XVM/DOS
SYSTEM MANUAL

DEC-XV-ODSAA-A-D

Sysfenns
dlilgliltlall

XVM/DOS
SYSTEM MANUAL

DEC-XV-ODSAA-A-D

digital equipment corporation - maynard. massachusetts

First Printing, January 1976

The information in this document is subject to change without notice
and should not be construed as a commitment by Digital Equipment
Corporation. Digital Equipment Corporation assumes no responsibility
for any errors that may appear in this document.

The software described in this document is furnished under a license
and may be used or copied only in accordance with the terms of such
license.

Digital Equipment Corporation assumes no responsibility for the use or

reliability of its software on equipment that is not supplied by
DIGITAL.

Copyright (:) 1976 by Digital Equipment Corporation

The postage prepaid READER'S COMMENTS form on the last page of this
document requests the user's critical evaluation to assist us in pre-
paring future documentation.

The following are trademarks of Digital Equipment Corporation:

DIGITAL DECsystem-10 MASSBUS
DEC DECtape OMNIRUS
PDP DIBOL 0s/8

DECUS EDUSYSTEM PHA
UNIBUS FLIP CHIP RSTS
COMPUTER LABS FOCAL RSX
COMTEX INDAC TYPESET-8
DDT LAB-8 TYPESET-10

DECCOMM TYPESET-11

CONTENTS

Page

PREFACE ix
CHAPTER 1 INTRODUCTION 1-1
CHAPTER 2 ADVANCED PROGRAMMING FEATURES 2-1
2.1 TIMING FEATURES 2-1
2.1.1 Time of Day (SC.TIM) 2=-2
2.1.2 Calendar Date (SC.DAY) 2=2
2.1.3 Interval Timing (SC.ETT) 2-3
2.2 TIMER INTERRUPT ROUTINES 2-3
2.2.1 Routines Which Do Not Return 2-4
2.2.2 Routines Which Return 2-4
2.2.3 Routines Which Re-Schedule and Return 2-5
2.2.4 Using .TIMER Without API 2-6
2.2.5 Deactivating .TIMER Interrupts 2-8
2.3 CONTROL CHARACTER ROUTINES 2-8
2.4 ABORTING I/O 2-10
2.5 THE IOPS ERROR PROCESSOR 2-11
2.5.1 .MED 2-12
2.5.2 The Expanded Error Processor 2-14
2.6 .MTRAN 2-15
2.7 XVM MODE 2-16
2.8 ADVANCED .GET/.PUT 2-17
2.9 TASK CONTROL BLOCKS 2-19
2.10 MINI-ODT 2-22
2.11 RESIDENT MONITOR PATCHING FACILITIES 2=-24
2.12 API SOFTWARE INTERRUPTS 2-25
CHAPTER 3 THE RESIDENT MONITOR 3-1
3.1 RESTIDENT MONITOR INITIALIZATION 3-1
3.2 THE CAL HANDLER 3-3
3.3 REAL, TIME CLOCK OPERATION 3-14
3.4 THE UNICHANNEL POLLER 3-21
3.5 XVM MODE 3-26
CHAPTER 4 THE NONRESIDENT MONITOR 4-1
4.1 INTRODUCTION 4-1
4.2 COMMANDS TO THE NONRESIDENT MONITOR 4-4
4.3 CONSIDERATIONS FOR ADDITIONS TO THE 4-4
NONRESIDENT MONITOR
CHAPTER 5 THE SYSTEM LOADER 5-1
5.1 LOADING SYSTEM PROGRAMS 5-1
5.2 TABLES AND INFORMATION BLOCKS USED AND 5-2
BUILT BY LOADERS
5.3 .DAT SLOT MANIPULATION BY THE SYSTEM 5-2
LOADER
5.4 BUFFER ALLOCATION BY THE SYSTEM LOADER 5-6
CHAPTER 6 SYSTEM INFORMATION BLOCKS AND TABLES 6-1
6.1 SYSTEM COMMUNICATION (.SCOM) TABLE 6-1
6.2 DISK-RESIDENT UNCHANGING BLOCKS: SYSBLK, 6-1

COMBLK AND SGNBLK

iii

A

AN AN

CHAPTER

~J

NN NN NN NN NN

CHAPTER

e}

CHAPTER 9

NN N NN NN NN

0

« o
Sw NN

.

e e s e s s s e
QY U1 U1 U o i b b

« e

.

e e s
WWWwWwwwwwwww

el

NNNMNMNMNNODNNON -

w N

)
AU W

e s s e e e

e s e e s
NIV U W N

.

.

N

N B

[u

W N NN

N

w N

CONTENTS (Cont'd)

SYSBLK

COMBLK

SGNBLX

DISK-RESIDENT CHANGING BLOCKS

TEMPORARY TABLES BUILT FROM DISK-RESIDENT
TABLES

The Overlay Table

The Device Table

The Input/Output Communication (IOC) Table

The Device Assignment Table (.DAT)

The User File Directory Table (.UFD)

The Skip Chain

TEMPORARY TABLES BUILT FROM SCRATCH

File Buffer Transfer Vector Table

The Mass Storage Busy Table

RESERVED WORD LOCATIONS

FILE STRUCTURES

DECTAPE FILE ORGANIZATION

Non-Directoried DECtape

Directoried DECtape

MAGNETIC TAPE

Non-Directoried Data Recording (MTF)

Directoried Data Recording (MTA., MTC.)

Magnetic Tape File Directory

User-File Labels

File-Names in Labels

Continuous Operation

Storage Retrieval on File-Structured Mag-
netic Tape

DISK FILE STRUCTURE

Introduction

User Identification Codes (UIC)

Organization of Specific Files on Disk

Buffers

Commands That Obtain And/Or Return Buffers

The Current Set

Pre-allocation

Storage Allocation Tables (SAT's)

Bad Allocation Tables (BAT's)

WRITING NEW I/O DEVICE HANDLERS

I/0 DEVICE HANDLERS, AN INTRODUCTION
Setting Up the Skip Chain and API (Hardware)
Channel Registers
Handling the Interrupt
WRITING SPECIAL I/O DEVICE HANDLERS
Discussion of Example A by Parts
Example A, Skeleton I/O Device Handler
Example B, Special Device Handler for
AF01B A/D Converter

XVM/DOS BATCHING FACILITIES

iv

6-13
6-13
6-14
6-14
6-14
6-14

~
1
[am)

q-4~1q~474q~q\1q~4
O~ UT U

wHOo

CONTENTS (Cont'd)

APPENDIX A DECTAPE "A" HANDLER (DTA.)
APPENDIX B DISK "A" HANDLERS
APPENDIX C PROCEDURE FILE
INDEX
FIGURES
Number
3-1 The CAL Handler
3-2 The Auxiliary Routine Scheduler, API
Version
3-3 The Auxiliary Routine Scheduler, Non-API
Version

Real Time Clock Routines

The Unichannel Poller

NMonresident Monitor Initialization
System Program Load

Linking Loader

Execute

SYSBLK and COMBLK

SGNBLK

DECtape Directory

DECtape File Bit Map Blocks

Block Format, File-Structured Mode
Magtape File Structure

User File Header Label Format
Master File Directory

User File Directory

Retrieval Information Block

Disk Buffer

CAL Entry to Device Handler

PI and API Entries to Device Handlers

m(nTJT~TTJT~f~1f~40\mgnu1m»h09w
1
NPRPWOVWONOOUNEBWNRFNFWWNDRFHEOVS

TABLES

2-1 Specifying Control Character Routines

2-2 .GET/.PUT Special Function Flags

2-3 Task Control Blocks

2-4 Mini~-ODT Commands

2-5 API Software Interrupt Vectors and Request
Flags

3-1 Clock Oriented .SCOM Locations

4-1 Effects and Exits for Nonresident Monitor
Commands

5-1 Tables and Blocks Used by the Loaders

5-2 .SCOM Registers Used by the System Loader

6-1 System Communication (.SCOM) Table

Page
A-1
B-1

c-1

Index-1

Page

w
|
wm

3-11

Y
[
w

U
NN
[l w W

| A O B B
WP EHEEFEWOWOONWNE 00 wWwWw

auUutww

WOO~NNNN NI~ gt W
|

Page

2-10
2-18
2-21
2-23
2-27

3-20
4-5

G\U|1U1
N OV

Number

[o) e Yo

W N

TABLES (Cont'd4d)

Overlay Table
Mass Storage Busy Table Entry
Reserved Address Locations

vi

Page

6-15
6-15
6-15

LIST OF ALL XVM MANUALS

The following is a list of all XVM manuals and their DEC numbers, in-
cluding the latest version available. Within this manual, other XVM
manuals are referenced by title only. Refer to this list for the

DEC numbers of these referenced manuals.

BOSS XVM USER'S MANUAL

CHAIN XVM/EXECUTE XVM UTILITY MANUAL
DDT XVM UTILITY MANUAL
EDIT/EDITVE/EDITVT XVM UTILITY MANUAL
8TRAN XVM UTILITY MANUAL

FOCAL XVM LANGUAGE MANUAL

FORTRAN IV XVM LANGUAGE MANUAL

FORTRAN IV XVM OPERATING ENVIRONMENT MANUAL

LINKING LOADER XVM UTILITY MANUAL
MAC1l1l XVM ASSEMBLER LANGUAGE MANUAL
MACRO XVM ASSEMBLER LANGUAGE MANUAL
MTDUMP XVM UTILITY MANUAL

PATCH XVM UTILITY MANUAL

PIP XVM UTILITY MANUAL

SGEN XVM UTILITY MANUAL

SRCCOM XVM UTILITY MANUAL

UPDATE XVM UTILITY MANUAL

VP15A XVM GRAPHICS SOFTWARE MANUAL
VT15 XVM GRAPHICS SOFTWARE MANUAL
XVM/DOS KEYBOARD COMMAND GUIDE

XVM/DOS READER'S GUIDE AND MASTER
INDEX

XVM/DOS SYSTEM MANUAL

XVM/DOS USERS MANUAL

XVM/DOS V1A SYSTEM INSTALLATION GUIDE
XVM/RSX SYSTEM MANUAL

XVM UNICHANNEL SOFTWARE MANUAL

vii

DEC-XV-0OBUAA-A-D
DEC-XV-UCHNA-A-D
DEC-XV-UDDTA-A-D
DEC-XV-UETUA-A-D
DEC-XV-~UTRNA-A-D
DEC-XV-LFLGA-A-D
DEC-XV-LF4MA-A-D
DEC-XV-LF4EA-A-D
DEC-XV-ULLUA-A-D
DEC~-XV-LMLAA-A-D
DEC-XV-LMALA-A-D
DEC-XV-UMTUA-A-D
DEC-XV-UPUMA-A-D
DEC-XV-UPPUA-A-D
DEC-XV-USUTA-A-D
DEC-XV-USRCA-A-D
DEC-XV-UUPDA~A-D
DEC-XV-GVPAA-A-D
DEC-XV-GVTAA-A-D
DEC-XV-ODKBA-A-D
DEC-XV-ODGIA-A-D

DEC-XV-ODSAA-A-D
DEC-XV-ODMAA-A-D
DEC-XV-ODSIA-A-D
DEC-XV-IRSMA-A-D
DEC-XV-XUSMA-A-D

PREFACE

This manual is written for customer systems programmers, DEC Software
Specialists, and internal maintenance programmers. Readers must be
familiar with the XVM/DOS Users Manual. In addition, Chapter 9 re-
quires familiarity with the BOSS XVM User's Manual.

ix

CHAPTER 1
INTRODUCTION

XVM/DOS is a disk-based, single~user interactive operating system for
the XVM and PDP-15 computers. This manual describes the internal oper-
ation of principle components of XVM/DOS. In addition it describes

certain programming techniques of interest to system programmers.

Chapter 2 describes miscellaneous advanced system programming features.
Chapter 8 describes how to write an I/0 driver. These two chapters
contain the most commonly used information in this manual. The rest
of the manual describes the internal operation of various portions of
XVM/DOS.

Chapters 3, 4, and 5 describe the resident monitor, the nonresident
monitor, and the system loader respectively. Chapter 6 describes var-
ious blocks, tables, and other data structures used within XVM/DOS.
Chapter 7 describes the formats of DECtape, magtape, and disk file
structures. Chapter 9 describes BOSS mode and non-BOSS Batch mode.
The information in these chapters is intended primarily for informa-
tional purposes. It would be of immediate use only if the user were
to modify XVM/DOS.

CHAPTER 2
ADVANCED PROGRAMMING FEATURES

This chapter describes those XVM/DOS features of interest to system
programmers. These features are difficult to use, and may negatively
affect system performance and integrity if used incorrectly. For this
reason, and also since they are used infrequently, these features are
described here rather than in the XVM/DOS Users Manual.

Many of the features described in this chapter make use of the system
communication table .SCOM. All .SCOM locations have mnemonics defined
for them, and should only be referenced using these mnemonics. The
programming examples included in this chapter follow this convention,
first equating the mnemonic to the appropriate value and then using
the mnemonic whenever the .SCOM location is accessed. This convention

makes programs more readable and future alterations of .SCOM easier.

As stated previously, many of the features described herein may nega-
tively affect system integrity if used incorrectly. The example coding
sequences provided herein are especially sensitive in this regard.

Many of the coding sequences contain timing and order dependencies,
especially in their interactions with interrupt routines. For this
reason the coding sequences presented here should be followed exactly,
especially with respect to the order in which operations are performed.
The programmer must be especially cautious when, as is normally the
case, he does not completely understand the internal operation of the

particular feature he is using.
2.1 TIMING FEATURES

XVM/DOS provides several timing mechanisms for user programs. .TIMER

is capable of scheduling routines for execution at a specified time.
(See Section 2.2.) Job time limits are provided for both BOSS and
non-BOSS modes of operations. BOSS time limits are part of the $JOB
card (described in BOSS XVM User's Manual), whereas non-BOSS time limits
are accomplished by the TIMEST command (described in XVM/DOS User's

Manual). All other timing features are described below.

2.1.1 Time of Day (SC.TIM)

The current time of day is maintained in .SCOM location SC.TIM. 1Its
format is:

1 g 516 11,12 17

SC.TIM hours minutes seconds

L 1 1 1 1 1 1 1 1 1 (] 1 1 1 1

Time is kept according to a 24 hour clock.

SC.TIM should always be accessed using the mnemonic SC.TIM, after first
equating SC.TIM to 1508. SC.TIM is location 150 in memory.

The time of day is set to 00:00:00 (midnight) following a cold-start.
The time may subsequently be reset with the TIME command (described in
XVM/DOS User's Manual).

2.1.2 Calendar Date (SC.DAY)

The current date is maintained in .SCOM location SC.DAY. 1Its format

is:

g 5,6 11,12 17,

SC.DAY month day year

The year is stored as years since 1970; thus, zero corresponds to 1970.
The month is stored as the calendar month; one corresponds to January.
The day is merely the date within the month. Note that neither the
month nor the day field may legitimately be zero, except in the case

described below.

SC.DAY should always be accessed using the mnemonic SC.DAY, after first
equating SC.DAY to 1478. SC.DAY is location 147 in memory.

Following a cold-start, SC.DAY is cleared to zero, indicating the
current date is unknown. If the current date is unknown, the non-
resident monitor will, upon being invoked, ask the user for the date.
The date is also set unknown (SC.DAY cleared) whenever midnight is
reached twice in succession without the non-resident monitor having

been invoked in between.

2.1.3 Interval Timing (SC.ETT)

.SCOM location SC.ETT is provided for interval timing by user programs.
It is incremented either 50 or 60 times per second, depending upon
the line frequency. This location is not used by any system program.

The user may modify this location freely.

SC.ETT should always be accessed using the mnemonic SC.ETT, after first
equating SC.ETT to 1518. SC.ETT is location 151 in memory.

2.2 TIMER INTERRUPT ROUTINES

The .TIMER CAL allows the user to schedule .TIMER interrupt routines
for execution at a specified time. This section describes the coding
conventions which must be followed when writing a .TIMER interrupt
routine. Use of the .TIMER CAL itself and its associated system macro
are described in the XVM/DOS User's Manual.

The XVM/DOS monitor invokes .TIMER interrupt routines by simulating

a JMS instruction. The high three bits (the operating mode bits) of
the return address may differ, however, from the bits which would be
stored by an actual JMS. When the user program is in XVM mode (17 bit
addressing mode) these high three bits will always be zero. When the
user program is not in XVM mode, the contents of these bits are un-

defined.

When the .TIMER interrupt routine is entered, the state of the user
program AC, Link, Bank/Page mode status, and XVM mode status are pre-
served so a return to the interrupted code is possible. However,
modifying one of the registers or states and returning (from the
.TIMER routine) will not always alter the corresponding register or

state for the interrupted user program.

There are three forms which a .TIMER interrupt routine might take.
These forms are:

1. Routines which do not return to the interrupted code.
This form should be avoided whenever API might not be

used.

2. Routines which return to the interrupted code without
scheduling a new .TIMER interrupt.

3. Routines which return to the interrupted code after
scheduling a new .TIMER interrupt.

The three sections which follow describe the coding conventions appro-
priate to each form of .TIMER interrupt routine. Following this is a
section covering the hazards of using .TIMER without also using API.

2.2.1 Routines Which Do Not Return

A .TIMER interrupt routine which will not return to the interrupted
code should be cocded as follows:

timint #
JMP label

No state information need be preserved since the interrupted code will

not be resumed. However, any I/0 in progress may need to be aborted.

WARNING

System integrity cannot be guaranteed if this
form is used without API. In particular, disk
file structures may be corrupted. It is strongly
recommended that all .TIMER interrupt routines
return to the interrupted code (possibly after
setting appropriate flags) if the program might
ever be used without API.

2.2.2 Routines Which Return

A .TIMER interrupt routine which will return to the interrupted code
should be coded as follows:

timint ¢

DAC saveac / Save AC

RAR / and Link.
DAC savlnk

LAC savlnk / Restore Link
RAL

LAC saveac / and AC

JMP* timint / and return.

The user is responsible for saving and restoring the AC and Link. The
user must also preserve all other registers and states, including the
index and limit registers, EAE registers, auto-increment registers, FPP
registers, and XVM mode (17 bit addressing mode) status. The .TIMER
interrupt routine must not call any non-re-entrant user routines nor

use any CAL's.

These restrictions may be relaxed somewhat if the .TIMER interrupt
routine will only be used when API is also in use. If this assumption
holds, the interrupt routine may issue CAL's freely. However, it is
necessary to ensure that the mainstream program and the interrupt
routine do not interfere with each other's .DAT slots. If API will

be used, the interrupt routine may also make free use of any registers
which are not used by the mainstream program. See Section 2.2.4 for a
more detailed discussion of .TIMER restrictions when API might not be

used.
2.2.3 Routines Which Re-Schedule and Return

A .TIMER interrupt routine which will schedule a new .TIMER interrupt
and then return to the interrupted code should be coded as follows:

.INH=705522
.ENB=705521

SC.TMA=161

SC.TMT=160

timint @
DAC saveac / Save AC ...
RAR / ... and Link.
DAC savlnk

LAC (address) / Put address of next .TIMER
DAC* (SC.TMA) / Interrupt routine in SC.TMA.
.INH /// Disable interrupts to avoid
I0F /// Possible reentrancy problems.

LAC (-ticks) /// Put the two's complement
DAC* (SC.TMT) /// of ticks until next inter-
/// rupt in SC.TMT,

LAC savlnk /// Restore Link ...

RAL /77

LAC saveac /// ... and AC.

ION /// Enable interrupts ...
.ENB ///

JMP* timint /// ... after return.

The user is responsible for saving and restoring the AC and Link plus
all other registers and states. See Section 2.2.2 for a more detailed
discussion.

Interrupts must be disabled when the next .TIMER interrupt routine is
scheduled to avoid possible re-entrancy problems.. In the most general
case, a .INH and IOF in combination are required to disable interrupts
and an ION and .ENB in combination to enable interrupts. The IOF/ION
pair is only required on machines which do not have API hardware
installedl; whether or not API will be used does not matter. Similarly,
the .INH/.ENB pair is only needed if API will be used. If the routine
will always be run without API they may be deleted.

Usually the same .TIMER interrupt routine will be used for the next
interrupt. SC.TMA need not be updated if this is the case. SC.TMT
must always be updated because it has been cleared to deactivate .TIMER.,

2.2,4 Using .TIMER Without API

When .TIMER is used with a system which is also using API, there are
essentially no restrictions on its use. There are certain guidelines
which the programmer should follow, such as preserving registers and

the like, but the programmer is free to disobey these guidelines if he
so chooses. Doing so will almost always result in a malfunctioning user
program, but should not affect system integrity. The reason for this

is as follows.

When API is in use, the XVM/DOS monitor can detect, at any instant in
time, whether or not either a CAL routine or an interrupt routine is
active. When the .TIMER time interval expires and the .TIMER interrupt
occurs, the monitor checks to see if either a CAL routine or an interrupt

routine is active. If so, the actual occurrence of the .TIMER interrupt

lThe re-entrancy ECO package (ECO #KP15-49 through KP15-52) must also

be installed. XVM/DOS cannot use API unless this ECO package is
present.

is delayed until all such routines terminate and the monitor is quie-
scent. The net effect of this is that the interrupted program is
always the user program. Whatever actions the .TIMER interrupt routine
performs cannot disturb the integrity of the various monitor routines.

All this no longer applies when API is not in use. The monitor is
unable to determine whether or not a CAL routine or an interrupt routine
is active. Therefore, when the .TIMER time interval expires, the inter-
rupt occurs immediately. It is possible that some portion of the moni-
tor will be interrupted, which implies that the .TIMER interrupt routine
must follow certain programming conventions to preserve system integrity.
System integrity may be violated if these conventions are not followed,
possibly causing disk file structure corruption and other undesirable

results.

The conventions necessary to preserve system integrity are described
below. All of these are conventions which must be followed by .TIMER

interrupt routines.

1. The .TIMER interrupt routine must return to the interrupted

code.

2. All registers must be preserved. This specifically includes
the AC, Link, MQ, SC, XR, LR, and auto-increment registers.

3. The routine must not issue any CAL's nor modify any buffers

or other locations being used by I/O handlers.

These conventions ensure that the monitor routines will be able to

complete successfully.

While the user is expected to follow these conventions whenever pos-
sible, there are some occasions where this cannot be done. The most
common of these will be .TIMER interrupt routines which do not return
to the interrupted code. On such occasions the user is advised to
terminate I/0 using the procedures outlined in Section 2.4. However,
we must stress that successful operation cannot be guaranteed and must
depend upon luck and the user's own knowledge. Any problems which
occur will be timing dependent, and thus probably inconsistent and

non-reproducible.

There is one other oddity which occurs when .TIMER is used without API.
When API is in use, the return address stored at the .TIMER interrupt
routine's entry point is an address within the user program. Thus, this
address may be used to gather statistics about how much time is spent in
various portions of the program. When API is not in use, on the other
hand, this does not apply. Without API the return address is actually

a constant, and thus useless for this purpose.

2.2.5 Deactivating .TIMER Interrupts

A pending .TIMER interrupt request may be deactivated by issuing the
following CAL:

.TIMER #,0
Within an interrupt routine the same effect should be achieved with:

SC.TMT=160
DZM* (SC.TMT)

2.3 CONTROL CHARACTER ROUTINES

XVM/DOS provides several control characters which interrupt the cur-
rent program and transfer control to a specified routine. These con-
trol characters are 4C, 4P, 4S5, 4T, and +Q.l All of these have stand-
ardized meanings, described in the XVM/DOS User's Manual. The XVM/DOS
monitor provides a default routine for each of the control characters
(except 4P) so as to implement the standardized meaning. A default
routine cannot be supplied for 4P, since its standardized meaning is

to restart the current program from the beginning. The 4P control
character routine must be specified by the current program, as only the

program knows how to re-initialize itself.

Although default routines are supplied, the programmer is provided the
capability to change them. The only exception is 4Q, which is dedicated

.
“4R is recognized and treated specially by the IOPS error processor.
However, it does not perform the same function as the control charac-
ters described here, i.e., interrupting the program and transferring
control to a control character routine.

Q

to its task. The remaining four contrel character routines (4C, 4P,
+s, and *T) may be respecified; however, the standardized meanings
should be adhered to whenever possible so as to retain a reasonably

simple and consistent human interface.

There are two methods of specifying control routines, summarized in
Table 2-1. The 4S routine is straightforward, as the routine address

is in .SCOM location SC.UST. The other three control character routines
are specified by issuing a .INIT to TTA., the console terminal I/O
handler. The third argument of the .INIT is the routine address, with
the high two bits of the word indicating which control character routine
is to be changed. The .INIT may be issued to any .DAT slot assigned to
TTA., although the examples use .DAT slot -3. For all four control
characters, a routine address of zero causes that control character to

be ignored.

When API is in use, no special precautions need be observed in writing
control character routines. There are certain hazards present, however,
when API is not in use. The essential problem is the possibility that
the control character interrupt will occur when an I/0 handler or

some other portion of the monitor is executing. Interrupting the moni-
tor at the wrong place can violate system integrity and cause file
structure corruption. The monitor can avoid this problem when it is
allowed to use API. See Section 2.2.4 for a detailed discussion of the
analogous problem with .TIMER.

This problem can be alleviated somewhat by having the control char-
acter routine return to the interrupted code. This causes several
additional problems, however, which are described below. A .SCOM
location, SC.TTP, is provided to allow a control character routine to
return to the interrupted code. Its use is typified by the following

example control character routine:

SC.TTP=116

Save AC
and return address

routine DAC saveac
LAC* (SC.TTP)
DAC savepc

RAR and Link

DAC savlnk
. Set a flag to indicate
. that the control character
. has been typed.

LAC savlnk Restore Link

RAL

and AC
then return.

LAC saveac
JMP* savepc

N N NN

2-9

The control character routine should follow the guidelines for .TIMER
routines outlined in Section 2.2.4.

Although having the control character routine return to the interrupted
code does solve the system integrity violation and consequent file
structure corruption problems, it also introduces two new problems.

