now equal to 

l 7006. At this point the FPP would go from Fetch to Execute 

and break at location 17006 for the exponent, 17,0,07 for the 

FAC-MSW and 17~1,0 for the FAC-LSW and then return to fetch. 

7.5.2 SINGLE WORD example 

Y = C(base register) + 3*(offset) 

General Form I OP Code J 0 1 i , Off set, I 
0 - 2 3 4 5 11 

7-10 



FLDA Example 10 0 0 j 0 I 1 0, 0 0 0 ' 1 0 
01 

Parameters are: 0 2 3 4 5 11 

Base register ha.s been assigned to 6.0~.0 

6~14 I .0.0.01 FAC EXP 

6015 I 2.0.0% FAC MSW Data to be loaded into FAC 

6016 I M1.04 FAC LSW 

Stepsfor calculating address 

1. Bits 3 and 4 decode as a single-word direct instruction. 

2. Bits 5-11 are used as an offset with single-word direct 

instructions. Bits 5-11 are simply multiplied by 3. In 

this example, the offset 4 is multiplied by 3 with the result 

of (14) 8 . 

3. Fourteen is then added to the base register (;96~~~) and the 

result Jj6.014 is the operand address. 

4. At this point, the FPP would go from Fetch to Execute and 

break at locations 6014, 6015 and 6016 to pick up the exponent, 

FAC-MSW and FAC-LSW. 

This form of addressing may be the easiest to use when dealing 

with toggle in type programs. 

7.5.3 SINGLE WORD INDRIECT Example 

Y= C[Bits 21-35 of C (Base reg.) +3*offset] 
+ (M) * [ C (X + X.0) + C (Bit 5)] S (X) 

7-11 



General Form 1 + x Off set 
4 5 6 8 9 

LDA Example 1,0,0,011 1 1 .0 ,0 1 

Parameters are: 

X,0 assigned to 2,0,0,0 
Xl points to 2,0,01 
Base register 
2,0.JH I ,0,0,06 I 
2,0,01 I ,0,0,07 I 
7,0,04 I ,0,0,011 
7,0,0 5 I 5,0,0,0 J 
1 5,025 I ,0,0,01 
1 5026 I 2.0,0J! 
1 5,027 I .013.0.0 

has been assigned to 7,0,0,0 
before indexing 
after indexing 
these are locations in the base table 
that contain the address of data 

FAC EXP~ 
FAC MSW Data to be loaded to FAC 
FAC LSW 

Steps for calculating address 

11 

1. Bits 3 and 4 decode a single-word indirect instruction. 

2. Bits 9-11 contains an offset which is to be multiplied by 

3. This will give us 3 in this example. 

3. This offset of 3 is then added to the base register pointer 

which is set to ,0 7,0,0,0 giving us 7,0,03. (It is worthy of noting 

the base register plus its offset always points to every third 

location following its initial setting. For example, if the 

offset was 2, the base register plus its offset would point 

to ,0 7,006. This is also true with the single-word direct.) 

Locations 7,0,03, 7,0,04 and 7,0,05 together contain a three-word quantity. 

Of this 36-bit quantity, the least significant 15 bits Loe. 7004 

and 7005 will represent the indirect address. Therefore the base 

register pointer must be incremented from 7003 to 7004. 

7·12 



4. The FPP will now break to locations 7~~4 (Bits 12-23) and 7~~5 

(bits 24-35). The contents of these locations will be saved 

in the MQ. Note that bits 21-35 are the only ones of interest 

as this is a 15 bit address. From this point the single-word 

indirect performs identically to the double-word with one 

exception. The MQ serves the same purpose as bits 9-23 of 

the double-word instruction. This example must now find the 

X register, index it, multiply its contents by 3, and add 

it to the address in the MQ. 

5. The instruction (bits 6-8) is calling for index register 1. 

Since X~ is pointing to 2~~~, then Xl will point to 2~~1. 

6. Bit 5 says to index the contents of Xl. So a MB Increment 

break is done on location 2~~1, changing its contents from 6 

to 7. 

7. Another break is done to location 2~~1 to grab its contents 

(7). Seven is now multiplied by 3 (floating-point mode) 

which gives the result of (25) 8 . 

