lolel

N N O
O

NN QO
O) (O) (O
OIOI©)
O)LO) (O

a Ko Ea o fa
OOOOOOO
O

ok *o*o*o*o*m 5

ofete

clilgitlall

FRED

DEC~12-FZFA-D
l1st Printing May 1970

Copyright Gg) 1970 by Digital Equipment Corporation

The material in this handbook, including but not
limited to instruction times and operating speeds,
is for information purposes and is subject to

change without notice.

The following are trademarks of Digital Equipment

Corporation, Maynard, Massachusetts:

DEC PDP
FLIP CHIP FOCAL
DIGITAL COMPUTER LAB

For additional copies, order DEC-12~FZFA-D from Digital
Equipment Corporation, Program Library, Maynard,
Mass. 01754. Price $1.00

TABLE OF CONTENTS

Program Overview

Environment
Usage
Description of the Routines
4.1 GETFLD
4.2 READ
4.3 WRITE
4.4 LOOKUP
4.5 ENTER
4.6 REPLACE
4.7 FCF

4.8 DELETE
Flowcharts

W N ot D

o e
oo N

1.0 ~ PROGRAM OVERVIEW
FRED {File Replacement, Entry, and Deletion) is a set of PDP-12
subrotitines for manipulation of LAP6-DIAL! indices.

There are four leveis of réutines, with provision for a routine
at any but the lowest level to call any routine of lower level.
‘There is no provision for'reentrance or recursion, but the
routines are serially reusable (except for REPLACE., as explained
later) .

Locations 2@ to 27 contain DJR, JMP pairs to the entry points
of each major routine, so that the coding can be modified

without changing calls in external routines.

2.0 ENVIRONMENT

FRED occupies two tape blocks and, when in core, uses four LINC
memory blocks (20008 words), including space for the index.

The routines are segment-independent, but must be loaded at a
segment boundary. Thus memory addresses of 2000, 4000, 6000,
14000, etc., can be used, but 2400 or 3000 may not.

In this discussion, all locations are relative to the segment
into which FRED is loaded.

3.0 USAGE
3.1 The user's program must load FRED from a DIAL tape,
or assemble it with his program, at any memory address which is

a multiple of 2¢g@f,. It may then be reused until it is overlaid.

3.2 Entry points for the routines of FRED start at location
28 of the segment into which FRED is loaded, as follows:

29 - LOOKUP
22 - ENTER
24 - REPLACE
26 -. DELETE
39 - READ

35 - WRITE

! LAP6—DIAL?is hereafter referred to as DIAL.

1

READ and WRITE are called as follows:

LIF. X /SEGMENT INTO WHICH FRED IS LOADED
LDA T /LOAD AC WITH PARAMETER POINTER
RWPARM /POINTER TO READ/WRITE PARAMETER LIST
JMP 38 (JMP 35) /DO READ (WRITE)
RWPARM, Y\UNIT /HIGH-ORDER THREE BITS FOR FIELD
/LOW-ORDER THREE BITS FOR TAPE UNIT
BUFFER /12-BIT MEMORY ADDRESS OF DATA
BLOCKNO /BLOCK NUMBER OF FIRST TAPE BLOCK
~COUNT /NO. OF BLOCKS TO READ/WRITE

The COUNT must not be zero.

Return is to the instruction following the JMP If AC Bit 1 is
#, RWPARM is taken from the caller's instruction segment if 1, the
parameter list is in hig data .segment. Note: There is no check
for attempts by the user to write over LAP6-DIAL, nor is there a
check to prevent reading over FRED.

3.3 LOOKUP, ENTER, and DELETE are called as follows:
LIF X /SEGMENTVWITH FRED
LDA I /AC: POINTER TO FILE DESCRIPTOR VECTOR
FDV /GO TO LOOKUP (ENTER, DELETE)

JMP 28 (JMP 22, 26) -

.
.
.

FDV, .UNIT /LINC TAPE @-7 ‘
TEXT "NAME????" /FILE NAME, ENDING WITH 77'S
) /TO FILL FOUR WORDS (8 CHARS)

2

TYPE /#8923 FOR SOURCE, @g@fi2 FOR BINARY

START /STARTING BLOCK NO. OF FILE:

/FILLED BY LOOKUP, ENTER, REPLACE,
OR DELETE
LEN /LENGTH OF FILE IN BLOCKS: FILLED IN

/BY LOOKUP, CALLER MUST SUPPLY IN
/ENTER-REPLACE, UNUSED BY DELETE

a) LOOKUP has two returnsi 'fhe first, immediately
" following JMP 2@, is taken if there is an error in the
parameter list, or the named file is not found. The second,
two words after JMP 2§, is taken if the file is found, in-
dicating that the information in the file descriptor vector
is correct.

LIF X

LDA I

JMP LOOKUP /GO FIND THE FILE

JMP NOFIND /18T RETURN FILE DOESN'T EXIST
/COME HERE WHEN FILE IS FOUND’

b) ENTER has three returns; The first is taken if

7
there already exists a file of the same name and type. The

second is taken on errors in parameter list or insufficient
space, either in file space or in the index. The third indicates
successful updating of the index.

LIF X /SEGMENT CONTAINING FRED

LDA I /POINTER TO PARAMETER LIST

FDV

JMP ENTER /GO ENTER FILE IN INDEX

JMP EXISTS /1ST RETURN - FILE ALREADY EXISTS
JMP NOSPACE /2ND RETURN - NO SPACE FOR FILE

/COME HERE ON SUCCESSFUL COMPLETION
Note that the largest file which can ever be stored on a DIAL
tape is 310 blocks, because that is the length of the largest file area.

c) DELETE has only one return, immediately following the
JMP 26,

3.4 REPLACE may be called only immediately after a call to ENTER
which took the second return. The parameter list need not be
explicitly indicated ~ REPLACE uses that from the preceding ENTER,
But the instruction field must be sset again.

There are two returnSJ the first is taken on error in calling
sequence or insufficient space. (This can never occur if the new
file is smaller than or equal to the old file). The second indi-

cates successful replacing of the old file entry.

LIF X ‘ /SEGMENT CONTAINING FRED
JMP REPLAC /ENTER FOUND A FILE OF SAME NAME
JMP NOSPAC /NO SPACE FOR NEW ONE

/COME HERE ON SUCCESSFUL REPLACE

If REPLACE is not able to find space for a new file, the
old file remains intact.

If the call to REPLACE is not immediately preceded by
a call to ENTER which returns indicating the file exists, the
machine will halt and FRED must be reloaded.

4.0 DESCRIPTION OF THE ROUTINES:

4.1 GETFLD: (Level @) called to obtain the address of the
the user's parameter list, which he placed in AC before the
call. AC is stored in PARAM (Beta 1). The save field
buffer is read and stored at SAVFLD. Bit 1 of the para-
meter list is in the caller's data field, which is also

FRED's data field, and GETFLD returns.

If zero, the parameter list is in the caller's
instruction field. That field is then obtained
from SAVFLD and used to construct an LDF in-
struction at GTFPgLlP, which is executed to set
FRED's data field to the caller's instruction field.
Bit 1 is set in PARAM and GETFLD exits.

READ: (Level 1, entry point 3@). The return JMP
at @ is saved at RETURN (Beta 17). An RDC instruc-
tion is placed in RDWR (Beta 2), and READ jumps to
COMMOM. See WRITE.

WRITE: (Level 1, entry point 35). Return JMP is

saved at RETURN (Beta 17), and a WRC instruction is
moved to RDWR (Beta 2). From this point (COMMON),

READ and WRITE are the game routine. RETQ (Beta 16)

is set to 7777 to indicate that the call was from a

user outside this field. GETFLD is called to set up
PARAM (Beta 1) to point to the parameter list. The

next location, RWENT, is the entry point for internal
calls by higher lever routines, which must have per-
formed appropriate setup. The 8-mode field (high-order
3 bits of 15-bit address) 1is obtained from the parameter
list and stored at EXT for use in extended addressing.
The two high-order bits of the unit number are then
moved to AClO—li’ with the low~order bit in Linc.