The first of these is a re-entrancy problem. If a second control chara-
cter is typed too quickly following a first, the contents of SC.TTP

will be lost and an indefinite loop may result. This problem is inherent-
ly insoluble. The second problem results from IOPS errors. If the con-
trol character was struck in response to an IOPS error, the very concept
of returning from the control character routine is meaningless. The

IOPS error processor checks for this and issues an IOPS35 error if a

control character routine returns to it.

The only real solution to the entire issue is to always use API. When
using API, control character routines should never return. They may be
coded to return anyway, but doing so will introduce the two problems
described above.

Table 2-1

Specifying Control Character Routines

T
Controel Code i
Character (Octal) i Method
+8 n/a SC.UST=14g6
LAC (routine)
DAC* (SC.UST)
tC 200209 .INIT -3,d,code+routine
+P)
+T Ly gegogefe]
‘fQ n/a None

2.4 ABORTING I/0

There are certain occasions in which the programmer may wish to abort
I/0 transfers which he has requested previously. This is particularly
likely following a .TIMER or control character interrupt. The means

of doing this is described below.

The primary means of aborting I/0 in progress is to issue a .INIT to
the busy .DAT slot. This will abort most XVM/DOS I/0 handlers.

2-10

One exception to this is the console terminal device handler, TTA. The
following code sequence is necessary to abort console terminal I/O:

SC.CTT=135
XCT* (SC.CTT)

This sequence must be executed before any further CAL's (including .INIT)
are issued to TTA.

2.5 THE IOPS ERROR PROCESSOR

XVM/DOS provides two processors for IOPS errors. .MED is used to print
a message including the IOPS error code followed by zero, one, or two
octal values. The number of octal values is determined by the error
code. The expanded error processor prints the same IOPS error message
as does .MED, then follows it with an arbitrary string of text. Most
XVM/DOS I/O handlers use the expanded error processor; the remainder
use .MED.

The IOPS error processors are intended for use by I/O handlers. The
error processors, therefore, should only be called from CAL routines
and interrupt routinesl; they should not be called from mainstream.

The expanded error processor obtains information for the error message
from the five sources listed below. The .MED error processor obtains

its information from the first three of these sources. The sources are:

1. The AC contains the IOPS error code in the low 13 bits.
The high 5 bits are ignored; thus the LAW instruction may
bé used. The expanded error processor, however, expects
the AC to normally be negative and attaches a special
meaning to a positive AC (see Section 2.5.2). Valid

error codes are @ through 777 (octal) inclusive.

2. For all errors except IOPS4, location .MED contains a
value which is printed, in octal, following the IOPS
error code. The CAL handler dispatch routine initializes
.MED to the address of the CAL instruction. Thus, IOPS
errors which print the CAL instruction address need not
modify .MED. Note that this only works for CAL routines,

not interrupt routines.

lThis does not include .TIMER interrupt routines and control character
routines.

3. If the error is an IOPS2J¢ or IOPS21, the contents of
SC.BBN is printed, in octal, following the contents of
.MED.

4. A string of .SIXBT text follows calls to the expanded
error processor. This text is printed to terminate the
error message.

5. The Link specifies how nulls (character code @@) within
the .SIXBT text are to be treated. If the Link is set,
nulls will be printed as spaces. If the Link is clear,
nulls will be ignored.

The expanded error processor may also be called in such a manner that
only the .SIXBT text will be printed; the first three items listed above
will be ignored. Detailed specifications of the various calling

sequences are given in the sections which follow.

Errors may be either recoverable or non-recoverable. If the error is
recoverable, and the operator types a 4R, the error processor returns
to the handler which called it. All registers except the AC and Link
will be preserved. If the error is non-recoverable and the operator
types a 4R, the IOPS error message will be repeated. If the operator
types any other control character (4P, +T, 4C, +Q, or 4S) the operation
will be aborted and the error processor will not return to the I/0
handler. Therefore, the programmer must ensure that the I/0 handler
and its tables are in a consistent state before calling an error pro-

cessor.

When using the .MED error processor, only the IOPS4 error is recoverable.

The following code sequence invokes an IOPS4 error message:

.MED=3

LAW 4
JMS* (.MED)

This causes the following message to be printed:

I0Ps4

If the operator responds with a 4R, the error processor will return
following the JMS. The AC and Link will be changed; all other registers
will be preserved. In all other cases, the error processor will not

return.

All other errors are non-recoverable, and are invoked by the following

sequence:

.MED=3

LAC (mmmmmm)
DAC* (.MED)
LAW nnn

JMP* (.MED+1)

which causes the following message to be printed:

IOPSnnn mmmmmm

where "nnn" is the IOPS error code number. The meaning of "mmmmmm"
varies with different error codes. The error processor will never

return.

The only exceptions to this last calling sequence are the IOPS2{ and
IOPS21 errors. For these errors the sequence is modified to the

following:

.MED=3
SC.BBN=132

LAC (bbbbbb)
DAC* (SC.BBN)
LAC (mmmmmm)
DAC* (.MED)
LAW nnn

JMP* (.MED+1)

which causes the following message to be printed:
I0PSnnn mmmmmm bbbbbb
where "nnn" is either 2§ or 21. By convention "bbbbbb" is the parti-

cular disk or DECtape block number in which the error occurred. Other-

wise this is identical to the previous variation.

2.5.2 The Expanded Error Processor

The expanded error processor is invoked by a code sequence of the
following form:

.MED=3
SC.BBN=132
SC.EEP=137
LAC (mmmmnm)
DAC* (.MED)

LAC (bbbbbb)
DAC* (SC.BBN)
CLL or STL
LAW nnn

JMS* (SC.EEP)
JMP recover
-count

.SIXBT "text"

This causes one of the following four forms of messages to be printed:

IOPS4 text

IOPSnnn mmmmmm text
I0PSnnn mmmmmm bbbbbb text
text

The expanded error processor selects one of the first three forms

based upon the IOPS error code number "nnn". An error code of 4 results
in the first form listed. The codes 2§ and 21 result in the third

form. All other codes result in the second form. The fourth form,

in which the IOPS portion of the message has been suppressed, is
selected via a mechanism described below.

As with the .MED error processor, the meaning of "mmmmmm" varies with
the error code number. By convention, "bbbbbb" is the particular disk
or DECtape block number in which the error occurred. If the form being
used does not include either or these values, the location containing
it (.MED for "mmmmmm" or SC.BBN for "bbbbbb") need not be set up,

allowing a portion of the code sequence above to be omitted.

The first three message forms above (the IOPS forms) all require that
the AC be negative when the error processor is called. This will happen
quite naturally if the LAW instruction is used. If, however, the AC is
positive, the fourth message form results. The ICPS portion is omitted

M N] ~ ATVARY < I P T W PP B | L la a1 3 e LN
is printed. When using this form, the AC should contain

zero; AC values greater than zero are undefined. Locations .MED and

SC.BBN need not be set up.

In the code sequence above "text" stands for an arbitrary .SIXBT text
string. This text string is printed following the IOPS portion of the
message (if present). Null characters within the text string will
either be ignored or converted to spaces, depending upon the value of
the Link., If the Link is clear, nulls will be ignored; if it is set,
they will be converted to spaces. A null is the character code §f.
Nulls may be inserted in a .SIXBT text string by specifying the "@"
character. This feature allows an I/0 handler to easily format an
error message, by concatenating various segments aligned on word

boundaries.

The length, in words, of the .SIXBT text string is represented by "count”
in the code sequence above. The two's complement of the length should
be provided. If the value provided is positive or zero, the text string
will be omitted.

The expanded error processor considers all errors to be potentially
recoverable. The error processor returns following the JMS if the
operator types a 4R. If the error is in fact recoverable, this location
should be a JMP to a recovery routine. If the error is non-recoverable,
this should be a JMP, which loops back to re-call the error processor.
Note that the AC and Link have been modified and must be restored before

the error processor is re-called.

2.6 .MTRAN

XVM/DOS provides an interface to the system bootstrap, implementing
transfers to and from the system disk. This interface is via the .MTRAN
(Monitor TRAN) CAL function. .MTRAN is a system macro; its expansion

is given in Appendix E.

.MTRAN should be invoked with a code sequence similar tc the following:

LAC (prmblk)
CLL or STL
« MTRAN

The .MTRAN CAL does not return in the normal fashion; when the transfer

completes the program continues in a manner described below. The state

of the Link indicates the transfer direction. If the Link is clear,
information is read from the system disk into core. If the Link is

set, information is written from core onto the system disk. The loca-
tion and length of the transfer is determined by a four word parameter
block. The address of the first word of the parameter block is conveyed
in the AC. The parameter block takes the following form:

prmblk blknum / first disk block.
coradr-1 / starting core address
-length / two's complement transfer length
restart / program restart address

The first word contains the number of the first disk block to be trans-
ferred. The second word contains one less than the core address at
which the transfer is to start. The third word contains the two's com-
plement of the number of words to transfer. The fourth word contains
the address at which the program should continue when the transfer is
complete. .MTRAN does not return in the normal fashion, to the location
following the CAL expansion. Rather, it returns to the address specified
in the fourth word of the parameter block. Upon return from a .MTRAN,
all registers have been altered. All that is preserved is the current
addressing mode ~ both bank vs. page mode and XVM mode enable/disable.
Note that the parameter block must reside entirely within the first 32K

words of core.

Although XVM/DOS provides this interface to the system bootstrap, its
use is discouraged. Using the bootstrap requires that the entire
interrupt system be shut down. The programmer is encouraged to use the
.TRAN function of a conventional disk handler whenever possible.

If a disk error is encountered while performing a .MTRAN, the following
message will result:

I0PS4

This message results for all errors, not just drive-not-ready errors.
Typing a 4R will cause the transfer attempt to be repeated.

2.7 XVM MODE

Unlike bank and page modes, the programmer may dynamically turn XVM
mode (17-bit addressing mode) on and off within his program.l This is

1Only the system loader may switch between bank and page modes, as the

XVM/DOS monitor and associated I/0 handlers must be reconfigured.

2-16

accomplished with the .XVMON and .XVMOFF CAL functions. These functions

are provided as system macros.

In order to use these CAL's, the programmer must ensure that XVM mode
has been enabled. This is acccmplished by issuing the XVM ON command
to the non-resident monitor. If XVM mode is disabled (XVM OFF), the

.XVMON CAL will result in an IOPS{® error. The .XVMOFF CAL will still

execute successfully, however.

It should not be necessary for the user to issue either of these CAL's
when the system is used normally. All DEC supplied system programs
run with XVM mode turned off. Accordingly, the system loader always
leaves XVM mode off. The Linking Loader and Execute, both of which
load user programs, turn on XVM mode (issue a .XVMON) if XVM mode has

been enabled.

2.8 ADVANCED .GET/.PUT

There are a number of options included in the .GET and .PUT CAL functions
which are not described in the XVM/DOS Users Manual. These options are
controlled by various flags in the first argument (the function argument)

to the .PUT and .GET system macros.

Every function performed by .PUT or .GET results from three operations
performed in sequence. These operations may be selectively omitted or
altered by various flags within the function code and by whether the CAL
is a .PUT or a .GET. The meanings and octal values of the flags are
summarized in Table 2-2.

The three operations comprising .PUT and .GET are as follows:

1. Core dump. The monitor first closes all open files. Then,
if the CAL is a .PUT, it transfers the core image into

the 4Q area on the system disk.

2. File transfer. The 4Q area is transferred to or from
the named disk file, or else no operation takes place.
If the flag SC.QNF is set in the function code, this
operation is skipped and no file transfer operation takes
place. If the flag is clear, the transfer operation will

be performed in a directicr determined by the flag SC.QPUT.

If SC.QPUT is clear, the file named by the .GET CAL is
copied into the 4Q area. If SC.QPUT is set, the tQ

area is copied to the file. Note, however, that the flag
SC.QPUT is complemented when the CAL is a .PUT. Thus,
the meanings of this flag become reversed from what is
described above.

3. Exit. If the flag SC.QNRM is set, the system exits to
the non-resident monitor. If SC.QNRM is clear, the 4Q
area is brought into core and control is returned to
the user program. The manner in which contro. is re-
turned is determined by the return code portion of the
function code, described in the XVM/DOS Users Manual.

In the course of these operations numerous error checks are performed.

Table 2-2
.GET/.PUT Special Function Flags

Flag Octal Value Meaning
SC.QNF 2009 Skip file transfer operation
SC.QPUT 499 Determine direction of file

transfer. Meaning when .GET:

set => 4Q area~+ file
clear => File+ +Q area

These meanings are reversed
when used with .PUT.

SC.QNRM 1099 Exit to non-resident

monitor when finished, rather
than restoring core image

The core image saved and restored by .PUT and .GET does not include all
of core. Locations @ to 4 are never included. This should be of no
consequence to the user, as these locations are reserved for the monitor.
It is also possible that the image will not extend to the top of memory.
If the 4Q area is shorter than the current system memory size, the

image will be truncated to the +Q area length. Note that memory above
the bootstrap may be omitted from the saved (and subsequently restored)
image without a warning message ever appearing.

Example 1:

The non-resident monitor command line:
SPUT LFILNAM LEXT
might be translated to the following code sequence:

.GET SC.QNRM!SC.QPUT,filblk

filblk .SIXBT "FILNAM"
.SIXBT "EXT"

Example 2:

The action performed by a +Q is closely approximated by the following
code sequence:

SC.QNRM=100 @

SC.QNF=2§09

.PUT SC.QNRM!SC.QNF,#

The monitor actually uses this code sequence to implement +Q, after
first modifying the .GET CAL function routine. See Chapter 3 for
more details.

2.9 TASK CONTROL BLOCKS

Communication between the XVM processor and the UNICHANNEL (PDP-11)
processor is performed through blocks of information called Task
Control Blocks. These blocks are resident in the first 4K words of
XVM memory where they can be accessed by both processors. The TCB
(Task Control Block) contains all the information necessary for the
processing of a UNICHANNEL request. For more details refer to the
XVM UNICHANNEL Software Manual.

Space for Task Control Blocks is allocated whenever the UCL5 option
is enabled. This option is enabled with the UC15 ON command and
disabled with the UCl5 OFF command. The UCl5 OFF command will re-
claim (for other purposes) the space allocated to the Task Control
Blocks.

Task Control Blocks are accessed by means of .SCOM location SC.TCB.
If the UNICHANNEL is disabled (UCl15 OFF), the TCB area is not
allocated and SC.TCB contains zero. Otherwise, SC.TCB points to

a table of transfer vectors, containing one location for each TCB.

Each location in this table is fixed, corresponding to a particular
TCB. This table is currently nine words long, as there are currently
nine TCB's. Existing table locations will not be changed in the
future; changes will be implemented by adding additional table loca-

tions.

Each potential Task Control Block has a dedicated location in this
transfer vector table. This location will be zero if the associated
TCB has not be allocated. Otherwise, it will be the base address

of the TCB. The length of the TCB is determined when the resident mon-
itor is assembled. Each TCB has a standard default length. While users
may change the length, they should do so with caution, as all software
which may reference that TCB must be modified to reflect the change.

The various Task Control Blocks, the assembly parameters which con-
trol their generation, and their transfer vector locations within the
table pointed to by SC.TCB are all summarized in Table 2-3. Which
TCB's are allocated, and the length of each TCB when it is allocated,
is determined by several assembly parameters to the resident monitor.
Each TCB has its corresponding assembly parameter. If the parameter
is left undefined, the TCB will not be allocated. If the parameter
is defined equal to zero, the default length will be used. If the
parameter is defined with a non-zero value, that value is used for
the TCB's length and the default length overridden.

There are two exceptions to the above rule. Both the disk Task Con-
trol Block (RKTCB) and the line printer Task Control Block (LPTCB)
will always be generated. This occurs even if the assembly parameters
are left undefined, as these two TCB's are required by various pieces
of system software.

We wish to stress that the foregoing discussion of TCB assembly para-
meters only applies when the UNICHANNEL is enabled. When the UNI-
CHANNEL is disabled (UC1l5 OFF), no TCB's are allocated, regardless of
what assembly parameters are used. The assembly parameters determine
which TCB's will be allocated when the UNICHANNEL is enabled (UC15 ON).

Table 2-3

Task Control Blocks

1 Assembly 2 Default3
Offset Parameter Length Use

'] RKTCB* 21 Cartridge disk TCB

1 LPTCB* 117 Line Printer TCB and Buffer
area

2 CDTCB 65 Card Reader TCB and Buffer
area

3 PLTCB 117 XY (incremental) Plotter TCB
and Buffer area.

4 TCB1 24 Spare TCB and Buffer area #1l.

5 TCB2 120 Spare TCB and Buffer area #2.

6 TCB3 170 Spare TCB and Buffer area #3.

7 LVTCB 120 Printer/Plotter (electro-
static) TCB and Buffer area.

10 DLTCB 54 Communications TCB and Buffer
area.

1

The offset, shown in octal, determines the location of the TCB's

transfer vector within the table pointed to by SC.TCB. The fol-
lowing code sequence loads the AC with the base address of a TCB:

SC.TCB=2f#f¢

LAC* (SC.TCB)

SNA

JMP tcb not allocated
AAC offset

DAC temp
LAC* temp
SNA

JMP tcb not allocated

2The two TCB's flagged with an asterisk are always generated.
Leaving either RKTCB or LPTCB undefined is equivalent to setting

it equal to zero.

3

The default lengths are expressed in octal.

2.10 MINI-ODT

NOTE

Mini-ODT is an UNSUPPORTED feature of
XVM/DOS. It is described here as a con-
venience to customers who may wish to
use it in spite of this restriction.

Mini-ODT is an optional feature of the XVM/DOS resident monitor. It
is included in the monitor by defining the following assembly para-
meter when assembling RESMON:

$ODT=¢

If present, Mini-ODT will be invoked on all IOPS errors. The 4T
control character routine will, by default, be Mini-oDT. Thus, typing
a 4T will invoke Mini-ODT unless the user program respecifies the 4T
control character routine or DDT, Batch or BOSS is in use. All in-

teraction with Mini-ODT occurs via the console terminal.

When an IOPS error occurs, Mini-ODT prompts for a command on the line
following the normal IOPS error message. When Mini-ODT is invoked
via 4T, it types a line of information and prompts for a command on

the following line. The line of information is of the form:

ODT > PC=pppppp AC=aaaaaa

This line describes the contents of the PC and AC when the +T inter-
rupt occurs.

Mini-ODT prompts for commands by printing the following sequence at
the left margin:

oDT >

Note that every line printed by Mini-ODT begins with this same se-
quence. Legitimate commands are listed in Table 2-4. If an invalid
command is entered, Mini-ODT types two question marks, closes any

open location, and prompts for a new command.

Table 2-4
Mini-ODT Commands

Command

Action

nnnnnn/

“

nnnnnn‘)

nnnnnn$

+P, tC,
+8, +Q

+T,

Close any open location, then open location
nnnnnn and print its contents. Always legal.

Close the currently open location, then open
the next location in sequence and print its
contents. TIllegal if no location is open.

Store nnnnnn in the currently open location
and close it, then open the next location in
sequence and print its contents. Illegal if
no location is open.

Close any open location. Always legal.

Store nnnnnn in the currently open location
and close it. 1Illegal if no location is
open.

Same meaning as with error processor without
Mini-ODT. Exits error processor and Mini-
ODT and transfers to control character rou-
tine.

Return from error processor and Mini-ODT. If
Mini-ODT was invoked by an IOPS error, the
handler retrys the I/0 transfer. If invoked
by 4T, resume the interrupted program.

Key:

nnnnnn

4
$

Any octal number
Carriage return

Alt Mode. A dollar sign will not be
echoed.

2.11 RESIDENT MONITOR PATCHING FACILITIES

There are two distinct types of patching available with the XVM/DOS
resident monitor. The first of these provides what is normally meant
by a patch area. This method is appropriate for altering the resident
monitor. The second method, although using what is termed the resi-
dent patch area, is really a means of communication between different

core loads.

To add code (presumably a patch) to the resident monitor, the following
procedure should be followed. Using the Patch XVM utility program,
examine location 11 within the disk image of RESMON. This location's
contents is the address of the first free location above the resident
monitor. The code and data should be inserted beginning at this address,
and the contents of location 1¢1 updated to reflect the monitor's in-

creased length.

The second patching method uses the aforementioned resident patch area.
The resident patch area is allocated by SGEN XVM when a non-zero re-
sponse is given to the question:

RESIDENT PATCH AREA SIZE [¢]

The response to this question determines the length (in words) of the
resident patch area. The base address of the resident patch area is
contained in location 181 of the disk image of RESMON. Note that
patching the resident monitor via method 1 above will relocate the
resident patch area.

The resident patch area gets its name from the fact that it is truly
resident. It is initialized from the monitor's disk image upon a
manual bootstrap load (cold-start). Following this it is left un-
disturbed, from core load to core load, unlike the rest of memory
which is constantly refreshed. Thus it is a convenient method of

communication between core loads.

It should be noted that references to location 1@1 apply only to the
disk image of RESMON. This location is. changed when the monitor is
brought into core and initialized. The programmer must also be aware
that an upper limit is placed on the combined sizes of the two patch
areas when the resident monitor is assembled. The patch areas should
be restricted to a total combined length of no more than 1@§@@ (octal)
words.

2.12 API SOFTWARE INTERRUPTS

This section presents the coding conventions which should be followed
when a particular API software interrupt level is shared among several
uses. The conventions must be followed by the user if he uses level 4,
as the XVM/DOS monitor and I/O handlers use level 4 also. They need
not be followed with levels 5, 6, and 7 as these levels are reserved
exclusively for the user. However, it is still recommended that these
conventions be followed, to allow the levels to be used for additional

purposes.

The routine which requests a level 4 software interrupt should be

coded as follows:

API.R4=404000

SC.Lv4=112

. INH=785522

.ENB=7@5521
. INH ///
RPL /// Save previous level
AND (API.R4) /// 4 request.
DAC svrgst ///
LAC* (SC.LV4) /// And the interrupt
DAC svvctr /// vector.
LAC (API.R4) 77/
ISA /// lIssue a request
LAC (routine) /// for our routine.
.ENB ///
DAC* (SC.LV4) ///

This coding sequence saves a current software interrupt request (if

one is present) so that it may be restored later. Interrupts are dis-
abled so that an interrupt routine, itself trying to schedule a soft-
ware interrupt, won't find things in an inconsistent state. An anal-
ogous coding sequence should be followed with software levels 5, 6,

and 7, substituting the appropriate mnemonics and values from Table 2-5
for API.R4 and SC.LV4.

The software interrupt routine must be coded to complement the re-
questing routine above. The interrupt routine should be coded as
follows:

SC.LvV4=112
. INH=785522
.ENB=7@5521

routine § /// Software interrupt
.INH /// routine entry point.
DAC saveac /// save AC.
LAC svrgst /// Restore previous
ISA /// level 4 request.
LAC svvctr /// And its interrupt
.ENB /// vector.

DAC* (SC.LV4) /77

LAC saveac / Restore the AC
DBR / and operating modes
JMP* routine / and return.

This routine restores the previous software interrupt request which
was saved by the scheduling routine. It is essential that no inter-
rupts be allowed after the moment the software interrupt is granted
until the previous request has been completely restored. Routines
for levels 5, 6, and 7 should be coded in a like manner, substituting

the appropriate mnemonic and value from Table 2-5 for SC.LV4.

The programmer should note that XVM mode is turned off when the soft-
ware interrupt occurs. A .XVMON CAL should be issued if XVM mode is
required within the software interrupt routine. The DBR instruction
used to return from the software interrupt routine causes XVM mode to

be restored to the proper state.

The programmer must also remember that software interrupts may only be
used when XVM/DOS has been conditioned to use API. This conditioning
occurs when the API ON command is given. Enabling the API hardware

when the monitor is not so conditioned (API OFF) is erroneous.

Table 2-5

API Software Interrupt Vectors and Request Flags

Pri . Interrupt Transfer Vector Request Flag
riority
Level Mnemonic Octal Value Mnemonic Octal value
4 SC.LvV4 112 APT.R4 404000
5 SC.LV5 113 API.R5 402000
6 SC.LV6 114 API.R6 401000
7 SC.LV7 115 API.R7 400400

2-27

CHAPTER 3
THE RESIDENT MONITOR

This chapter contains information concerning the internal operation of
the resident monitor for those who may wish to alter it. These altera-

tions, however, are not supported by Digital Equipment.

A fresh copy of the resident monitor is built for each core load and
becomes a permanent part of the core load. The .SCOM table, which
contains absolute locations used to communicate between XVM/DOS com-
ponents, is an important part of the resident monitor. The resident
monitor also contains the CAL handler and associated CAL function rou-
tines, the console terminal I/0 handler (TTA.), plus various pieces of

optional, specialized code for B0SS, Batch, VT ON, and other features.
3.1 RESIDENT MONITOR INITIALIZATION

A fresh copy of the resident monitor is built for every core load by
reading it from disk into core and transferring to the initiali-

zation code. Usually this process is used by the monitor to rebuild
itself for a new core load. A less common use of this process is for

a manual bootstrap or cold start.

Manual bootstrap loads read the resident monitor into bank zero of core.
The initialization code copies the monitor to the memory bank in which
the bootstrap resides and transfers control to that bank. Next .SCOM
is cleared and selected locations initialized. The contents of SGNBLK

are the primary information sources for initializing .SCOM.

These steps construct an approximation to an operational core image,
allowing the completion of the initialization process using the more

common monitor rebuild procedure. This procedure is described below.

Whenever a new core load is constructed, the resident monitor is read
into the memory bank in which the bootstrap resides. The monitor

initialization code is executed, rebuilding the monitor in bank zero.

Upon completion of this build procedure the initialization code overlays
itself with the system loader (.SYSLD). The system loader completes

the core load by loading the appropriate system program and requested
I/0 handlers. The rest of this section describes the initialization

code in more detail.

Immediately upon being entered the initialization code (executing in
the bootstrap's bank) saves certain key tables from the previous core
load's monitor. At this time the previous core load's monitor is
still in bank zero. The tables which are saved include the old .SCOM,
the .DAT and .UFD tables, and the VT ON display buffer (if present).
After these tables are saved, low memory -- in particular .SCOM -- is

zeroed.

