
mamaama

FRED

DEC-12-FZFA-D

1st Printing May 1970

Copyright <!!) 1970 by Digital Equipment Corporation

The material in this handbook, including but not

limited to instruction times and operating speeds,

is for information purposes and is subject to

change without notice.

The following are trademarks of Digital Equipment

Corporation, Maynard, Massachusetts:

DEC

FLIP CHIP

DIGITAL

PDP

FOCAL

COMPUTER LAB

For additional copies, order DEC-12-FZFA-D from Digital

Equipment Corporation, Program Library, Maynard,

Mass. 01754. Price $1.00

TABLE OF CONTENTS

1. 0 Program Overview 1

2.0 Environment 1

3.0 Usage 1

4.0 Description of the Routines 4

4.1 GETFLD 4

4.2 READ 5

4.3 WRITE 5

4.4 LOOKUP 6

4.5 ENTER 7

4.6 REPLACE 8

4.7 FCF 12

4.8 DELETE 14

5.0 Flowcharts 15

1.0 PROGRAM OVERVIEW

FRED (~ile ~eplacement, ~ntry, and Qeletion) is a set of PDP-12

subroutines for manipulation of LAP6-DIAL1- indices.

There are four leveis of routines, with provision for a routine

at any but the lowest level to call any routine of lower level.

There is no provision for reentrance or recursion, but the

routines are serially reusable (except for IIBPLACE, as explained

later).

Locations 2~ to 27 contain DJR, JMP pairs to the entry points

of each major routine, so that the coding can be modified

without changing calls in external routines.

2.0 ENVIRONMENT

FRED occupies two tape blocks and, when in core, uses four LINC

memory blocks (2000
8

words), including space for the index.

The routines are segment-independent, but must be loaded at a

segment boundary. Thus memory addresses of 2000, 4000, 6000,

14000, etc., can be used, but 2400 or 3000 may not.

In this discussion, all locations are relative to the segment

into which FRED is loaded.

3.0 USAGE

3.1 The user's program must load FRED from a DIAL tape,

or assemble it with his program, at any memory address which is

a multiple of 2~~~R. It may then be reused until it is overlaid.

3.2 Entry points for the routines of FRED start at location

2~ of the segment into which FRED is loaded, as follows:

2~ LOOKUP

22 ENTER

24 REPLACE

26 DELETE

3~ READ

35 WRITE

1 LAP6-DIAL-is hereafter referred to as DIAL.
1

READ and WRITE are called as follows:

LIF X

LDA I

RWPARM

JMP 3~ (JMP 35)

RWPARM, Y\UNIT

BUFFER

BLOCKNO

COUNT

The COUNT must not be zero.

/SEGMENT INTO WHICH FRED IS LOADED

/LOAD AC WITH PARAMETER POINTER

/POINTER TO READ/WRITE PARAMETER LIST

/DO READ (WRITE)

/HIGH-ORDER THREE BITS FOR FIELD

/LOW-ORDER THREE BITS FOR TAPE UNIT

/12-BIT MEMORY ADDRESS OF DATA

/BLOCK NUMBER OF FIRST TAPE BLOCK

/NO. OF BLOCKS TO READ/WRITE

Return is to the instruction following the JMP If AC Bit l is

~, RWPARM is taken from the caller's instruction segment if 1, the

parameter list is in his data .segment. Note: There is no check

for attempts by the user to write over LAP6-DIAL, nor is there a

check to prevent reading over FRED.

3.3 LOOKUP, ENTER, and DELETE are called as follows:

LIF X /SEGMENT WITH FRED

LDA I /AC: POINTER TO FILE DESCRIPTOR VECTOR

FDV /GO TO LOOKUP (ENTER, DELETE)

JMP 2~ (JMP 22 I 26) .

FDV I ·UNIT

TEXT "NAME????"

/LINC TAPE ~-7

/FILE NAME, ENDING WITH 77'S

/TO FILL FOUR WORDS (8 CHARS)

2

TYPE

START

LEN

/JJ23 FOR SOURCE, JJJ2 FOR BINARY

/STARTING BLOCK NO. OF FILE:

/FILLED BY LOOKUP, ENTER, REPLACE,

OR DELETE

/LENGTH OF FILE IN BLOCKS: FILLED IN

/BY LOOKUP, CALLER MUST SUPPLY IN

/ENTER-REPLACE, UNUSED BY DELETE

a) LOOKUP has two returns; ·the first, immediately

following JMP 2J, is taken if there is an error in the

parameter list, or the named file is not found. The second,

two words after JMP 2J, is taken if the file is found, in­

dicating that the information in the file descriptor vector

is correct.

LIF X

LDA I

JMP LOOKUP
JMP NOFIND

/GO FIND THE FILE
/lST RETURN FILE DOESN'T EXIST

/COME HERE WHEN FILE IS FOUNO

b) ENTER has three returnsj The first is taken if

there already exists a file of the same name and type. The

second is taken on errors in parameter list or insufficient

space, either in file space or in the index. The third indicates

successful updating of the index.

LIF x /SEGMENT CONTAINING FRED

LDA I /POINTER TO PARAMETER LIST

FDV

JMP ENTER /GO ENTER FILE IN INDEX

JMP EXISTS /lST RETURN - FILE ALREADY EXISTS

JMP NOSPACE /2ND RETURN - NO SPACE FOR FILE

/COME HERE ON SUCCESSFUL COMPLETION

Note that the largest file which can ever be stored on a DIAL

tape is 310 blocks, because that is the length of the largest file area.

3

c) DELETE has only one return, immediately following the

JMP 26.

3.4 REPLACE may be called only immediately after a call to ENTER

which took the second return. The parameter list need not be

explicitly indicated - REPLACE uses that from the preceding ENTER,

But the instruction field must be set again.

There are two returnsj the first is taken on error in calling

sequence or insufficient space. (This can never occur if the new

file is smaller than or equal to the old file). The second indi­

cates successful replacing of the old file entry.

LIF X

JMP REPLAC

JMP NOSPAC

/SEGMENT CONTAINING FRED

/ENTER FOUND A FILE OF SAME NAME

/NO SPACE FOR NEW ONE

/COME HERE ON SUCCESSFUL REPLACE

If REPLACE is not able to find space for a new file, the

old file remains intact.

If the call to REPLACE is not immediately preceded by

a call to ENTER which returns indicating the file exists, the

machine will halt and FRED must be reloaded.

4.0 DESCRIPTION OF THE ROUTINES:

4.1 GETFLD: (Level ~) called to obtain the address of the

the user's parameter list, which he placed in AC before the

call. AC is stored in PARAM (Beta 1). The save field

buffer is read and stored at SAVFLD. Bit 1 of the para­

meter list is in the caller's data field, which is also

FRED's data field, and GETFLD returns.

4

If zero, the parameter list is in the caller's

instruction field. That field is then obtained

from SAVFLD and used to construct an LDF in­

struction at GTF~l~, which is executed to set

FRED's data field to the caller's instruction field.

Bit 1 is set in PAR.AM and GETFLD exits.

4. 2 READ: (Level 1,. entry point 3.(J) . The return JMP

at~ is saved at RETURN (Beta 17). An RDC instruc­

tion is placed in RDWR (Beta 2), and READ jumps to

COMMOM. See WRITE.

4.3 WRITE: (Level 1, entry point 35). Return JMP is

saved at RETURN (Beta 17), and a WRC instruction is

moved to RDWR (Beta 2). From this point (COMMON) ,

READ and WRITE are the same routine. RET2 (Beta 16)

is set to 7777 to indicate that the call was from a

user outside this field. GETFLD is called to set up

PARAM (Beta 1) to point to the parameter list. The

next location, RWENT, is the entry point for internal

calls b~ higher lever routines, which must have per­

formed appropriate setup. The 8-mode field (high-order

3 bits of 15-.bit address) is obtained from the parameter

list and stored at EXT for use in extended addressing~

The two high-orqer bits of the unit number are then

moved to Ac10_ 11 , with the low-order bit in Linc.

Tape extended operations are then set. The 12 low-order

bits of the memory address are obtained from the para­

meter list and stored at MEMADD. The low-order unit bit

is obtained from Link, combined with the READ or WRITE

instruction at RDWR, and stored at CMND The first

block number is obtained from the parameter list and

stored, following the command, at lOBLK.

The block count, also from the parameter list, is com­

plemented and stored at RDWR (Beta 2) as a loop control.