Tape extended operations are then set. The 12 low-order
bits of the memory address are obtained from the para-
meter list and stored at MEMADD. The low-order unit bit
is obtained from Link, combined with the READ or WRITE
instruction at RDWR, and stored at CMND The first
block number is obtained from the parameter list and
stored, following the command, at 10BLK.

The block count, also from the parameter list, is com-
plemented and stored at RDWR (Beta 2) as a loop control.

IOLQOP begins by setting the tape memory address register,

then updéting the address at MEMADD. The READ or
WRITE instruction is executed, the block number is
incremented, and RDWR is incremented to test for
completion. If more I/O remains, there is a jump
to IOLOOP. Otherwise, RET2 is tested to determine
whether the call was internal or external. If
internal (RET2# 7777), return is immediated. If
external, the user's fields are restored before re-
turning.

LOOKUP : (Level 2, entry point 2@) RET3 (Beta 15)
ié set to 7777 to indicate external call. Internal
calls enter immediately following this point, at
LKP@@P. Here, the return JIJMP is saved at RET2 (Beta
16), and GETFLD is called. PARAM (Beta 1) is saved
at PARM2 (Beta 3). The current instruction field is
obtained, and used to set the address into which the
index will be read. Parameters and return address
are set up for READ, which is then called at RWENT
to bring in the index. Upon return, the index is
checked for validity (5757 is first word). If
invalid, an empty index is built in core by storing
5757 in each word (from 188@ to 1777), and the error

return is taken.

At LKP@2g¢, the name in the user's parameter list is
comrpared with each name in the index until a match

is found or the end of the index is reached. 1In the
later event, the error return is taken. If a match is
found, the type code in the user's parameter list is
compared to 23 (S) and 02 (B). If neither, the error
return is taken. S causes a jump to WNTS; B jumps

to WNTB, which increments the pointer to the index
entry by two and flows into WNTS.

Here RET3 is tested for internal or external call; if
internal, RET2, the return JMP, is incremented to allow
the caller to distinguish between those cases in which
Ahere was a successful name match, but no file of the
requested type, and those cases in which the name match
was unsuccessful. The starting block number of file

is then moved to the user's parameter list. The length
is then picked up and tested to see whether or not
there is a file of the requested type. If not, the
length will be 5757, and the error return will be taken.
If the requested file exists, RET3 is tested to check
for external call. If external, the length is stored.
The return address is then incremented to indicate a
successful find, and LOOKUP jumps to ERRTN. There, RET3
is tested again. If the call is internal, return is .
immediate. If external, LOOKUP restores the user's

fields before returning.

ENTER: (Level 3, Entry Point 22) Starting at NTR@ZF,
the return JMP is saved in RET3 (Beta 15). LOOKUP is
called at its internal entry point LKP@@F. Because this
is an internal call, there are three returns. The first,
indicating that there was no name match, jumps to NTR@24,
where MARK (Beta 1f@) is set to 7777 to indicate no name
match, and flows to NTR@3@, which increments the return
address, there being no conflict with existing files.

From there, control flows into FSP@PPF to find space for
the file. Subsequent processing is in common with REPLACE,
and is described below. The second return indicates that
the name was found, but not with the requested file type.
A pointer to the matching entry is saved at MARK, and
ENTER jumps to NTR@3g to increment the return JMP. The
third return from LOOKUP indicates that the named file
exists. A pointer to its index entry is saved at MARK,
ENTSW (Beta 11) is set to 1776 to allow a REPLACE to
follow, and the first return is taken by going to RTRNY.

REPLACE: (Level 3, entry point 24) starting at RPL@gGF,
the return JMP is saved at RET3 (Beta 15), and ENTSW
(Beta 11) is tested for 1776 (indicating that ENTER found
a file conflict). Any other value indicates a user
error, and the program halts. The LDF instruction at
GTF@1l# is then moved into the instruction stream to again
set the data field appropriately for the user's parameter
list, the length field for this file in the index is set
to 5757 to eliminate the old file, and REPLACE jumps to
FSP@P@P to find space for the file. From this point, pro-
cessing is in common with ENTER.

The search for file space is performed in two stepsi
first, a scan is made to find any suitable space in the
lower file area. The result, if any, is saved, then a
scan of the upper area is made. Because the index is
below the middle of the tape, the result of a successful
scan of the lower file area can be used to calculate an
upper limit for scannimg in the upper file area. Beyond
this limit, any suitable file space would not be used,
since the suitable space in the lower area is closer.
Conversely, any space found in the upper area before
reaching this limit must be closer to the index than the
space found in the lower area. Use of this algorithm
eliminates, therefore, the need to compare two possible
spaces for closeness to the index, and generally shortens

the scan of the upper file area.

Scanning itself is performed by the conflict-search routine,
FCT, as follows:

A tentative starting block (TRY) and the length of the
desired file (TRYLEN) are set up. Each non-empty index
entry is cémpared to TRY by subtracting its starting
block from TRY. If the result is negative, the file
specified by this index entry starts at or above TRY. If
adding TRYLEN still gives a negative result, the file
starts above the end of the tentative file, and there is

no conflict. The scan continues to the next index entry.

If there is a conflict, control is returned to the caller to

set a new TRY.

If subtracting the starting block from TRY yields a positive
result, TRY is above the file specified by this entry,

by the value of the result. In other words, AC contains

the distance between TRY and the file concerned. This dis-
tance is subtracted from the length of the file in question.
Here, a negative result implies no conflict, and the scan
continues with the next index entry. A positive result

represents a conflict, and control returns to the caller.

During the scan of the lower area, TRY moves downward (away
from the index). Each time a conflict is found, a new TRY
is calculated by subtracting TRYLEN from the starting block
of the file causing the conflict. This is the highest
possible starting block which will not cause a conflict
with this particular file. The conflict search routine

is called again, and the whole process repeated. Thus,the
maximum number of iterations is the number of files in the
lowexr file area. During the scan of the upper area, the
process is equivalent, except that TRY moves ﬁpward.

When a conflict is found, a new TRY is calculated as the

sum of the start and length of the file in conflict.
In detail, the search is performed as follows:

A SKIP-IF-NEGATIVE instruction (APO I) is moved to
FCF@5@ in the conflict search routine to make it
ignore any files in the upper file area. A pointer to
the start block field of the user's parameter list

is saved at LP1l (Beta 8). The user's length request

is picked up, tested for validity (zero or negative
lengths cause a jump to RTRN{, indicating'érror), and
saved at TRYLEN. The length is then subtracted from
278, to give the block number of highest starting block
in the lower file area which could satisfy the request.

This wvalue is in the AC at FSP@l@g, the beginning of the
search loop for the lower file area. It is tested to
assure that this starting block is positive (i-.e., that it
is on the tape). If not, there is no space large enough
for the file in the lower area, and a jump FSP@2f@ is
taken. If the starting block is positive, it is stored

at TRY, and the conflict search routine, FCF, is

called. Return is to a JMP FCF@3# if no file in the

index would overlap one which started at the block

number in TRY. If a conflict is found, the second return
is taken from FCF¢ in this case, TRYLEN is subtracted

from the starting block number of the file which conflicts
with TRY. This value is in the AC when FSP jumps to
FSP@1lg to make another search. ‘

The code at FSP@2f is entered, as described above, when

TRY goes negative before an acceptable space is found

indicating that thete is insufficient continuous. file spéce in the
lower area for a file the size of TRYLEN. NFSW (Beta 12) is

set to zero to indicate this. The last block number on

the tape is subtracted from TRYLEN and stored at UPLIM

so that, UPLIM contains the complement of the highest

possible starting block which would permit a file of the

desired size to fit on the tape. FSP then Jjumps to

FSP@35 to scan the upper file area.

The code at FSP@3F is entered when FCF is unable to find

a file which overlaps with one starting at TRY, thus’

TRY contains the starting block number of a space in the _
lower file area large enough to accomodate the desired file.
NFSW is set to 7777, indicating space was found in the

lower area. TRY is saved at SVTRY. The distance between this
space and the index is [346 - (TRY + TRYLEN - 1)].