At this point the build procedure begins. The new .SCOM is built using
the old .SCOM and SGNBLK as primary data sources. Entries in .SCOM
are checked for validity in terms of the current hardware configuration,
and altered if necessary. The monitor is copied into bank zero and
configured for the current operating modes. Other system tables are
set up and initialized. These tables include the skip chain and the
.DAT, .UFD, and TCB tables. Finally the interrupt system is turned

on and the system loader brought into core.

Monitor appendages play an important role in configuring the resident
monitor for various operating modes. A monitor appendage is a section
of code which may easily be included as part of the monitor or left out
and the space recovered for other purposes. Monitor appendages are used
to implement many optional features, such as Batch and BOSS modes and

VT ON.

A monitor appendage is divided into two sections. The first section

is instructions, the second absolute constants. The monitor initiali-
zation code checks if the appropriate option is enabled, and calls a
routine (IN.MOV) to add the appendage if appropriate. This routine
relocates all memory reference instructions and copies the rest of the
appendage, including the absolute constant section, without modification.
The necessary registers are modified to reflect the increased size of

the monitor. Note that no provision is made for relocatable constants ==

any such must be handled separately.

3.2 THE CAL HANDLER

The CAL handler is a basic dispatch routine. There are two varieties
of CAL's, each handled separately. If the CAL is an I/O CAL, the .DAT
slot number is determined from the CAL instruction and the I/O handler
address obtained from the .DAT table. The CAL handler transfers to

the I/0 handler via a JMP instruction, with the CAL instruction address
in the AC.

Non-I/0 CAL's are performed by CAL function routines internal to the
resident monitor. The CAL handler obtains parameters from the‘CAL
expansion and stores them in places convenient for the CAL function
routines. The CAL handler then invokes the appropriate CAL function
routine via a JMS instruction. When the CAL function routine returns,
the CAL handler returns to the user program. A more detailed descrip-
tion is provided by the accompanying flow diagrams (Figure 3-1) and by

comments included in the resident monitor.

The above description of the CAL handler is greatly simplified, as it
completely ignores a major problem which may occur. This problem centers
upon the possibility of certain interrupts occurring during monitor
processing. The interrupts in question are control character interrupts
from the console terminal keyboard and clock interrupts which cause a
.TIMER routine to be invoked. The troublesome characteristic of these
interrupts is that they cause an asychronous transfer of control in

the user program. If the problem were ignored, and an I/O handler or

the monitor were interrupted, various internal tables could be left

in an inconsistent state. Such a violation of system integrity can

have consequences as far reaching as disk file structure corruption.

The solution to this problem is to provide a way to determine whether
or not the monitor is active -- i.e. whether the monitor or the user
program is interrupted. If the monitor is inactive, the control chara-
cter or .TIMER interrupt takes effect immediately. If the monitor is
active, the control character or .TIMER interrupt should be delayed
until monitor activity terminates, so that only the user program is
affected. This solution is in fact achieved when API can be used.

Without API, however, the problem still exists.

The API solution makes extensive use of level 4 software interrupts,
and the fact that CAL instructions implicitly raise the processor to
level 4. The CAL handler uses these techniques to maintain a CAL level

counter, indicating the nesting depth of currently active CAL's. Every
time a CAL is issued, the CAL handler increments the CAL level counter
and requests a level 4 software interrupt. When the CAL function routine
completes, it returns, simultaneously dropping below API level 4. The
level 4 software interrupt occurs, allowing the CAL level counter to

be decremented. If the counter reaches zero, all CAL's have completed
and the user (mainstream) program is active, so the handler drops back
to mainstream and returns from the software interrupt. If the counter
hasn't reached zero, a CAL function routine (which has just itself
issued a CAL) is still active, so the handler remains at level 4 when
it returns from the software interrupt. These operations are further
described in Figure 3-1.

The above procedure maintains an indication of whether or not a CAL
routine is active. Note that this works equally well for both I/O CAL's
processed by I/O handlers and non-I1/0 CAL's processed internally. There
must also be a way to detect if an interrupt routine is active. This

is quite easily achieved, however, as all interrupt routines operate at
API levels 4 and above.

This information about CAL and interrupt routine activity is used by
the monitor when processing control character and .TIMER interrupts.
The logic to handle this is contained in a monitor subroutine, RQ.LV4.
RQ.LV4 is called by an interrupt routine to schedule an auxiliary
routine for execution at a later time. An auxiliary routine is identi-
cal to a level 4 software interrupt routine, with two exceptions. The
important difference is that the "software interrupt" which invokes the
auxiliary routine is guaranteed to interrupt the user program, rather
than any portion of the monitor. Thus when the auxiliary routine
receives control, the monitor is inactive and all CAL and interrupt
routines have completed. The second difference between an auxiliary
routine and a level 4 software interrupt routine is that an auxiliary
routine need not restore a previous software interrupt request (see
Section 2.12).

When RQ.LV4 is called to schedule an auxiliary routine, it firsts checks
the CAL level counter to see if a CAL function routine is active. If

no CAL function routines are active, it requests a level 4 software
interrupt and invokes the auxiliary routine when the software interrupt
is granted. 1If a CAL function routine is active, however, it arranges

for the level 4 software interrupt to be requested when all active CAL

CAL

Trap to location 20
at API level 4.

CL.ENT

Enter CAL handler.

Save AC and CAL
return address.

Initialize erroxr
processor (.MED} to
print CAL address.

Is this a nested CALZ

Save the current
level 4 software
interrupt request.

software interrupt
for routine CL.LV4.

|
!
!
]
I
!
I
i
!
i
|
I
I
1
I
Request a level 4 i
I
1
I
|
!
J

¥EY

Normal transfer of
control

Interrupts disabled

A

Inoperative when API
not in use

Figure 3-1

The CAL Handler

Restore the CAL
vector (location 20)
to trap indirect
CAL's (CAL*'s).

Save the CAL in-
struction (word 1 of
the CAL expansion).

Fetch the CAL func-
tion code (word 2 of
the CAL expansion).

Is it an 1/0
function?

Get .DAT slot number

Is it a legal

and verify its
validity.

10PS §

Figure 3-1 (cont)
The CAL Handler

3-6

Set up dispatch to
CAL function routine.

Update CAL return
address for length
of CAL expansion.

Save words 3 and 4 of
the CAL expansion.

Invoke CAL function

routine (via JMS).

Restore AC.

Restore operating
modes, drop to main-
stream from level 4,
and return from CAL.

CL.DSE
IOPS 2
KEY
Normal transfer of
> control
— — — > Control transfer via

trap or interrupt

Inoperative when API
not in use

Merge unit number
from .DAT slot into
word 2 of the CAL
expansion.

Set up dispatch to
I/0 handler.

Put CAL address (with
operating mode bits)
into AC.

Exit CAL handler by
transferring to I/0
handler.

Enter I/0O handler.

Figure 3-1 (cont)
The CAL Handler

3-7

e e = —— = 1

Level 4 software
interrupt.

Save AC.

The 1/0 handler pro-
cesses the I/0 CAL
function.

Restore operating
modes, drop to main-
stream from level 4,
and return from CAL.

Is this return from
a nested CAL?

N @
Normal transfer of
> control

— — _ > Control transfer via
trap or interrupt

Interrupts disabled

Inoperative when API
not in use

Figure 3-1 (cont)
The CAL Handler

3-8

N = —— e e e — ——

Restore the previous
level 4 software
interrupt request.

Restore AC.

Restore operating
modes, drop to main-
stream and return from
software interrupt.

Reguest a level 4
software interrupt
for this routine
{CL.LV4) .

Restore AC.

Restore operating
modes and return from
software interrupt,

remaining at level 4,

KEY

Normal transfer of

control
Interrupts disabled

Inoperative when API
not in use

Figure 3-1 (dont)
The CAL Handler

3-9

function routines terminate. This logic is illustrated by Figure 3-2.
The interaction with the CAL level counter ensures that all CAL function
routines have completed when the auxiliary routine is invoked; the level
4 software interrupt request ensures that all interrupt routines are
complete.

The use of RQ.LV4 is well illustrated by the .TIMER interrupt logic.
When the clock interrupt routine detects that the .TIMER time interval
has expired, it calls RQ.LV4 to schedule an auxiliary routine. Follow-
ing this, the clock interrupt routine continues operation and completes
normally. Ultimately the auxiliary routine is invoked wvia the procedure
described above. The auxiliary routine, in turn, actually invokes the
user's .TIMER interrupt routine.

The foregoing discussion has described a solution to the system integrity
problem which centers upon control character and .TIMER interrupts. As
stated previously, this solution uses API extensively -- particulary
level 4 software interrupts. When API cannot be used (either because

it isn't present or because its use has been disabled), this solution is
inapplicable; the problem becomes insoluble and it most frequently mani-
fests itself as disk file structure corruption.

An example of how this problem might occur is as follows. Suppose a
user were to use the PIP XVM utility program to delete a disk file.
Furthermore suppose that the filename was typed incorrectly, but that
the error was not discovered until after the command line was terminated
with a carriage return, so that the wrong file would be deleted. Upon
discovering this error, most users would immediately try to abort the
deletion with a 4C or +P which would be too late to save the file. How-
ever, unless the file were extremely short, this would cause disk cor-
ruption. Specifically, some of the blocks which had been allocated to
the file would be lost from the disk's bit maps and unavailable for
further use.

Even though this problem is inherently insoluble without API, we cannot
just ignore it. We must exert some effort to preserve the correct

status of XVM or user mode (see Section 3.4). A user program may execute
in either user mode or exec mode, whereas the monitor always executes in
exec mode. This requires attention in conjunction with .TIMER and

other user interrupts which might return to the interrupted code.

RQ. LV4

s a CAL routine in

» Save the CAL han~
dler's previous level
4 software interrupt
request.

Replace the CAL han-
dler's previous level
4 interrupt request
with a request for
our level 4 interrupt
routine.

progress?

Save the current
level 4 software
interrupt reaquest.

Request a level 4
software interrupt
directed to our level
4 interrupt routine.

l

!

Thread the auxiliary
routine request (in-
cluding the previous
level 4 status) onto
a linked list.

Return to interrupt
routine from RQ.LV4.

Interrupt routine

resumes following the
JMS RQ.LV4.

Figure 3-2

KEY

> Normal transfer of
control

Interrupts disabled

The Auxiliary Routine Scheduler, API Version

3-11

Level 4 software
interrupt.

Interrupt routine
executes to comple-
tion.

Restore AC.

Save AC.

. Transfer to auxiliary
° routine (remaining
. at API level 4).

Enter auxi
routine.

liary

All active interrupt
and CAL routines ex-
ecute to completion.
This occurs at API
levels 4 and above.

Restore the previous
level 4 software
interrupt request.

Auxiliary routine
executes to comple-
tion.

Remove the auxiliary
routine request from
the linked list.

The outermost inter-
rupt or CAL routine

Restore operating
modes, return to user
program, and debreak
below API level 4.

returns to the user
program.

Give interrupt re-
turn address to aux-
iliary routine.

L

KEY
Normal transfer of
—> control

— — — > Control transfer via
trap or interrupt

—__—— Interrupts disabled

Figure 3-2 (cont)
The Auxiliary Routine Scheduler, API Version

3-12

RQ.LV4

Enter with interrupts
disabled.

Give interrupt return
address to auxiliary
routine.

Merge operating mode
bits from interrupt
return address with
auxiliary routine
entry point address.
Force user/exec mode
bit to exec mode.
Store in the inter-
rupt vector so this
will replace the
interrupt return
address.

Return from RQ.LV4.

Interrupt routine
resumes following
JMS RQ.LV4.

Interrupt routine
executes to comple-
tion.

Interrupt routine
returns, restoring
all operating modes
except user mode.

Enter auxi
routine.

liary

Auxiliary routine
executes to comple-
tion.

KEY

5 Normal transfer of
control

Interrupts disabled

Figure 3-3

3-13

Auxiliary routine
returns to interrupte
routine, restoring

all operating modes.

The Auxiliary Routine Scheduler, Non-API Version

Suppose the monitor is active when a .TIMER interrupt occurs. We must
leave exec mode and enter user mode before calling the user's .TIMER
interrupt routine. Correspondingly, when the .TIMER interrupt routine
returns, we must restore exec mode before returning to the monitor.
These mode transitions are handled by the auxiliary routine. The non-
API version of the auxiliary routine enters user mode (if appropriate)
and invokes the user's .TIMER interrupt routine via a JMS instruction.
If the user's .TIMER interrupt routine returns from the JMS, the auxil-
iary routine will return to the interrupted code with a DBR instruction,

so that all operating modes will be restored correctly.

This raises one final point. Although auxiliary routines and RQ.LV4 are
primarily useful with API, they are also used without API as a coding
convenience. Recall that RQ.LV4 may only be called from an interrupt
routine. When API is not in use, RQ.LV4 will schedule the auxiliary
routine for execution immediately following termination of the interrupt
routine which called RQ.LV4. The non-API variation of RQ.LV4 is depicted
by Figure 3-3.

3.3 REAL TIME CLOCK OPERATION

The XVM/DOS resident monitor uses the KW15 real time clock to maintain
timing information and to schedule various routines. The clock inter-
rupt routine, CK.INT, is depicted in Figure 3-4 as is the clock startup
routine, CK.STRT. The clock startup routine is used to restart the
clock following a CAF instruction.

Several .SCOM locations are used in conjunction with the clock routines
for timing purposes. These .SCOM locations are described in Table 3-1.
Note that .SCOM locations should only be referenced by equating their
mnemonic to their location, and then using the mnemonic as the actual
address. Following this convention facilitates readability and future
alteration to .SCOM.

3-14

(lo-
cation 7 overflows).

CK.STRT

Clear clock flag and
restart clock.

Raise to clock inter-
rupt level (either
API level 3 or IOQF).

Has the clock (loca-
ion 7) overflowed?

!
v

Drop back below clock
interrupt level.

Simulate clock inter- Return.
rupt. Use CK.STRT
return address as
clock interrupt re~-
turn address.
Transfer into CK.INT.
- - CK.INT
KEY
A
Normal“-transfer of
~— control
- > Control transfer via

trap or interrupt

Figure 3-4

Real Time Clock Routines

Save AC.

Decrement location 7.

Clear clock flag and
restart clock.

Increment elapsed
time in ticks
{SC.ETT).

s a .TIMER interrup
equest active?

as the .TIMER inter
al (SC.TMT) expired

]

Deactivate the .TIMER
Interrupt request.

Save the .TIMER
interrupt routine's
address (SC.TMA) for
CKR.TMR.

Schedule auxiliary
routine CK.TMR.

Have we reached the
nd of a second?

Reset ticks-in-
second counter
(SC.TMR) .

-

KEY
Normal transfer of
control

Control transfer via
trap or interxupt

Figure 3-4 (cont)
Real Time Clock Routines

3-16

[
| NON-API

U apr
| e
I
|
CK.TMR |

I

Enter at API level \ CK.THR

4.
I
I
i
I
1
I
|
! A

Save AC. | Save AC.
|
1
1
1
l
i
{
i

Give the interrupt e d

return address to the
user's .TIMER inter-
rupt routine. Note
that the interrupt
came from the user
program,

Is this a re-entrant
<TIMER interrupt?

i

v

. Discard interrupt
Save interrupt return return address; re-

address. use previous inter-
rupt return address.

Restore AC.

Restore operating

modes, drop below lev-!
el 4, and transfer
to .TIMER routine.

Enter user mode if
appropriate.

Enter .TIMER inter-
rupt routine.

KEY Restore AC.
Normal transfer of
T control
e > Control transfer via

trap or interrupt

Figure 3-4 (cont)
Real Time Clock Routines

3-17

-TIMER interrupt
routine executes to
completion.

.TIMER interrupt
routine returns to
user program.

Call .TIMER inter-
rupt routine (with
a JMS instruction).

Restore operating
modes and return to
interrupted program.

Invoke unichannel
poller.

s the time limit
{SC.TLM) expired yet

KEY

Normal transfer of

Increment elapsed
time in seconds
(SC.ETS; .

Deactivate the time
limit and any .TIMER
interrupt reguest.

s a time limit
ctive?

Schedule auxiliary
routine CK.TLM.

control

Control transfer via

=T ™ trap or interrupt

Figure 3-4 {(cont)
Real Time Clock Routines

3-18

i
CK.TIM
Increment seconds
field in time-of-day
counter (SC.TIM).

ave we reached the
end of a minute?

Time estimate ex-
ceeded. Transfer to
BOSS job abort rou-
tine.

LEXIT

Exit to non-resident
monitor.

Clear seconds field
and increment minutes
field in time-of-day
counter (SC.TIM).

Replace today's date
(SC.DAY) with tomor-
row's date (SC.TDT),
then clear tomorrow's
date and the time-of-
day counter (SC.TIM).

Tlave we reached the
end of an hour?

Any clock ticks left
to process?

Clear minutes field
and increment hours
field in time-of-day
counter (SC.TIM).

Restore AC.

ave we reached the

end of a day?

KEY

Normal transfer of
control

Restore operating
modes, drop below
clock interrupt - - - 2
level, and return.

Control transfer via
trap or interrupt

Figure 3-4 (cont)
Real Time Clock Routines

3-19

Table 3-1

Clock Oriented .SCOM Locations

Location

Mnemonic

Description

134

SC.ETS

Elapsed time in seconds. Incremented
once per second. Used in BOSS mode
for job run time accounting.

147

SC.DAY

Today's date, or zero if the date is
unknown. Format:

' g 516 1112 17

month day year

L L 1 1 L L L L 1 1 L L 1 L L
where month is the calendar month (one
corresponds to January), day is the
date within the month, and year is
years since 1970 (one corresponds to
1971).

150

SC.TIM

The current time of day, kept as
a 24 hour clock. Format:
g 516 11,12 17,

hours minutes seconds

A] y 1 1 1 1 L L 1 1 1 1 L

where hours, minutes, and seconds
express the time since midnight. Mid-
night is denoted by all fields contain-
ing zero. Note that this location must
be initialized via the TIME command for
the time of day to be accurate.

151

SC.ETT

Elapsed time in ticks. Incremented at
the power line frequency. This location
may be modified by the user, as it is
not used by system programs.

156

SC.TLM

Two's complement of the number of seconds
remaining in the current time limit,

or zero if no time limit in effect.

Time limits are requested with the

TIMEST command or as part of BOSS's

$JOB card.

160

SC.TMT

Two's complement of the number of clock
ticks (at the power line frequency)
remaining until the current .TIMER
interrupt occurs, or zero if no .TIMER
interrupt request is active.

Table 3-1 (cont.)
Clock Oriented .SCOM Locations

Location Mnemonic Description

161 SC.TMA The address of the .TIMER interrupt
routine associated with the current
.TIMER interrupt request.

171 SC.TDT Tomorrow's date, or zero if tomorrow's
date is either unknown or not yet
determined. Format:

g 5.6 11,12 17

month day year

1 [] i 2 L 1 L 1 L A | L L 1 1 1] 1]

where month is the calendar month

(one corresponds to January), day is
the date within the month, and year

is years since 1970 (one corresponds

to 1971). This location is cleared
(i.e. tomorrow's date becomes undeter-
mined) at midnight and is reinitialized
the next time the non-resident monitor
is loaded.

173 SC.TMR Two's complement of the number of clock
ticks (at the power line frequency)
left in this second.

174 SC.LFR Two's complement of the power line
frequency -- i.e. the number of clock
ticks in each second.

3.4 THE UNICHANNEL POLLER

The UNICHANNEL poller provides a mechanism for reporting to the user/
operator any error status conditions which may arise in the UNICHANNEL
processor. Most of these are asychronous conditions not directly re-
lated to any active XVM I/O requests. The poller, driven by the clock,
periodically polls the UNICHANNEL with an error status report software

directive to discover if any of these errors have occurred.

The poller is triggered once per second by the clock interrupt routine.
Barring the occurrence of certain delays, this means that the UNICHANNEL
will be polled every second. One delay which can occur is slow response
from the UNICHANNEL. Within reasonable limits this causes no problem.
However, if the delay exceeds a preset timeout a separate error (des-
cribed below) is reported. The other delay which might occur involves
the state of the console terminal. UNICHANNEL poller errors are re-
ported on the console terminal printer. If the console terminal printer

is active, the poller will be deferred until it becomes idle. The

3-21

printer is considered active when either output is in progress or input
is in progress and one or more characters have been typed. The printer
becomes idle when the current .WRITE or .READ completes, which is usually
at the end of the current line.

When operating normally, the poller always has an error status report
software directive request outstanding with the UNICHANNEL. When
triggered, the poller checks if the directive has completed and exits
(via a timeout check) if the directive is still in progress. Assuming
the directive has completed, the poller scans for and reports any error
conditions. Subsequently the poller requests a new error status report
software directive for the next time it is invoked.

Throughout its operation the poller places certain timeouts upon its
UNICHANNEL interactions. Although not available as assembly parameters,
there are several assembly constants which determine the lengths of

the timeouts. These constants should be revised if the timeouts must
be changed for any reason.

The poller's primary timeout limits the time the UNICHANNEL has to
respond to -the error status report software directive. This timeout,
controlled by the constant PLR.WT, is normally set at one second. If
this timeout expires, the poller will report an IOPSUC PRX 4 error.
This error usually implies that the UNICHANNEL processor has halted
or is otherwise locked out and unable to respond.

The conditions which cause this timeout to take effect are frequently
relatively long lasting. Therefore a frequency counter is used to avoid
excessive repetition of the IOPSUC PRX 4 error message. This frequency
counter is controlled by the constant PLR.FR, and will normally cause
the IOPSUC PRX 4 message tc repeat every five minutes. Note that the
frequency counter only has effect if the UNICHANNEL processor lock out
condition is continuously maintained. If the condition occurs, clears
itself, and then re-occurs, the IOPSUC PRX 4 message will be immediately
re-issued.

In addition to the primary timeout described above, the poller imple-
ments a second timeout. If the UNICHANNEL is unprepared to accept a

TCB request when the poller attempts to issue an error status report
software directive, an IOPSUC PRX 4 error is again reported. The poller
implements this by neglecting to issue the request to the UNICHANNEL,

so that eventually the primary timeout above expires. When the poller

3-22

PLR.CK

Called every second
via clock interru /

PLR.TT
Called from PLR.CK.

L] Attempt to check for
'Y and report IOPSUC
. messages.

Is the console ter-
minal busy?

Invoke unichannel
poller.

Did PLR.MS succeed?

s it busy with a
< READ?

Issue an error statu
report software di-
rective (for the next
nvokation of the
\poller).

N

\

Have any characters
been typed vet?

CK.INT

Enter clock interrupt |
routine. /

Return to PLR.CK.

Set poller requested
flag (PLR.SW). The
flag will be cleared
when the unichannel
is actually polled.

KEY

Normal transfer of
control

Interrupts disabled J

Poll the unichannel

if the console ter-
minal is idle.

Return to clock

interrupt routine.

Figure 3-5

The Unichannel Poller

PLR.FN

TTA. Enter with interrupts
disabled.
PLR.PL
Called from TTA. with
interrupts enabled. ~
.
'Y Adjust poller time
. out (since the fol-
lowing loop is not
synchronized to the
clock).
Attempt to check for
and report IOPSUC

messages.

Console terminal
becomes idle.

Attempt to check for
and report IOPSUC
messages.

Did PLR.MS succeed?

Clear teletype busy
switch.

Issue an error status
report software di-
rective (for the next
invokation of the
poller).

Is the poller re-
guested flag set?

k Enable interrupts

and return to TTA.

PLR.PL

|
i (Poll the umchannel.x

KEY

Normal transfer of

control

Interrupts disabled

Figure 3-5 (cont)
The Unichannel Poller

3-24

PLR.MS

Enter with interrupts
disabled.

Clear poller
requested flag
(PLR.SW) .

as the software di-
ective completed?

as the poller time
out expired vet?

Return indicating
failure.

Scan error status
table and report any
errors found there.

Set IOPSUC PRX 4 fre-
quency counter to -1l.

Increment the IOPSUC
PRX 4 frequency _
counter.

Did the frequency

ounter reach zero?

Report an IOPSUC PRX
4 error.

Set the IOPSUC PRX 4
frequency counter to
wait PLR.FR seconds
(usually 5 minutes).

Return indicating

success.

Figure 3-5 (cont)

PLR.ST m

Enter with interrupts
disabled.

Clear poller event
variable. This sig-
nifies that the error
status report soft-
wave directive has
not yet completed.

Initialize the pol-
ler's time out to
PLR.WT seconds (usu-
ally one second).
Account for any loca-
tion 7 overflow.

Issue an error status
report software di-
rective to the uni-
channel.

Return.

KEY

> Normal transfer of
control

Interrupts disabled

The Unichannel Poller

3-25

issues its request, it has been running for some time with interrupts
disabled, so that the UNICHANNEL processor has had a reasonable length

of time to accept any earlier requests.

The poller is implemented as a monitor appendage, so that it will only
be included in the monitor when its operation has been enabled. It
consists of the routines depicted in Figure 3-5. PLR.CK is called once
per second from the clock interrupt routine. PLR.TT checks to see if
the console terminal printer is active or idle. 1If the printer is
active, PLR.PL will be called from TTA. when the printer next becomes
idle. PLR.MS and PLR.ST together perform the polling function proper.
PLR.ST is also used to initiate poller operation. PLR.FN is used to
terminate poller operation. The poller must not be operating whenever
a CAF instruction is executed. Note that the poller interacts with
many other parts of the monitor, and thus much of the poller executes
with interrupts disabled.

3.5 XVM MODE

The XVM/DOS resident monitor implements XVM mode (17-bit indirect ad-
dressing mode) by equating it to user mode. When running on an XVM,
the monitor initialization code sets the relocate disable and 17-bit
addressing flags. These flags are in the XM15 hardware option's MM
register. The flags are also set whenever the monitor executes a CAF

instruction.