IOLOOP begins by setting the tape memory address registe~

5

4.4

then updating the address at MEMADD. The READ or

WRITE instruction is executed, the block number is

incremented, and RDWR is incremented to test for

completion. If more I/O remains, there is a jump

to IOLOOP. Otherwise, RET2 is tested to determine

whether the call was internal or external. If

internal (RET2 :/=- 7777) , return is immediated. If

external, the user's fields are restored before re­

turning.

LOOKUP: (Level 2, entry point 2~) RET3 (Beta 15)

is set to 7777 to indicate exeernal call. Internal

calls enter immediately following this point, at

LKP~~~- Here, the return JMP is saved at RET2 (Beta

16) , and GETFLD is called. PARAM (Beta 1) is saved

at PARM2 (Beta 3) . The current instruction field is

obtained, and used to set the address into which the

index will be read. Parameters and return address

are set up for READ, which is then called at RWENT

to bring in the index. Upon return, the index is

checked for validity (5757 is first word). If

invalid, an empty index is built in core by storing

5757 in each word (from l~~~ to 1777), and the error

return is taken.

At LKP~2~, the name in the user's parameter list is

comFared with each name in the index until a match

is foung or the end of the index is reached. In the

later event, the error return is taken. If a match is

found, the type code in the user's parameter list is

compared to 23 (S) and 02 (B). If neither, the error

return is taken. S causes a jump to WNTS; B jumps

to WNTB, which increments the pointer to the index

entry by two and flows into WNTS.

6

4.5

Here RET3 is tested for internal or external call; if

internal, RET2, the return JMP, is incremented to allow

the caller to distinguish between those cases in which

rthere was a successful name match, but no file of the

requested type, and those cases in which the name match

was unsuccessful. The starting block number of file

is then moved to the user's par,ameter list. The length

is then picked up and tested to see whether or not

there is a file of the requested type. If not, the

length will be 5757, and the error return w~ll be taken.

If the requested file exists, RET3 is tested to check

for external call. If external, the length is stored.

The return address is then incremented to indicate a

successful find, and LOOKUP jumps to ERRTN. There, RET3

is tested again. If the call is internal, return i.s.

immediate. If external, LOOKUP restores the user's

fields before returning.

ENTER: (Level 3, Entry Point 22) Starting at NTRJJJ~

the return JMP is saved in RET3 (Beta 15). LOOKUP is

called at its internal entry point LKPJJJ. Because this

is an internal call, there are three returns. The first,

indicating that there was no name match, jumps to NTRJ2J,

where MARK (Beta lJ) is set to 7777 to indicate no name

match, and flows to NTRJ3J, whi·ch increments the return

address, there being no conflict with existing files.

From there, control flows into FSPJ)JJ to find space for

the file. Subsequent processing is in common with REPLACE,

and is described below. The second return indicates that

the name was found, but not with the requested file type.

A pointer to the matching entry is saved at MARK, and

ENTER jumps to NTRJ3J to increment the return JMP. The

third return from LOOKUP indicates that the named file

exists. A pointer to its index entry is saved at MARK,

ENTSW (Beta 11) is set to 1776 to allow a REPLACE to

follow, and the first return is taken by going to RTRN$:J.

7

4.6 REPLACE: (Level 3, entry point 24) starting at RPL~~~,

the return JMP is saved at RET3 (Beta 15) , and ENTSW

(Beta 11) is tested for 1776 (indicating that ENTER found

a file conflict) • Any other value indicates a user

error, and the program halts. The LDF instruction at

GTF~l~ is then moved into the instruction stream to again

set the data field appropriately for the user's parameter

list, the length field for this file in the index is set

to 5757 to eliminate the old file, and REPLACE jumps to

FSP~~~ to find space for the file. From this point, pro­

cessing is in common with ENTER.

The search for file space is performed in two stepsj

tirst, a scan is made to find any suitable space in the

lower file area. The result, if any, is saved, then a

scan of the upper area is made. Because the index is

below the middle of the tape, the result of a successful

scan of the lower file area can be used to calculate an

upper limit for scannirng in the upper file area. Beyond

this limit, any suitable file space would not be used,

since the suitable space in the lower area is closer.

Conversely, any space found in the upper area before

reaching this limit must be closer to the index than the

space found in the lower area. Use of this algorithm

eliminates, therefore, the need to compare two possible

spaces for closeness to the index, and generally shortens

the scan of the upper file area.

Scanning itself is performed by the conflict-search routine,

FCT,.as follows:

A tentative starting block (TRY) and the length of the

desired file (TRYLEN) are set up. Each non-empty inde.x

entry is compared to TRY by subtracting its starting

block from TRY. If the result is negative, the file

specified by this index entry starts at or above TRY. If

adding TRYLEN still gives a negative result, the file

starts above the end of the tentative file, and there is

no conflict. The scan continues to the next index entry.

8

If there is a conflict, control is returned to the caller to

set a new TRY.

If subtracting the starting block from TRY yields a positive

result, TRY is above the file specified by this entry,

by the value of the result. In other words, AC contains

the distance between TRY and the file concerned. This dis­

tance is subtracted from the length of the file in question.

Here, a negative result implies no conflict, and the scan

continues with the next index entry. A positive result

represents a conflict, and control returns to the caller.

During the scan of the lower area, TRY moves downward (away

fFom the index) . Each time a conflict is found, a new TRY

is calculated by subtracting TRYLEN from the starting block

of the file causing the conflict. This is the highest

possible starting block which will not cause a conflict

with this particular file. The conflict search routine

is called again, and the whole process repeated. Thus, the

maximum number of iterations is the number of files in the

lower file area. During the scan of the upper area, the

process is equivalent, except that TRY moves upward.

When a conflict is found, a new TRY is calculated as the

sum of the start and length of the file in conflict.

In detail, the search is performed as follows:

A SKIP-IF-NEGATIVE instruction (APO I) is moved to

FCF~S~ in the conflict search routine to make it

ignore any files in the upper file area. A pointer to

the start block field of the user's parameter list

is saved at LPl (Beta 8). The user's length request

is picked up, tested for validity (zero or negative

lengths cause a jump to RTRN~, indicating error), and

saved at TRYLEN. The length is then subtracted from

27~, to give the block number of highest starting block

in the lower file area which could satisfy the request.

9

This value is in the AC at FSP~l.0, the beginning of the

search loop for the lower file area. It is tested to

assure that this starting block is positive (i.e., that it

is on the tape). If not, there is no space large enough

for the file in the lower area, and a jump FSP~2~ is

taken. If the starting block is positive, it is stored

at TRY I and the conflict search routine, FCF, is

called. Return is to a JMP FCF~3,0 if no file in the

index would overlap one which started at the block

number in TRY. If a conflict is found, the second return

is taken from FCF# in this case, TRYLEN is subtracted

from the starting block number of the file which conflicts

with TRY. This value is in the AC when F'SP jumps to

FSP~l~ to make another search.

The code at FSP,02.0 is entered, as described above, when

TRY goes negative before an acceptable space is found

indicating that there is insufficient continuous file space in the
lower area for a file the size of TRYLEN. NFSW (Beta 12) is

set to zero to indicate this. The last block number on

the tape is subtracted from TRYLEN and stored at UPLIM

so that, UPLIM contains the complement of the highest

possible starting block which would permit a file of the

desired size to fit on the tape. FSP then jumps to

FSP.035 to scan the upper file area.

The code at FSP,03.0 is entered when FCF is unable to fin~

a file which overlaps with one starting at TRY, thus·

TRY contains the starting block number of a space in the

lower file area large enough to accomodate the desired file.

NFSW is set to 7777, indicating space was found in the

lower area. TRY is saved at SVTRY. The distance between this

space and the index is [346 - (TRY+ TRYLEN - l)].

The block as far from the index in the upper file area is this

number +347. The complement of the latter result is calcula­

ted and stored at UPLIM. Thus the search of the upper file

area can be stopped and considered unsuccessful if no

space can be found closer to the index than the space

already found in the lower area. At this point control

flows into FSP.fBS, and processing is the same whether

space was found in the lower area or not.