8. Twenty-five is now added to the MQ which contained 1 5000. 

Now we have the final address of our data at location 1 5025, 

1, 5~26 and 1 5~27. Control would now go from Fetch to 

Execute to actually pick up the words from core. 

7-13 



7.6 UNDERSTANDING TIMING AND FLOWS 

Before one can efficiently correct hardware problems 

in the FPP, it is necessary to understand two concepts: 

timing and flow diagrams. If you do not understand the timing, 

you cannot effectively follow the flows. And if you cannot 

follow the flows, your effectiveness will be greatly impaired. 

For a detailed description of the timing and flows, see Chapters 

5 and 6. The following paragraphs are implemented to describe 

timing and flows and to express their importance from a maintenance 

point of view. 

7.6.1 TIMING 

All timing is generated on the STG print. However, if 

the EPM logic is implemented, the TMSC print will contain 

additional time states. Perhaps the easiest way of conveying 

the timing picture is to list those items of general signi­

ficance. 

1. There are 16 time states on the STG print. 

2. There are 4 time states on the TMSC print (EPM only). 

3. For each time state there are 4 mini states, originating 

in the STG print. 

4. These mini states are activated by pin Sl of the AND gate, 

Ml33,in slot C2~ going low. This low is shifted into 

the 4-Bit shift register at slot E~9U2 to provide STG 

MINI STATE 1 L at the next STG l~MHZ Clock H pulse. 

(Really 5 MHZ) The following clock pulse will shift 

this low into STG MINI STATE 2L as STG MINI STATE 1 L 

goes high. STG STATE CHANGE prevents additional lows 

from being shifted in at pin E~9U2. 

7-14 



5. A great number of individual inputs can qualify the start­

ing of the mini states as seen at pin Rl of C2~. However, 

the basic signal that causes the mini states i~ indirectly, 

the current time state. This is done in one of four ways: 

a. 

b. 

c. 

By completion of a break cycle (DBCl DONE (1) L) 

By the current time state immediately. 

By the current time state when the shift counter 

becomes equal to zero, as in MUL, DIV, ALIGN, ATX, 

XTA, and normalize, etc. It is important to note 

that the mini states are not active when doing 

multiple shifts and when the actual multiply or divide 

cycles are active. Timing is controlled by the shift 

counter not equalling zero. 

d. By the IOT that advances timing from a pause instruction. 

(F PAUSE) . 

6. At the end of mini state 4 (the last mini state) the current 

time state is disabled by the flop called STG D (1) H. 

So all work stops at this point except the logic that 

determines the next time state. 

7. The next time state is always 1 greater than the last 

time state, except when: 

a. The STG ZERO flop has been set. The STG ZERO flop 

causes the time state generator to go to time state 

zero. This always accompanies a major state change 

with one exception, when the major state is Fetch 

going to Fetch (Single state instruction). 

7-15 



b. The STG STROBE flop has been set. The STG STROBE 

flop causes the next time state to be more than 

one state greater than the last. The new time state 

will be strobed into a holding register (M238 slot 

C25) and is available at pins P2, R2, Vl and V2. For 

an example of a time state jump, look at the FEtch 

flow, time state ~, for double word instructions 

(FIR 3=1 + FIR4=~) which go to time state four 

from zero. 

8. Note that each mini state is 200ns in duration and the 

rising edge of the STG lOMHZ clock appears approximately 

140-150 ns into a mini state. Also note that the time 

states and mini states change on the trailing edge of 

the STG 1%MHZ clock. 

9. To illustrate how timing governs a particular operation, 

observe the following example. 

Example: 

Function will be to take the 0 register to the B registerM 

MAJOR STATE H 

TIME STATE H 

MINI STATE H 

OPTIONAL H 

EXAMPLE 0 TO B L 

200 ns 

7-16 



The signal EXAMPLE 0 to BL does two things: 

a. Enablesthe 0 register on the multiplexer that 

feeds the B register. 

b. Provides the enable that clocks the B reg~ster. 