With these flags set, the monitor turns XVM mode on and off by switching
between user and exec modes. Thus the .XVMON and .XVMOFF CAL's

(Section 2.7) merely enter and leave user mode. User programs should
not make use of this fact, however, as the detailed implementation of

XVM mode may change with subsequent releases of XVM/DOS.

CHAPTER 4
THE NONRESIDENT MONITOR

4.1 INTRODUCTION

The System Loader brings the Nonresident Monitor into core after a
hardware readin, a manual restart, a CTRL C, or a .EXIT. SGNBLK,
SYSBLK and COMBLK are always coresident with the Nonresident Monitor.
This gives the Nonresident Monitor access to all important system

parameters.

The Nonresident Monitor announces its presence by typing XVM/DOS
Vnxnnn on the teleprinter. It remains in core until the operator re-
guests another system program, or until the operator's command implies

a refreshed configuration of the Resident Monitor is necessary.

The Nonresident Monitor's actions are limited to (1) decoding commands,
(2) manipulating or examining bits and registers in .SCOM, .DAT, .UFDT,
SYSBLK, COMBLK, and SGNBLK, and (3) calling the System Loader, when
necessary. The Nonresident Monitor has only one entry, which starts

an initialization section. Figure 4-1, Nonresident Monitor Initial-
ization, describes that logic. Every time the System Loader brings

in the Nonresident Monitor, it passes control to the initialization
section. After initialization, and after all commands that do not
require the System Loader, the Nonresident Monitor types a $ and
awaits an input line, terminated by a Carriage RETURN or an ALT MODE.
It then examines the first six characters (or those up to the first
blank) and tries to find an entry in the Nonresident Monitor's Command
Table. TIf a match is found, control passes to the appropriate routine,
and thence to the next command or the System Loader. If the typed
command does not correspond to an entry in the command table, the
Nenresident Monitor temporarily assumes the operator wishes a new
core-image system program and checks COMBLK for a corresponding entry.
If there is no corresponding entry in COMBLK, the Nonresident Monitor
will type an error message and await the next command. If COMBLK
contains a matching entry,'the Nonresident Monitor composes a .OVRLA

and passes control to the System Loader via that .OVRLA.

4-1

START

Bank bit initialize pointers to SYSBLK, COMBLK and SGNBLK

Determine the number of positive .DAT slots

Save the contents of .DAT-12, in case the user desires LP ON
(restore before leaving Nonresident Monitor)

Save contents of SC.FNM -- Nonresident Monitor will use

SC.FNM for address of LPA. or TTA.

Change all .UFDT entries that equal BNK or PAG to SYS

Compute addresses of ,DAT=-2,+1,+5 and +6

Compute address of beginning of I/O Device Table in SGNBLK

Returning
rom a Nonresident
Monitor ,EXIT

Restore .UFDT and
.DAT to SGEN values

Initialize ,DAT-2 and
+DAT=3

Returning
from a Nonresident
Monitor .EXIT

0SS Mode
N

Type out Nonresi-
dent Monitor's name

a date been

[quuest a daég]
N|
v

{next page)

Figure 4-~1
Nonresident Monitor Initialization

4-2

(from preceding page)

Clear bit SC.NRE of
SC.NMF (Nonresident
Monitor .EXIT flag)

Need to
load BOSS

Read command
string

(Continue to Command Decoder)

Figure 4-] (Cont.)
Nonresident Monitor Initialization

4,2 COMMANDS TO THE NONRESIDENT MONITOR

This paragraph discusses legal commands listed in the Nonresident
Monitor's Command Table. Table 4-1, Effects and Exits for Nonresident
Monitor Commands, describes all commands that do not request a new

progran.

There are five entries in the Command Table that load relocatable sys-
tem programs. They are INSTRUCT, DDT, EXECUTE, GLOAD and LOAD. The
Nonresident Monitor treats these commands separately, because SYSBLK
does not list them. All information necessary for loading these pro-
grams resides in the Nonresident Monitor itself.

4.3 CONSIDERATIONS FCR ADDITIONS TO THE NONRESIDENT MONITOR

Programmers should not attempt to add commands to the Nonresident
Monitor unless they have access to a copy of the source code. The
source code is available as an integral part of the XVM/DOS release.
They should then use the EDITOR program to put in the indicated

changes, and reassemble.

New additions to the Nonresident Monitor require the following actions:

1. Update the Nonresident Monitor's Cormand Table.
The Command Table is in two parts:

a) The .SIXBT names of the commands
b) The corresponding transfer vector
2. Write the code for the command.
3. Consider the kind of exit the command will take:

a) Commands that end with a request for a new
command should end with JMP KLCOM

b) Commands that re-configure the Nonresident
Monitor should end with JMP NRMEX1.

4., Determine if the command should result in an automatic
MODE typeout. If an automatic mode typeout is desired, a
JMS SETMD should be included in the code for the command
and a JMP NRMEXI exit should be used.

Table 4-1

Effects and Exits

for Nonresident Monitor Commandsl

COMMAND MODIFIER ACTION TAKEN EXIT
IAPT ON Set bit SC.API of SC.MOD .EXIT
OFF Clear bit SC.API of SC.MOD .EXIT
ASSIGN handler Check whether handler is available. Next
if yes, load .DAT slot with proper Command
handler code. (The proper loader
will load the handler, and insert
its starting address into the .DAT
slot.
(and/or)
uic Load proper slot via a .USER Next
Command
IBANK ON i Set bit SC.BNK of SC.MOD Next
OFF - Clear bit SC.BNK of SC.MOD Command
BATCH Sy See Chapter 9.
RK
DP
DK
PR
CD
MT
BUFFS number Put number indicated into SC.BNM, Next
and set Nonresident Monitor Initial- Command
ization to leave SC.BNM alone.
CHANNEL 7 Clear bit SC.9CH of SC.MOD Next
9 Set bit SC.9CH of SC.MOD Command
IDATE date Enter date into SC.DAY Next
: no date Print date from SC.DAY Command
FILL ON Set bit SC.FIL of SC.MOD LEXIT
OFF Clear bit SC.FIL of SC.MOD LEXTIT
GET See Section 2.8.
GETP
GETS
GETT
HALF ON Set bit SC.HFN of SC.VTF .EXIT
OFF Clear bit SC.HFN of SC.VTF .EXIT
HALT Set bit SC.HLT of SC.NMF Next
Command
1

This table assumes error-free input

Table 4-1 (cont)
Effects and Exits

for Nonresident Monitor Commands

COMMAND MODIFIElgT ACTION TAKEN EXIT
INSTRUCT none Print INSALL SRC By loading .EXIT
ERRORS Print INSERR SRC INSTRC BIN Command
KEEP ON Set bit SC.KPN of SC.NMF Next
OFF Clear bit SC.KPN of .SC.NMF. Init- Command
ialize to SGEN default values all
entries in .DAT and .UFDT, except
change SCR default values to cur-
rent UIC.

LOG Output five spaces after Carriage Next Com-
RETURNs. After ALT MODE, go to mand (after
next command. ALT MODE)

LOGIN uic | Make specified UIC current (SC.UIC). |.EXIT
*Then set up .UFD entries; set .DAT
entries and system parameters (SC.MOD,

. SC.MSZ, SC.BNM, SC.VTF) to system de-
% fault values; clear SC.NMF and SC.TLM.
‘ ——

LOGOUT Set current UIC to SCR. Then same i.EXIT
as LOGIN (above) from *.

LOGW For BOSS-15, print message. In all 'Next com-
cases, after a Carriage RETURN, out- mand (after
put five spaces. After ALT MODE, ALT MODE)
type four bells 4P, and await CTRL P.

After CTRL P, go to next command.
I .
|ILP ON Set bit SC.LPON of SC.NMF. LEXIT
OFF Clear bit SC.LPON of SC.NMF. LEXIT

MEMSIZ nnnk) Check nnn for multiple of 8 and LEXIT

| range 24<nnn<128, if valid (nnn*
1024)-1 is stored in SC.MSZ.

MICLOG mic Check mic with SGNBLK. If correct .EXIT
set bit SC.MIC of SC.NMF and make
'SYS' the current UIC. Then same
as LOGIN (above) from * (except
SC.NMF not cleared). If incorrect,
ignore command.

MODE Information pertaining to available Next
hardware (SC.NMF) is compared with Command
requested parameters and the result-
ing parameter settings are typed to
the console for those parameters
related to the existing hardware.

PAGE ON Clear bit SC.BNK of SC.MOD. CEXIT

orr Set bit SC.BNK of S5C.MOD.

>
1
o

Table 4-1 (cont)
Effects and Exits

for Nonresident Monitor Commands

rEOMMAND MODIFIER ACTION TAKEN EXIT
POLLER ON Clear bit SC.PLR of SC.MOD. LEXIT
OFF Set bit SC.PLR of SC.MOD.
PROTECT n If n is between @ and 7, inclusive, Next
enter it into SC.PRC. Command
PUT See Section 2.8.
QDUMP Set bit SC.DMP of SC.NMF. Next
Command
REQUEST none Print the current assignments for Next
.DAT and .UFDT. Command
USER Print the current assignments for
all positive .DAT and .UFDT slots.
prog Print required .DAT and .UFDT slots,
and the assignments and use for
each.
SCOM Print the information for the cur- Next
! rent system. Command
i |
I ki .
TAB j ON ! Clear bit SC.TAB of SC.MOD. EXIT
1 OFF j Set bit SC.TAB of SC.MOD. LEXIT
TIME time g Enter time into SC.TIM. Next
none Print time from SC.TIM. Command
ucl5s ON Bit SC.UCl1l5 of SC.MOD is set in- CEXIT
dicating a request for UNICHANNEL
interaction capability. (Note:
the resident monitor verifies the
validity of this request.)
OFF Bit SC.UC15 of SC.MOD is cleared LEXIT
indicating that no UNICHANNEL inter-
action is desired. (The resident
monitor will not allow UC1l5 OFF to
succeed on an RK based system.)
VT ON Set bit SC.VTN of SC.VTF. LEXIT
OFF i Clear bit SC.VTN of SC.VTF. EXIT
}
t XVM ON J Bit SC.XVM of SC.MOD is set indi- EXTIT
; | cating a request for wide address-
ing mode. (Note: the resident
monitor verifies the validity of
this request.)
OFF Bit SC.XVM of SC.MOD is cleared LEXIT
! indicating that 15-bit indirect
addressing mode is desired.

After assembly, the programmer must call PATCH, in order
to make his relocatable binary program absolute. Commands
to PATCH should be as follows:

>DOSlS;)

>READR 16077 DOSNRM BIN)

16@77 indicates the highest location the new monitor can
occupy. (SYSBLK begins at 1610@.) DOSNRM BIN happens to
be the file name used by program development. The pro-
grammer may, of course, substitute his own file name.
More information may be found in the PATCH manual.

CHAPTER 5
THE SYSTEM LOADER

The System Loader is the third major part of the XVM/DOS operating
system. The other two are the Resident and Nonresident monitors. The
Resident and Nonresident Monitors communicate with the System Loader
by manipulating certain .SCOM registers. When commands to either part
imply a new configuration is needed, that part sets up the appropriate
.SCOM registers and passes control to the resident monitor via a .EXIT
or .OVRLA. The resident monitor rebuilds itself, loads the System

Loader into high core, and gives it control.

The System Loader examines the .SCOM registers then loads the desired
system program and all handlers required by the new configuration. 1In
addition, it will allocate all required buffers. The Nonresident Mon-

itor is treated like any other core-image system program.

The System Loader never loads user programs. It only loads core-image
system programs, the INSTRUCT command processing program, the Linking
Loader and Execute. The latter two load user programs.

The System Loader uses two device handlers to interface with the disk:
the System Bootstrap, and the System Loader Disk Handler (DKL./DPL./
RKL.). xxL. arrives in core as part of the loader itself. The Boot-
strap loads core-image programs only. The xxL handler takes care of
relocatable programs and any handlers loaded by the System Loader.
Those include all handlers for core-image system programs, the Linking
Loader's own handlers, and any needed by the Execute file. The Link-

ing Loader loads handlers needed by user programs it links.

5.1 LOADING SYSTEM PROGRAMS

The System Loader gets control in the highest bank. The System Loader
loads handlers from the lowest part of free core up. Core-image sys-
tem programs are usually loaded just beneath the Bootstrap. Such core
images must be wholely within the bank in which the Bootstrap resides,
and above register 17 of that bank. Figure 5-1 illustrates the core
maps for system programs.

Whenever the Linking Loader is loaded (LOAD, GLOAD, DDT, and DDTNS),
the System Loader loads all handlers for .DAT slots -1, -4, and -5,
and then loads the Linking Loader itself. (DDT is loaded by the Link-
ing Loader.) Whenever INSTRC (the INSTRUCT command processing program)
is loaded, the handler assigned to .DAT slot -12 is also loaded. Fig-
ure 5-2 illustrates the core maps for the Linking Loader and INSTRC.

For EXECUTE, the System Loader loads EXECUTE's handler, and reads the
EXECUTE file, in order to determine the active .DAT slots. The Sys-
tem Loader then loads all the handlers required and sets up the .DAT
slots. Figure 5-3 illustrates core maps for EXECUTE.

BOSS XVM mode operation requires the system "A" handler be assigned to
.DAT-7. This requires a slight of hand on the part of the System
Loader, which needs the "L" handler on .DAT-7. It therefore loads

the "A" handler as if it were assigned to .DAT+d, and transfers the
set up .DAT+@ contents to .DAT-7 before transferring control to the
program being loaded. .DAT+@ is then restored to its original status.

5.2 TABLES AND INFORMATION BLOCKS USED AND BUILT BY LOADERS

The System Loader uses SYSBLK, COMBLK, SGNBLK, .SCOM, the Mass Storage
Busy Table, the File Buffers Transfer Vector Table, the Overlay Table,
.DAT, and .UFD. Tables 5-1 and 5-2 describe how the Loaders use these
blocks and tables.

5.3 .DAT SLOT MANIPULATION BY THE SYSTEM LOADER

When loading core-image system programs, the System Loader determines
the active .DAT slots by examining COMBLK. When loading EXECUT, the
System Loader sets up .DAT-4, and any active slots indicated by the
Execute file itself. When loading the Linking Loader, the System
Loader sets up .DAT-1, -4, and -5 and also .DAT-12, if loading INSTRC.
The Linking Loader will set up other active .DAT slots according to
the .IODEV commands in the assembly of the program units being loaded.

Both the System Loader and the Linking Loader set up .DAT slots in
this manner: (In the following procedure, "loader" refers to either
one.)

24K, 32K

BOOTSTRAP

SYSTEM PROGRAM *
(THIS AREA IS USED BY CORE
IMAGES. SOME ROOM UNDERNEATH
THE BOOTSTRAP MAY BE LEFT
FREE FOR COMMUNICATION
BETWEEN CORE IMAGES IN AN
OVERLAY STRUCTURE.
CORE IMAGES MUST BE 8K OR
LESS.)

SC.FRL+1

FREE CORE

SC.FRL

HANDLERS, BUFFERS

BUFFER POOL
TRANSFER VECTORS

OVERLAY TABLE

DEVICE TABLE

SC.RMS

RESIDENT MONITOR

Figure 5-1

System
Program Load

*All system programs
except MACll, which
is always loaded in
Bank 1.

24%,32K

BOOTSTRAP

DDT, IF PRESENT

LOADED PROGRAMS
ON DDT LOADS, SYMBOLS
ARE MOVED INTO THE
LOWEST PART OF FREE CORE.
SYMBOL TABLE

SYMBOLS AND PROGRAMS BUILD
TOWARD EACH OTHER.

I SC.I'RL

LINKING LOADER*
OR INSTRC

LOADER OR {NSTRC
HANDLERS

SC.RMS

BUFFER POOL

BUFFER POOL
TRANSFER VECTORS

RESIDENT MONITOR

Placement of SC.FRL
depends on relative
positions of the
Linking Loader and
its handlers. When
control is trans-
ferred to loaded
program SC.FRL and
SC.FRL+1 bracket
free core.

Figure 5-2
Linking Loader

24K.32K

BOOTSTRAP

OVERLAY SYSTEM
BLANK COMMON

SC.FRL+1
FREE CORE
SC.FRL
EXECUTE
SC.RMS

ALL HANDLERS REQUIRED

BUFFER POOL

BUFFER POOL
TRANSFER VECTORS

RESIDENT MONITOR

Figure 5-3

Execute

Table 5-1

Tables and Blocks Used by the Loaders

NAME USE LOCATION

SYSBLK The System Loader obtains Monitor 16508 of
TRAN parameters from SYSBLK when .SYSLD's bank
it builds

COMBLK Indicates number of buffers re- 171¢@% down, in
quired, the active .DAT slots, .SYSLD's bank
and the names

SGNBLK Number of words per buffer and 16190 of

handler information.

.SYSLD's bank

.SCOM Table

See Table 5-2

187 of 1lst bank

Mass Storage
Busy Table

Built by the System Loader itself.

Pointed to by
SC.BTA

File Buffers
Transfer Vec-

Built by the System Loader itself.
System Loader proper initializes

Pointed to by
SC.BTB

tor Table for core-image programs.

Overlay Built by the System Loader itself. | Pointed to by
Table SC.OTB

. DAT The System Loader loads all hand- Pointed to by
and lers for core-image programs and SC.DAT and
.UFDT and EXECUTE Files, and sets up SC.UFD

the appropriate .DAT slots. The
System Loader also loads handlers
assigned to .DAT-1, -4, and -5
when loading the Linking Loader,
and .DAT-7 and +6 for BOSS XVM.

Table 5-2

.SCOM Registers Used by the System Loader

Location

Description of Use by the System Loader

SC.FRL

.SYSLD continually updates this indication of the
first free location as it moves code and builds
tables.

SC.FRL+1

Updated as with SC.FRL. Last free location in core
below the Bootstrap.

SC.SST

.SYSLD uses SC.SST for the starting address when
loading EXECUT or LOAD. The Bootstrap transfers
to the address in SC.SST after all its operations.

SC.UST

Stores codes for DDT, DDTNS, LOAD and GLOAD.

SC.FNM

.SYSLD saves contents of .DAT-1 in SC.FNM, when
loading the Linking Loader. When loading EXECUT,
SC.FNM contains the first three-characters of the
Exedute file's name. Contains .DAT-12 when loading
Nonresident Monitor.

SC.FNM+1

.SYSLD saves contents of .DAT-4 in SC.FNM+1l, when
loading the Linking Loader. When loading EXECUT,
SC.FNM+1 contains the second three characters of
the Execute file's name.

SC.FNM+2

.SYSLD saves contents of .DAT-5 in SC.FNM+2, when
loading the Linking Loader. When loading EXECUT,
SC.FNM+2 contains the extension of the Execute
file's name.

SC.BNM

When the Nonresident Monitor was the last program,
the System Loader allocates the number of buffers
indicated by the contents of SC.BNM. If the Non-
resident Monitor was not the last program, the Sys-
tem Loader restores SC.BNM to the default value if
program to be loaded is core image. Otherwise, un-
touched.

SC.BLN

The number of words per file buffer.

SC.BTB

Pointer to the File Buffer Transfer Vector Table.

SC.0OTB

When loading a core-image program, .SYSLD loads
SC.OTB with the pointer to the Overlay Table, or
with zero, if there is none.

=

SC.SPN

Contains name of the program to be loaded.

SC.ACT

System Loader loads with the number of entries in
the Mass Storage Busy Table.

SC.BTA

System Loader loads with the address of the first
entry in the Mass Storage Busy Table.

1. Each .DAT slot will contain a handler number -- either the
system default, or one inserted via an ASSIGN command to
the Nonresident Monitor. This handler number is the relative
index of the handler name in the handler table portion of
SGNBLK.

2. For each active .DAT slot, the loader uses the handler num-
ber in that slot to find the name in the handler table, and
converts the name to .SIXBT.

3. If the handler is already in core, the loader simply inserts
the starting address of the handler into the .DAT slot.

4. If the handler is not yet in core, the loader does a .SEEK
to <IOS> UIC for the handler, reads it into core, relocates
it, and places the starting address of the handler into the

.DAT slot.
The System Loader always sets up .DAT-2 and -3. (It reserves .DAT-7
for its own use.) When not in non-BOSS Batch Mode, -2 is assigned to

TTA. In non-BOSS Batch Mode, the batch input device goes to -2. If
loading the Nonresident Monitor and bit SC.LPON of SC.NMF is set, the
System Loader will set up .DAT-12 for LPA, if it is in the system, or
else for TTA. If in BOSS mode, the Nonresident Monitor assigns LPA.
to .DAT+6, and the System Loader assigns .DAT-7 to the system device
"A" handler. The System Loader then ensures that both handlers are in
core. The Resident BOSS setup routine subsequently routes all .DAT
slots connected to TTA. to Resident BOSS.

5.4 BUFFER ALLOCATION BY THE SYSTEM LOADER

The System Loader allocates space for buffers equal to the contents

of SC.BNM times the contents of SC.BLN. The first time initialization
routine sets SC.BLN to the standard number of locations per buffer.
Before the Nonresident Monitor does an .OVRLA to a software system
program, it checks whether a BUFFS command has been issued. If so,

it leaves SC.BNM as is. If not, it uses the default number of buffers
for that program, as shown in SYSBLK.

CHAPTER 6
SYSTEM INFORMATION BLOCKS AND TABLES

6.1 SYSTEM COMMUNICATION (.SCOM) TABLE

The system communication or .SCOM table is at a fixed location in mem-
ory. It is the primary means of communication between the components
of XVM/DOS. Individual .SCOM locations may either be reconstructed
for each core load or preserved across successive core loads. Table
6-1 describes the .SCOM table.

The accompanying table defines mnemonics for each .SCOM location, and
separate mnemonics for any bit flags. These mnemonics should be used
for all references to .SCOM. The mnemonics should be equated to the
appropriate values and then used whenever .SCOM is accessed to make

the program easier to read and .SCOM easier to alter in the future.

6.2 DISK-RESIDENT UNCHANGING BLOCKS: SYSBLK, COMBLK AND SGNBLK

SYSBLK, COMBLK and SGNBLK occupy blocks 34, 35, and 36 (octal) on the
system device(unit zero). SYSBLK and COMBLK (blocks 34 and 35) contain
the parameters for loading all core image system programs. SGNBLK
contains all the other information needed to run DOS. All three arrive
in core along with the Resident Monitor and start at location 161§@ of
the highest bank. The Nonresident Monitor and System Loader use them;
SGEN XVM and PATCH XVM modify them when necessary.

6.2.1 SYSBLK

SYSBLK contains the parameters required for implementation of .OVRLA

to any system program, or any of the system program overlays.

The order of entries in SYSBLK is unimportant, except for the first
three permanent entries: RESMON, .SYSLD, and +AQAREA. The first word
of SYSBLK contains the block address (the unrelocated address) of the
first free word after itself. Figure 6-1 describes SYSBLK.

Table 6-1
System Communication (.SCOM) Table

.ocation Mnemonic Description
100 SC.COD First free register below boot-
strap; the highest location use-
able for code.
101 SC.RMS Resident Monitor size; first free
register above Resident Monitor.
102 SC.FRL Free memory in low core (below
the bootstrap). SC.FRL contains
the address of the first free
103 SC.FRL+1 location. SC.FRL+1 contains the
address of the last free location.
104 SC.MOD Operating mode bit register:
Y gC.API = 400000, 1+ APT enabled
+~ SC.TAB = 1000008 1+ Simulate tabs with spaces
-t SC.NRM = 400008 1 +Non-resident monitor in
core
SC.UB2 = 200008 Reserved for customer use.
SC.UB1 = 10008 Reserved for customer use.
SC.9CH = 40008 1 +9-channel magtapes assumed.
.. * SC.FIL = 2008 1 »Insert fill characters.
:<. 7 SC.BNK = 1008 1 » Bank mode operation.
SC.LPSZ = 608 Line printer line length (in
characters) :
0 » zero 40 ~ 120
20 ~ 80 §0~132
SC.PLR = 48 1> Poller enabled.
sC.UCl5 = 2 1+ UC1l5 enabled.
SC.XVM = 1+ XVM mode enabled.
105 SC.SST Core image system program start-
ing address.
106 SC.UST User program starting address/+S
address.
SC.DDT = 4000008 1 >DOT in core.
SC.GLD = 2000008 1 > Linking Loader invoked via
GLOAD.
SC.DNS = 1000008 1 +~DDT invoked without symbol
table (via DDTNS).

Bits 3-17 contain the user program starting address,
which is also the address of the +S control charac-

ter routine.

Table 6-1 (cont)

System Communication (.SCOM) Table

Location Mnemonic Description

107 SC.FNM Execute Filename, .GET,.PUT File-
name, or linking loader handler
indices.

110 SC.FNM+1

111 SC.FNM+2

112 SC.LV4 API level 4 software interrupt
transfer vector.

113 SC.LV5 ~ API level 5 software interrupt
transfer vector.

114 SC.LV6 APTI level 6 software interrupt
transfer vector.

115 SC.LV7 API level 7 software interrupt
transfer vector.

116 SC.TTP Saved PC on control character
interrupts.

117 SC.TTA Reserved.

120 SC.MSZ System memory size, as set via
MEMSIZ command.

121 SC.MTS Magtape status register.

122 SC.AMS Actual (physical) memory size.

123 SC.DAT Address of .DAT table.

124 SC.SLT Number of positive .DAT slots.

125 SC.UFD Address of .UFD table.

126 SC.BNM Number of file buffers.

127 SC.BLN Number of words per file buffer.

130 SC.BTB Address of file buffer transfer
vector table.

131 SC.OTB Address of overlay table or zero.

132 SC.BBN Bad block number for IOPS20 and

I0PS21.

System

Table 6-1 (cont)
Communication (.SCOM) Table

Location Mnemonic Description
133 SC.VTF VT ON flag register;
SC.HFN = 400000, | 1 ~Half size VT15 buffer
(HALF ON).
SC.VTN = 1000008 1+ VT ON issued.
SC.DMN = l8 1> Display mode on.