A SKIP-IF-POSITIVE instruction (APO) is moved to FCF.f05.f0,

to cause files in the lower area to be ignored during

the conflict search. The AC is initialized to 47.fO,

the first block of the upper area, and the upper area

scan is begun at FSP.f04.f0. The AC is stored at TRY,

then added to UPLIM. If the result is positive, TRY

is too large to be useful because it represents the

starting block of a file which would run off the end

of the tape, or it is farther from the index than the

space found in the lower area. A jump is therefore

taken to FSP,05,0, which tests NFSW for a find in the

lower area. If none, there is no space, and an error

return is taken via RTRN,0. If NFSW is set, however,

the starting block at SVTRY is restored to TRY, and

control flows to FSP,06,0.

If the sum of TRY and UPLIM was negative or zero (zero

result will always be negative), FCF is called to

search for a conflict. On finding one, the sum of

the starting block and the length of the conflicting

file is taken as the next TRY, and FSP jumps to

FSP,04.fO to begin another scan. If no conflict is found,

however, before TRY exceeds the absolute value of

UPLIM, TRY represents the best starting block for

the new file, and FSP jumps to FSP,06,0.

At this point, MARK (Beta 1,0) is tested to determine

whether an index entry with the desired name already

exists. If so, control transfers to FSPl,0,0. If not,

the index is scanned for an entry containing 5757 in

the name field, indicating it is empty. If no empty

entry is found, an error return is taken via RTPN,0.

11

4.7

If ah empty entry is found, the file name from the user's

parameter list is moved in. The user's type specification

(S or B) is examined, and the start and length pointers

for the other file type are filled with 5757. Control

flows to FSPl~~' where the starting block and length

are stored in the index, and the starting block is

stored in the user's parameter list.

The write code, parameter pointer, and return jump are

setup for re-writing the index. The I/O handler is

called via its internal entry point RWENT. The return

address is incremented to indicate successful completion,

the user'.s fields restored, and control is returned.

FCF: (Level 2, no external entry point) FCF is

the conflict search routine. Given a starting block,

TRY, and a length, TRYLEN, its task is to scan the index

for a file one or more of whose blocks is in the range

from TRY to (TRY+ TRYLEN - 1). If it should find such

a file, pointers to the starting block and length are

returned in XPNT and XPNT2, respectively, and control

is returned to (P+2), where P is the address of the

calling jump. If no conflict is found, control is

returned to (P+l).

Upon entry at FCF~~~, the return jump is saved at

RET2 and XPNT (Beta 4) is initialized to point to

the first index entry. Control flows to FCF~l~,

where XPNT is incremented and tested for end-of-index.

If the end has been reached,there is no conflict and

control returns to the caller via RET2. If the end has

not been reached, bit 9 of XPNT is tested to determine

whether XPNT is pointing to a file name or the start

and length area of the entry. In the latter case,

control transfers to FCF~4~. In the former, the

name is compared to 5757. If equal, the entry is

empty, so XPNT is incremented by 6, and the loop

is entered again at FCF~l~.

12

If the name is not empty, XPNT is incremented by 4, to

address the source-file pointers, and control flows into

FCF~4~. FCF~5~ having been set to an APO, or APO I

instruction, the start block is compared to the index

TBLK to determine whether the file is in the wrong

area for this scan. If it is the wrong area, the

loop is re-entered at FCF~l~. This check, it should

be noted, is unnecessary, but was included to speed

the scan. Thirteen octal words can be saved by

its elimination if space becomes tight.

XPNT2 is set to address the length field, which is tested

for validity. If negative, there is no file of that

type, and the •loop is re-entered at FCF~lJ. If the

len~th is positive, the starting block is subtracted

from TRY. If the result is negative or zero, TRY is

below the start of this file by complement of AC, and

control transfers to FCF~6J. If the result is positiv7

TRY is above the start of this file by the contents of AC.

Subtracting this value from the file length gives a

positive result if there is a conflict, a negative or

zero result if none. If there is a conflict, it is

returned to the caller via FCF~7J. If not, the scan

is resumed at FCF~lJ.

The code at FCF~6~ is entered when TRY is below the start

of this file. TRYLEN is added to the complement of

the block difference. A negative or zero result implies

no conflict, and the scan continues at FCF~lJ. A positive

result is a conflict, so control flows into FCF~7~, which

increments RET2 and jumps to it.

13

4.8 DELETE: (Level 3~ Entry Point 26). Beginning at DEL,0,0,0,

the return jump is saved at RET3 (Beta 15). LOOKUP is then

called via the internal entry point LKP.0.0.0 to find the

name and file to be deleted. On each of the alternate returns,

a JMP RTRN,0 is taken, since it is unnecessary to delete a file

which doesn't exist. On the third return, the start artd

length words for this file are filled with 5757 to eliminate

the file. Bit 1,0 of the address of the length word is comple­

mented to give the address of the length word for the other

file type 1 that· is, if a source file is being_ deleted,

the low order digit of the address of its length word is 5.

Complementing bit 1 gives 7, the address of the binary length.

The length of the other type file is tested to determine

whether such a file exists. If it is positive, a jump is taken

to DEL,01~. If negative,there is no file of the other type,

so the name area of the index entry is set to 5757. At

DEL,01,0, the write code, return jump, and parameter pointers

are set up, and the I/O handler is called at RWENT to

rewrite the index.

5.0 FLOW CHARTS

14

ENTER

NTR,0,0,0

LOOKUP
Nl\ME

" ? ~
~u~~~

NO YES
NTR,02,0 FOUND ;,----

TYPE
CLEAR ?

POINTERS NO

NTR,01,0

SAVE

POINTERS

~RN~
-----'"---~
SCAN INDEX

FOR
FILE SPACE

SPACE

lYES RE~URN

___ I ---·-.J

l~~~TERS
ALLOW
REPJ.iACE _

15

REPLACE

RPL,0~,0

YES

CLEAR OLD
INDEX
ENTRY

N0------1 RP L,01,0

El

FSP,06,0

YES

NO

RTRNJi}'

FSPl.0.0

STORE
STARTING

BLOCK

YES·~
,._I_N_I_T...._I_A-LI_Z_E_,,

l'-_______ J

& LEN

RE-WRITE
INDEX

16

DELETE

DEL.0.0.0

LOOKUP
NAME

YES

STORE 57 57
IN

NAME

REWRITE
INDEX

... ;NO

IRTRNI!

8

RTRN,0

LOOKUP

~ 1_:::___

------~ 1.LKPO 3 0

BUILD EM:PT
INDEX (57 5

·To FIRST WORD INDEX

·E::LE NAME

NO\;?
J YES

INIT SECONDARY
POINTERS FDV,

XPNT.2

SET LOOP COUNT
= 3

0 .:±L: -LKP050

[COMPARE NEXT I
__ woj;s _

©
17

YES

YES

NO

WNTB

POINT TO
BINARY
POINTERS

NO

WNTS

POINT TO
SOURCE
POINTERS

UPDATE
USER'S
FDV

DEL:BTE

ENTER

Entry Points

Environment

FCF

Flowcharts

GETFLD

Introduction

Loading FRED

LOOKUP

Memory Addresses

READ

REPLACE

Usage

WRITE

INDEX

1,2,14

1,2,3,7

1

1

12

15

4

1

1

1,2,3,fi

1

1,5

1,4,8

1

1,5

z~rn~

00f211
0002
0003
0004
0005
0006
0007
ernrn
0011
0012
0013
0014
0015
0016
0017
0020
0021
0022
0023
0024
r21025
0026
0027
0030
0031
0032
0033
121034
0035
0036
0037
0040
0041
01il42
0043
0044
0045
0046
0047
rzJ050
0051
0052
0053
0054
0055

0020
ll021
0022
0023
~024
0~25
0026
~H:127

0006
6142
0006
6321
0006
6303
0006
6641

*.:::IO
I FRED -- FILE REPLACEMENT, ENTRY, AND DELETION
I MAR 19, 1970
I
I
I BETA REGISTER DEFINITIONS
I C13 AND 14 ARE UNUSED)
I