7.6.2 FLOWS 

Without the flow diagrams, it just about impossible to repair a 

FPP12. This is how important flows will be in the correction of 

FPP failures. For a detailed description of the flows, see Chapter 6. 

For a general guide, read the list below. 

1. It is not always necessary to know why the FPP does a 

particular sequence to be able to repair that sequence. 

The most demanding task will be to determine the failure; not 

necessarily why it is failing. 

2. The flow diagrams relate to major states and instructions. 

The flows indicate step by step, how the FPP12 major 

statesand instructions are performed. 

7-17 



3. Generally, each operation on any particular flow will 

be identified by a time state, mini state and the signal 

causing the decision or action. The print where the 

logic is located is identified by the 

pref ix of the sign and there may also be notes to clarify 

certain operations. The above ingredients make the flows 

an extremely powerful tool for aiding one through the 

FPP12 logic. 

4. Here is an example of a failure which we will try to 

fix using the flows with the aid of an oscillscope. 

a. First, (Usually the hardest part) we determine 

from the diagnositc print-out, etc. that the FLDA 

instructions in floating point mode is failing. 

b. Further interrogation indicates that the LSW of the 

FAC did not get loaded properly. For additional 

information we single stepped through the breaks 

of the instruction to determine if addressing and 

the data were correct. They were. 

c. Now we have two very important facts which are: 

1. The FLDA instruction is failing and; 2. The 

LSW of the FAC is not being loaded properly during the 

instruction. 

7-18 



d. We decide to put the diagnostic in a self made 

scope loop to allow us the best picture possible. 

e. Then we look at the FLDA flow (sheet 4) to determine 

the sequence of the instruction. It is determined 

from the notes and signal names that the FAC LSW 

is delt with in time state 2. 

f. With an oscilloscope, we then referenced channel 

1 on the signal SPI3 XCT3 LDA L which causes the 

break request. With channel 2, we followed the 

data from memory to the FAC (MB___..., ALSW, A__...... O 

and finally 0 ......... FAC FRAC). It turned out that 

the gate which supplied RG3 load FAC FRAC LSW L 

was broken, therefore not loading the FAC LSW. 

7.7 DO IT YOURSELF FPP12 PROGRAM 

It turns out that many FPP12 problems are not the ambiguous, obscure 

type. It may be in some cases that just by toggling in a few 

instructions, you will be able to determine the FPP12's problem 

without getting bogged down in high-powered diagnostics. This can be 

done in the following manner. 

BEGIN 

20/7300 

21/1100 

22/3501 

23/6553 

24/1102 

PDP-8 CODE 

clear AC and link 

Tad loc 100 

DCA I 101 

FPCOM 

TAD 102 

/Contains the FPC (Floating point program counter) 

/Puts the FPC in the FPC location of the 
APT table. 

/Loads the command register with zero and the 
field bits of the APT with zero. 

/Load the AC with the starting address of 
the APT. 

7-19 



25/6555 

26/7402 

27/6557 

30/5027 

31/502 0 

1.0.0/ ,02,0,0 

101/0401 

102/0400 

400/,0.0.0.0 

401/,02.0,0 

402/1,0,0,0 

4,03/7000 

404/.0.0.0-.0 

405/.0.0.0.0 

4,06/.0.0.0.0 

407 /.0.0.0.0 

200/ 

1000/ 

7000/ 

FPST 

HLT 

FPIST 

JUMP-1 

JUMP BEGIN 

/Start the FPP at the APT address in the AC. 

/Should skip - could be I/O bus problems 
if it halts. 

/Skip when done, read status and clear 
flag. 

/Look for done flag. 

/Do program over again. 

/Contains the FPC. 

/Contains the address of the FPC in the 
table. 

/Contains the starting address of the APT. 

/Field bi ts for the operand address, 
base register, index register location 
and FPC. 

/Lower 12 bits of the FPC. 

/Lower 12 bits of index register .0 location. 

/Lower 12 bits of base register 

/Lower 12 bits of the operand address. 

/Exponent of the FAC. 