134 SC.ETS Elapsed time in seconds.

135 SC.CTT Instruction to clear teletype busy
switch.

136 SC.ACT Number of active .DAT slots;
number of entries in mass storage
busy table.

137 SC.EEP Expanded error processor entry
point.

140 SC.EEP+1 JMP to expanded error processor.

141 SC.UIC Current UIC

142 SC.NMF Non-resident monitor flag register:;

SC.MIC = 4000008 1+ MICLOG successful
SC.NRE = 2000008 1+ Non-resident monitor .EXIT
SC.NRO = 1000008 1 ~ Non-resident monitor .OVRLA
SC.LPON = 400008 1 ->LP ON 0 -LP OFF
SC.DMP = 200008 1-+>4Q dump on IOPS errors.
SC.HLT = 100008 1 +Halt on IOPS errors.
SC.TMM = 40008 1 > Mode message should be typed.
sc.pvr = 10004 1 +VT15 present.
SC.PCLK = 4008 1 > Real time clock present.
SC.PAPI = 2008 1+ API present.
SC.PUC15 = 1008 1+UCl5 present.
SC.PXVM = 408 1 ~ XVM present.
SC.DT6 = 104 1~+Set up .DAT+6 (for BOSS).
SC.DT7 = 4g 1 »Set up .DAT-7 (for BOSS or
Batch)
SC.KPN = 2 1 - KEEP ON 0 > KEEP OFF
SC.BCH =1 1 » Batch or BOSS mode
active.

Table 6-1

System Communication

(cont)
(.SCOM) Table

Location Mnemonic Description
143 SC.SPN .SIXBT name of system program to
to loaded.
144 SC.SPN+1
145 SC.NMN .SIXBT name of the non-resident
monitor ("DOS15").
146 SC.NMN+1
147 SC.DAY Today's date, formatted as MMDDYY.
150 SC.TIM The current time, formatted as
HEMMSS.
151 SC.ETT Elapsed time in ticks.
152 SC.BOS BOSS bit register:
SC.BMD = 4000008 1 +»BOSS mode active.
SC.BCR = 2000008 1+ Control card read by user.
SC.BEQOF = 1000008 1> EOF reached on run time file.
SC.BTM = 400008 1> Time estimate exceeded.
SC.BTT = 200008 1+I/0 CAL to go to TTA.
SC.BIO = 100008 1 > Terminal IOPS error.
SC.BDMP = 40008 1 +Give user 4Q dump on IOPS
errors.
SC.BOA = 20008 1+ Operator abort (4T)
SC.BJA = 10008 1 +Job active.
SC.BXT = 4008 1> Exit from BOSS mode.
SC.BPT = 2008 1 > User tried to do a .PUT
SC.BGT = 1008 1 +User tried to do a .GET
SC.BERR = 168 .SYSLD error number.
SC.BAB = 18 1~ Job abort.
153 SC.VTR VT ON display file restart address
or zero if display file not set up.
154 SC.PRC Default file protection code.
155 SC.TRN Reserved.
156 SC.TLM Two's complement of time limit in
seconds or zero if no time limit.
157 SC.SDV Handler index of system device for

Linking Loader.

Table 6-1 (cont)
System Communication (.SCOM) Table

Location Mnemonic Description
160 SC.TMT Two's complement of number of
clock ticks until .TIMER inter-
rupt.
161 SC.TMA .TIMER interrupt routine entry
point address.
162 SC.BTA Address of mass storage busy table.
163 SC.BTL Number of words per mass storage
busy table entry.
164 Reserved
165 SC.CQF .GET/.PUT flag register (for
communication with QFILE):
SC.QFLG 4000008 1-+Call QFILE
0 - Return from .PUT
SC.QNF 20008 1 +s8kip file transfer operation.
SC.QNRM 10008 1 +Exit to non-resident monitor
when QFILE completes.
SC.QPUT 4008 1l »Transfer 41Q area to file
0 » Transfer file to 4Q area
SC.QRTN 78 .PUT/.GET return code.
166 SC.CQB .MTRAN parameter block for 4Q
area contains:
167 SC.CQB+1 First block of 4Q area
First address -1 in core
Two's complement transfer length
170 SC.CQB+2 The transfer length is the mini-
mum of the 4+Q area size and the
current system memory size.
171 SC.TDT Tomorrow's date, formatted MMDDYY.
172 Reserved.
173 SC.TMR Two's complement of the number
of ticks left in this second.
174 SC.LFR Two's complement of the number of
ticks per second.
175 SC.RTF Indicates the current position

within the batch stream (batch
mode) or the run time file (BOSS
mode) .

Table 6-1 (cont)

System Communication (.SCOM) Table

Location Mnemonic Description

176 SC.FRH Free memory in high core (above
the bootstrap). SC.FRH contains
the address of the first free

177 SC.FRH+1 location. SC.FRH+1 contains the
address of the last free location.

200 SC.TCB Address of Task Control Block
transfer vector table.

201 SC.U01 Reserved for customer use.

202 SC.U02 Reserved for customer use.

203 SC.U03 Reserved for customer use.

204 SC.U04 Reserved for customer use.

205 S5C.U05 Reserved for customer use.

206 SC.BFNM .SIXBT batch stream filename or
zero if batch device is non-file
oriented.

207 SC.BFNM+1

210 SC.BFXT .SIXBT batch stream file extension.

211 SC.BUIC .SIXBT batch stream file UIC code.

212 SC.BDEV .SIXBT batch stream device
mnemonic.

213 SC.BUNT Batch stream device unit number

(high 3 bits).

Word # Value Description
g d@@Innn Pointer to first free word after SYSBLK
. (There is one set of seven words/core
. image program.)
Zgi% :§§§g$ Name of System Program or overlay
S 7N+3 nnnnnn Number of first block on system device
v occupied by this program or overlay.
TN+4 g@29nn Number of blocks occupied by this pro-
S gram or overlay
B TN+5 addres Thirteen-bit first address for this
program or overlay
L IN+6 gnnnnn Program size
YK TN+7 addres Thirteen-bit starting address for this
program or overlay
nnn
(free area)
mmm / gogglg Number of words in this entry (in this
case, 1¢)
mmm+1 .SIXBT Name of this system program (left-
mmm+2 P .SIXBT justified and zero-filled)
mmm+ 3 r .SIXBT Name of an overlay (left-justified and
mmm-+ 4 .SIXBT zero-filled) -- overlays are optional
mmm+5 e} < g90902 Number of buffers required by this sys-
tem program (Bits @#-6 = @ means the
AC g end of any overlay names. This is why
o 1 program and overlay names must be left-
justified.)
M mmm+6 .DAT&777 Active .DAT slot
B mmm+ 7 \.DAT&777 Active .DAT slot (Note: 777777 for a
.DAT slot means all positive .DAT slots.)
L mmm+10 o@eaas Number of words for this entry (in this
R P case, 5)
11 r i - SIXBT Name of this system program
mmm+12 .SIXBT Y prog
mmm+13 0 ggeaad1 Number of buffers required by this pro-
gram (Note that this program has no
g overlays.)
mmm+14 2 .DAT&777 .DAT slot for this program
777 goas9a Pointer to first word in COMBLK. The

two contiguous blocks on the system
device that hold SYSBLK and COMBLK

are treated by the system as one large
block.

Figure 6-1

SYSBLK and COMBLK

6.2.2 COMBLK

COMBLK contains information the System Loader and the Nonresident Mon-
itor need to remember about the current core-image system programs.

The last location in COMBLK (that is, location 377 of block 35) con-
tains the block address of the first entry in COMBLK. The remainder

of COMBLK consists of variable-length entries associated with the sys-
tem programs. The Nonresident Monitor searches COMBLK when it finds
no match for a typed command in its own Command Table. Figure 6-1
illustrates the organization of COMBLK. SGEN XVM adds names of core-
image system programs by making them the new first entry. 1In this way,
SYSBLK and COMBLK build toward the center.

6.2.3 SGNBLK

SGNBLK (block 36 on the system device) contains all the system param-
eters not directly associated with core-image system programs. The
bulk of SGNBLK is concerned with I/O (.DAT slots, .UFDT slots, Skip
Chain Order, Handlers, and skip IOT codes and mnemonics). The first
few registers hold such important system information as the system de-
vice, SC.MOD contents, and so on. The very first word in SGNBLK points
to the block address of the first free word after SGNBLK. The next
entry is an offset word indicating the total length (including itself)
of the miscellaneous system parameter table to follow. This table
includes the size of the .DAT and the size of the skip chain. The end
of the handler and skip IOT table is the first free entry of the block.

The .DAT slot table corresponds to the legal range of .DAT slots, with
the maximum negative set to 158 and the maximum positive set to a num-
ber not to exceed 778. The .DAT slots are in the form in which they
appear when the Nonresident Monitor is in core. That is, the unit
number is in bits @-2, and the number of the handler right-justified
in bits 3-17. The handler number for the first handler in the Device
Handler-Skip IOT Table is zero, for the pseudo-handler NON, TTA. is
one, and so on. The constant 1g@g@y indicates a fixed or illegal .DAT
slot (such as -2, -3, and #). DOSGEN will not modify such slots.

The .UFD Table is in one-to-one correspondence with the .DAT slot Table.
An entry of .SIXBT 'UIC' indicates that the logged in UIC is to be sub-
stituted for the name UIC in the table. An entry of .SIXBT 'SYS' in-

dicates BNK or PAG is to be substituted, in accordance with the current

addressing mode. Otherwise, the contents of each location will be the

.SIXBT representation of the corresponding .UFD slot.

The Skip Chain Table lists the system skip IOT's in order. A negative
skip (one that skips on "off", not "on") is represented in one's com-
plement. Not all skips in the handler Skip IOT Table (described below)
need to be included in the Skip Chain Table.

The Device Handler/Skip IOT Table contains all the handler names and
skip IOT numbers and mnemonics for each I/0 device identified to the
system. Every such device has an entry in the table. A handler name
must be exactly three characters in length, with the last character

not an octal digit. The device code for a device is exactly two char-
acters. The first two characters of each handler name for a device
must be the device code. This fact is essential for understanding the
format of a device entry, since the device code is never stored as such
in an entry, but is inferred from the device handler name. The typical

entry for a device is the following:

1. The first words of an entry contain the handler names for a
device in .SIXBT. Each handler name is different, and the
end of the list of handlers is determined by a word with zeros

in bits @-5 (the first character position).

2. The word that terminated the list of handler names contains
the number of skip IOT's for the device. For each skip IOT,
there are three words in the table: two for the skip mnemonic

and one for the actual code.

The next device entry follows the last skip for the previous device.
Handlers may be entered without any skips, and skips may be included
for handlerless devices. Figure 6-2 illustrates the organization of
SGNBLK.

6.3 DISK-RESIDENT CHANGING BLOCKS

The System Loader uses block 37 of the system device to store an image
of .DAT and .UFDT. Other disk-resident changing blocks are the storage
Allocation Table and the Bad Allocation Table. These tables are de-

scribed in Chapter 7.

Location Value . .
Description
g ggPnnn Pointer to first free entry in SGNBLK
1 goPgLs Number of miscellaneous parameters
2 g@gnnn Size of .DAT plus size of .UFD = (number of
positive .DAT slots + 1l6g)*2. (Initial value
is 2ffg positive .DAT slots.)
3 gggnnn Number of skips in Skip Chain
4 nnnnnn System device code in .SIXBT
5 nnnnnn Original contents of SC.MOD
6 nnnnnn Original contents of SC.MSZ
7 nnnnnn Number of words per buffer (SC.BLN)
19 - nnnnnn Default number of buffers (SC.BNM)
11 .SIXBT Monitor Identification Code
12 nnnnnn Information on VT and CTRL X (SC.VTF)
13 gaFFIn Default files protection code (SC.PRC)
14 ggnnnn Size of the Resident Monitor Patch Area
15 7777nn Minus the number of clock ticks in a second
(-74 for 60 hz, -62 for 5@ hz)
. g@gnnn
. - Device assignments for the .DAT (made by
° ° handler numbers).
. g@@nnn
. .SIXBT
. . UIC assignments for the UFD.
. .SIXBT
. nnnnnn
. - Skip Chain Table {(Negative skips in one's
) : complement) .
. nnnnnn
. .SIXBT \ The last part of the SGNBLK is the Device
. . Handler-Skip IOT Table. Each entry starts
. . with the .SIXBT representations of all
. . handlers for a particular device. (First
. . two characters equal device code, for all
. . handlers.) Zeroes in the first six bits of
. . > a word indicates the end of the handler
. . names, and says that the rest of the word
. .SIXBT contains the number of skips for this
. FaBAF3 entry's device. The skip IOT's follow im-
. nnnnnn mediately. As above, one's complement
. nnnnnn skips indicate negative skips. Note, how-
. nnnnnn) ever, the confusing fact that a one's com-
. .SIXBT plement of a skip IOT is a positive number.
. goggIL Thus, 7¢nnnn complemented is @7nnnn.
. nnnnnn
nnn .

Figure 6-2
SGNBLK

6.4 TEMPORARY TABLES BUILT FROM DISK~RESIDENT TABLES

6.4.1 The Overlay Table

The System Loader builds the Overlay Table from the entries in SYSBLK
referenced by a core-image system program entry in COMBLK. That is,
the Overlay Table contains an entry for the system program itself, and
one for each of its overlays. Table 6-2 illustrates the format of an
entry in the Overlay Table. The first entry in the Overlay Table is
pointed to by SC.OTB. SC.OTB will contain zero, if there are no
entries in the Overlay Table. This will occur during Linking Loader

or EXECUTE loads. The overlay table is terminated by a word containing

zZero.

-OVRLA is the only Monitor function that looks at the Overlay Table.
If the .OVRLA processor finds a match to the .OVRLA argument in the
Overlay Table, it uses the parameters listed in the table to bring

it in via a Monitor TRAN. Note that this bypasses the System Loader,
and does not change the handler load. Thus, the overlay must use only
those .DAT slots required by the original program, the one listed in
COMBLK.

If the .OVRLA processor does not find a match in the Overlay Table, it
calls in the System Loader, which searches COMBLK for the requested
program. This type of overlay request does not require that .DAT slot
assignments be the same. On the other hand, the System Loader refreshes
all of core except .SCOM, etc. Thus, communication between overlays

is more difficult. The resident patch area, however, can be used for

this purpose.

6.4.2 The Device Table

The Device Table is built by the System Loader interface whenever PIP
is being loaded, or when PIP is listed in COMBLK among the overlays

for a program. It is located just above the register pointed to by
SC.RMS, and has an entry for each positive .DAT slot plus an additional
entry indicating the system device code. If a slot has an assigned
device, the low-order twelve bits of the corresponding entry in the
Device Table will contain the device's code, in .SIXBT. Bit 2 is set
when the slot is busy. If no device is assigned to a slot, the corres-

ponding entry in the Device Table will contain zero.

6.4.3 The Input/Output Communication (IOC) Table

The System Loader builds the IOC Table and locates it just below the
first register of the System Loader. It contains an entry for each
handler in the system, in the order that they appear in SGNBLK. The
entries themselves contain the handler name in Radix 5. The System
Loader and the Linking Loader use the handler number supplied by the
Nonresident Monitor to index down the IOC Table. They use the contents
of the entry for a .SEEK to the IOS UIC.

6.4.4 The Device Assignment Table (.DAT)

The Device Assignment Table makes the association between logical and
physical devices. The Monitor knows its location by the contents of
SC.DAT, which points to entry zero in the Table. Specific slots are
found by indexing on the contents of SC.DAT. The number of negative
slots is fixed at 158. The number of positive slots is specified by
SC.SLT, and may be any positive number less than 1gg8. It is specified
with SGEN XVM.

The Nonresident Monitor places the handler number in the low order

bits and the unit number in the high order bits. It derives the .hand-
ler number from SGNBLK. As mentioned above, the System Loader and

the Linking Loader subsequently use the IOC Table to determine the
handler name. After either loader has loaded and relocated a handler,
it places the handler's starting address in the .DAT slot that refer-
ences that handler. The unit number remains in the high-order three
bits. Slots with no handler (NON) contain zero. Active .DAT slots

are designated by COMBLK, for core-image system programs, and by .IODEV
pseudo-ops for the Linking Loader and EXECUTE.

6.4.5 The User File Directory Table (.UFD)

.UFD+g is offset from .DAT+§ (pointed to by SC.DAT) by the sum of

the positive and negative .DAT slots. Each .DAT slot has a correspond-
ing .UFD slot. UIC's in the .UFD are packed in .SIXBT. The address

of .UFD+§ is stored in SC.UFD.

6.4.6 The Skip Chain

Register 1 of Bank § contains a jump to the beginning of the Skip Chain.
The Skip Chain is defined with SGEN XVM, is located in SGNBLK, and is

6-13

rebuilt every time the System Loader is called in. The SGEN XVM
Utility Manual describes considerations for constructing the Skip

Chain.
6.5 TEMPORARY TABLES BUILT FROM SCRATCH
6.5.1 File Buffer Transfer Vector Table

The System Loader allocates space for the buffer pool, and creates the
File Buffer Transfer Vector Table. SC.BTB points to the first entry

in the table, and the number of entries is specified by SC.BNM. Each
entry in the table contains the address of a buffer, or its one's
complement. Negative address indicate a busy buffer. Since references
to buffers must be indirect anyway, buffers are allocated without re-

gard to bank boundaries.
6.5.2 The Mass Storage Busy Table

Entries in this table are allocated by the System Loader or the Linking
Loader. The Mass Storage Busy Table is pointed to by SC.BTA. SC.BTL
contains the number of words per entry in the table, and SC.ACT contains
the current number of entries. Generally speaking, there are as many
entries in the Busy Table as there are active .DAT slots, although

the disk handlers are the only ones that currently refer to the Busy
Table.

The .INIT command to a disk handler establishes a Busy Table entry.
The .CLOSE command (or the Rewind .MTAPE command) deletes the corres-

ponding entry. Table 6-3 illustrates a typical Busy Table Entry.

The first word of an active entry in the Busy Table contains the .DAT
slot in bits 9-17. The disk handlers save information about the UFD
current for this .DAT slot in the Mass Storage Busy Table. They save
information about the file current to the .DAT slot (if any) in the
buffer pointed to by word 1 of the Busy Table Entry. More information

on the disk handlers and file structure is contained in Chapter 7.
6.6 RESERVED WORD LOCATIONS

Word locations @ through 77, are dedicated systems locations. The

contents of these locations are described

Table 6-2
Overlay Table

Word # Contents
N,N+1 .SIXBT name of Overlay or zero if end of table
N+2 First block number
N+3 First address, minus 1
N+4 Size, in two's complement
N+5 Fifteen-bit starting address
Table 6-3
Mass Storage Busy Table Entry
Word # Contents
N Device Typeg_z, Unit Number, ., Write Check.,.DATqy_,,
N+1 Buffer Address, or @, if none allocated
N+2 Three-character UIC
N+3 First UFD block for this UIC
N+4 UFD Entry size for files in this UFD
Table 6-4
Reserved Address Locations
ADDRESS USE
1) Stores the contents of the PC, 1link, user/exec mode
§tatus, and bank/page mode status during a program
interrupt
1 JMP to Skip Chain
2 Reserved
3 .MED, entry to Monitor Error Diagnostic routine
4 JMS to error handler
5 Reserved
6 Reserved
7 Stores real time clock count
10-17 Autoindex registers
20 i Stores the contents of the PC, link, user/exec mode
i status, and bank/page mode status on a CAL instruc-
! tion.
21 i JMS to CAL handler
22-37 I Seven pairs of word count-current address registers
! for use with 3-cycle I/0 device data channels.
40-77 i Store unique entry instructions for each of 32lO auto-

matic priority interrupt channels.

CHAPTER 7

FILE STRUCTURES

7-1 DECTAPE FILE ORGANIZATION

DECtape can be treated either as a directoried or non-directoried

device.
7.1.1 Non-Directoried DECtape

A DECtape is said to be non-directoried when it is treated as magnetic
tape by issuing the .MTAPE commands: REWIND or BACKSPACE, followed by
.READ or .WRITE. No directory of identifying information of any kind

is recorded on the tape. A block of data (255 word maximum), exactly

10
as presented by the user program, is transferred into the handler buf-
fer and recorded at each .WRITE command. A .CLOSE terminates record-
ing with a software end-of-file record consisting of two words: 001005,

776773

Because braking on DECtape allows for tape roll, staggered recording
of blocks is employed in XVM/DOS to avoid constant turnaround or time-
consuming back and forth motion of physically sequential block record-
ing. When recorded as a non-directoried DECtape, block . is the

first block recorded in the forward direction. Thereafter, every fifth
block is recorded until the end of the tape is reached, at which time
recording, also staggered, begins in the reverse direction. Five

passes over the tape are required to record all llOO8 blocks.
7.1.2 Directoried DECtape

Just as a REWIND or BACKSPACE command declares a DECtape to be non-
directoried, a .SEEK or .ENTER implies that a DECtape is to be con-
sidered directoried. A directory listing of any such DECtape is

available via the (L)ist command in PIP. A fresh directory may be

recorded via the N or S switch in PIP.

The directory of all DECtapes occupies all 4¢¢8 words of block lﬂﬂs. It
is divided into two sections: (1) a 4ﬁ8 word Directory Bit Map and
(2) a 34,08 word Directory Entry Section.

The Directory Bit Map defines block availability. One bit is allo-
cated for each DECtape block (11008 bits = 408 words). When set to
the bit indicates that the DECtape block is occupied and may not be
used to record new information.

The Directory Entry Section provides for a maximum of 56 files on

10
a DECtape. Each file on the DECtape has a four-word entry. Each

entry includes the three-word file name and extension, a pointer to

the first DECtape block of the file, and a file active or present bit.

Figure 7-1 illustrates the DECtape directory.

Word
0 Jk\
Block Directory
Block 1877 Bit Map
37 .
40 Entry @
- = = = = == = = = Directory
Entry
Section
Entry 551¢
377
g 5 6 11 12 17
Wwd. 0 File | Note: Nulls (0) fill
"———————4—‘ 1 in short file names.
1 Name A file name extension
is not absolutely
2 File Name Extension necessary.
3 | 1| pata Link (First File Block)

Sign Bit: 1 = File Active

A DIRECTORY ENTRY

Figure 7-1

DECtape Directory

Additional file information is stored in blocks 71 through 77 of every

directoried DECtape. These are the File Bit Map Blocks. For each file

in the directory, a 408-word File Bit Map is reserved in block 71

Ly . - T e . . th _.. .
through 77. The bit maps are contiguous, and the N file uses the

Nth bit map. Each block is divided into eight File Bit Map Blocks. A
File Bit Map specifies the blocks occupied by that particular file and
provides a rapid, convenient method to perform DECtape storage re-
trieval for deleted or replaced files. Note that a file is never de-
leted until the new one of the same name is completely recorded on

the .CLOSE of the new file. When a fresh directory is written on
DECtape, blocks 71 through 100 are always indicated in the Directory
Bit Map as occupied. Figure 7-2 illustrates DECtape file bit maps.

Block 7l8 Bit Map for File #

Bit Map for File

[oe] BN

Block 728 Bit Map for File
Bit Map for File 151¢
Block 778 Bit Map for File 481g

Bit Map for File 561g

Figure 7-2

DECtape File Bit Map Blocks

Staggered recording (at least every fifth block) is used on directoried
DECtapes, where the first block to be recorded is determined by examina-
tion of the Directory Bit Map for a free block. The first block is
always recorded in the forward direction; thereafter, free blocks are
chosen which are at least five beyond the last one recorded. The last
word of each data block recorded contains a data link or pointer to

the next block in the file. When turnaround is necessary, recording
proceeds in the same manner in the opposite direction. When reading,
turnaround is determined by examining the data link. If reading has
been in the forward direction, and the data link is smaller than the
last block read, turnaround is required. If reverse, a block number

greater than the last block read implies turnaround.

A software end-of-file record (001005, 776773) terminates every file.
The data link of the final block is 777777.

Data organization for each I/O medium is a function of the data modes.
On directoried DECtape there are two forms in which data is recorded:
(1) packed lines - IOPS ASCII, IOPS Binary, Image Alphanumeric, and
Image Binary, and (2) dump mode data - Dump Mode.

In IOPS or Image Modes, each line (including header) is packed into

the DECtape buffer. In IOPS Binary, a 2's complement checksum is com-
puted and stored in the second word of the header. When a .WRITE

which will exceed the remaining buffer capacity is encountered, the
buffer is output, after which the new record is placed in the empty
buffer. No record may exceed 254lo words, including header, because

of the data link and even word requirement of the header word pair

count. An end-of-file is recorded on a .CLOSE. It is packed in the same

manner as any other line.

In Dump Mode, the word count is always taken from the I/0 macro. If

a word count is specified which is greater than 25510 (note that space
for the data link must be allowed for again), the DECtape handler will
transfer 25510 word increments into the DECtape buffer and from there
to DECtape. If some number of words less than 255lo
final element of the Dump Mode .WRITE, they will be stored in the DEC-
tape buffer, which will then be filled on the next .WRITE, or with an
EOF if the next command is .CLOSE. DECtape storage is thus optimized

remain as the

in Dump Mode since data is stored back-to-back. See Appendix A.
7.2 MAGNETIC TAPE

DOS provides for industry-compatible magnetic tape as either a di-
rectoried or non-directoried medium. The magnetic tape handlers com-
municate with a single TC-59D Tape Control Unit {(TCU). Up to eight
magnetic tape transports may be associated with one TCU; these may

include any combination of transports TU-10A or B and TU-20A or B.

There are a number of major differences between magnetic tape and DEC-
tape or Disk; these differences affect the operation of the device
handlers. Magnetic tape is well suited for handling data records of
variable length. Such records, however, must be treated in serial
fashion. The physical position of any record may be defined only in
relation to the preceding record. Three techniques available in I/0
operations to block-addressable devices are not honored by the magnetic
tape handlers:

a. The user cannot specify physical block numbers for
transfer. In processing I/0 requests that have block
numbers in their argument lists (i.e., .TRAN) the
handler ignores the block-number specification.

b. The only area open for output transfers in the direc-
toried environment is that following the logical end
of tape.

c. Only a single file may be open for transfers (either

input or output) at any time on a single physical unit.