I

PARAM=l
ROWR=2
FDV=2
PARM2=3
XPNT=4
XPNT2=5
LP1=6
LP2=7
MARK=10
ENTSW=11
NFSW=12
RET3=15
RET2=16
RETURN=17

I LOAD ADDRESS OF DIAL INDEX -- DO NOT MODIFY: RAMIFICATIONS ARE OVERWHELMING
I

INDEX=1000
I
I PDP-8 MODE INSTRUCTIONS FOR USE AFTER IOB
I

I
I

LRMF=6244
LRI8=6234
LRIF=6224

I ENTRY POINTS FOR MAJOR ROUTIN~S OF FRED
I
I

OJR
JMP LOOKUP
DJR
JMP NTR000
OJR
JMP RPL000
DJR
JMP DEL000
EJECT

·f, I

0060
0061
0062
0063
0064
0065
0066
0067
0070
0071
0072
0073
0074
0075
0076
0077
0100
0101
0 Hl2
121103
0104
0105
0106
0107
0110
0111
0112
0113
0114
0115
0116
0117
0120
0121
0122
0123
0124
0125
0126
0127
0130
0131
0132
0133
0134
0135
0136
0137
0140
0141
0142
0143
0144
0145
0146
0147
~150
0151
0152

0030
0031
0032
0033
0034
0035
0e36
0'7!37
0040
0041
0042
0043
0044
0045
0046
0047
0050
0051
0052
0053
0054
('055
0056
_0057
0060
0061
0062
0063
0064
0065
0066
0067
0 0 7l7J
0071
0~72
0073
0074
0075
0076
0077
0100
0Hl1
0102
3103
0104
0105
0106

0057
0000
0062
0700
6041
0057
12Hll00
0062
0704
0076
7777
6116
1001
0306
1340
0054
0266
15612!
7774
1620
0020
0001
1021
4072
0264
1600
0002
4077
1021
4100
1021
0017
4002
1020
0000
0023

. 1120
0400
4072
0700
0000
1~20
0001
1140
0100
0222
60 71

I
I ENTERED IN LINC MOOE, WITH AC CONTAINING POJ~TER TO PARAMETER LIST,
I IF BIT 1 IS 2ERO, PARAMETERS ARE IN THE CALLERS INSTRUCTION FIEL~.
I IF ONE, PARAMETERS ARE IN HIS DATA FIELD.
I PARAMETER LIST AS FOLLOWS --
/
I 0/ FIELD <3 BITS) I UNIT I

I
I
I

I 11 MEMORY ADDRESS <12 BITS)
I 21 FIRST BLOCK NUMBER
I 3/ NUMBER OF BLOCKS
I
READ,

WRITE,

COMMON,

RWENT,

EXT,

IOLOOP,
MEMAOO,

CMNQ,
LOBL KI

SET RETURN
0
SET I RDWR
700
JMP COMMON
SET RE TURN
0
SET
7Ql4

RDWR

SET I RET2
7777
JMP GETFLD
LOA PARAM
ROR 6
STH
EXT
ROL
BCL I
7774
BSE I
012120
AXO

6

LOA I PARAM
STC MEMADD
ROL I 4
BSE
ROWR
STC CMND
LOA I PARAM
STC IOBLK
LOA I PARAM
COM
STC RDWR
LOA I
0
TMA
ADA
400
STC
ROC
0
LOA
1
ADM

MEMADD

IOBLK
XSK I RDWR
JMP IOLOOP
EJECT

I SAVE RETURN ADDRESS

I INDICATE READ OPERATION

I GO TO COMMON PROCESSING
I SAVE RETURN

I INDICATE WRITE OPERATION

I SET CODE FOR USER CALL

I SETUP TO ADDRESS PARAMETERS
I GET FIRST WORD OF PARAMETERS
I MOVE BANK NO TO RIGHT HALF
I HOLD FOR EXTENDED ADDRESSING

I RESTORE UNIT BITS RIGHT
I KEEP TWO HIGH-ORDER BITS FOR AXO
I. PLUS LOW-ORDER IN LI 'JK
I SET HIGH-ORDER UNIT BiiS FOR AXO

I SET EXTENDED OPERATIONS BITS
I GET MEMORY AODR FROM PARAMS
I HOLD FOR TAPE USE
I GET UNIT BIT INTO POSITION
I SET DESIRED READ/WRITE OP CODE

I SET READ/WRITE INSTRUCTION
I GET START BLOCK NUMBER
I SET APPOROPRIATELY
I BLOCK COUNT •.•
/,,, MADE NEGATIVE
I STORE IN INDEX
I GET MEMORY ADDRESS FOR DATA
I ADDRESS FOR NEXT BLOCK
I TELL THE TAPE WHERE
I UPDATE ADDRESS
I BY BLOCK LENGTH
I STORE NEW ADDR
I MODIFIED FOR DESIRED OPERATION
I BLOCK NUMBER WANTED
I GET CONSTANT 1

I UPDATE BLOCK NUMBER

I SKIP IF END OF OPERATION
I ELSE CONTINUE

0Li4 I IO IS COMPLEH. RETURN TO CALLER ~

01 :;5 I ~::.

0156 0107 0216 XSK RET2 I SKIP IF US~ALL
0:t :::'"' 011r.; 6017 JMP RETURN I RETURN NOW INTERNAL CALL
0160 0111 0500 IOB

161 (7J i_ 12 6244 LRMF I RESTORE TO DESIRED STATUS
0162 0113 0040 SET 0 I RESTORE RETURN JMP
0163 0114 0017 RETURN
0164 0115 6000 JMP 0 I GO TO CALLER
0165 I
0166 I
0167 I
0170 I GETFLD -- GET CALLERS FIELDS AND PARAMETERS
0171 I
0172 I ENTERED IN LINC MOOE, WITH 10-BIT PARAMETER POINTER IN AC.
017 3 I RETURN WITH INDIRECT POINTER IN LOCATION 1 TO
0174 I DATA FIELD CONTAINING PARAMETERS.
0175 I
0176 ei16 1620 GETFLQ, BSE I I SET BIT 0 <SOON BECOMES BIT 1)
0177 0117 4000 4000
0200 0120 0262 ROL I 2 I BIT 1 TO LINK
0201 0121 0302 ROR 2 I RESTORE 2-11, SET BIT 1
0202 0122 4001 STC PARAM I HOLD AC CONTENTS
0203 0123 4011 STC ENTSW I CLEAR ENTSW
0204 0124 0500 IOB
0205 0125 6234 LR 18
0206 0126 0303 ROR 3 I INST FLO TO AC 7-11
0207 0127 0452 L~E I SKIP IF PARMS IN INST FLO
0210 0130 0245 ROL 5 I OF TO AC 7-11
0211 0131 1560 BCL I I DROP OTHER 8 ITS
0212 0132 7740 7740
0213 0133 1620 SSE I I BUILD LDF INST
0214 0134 06 40 LDF
0215 0135 4140 STC GTF12110 I SAVE IT
0216 0136 0452 Ln I IS OF ALREADY SET?
0217 0137 6000 JMP 0 I YES
0220 0140 0640 GTH.110, LDF I NO - SET IT
0221 0141 6000 JMP r.?J I RETURN TO CALLER
0222 EJECT

f! 3

---- -- - -- -----

0224 I LOOKUP - FIND NAMED FILE IN DIAL INDEX y
0225 I
0226 I ENTERED IN LINC MODE WITH ADDRESS OF A PARAMETER
0227 I LI ST IN AC.
0230 I
0231 I 0/ UNIT NUMBER I