/MSW of the FAC 

/LSW of the FAC 

/First FPP12 instruction 

/Index register .0 

/Base register 

7·20 



All you have to do is put the FPP instruction you wish to do 

in location ~2~~. In location 2~1 put either an exit instruction, another 

instruction or a JA instruction (1030, 0200) back to the beginning 

at location ~2~~. 

7.8 BREAK SEQUENCE FOR DATA REFERENCING INSTRUCTIONS 

At times it can be very confusing to follow the break sequence to 

and from memory when debugging programs. To aid the user, the following 

Table 7-1 is available for the data referencing instructions which 

will apply only to the data fetching and storing the data after the 

Fetch major state. 

7.9 MAINTENANCE LOGIC 

Maintenance logic, built into the FPP12, permits the CPU to examine, 

in detail, the cperation of the FPP12. For instance, the CPU can issue 

IOTs that force the FPP12 to cease operation after every major time 

state. Other IOTs permit the CPU to examine internal registers in the 

FPP12. Using these tools, a diagnostic program can pinpoint the exact 

step in the flow charts in which the FPP12 fails. This should isolate 

the failure to within one or two gates. Diagnostic instructions can 

sometimes be used to debug programs. For instance, there is a 

maintenance instruction that reads the 12 least significant bits of the 

APT pointer. If a program has more than one APT it can be desirable 

to determine which APT is currently in use. This can be done by issuing 

the maintenance IOT 6565 with the AC clear. 

A complete list of maintenance IOTs and their functions follows. Data 

from the FPP12 is inclusively ORed into the AC when the maintenance 

7-21 



mode IOTs are used. 

OCTAL CODE 

6561 

6562 

6563 

6564 

6565 

6566 

6567 

MNEMONIC 

Enter Maintenance Mode 
or Maintenance Step 

Read States 

Read OMSW 

Read OLSW 

Read APT 

Read MQLSW 

Load Shift Counter 

7-22 

FUNCTION 

a. This IOT is typically issued 
prior to FPST to begin main­
tenance mode. 

b. 6561 is issued when halted at 
the end of a major time state 
to cause the advance to the next 
time state. 

c. Maintenance mode is cleared 
whenever the FPP Interrupt 
Request flag is cleared. 

The current major time state and 
enable state are ORed into the AC, 
according to Table 3-3. 

OR the OMSW register into the AC. 

OR the OLSW into the AC. 

OR the least significant 12 bits 
of the APT pointer into the AC. 

OR MQLSW into the AC. 

Load the shift counter with the least 
significant 6 bits of the AC or 
select the extended-precision mode 
or read the least significant three 
words of the O register to the AC 
according to Table 7-3. Also clears 
the AC. 



--J 
I 

(\.) 

w 

See Note 

1 
2 
3 

1 
2 
3 

1 
2 
3 

1 
2 
3 

1 
2 

3 

1 

2 

3 

INSTRUCTION DIRECTION 

FLDA 
! FLDA out 
! FLDA out 

FSTR In 
FSTR In 
FSTR In 

FADD,FSUB out 
1 FADD FSUB out 
I FADD, FSUB out 

FMUL, FDIV 
I 

out 
FMUL, FDIV out 
FMUL,FDIV out 

I FADDM out 
j FADDM (DEPOSIT In I I 

FADDM out 
I FADDM (DEPOSIT): In 

FADDM out 

I 
i 

FADDM (DEPOSIT~ In 
I 

FM ULM I out I 
I FM ULM (DEPOSIT~ In 

I FMULM out 
FM ULM (DEPOSIT' In 

I 

FMULM out I 
(DEPOSIT I FMULM In I 

I 
! 

NOTE: 1. Fixed - point 

TABLE 7-1 

BREAK SEQUENCE 

EXP MSW LSW ! LSWl ! LSW2 LSW3 

1 2 I 
I 

1 2 3 ' 

1 2 6 3 4 5 

1 2 
1 2 3 
1 2 3 4 5 6 

! 