7.2.1 Non-directoried Data Recording (MTF)

MTF is intended to satisfy the requirements of the FORTRAN programmer
while still providing the assembly language programmer maximum freedom
on the design of his tape format. MTF writes out a record to the tape
each time the main program issues a .WRITE. The length of the record
is always two times the word pair count in the header word pair. FIOPS
records are always as long as the buffer size returned on a .INIT (up

to 25610
.INIT. The FORTRAN user may dynamically change this size, however,

words). MTF returns a standard buffer size of 3778, after a

via the following instructions

Example:
(FORTRAN STATEMENTS) (MACRO STATEMENTS)
. .TITLE SETMTB
. .GLOBL .DA, MTBSIZ, SETMTB
. SETMTB g
CALL SETMTB (IBFSIZ) JMS* .DA
. JMP START
. BUFSIZ ']
START LAC* BUFSIZ (any buffer size)
DAC* MTBSIZ
JMP* SETMTB
.END
7.2.2 Directoried Data Recording (MTA., MTC.)

The programmer can make the fullest possible use of those features
peculiar to magnetic tape by using MTF. On the other hand, MTF does
not offer the powerful file-manipulation facilities available in the
system. Directoried I/0 allows device independence, and extensive

use of the storage medium with a minimum of effort.

MTA. and MTC. do not support non-directoried data recording.

Every block recorded by MTA. (with the exception of end-of-file markers,
which are hardware-recorded) includes a two-word Block Control Pair

and not more than 255 words of data. The data will contain the

records from one or mige .WRITE's.

The Block Control Pair serves three functions: it specifies the char-
acter of the block (label, data, etc.), provides a word count for the
block, and gives an 18-bit block checksum. The Block Control Pair has

the following format:

Word 1:

Bits 0 through 5: Block Identifier (BI). This 6-bit byte
specifies the block type. Values of BI may range from 0
to 77,. Current legal values of BI, for all user files,
are a§ follows:

BI Value Block Type Specified
00 User-File Header Label
10 User-File Trailer Label
20 User-File Data Block

Bits 6 through 17: Block Word Count (BWC). This 12-bit
byte holds the 2's complement of the total number of words
in the block (including the Block Control Pair). Legal
values of BWC range from -3 to -4018.

Word 2:

Bits 0 through 16: Block Checksum. The Block Checksum is
the full-word, unsigned, 2's complement sum of all the
data words in the block and word 1 of the Block Control
Pair.

0o 5 6 17
T 1 1T 171 rT 1 1T o1 T rrT 3

BCP WORD1 | BLOCK ID [@#— — - N—————pp]
1111 | T N T A A |
LA LA AL
8CP WORD 2 | f&—————BLOCK CHECKSUM ——————
| N O T 0 N T Y S T I O I |

N TOTAL WORDS
? IN 8LOCK

N-2 DATA) o e e
WORDS

Figure 7-3

Block Format, File-Structured Mode

One of the main file functions of MTA. and MTC. is that of identifying

and locating referenced files. This is carried out by two means:

first, names of files recorded are stored in a file directory at the

beginning of the tape; and second, file names are contained in the

file's header and trailer labels.

7.2.2.1 Magnetic Tape File Directory

The directory, a single-block file (and the only unlabeled file on any

file-structured tape), consists of the first recorded data block on

the tape. It is a 25710 word block with the following characteristics:

Block Control Pair (words 1 and 2)

Word 1
Block Identifier = 748
Block Word Count -4018 = 73778.

= File Directory Data Block

Word 2:

Block Checksum: As described above.

Active File Count (Word 3, Bits 9 through 17) 9-bit one's
complement count of the active file names present in the
File Name Entry Section (described below).

Total File Count (Word 3, Bits 0 through 8) 9-bit one's

complement count of all files recorded on the tape, in-

cluding both active and inactive files, but not the file
directory block.

File Accessibility Map. (Words 4 through 17): The File
Accessibility Map is an array of 25210 contiguous bits
beginning at bit 0 of word 4 and ending as bit 17 of
word 17. Each of the bits in the Accessibility Map re-
fers to a single file recorded on tape. The bits are
assigned relative to the zeroth file recorded; that is,
bit 0 of word 4 refers to the first file recorded; bit
1, word 4, to the second file recorded; bit 0, word 6,
to the 37 Oth file recorded; and so on, for a possible
total of 5210 files physically present.

A file is only accessible for reading if its bit in the
Accessibility Map is set to one. A file is made inac-
cessible for reading (corresponding bit = 0) by a .DLETE
of the file, by a .CLOSE (output) of another file of the
same name, or by a .CLEAR. A file is made accessible for
reading (corresponding bit = 1) by a .CLOSE (output)} of
that file. Operations other than those specified above
have no effect on the File Accessibility Map.

BCP

FILE COUNTS

FILE
ACCESSIBILITY
MAP

T

FILE
NAME
ENTRY
SECTION

Figure 7-4a.

WORD

WORD 2

WORD 3

WORD 4

WORD 16

WORD 17

WORD 18

WORD 21

WORD 24

WORD 257

BIT POSITION

BEGINNING
OF TAPE

FILE
DIRECTORY

FILE #1
(INACTIVE)

FILE #2
(ACTIVE)

FILE #3
(INACTIVE)

FILE #4
(ACTIVE)

3 6 9 12 15 17
7 7 3 7 7
BLOCK CHECKSUM
7 2 7 7 4
oioNn
CONTENTS
’ UNSPECIFIED
/]
I L
2
X T
I L
4
X T
I L
5
X T

"UNSPECIFIED

FILE #5
{ACTIVE)}

.

Format of the
File Directory Data Block,
showing relationship of active
and inactive files to file name

entries and to Accessibility Map

Figure 7-4

Figure 7-4b.
structured tape, showing
directory block and data
files.

Magtape File Structure

END OF TAPE

Format of file-

e. File Name Entry Section (Words 18 through 257): The File
Name Entry Section, beginning at word 18 of the direc-
tory block, includes successive 3-word file name entries
for a possible maximum of 80 entries. Each accessible
file on the tape.has an entry in this section. Entries
consist of the current name and extension of the refer-
enced file in .SIXBT (left-adjusted and, if necessary,
zero-filled).

The position of a file name entry relative to the begin-
ning of the section reflects the position of its accessi-
bility bit in the map. That bit, in turn, defines the
position of the referenced file on tape with respect to
other (active or inactive) files physically present. Only
active file names appear in the entry section, and access-
ibility bits for all inactive files on the tape are always
set to zero; accessibility bits for all active files are
set to one.

To locate a file on the tape having a name that occupies
the second entry group in the File Name Entry Section,

the handler must (a) scan the Accessibility Map for the
second appearance of a l-bit, then (b) determine that bit's
location relative to the start of the map. That location
specifies the position of the referenced file relative to
the beginning of the tape. The interaction of the File
Name Entry Section and the Accessibility Map are shown

in Figure 7-4.

7.2.2.2 User-File Labels

Associated with each.file on tape is one label, the header label. It

precedes the first data block of the file. Each label is 2710 words

in length. Label format is shown in Figure 7-5.

WORD 1 00 7745
BCP
WORD 2 CHECKSUM
WORD 3 777 XXX FILE NAME
WORD 4 000000
WORD 5
e — e
RESERVED
WORD 26,
WORD 27,¢
Figure 7-5

User File Header Label Format

7.2.2.3 File-Names in Labels

The handler will supply the contents of the file-name fields (Word 3)
in labels. These are used only for control purposes during the execu-
tion of .SEEK's. The name consists simply of the two's complement of
the position of the recorded file's bit in the Accessibility Map; the
"name" of the first file on tape is 777777, that of the third file is
777775, and so on. A unique name is thus provided for each file physi-

cally present on the tape. Since there may be a maximum of 252 files

10
present, legal file-name values lie in the range 777777 to 777404.

7.2.3 Continuous Operation

Under certain circumstances, it is possible to perform successive I/0
transfers without incurring the shut-down delay that normally takes
place between blocks. The handler stacks transfer requests, and thus

ensures continued tape motion, under the following conditions:

a. The I/O request must be received by the CAL handler be-
fore a previously-initiated I/C transfer has been com-
pleted.

b. The unit number must be identical to that of the pre-
viously initiated I/0 transfer.

c. The I/O request must be one of those listed below to
ensure successful completion. The handler in process-
ing requests in continuous mode depends on receiving
control at the CAL level in order to respond to I/O
errors. The functions for which continuous operation
is attempted include only the following:

1. .MTAPE 3. .WRITE
2. .READ 4. .TRAN

d. With MTA, more than one logical record may be in a physical
block, so tape motion may stop if fewer successive .READ's
or .WRITE's are issued than there are records in a block.

e. The previously-requested transfer must be completed with-
out error. In general, successive error-free READ's
(WRITE's) to the same transport will achieve non-stop
operation. The following examples illustrate this prin-
ciple.

Example 1l: Successful Continued Operation

SILOT = 1

INPUT = 0

BLOKNO = 0

READ1 .TRAN SLOT, INPUT, BLOCKNO, BUFF1l, 257
READ2 .TRAN SLOT, INPUT. BLOCKNO, RUFF2, 257
RETURN JMP READI1

The program Segment in Example 1 will most probably keep the refer-
enced transport (.DAT slot 1) up to speed. The probability decreases
as more time elapses between READ1 and READ2, and between READ2 and
RETURN. FEach .TRAN request causes an implicit .WAIT until its opera-
tion is completed.

Example 2: Unsuccessful Continued Operation

SIOT = 1

INPUT = 0O

BLOKNO = 0

READ .TRAN SLOT, INPUT, BLOKNO, BUFF, 257
STOP WAIT SLOT

RETURN JMP READ

The program Segment in Example 2 will not keep the tape moving because
the .WAIT at location STOP prevents control from returning to location
READ until the transfer first initiated at READ has been completed.

Example 3: Unsuccessful Continued Operation
=1

SLOT2 = 2
=0

READ1 .TRAN SLOTl, INPUT, BLOKNO, BUFF1l, 257
READ2 .TRAN SLOT2, INPUT, BLOKNO, BUFF2, 257
RETURN JMP READI1

This program segment will not provide non-stop operation because of
the differing unit specification at READ1 and READZ.

7.2.4 Storage Retrieval on File-Structured Magnetic Tape

The use of a file accessibility map as well as block identifiers in
Magtape file directories makes it almost impossible to retrieve the
area of a deleted file from a magnetic tape. The execution of the
deletion command (i.e., .DLETE) removes the name of the object file
from the file directory, and clears the corresponding bit in the File

Accessibility Map.

The only circumstance under which a file area may be easily retrieved
is when the deleted file is also the last file physically on the tape.
Under these conditions, the handler can retrieve the area occupied by
the deleted file when the next .ENTER - .WRITE - .CLOSE sequence is

executed. Users may also copy the active files to another device, re-

new the directory, and recopy the files.

7-11

7.3 DISK FILE STRUCTURE

7.3.1 1Introduction

The XVM/DOS disk file structure is in some ways analogous to DECtape
file structure. Ordinarily, each disk user has a directory which

points to named files, just as each DECtape has a directory. The DEC-
tape has only one directory, but the disk has as many directories as
users have cared to establish. A single user's disk directory might
correspond to a single DECtape directory. A single disk file's size

is also limited only by the available space, as is true with DECtape.

10 files, the
number of files associated with any one directory on the disk is limited

Although DECtape directories may reference a maximum of 56
only by the available disk space.

The DECtape directory is in a known location -- at block 100. Since
the disk may have a variable number of directories, the Monitor must
know how to find each user's directory. It therefore maintains a
Master File Directory (MFD) at a known location!, and the Master File
Directory points to each User File Directory (UFD). XVM/DOS allows
only those users who know the Master Identification Code to have ac-
cess to any protected UFD's within the MFD. Figure 7-6 illustrates
the MFD. Appendix B is a flowchart of the Disk "A" Handlers.

7.3.2 User Identification Codes (UIC)

The Monitor finds User File Directories by seeking associated User
Identification Codes (UIC's), which are all listed in the Master File
Directory. The UIC is a three-character code that is necessary for
all non-.TRAN I/O to the disk. .TRAN macros use no directory refer-
ences. A programmer may operate under as many UIC's as he wishes, pro-
vided all are unique and none is reserved?. He may establish a new
User File Directory by (1) logging in his new UIC to the Monitor via
the LOGIN command, (2) calling PIP, and (3) issuing an N_,DK command.
This establishes a new User File Directory, or refreshes (wipes clean)
an old directory under that UIC. (.ENTER will also create a new MFD
entry and/or a UFD, if none exists.) Figure 7-7, User File Directory,
illustrates the organization of a UFD.

'on the RF and RK disk, the first block of the MFD is 1777 octal.
On the RP disk, the first block of the MFD is 47#48 octal.
2The following are reserved UIC's: Qee, ???, PAG, BNK, SYS, 10S, CTP.

Word # Contents Description

a 7777717 Dummy UIC used by system.

1 nnnnnn Bad Allocation Table's first block number,
or 777777, if there is none.

2 nnnnnn SYSBLK's first block number, or -1, if
there is none.

3 4g_2+blknum MFD entry size in bits @-2, plus the block

. . number of the first submap

4N .SIXBT UIC for this UFD

4N+1 nnnnnn Block number for the first block of this
UFD or 777777, if no UFD exists (as after
PIP's NeaDK))

4N+2 Pg+M Protection code in bit @, plus the UFD
entry size for each file

4N+3 spare Unused at this writing

3741 nnnnnn Spooler disk area size

375 nnnnnn Spooler disk area starting block

376 nnnnnn Pointer to previous MFD block, or 777777
if none.

377 nnnnnn Pointer to next MFD block, or 777777 if
none.

Figure 7-6
Master File Directory

Word # Contents Description

8N .SIXBT Name of this file

8N+1 .SIXBT and its

8N+2 .SIXBT extension

8N+3 Tﬂ+blknum Truncation code in bit @, plus the number
of the first block of the file

8N+4 nnnnnn Number of blocks in this file

8N+5 ribptr Pointer to the first block of the Retrieval
Information Block

8N+6 P¢_1+ribwrd Protection code in bits @-1, plus the
first word in ribptr used by the RIB-- if
the last block of the file has room for
the RIB, the handlers will put it there,
and load word 8N+6 accordingly.

8N+7 crdate Date of file's creation -mmddyy (yy modulo 7%)

376 nnnnnn Pointer to previous block, or 777777 if none

377 nnnnnn Pointer to next UFD block, or 777777 if none
Figure 7-7

User File Directory
1

Bits @-1 of word 374 are concatenated with bits @-1 of word 375 to
produce a 4-bit checksum for the 16-bit fields of words 374,375.

Check-

sum = word 374 (2-17) + word 375 (2-17) + 1 (modulo lslﬁ)'

7-13

7.3.3 Organization of Specific Files on Disk

The Disk Handlers write out files in almost the same way that a DEC-

tape handler does. Disk file blocks, however, have a forward and
backward link. (Non-dump records are therefore limited to lengths

of 25410 words.) Further, upon receipt of a .CLOSE I/O macro, the disk
handlers fill out a Retrieval Information Block (RIB). The RIB per-
forms the same functions as the file bitmap on DECtape, and also as-
sociates the logical sequence of blocks in the file with the physical
locations of the blocks on the disk. The disk handler uses the RIB to
implement .RTRAN commands and to delete files. Figure 7-8, The Retrieval
Information Block, illustrates a RIB.

After a user has created a disk file he can access logical records
sequentially via .READ commands, just as with DECtape files. He can
also access physical blocks of that file by referencing relative block
numbers in the .RTRAN command. (The .RTRAN commands require the file
be opened with the .RAND command.)

7.3.4 Buffers

The handlers break buffers from the pool into three parts: (1) File
Information (about 4¢8 words)® (2) the Block List -- addresses of
pre-allocated blocks (between 4 and 253lg addresses, inclusive), and
(3) data buffer (2561g words). Figure 7-9, Disk Buffer, illustrates
the breakdown of disk buffers.

7.3.4.1 Commands That Obtain And/or Return Buffers

The following commands obtain buffers from the pool, and return them

immediately after execution:

.DLETE
.RENAM
.CLEAR

The following commands obtain a buffer from the pool and do not return
it until a subsequent .CLOSE is performed:

.FSTAT
.ENTER
.SEEK
.RAND

*This number is determined by assembly parameters.

7-14

wWord # Contents Description
g* nnnnnn Total number of blocks described by this
physical block.
1 nnnnnn First data block pointer.
2 nnnnnn Second data block pointer.
3 nnnnnn Third data block pointer.
376 nnnnnn Pointer to previous RIB block or -1 if no
previous RIB block.
377 nnnnnn Pointer to next RIB block or -1 if no
next RIB block.
% th th .
Zero word of the RIB may not be zero word of physical block.

This occurs whenever the entire RIB will fit in the last data
block of the file.

Figure 7-8

Retrieval Information Block

40, Words*

More than 3 and
less than 377

8
words

4008 Words

J\

File Information becomes
'Current Set' when file active
(see 7.3.4.2).

Addresses of Preallocated
Blocks (Block List or Temp
List or TLIST)

Data Buffer

*This is not a fixed number. It is
different for RP, RK and RF.

Figure 7-9
Disk Buffer

7-15

The following commands return a buffer to the pool, if any was allo-

cated.

LINIT
.CLOSE
.MTAPE (rewind)

7.3.4.2 The Current Set

The handlers retain information about the last file and .DAT slot
processed in an internal storage area. This area is called the
"Current Set", and is swapped back to the file's buffer whenever a

command to a different file is used. Thus,

.WRITE to .DAT slot A
-WRITE to .DAT slot B

will swap the Current Set, but...

.WRITE to .DAT slot A
.TRAN to .DAT slot A
.WRITE to .DAT slot A

will not swap the Current Set.

7.3.5 Pre-allocation

The handlers pre-allocate blocks on the disk upon all .ENTER commands,

and whenever sufficient .WRITE commands have been issued to use up the

pre-allocated blocks. The number of pre-allocated blocks will be the
minimum of the number of free blocks on the device and the number of
address slots available in the Temp List (block list).

When the handlers pre-allocate blocks, they fill out the bit maps, and
immediately fill out the RIB and write it out in one of the pre-allocated
blocks.

Upon a .CLOSE command, the handlers give back unused blocks, and re-
write the RIB.

The number of blocks in the Block List depends on the size of the
buffer, which is determined at system generation by setting the buffer
size. The larger the Block List, the faster will be output. Smaller
Block Lists may give more efficient allocation of core and disk space.
Smaller buffers save core. Further, the number of pre-allocated blocks
may affect concurrently opened files on a disk that is tight for space.
Thus, if the Block List is sixty entries long, and there are forty
blocks left on the disk, a .ENTER to .DAT slot will pre-allocate all
forty, leaving none for any subsequent .ENTER's to different .DAT

slots.

IOPS 70 will occur when there are less than four free blocks on the

disk when a handler tries to pre-allocate blocks.

7.3.6 Storage Allocation Tables (SAT's)'!

The disk handlers use a Storage Allocation Table, in order to distin-
guish between allocated and free blocks. If more than one physical

block is required, the individual blocks are called Submaps.
Unlike DECtape, the Storage Allocation Table is never held in core.
When the handlers wish to preallocate some blocks, they read in the

required Submap, and write out the updated one.

Storage Allocation blocks use the following format:

WORD @ Total blocks on the disk

WORD 1 Number of blocks described
by this Submap

WORD 2 Number of blocks occupied
in this Submap

WORD 3 First word of the bit map

(eighteen blocks per word)

WORD 376 Pointer to previous Submap
(oxr 777777)

WORD 377 Pointer to next Submap
(or 777777)

The bit maps refer to blocks in numerical order. Thus, bit @ of word
three of a Submap will refer to block N, bit 1 will refer to block N+1,
and so on. The block is free if the corresponding bit eguals §. Start-
ing and ending block numbers for all Submaps are retained in the hand-
lers. Bit @ of word three in the first submap, refers to block zero.

!The first SAT block is located at 17768 for the RF and RK system and
7648 for the RP system,

7-17

7.3.7 Bad Allocation Tables (BAT's)

Occasionally, a particular block on the disk will not record data cor-
rectly. In such instances, the handlers should be prevented from using
the bad blocks. Accordingly, PIP maintains a Bad Allocation Table.
Whenever a user updates that table, PIP will set the appropriate bit

in the Storage Allocation Table. The block is thus made unavailable.
Refer to the PIP XVM Utility Manual for more information.

CHAPTER 8
WRITING NEW I/O DEVICE HANDLERS

This chapter contains information essential for writing new I/0 device

handlers to work in DOS.

8.1 1I/0 DEVICE HANDLERS, AN INTRODUCTION

All communications between user programs and I/O device handlers are
made via CAL instructions followed by an argument list. The CAL
Handler in the Monitor performs preliminary setups, checks the CAL
calling sequence, and transfers control via a JMP* instruction to the
entry point of the device handler. When the control transfer occurs
(see Figures 8-1 and 8-2), the AC contains the address of the CAL in
bits 3 through 17 and bits 0, 1, and 2 indicate the status of the Link,
Bank/Page mode, and Memory Protect, respectively, at the time of the
CAL. Note that the contents of the AC at the time of the CAL is not

preserved when control is returned to the user.

On machines that have API, the execution of a CAL instruction automati-
cally raises the priority to the highest software level (level 4) .
Control passes to the handler while it is still at level 4. Device

handlers must remain at level 4 until control is returned to the user.

A debreak and restore (DBR) instruction should be executed just prior
to the JMP* which returns control to the user, allowing debreak from
level 4 and restoring the conditions of the Link, Bank/Page mode, and
Memory Protect. Any IOT's issued at the CAL level (level 4 if API

present, mainstream if no API) should be executed immediately before the

DBR
JMP *

USER PROGRAM

DEVICE
HANDLER

SAVE CAL POINTER
AND FETCH FUNCTION
CODE

INITIALIZE HANDLER
AND RETURN BUFFER
SIZE

ISSUE .SETUP FOR
EACH PI SKIP OR
API ENTRY VECTOR

LOC+@
LOC+1

LOC+N

CAL ARG.
CODE

NXT INST — — —

ADDRESS,

LOOP ON CAL, OR
RETURN TO USER

IF .WAITR

I

UNPACK DATA (FROM
5 CHARS.
18 BIT WORDS) AND
REPACK DATA INTO

PER 2,

PER 16

2 CHARS.
BIT WORD.
1
SET UP TCB
CALL PIREX
TO INITIATE
FUNCTION

]

RETURN TO

USER AT
LOC+N

Figure 8-1

CAL Entry to Device

8-2

Handler

lFor non-unibus devices both these branches would be replaced by a single initiate
function routine.

PI APT
ENTRY -- via JMS @ ENTRY -- via JMS* API Device Address
Skip Chain (i.e., JMS* (INT))
JMP* (INT)

1. SAVE AC

2. SAVE LOCATION # (IN-
LINK, 3
AND MEMORY PROTECT :
3. SETUP TO TURN ON PI

CLUDING P.C.,

BEFORE EXIT

1. SAVE AC

2. RETAIN AT INT THE P.C.,
LINK, AND MEMORY PROTECT
IF FIRST TIME THROUGH,

NOP PI COMMANDS SO IT

WON'T ALTER PI STATE
ON EXIT.

- T

s

1. SETUP FOR
COMPLETION OF
CAL REQUEST.

2. START UP I/O

ERROR

CONDITION
?

CAL
REQUEST

COMPLETLY
ROCESSED
Y

Y INDICATE ERROR
IN HEADER WORD
PAIR

- J

Y

USER
RESPONSE

RESET
(E.G., CLEAR I/O
BUSY SWITCH)

REQUIRED
2

SETUP FOR RETRY

PROCESS ERROR

IOPSnnn

AND START I/0

y

RESTORE PI IF PI
INTERRUPT AND
DEBREAK AND
RESTORE

RETURN VIA
STORED P.C.

PI and API Entries to Device Handlers

Figure 8-2

INFORM USER
AND WAIT FOR
HIS RESPONSE.

exit sequence in order to ensure that the exit takes place before the
interrupt from the issued IOT occurs.

CAL's may be executed within an I/O handler, but not while processing

an interrupt.

8.1.1 Setting Up the Skip Chain and API (Hardware) Channel Registers

When the Monitor is loaded, the Program Interrupt (PI) Skip Chain and
the Automatic Priority Interrupt (API) channels are set up to handle
the TTY keyboard and printer and clock interrupts only. The Skip
Chain contains the other skip IOT instructions, but indirect jumps to

an error routine result if a skip occurs.

All unused API channels, memory protect, memory parity, and powerfail,
also transfer control to the error address.

When a device handler is called for the first time in a core load, it
must call a Monitor routine (.SETUP) to set up its skip(s) in the Skip
Chain, or its API channel, prior to performing any I/0 functions.

The calling sequence is as follows:

CAL N /N = API channel register 40 through 77.
/0 if device not connected to API.

16 /.SETUP function code.

SKP IOT /Skip IOT for this device.

DEVINT /Address of interrupt handler.

{(normal return)
8.1.2 Handling the Interrupt

DEVINT exists in the device handler in the following format to allow
for either API or PI interrupts. The following is for UNIBUS devices
only:

ONLY1

DEVPIC

DEVINT

IGNRPI

COMMON
DEVION

DEVIOF

/DISMISS ROUTINE

DVSWCH

LAC
DAC
DAC
DAC
JMP
DAC
LAC*
DAC

JMP
JMP
DAC
LAC
DAC
JMP

CAPI-
ION

IOF
LAC
SIOA

JMP
LIOR

LAC
ION

DBR
JMP*

(NOP
DEVION
DEVIOF
IGNRPI
COMMON
DEVAC

(g
DEVOUT

COMMON
DEVPIC
DEVAC

DEVINT

DEVOUT
ONLY1

(TCB

-1

DEVAC

DEVOUT

/LEAVE PI ALONE. WHEN API IS RUNNING
/THESE REGISTERS

/ARE AVAILABLE

/THIS IS ONCE ONLY CODE

/SAVE AC

/SAVE PC, LINK, ADDRESSING MODE AND
/MEMORY PROTECT

/PI ENTRY
/API ENTRY; SAVE AC

/SAVE PC, LINK, ADDRESSING MODE AND
/API IS OPERATING, SO LEAVE PI ALONE.
/PI INTERRUPTS ARE NOT POSSIBLE, BE-
/CAUSE .SETUP EFFECTIVELY NOP'S PI
/SKIPS.