0232 I 1/ r I LE NAME I

0233 I 21 CONTD I
0234 I 3/ CONTD I

0235 I 4/ CONTD I

0236 I 5/ TYPE (s OR 8)/

0237 I 6/ STARTING BLOCK
0240 I 71 NO OF BLOCKS I
0241 I
0242 0142 0075 LOOKUP, SET I RET3 I INDICATE EXTERNAL CALL
0243 0143 7777 7777
0244 0144 0056 LKP000, SET RET2 I SAVE RETURN JMP
0245 0145 0000 0
0246 0146 6116 JMP GETFLD I SETUP PARAMETER POINTER
0247 I
0250 I READ THE INDEX
0251 I
0252 0147 0043 SET PARM2 I MOVE PARAMETER POINTER TO ALT AREA
0253 0150 0001 PARAM
0254 0151 1020 LOA I IN IT AC
0255 0152 0001 1
0256 0153 0500 IOB
0257 0154 6224 LRIF I GET INSTRUCT ION FIELD
0260 0155 0243 ROL 3 I MOVE FIELD NO TO RIGHT HALFWORD
02·61 0156 1340 STH I STORE DA TA ADDRESS FOR I NOEX READ
0262 01?7 0300 XPARM+1
0263 0160 0243 ROL 3 I BANK NO TO 8 ITS 0-2
0264 0161 1560 BCL I I DROP ALL BUT BANK NO
0265 . ·~J-162 0777 - 0777
0266 0163 1603 SSE PARM2 I COMBINE WITH UN IT NO
0267 12J164 4277 STC XPARM I STORE INTO PARAMETER LIST
0270 0165 0062 SET I ROWR I SETUP READ CODE
0271 0166 0700 700
0272 0167 0077 SET I RETURN I SETUP RETURN JMP FROM READ
0273 0170 6174 JMP LKP0HI I INST MOVED FOR LATER USE
0274 0171 0061 SET I PAR AM I SETUP PARAMETER POINTER
.0275 0172 0277 XPARM
0276 0173 6044 JMP RWENT I GO TO READ INDEX
0277 0174 0064 LK P.010, SET I XPNT
0300 0175 1000 INDEX
0301 ~176 1004 ~ JA XPNT I GET FIRST WORD OF I NOEX
0302 0177 1460 SAE I I SKIP IF VALID FOR INDEX
0303 0200 5757 5757 I FI RS T WORD OF INDEX
0304 0201 0467 SKP I NOT AN I NOEX - - BUILD ONE
~305 0202 6213 JMP LKP020 I INDEX IS OK -- GO TO NAME SCAN
0306 I
0307 I THERE IS NO INDEX -- CREATE ONE
2'310 I
~311 ?223 1020 LOA I GET FILLER WORD
0312 l2fl4 5757 5757
2313 l2:il'.:> ll44 STA XPNT I STORE IN NEXT I NOE X WORD
l314 ~~ 2 ?t l224 XSK I XPNT I INCREMENT ANO TEST FOR [0-;0

0315 C207 6205 JMP .-2 I tAP ANOTHER
?316 o~m

rn44 STA XPNT I tAP LAST WORD-
e317 .:,.211 J223 XSK I PARM2 I MAKE PARM2 Lo LI KE WE SOUGHT MA'CH
0320 0 ') ~ ? 6252 j ~~ p ERR TN I RETURN NO FI,
0321 EJECT

PL-/

t·;ve:::

0323 I SCAN INDEX FOR NAME
03 21 I

/ 0325 02U 1023 LKP!Z120, LOA I PARM2 I GET FIRST~O OF NAME <.,

0326 .e? 1 4 4226 STC WORD1 I SAVE AT C , . ARE INST
0327 0215 lel20 LKP030, LOA I I CONSTANT 7
03 30 0216 3207 7
0331 0217 1140 ADM I ADO IT TO INDEX POINTER
03 32 k:L'.'.2:2 C~04 XP NT
03::':3 e·~ 21 02 04 XSK XPNT I TE ST FOR END OF INDEX
0334 0222 0467 SKP I SKIP NOT END
0335 02 23 6252 JMP ERRTN I OTHERWISE RETURN ND SUCCESS
0336 0224 1024 LOA I XPNT I GET A WORD OF INDEX NAME
0337 0225 1460 SAE I I SI< IP OUT OF LOOP IF FIRST WORDS EQUAL
0340 0226 0000 WOR01, 0
0341 k~227 6215 JMP LKP030 I LOOP IF NOT EQUAL
0342 0230 0045 SET XPNT2 I FIRST WORDS EQUAL
0343 0231 0004 XPNT I START FINAL COMPARE
0344 0232 0042 SET FOV I POINT TEMPORARY FDV INDEX
0345 0233 0003 PARM2
0346 0234 0067 SET I LP2 I SET LOOP COUNTER
0347 0235 7774 -3
0350 0236 1i2l22 LKP050, LOA FOV I GET NEXT TWO CHARS
0351 0237 1.465 SAE I XPNT2 I COMPARE TO THOSE IN INDEX ENTRY
0352 0240 6215 JMP LKP030 I UNEQUAL - RETURN TO SE AR CH LOOP
0353 0241 0227 XSK I LP2 I LOOP TO COMPARE ENTIRE NAME
0354 0242 6236 JMP LKP050
0355 I
0356 I IF WE GET HERE, ~~EVE FOUND THE NAME
0357 I
0360 0243 1022 LOA I FDV I PICK UP SOURCE/BINARY CODE
0361 0244 1420 SHD I I IS THE CODE S?
0362 02 45 2300 2300
0363 0246 6263 JMP WNTS I YES - GIVE HIM SOURCE
0364 02 47 1420 SHD I I IS THE CODE 8?
0365 0250 0200 020'21
0366 0251 6.?61 JMP WNTB I YES - GI Vt HIM BINARY
0367 I
0370 I COME HERE ON DETECTING ERR QR, OR UNSUCCESSFUL FIND
0371 I
0372 0252 0215 ERRTN, XSK RET3 I TEST FOR INTERNAL CALL
0373 0253 6016 JMP RET2 I RETURN NOW IF INTERNAL
0374 0254 0040 SET 0 I MO VE IN RE TURN JMP
0375 0255 -0016 RET2
0376 0256 0500 I 0 B
0377 0257 6244 LRMF
0400 02 60 6000 JMP 0 /RETURN TO CALLER
0401 EJECT

/) 5 t,

0403 I WEVE FOUND WHAT HE WANTS - GIVE IT HIM
0404 I c
12l412l5 0261 0225 WNTB, XSK I XPNT2 I CANT SKIP, BUT THIS
0406 0262 0225 XSK I XPNT2 I .• • FAKES OUT THE PO INTER

0407 0263 0215 WNTS, XSK RET3 I IF INTERNAL CALL ...
04HJ 0264 0236 XSK I RET2 I . .. SETUP FOR THREE RETURNS
0411 0265 1025 LOA I XPNT2 I GET STARTING BLOCK NO FRO~ I \GEX

0412 0266 1062 STA I FOV I STORE IN CALLERS PARAMETEq L IS;

12!413 0267 1025 LOA I XPNT2 I GET NO OF BLOCKS
12!414 0270 0451 APO I SKIP IF DESIRED DATA EXISTS
0415 0271 6252 JMP ER RT N I RETURN ERR OR IF NO FILE
0416 0272 0215 XSK RET3 I OONT STORE RESULT IF INTER\A.L
12!417 0273 046 7 SKP
0420 0274 1062 STA I FOV I RETURN NO OF BLOCKS
0421 0275 0236 XSK I RET2 I IN GREMEN T JMP RETURN ADDRESS

0422 02 76 6252 JMP ERRTN I NOT REALLY AN ERROR
0423 I
0424 I PARAMETERS TO READ ROUTINE
0425 I
f2!426 0277 0 00 0 XPARM, 0 I FIELD AND UNIT
0427 03v:rn 1000 INDEX I DATA ADDRESS
0430 0301 0346 346 I BLOCK NUMBER
0431 0302 00 02 2 I BLOCK COUNT
0432 EJECT

~r;
i I

p, b

VJ "'l ·~ .:>
ro<-3-~
043!:i

~:~~o
04 40
0441
0442
0443
0444
04 45
1214 4 6
0447
0450
0451
0452
0453
0454
0455
121456
0457
121460
0461
0462
0463
0464
0465
0466
0467
04 70
0471
04 72
04 73
04 74
0475
04 76
0477
0500
0501
0502
0503
0504
0505
0506
0507
0510
0511
.0512
0513
0514
0515
0516
0517
0520
0521
0522
0523
0524
0525
0526
0527
0530

030.3
0304
~~ 3 ~J 5
03 06
03 07
0310
0311
(('.312
0313
Q314
~· 31 :i
~-:<.if

k'317
~ 3l:' r

0321
0322
0323
0324
0325

0326
0327

- 033ti1
0331
0332
0333
0334

0335
0336
0337
0340
0341

0342
0343
0344

0055
000~1
0231
0000
0211
6306
1000
0140
4314
0000
1020
5757
1045
6345

0055
0000
6144
6342
6335

1020
7775
2005
4010
0071
1776
6543

1020
7775
2005
4010
6344

00 70
7777
0235

I REPLACE -- REP~ACE A NAMED ENTRY IN DIAL INDEX
I
I ENTERED IN LINC MOOE AFTER CAl~G ENTER.

MAY BE CALLED ONLY IMMEOIATEL...,.TER ENTER HAS RETURNED TO P+1,
INDICATING THAT A FILE OF THE PROPOSED NAME AND TYPE ALREADY EXISTS.