1 2 
1 2 3 
1 2 6 3 4 5 

I 1 2 

I 3 1 2 
6 I 1 I 5 2 3 4 

I i 
' 

I 
i 

1 I 2 i 
: 

2 I 1 
I 

1 I 2 3 ! 

3 I 2 1 
1 t 2 6 3 4 5 

' 

6 
i 

5 1 4 3 2 

1 2 
2 1 

3 ! 1 2 
3 2 1 
6 1 5 ' 2 I 3 4 
6 5 1 4 

i 
3 2 

) 

' 

2. Floating Point 3. Extended precision 



AC BIT 

00 
01 
02 
03 
04 
05 
06 
07 
08 
09 
10 
11 

TABLE 7-2 

Definition of AC Bits After IOT 6562 
Read States 

FUNCTION 

Most significant bit of major time state counter 
Bit 1 of major time state counter 
Bit 2 of major time state counter 
Bit 3 of major time state counter 
CRN deposit flop ( 1) H 
CNR fetch flop (1) H 
CRN execute flop (1) H 
CNR exit flop ( 1) H 
CNR initiate flop (1) H 
CNR process flop (1) H 
Special st ( 1) H * 
TMSC execute * 

* These signals are only active when the EPM logic is implemented. 

7 .. 24 



TABLE 7 - 3 

Definition of AC Bits Before and After IOT 6567 

AC BIT BEFORE FUNCTION 

00 Selects the extended precision mode 
01 N/A 
02 N/A 
03 Reads the OLSWl to the AC 
04 Reads the OLSW2 to the AC 
05 Reads the OLSW3 to the AC 
06 Set shift counter MSB 
07 Set shift counter 

1 08 Set shift counter 
09 Set shift counter 
10 Set shift counter 
11 Set shift counter LSB 

AC BIT AFTER 

00 0 register bit 24 or 36 or 48 
01 0 register bit 25 or 37 or 49 
02 0 register bit 25 or 38 or 50 
03 0 register bit 27 or 39 or 51 
04 0 register bit 28 or 40 or 52 
05 0 register bit 29 or 41 or 53 
06 0 register bit 30 or 42 or 54 
07 0 register bit 31 or 43 or 55 
08 0 register bit 32 or 44 or 56 
09 0 register bit 33 or 45 or 57 
10 0 register bit 34 or 46 or 58 
11 0 register bit 35 or 47 or 59 

Maintenance Instructions are detailed on print D-BS-FPP12-0-Cl2. 

7-25 





CHAPTER 8 - FPP12 INSTALLATION AND ACCEPTANCE 

8.1 DESCRIPTION 

The Floating Point Processor is a standard PDP-8 type, data break 

I/O bus peripheral. The FPP12 is attached to positive bus 

computers with BC08B cables and to negative bus computers with 

BC08D cables, according to drawing D-IOC-FPP12-0-0 or D-IOC-FPP12-

A-¢. Standard FPP12 logics are wired for PDP-12 computers. 

Slight wiring alterations for PDP-8/I, PDP-8/L, PDP-8/E, PDP-8, 

and LINC-8 Computers are normally made as the units are checked 

out in the factory. The wiring changes for field conversion 

are shown in Tables 8-1 and 8-2. It is also necessary to 

exchange nine modules when converting the FPP12 from a positive 

to negative I/O bus. These modules and their locations are 

shown in Table 8-3. 

Before commencing with the installation, make sure the CPU 

is up to the proper ECO level. 

TABLE 8-1 
PDP-8/L, PDP-8/I Positive Bus and PDP-8/E 

Name Run Add Delete 

Cil ADD ACC ( 1) L D¢4Dl - AllV2 x 

D04Dl - D30Nl x 

EXT ENAB INT PAUSE H F05U2 - B03V2 x 

Cll BTS 05 (1) H D30Nl - AllT2 x 

Cil BREAK (¢) H D¢4Dl - F¢3V2 x 

8-1 



TABLE 8-2 
PDP-8, LINC-8, and PDP-8/I with Negative Bus 

Name Run I Add Delete 

EXT ENAB INT PAUSE H F05U2 - B03V2 x 

Cll IOP 1 H C01M2 - E01M2 x 
Al\:O'Hl - C01M2 x 
C01M2 - E01M2 x 
C01M2 - AlOFl x 