/CLEAR API LEVEL Y-' DONE FLAG.

/PI ALLOWS INTERRUPTS; API DOES A NOP.

/API DOES NOP; PI TURNS IO OFF TO ENSURE
/NON-REENTRANCE AFTER ISSUING IOT'S.
/GET ADDRESS OF TCB IN AC

/PREVIOUS TCB ACCEPTED?

/NO

/YES. LOAD REGISTER IN INTERRUPT LINK
/THIS CAUSES A BR7 (HIGHER LEVEL)
/INTERRUPT ON THE PDP-11.

/RESTORE AC.

/ION OR NOP.

/DEBREAK AND RESTORE CONDITIONS

/OF LINK, ADDRESSING MODE AND MEMORY.
/PROTECT.

If the Index, Autoincrement, or EAE registers are used by the I/O de-

vice handler, it is necessary to save and restore them.

The following is for non-UNIBUS devices:

ONLYl ILAC (NoP /LEAVE PI ALONE. WHEN API IS RUNNING
DAC DEVION /THESE REGISTERS
DAC DEVIOF /ARE AVAILABLE
DAC IGNRPI /THIS IS ONCE ONLY CODE
JMP COMMON
DEVPIC DAC DEVAC /SAVE AC
LAC* (g
DAC DEVOUT /SAVE PC, LINK, ADDRESSING MODE AND
/MEMORY PROTECT
JMP COMMON
DEVINT JMP DEVPIC /PI ENTRY
DAC DEVAC /API ENTRY; SAVE AC
LAC DEVINT
DAC DEVOUT /SAVE PC, LINK, ADDRESSING MODE AND
IGNRPI JMP ONLY1 /API IS OPERATING, SO LEAVE PI ALONE.
/PI INTERRUPTS ARE NOT POSSIBLE, BE-
/CAUSE .SETUP EFFECTIVELY NOP'S PI
/SKIPS.
COMMON DEVCF /CLEAR DEVICE DONE FLAG.
DEVION 1ION /PI ALLOWS INTERRUPTS; API DOES A NOP.
DEVIOF IOF /API DOES NOP; PI TURNS IO OFF TO ENSURE
/NON-REENTRANCE AFTER ISSUING IOT'S.
DEVIOT

/DISMISS ROUTINE

LAC DEVAC /RESTORE AC.
DVSWCH ION /ION OR NOP.
DBR /DEBREAK AND RESTORE CONDITIONS
JMP* DEVOUT /OF LINK, ADDRESSING MODE AND MEMORY
/PROTECT.

If the Index, Autoincrement, or EAE registers are used by the I/0 de-
vice handler, it is necessary to save and restore them.

.SETUP must contain information for both API and PI. The XVM/DOS
Monitor will set up the skip chain and/or API channels appropriately.
The SGEN XVM Utility Manual gives the method for incorporating new
handlers and associated Skip Chain entries into the Monitor.

8-6

8.2 WRITING SPECIAL I/O DEVICE HANDLERS

This chapter contains information prepared specifically to aid those
users who plan to write their own special I/O device handlers for DOS.

DOS is designed to enable users to incorporate their own device hand-
lers. Precautions should be taken when writing the handler however,
to ensure compatibility with the Monitor.

Here is a summary of handler operation. The handler is entered via a
JMP* from the Monitor as a result of a CAL instruction. The contents
of the AC contain the address of the CAL in bits 3 through 17. Bit 0
contains the Link, bit 1 contains the Bank/Page Mode status, and bit 2
contains the Memory Protect status. The previous contents of the AC
are lost.

In order to show the steps required in writing an I/O device handler,

a complete handler (Example B) was developed with the aid of a skeleton
handler (Example A). In addition, Appendices A and B are flowcharts

of DTA and the A version of the disk handlers. Example A is referenced
by part numbers to illustrate the development of Example B, a finished
Analog-to-Digital Converter (ADC) I/O Handler. The ADC handler shown
in Example B was written for the Type AF#1B Analog to Digital Converter.
This handler is used to read data from the ADC and store it in the
user's I/0 buffer.

The reader, while looking at the skeleton of a specialized handler
as shown in Example A, should make the following decisions about his
own handler. (The decisions made in this case are in reference to
developing the ADC handler) :

a. Services that are required of the handler (flags,
Teceiving or sending of data, etc.) - By looking
at the ADC IOT's shown in the Reference Manual, it
can be seen that there are three IOT instructions
to be implemented. These instructions are: Skip
if Converter Flag Set, Select and Convert, and Read
Converter Buffer.

8-7

The only service the ADC handler performs is that of
receiving data and storing it in user specified areas.
This handler will have a standard 256-word buffer.

Data Modes used (for example, IOPS ASCII, etc.) -
Since there is only one format of input from the
Type AF01B ADC, mode specification is unnecessary in
Example C.

Which I/0 macros are needed for the handler's specific

use; that is, .INIT, .CLOSE, .READ, etc. For an ADC,
the user would be concerned with four of the macros.

(1) .INIT would be used to set up the associ-
ated API channel register or the interrupt
skip IOT sequence in the Program Interrupt
Skip Chain. This is done by a CAL (N) as
shown in Part III of Example A, where (N)
is the channel address.

(2) .READ is used to transfer data from the ADC.
When the .READ macro is issued, the ADC
handler will initiate reading of the speci-
fied number of data words and then return
control to the user. The analog input data
received is in its raw form. It is up to
the programmer to convert the data to a
usable format.

(3) .WAIT detects the availability of the user's
buffer area and ensures that the I/0 trans-
fer is completed. It would be used to ensure
a complete transfer before processing the re-
quested data.

(4) .WAITR detects the availability of the user's
buffer area as in (3) above. If the buffer
is not available, control is returned to a
user specified address, which allows other
processing to continue.

Implementation of the API or PIC interrupt service routine -
Example A shows an API or PIC interrupt service routine
that handles interrupts, processes the data and initi-

ates new data requests to fully satisfy the .READ macro
request. Note that the routines in Example A will oper-

ate with or without API. Example B uses the routines
exactly as they are shown in Example A.

During the actual writing of Example B, consideration was
given to the implementation of the I/0 macros in the new
handler in one of the following ways:

(1) Execute the function in a manner appropriate
to the given device as discussed in(c). .INIT,
.READ, .WAIT, and .WAITR were implemented into
the ADC handler (Example B) under the subroutine
names ADINIT, ADREAD, ADWAIT (.WAIT and .WAITR).

Wait for completion of previous I/0. (Example B

shows the setting of the ADUND switch in the ADREAD
subroutine to indicate I/0O underway.)

8-8

(2) Ignore the function if meaningless to the device.
See Example B (.FSTAT results in JMP ADIGN2) in
the dispatch table DSPCH. For ignored macros,
the return address must be incremented in some
cases, depending upon the number of arguments
following the CAL.

(3) 1Issue an error message in the case where it is
not possible to perform the I/O function - (An
example would be trying to execute a .ENTER on
the paper tape reader.) In Example B, the handler
jumps to DVERR6 which returns to the Monitor with
a standard error code in the AC.

e. Special considerations for UNIBUS device handlers
When new handlers are written for devices on the- UNIBUS
in a UCl5 system (RK based or RF/RP based UCl5 option)
the following has to be considered.

Since communication between the device handler on the
XVM and the driver task running under PIREX on the
PDP-11 is through Task Control Blocks (TCB), space in
the Common Memory (memory that can be addressed by the
XVM and the PDP-11l) must be provided. The system as
supplied by DEC has space reserved in the Resident
Monitor for 3 user defined devices/programs/tasks,
(refer to Section 2.9 for more information). This TCB
must be properly setup (refer to the XVM UNICHANNEL
Software Manual for more information) before the hand-
ler calls PIREX to initiate the operation.

Driver tasks (TTT)l running under PIREX report errors
by setting the appropriate code (XX) in the device
error status table in PIREX (refer to XVM UNICHANNEL
Software Manual, for more information). The XVM/DOS
poller prints out this error message, which appears
as follows:

IOPSUC TTT XX
Users have to decipher this message. An example of this is,
IOPSUC LPU 4

which reports that the LP11/LS11 line printer is not
ready. There is no error message type out from the
handler. This method of error handling is incorporated
to permit error report during operation of these
devices/tasks etc., under PIREX when their corresponding
handlers are not present in core on the XVM (e.g.,
during Spooling).

!Fach task running under PIREX has a 3 character code assigned to
it which is present in the PIREX error table at assembly time.

After the handler has been written and assembled, the Monitor must
then be modified to recognize the new handler. This is accomplished
by the use of SGEN XVM described in the SGEN XVM Utility Manual.

When the system generation is complete, PIP XVM (refer to PIP XVM
Utility Manual) must be used to add the new handler to the IOS UFD.
At this time, the user is ready to use his specialized device handler
in the XVM/DOS system.

8.2.1 Discussion of Example A by Parts

Part 1 Stores CAL pointer and argument pointer, and
picks up function code from argument string.

Part 2 By getting proper function code in Part 1 and
adding a JMP DSPCH, the CAL function is dis-
patched to the proper routine.

Part 3 This is the .SETUP CAL used to set up the PI
skip chain or the API channel register.

Part 4 Shows the API and PI handlers. It is suggested
these be used as shown.

Part 5 This area reserved for processing interrupt and
performing any additional I/0.

Part 6 Interrupt dismiss routine.

Part 7 Increments argument pointer in bypassing argu-
ments of ignored macro CAL's.

§.2.2 Example A, Skeleton I/0 Device Handler

/CAL ENTRY ROUTINE

«GLORL DEV, /MUST BE OF FORM AAA,
MED=3 /yMED (MONITOR ERROR DIAGNOSTIC)
DEV, DAC DVCALP /SAVE CAL POINTER
DAC DVARGP /AND ARGUMENT POINTER
152 DVARGP /POINTS TO FUNCTION CODE
LACH DVARGP /GET CODE
AND (77777 /REMOVE UNIT NQ 1F APPLJCABLE
1S% DVARGP /POINTS TO CALw2
TAD (JMP DSPCH
NAC NSPCH /DISPATCH W]TH
NSPCH XX /MODIFLIED JUMP
JMP DVINIT /1 = ,IN1T
JMp NVFSATY /2 = FSTAT: DLETE, ,RENAM
JMP DVSEEK /3 = ,SEEK
JMP DVENTR /4 = JENTER
JMP NVECLER /5 = CLEAR
JMP NVYCLOS /6 = ,CLOSE
JMp DVMTAP /7 = MTAPE
JMP DVREAD /1@ = ,READ
JMR DVWRTE /11 = ,WRITE
JMP NVWALT /12 = ,WALlT
JMP DVTRAN /13 = ,TRAN
ZILLEGAL FUNCTIONS IN ABOVE TARLE CODED AS|
/ IMP DVERR6
/FUNCTION €ONE ERROR
NVERRE AW 4 /ERRQOR (CODE 6
JMPs { MED*}Y /T0 MONITOR
/DATA MONE ERRQOR
NVERR7 AW 7 /ERROR CODE 7
JMP & (+MED#*1Q /TD MOMITOR

/DEVICE NOY READY

DVERR4 L AC {RETURN /RETURN (ADDRESS IN WANDLER)
/T0 RETURN TO WHEN NOT READPY
/CONDITION HAS BEEN REMOVED

DACH (' MED

LAC (4 /ERROR CODE 4
JMP# { JMED#Y /70 MONITOR

/170 UNDERWAY LOOP

NYBUSY nBR /BREAK FROM LEVE_L 4
JMPs DVCALP /L00P ON CAL

/NORMAL RETURN FROM CAL

NVCK NBR /BREAK FROM LEVLE 4
JMP# DVARGP /RETURN AFTER CAL AND

/ARGUMENT STRING

/THE DVINIT ROUTINE MUST INCLUWNDE
/A SETUP CALLING SEQUENCE FoR

8-11

/EACH FLAG CANNECTED TO aAP!
/AND/OR P] A(AT SGEN TIME),
/THE SETUP CaALLING SEQUENCE 1S1

DVINIT CcAL N /N = AP] CHANNE| REGISTER
/140 =77y, N s @ IF NOT CONNECTED
/70 AP!
16 /10PS FUnCTYloN CoDE
SKPINT /SKIP 10T TO TEST THE FLAG
DLVINT /ADDRESS OF INTERRUPT

/HANDLER (P] OR API)
/THIS SPACE MAY BE USED FOR 1/0 SUBROQUTINES
/INTERRUPT HANDLER FOR APl OR PI

ONLYY LAC (NQP
DAC DEVION
DAC DEVIOF
DAC DVSWCH
DAC 1GNRP]
JMP COMMON
ULLVPIL DAL DEVAC /SAVE AC
LAC® (2 /SAVEIPC, LINK, RANK/PAGE MQDE
NAC UEVOULT /AND MEMORY PROTECT
JMP COMMON
vLVINT UMP DEVPIC /Pl ENTRY
naAc NDEVAC /AP] ENTRY! SAVE AC
LAC DEVINT /SAVEt PC, LINK, BANK/PAGE MODE
DAC NEVOUT /MEMQRY PROTECT
IGNRP] JMP ONLY1 /LEAVE Pl ALONE
COMMON DEVCF /ENABLE P! OR NOP
NEVION 1ON /ENARLE Pl OR NOP

/THIS Al THF AREA DEVOTED To PROCESSING INTERRUPT AND
/PERFORMING ANY ADDITIONAL 1,0 DESIRED,

NEVIOF 1QF /DISABLE P! pR NpP
nEVInT /DIM1SSAL BEFORE INTERRUPT
/FRoM THIS 10T OCCURS

/INTERRUPT HWANDLER DISMISS RpUTE

NYDISM AC DEVAC /RESTQORE AC
DVSWCH 10N /10N QR NOP
nBR /DEBREAK AND RESTORE
JMPa DEVOUT /LINK, BANK/PAGE MODE, MEMORY
/PROTECT

/1F THWE WANDLER USES THE AUTOQOINCREMENT , INDEX
/0R EAE REGISTERS, THEIR CONTENTS

/SHOULD BE SAVED AND RESTOQRED, FUNCTIONS
/POSSIBLY IGNORER SHOULD CONTAIN

/PROPER INDEXING TQ BYPASS

/CAL ARGUMENT STRING

/
/CODE 70 BYPASS IGNORED FUNCTIONS
/

NVIGNZ 1S2 DVARGP /BYPASS FILE POINTER
JMP DVCK

8.2.3 Example B, Special Device Handler for AF01B A/D Converter

/ADC MWANDLER

/
ADSFe7213021% /SK1P 1F CONVERSION FLAG 1S SET
ADSC=761334 /SELECT AND CONyfFRY (ADC FLAG IS CLEARED
/AND A CONVERSIpM 1S INITIALISED)
ADRB=721312 /READ CONVERTER RUFFER INTO AC AND CLEAR FlLAG
/
«GLOBL aDC,
10X=182 ‘
TMED=3 /MED (MONITOR ERROR DIAGNOSTIC)
/
ADRC, DAC ADCALP /SAVE Cal POINTER
DAC ADARGP /AND ARGUMENT POINTER
10X ADARGP /POINTS 1O FUNCTION CODE
LAC® ADARGP /GET COpE
10X ADARGP /POINTS 1O CaAL ¢ 2
TAD ¢t JMP DSPCH
DAC nSPCH /DISPATCH WITH
DSPCH X X /MODIFIED JUMP
JMP ADINIT /1%, INIT
JMP ADIGN2 /2% ,FSYAT, ,DLETE, ,RENAM
JMP ADIGNZ /3%,SEEK
JMP ADERRS /43 ,ENTER
JMP ADERRG /5%,CLEAR
JMP ADIGNL /6%,CLOSF
JMP ADIGNL /7%, MTApg
JMP ADREAD /19=,READ
JMP ADERRS /11= ,WRITE
JMP ADWALIT /122, WATTY
JMP ADERRS /155, TRAN
/
/ILLEGAL FUNCTIONS IN ABOVE TAB{E CONED AS
/ JMP ADERRS
JEJECT

8-13

/
/FUNCTION CODE ERROR

/

ADERRS AW 6 /ERROR (nDE 6
JMP® { MED*L /70 MONITOR

/DATA MODE ERROR

ADERR7 LAW 7 /ERRAR ¢cnDE 7
JMP#® (¢MED*1 /70 MQONTTOR

/THE ADINT RoUTINE MUST INCLUDE & ,SETUP
/FOR EACH FLAG ASSOCIATED WITHW TWE DEVICE

/
ADINIT ;gxc ADARGP /10X TO RETURN RUFF SIZE
. DE
LAC (256 /STANDAR® BUFFER S1Zf (0pCIMal)
,0CT
DACH ADARGP /RETURN 17T Tp USER
10X ADARGP
ADCMOD CAL 57 /57=zAP] CcHANNEL
AQDCKSM 16 /,SETUP 10PS FuNGTINN £ODE
ADCRP ADSF /ADC SKip 10T
ADLBHP ADCIMT 7ADDR, nF INTERRUPT
ADUND LAC L2 /SET=UP oNCE ONLY
ADQWC DAC ADCMED /SKIP SpteUP CONE IF MORE
ADWPCT JMP ADSTOP /,INITS aRF nONE
/

/STaP ADC ROUTINE CLEARS 170 UNDFRWAY SwlTCH
/
ADSTOP ©ZM ADUND
JMP ADIG.1 /RETURN
/
/THE PREV]IOUS TAGS I THE CaL ARFA ARE USED FOR
/STORAGE DURING tHE ACTUAL ,READ FuNnCTIO™

/
/ADCKSM IS FQR STORING TRE CHECKSUM
/ADCBP IS THF CURRENT BUFFER POINTER
/ADLRHP 1S THE LINE RUFFER HEADER POINTER
/ADUND IS FOR DBEVICE UNDERWAY SwITCH
/ADWEC 1S USED AS THWE COUNTER
7ADWRPCT 1S USED T0 STORE CURRENT WORD COUNT
/

LEJECT

8-14

ADWAIT LAC ABUND

SNA
JMP ADIGNL
/170 UNDERWAY L 0nP
ADByYSY D0BR
JMP# AQCALP
/
/
ADREAD LAC ADUND
SZAICMA
JMP sDBUSY
DAC ADUND
|LAC® ADCALP
AND 7322
SZA
JMP ADERR7
LAC® ADARGP
DAC ADCRP
DAC ADLBHP
10X ADARGP
LAC® ADARGP
DAC ADWC
DZM ADWPET
NEM ADCKSM
10X sDCRP
10X abCep
ADSC
ADIGN2 DX ADARGP

ADIGNYI DBR
JMP & ADARGP

/INTERRUPY HANDLER FOR

/

ONLYL LAC (NOP
DAC ADCION
nAC ADCONT
DAC ADSHCH
DAC 1GNRP I
JMP COMMON

ADCPIC DAC ADCAC
LAC® (0}
DAC ADCOUT
LJEJECT

/CHECK T SEE IF 170 1S UNDERWAY
/Z1F NMOT SET 1T WwlTH =1

/17 WAS SET,G0 BACK TO CaAL

/SET 1T

/L00K AT MODE

/BITS 68 QML Y

/10PS BI“ARY?

/NO, ERRnR

/GET LINF BUFFER HEADER POINTER
/STQRE 171

/ALSO STNRE 1T FOR LATER HEADER
/INCREMFYT ARG, POINTER

JGET a ,kyuw,C(2'S COMP)

/STQRE 1t IN WORD COUNTER

/ZERO WORD COUNT REG,

/7ERO CHFECKSUM REG,

/GET PAST HEADER PAIR

/N0W POINTING AT BEGINNING OF
/BUFFER

/START yp PEVICE

/INCR, FNOR EXIT

/BREAK FROM LEVEL 4

/RETURN AFTER CaL
APl QR PIr

/SAVE AC
ISAVE PC:LINKOEXc MODE
/MEM.PRDTI

JMP COMMON

ADCINT JMP ADCPIC /PIC ENTRY
DAC ADCAC /APl ENTRY,SAVE AC
LAC ADCINT /SAVE PC,LINKiEX,MODE
DAC ADCNUT /MEM,PRQT
IGNRP] UMP ANL Y1
COMMON ADRB /READ COuVERTER RUFFER
ADCIEN ION ZENARLE plIC FOR OTWE® NEVICES
NACH ADCEP /STORE pATA 1N USER BUFFER
1DX ADCRP /INC, BUFFER POINTER
10X ADWPCY /INC, WorD PAIR COUNTER
TAD ADCKSM /ADD CHECKSUM
DAC ADCKSM /STQORE IT
152 AQUWE /15 1/0 pOMPLETE
JMP ADCONT /NO KEEP GOING
LAC ADWPCT /YES,COMPUTE WQORD CAUMNT PAILR
1AC /MAY RE ~Dp
SWHA /T0 TOP WALF
RAR /MAKE Wn, PRS,
AND (377¢@0@ /8 BITS nNLY
DAC# ADLBWP /STORE n WEADER #1
10X ADLBHP /INC, To STORE oKSUM
TAD ADCKSM /ADD WORM PAIR COUNT
NAC# ADLBWP /STORE In WEADER #2
DZM ADUND /CLEAR DEVICF UNDERWAY
JMP ADDISM /ZEXIT
ARCoNT JOF /DISABLE PIC OR NOP
ADSC /BEFORE INTERRUPT FRAM THIS 10T 0CCURS
/INTERRUPT HANDLFR DISMISS RTE
/
ADDISM LAC abcac /RESTORE AC
JEJECT
ADSWCH ION /10N QR 0P
DBR /DEBREAK AND RESTORE
JMP® ADCoUT /L INK,EX,MODE) MEM,PROT
ADCALP .2 /AUD CAL POINTER
ADARGP 2 /AUD ARGUMENT PQINTER
ADCQUT 2 /RC, L, FM, Mp
ADCAC # /7AC SAVENn HERE
/
LEND

CHAPTER 9
XVM/DOS BATCHING FACILITIES

(To Be Supplied At A Later Date)

APPENDIX A

DECTAPE "A" HANDLER (DTA.)

The following simplified charts describe the approximate flow of control
through the DECtape "A" Handler.

ERROR
I0PS 17

I0PS 22
ERROR

Entry from

CAL Handler

1. Save pointer to CAL
2. Save subfunction or data mode

Call

slot B in=-
active

N slot C in=-
active
Swap descriptor Swap descriptor
blocks for .DAT blocks for .DAT
slots A and B slots A and C
] J
T <
Is

there more than
7~ .
Y _one output file on
the same unit

Get function code, and make up
dispatch instruction

there a
buffer for
this slo

Request a buffer

v
Next Page

ERROR

From Preceding Page

a buffer

IOPS 55

available

Set up word pointers within the new
buffer -- e.g., buffer+377 = link

.INIT .OPER .SEEK .ENTER
(L) (2) (3) (4)

OOOO

Dispatch to function code}

LEAR .CLOSE .MTAPE .READ
(5) (6) (7 (8)

55&5

1

WRITE

5

.WAIT
(10)

O

+INIT (Function Code #1)

1. Give user standard buffer size (377)
2. Set input or output file indicator
3, Wait for previous I/O to finish for

DEC tape

JINIT for

this core

1. Do .SETUP to API and Skip Chain

2. Test buffer size. If not 440
or greater, terminate with an
I0PS 78

>

Return to

user after
CAL

.TRAN
(i1

(.OPER, Function Code #2)

< DLETE
« RENAM
+FSTAT

Dispatch to requested sub-
function and process

Exit to

user after
CAL

(.SEEK, Function Code #3)

there an
active file
on this
slot

was
+INIT for
output

ERROR
I0PS 7

(Loop back to user CAL)

M
Bring directory into core, if not al-
ready in

File
in direc-
tory

ERROR
IOPS 13

1. Obtain starting'block number
2. Read the first file block into core

|/
/ Return to
user after
_ caL ,

.ENTER (Dispatch Code 4)

this slot_ v ERROR

+INITed fo IOPS 7
inpu
(Loop back to user CAL,) Underway
Bring Directory into core, if not
already in
file in
directory
Set indicator so that file is deleted
upon a .CLOSE to this .DAT slot
‘ ~
[Search directory bit map (in core) for first free blocﬂ
Was N ERROR
a block a- I0PS 15
ailable
Set up to write out this block, when
the time comes
Exit to
user after
C
+CLEAR
(Dispatch Code 5)
(Loop back to user CAL.)
ERROR
I0PS 10

1. Clear out file bit maps
2, Clear directory block with the SYS
block bits set in the directory map

Exit to
user after

CAL

(Loop back

to user CAL) _
<

+CLOSE
(Dispatch Code 6)

1.
2.

Clear bit in bit maps
Clear switches

put End-of-File
indicator in buffer
Write out last block
in file

Was
there an
old file by
this name

The following is done on
the in-core bit maps:

L

Zerc its bits in the
directory bit map
Overwrite its file
bit map with the
new_one

<.