I
I
I
RPL000, SET RET3

XSK I ENTSW
RPUH0, HL T

I

XSK ENTSW
JMP RPU'JH'l
LO.~

GTF010
STC .+1
ei
LOA I
5757
STA XPNT2
JNlP FSP000

I SAVE RETURN

I TEST FOR NAME FOUNG, SET "REPLACE"
I ILLEGAL SEQUENCE -- STOP
I TEST FOR CONTINUE AFTER HALT
I BAD BOY -- STOP AGAIN
I PICK UP LDF INSTRUCTION

I BECOMES AN LDF INSTRUCTION
I ~AP LENGTH FIELD OF THIS FILE

I ALL LOOKS GOOD -- DO YOUR THING

I ENTER -- ADO A NAMED ENTRY TO DIAL INDEX
I
I ENTERED IN LINC MODE WITH AC POINTING TO A PARAMETER LIST
I IDENTICAL TO THAT FOR LOOKUP, EXCEPT THAT THE FILE-LENGTH
I FIELD IS FILLED BY THE USER.
I
I RETURN IMMEDIATELY FOLLOWING THE JMP CP+l> IF THE FILE ALREADY EXISTS,
I RETURN TO P+2 IF THERE IS NO ROOM FOR THE FILE.
I RETURN TO P+3 IF OPERATION COMPLETE <DIAL INDEX HAS BEE~ UPOATEOl.
I
NTR012J0, SET RET3 I SAVE RETURN

0
JMP LKP000 I LOOKUP NAME IN I NOEX
JMP NT Rl2J20 I nns NAME IS NOT IN INDEX
JMP NTRl2J10 I NAME IS IN INDEX, BUT NOT WITH THIS TYPE

I
I WE FOUND A FILE OF THIS NAME AND TYPE
I

LDA I GET CONSTANT -2
-2
ADD XPNT2 I POINT TO POINTER AREA - 2
STC MARK I SAVE POINTER FOR REPLACE
SET I ENTSW I INDICATE READY-FOR-REPLACE
1776
JMP RTRNQJ I GO HOME

I
I
I

FOUND THE NAME, BUT NOT TYPE

NTR01'2J, LOA

I

-2
ADD
STC
JMP

XPNT2
MARK
"JTR030

I NOTHING rouNo
I
NTR020, SET I MARK

7777
NTR030, XSK I RET3

EJECT

')
/~_.,,,

I CONSTANT -2

I rRoM POINTER INDEX
I SAVE AOOR OF FILE POINTERS
I GO BEGIN SCAN FOR FILE SPACE

IN THE LOOKUP SCAN

I INDICATE NO FINO

I NO NAME CONFLICT I INCREMENT RETURN

·7

/

0532
0533
0534
0535
0536
0537
0540
0541
0542
0543
0544
0545
0546
0547
0550
0551
0552
0553
0554
0555
0556 .
0557
0560
0561
0562
0563
0564
0565
0566
0567
0570
0571
0572
0573
0574
0575
0576
0577
0600
0601
0602
0603
0604
0605
0606
0607
0610
0611
0612
0613
0614
0615
0616
0617
0620
0621
0622
0623

0624 0
0625
0626
0627

0345
0346
0347
0350
0351
0352
0353
0354
0355
0356
0357
0360
0361
0362
0363
0364
0365
0366
0367
0370
0371
0372
0373
0374
0375
0376
0377
04 00
04 01
04 02
04 03

0404
0405
04 06
0407
0410
0411
0412

0413
0414
0415
0416
0417
0420
0421
0422
0423
0424
0425
0426
0427
0430
0431
0432

1020
0471
4605
1020
0005
2003
1040
0006
4007
1027
0451
6543
0470
6543
1040
0636
0017
1120
0270
0470
0011
0451
6404
4635
6550

. 6413
1000
0636
0017
1104
6370

0072
00 00
1020
6777
2636
4640
6425

0072
7777
H'J00
0635
1040
0637
2636
1120
7061
4640
1020
0451
4605
1020
0470
1040

I FSP - FINO SPACE ON DIAL TAPE FOR NEW FILE
I
FSPeHrn. LOA I

APO I
STC FCF050
LOA I
5
ADD PARM2
STA
LPl
STC LP2
LOA I LP2
APO
JMP RTRN0
AtE I
JMP RTRN0
STA
TRY LEN
COM
ADA
270

FSP010 I AH
CLR
APO

I

JMP FSP020
ST C TRY
JMP FCF000
JMP FSP030
LOA
TRYL EN
COM
AD A XP NT
JMP FSP010

I PICK UP SKIP-NEG INSTRUCTION
I MOVED TO FCF050
I STORE IN INDEX-SCAN ROUTINE

I POINT TO USERS START BLOCK FIELD
I HOLD FOR LATER

I STORE POINTER
I PICK UP LENGTH
I TEST FOR POSITIVE LEN REQUEST
I ELSE RETURN ERROR
I SKIP IF LEN NOT 2ERO
I BOMB IF NULL REQUEST
I HOLD LENGTH HANDY

I SUBTRACT LEN FROM HIGHEST BLOCK NO, LOW FILE

I SKIP NOT HRO
I FORCE TRUE ~ERO IF RESULT IS 7777
I SKIP IF STILL ON THE TAPE
I NO SPACE IN LOW FILE AREA
I HOLD TRIAL STARTING BLOCK
I GO FIND POSSIBLE CONFLICT
I HOORAY -- NO CONFLICT
I NOPE -- THAT TRY IS NO GOOD

I SUBTRACT THE SEARCH LENGTH FROM ..•
I .•. THE START BLOCK OF CONFLICT FILE .. ,
I .. . AND TRY AGAIN

I WEVE FOUND NO SPACE LARGE ENOUGH IN THE LOWER FILE AREA
I
FSP020, SET I NFSW

0

I

LOA I
-1000
ADD TRYLEN
STC UPLIM
JMP FSP035

I SET NO-FIND SWITCH

I PICK UP MINUS END OF TAPE

I MINUS LAST FEASIBLE START BLOCK
I HOLD AS SCAN LIMIT
I ENTER UPPER SCAN

I TRY POINTS TO GOOD SPACE IN LOWER AREA
I
FSP030, SET I NFSW I INDICATE SPACE FOUND

7777
LOA I PICK UP OLD TRY
TRY
STA
SVTRY
ADO TRYLEN
ADA I
-716
src UPLIM

FSP035, LCA I
APQ
STC FCF050
LOA I
470

FSP~4C, ST A

I SAVE IT

I GET END BLOCK
I GET COMPARE CONSTANT <TRYE~D-2*INDEX LDCl

I MINUS HIGHEST DESIRABLE STARTING BLOCK
I GET SKIP-POS INSTRUCTION
I MOVED TO FCF050
I STORE IN INDEX SCAN ROUTINE
I INITIAL ST~NG BLOCK, UPPER FILE

I SET NEW TRY BLOCK

0631 0434 2640 ADD UPLI M I COMPARE TO M.0,X IMUM USABLE BL GCK q 0632 eJ ·.s l:'.'4 71 A.PO I I SKIP IF S~ IN USEFUL REGION

0??30 0436 6 1~· 4 4 JMP FSPQJ50 I NO SPACE ' HIS AREA /

~} ,34 0437 6550 JMP FCF000 I SEARCH FO NFLICT
:J635 0440 6451 JMP FSP060 I WEVE FOUND SPACE
J636 044-t 1001\ .Lil 4. XPNT I THIS TRY wo~n ~JORK •••
0637 0442 1105 ADA XPNT2 I ... SO TRY AT ENO or CONFLICT FILE
~)6 40 04 43 6432 JM p FSP040
0641 /

0642 I THERE WAS NO SPACE FOUND rn UPPEF< FILE AREA
0643 I
f2)6 44 0444 0212 FSP050, XSK NFSW I SKIP IF FOUND IN LOWER AREA
0645 0445 6543 JMP RTRNQJ I RETURN BAO NEWS -- NO SPACE
0646 04 46 Hl00 LO A I GET ST ART BLOCK OF FILE IN L Dl~ER ARE A
0647 0447 0637 SV TRY
0650 0450 4635 STC TRY I THATS THE ONE WELL USE
0651 I
0652 I THERE IS SPACE AT TRY
0653 I
0654 0451 0210 FSP060, XSK MARK I WAS THERE A FILE BY THIS NAME
0655 0452 6525 JMP FSP100 I YES - GO USE THAT ENTRY
0656 I
0657 I WE MUST SEARCH FOR EMPTY INDEX SPACE
0660 I
0661 0453 0070 SET I MARK I INITIALI~E MARK POINTER
0662 0454 H'J00 I NOE X
0663 0455 1020 FSP070, LOA I I BUMP INDEX INDEX
0664 0456 0007 7
0665 0457 1140 ADM
0666 0460 0010 MARK
0667 0461 0210 XSK MARK I TEST FOR END OF INDEX
0670 0462 0467 SKP I NOT ENO
0671 0463 6543 JMP RTRN0 I NO SPACE IN INDEX -- RETURN ~ERO