Cll IOP 2 H C01N2 - E01N2 x 
C01N2 - AlOPl x 
C01N2 - E01N2 x 
C01N2 - AlONl x 

Cll IOP 4 H C01P2 - E01P2 x 
C01P2 - AlOSl x 
C01P2 - E01P2 x 
C01P2 - AlORl x 

Cll INIT L B31P2 - A21Dl x 

Cil INIT H B31P2 - A21El x 

Ail ADD ACC (1) L AllV2 - D04Dl x 
D04Dl - D3 ONl x 

Cil BTS 05 (1) L D30Nl - AllS2 x 

Il BREAK (0) H D04Dl - F03V? x 

8·2 



TABLE 8-3 
Module Changes for Negative Bus Computers 

Slot Positive Bus Modules Negative Bus Modules 

B08 MlOl MlOO 

C03 M623 M633 

C04 M623 M633 

cos M623 M633 

DOS M623 M633 

E03 MlOl MlOO 

E04 MlOl MlOO 

E08 M623 M633 

FOS M623 M633 

8.2 INSPECTION 

After removing the equipment packing material, inspect the 

equipment and report any damages to the local DEC sales office. 

Inspection procedures are as follows: 

STEP PROCEDURE 

1. Inspect external surf aces of the cabinet and 

related equipment for surface damages, etc. 

2. Remove the shipping bolts from the rear door, and 

internally inspect the cabinet for processor 

and interconnecting cable damage (if any); 

inspect for loose or broken modules, blower 

or fan damage, any loose nuts, bolts, screws, etc. 

3. Inspect the wiring side of the logic panels for 

bent pins, cut wires, loose external components 

and foreign material. Remedy any defects found. 

4. Inspect the power supplies for proper seating of 

8-3 



fuses and power connecting plugs. 

8.3 CABINET INSTALLATION 

The FPP12 cabinet is equipped withroll-around casters and adjustable 

leveling feet. 

STEP 

1. 

Cabinet installation procedures are as follows: 

PROCEDURE 

With the cabinet in the desired position (See 

Paragraph 8.6), lower the leveling feet so that 

the cabinet is supported on the leveling feet, not 

on the roll-around casters. 

2. Use a spirit level to level all cabinets and be 

certain that all feet are firmly against the floor. 

3. If necessary, tighten the bolts that secure the 

cabinets groups together, then recheck cabinet 

level. Again, make certain that all leveling 

feet are seated firmly on the floor. 

8.4 AC POWER HOOK-UP DESCRIPTION 

In the FPP12-A cabinet there is an H854 AC power control (H854B 

for 5¢ HZ) which supplies the AC to the fans and H740D power 

supplies. This control is generally operated by remote control. 

This is accomplished by the turn-on source being connected to 

terminals 2 and 5 on the "Jones Strip" of the H854 power control. 

This power control is connected to the AC power with a line cord 

terminated in a Hubbell 30-arnp twist-lock male plug. Follow 

the procedure below for proper AC installation. 

STEP 

1. 

PROCEDURE 

If unit is to be operated remotely, connect term­

inals 2 and 5 on the H854 to the proper AC source 

energized with the turn-on of the computer key. 

This varies with the type of computer used. 

8-4 



STEP 

2. 

3 . 

4. 

5. 

Pigtail 

Line 

Green 

White 

Black 

PROCEDURE 

Check power supplies, fans and power control for 

proper 110 or 240 volt wiring. Note that 110-volt source 
must be found from adjacent cabs or step down transformers 
to operate the fans on 240-volt systems. 

Measure the source AC voltage and ineure that 

the proper voltage is present. Also check AC 

source terminals (wall outlet) for proper line, 

neutral and ground relationships. See TABLE 8.4 

for the line cord relationships. 

Set the primary power circuit breaker (on back of 

H854) to the OFF position, then plug the FPP12 

cabinet primary power line cord into the wall outlet. 

The red lamp on the power control panel should illum-

inate indicating primary AC power is applied. 

Set the local-remote switch to remote and turn the 

primary power circuit breaker to the ON position. 