The block as far from the index in the upper file area is this
number #347. The complement of the latter result is calcula-
ted énd stored at UPLIM. Thus the search of the upper file

ie

area can be stopped and considered unsuccessful if no
space can be found closer to the index than the space
already found in the lower area. At this point control
flows into FSP@35, and processing is the same whether

space was found in the lower area or not.

A SKIP-IF-POSITIVE instruction (APO) is moved to FCF@54,
to cause files in the lower area to be ignored during
the conflict search. The AC is initialized to 474,
the first block of the upper area, and the upper area
scan is begun at FSP@4g. The AC is stored at TRY,
then added to UPLIM. If the result is positive, TRY
is too large to be useful because it represents the
starting block of a file which would run off the end
of the tape, or it is farther from the index than the
space found in the lower area. A jump 1is therefore
taken to FSP@5@, which tests NFSW for a find in the
lower area. If none, there is no space, and an error
return is taken via RTRN@. 1If NFSW is set, however,
the starting block at SVTRY is restored to TRY, and
control flows to FSP@6f.

If the sum of TRY and UPLIM was negative or zero (zero
result will always be negative), FCF is called to
search for a conflict. On finding one, the sum of

the starting block and the length of the conflicting
file is taken as the next TRY, and FSP jumps to

FSP@4P to begin another scan. If no conflict is found,
however, before TRY exceeds the absolute value of
UPLIM, TRY represents the best starting block for

the new file, and FSP jumps to FSP@6f.

At this point, MARK (Beta 1) is tested to determine
whether an index entry with the desired name already
exists. If so, control transfers to FSP1l@g@. If not,
the index is scanned for an entry containing 5757 in
the name field, indicating it is empty. If no empty

entry is found, an error return is taken via RTPN{.

11

If an empty entry is found, the file name from the user's
paraﬁeter list is moved in. The user's type specification
(S or B) is examined, and the start and length pointers
for the other file type are filled with 5757. Control
flows to FSP1l@g@, where the starting block and length

are stored in the index, and the starting block is

stored in the user's parameter list.

The write code, parameter pointer, and return jump are
setup for re-~writing the index. The I/0 handler is
called via its internal entry point RWENT. The return
address is incremented to indicate successful completion,

the user!s fields restored, and control is returned.

FCF: (Level 2, no external entry point) FCF is
the conflict search routine. Given a starting block,
TRY, and a length, TRYLEN, its task is to scan the index
for a file one or more of whose blocks is in the range
from TRY to (TRY + TRYLEN - 1). If it should find such

a file, pointers to the starting block and length are
returned in XPNT and XPNT2, respectively, and control

is returned to (P+2), where P is the address of the
calling jump. If no conflict is found, control is
returned to (P+1).

Upon entry at FCF@@F, the return jump is saved at

RET2 and XPNT (Beta 4) is initialized to point to

the first index entry. Control flows to FCFglg,

where XPNT is incremented and tested for end-of-index.
If the end has been reached,there is no conflict and
control returns to the caller via RET2. If the end has
not been reached, bit 9 of XPNT is tested to determine
whether XPNT is pointing to a file name or the start
and length area of the entry. 1In the latter case,
control transfers to FCF@4g. In the former, the

name is compared to 5757. If equal, the entry is
empty, so XPNT is incremented by 6, and the loop

is entered again at FCFg1yg.

12

If the name is not empty, XPNT is incremented by 4, to
address the source~-file pointers, and control flows into
FCF@4@. FCFP5¥ having been sét to an APO, or APO I
instruction, the start block is compared to the index
TBLK to determine whether the file is in the wrong

area for this scan. If it is the wrong area, the

loop is re-entered at FCF@l@. This check, it should

be noted, is unnecessary, but was included to speed

the scan. Thirteen octal words can be saved by

its elimination if space becomes tight.

XPNT2 is set to address the length field, which is tested
for validity. If negative, there is no file of that
type, and the :loop is re-entered at FCF@1l@g. If the
length is positive, the starting block is subtracted
from TRY. If the result is negative or zero, TRY is
below the start of this file by complement of AC, and
control transfers to FCF@6@. If the result is positiv%
TRY is above the start of this file by the contents of AC.
Subtracting this value from the file length gives a
positive result if there is a conflict, a negative or
zero result if none. If there is a conflict, it . is
returned to the caller via FCF@78. If not, the scan

is resumed at FCFg1l4.

The code at FCF@6g is entered when TRY is below the start
of this file. TRYLEN is added to the complement of

the block difference. A negative or zero result implies
no conflict, and the scan continues at FCF@l@g. A positive
result is a conflict, so control flows into FCF@7@, which

increments RET2 and jumps to it.

i3

DELETE: (Level 3, Entry Point 26). Beginning at DEL@@@,

the return jump is saved at RET3 (Beta 15). LOOKUP is then
called via the internal entry point LKP@PF to find the

name and file to be deleted. On each of the alternate returns,
a JMP RTRN@ is taken, since it is unnecessary to delete a file
which doesn't exist. On the third return, the start and
length words for this file are filled with 5757 to eliminate
the file. Bit 1@ of the address of the length word is comple-
mented to give the address of the length word for the other
file type; that 1is, if a source file is being deleted,

the low order digit of the address of its length word is 5.
Complementing pit 1 gives 7, the address of the binary length.
The length of the other type file is tested to determine
whether such a file exists. If it is positive, a jump is taken
to DEL@glp. If negative)there is no file of the other type,

so the name area of the index entry is set to 5757. At

DEL@1@, the write code, return jump, and parameter pointers
are set up, and the I/0 handler is called at RWENT to

rewrite the index.

FLOW CHARTS

14

ENTER

[NTRggS

LOOKUP
NAMIE

NTR@20
CLEAR

POINTERS

FOUND YES

TYPE R S
SAVE
POINTERS
ALLOW

NTR@1Q REPLACE
SAVE
POINTERS

NTR@30 Je__.___l

INCREMENT

RPLG1Y

HLT

CLEAR OLD
INDEX
ENTRY

SCAN INDEX
FOR
FILE SPACE

15

FSP1gg

RO

: SCAN FOR
YES EMPTY INDEX
ENTRY

INITIALIZE
C—

STORE
STARTING
BLOCK

& LEN

RE-WRITE
INDEX

RETURN‘
1

—

16

DELETE

DELZ@ g

LOOKUP
NAME

FOUND 2
> .
: l RTRN @

YES

STORE 5757
IN FILE
ENTRY

FILE OF.
QTHER TYP
?)

STORE 5757
IN
NAME

DELILP

REWRITE
INDEX

RTRN

RETURN

(:}__ahu—w-~m_>;xpo3o

LOOKUP

READ
INDEX

LKP@20

BUILD EMPTY
INDEX (5757

ENCR INDEX POINTER |

COMPARE FIRST WORD

YF REQUESTED FILE

‘TO FIRST WORD INDEX

'ETLE NAME

NO

)

.]ERRTN

o

~

INIT SECONDARY
POINTERS FDV,
XPNT2

l

SET LOOP COUNT
= 3
(:>-“*~*§l LKPZ5%

COMPARE NEXT
WORDS

@

17

ERRTN

RETURN

SER
“YES

SOURCE

WNTS
POINT TO
SOURCE
POINTERS
WNTB
POINT TO
NO BINARY
POINTERS
=

UPDATE
USER'S
FDV

RETURN
1]

18

INDEX

DELETE 1,2,14
ENTER ' 1,2,3,7
Entry Points 1
Environment ‘ 1

FCF : 12
Flowcharts 15
GETFLD 4
Introduction 1
Loading FRED 1
LOOKUP : : 1,2,3,6
Memory Addresses 1

READ 1,5
REPLACE 1,4,8
Usage 1

WRITE 1,5

frhaa 2 4
281
302
P83
poo4
pRe5
2006
B3oe7
00108

potil

8912
2813
ge14
015
pge16
@17
po2e
o211
#2022
pe23
P24
2025
2826
pe27
9038@
2931
032
8233
@034
2835
20836
0237
po4g
20841
g 42
2043
2044
2045
ge4é
o047
2850
2851
gese
053
Be54
2855

aeze
ae21
gee2
3023
2024
2025
2026
2027

-
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/.
/
/
/
age6
6142
0036
6321
2006
6303
age6
6641