0672 0464 .. Hi30 LOA I MARK I FI RS T WORD OF INDEX NAME
0673 0465 1460 SAE I I CHECK FOR EMPTY ENTRY
0674 ·&4-66 5757 5757
0675 0467 6455 JMP FSP070 I NOT EMPTY, TRY NEXT
0676 I
0677 I MARK POINTS TO AN UNUSED INDEX ENTRY
0700 I PUT THE NAME INTO IT
0701 I
0702 04 70 1003 LOA PARM2 I FIRST WORD OF USER NAME
0703 0471 1050 STA MARK I PLUNK INTO INDEX
0704 04 72 1023 LO A I PA RM2 I 2NO
0705 0473 1070 STA I MARK
0706 0474 1023 LOA I PARM2 I 3R 0
0707 0475 1070 STA I MARK
0710 0476 1023 LOA I PARM2 I 4TH
0711 0477 l070 STA I· ·MARK
0712 0500 1023 L DA r PARM2 I TYPE CONTROL { s OR 8)
0713 0501 1A20 SHD I I IS TYPE s
0714 0502 2300· 2300
0715 0503 6510 JMP FSP380 I YES
0716 0504 1420 SHO I I IS TYPE B
0717 0505 02_.00 0200
eJJ20 0506 6521 jMD ;:-5p090 I YES
0721 0507 6543 JMP RTRN0 I NO-- BOMB NOW
0722 EJECT

f ~ 1

0724
0725
0726
0727
0730
0731
0732
0733
0734
0735
0736
0737
0740
0741
0742
0743
0744
0745
0746
0747
0750
0751
0752
0753
0754
!21755
121756
0757
0760
0761
0762
0763
0764
0765
0766
0767
0770
0771
0772
0773
0774
0775
0776
0777

0510
0511
0512
0513
0514
0515
0516
0517
12l521Zl

0521
0522
0523
0524

0525
0526
12l527
0530
0531
0532

0533
0534
0535
0536
0537
0540
0541
0542
0543
0.5 44
0545
0546
054 7

004 7
~mm

0227
0227
1020
5757
1067
1067
6525

1020
5757
1070
Hl712l

12!00
0.635
1070
1046
1026
10 7 0

0062
. ·0704

12ll2l77
6542
0061
0277
6044
0235
0040
0015
0500
6244
6000

--- ----

I HE WANTS A SOURCE FILE -- SCRATCH THE BINARY POINTERS
I
FSP080.

I

SET LP2
MARK
XSK I LP2
XSK I LP2
LOA I
5757
STA I LP2
STA I LP2
JMP FSP100

I TEMP POINTER

I CANT SKIP
I DITTO
I GET 57$ •••

I STORE THEM ...
I ... IN BINARY POINTERS

I HE WANTS BINARY FILE
I
FSP0912J, LOA I

I

5757
STA I MARK
STA I MARK

I STORE 575 ...
I .•• IN SOURCE POINTERS

I MARK NOW POINTS TO POINTER AREA OF DESIRED TYPE IN A NAMED INDEX ENT~v
.I
FSP100, LOA

TRY

I

STA I MARK
STA LP1
LOA I LP1
STA I MARK

I PICK UP STARTING BLOCK

I STORE IN INDEX
I STORE IN USERS LIST
I GET LENGTH
I STORE IN INDEX

I NOW EVERYBODY rs HAPPY EXCEPT THE TAPE. WHICH HASNT BEEN UPDATED
I

SET I RDWR
704
SET I RETURN
JMP FSP1HJ
SET I PARAM
XPARM
Jt-1P RWENT

FSP110, XSK I RET3
RTRN0, SET 0

RET3
IOB
LRMF
JMP 0
EJECT

p, ;O

I SETUP WRITE CODE

I SETUP RETURN JMP
I INST MOVED FOR LATER USE
I SETUP PARAMETER POINTER

I GO DO THE WRITE
I BUMP RETURN AOOR
I MOVE RETURN JMP TO 0

I RESTORE USERS FIELDS
I GO TO CALLER

J.lt.i{}t'.J

10fvi
12102

1~;~0
Hl'-i5
12 06
1el7
1010
HHl
1312
HH3
HH4
1015
HH6
lliH 7
1020
1021
1022
1023
1024
1025
1026
1027
1030
1031
1032
1033
1034
1035
1036
1037
1040
1041
1042
1043
1044
HHS
1046'
1047
1050
1051
1052
1053
1054

35521
0551
21552
25 53
0554
0555
0556
0557
0560
0561
0562
0563
0564
0565
0566
0567
0570
0571
0572
0573
0574
0575
0576
0577
0600
0601

0602
0603
-0604
Ql605
0606
0607
0610
0611
0612
0613

02156
0000
0J64
1006
~224
0467
6016
0224
1000
0004
0323
0452
6602
1004
1460
5757

·6576
1020
0006
1140
0004
6554
1020
0004
1140
0004

1004
1120
7430
0451
6554
0045
0~04
1025
0451
6554

I

I
/
I

F I N D P 0 S S I 8 L E C 0 NF L I C T 8 E T W E EN I ND E X E NT R Y A N 0 ' R ' .\ L S T A R T l N G B L 'J ~: K

c AL L E R Mus T s E T 0 R c L E AR I - 8 I 0 F c F 0 5 0 T 0 s E l_ E n 0 [s I K rn ~- I L E ti ~ E A
I
FCF0QJQJ, SET RET2

0
SET I XPNT
I'JJEX+6

~cr~10, XSK r XPNT
Si\P
JMP R(T 2
XSK I XPNT
LOA
XPNT
ROR I 3
LtE
JMP FCF040
LO~ XPNT
SAE I
5757
JMP FCF030
LOA I
6
ADM
XPNT
JMP FCF010

FCF030, LOA I
4

I

ADM
XPNT

I SAVE RETURN

I INITIALI~E POINTER TO INDE\ I~ C~RE

I SKIP ON END OF INDEX

I END OF INDEX, RETURN NO CO~FLICT
I INCREMENT AGAIN, NO SKIP POSSIRLE
I PICK UP POINTER

I MOVE BIT 9 TO LINK
I SKIP IF NAME AREA OF ENTRY
I JMP IF POINTER AREA
I GET FIRST WORD OF NAME
I SKIP IF EMPTY ENTRY

I WORD IS VALID NAME
I GET CONSTANT 6

I ADDRESS NEXT ENTRY - 2, THIS ONE IS EMPTY

I TRY NEXT INDEX ENTRY
I INCREMENT BY 4

I . •• TO ADDRESS POINTER

I XPNT NOW ADDRESSES A STARTING BLOCK NO
I
FCF040, LOA XPNT

ADA I
-347
APO
JMP FCF010
SET XPNT2
XPNT
LOA I XPNT2
APO
JMP FCF010
EJECT

f, I (

I PICK UP STARTING BLOCK
I SUBTRACT INDEX LOCATION

I REVERSE SENSE BIT MAY BE SET BY CALLER
I TRY AGAIN IF WRONG FILE AREA
I TEMP POINT TO LENGTH WORD

I PICK UP LENGTH
I SKIP IF LENGTH POS
I NEG LEN -- NO FILE HERE

) (

- -- -- -----··---- -- -~-

/L-1056 I WE NOW HAVE A VAL! 0 INDEX ENTRY
1057 I COMPARE "T TO TRY 1'

1060 I
1061 0614 1004 LOA XPNT I STARTING BLOCK OF THIS ~ T' ~ . . '- \....

1'?J 62 0615 1560 BCL I I CLEAR GARBAGE IN HlGH THREE BPS
1063 0616 7000 700V"
1064 0617 0017 COM
1065 0620 2635 .UD ~~y I SUBTRACT XSTART FROM TRY
1066 0621 0451 APO I SKIP IF TRY ABOVE XS TAR'
1067 0622 6630 JMP F"Cf 060 I JMP IF BELOW
1070 I
1071 I TR'r IS ABOVE Tt1E START OF TH IS FILE
H'J72 I
1073 0623 0017 COM I MAKE DIFFERENCE NEGATIVE
1074 0624 1105 ADA X.PNT2 I SUBTRACT DIFFERENCE FROM FILE LENGTH
HJ75 0625 0451 APO I rERO RESULT WILL BE NEG (7777)