TABLE 8-4 
POWER LINE CORD IDENTIFICATION 

Information Voltage Relationships Plug 

Wire Color 

Frame Ground w 1¢ Volts1 ~ 
Netural/Line 2 11 OV ~ llOV x 

or or 
Line 1 240V j240V y 

8-5 



a. The green wire is the cabinet frame ground and 

does not carry load current¢, however, it must 

be connected for safety reasons. This wire 

must be securely connected from the FPP12-A 

cabinet to the grounding point on the primary 

power source. 

b. The white or light gray wire is the netural, 

common, AC return, or cold lead and must 

never be used for purposes of grounding. 

8.5 DC CONTINUITY CHECK 

Before the application of power to the system and FPP logic, 

a continuity check should be performed at the following check points 

with an Ohm meter selected on the Rxl scale. 

a. Between Al0A2 and Al0C2 - not less than 2 ohms. 

b. Between Hl0A2 and Hl0C2 - not less than 2 ohms. 

c. Between F05B2 and F05C2 - not less than 2 ohms. 

8.6 CABLING 

There is one general rule for cabling and that is to keep the I/O 

and Data Break bus as short as possible. The I/O bus slots are 

paralleled as follows: 

A01 - B01 ( 
'­

A02 - B02 

A03 - B03 

I/O BUS 

8-6 



The Data Break bus is wired only to slots: 

B\214 
} DATA BREAK 

B\215 

Slot Bl\21 carries the extended memory field bits (EA0-EA2) and in 

used only on PDP-8s and Linc-B's that have no DMOl data multiplexer. 

This is the equivalent to the PDP-8s eleventh cable. 

8.7 WIRE CHANGE FOR SERIAL MODE 

On PDP-12 positive bus systems only, a wire is deleted in the 

central processor to allow this feature. Delete Nl6V2-Nl9Tl 

(EXT ENAB INT PAUSE H) 

8.8 DC POWER CHECK 

The system is now ready to be "powered-up". After this has been 

accomplished check the following points with an oscilloscopes 

or voltmeter: 

a. Between Al0A2 - Al¢C2 - to read plus 5 vol ts "t . 2 vol ts. 

b. Between Hl\21A2 - Hl\21C2 - to read plus 5 volts ± .2 volts. 

c. Between F05B2 - F05C2 - to read minus 15 volts~ .5 volts. 

8.9 FPP 12 CHECKOUT 

Before running the diagnostics, it should be varified that the 

M401 oscillator, in slot Cl5-pin D2 is correctly adjusted at 

5MHZ or one clock pulse every 200 nano seconds. There is a 

potentiometer on the module for this purpose. 

8-7 



The following diagnostics should be run in the sequence shown 

in accordance with the documentation supplied with each program 

listing. (Use latest revision of diagnostic.) 

TIME IN MINUTES 

1¢ FPP-12 INSTRUCTION 'TEST 2A MAINDEC-12-D¢MC 

1¢ FPP-12 INSTRUCTION TEST 2B MAINDEC-12-Dj'.jNB 

1¢ FPP-12 INSTRUCTION TEST 2C MAINDEC-12-D¢0B 

1¢ FPP-12 ADDRESS TEST MAINDEC-12-D¢PC 

3¢ FPP-12 EXERCISER MAINDEC-12-D¢QD 

3¢ TRACE MAINDEC-12-D¢LC 

1¢ FPP-12 INSTRUCTION TEST 3 MAINDEC-12-D¢UA 

3¢ TRACE (EPM) MAINDEC-12-D¢TA 

If installing the FPP on a PDP-12 system, also run PDP-12 system 

exerciser, Maindec-12-D7CC or later, for at least 3¢ minutes. 

Note that there are two trace programs, however only one is to 

be run on any particular FPP 12 system. The trace marked (EPM) 

is run if the extended precision logic is implemented. 

8-8 

) 



( 

' 

( 

• 

(_j 



• 
) 

) 

l 

) 


	Contents
	Chapter 1 - Introduction
	Chapter 2 - Description
	Chapter 3 - Programming
	Chapter 4 - Programming Examples
	Chapter 5 - Hardware Description
	Chapter 6 - Operational Guide Using Flow Diagrams
	Chapter 7 - Maintenance Guide
	Chapter 8 - FPP12 Installation and Acceptance