Pl

N
&

FRED -- FILE REPLACEMENT, ENTRY, AND DELETION

MAR 19, 1979

BETA REGISTER DEFINITIONS
(13 AND 14 ARE UNUSED)

PARAM=1
ROWR=2
Fpv=2
PARM2:=3
XPNT=z4
XPNT2=5
LP1=6
LP2=7
MARK=10
ENTSW=11
NFSW=12
RET3=15
RET2=16
RETURN=17

LOAD ADDRESS OF DIAL INDEX -~ DO NOT MODIFY:
INDEX=1000

PDP-8 MODE INSTRUCTIONS FQOR USE AFTER I0B
LRMF=6244

LRIB=6234
LRIF=6224

ENTRY POINTS FOR MAJOR ROUTINES OF FRED

DJR

JMP LOOKUP
DJR

JMP NTRO22
DJR

JMP RPLOOE
DJR

JMP DEL20B
EJECT

RAMIFICATIONS ARE OVERWHELMING

2269
gasl
Bps2
2863
po64
0965
po66
o867
2070
0071
272
3873
8374
pB75
2076
2877
6189
8101

9182

8183
2104
8185
01066
2197
8119
ARRE
#8112
0113
2114
@115
8116
2117
61208
g121
8122
2123
2124
2125
2126
8127
2130
2131
9132
2133
#1134
2135
2136
137
2140
2141
0142
9143
d144
8145
2146
2147
2150
2151
2152

ee3e
2831
232
pR33
P034
2035
pr 36
pa37
0040
2041
o742
P43
go44
pRas
P46
@47
2259
P51
9852
2853
2854
£@55
egs5é6
2857
pp6o
0761
2062
2063
2064
0265
2066
gas67

- P073

2071
2372
2273
ge74
2a@75

... 0876

ee77
2100
2101
a1e2
2103
14
2125
g106

NN NN NN NN N N N

a8/
1/
2/
3/

2es57 EAD,

2000

0262

2720

6041

@57 WRITE,
2000

2062

2704

2076 COMMON
7777

6116

1081 RWENT,
2386

1340

Pes4

0266

1568

7774

1629

2220 EXT,
B3O

1921

4972

2264

1609

2022

4077

1g21

4100

1921

ee17

40202

1229 10LOOP
20080 MEMADD
2323 ;

~1120

B4aa
4272
0709 CMND.
22p2 10BLK,
1229
goe1
1149
2100
222
6071

/7 X

NneMy 7 o wNLTLT

ENTERED IN LINC MODE, WITH AC CONTAINING POINTER TG PARAMETER LIST,
IF BIT 1 1S ZERO, PARAMETERS ARE IN THE CALLERS INSTRUCTION FIELD.
IF ONE, PARAMETERS ARE IN HIS DATA FIELD.

PARAMETER LIST AS FOLLOWS --

FIELD (3 BITS) / UNIT /
MEMORY ADDRESS (12 BITS) /
FIRST BLOCK NUMBER /
NUMBER OF BLOCKS /
SET RETURN / SAVE RETURN ADDRESS
2
SET I RDWR / INDICATE READ OPERATION
780
JMP COMMON / GO TO COMMON PROCESSING
SET RETURN / SAVE RETURN
@
SET 1 RDWR / INDICATE WRITE OPERATION
704 .
» SET 1 RETZ2 / SET CODE FOR USER CALL
7777
JMP GETFLD / SETUP TO ADDRESS PARAMETERS
LDA PARAM / GET FIRST WORD OF PARAMETERS
ROR 6 / MOVE BANK NO TO RIGHT HALF
STH / HOLD FOR EXTENDED ADDRESSING
EXT
ROL I 6 / RESTORE UNIT BITS RIGHT
BCL 1 / KEEP TWO HIGH-ORDER BITS FOR AXO
7774 /. . PLUS LOW-ORDER IN LINK
BSE 1 / SET HIGH-ORDER UNIT BITS FOR AXO
vg2ae
AX0 / SET EXTENDED OPERATIONS BITS
LDA [PARAM / GET MEMORY ADDR FROM PARAMS
STC MEMADD / HOLD FOR TAPE USE
ROL I 4 ' / GET UNIT BIT INTO POSITION
BSE / SET DESIRED READ/WRITE 0P CODE
RDWR
STC CMND / SET READ/WRITE INSTRUCTION
LDA I PARAM / GET START BLOCK NUMBER
STC 10BLK / SET APPOROPRIATELY
LDA I PARAM / BLOCK COUNT...
COoM /v.. MADE NEGATIVE
STC RDHWR /- STORE IN INDEX
s LDA I / GET MEMORY ADDRESS FOR DATA
s B / ADDRESS FOR NEXT BLOCK
T™MA / TELL THE TAPE WHERE
ADA I / UPDATE ADDRESS
400 / BY BLOCK LENGTH
.8TC MEMADD / STORE NEW ADDR
ROC / MODIFIED FOR DESIRED OPERATION
z / BLOCK NUMBER WANTED
LDA 1 / GET CONSTANT 1
1
ADM / UPDATE BLOCK NUMBER
10BLK
XSK [RDWR / SKIP IF END OF OPERATION
JMP 10LOOP / ELSE CONTINUE
EJECT

8154
2155
9156
160
161
#162
2163
2164
0165
0166
g167
e17¢
2171
#1172
2173
8174
8175
g176
177
0200
B281
p2p2
8203
204
p2e5
2296
207
8219
211
212
2213
214
215
216
217
2220
0221
g222

g1u7
@117
g1l
7112
2113
g114
2115

$116

p117
129
@121
2122
g123
2124
2125
2126
p127
7130
2131
2132
2133
p134
2135
2136
8137
2142
p141

7216
6017
6500
6244
2049
2217
6000

1628
49009
B262
8302
4081
4211
2520
6234
2303
pas2
245
1560
7748
1620
640
4149
2452
6008
2649
6009

NN

CY NN N N N N NN N

ETFLD,

GTFo1@,

ﬂ?

I0 IS COMPLETL

XSK RETZ2
JMP RETURN
108

LRMF

SET ¢
RETURN

JMP 2

BSE 1
4000

~ROL. T 2

ROR 2

STC PARAM
STC ENTSH
108

LRIB

ROR 3

LZE

ROL S

BCL 1
7748

BSE I

LOF

STC GTF@1g
LZE

JMP .8

LDF

JMP 2
EJECT

/

/
/
/
/

~ NN NN

NN NN N

RETURN TO CALLER
SKIP IF UsetALL
RETURN NOW INTERNAL CALL

RESTORE TO DEZSIRED STATUS
RESTORE RETURN JMP

GO TO CALLER

GETFLD -~ GET CALLERS FIELDS AND PARAMETERS

ENTERED IN LINC MODE, WITH 18~-BIT PARAMETER POINTER IN AC.
RETURN WITH INDIRECT POINTER IN LOCATION 1 TO
DATA FIELD CONTAINING PARAMETERS.

SET BIT @ (SOON BECOMES BIT 1)

BIT 1 TO LINK

RESTORE 2-11, SET BIT 1
HOLD AC CONTENTS

CLEAR ENTSW

INST FLD TO AC 7-11%

SKIP IF PARMS IN INST FLD
DF 70 AC 7-11

DROP OTHER BITS

BUILD LDF INST

SAVE IT7
IS DF ALREADY SET?
YES

NO - SET IT
RETURN TO CALLER

W

@224
8225
226
g227
2238
p231
2232
9233
2234
2235
9236
0237
2240
9241
3242
243
p244
2245
p246
9247
B250
251
9252
3253
0254
0255
8256
9257
p260
p2é1
B262
8263
8264
g265
a266
9267
ge7e
8271
8272
273
8274
9275
0276
0277
0320
2301
2322
2303
2304
2325
2326
2307
23182
2311
2312
2313
2314
2315
¢316
2317
3329
g321

2142
7143
0144
2145
0146

@147
2150
2151
@152
2153
2154
2155
P156
2157
p160
@161

@162

o

2163
0164
2165
p166
2167
172
2171
2172
6173
2174
2175
g176
2177
2222
2291
2222

7223
22¢4
&2ab
c2¢e
g2a7
2212
2211
2212

[y

8275
7777
256
2000
6116

243
a1
1029
2@p1
2580
6224
243
1340
©03pe
0243
1568
2777
16123

4277

aB62
2700
2077
6174
2261
0277
6244
2264
10090
12p4
146¢
5757
8467
6213

1222
5757
1444
224
6225
1244
2223
6252

LOOKUP - FIND NAMED FILE IN DIAL INDEX

ENTERED IN LINC MODE WITH ADDRESS OF A PARAMETER

/

/

/

/ LIST IN AC.