1076 0626 6554 JMP FCF010 I NO CONFLICT, TRY NEXT El\TR1
1077 0627 6633 JMP FCF070 I CO NF LI CT FOUND - - RE TUR~
1100 I

1Hl1 I THE TRY IS BEL OW OR AT THE START OF THIS FILE
1102 I
1103 0630 2636 FCF060, ADD TRY LEN I SUBTRACT STARTING DIFF FROM LEN OF TRY

1104 0631 0451 APO I SKIP IF CONFLICT
1105 0632 6554 JMP FCF010 I NO CONFLICT - TRY NEXT ENTRY
1106 I
1107 I WE HAVE FOUND A CONFLICT -- RETURN IT TO CALLER
1110 I
1111 0633 0236 FCF070, XSK I RET2 I INCREMENT RETURN ADDRESS
1112 0634 6016 JMP RET2 I GO 8ACK
1113 I
1114 I WORK AREA
1115 I
1116 0635 0000 TRY, 0
1117 0636 ~H?J00 TRYLEN, 0

f, I :;L 1120 0637 0000 SVTRY,
'° 1121 0640 0000 UPLI M, f2J

1122 EJECT

l 24
1125
11260
1127
1130
1131
1132
1133
1134
1135
1136
1137
1140
1141
1142
1143
1144
1145
1146
l.147
115QJ
1151
1152
1153
1154
1155
1156
1157
1160
1161
1162
1163
1164
1165
1166
1167
1170
1171
1172
1173
1174
1175
1176
1177
1200
1201
12 02
1203
1204
1205
1206
12~7

1210
1211
1212
1213
1214
1215
1216
1217

2641
?642
2643
0644
~> 6 4 5
l'64 6
06 4 7
0650
06 51
0652
0653
0654
0655
0656
0657
0660
0661
0662
0663
0664
0665
0666
0667
0670
0671
0672
0673

0·674
0675
0676
06 77
0700
0701

nei2
1?703
2704
27 05
2706
07?;7

/71D
71 ..,

...
'-·,, 1 2 ('I J.

- 1 3
! 1 4

,' 715
\ 7 16

0055
l'.l00Z
6144
6543
6543
1020
77 76
1140
0005
1020
5757
1045
1065
H'l00
0005
1660
0002
4005
10J2l5
0471
6710
1020
5757
1044
1064
1064
1064

0064
0777
1464
6710
0204
6676

0011
0064
3777
10 64
0204
6705

2!762
0704
?vl 7 7
b~43

J~~ 6 l
'A·"°'
•·C

7-,
. I

b~ 44

I
I

DELETE -- REMOv~ A rILE FROM THE DIAL INDEX

I SAME CALLING SEQUENCE AS LOOKO EXCEPT NO A ;, __ T t~ ,, r-..; A T t
I

DEUl00, SET RE T3 I SAVE RETURf\J
0
JMP LKP200 I LOOi\UP NAME IN I NOEX
JMP RTR\J0 I DI D\JT FI ~W THE FILE
JHP R TRN9 I DITTO
LOA 1 I DECREMENT XPf'H2
-1
ADM I ... TO ADDRESS START BLOCK FJ[LD
XP NT 2
LOA I I EMPTY AREA INDICATOR
5757
STA XPNT2 I lAP START BLOCK FIELD
STA I XPNT2 I DITTO LEN
LOA I GET POINTER
XPNT2
BCD I I ADDRESS OTHER TYPE LEN FIELD
2
STC XPNT2
LOA XPNT2 I PICK LENGTH OF OTHER-TYPE rrLE
APO I I SKIP IF OTHER-TYPE EMPTY
JMP DEL030 I GO RE-WRITE INDEX
LOA I I BOTH TYPES EMPTY - - CLEAR NA fv1[

5757
STA XPNT I tAP FIRST WORD OF NAME
STA I XPNT I 2ND
STA I XPNT I 3RD
STA I XPNT I 4TH

I
I WAS THAT THE LAST FILE
I

SET -r XPNT
INDEX-1

DEUlHJ, SAE I X PNT
JMP DEL030
XSK XPNT
JMP DEL010

I
I INDEX IS EMPTY:
I

CLR
SET I XP NT
I!\jO[X-1
STA I XP NT
XSK XPNT
JMP .-2

I
I RE-V11R I TE I \'.JEX
I
DEL030. SET I qow~

704
SET I q[;l:~\

JMP ~TRl\J2

SET I DAqA"'
XP ARM

I POINT TO START OF INDEX

I IS THERE A NON-EMPTY ENTRY
I YES - REWRITE
I CHECK FOR END
I NOT YET - LOOP

MAKE IT A NON-INDEX

I POINT TO I NOEX

I ?!ERO ONE W ORO
I LAST ONE ?
I NO - LOOP

I SET WRITE CODE

;;:[TURN JUMP FOR R/\\' ROUT I\~:

., . ' ~ l\ \ s

Y''.;; RWEN T

EJECT
L)O THE WRITE THING, ANO R[TiJw', -,~ ,:::ALLt_~

I
)

1221 I
1222 I
1223
12 24
1225 I
1226 /
1227 I

1230 I

1231 /

1232 I
12 33 I
1234 I

TH r s w r L L c Aus E AN A. s s EM BL Y E RRcrn-rr~-o o n·NE-src-o-"n:-~Sll L A KL~, ~.-----~~~~~~=/='/~,=
THAT INDEX WILL OVERLAY CODE WHEN IT IS READ l\

ASMJFM INDEX-.
NAUGHTY BAO BOY - ROUTINE IS TOO BIG FOR ONE FI LD
I~ CASE OF MINOR SI2E PROBLEMS, REMOVE 5 LINFS r ~CE AT ~ Lr~ • '

\; "'•c •

~E~DVE 3 LINES AT FSP000. A~D TH~rE LI~Es A~ rs ~3 T~is ~:

R E "1 8 V E A L L R [F ER E N C E S T 0 ,r C Fk:~ 5 I'." • A 1 ' :: ' .-i E r;: •· .'.\ G '1 S ~ r:: f_ :,' ~ ,\ l \ ' · .

[\;0 OF FRED

f, I 7

/ ·;u 1:,.lo(KrJr:::i

I

'~-d-

COMMON 4e41
DEL000 4641 /-(
OEL010 4676
DEL030 4 710
ENTSW 0011
ERRTN 4252
EXT 4 e:,4
FCF000 455Z
FCF010 4??4
FCF030 4576
FCF040 4602
FCF050 4605
FCF060 4630
FCF'2J 70 4633
FOV 0002
FSP000 4345
FSP010 4370
FSP02!2J 4404
FSP030 4413
F SP 1213 5 44 25
FSP040 44 32
FSP050 44 44
FSP060 4451
FSP!2J 70 4455
FSP080 4510
FSP09!2J 4521
FSPHJ0 4525
FSP110 4542
GETF"LD 4116
GTF'010 4140
INDEX 1000
IOBLK 4100
I OLOOP 4071
LKP000 4144
LKP!2J10 417 4
LKP020 4213
LKP030 4215
LKP050 4236
LOOKUP 4142
LP1 0e06
LP2 0007
LRIB 6234
LRIF 6224
LRMF" 6244
MARK 001e
MEMADD 4072

p, ('

I~ r J "f lt;t .. .'l.C:.

NTR0Z '. 321 J)
NTR01v. 4335
NTR.4342
NTR0 ·. 4344

PARM'1 2001
PAF\c.ii2 ea 3
ROWR ~ ., ,..~ ~~

L. I'.. (- c

READ 4 J 3 c'

RE TUR\ 'i c 1 7

RETZ 321~

RET3 0 015
RPL000 4303
RPUH0 4306
RTRN0 4543
RWE NT 4044
SVTRY 4637
TRY 4635
TRYLEN 4636
UPLI H 4642
WNTB 4261
WNTS 4263
WORD1 4226
WRITE 4 03 5
XPARM 4277
XPNT eHrn 4
XPNT2 0k'.l05

p,.) 7