/

/ @/ UNIT NUMBER /
/ 1/ FILE NAME /
/ 2/ CONTD /
/ 3/ CONTD /
/ 4/ CONTD /
/ 5/ TYPE (S OR B)/
/ 6/ STARTING BLOCK
/ 7/ NO OF BLOCKS /
/ .
LOOKUP, SET I RET3

7777
LKPBZQ, SET RET2
2

JMP GETFLD
/
/ READ THE INDEX
/

SET PARM2
PARAM

LDA I
1

108

LRIF

ROL 3

STH
XPARM+1
ROL 3

BCL I
2777

BSE PARM2Z2
STC XPARM
SET 1 ROWR
700

SET I RETURN
JMP LKP@1@
SET 1 PARAM
XPARM

JMP RWENT

LKP21@, SET .I XPNT

INDEX

LDA XPNT
SAE I

5757

SKP

JMP LKPB28

/ THERE IS NO INDEX

LoA 1
5757
STA XPNT
XSK [XPNT
mMp -2
STA XPNT
XSK [PARMZ2
JMP ERRTN
FJECT

VR4

/ INDICATE EXTERNAL CALL
/ SAVE RETURN JMP

/ SETUP PARAMETER POINTER

/ MOVE PARAMETER POINTER 70 ALT AREA

/ INIT AC

/ GET INSTRUCTION FIELD
/ MOVE FIELD NO TO RIGHT HALFWORD
/ STORE DATA ADDRESS FOR INDEX READ

/ BANK NO TO BITS @-2
/ DROP ALL BUT BANK NO

/ COMBINE WITH UNIT NO
/ STORE INTO PARAMETER LIST
/ SETUP READ CODE

/ SETUP RETURN JUMP FROM READ
/ INST MOVED FOR LATER USE
/ SETUP PARAMETER POINTER

/ GO TO READ INDEX

/ GET FIRST WORD OF INDEX

/ SKIP IF VALID FOR INDEX

/ FIRST WORD OF INDEX

/ NOT AN INDEX -- BUILD ONE

/ INDEX IS 0K -- GO TO NAME SCAN

-- CREATE ONE

/ GET FILLER wWORD

/ STORE IN NEXT INDEX WORD

/ INCREMENT AND TEST FOR END

/ ZAP ANOTHER
/ ZAP LAST WORD,

/ MAKE PARM2 L LIKE WE SOUGHT MATCH

/ RETURN NO FI

A N b B L4

8323 / SCAN INDEX FOR NAME

2324 /
2325 2213 1023 LKPB2@Z, LDA 1 PARM2 / GET FIRSTQD OF NAME

5326 gr14 4226 STC WORD1 / SAVE AT COWWARE INST

8327 2215 1220 LKPB3Z, LDA I / CONSTANT 7

€332 3216 2287 7

2331 0217 1i4g ADM / ADD 1T TO INDEX POINTER

2332 g2 Cuoa XPNT

8332z P21 2204 XSK XPNT / TEST FOR ENO OF INDEX

8334 2222 2467 ~ sKkP / SKIP NOT END

8335 §223 6252 JMP ERRTN / OTHERWISE RETURN NO SUCCESS
6336 g224 . 1824 LDA 1 XPNT / GET A WORD OF INDEX NAME
2337 8225 146D SAE I / SKIP OUT OF LOOP IF FIRST WORDS EQUAL
0348 ©226 QU@2 WORD1,

8341 €227 6215 JMP LKP23@ / LOOP IF NOT EQUAL

2342 0230 0045 SET XPNT2 / FIRST WORDS EQUAL

2343 0231 0084 XPNT / START FINAL COMPARE

g344 2232 8042 SET FDV / POINT TEMPORARY FDV INDEX
8345 G233 2083 PARM2

2346 0234 0067 SET 1 LP2 / SET LOOP COUNTER

2347 0235 7774 -3

2358 €236 1822 LKP@58, LDA 1 FDV / GET NEXT TWO CHARS

2351 2237 1465 SAE 1 XPNT2 / COMPARE TO THOSE IN INDEX ENTRY
8352 8240 6215 JMP LKPB3E / UNEQUAL - RETURN TO SEARCH LOOP
0353 g241 @227 XSK 1 LP2 / LLOOP TO COMPARE ENTIRE NAME
0354 8242 6236 JMP LKPB58

2355 /

8356 / IF WE GET HERE, WEVE FOUND THE NAME

8357 /

8368 2243 1022 LDA I FDV / PICK UP SOURCE/BINARY CODE
8361 p244 1429 SHD I / 1S THE CODE S7

8362 g245 2300 2300

2363 2246 6263 JMP WNTS / YES - GIVE HIM SOURCE

8364 9247 1429 SHD 1 / 15 THE CODE B?

8365 2250 0200 0200

2366 8251 6261 JMP WNTB / YES - GIVE HIM BINARY

8367 /

8378 / COME HERE ON DETECTING ERROR, OR UNSUCCESSFUL FIND
0371 /

2372 @252 €215 ERRTN, XSK RET3 / TEST FOR INTERNAL CALL

@373 . 2253 6016 JMP RET2 / RETURN NOW IF INTERNAL

8374 0254 0040 SET @ / MOVE IN RETURN JMP

8375 @255 2P16 RET2

2376 g256 05¢0 108

2377 2257 6244 LRMF ,

g4pe 0262 6200 JMP @ /RETURN TO CALLER

g4o1 , EJECT

04B3
p4g4
2405
2486
2407
2410
@411
G412
2413
8414
2415
B416
2417
2420
2421
8422
2423
p424
p425
2426
p427

0430

ga31
2432

p261
2262
2263
9264
2265
2266
2267
2278
2271
g272
9273
0274
2275
2276

8277
a3ae
2301
302

L

B225
g225
8215
P236
1225
1862
1225
P451
6252
215
467

1962

2236
6252

eoeo
1000
0346
poB2

/

WNTB, XSK 1 XPNT2
XSK 1 XPNTZ2

WNTS, XSK RET3

: XSK 1 RET2

LDA I XPNTZ2
STA I FDV
LDA 1 XPNT2
APO
JMP ERRTN
XSK RET3
SKP
STA I FDV
XSK I RET2
JMP ERRTN

/

/

/

XPARM, 2

: JINDEX

346
2
EJECT

p 6

NN N NN N N N NN

/
/
/

NN NN

/ WEVE FOUND WHAT HE WANTS = GIVE [T HIM

CANT SKIP, BUT THIS

...FAKES OUT THE POINTER

IF INTERNAL CALL...

.+ SETUP FOR THREE RETURNS

GET STARTING BLOCK NO FROM INDEX
STORE IN CALLERS PARAMETER L iST
GET NO OF BLOCKS

SKIP IF DESIRED DATA EXISTS
RETURN ERROR IF NO FILE

DONT STORE RESULT IF INTERNAL

RETURN NO OF BLOCKS
INCREMENT JMP RETURN ADDRESS
NOT REALLY AN ERROR

PARAMETERS TO READ ROUTINE

FIELD AND UNIT
DATA ADDRESS
BLOCK NUMBER
BLOCK COUNT

g434 / REPLACE -- REPLACE A NAMED ENTRY IN DIAL INDEX

g435 / ‘

4369 / ENTERED IN LINC MODE AFTER CAl G ENTER.

3437 / MAY BE CALLED ONLY IMMEDIATELY TER ENTER HAS RETURNED 10 P+1,
G440 / INDICATING THAT A FILE OF THE PROPOSED NAME AND TYPE A{READY EXISTS,
G441 /

G442 393 0055 RPLOPE, SET RET3 / SAVE RETURN

0443 P304 0000 2

@444 g305 0231 XSK 1 ENTSH / TEST FQR NAME FOUNG, SET "REPLACE"
2445 $306 20p8 RPLA1G, HLT / ILLEGAL SEQUENCE -- SToP

P446 9397 9211 XSK ENTSW / TEST FOR CONTINUE AFTER HALT

B447 P310 6306 JMP RPLO1Q / BAD BOY -- STOP AGAIN

2450 9311 1009 LDA / PICK UP LDF INSTRUCTION

2451 £312 0149 GTF@1p

2452 313 4314 STC .+1

2453 £314 020Y 2 / BECOMES AN LDF INSTRUCTION

2454 (315 10920 LDA I / ZAP LENGTH FIELD OF THIS FILE

2455 {316 5757 5757

p456 F317 1045 STA XPNT2 ,

2457 (328 6345 JMP FSP2OO / ALL LOOKS GQOD -=- DO YOUR THING

2460 /

g461 / ENTER -- ADD A NAMED ENTRY TO DIAL INDEX

2462 / ,

2463 / ENTERED IN LINC MODE WITH AC POINTING TO A PARAMETER LIST
p464 / IDENTICAL TO THAT FOR LOOKUP, EXCEPT THAT THE FILE-LENGTH
2465 / FIELD IS FILLED BY THE USER.

B466 /

2467 / RETURN IMMEDIATELY FOLLOWING THE JMP (P+1) IF THE FILE ALREADY EXISTS,
pa70 / RETURN TO P+2 IF THERE 1S NO ROOM FOR THE FILE.

p471 / RETURN TO P+3 IF OPERATION COMPLETE (DIAL INDEX HAS BEEN UPDATED).
G472 /

9473 9321 ©@55 NTR@OQ, SET RET3 / SAVE RETURN

g474 9322 0000 2

8475 #8323 6144 JMP LKP@2P / LOOKUP NAME IN INDEX

p476 P324 6342 JMP NTRE20 / THIS NAME 1S NOT IN INDEX

2477 P325 6335 JMP NTRO18 / NAME IS IN INDEX, BUT NOT WITH THIS TYPE
3500 /

2521 / WE FOUND A FILE OF THIS NAME AND TYPE

2502 /

2503 p326 1820 LDA I / GET CONSTANT -2

p524 @327 7775 -2

#5085 8330 2005 ADD XPNT2 / POINT TO POINTER AREA - 2

2506 2331 4010 STC MARK / SAVE PDINTER FOR REPLACE

p5@7 P332 9071 SET 1 ENTSM / INDICATE READY-FOR-REPLACE

2510 2333 1776 1776

2511 2334 6543 JMP RTRNG / GO HOME

0512 ' /

8513 / FOUND THE NAME, BUT NOT TYPE

9514 /

2515 ?335 182@ NTR@1@, LDA I / CONSTANT -2

#516 R336 7775 -2

g517 2337 2225 ADD XPNTZ / FROM POINTER INDEX

0529 2340 4p10 STC MARK / SAVE ADDR OF FILE POINTERS

2521 2341 6344 JMP NTRE32 / G0 BEGIN SCAN FOR FILE SPACE

p522 / .

9523 / NOTHING FOUND IN THE LOOKUP SCAN

2524 /

9525 @342 2070 NTRB2@, SET | MARK / INDICATE NO FIND

2526 p343 7777 7777

9527 0344 @235 NTRO3Q, XSK | RET3 / ND NAME CONFLICT, INCREMENT RETURN

2530 EJECT

7

2532
2533
8534
8535
2536
9537
25480
541
0542
0543
3544
2545
2546
2547
0550
p551
9552
@553
8554
2555

2556 -

8557
8568
8561
8562
8563
8564
8565
2566
8567
0570
8571
8572
2573
8574
8575
8576
0577
260D
2601
0602
2603
0604
2605
8606
8687
2610
611
0612
0613
8614
8615
0616
8617
8620
621
0622
623
0624
8625
2626
0627

345
p346
347
350
351
2352
2353
354
2355
2356
8357
2360
2361
p3e62
363
p364
365
p366
8367
2370
B371
p372
2373
2374
@375
376
8377
2400
0401
402
@4ap3

404
p405
2406
2427
g41o
7411
412

2413
2414
2415
p416
2417
2420
g421
0422
2423
p424
0425
0426
0427
2430
0431
2432

1029
2471
46p5
1022
2205
2083
1240
papé
4287
1827
2451
6543
2479
6543
1049
2636
2017
1120
0270
P4780
Po11
#4511
6404
4635
6550

. 6413

10008
2636
20817
1104
6370

72
2000
10820
6777
2636
4640
6425

0o72
7777
1p00
@635
1940
2637
2636
112¢
7061
464¢
1@2¢
2451
4625
1220
R472
1242

/ FSP - FIND SPACE ON DIAL TAPE FOR NEW FILE

/
FSPPBB, LDA I / PICK UP SKIP-NEG INSTRUCTION
APO 1 / MOVED TO FCF@5¢
STC FCFB50 / STORE IN INDEX-SCAN ROUTINE
LDA 1
5
ADD PARM2 / POINT TO USERS START BLOCK FIELD
STA / HOLD FOR LATER
LP1
STC LP2 / STORE POINTER
LDA 1 LP2 / PICK UP LENGTH
APO / TEST FOR POSITIVE LEN REQUEST
JMP RTRN® / ELSE RETURN ERROR
AZE 1 / SKIP IF LEN NOT ZERO
JMP RTRND / BOMB IF NULL REQUEST
STA / HOLD LENGTH HANDY
TRYLEN
COM
ADA | / SUBTRACT LEN FROM HIGHEST BLOCK NO, LOW FILE
270
FSPR1@, AZE I / SKIP NOT ZERO
CLR / FORCE TRUE ZERO IF RESULT IS 7777
APO / SKIP IF STILL ON THE TAPE
JMP FSP@20 / NO SPACE IN LOW FILE AREA
STC TRY / HOLD TRIAL STARTING BLOCK
JMP FCFROQ / GO FIND POSSIBLE CONFLICT
JMP FSPB3P / HOORAY -- NO CONFLICT
LDA / NOPE -- THAT TRY IS NO 600D
TRYLEN
COM / SUBTRACT THE SEARCH LENGTH FROM,..
ADA XPNT /... THE START BLOCK OF CONFLICT FILE...
JMP FSP@10 /...AND TRY AGAIN
/
/ WEVE FOUND NO SPACE LARGE ENOUGH IN THE LOWER FILE AREA
/
FSPB2@8, SET 1 NFSW / SET NO-FIND SWITCH
2
LDA I / PICK UP MINUS END OF TAPE
-1009
ADD TRYLEN / MINUS LAST FEASIBLE START BLOCK
STC UPLIM / HOLD AS SCAN LIMIT
JMP FSP@35 / ENTER UPPER SCAN
/
/ TRY POINTS TO GOOD SPACE IN LOWER AREA
/
FSPB3@, SET I NFSW / INDICATE SPACE FOUND
7777
LDA / PICK UP OLD TRY
TRY
STA / SAVE 1T
SVTRY A
ASD TRYLEN / GET END BLOCK
ADA 1 / GET COMPARE CONSTANT (TRYENG-2*INDEX LOC)
-716
STC UPLIM / MINUS HIGHEST DESIRABLE STARTING BLOCK
FSP235, LDA I / GET SKIP-PQOS INSTRUCTION
APQ / MOVED TO FCF@5¢
STC FCF@50 / STORE IN INDEX SCAN ROUTINE
LDA I / INITIAL STOING BLOCK, UPPER FILE
473
/ SET NEW TRY BLOCK

FSPR4C., STA

4

5

3631
2632
G633
7534
9635
1636
G637
Go 4@
7641
#3642
0643
g644
85645
7646
5647
3650
g651
2652
3653
654
2655
2656
p657
2660
2661
662
P663
3664
@665
P666
2667
p678
B671
p672
673
2674
2675
2676
2677
8708
8701
2702
2703
2704
2785
706
2787
2718
2711
2712
g713
2714
2715
716
@717
2720
@721
2722

-

2434
g2Ls
7436
2437
D446

z44%

2442
5443

7444
2445
2446
2447
34502

2451
2452

2453
7454
2455
2456
2457
7460
Z461
7462
0463

p464 -

2465

2466

pa67

3470
2471
g472
0473
p474
2475
2476
8477
2508
2501
8582
2583
2504
2525
2576
25237

2649
0471
6444
6554
6451
19g4
1125
6432

9212
6543
1090
8637
4635

212
6525

2076
1008
1828
2607
1140
301G
@219
2467
6543
146382
1460
5757
6455

1283
1050
1823
1272
1223
1870
1023
18570
1223
1420
2300
6510
142¢
2200
6521
6543

ADD UPLIM
APO 1

JMP FSP259
JMP FCFO08
JMP FSPB6D
LA XPNT
ADA XPNT2
JMP FSP@40

S

/
FSP@58, XSK NFSW

NN N Y NN N

COMPARE TO MAXIMUM USABLE BLGCK

SKIP IF STLLL IN USEFUL REGION
NO SPACE HIS AREA
SEARCH FO NFLICT

WEVE FOUND SPACE
THIS TRY WONT WORK...

...50 TRY AT END OF CONFLICT FILE

THERE WAS NO SPACE FOUND IN UPPER FILE AREA

/ SKIP IF FOUND IN LOWER AREA
JMP RTRNR / RETURN BAD NEWS ~-- NO SPACE
LDA / GET START BLOCK OF FILE IN LOWER AREA
SVTRY
STC TRY / THATS THE ONE WELL USE
/
/ THERE IS SPACE AT TRY
/
FSP@68, XSK MARK / WAS THERE A FILE BY THIS NAME
JMP FSP124@ / YES - GO USE THAT ENTRY
/
/ WE MUST SEARCH FOR EMPTY INDEX SPACE
/
SET I MARK / INITIALIZE MARK POINTER
INDEX
FSP@7@, LDA 1 / BUMP INDEX INDEX
7
ADM
MARK
XSK MARK / TEST FOR END OF INDEX
SKP / NOT END
JMP RTRNG / NO SPACE IN INDEX -- RETURN ZERO
LOA [MARK / FIRST WORD OF INDEX NAME
SAE I / CHECK FOR EMPTY ENTRY
- 5757
JMP FSP2782 / NOT EMPTY, TRY NEXT
/
/ MARK POINTS TO AN UNUSED INDEX ENTRY
/ PUT THE NAME INTQO IT
/
LDA PARM2 / FIRST WORD OF USER NAME
STA MARK / PLUNK INTO INDEX
LDA 1 PARM2 / 2ND
" STA I MARK
LDA 1 PARM2 / 3RD
STA 1 MARK
LDA 1 PARMZ / 4TH
STA 1 MARK
LDA I PARM2 / TYPE CONTROL (S OR B)
SHD I / 1S TYPE S
2320
JMP FSPZ80 / YES
SKHD /1S TYPE B
g2oe
JMP FSP298 / YES
JMP RTRN@ / NO-- BOMB NOW
EJECT

@724
@725
726
p727
8730
8731
732
8733
734
5735
@736
0737
8740
g741
@742
8743
B744
@745
B746
B747
2750
751
752
8753
B754
@755
8756
8757
g760
B761
p762
p763
8764
8765
B766
8767
8770
2771
772
B773
8774
2775
8776
8777

25192
511
2512
9513
@514
@515
#9516
3517
@520

g521
p522
p523
524

p525
2526
@527
2538
7531
532

@533
2534
2535
3536
2537
p54@
@541
@542
2543
8544
8545
#3546
@547

2o4av
2219

- p227

8227
lg2¢
5757
1267
1067
6525

1020
5757
1870
1070

1280
25635
1370

1646

1026
107¢

262

-2704

Baz7
6542
2861
8277
6044
2235
2040
2615
2500
6244
6000

/
/
FSP@8Y., SET LP2 / TEMP POINTER
MARK
XSK 1 LP2 . / CANT SKIP
XSK I LP2 / DITTO
LOA 1 / GET 57S...
5757
STA 1 LP2 / STORE THEM...
STA 1 LP2 /... IN BINARY POINTERS
JMP FSP108@
/
/ HE WANTS BINARY FILE
/
FSPB9@, LDA |
5757
STA I MARK / STORE 57S...
STA 1 MARK /...IN SOURCE POINTERS
/
/ MARK NOW POINTS TO POINTER AREA OF DESIRED TYPE IN A NAMED INDEX ENTRY
/ . .
FSP128, LDA / PICK UP STARTING BLOCK
TRY
STA I MARK / STORE IN INDEX
STA LP1 / STORE IN USERS LIST
LDA I LP1 / GET LENGTH
STA I MARK / STORE IN INDEX
/
/ NOW EVERYBODY IS HAPPY EXCEPT THE TAPE, WHICH HASNT BEEN UPDATED
/
SET I RDWR / SETUP WRITE CODE
704
SET 1 RETURN / SETUP RETURN JMP
JMP FSP110 / INST MOVED FOR LATER USE
SET [PARAM / SETUP PARAMETER POINTER
XPARM
JMP RWENT / GO DO THE WRITE
FSP11@, XSK I RET3 / BUMP RETURN ADOR
RTRN@, SET 8 / MOVE RETURN JMP T0 @
RET3
108 :
LRMF / RESTORE USERS FIELDS
JMP @ / GO TO CALLER

EJECT

p.1<

HE WANTS A SOURCE FILE -~ SCRATCH THE BINARY POINTERS e

ATV
1961
1822
1333
124
1885
1286
1e27
1218
1811
1212
1213
1214
1915
1216
1817
1920
1221
1922
1823
1824
1@25
1826
1e27
12389
1831
1832
1233
1034
1835
1836

1837

1048
1241
1p42
1043
1944
1845
1246
1247
1250
1251
1852
1853
1854

2552
2551
2552
7553
2554
@555
p556
2557
p5609
3561
2562
2563
2564
2565
2566
2567
2570
2571
@572
2573
2574
9575
2576
B577
26 00
p6d1

T ped2

p623

- 2604

2685
2626
B6@7
2610
611
2612
2613

2256
2200
2264
1626
2224
467
6016
224
1200
2004
8323
2452
6602
1084
1462
5757

© 6576

1020
2806
1149
2204
6554
1p2e
nop4
114p
2004

1204
112¢
7430
2451
6554
2B45
2004
1825
2451
6554

FIND POSSIBLE CONFLICT BETWEEN INDEX ENTRY AND TRYAL STARTING BLOUK

/

/

¥é

/ CALLER MUST SET OR CLEAR I'Bla FCF@5@ TO SELECY DESIRED FILE 4AREA
/

£

CFe@e, SET RET2 / SAVE RETURN
2
SET 1 XPNT / INITIALIZE POINTER TO INDEX IN CORE
INDEX+6
FCF218, XSK 1 XPNT / SKIP ON END OF INDEX
SKP
JMP RET2 / END OF INDEX, RETURN NO CONFLICT
XSK I XPNT / INCREMENT AGAIN, NO SKIP POSSIBLE
LDA / PICK UP POINTER
XPNT
ROR I 3 / MOVE BIT 9 TO LINK
LZE / SKIp IF NAME AREA OF ENTRY
JMP FCFP48 / JMP IF POINTER AREA
LDA XPNT / GET FIRST WORD OF NAME
SAE I / SKIP IF EMPTY ENTRY
5757 '
JMP FCFB30 / WORD IS VALID NAME
LDA I / GET CONSTANT 6
6
ADM / ADDRESS NEXT ENTRY - 2, THIS ONE IS EMPTY
XPNT
JMP FCFE10 / TRY NEXT INDEX ENTRY
FCFe3@, LDA I / INCREMENT BY 4
4
ADM /...TO ADDRESS POINTER
XPNT
/
/ XPNT NOW ADDRESSES A STARTING BLOCK NO
/
FCFB4@, LDA XPNT / PICK UP STARTING BLOCK
ADA 1 / SUBTRACT INDEX LOCATION
-347
FCFE58., APO / REVERSE SENSE BIT MAY BE SET BY CALLER
JMP FCFO10 / TRY AGAIN IF WRONG FILE AREA
SET XPNT2 / TEMP POINT TO LENGTH WORD
XPNT
LDA I XPNT2 / PICK UP LENGTH
APO / SKIP IF LENGTH POS
JMP FCFB18 / NEG LEN -- NO FILE HERE
EJECT

£/

10856 / WE NOW HAVE A VALID INDEX ENTRY Sl
1857 / COMPARE [T TQO TRY

10689 / '

1061 2614 1204 LDA XPNT / STARTING BLOCK OF THIS FILE

1062 615 1560 ' BCL I / CLEAR GARBAGE IN HIGH THREE BITS
1063 p616 7008 7a2¢ '

1064 617 0817 coM

1065 2620 2635 ADD TRY / SUBTRACT XSTART FROM TRY

1866 621 2451 APQ / SKIP IF TRY ABOVE XSTART

1067 p622 6630 JMPOFCTR6D / JMP IF BELOW

1070 /-

1071 / TRY S ABOVE THE START OF THIS FILE

1872 /

1073 623 0017 ' CoM / MAKE DIFFERENCE NEGATIVE

1074 624 1185 ADA XPNT2 / SUBTRACT DIFFERENCE FROM FILE LENGTH
1875 . 0625 @451 APO / ZERO RESULT WILL BE NEG (7777)
1876 P626 6554 JMP FCFB10 / NO CONFLICT, TRY NEXT ENTR)

1077 p627. 6633 JMP FCFR72 / CONFLICT FOUND -~ RETURN

1100 /

1191 / THE TRY 1S BELOW OR AT THE START OF THIS FILE

1182 /

1103 630 2636 FCF@6D, ADD TRYLEN / SUBTRACT STARTING OIFF FROM LEN OF TRY
1104 @631 0451 APO / SKIP IF CONFLICT

1185 632 6554 JMP FCFR18 / NO CONFLICT - TRY NEXT ENTRY
1106 /

11a7 / WE HAVE FOUND A CONFLICT -- RETURN IT TO CALLER

1110 / :

1111 G633 @236 FCFB72, XSK | RET2 / INCREMENT RETURN ADDRESS

1112 634 6816 JMP RET2 / GO BACK

1113 /

1114 / WORK AREA

1115 : /

1116 635 @028 TRY,)

1117 636 2200 TRYLEN, ©

1129 0637 BBE@ SVTRY, D /9 / N

1121 p642 220@ UPLIM, 2 !

1122 EJECT

/ DELETE -- REMOvVE A FILE FROM THE DIAL INDEX
/-
/ SAME CALLING SEQUENCE &S LOOKe EXCEPT NO ALTERNATE R URAS
/
7641 @055 DELBOD, SET RET3 / SAVE RETURN
2642 0000)
7643 6144 JMP LKP20E / LOOKUP NAME IN [NDEX
5644 6543 JMP RTRNZ / DIONT FIND THE FILE
2645 6543 JMP RTRNZ / DITTO
C646 1029 LDA I / DECREMENT XPNT2
0647 7776 -1
0650 1140 ADM /...T0 ADDRESS START BLOCK FIELD
p651 0025 XPNT2
0652 1020 LDA I / EMPTY AREA INDICATOR
3653 5757 5757
0654 1045 STA XPNT2 / ZAP START BLOCK FIELD
2655 1065 STA I XPNT2 / DITTO LEN
2656 1000 LDA / GET POINTER
0657 0005 XPNT2
2660 1660 BCO I / ADDRESS OTHER TYPE LEN FIELD
P661 (202 2
2662 4005 STC XPNT2
0663 1005 LDA XPNT2 / PICK LENGTH OF OTHER-TYPE FILE
0664 0471 APO 1 / SKIP IF OTHER-TYPE EMPTY
0665 6718 JMP DELD30 / GO RE-WRITE INDEX
2666 1020 LDA I / BOTH TYPES EMPTY -- CLEAR NAME
0667 5757 5757
2670 1044 STA XPNT / ZAP FIRST WORD OF NAME
0671 1064 STA 1 XPNT / 2ND
p672 1264 STA I XPNT / 3RD
0673 1064 STA I XPNT / 4TH
/
/ WAS THAT THE LAST FILE
/
p674 2064 SET 1 XPNT / POINT TO START OF INDEX
0675 0777 INDEX-1
@676 1464 DELB1@, SAE 1 XPNT / 1S THERE A NON-EMPTY ENTRY
2677 6710 JMP DELB30 / YES - REWRITE
0700 0204 XSK XPNT / CHECK FOR END
2701 6676 JMP DELD1E / NOT YET - LOOP
/
/ INDEX IS EMPTY: MAKE IT A NON-INDEX
/
2702 @011 CLR
7703 2C64 SET [XPNT / POINT TO INDEX
2724 3777 INDEX-1
2795 1064 STA [XPNT / ZERO ONE WORD
2706 2204 XSK XPNT / LAST ONE ?
2727 67g5 MR L -2 / NO - LOCP
/
/ RE-wRITE INDEX
/
©710 2262 DELE3@, SET [RDWR / SET WRITE CODE
2711 704 724
2712 anTT SET [RETURA / RETURN JUMP FOR R/w ROUTINE
o713 6543 JMP RTRNZ
2114 geen SET | PaRaw
2715 4277 XP ARM
2716 ol44 JMP ORWENT / DC THE WRITE THING, ANp RETURW 77 Cali:sf

1221
1222
1223
1224
1225
1226
1227
1230
1231
1232
1233
1234

~

AN NN

NN N N

THIS WILL CAUSE AN ASSEMBLY ERROR [F ROUTINE BECUOMES SU CARGE —
THAT INDEX WILL OVERLAY CODE WHEN 1T IS e

IS READ IN
ASMIFM INDEX-.

NAUGHTY BAD BOY - ROUTINE 1S 700 BIG FOR QONE FIEL

IN CASE OF MINOQOR SIZf PROBLEMS, REMOVE S LINES OF COQE AT Frorpay,
REMOVE 3 LINES AT FSP2a@, AND THREE L B35, TEIS SHD
REMOVE ALL REFERENCES TQ FCFO52. ALl SET

END OF FRED

p.07

/ Ny L REINRD

COMMON
DELQGOE
DELO10
DELB3D
ENTSW
ERRTN
EXT

FCFOOo
FCFo10
FCFO30
FCFO49
FCFB502
FCFO60
FCFO79
FOV

FSPOOD
FSPO10@
FSPB20
FSPR30
FSP@35
FSPB4D
FSPP52
FSPO6O
FSPO70
FSPO80
FSPB9D@
FSP1p0
FSP11@
GETFLD
GTFO10
INDE X
10BLK
10L00P
LKP2O®
LKP@18
LKP220
LKPO30
LKP252
LOOKUP
LP1

LP2

LRIB

LRIF

LRMF

MARK

MEMADD

4741
4641
4676
4710

gol1

4252

- 4254

455¢
4554
4576
4602
4625
463¢
4633
2002
4345
4370
4404
4413
4425
4432
4444
4451
4455
451¢p
4521
4525
4542
4116
4140
1ee¢
4122
4971

4144

4174
4213
4215
4236
4142
pees
gee7
6234
6224
6244
221z
4272

p.le

- IRkt IO™

NTROE 321
NTRALZ 4335
Nngauz
NTROWIP 4344
PARAM 221
PARM2 2205
ROWR 22¢°2
READ 423:
RETURN 2C1°7
RET2 2213
RET3 2215
RPLOOB 4303
RPLO1C 4386
RTRNG 4543
RWENT 4244
SVTRY 4637
TRY 4635
TRYLEN 4636
UPLIM 464¢
WNTB 4261
WNTS 4263
WORD1 4226
WRITE 4035
XPARM 4277
XPNT 2224
XPNT2 @225

=,/