[&lear switches

~

IWrite out updated directory and file bit @ﬂﬂ

| <
d 0 <

Return the buffer to the
system

Return to
user after

CAL

+READ
(Dispatch Code 10)

(Loop back to user's CAL)

|

Pass 001005,776773

sequence to user's

buffer 1. Transfer line to user's
buffer

2. Set data validity bits

Was
EOF just

v
Set EOF indicator:]

Read in next block of file|

N l pd
”~ ~

Exit to

user after
CAL

+WRITE
(Function code 11)
v 1/0
Loop back to user's CAL< nderway
N

set "write executed"
switch

any more
room in
current
block

[ﬁl. Write out block; 2. search for next block

as
a block N ~ ERROR
le

\\\\izgii:////’ IOPS 15

>1Y

1. Transfer user buffer to handler
buffer
2. Compute Checksum

N
ECOF

A'4
iTransfer the block |
T <

Exit to

user after
CAL

JWAIT & .WAITR
(Function Code 12)
N
<WAITR
Y.

lSet CAL pointer to specified address

L <

<
N AY
nderway

Exit to
user after
CAL

+«TRAN
(Function Code 13)

/
Loop back to user CAL < i 4 underway

N

1. Set up block to transfer in or out
2, Set up core address-1

3. Set up word count

4, Start transfer

Exit to
user after
CAL

INTERRUPT SECTION

Entry from
PI or API

Save information
to restore later

witch still
Stop - tape on
N

lRead status register "§F1

Error Y L
N
Was
X this a N —y
earch | Clear I/0 underway switch |

Was
block 100
ead in

Y -
direction
[éhange direction[IChange directlon]
~
> < Set directory in core switch
et up Current Address & Set up current address - Ay
ord count for read or and word count for -z
rite search N

> <
_/

(ERROR Logic)

Y Oon
Search

Change
direction

ERROR

I0PS 12 again

1. Accept data as is
2. Get rest of data

N

a
N there a Y
select er—
ror
1.
2.
3.
4.
Se

Read Status Register "A" and
save it

Clear Status Register "A"
Disable interrupts

Set return in .MED (register 3,
bank @)

Clear I/0 underway switch and
enable CTRL P

.MED

Give IOPS 4

Set I/0 underway switch
Set up Current Address and
Word Count for search

ERROR
I0PS 12

[ﬁstart up DECtape

N <
rd <

1. Restore PIC interrupt entry and AC
2. Turn interrupt on, if this was a PIC
3. Debreak and Restore

Exit to

interrupted
code

A-10

APPENDIX B

DISK "A" HANDLERS

The following simplified charts describe the approximate flow of control
through the Disk "A" Handlers.

- - — = - T T = CAL Handler

Entry from

1. Save the pointer to the CAL
2. sSave the ,DAT slot number and subfunction
code (bits 5=8 of LOC+f)

First
N Call in

this core
oad

Y
Do .SETUP for PI and API interrupts

Y
Determine number of plattersg]
Set up Stan-
dard TCB At
; least one
format in
the RKTCB platter

— e —— — —— - — —— — — — — — — ——— —— — — — — —— —— — — — — — — —

Calculate the maximum block number, for use
at .CLEAR time

Calculate size of the TEMP list for pre-allocated
blocks, and set the BUF.OK switch (SGEN size ok)

1
Branch to —

y
. WAI\
Y

+WAITR

or

I/0 Under-

user's CAL

way

Next Page

-= Fall through to "IO.OFF"

From Preceding Page

1. Calculate pointers to the arguments of the CAL

2. Save step counter and MO for EAE

N .TRAN

Y
[save current set]

“Current”
slot equal to
new slot

Y B (DISPCH)

First
call after

new core load
or a .TRAN

(7 Save the current set in its appropriate buffegj

‘ Make new .DAT slot the “current" one

/ .FINDBY 4:&

Find or set up

the Busy Table

entry for this
.DAT slot

v
‘Save status of Write CheckJ

.TRAN

Next Page

From Preceding Page

the current

slot have a
buffer

/—‘

_ Buffer
large enoz;R\\\
for file

struc-
ture

IOPS 70

Request a buffer (.GTBUF)

Buffer
available

I0PS 55

l. Save pointer to buffer, and zero entire buffer
2. Complete the Busy Table entry

l. Get UIC from the Busy Table entry

2. Bring in the Current Set from buffer

3. Set up pointers to:

User's Directory Entry, tem-
porary block list, Data Block Words 0,1,2,3,376 &
377

Note: .TRAN, .WAIT and .WAITR

have already been inter-
cepted,

Open
output file

on this

1. Wipe out entry in UFD, and
2. Give back pre=-allocated blocks
EN(]
1. Return any allocated buffer
2. Zero any old busy table entry
3. Make a new entry in thé busy table
4, Save Write Check bit in busy table
5. Indicate "current" .DAT slot is

ZEXro

Exit to
LOC+4

sequential
or random I/O
to this ,DAT slot
going

IOPS 10

From Preceding Page

Branch

.DLETE

ISearch for fi1;1

1. Delete the file

2. Give back all
blocks

Y

1. Return aquired
buffer

2. Make "current"
.DAT slot zero

L

tion

+FSTAT

« RENAM

on subfunc-

«RTRAN

Initialize RIB
number to zero

IOPS 6%:)<:EOPS 10

since last
.CLOSE

Rename the file
Insert current
date

Load AC with the
first block num-
ber

Exit to
LOC+3

(. FSTAT)

cessful
.FSTAT for
this file

Search for
file
Found)

I0PS 51,
71 or 13

i. Place file size in
LOC+3

2. Read in first RIB

3. Move RIB to top of
buffer, if neces-

1. Place device tfpe in LOC+2 of CAL
2, Search for file

sary

Load AC with first
block number

Zero the AC

L

Exit to
LOC+3

IOPS

Exit to
EXITAD

(.RTRAN)

«RAND

executed N I0PS 11

relative
block number

IOPS 66
file blocks
Y
Calculate RIB block number, and the desired pointer's
position within that RIB block
¥ roper
RIB block
N}Qre
N
<
Depending on the location of the desired block, rela-
tive to the RIB block in core, read in the next or
preceding RIB block
roper
RIB block N
now in
corf/////////
Y
Save pointer to desired data blocEJ
RF, RF or RP/RK
RP/RK
Store starting wofd number and the number Assume transfer starting at word zero,
of data words desired through word 375, and set parameters
accordingly

parameters
imply transfer
of link

Use word count given in CAL during disk
pack input

[Set direction switch]

SETRET}e
Ca <

B-7

[Set up user's buffer to receive the link words for block

File
one block
long

Current

both 1link
pointers

Set links in data block from adjac-
ent pointers in the RIB block

N

Set both link
words to -1

et backward link to 1. Set backward link to 1. Set forward link to Set forward link
djacent pointer in adjacent pointer in adjacent pointer in to adjacent poin-|
RIB, and forward link RIB block RIB ter in RIB, and
to -1 2, Read in next RIB block! |2. Read in previous RIB backward link to

and adjust RIB number block and adjust RIB =1

indicator in the cur- number indicator in

rent set the current set

3. Set forward link to 3. Set backward link to

first pointer in the
new RIB block

last pointer in the

new RIB block

\

Y

¥

ETRE

Set up driver with the
correct block number

Set up driver with the
correct wp:d number

[

v

Bring in or send ocut
required block or data

Exit to
LOC+5

unclosed

file on this

this file
successfully
<FSTATed

obtain file
information /

Found File

File ¥

truncated

Read in first block of file]

Exit to
LOC+3

IOPS 10

10PS 13,
51 or 71

I0PS 10

IOPS 64

this slot

been opened IOPS10
and not//////r

closed*
ENTE N

FINDER
Search MFD and UFD
START = Pointer to
SAT word 3

I\

|]]
(No entry in MFD (Entry in MFD, but (UFD exists, but does (UFD exists, and con-

for this UIC) UFD is empty) not contain a file by tains a file by the
the given name) given name)

1. Save number of the last MFD block read
2, Save file name

ENTSET
Preallocate
some blocks

N
Read in last MFD bloc)q

Did
v . FINDER N

ind an emp-
ty MFD slot

|

Set pointer to free slot
found by FINDER

GETNXT
Get next
block number

block
with free

1. Make forward link of last MFD block

k point to the next block
2. Write out the block
3. Clear the buffer

y

l. Set up entry pointers

2. 1Insert new UIC, entry size and zero protection
code (unprotected) into new MFD entry

MFDSE *That is, has a .RAND, .SEEK or
.ENTER been issued without a
«CLOSE?

MFDSE!

Is dir
prot

ENT
Preal
some

CKDIRP

ectory
ected?

SET
locate
blocks

Read in th

entry

which contains proper

e MFD block

y

GETNXT

Obtain
for the

a block
UFD

Set up entries in
MFD block and the

the Busy Table, the
Current Set

Write out the MFD
buffer

block and clear the

4

A

Set up a new UFD block in the buffer,
with a back 1link of =1

Set pointer to indicate location to
receive the new entry

IOPS63

WIPOUT

Remove file
entry from
the UFD

set "0ld file in" switch
Set pointers to UFD block
nurber and the first word
of the old file's entry
(to be used at .CLOSE)

I0PS63

CKDIRP ,
Check directory)brotection
rotection AJ/FGiolatlon

OK

ENTSET
Preallocate
some block

Dpid

FINDER
Y

locate a

[Read in first UFD block

‘\\\\Efee entry
in UFD

N
GETNXT
Obtain a
block #

Change forward link of last UFD block

(still in core)
Write out last UFD block
Clear user's buffer

2.

Read in UFD block with
free entry

Load "UFDl1" pointer in
Current Set with this

block number

1. Save pointer to new UFD entry in "UFD2" of the Current Set
2. Set up pointers to UFD entry slots
3. Store file name and extension in the UFD entry

Obtain a
RIB block,

1.
2.
3.
4.
5.

Store RIB pointer in UFD entry
Store protection code & date
Insert data plock number

Write out UFD block with entry
Clear buffer

Set "WREXSW" (Write—executed switch)]

GETNXT
Obtain a
data bloc

Clear .the buffer to zero

Return
to user
After CAL

ENTSET

1.
2.
3.

Read in the first Submap
Make it the "Current Map"
Zero indicator of the number
of preallocated blocks

LSTFIL
Preallocate
some blocks

(Number of blocks pre-allo-
cated is the minimum of
number available and the
size of the "Temp List")

At
least

RETURN

4 pre-
allocated

P;turn any preallocated blockq

IOPS15

MIC
login IOPS63

. Clear

first
5. Write

. Set bits 0-2 of word 3 to MFD size

1
2. Set words @, 1, 2, 376, and 377 to -1
3
4. Sct bits 3-17 of word 3 to point to

a buffer

submap
out buffer to block 1777, if

RF/RK or 47g4@ if RP
6. Clear the bhuffer
(How the handlerswrite out _the bit mans) ///ﬁifgﬁ\\\
o~ RP/RK disk RF
1. Set up forward and backward links in buffer 1. Set backward and forward links to -1

2. Set up words @, 1 and 2

2. Turn on bits that correspond to MFD

3. Turn on bit in this submap corresponding block and first submap block

to itself
4, Write out the block

More

submansg

N

Set bit in appropriate bit map for MFD

[
.

Set bit in the first bit map that

corresponds to second bit map
2, Set forward link to next block
Write out the buffer and clear it
Set back link toc first submap, and
forward link to -1

>~

=W
« e

Write out the buffer

\%
/

Return to
user

From Preceding Page

RIB infor-
mation fit in
the last data
block

Reset RIB block pointer in
UFD to last data block

[Set "word in RIB" in UFD

there an
old file with
the same
name

WRTUFD

IWrite out current UFD blocEJ

Is
the UFD
block with the
old file ref-
erence in
core

1. Write out UFD block currently in core

2. Reset UFDl to UFD block with old file

3. Read in the UFD block with the old file's
entry

S SAMUFD
> 200000

\
1. Reset UFD entry pointer ({(UFD2)
2. Wipe out the old file's entry

UNUSED
(Give back any unused blocks) <

Read in first RIB block used
save the forward data link

A2
Next Page

peen executeg

set for internal looping
(implicit WAIT) until done

EOF record
fit in current
data block

1. Write out current block
2. Obtain another and

3. Clear the buffer
(Subroutine SETWRD)

1.

2. Set forward data link to -1
3. Increment file size

Write 2-word EOF line in buffer

Will
RIB fit

in last data
block

|TRAN RIB words into last data block

>{ RNOFIT

N
[Write out last data blockl

Read in UFD block for this file
Fill in file size and turn off
Truncated file bhit

Save pointer to first RIB block

Next Page

From Preceding Page

Was
last data

block used for”
RIB

erset RIB Block pointer in UFD to last Data BlockJ

INFPRO

[Set ‘Word-in-RIB' in UFD]

(UFD entry is now complete. UFD is
still in core.)

there an

old file with
the same
name

UFD block

WRTUED

with old file's

[Write out current UFD block |

entry now
in core

1. Write out UFD currently in core

2. Reset UFDl to UFD block with the
o0ld file's reference

3, Read it in

“1 SAMUFD

1. Set UFD2 to old file's entry slot
2. Wipe out the old entry

(Give back unused blocks.) Jf

1. Get first RIB block used
2. Read it in
3. Save the forward data link for loop

Should
any blocks

be given back from
any RIB block

Next¥Page

From Precrdinq Page
<
S~

Any
unused
blocks in thisg
RIB bloc

| Read in next RIB bloc}j_—

- THISRB

l. Find area in this block where
blocks should be given back

2. Adjust word @ of this block
to reflect only those used

3. Write out the block

4, Fudge subroutine LSTFII. so it
appears UNBUSY called

LSTFIL
(Actual transfer e e ———— — - = = = —,
is to LSTMOV)

last data
block used for
RIB

Turn off RIB block's bit in SAT
and write out the Submap block

C.INPT
U [Set Return to LOC+2}—————>{ UNBUSY
v

< - - - - - ==

1. Perégrm +GVBUF

2. Zero current set

3. Make "current”
.DAT slot zero

Return to
LOC+2

Has
this .,DAT
slot been opened

for out-

[Save pointer to "next" recoréJ

current
record point-~
ing to the top of
a buffer

lﬁ;ad in previous blockl

CBLOK

Position record pointer to
top of the buffer

IOPS6

oes

the "Next
Line" pointer
point to the saved

'3

next line
pointer

record

Use this record's word pair
count to point to the next

N
7

Y

Return

User's
buffer size
zZero

SETUP
Check Header word pair

Set up the word pair
counters for moving data

non-Dump

LINFIT
Mode - -

1. Make Word Pair Count
negative

2. Zero checksum word in
record to be read

3. Clear line error flag

PWORDS
Pass record
to user

Re-
cord too

Set peointers for a skip over
the next record

2. Set "Short Line " Flag
3. Set return in PWORDS to go
to ENDIN1

PWORDS

Skip rest

of line

ENDIN

\

UMP1,

g

in data buffer"
PWORDS

Set up "words left

for

PWORDS
Read to end of
record or to end
of data block

Set appropriate
error bits, if
any

Any
data left
in this

data blocks
left in
file

IGNO

this
the last
data block

Read in next data block and
set up pointers, anticipat-
in the next read

Exit \
to
user

Pass EOF line:

001005,

776773

<

7

REDEOF

2
ISet EOF Flag]

Exit
to
user

READ-WRITE Common Setup Routine

1. Save pointer to argﬁment data block

2. Set up return address

3. Set pointer to checksum word in data buffer
4. Save checksum word

a .SEEK

or .ENTER
executed

1. Set up pointers to "receiver" data buffer

2. Index SETUP return pointer past argquments
to Dump Mode exit

3. Save Word Count from CAL

I0PS1l

[indax return pointer to Non-Dump MOdSJ

Return

0

GETWPC
Extract Word Count from line 2 e
buffer header word pair oi>w.p-c. is
177

{ RETURN

I0PS23

J

Return

to

1. Set up return address

2. Clear "Current Slot"
number

3. Get Word Count

1. set up for input or output

‘2. Get argument block number

3. Read it or write it

Return
to
user

user

Has
.ENTER
been exe-

I10PS1l
SETUP
Set up word counter
and data buffer
Will
record
fit in cur-
rent buf- this line N
fit in cur-
rent buf-
Move in all
that will NOFIT1
?it and ad- Zero
just argument Checksum SETWRD
size count \]/
PWORDS
SETWRD Pass the record Set "receiver pointers
to the handler's to the top of the
buffer buffer
Compute and insert Checksum
AWORDS]

N
[Move record into bufferl | @

Y

[set EOF switch |

Exit
to
user

(Loop on CAL)
i

|
|

//r RETURN
to LOC+N

Go to
Argument
address

2. Save current block number

1. Store number as forward data link

Is
current

block num=-
er -1

(llligigiill')

2. Increment FILSIZ

1. write out buffer and then clear it

Was
forward
data link

just stored
= -1

[Make this number cumrrent]

Any
blocks
left in the

I0PS15

'

Temp
List

LSTFIL
able to get
some
blocks

BLDRIB
Set up
the RIB

SETBAK

| set backward data link returned from SETWRD |

‘ Return '

+DSKFUL

Set next block
number in TLIST to =1

RETURN

1. Initialize the map count num-
ber, block count, TLIST
pointers and TLIST count

2. Read in the current submap

Check
the sub-

rabmpute starting location for searqEJ

1. Start filling the Temp List
2. When find a free block, skip
the next block+DELTA (assem-
bly parameter) and continue

End
of Sub-
map or end
of TEMP

Temp List

blocks
allocated
from this
Submap

[étart at bit @ word 3|

—

more Sub-
maps

[Read in next Submapl EXIT

B-27

o COMMON ROUTINE FOR READING AND
WRITING TO AND FROM THE DISK

1. SAVE THE CALLING ADDRESS

2. GET THE ARGUMENTS

3. COMPUTE DISK HARDWARE
BLOCK NUMBER

4. SET I/0 UNDERWAY FLAG

Y

SETUP TCB AND
CALL PIREX
START DISK I1/0 TO START DISK
DISX 1/0

EXIT TO
LOC. IN
EXITAD

INT
(INTERRUPT
HANDLER)

\

l. SAVE PC AT EXITAD

2. SAVE AC

3. TURN OFF I/0 UNDERWAY
FLAG

4. LOWER PRIORITY TO
LEVEL 4

.

1. CLEAR DISK FLAG

2. PROCESS ERROR

3. IF NECESSARY,
RETRY 10 TIMES

CLEAR DISK FLAG
-—
X

LEESET BUFFER COUNTS

ATTEMPT RECOVERY

ON CTRL R
SET FOR WRITE RETURN
CHECK LOC. IN
EXITAD

DISK "A" HANDLERS

B-28

APPENDIX C
PROCEDURE FILE

ASG

| ASSIGN DEVICE UIC TO JDAT ‘
A @D00(@D11()R)@ <RUOD(E@DL12()R)E> RADO()E

ASM

2 “ACRJ AND LINE EVITGR

A 8D00(RDI1()R)e <RUOD(ED1Z2()R)IR> ~14/Q8003(€D11()@)R <gUu3(RAD12()W@)R> =15
BePRE

QA00(FILTMP) @

@AO03(RAQO(FILTHP)B)R

A @DOO(RDII()E)R <EUOUL(RDI2()@)RA> =11/8D01(6D11(Ne)e <gUOL(ED12¢)R)E@> +10
A apo02(@b11()e)e <@UO2(@D12()R)R> =14/8D05(ED11()R)R <RUOS(AD12()RA)@e> =13
A BDO4(LP)E <@U04(@012()R)R> =12

MACRJ

QO(BL)E.RAQO(FILIMP)RED14() R
BNK

14 BANK MODE OPERATION=UN
BANK ON '

BUF

1 NUMBER OF BUFFERS
BUFFS @A0O0(4)e

CHN

1 SPECIFY 7 OR 9 TRACK MAGTAPE
C ea00()@

CMP

1 SOURCE COMPARE

ggfggz(@Dll()@)@ <8UOO(eDI2()@)e> =-15/@D01(BD11()R)@ <BUOL(@D12()8)E> =14

@0()@_2A00()@/QA01()REDI4()R

DIR

1 LIST DIRECTORY
pie

L LP_RAOO(@D11()@)@ <@UOOC(@D12()R)IE@>RD14()e

DLG

2 LOGOUT UIC
LOGOUT

DMP

01 DUMP UTILITY =- EXPANDED SUB FILE
A eDOO(eD11()e)e <eUoO(@D12()e)e> =14/eD01(LP)R <RUOL(@Di2()@)e> =12

DUMP
@AQO(ALL)e@D14()@

DOS

1,3, GENERAL PRC FILE FOUR GIVING COMMAND SYRINGS

@A00(eDp14)@) @

FIL

2 CREATE A FILE FROM CARDS/EDITOR
A @DVO(RD11()e)@ <euoo(eDl2()e)e>
A @D01(@eD11()@)e <euol(eDl2()@)a>
B.PRE

@AOQO(FILTMP)@
@AO1(RAQOO(FILTMP)R)@

FOR

2 FORTRAN IV AND LINE EDITOR

A @DOO(@D11()R)@ <QUOO(eD12()R)@>
B.PRE

@AOO(FILTMP)®@
@AQ1(RAQOO(FILTMP)R)R

A @D00(eDl1()e)e <@uouo(enl2(le)e>
A @DO2(LP)R <eU02(eD12()@)e> =12
F4

@0(BL)R.RAOO(FILTMP)RED14()@

JOB

2 START NEW JOB

LOG JOB RAOO()@ BEGIN @Di4()e
T

LOGIN BAQ2(SCR)®

A NON 2,3,4,7,10,11,12,13,14,15,16,17,20/eD11()@ 1

PIP

N @D11()e <SCR>eDi4()e
@A03()e@

KEEP @AQ04(OFF)e@

TIMEST @A01(1)@:00

-14
=15

=14/8D01(@D11()R)@ <aU0O1(eD12()@)E> =15

=11/@D03(eD11()e)w

N

<guo3(eDiz2()R)e> =13

KEP

1 RETAIN DEVICE ASSIGNMENTS
KEEP @AQO(ON)e

LCM

13 SUPPLEMENT TUO LIB PRC-UPDATE .LIBR
QAOO(CLOSE@D13()@)@ @A01(eD13()e)e ero2()e

LIB

1

A @D00(ReD11()@)@ <@UOO(eD12()@)E@> ~14

A @D01(@D00(eD11()@)e)@ <@UO1(eUOO(e@D12()R)€)e> =15
A @D02(eD11()e)@ <R/uo2(e@D12()e)e> -10

A @DO3(LP)@ <@uo3(eDi12()@)e> =12

UPDATE
@0(LUS)e.eAOO(.LIBR)RED14()@

LNK

13 DIRECT SUB FILE - BUILDS LINKS FOR EXECUTE FILE~USE WITH OVL PRC
@A00(@D14()@)eeD14(de

LOG

2 LOGIN UIC
LOGIN BAQ0(SCR)®

LST

2 LIST CONTENTS OF FILE ON LINE PRINTER
PIpP

T LP-@BD0O(@D1i()e)e <eUOO(eD12()R)E> WAOQO(FILTIMP)@ (A)@D14()e

MAC

2 MAC=ELEVEN AND LINE EDITOR

A @D00(eD11()e)@ <eU00(eD12()e)e> =14/eD01(eD11()R)e <eUO1(eD12()@)e> =15
B.PRE

@AQO(FILTMP)E

BA01(@AQO(FILTMP)R)®

A @D0OO(eD1t1()e)@ <rUOO(@Dl2()@)e> =11

A @D02(LP)e <eU02(@D12()@)e> =12

MAC11

@O(BL)R.RAOO(FILTMP)@@D14()@

MAP

123 DIRECT SUB FILE FOR CHAIN OPTION AND RES CODE ONLY
CHAIN

@AQO(TMPXCT)@@D14()e
@A01(SZ)erD14()e
@AO2(FILTMP)e&D14()e
@b14()e

MIC
2 LOGIN MIC UuIC

MICLOG @AO0()e@
MNT

1 MOUNT TAPE# ON DRIVE #
LOGW MOUNT eO0(D)e=TAPE# @A00()@ ON DRIVE# @A01()@ = WRITE @A02(LUCK)e@

MSG

13 MESSAGE TO OPERATUR=-DIRECT SUB FILE
LOG @A00()e

MSW

13 MESSAGE TO OPERATOR W/WAIT=DIRECT SUB
LOGW eAQOO0()e

NDR

1 CREATE NEW DIRECTORY
PIP

N @A00(eDl1()@)e <euoO(eDil2()e)e>aDi4d()e

OVL

é3 DIRECT SUB FILE = USE FOR BUILDING OVERLAYS(CHAIN)
HAIN

QAOOQ(TMPXCT)e@Di14()e
ea01(SzZ)@eDn14()e
@AO2(FILTMP)@@D14()@

PAG

1 PAGE MODE OPERATION=ON
PAGE ON

PRT

1 SPECIFY PRUTECTIUN CubDE
P @AQ00(2)e

RUN

02 RUN

Fd

BL.RAOO()® @h14()e@
CHAIAN
@AQ00()ReDb14()u
NMeD14()e
BAOO()@eD14()e
28D14()e

£ RAAQ00() @

QDP

1 vUMP CORE Oiv TERMINAL ERRORS=-NO ARGUMENTS
QOIMP

XCT

2 EXECUTE

A @DOO(EDI1()@)e <alot(eb12()@)e> -4

£ @4AQ0(TMPXCT)®@

XVM

1 Xvd MODE UPKHRATION Uwn/0FF
XVM RAQUCUN)®

Abort I/0 transfer, 2-10
Absolute constants, 3-2
Additions to the nonresident
monitor, 4-4
API (Automatic Priority Inter-
rupt), 2-6, 3-3, 3-10, 8-1
hardware channel registers,
8-4
software interrupts, 2-25,
2-27
Appendages, monitor, 3-2
Autoincrement register, 8-5
Auxiliary routine, 3-4, 3-10,
3-11
API-version scheduler (figure)
3-11
non-API-version scheduler
(figure) 3-13

Bad allocation table (BAT), 7-18
Block preallocation, 7-16
Blocks, 5-4
and tables,
Bootstrap,
manual, 3-1
system, 2-16
BOSS XVM mode operation, 5-2
Buffer allocation, 5-6
Buffer, disk (figure), 7-15
Buffer pool, 6-14
Buffers, 7-14

5-2

Calendar date (SC.DAY), 2-2
CAL entry to device handler
(figure), 8-2
CAL handler, 3-3
(figure), 3-5
Checksum, 7-4
Clock interrupts, 3-3
Clock oriented .SCOM locations,
3-20
Clock routines, 3-14
Code, initialization,
COMBLK, 6-1, 6=9
(figure), 6-8
Commands, nonresident monitor,
4-5
Commands that obtain and/or
return buffers, 7-14
Constants,
absolute, 3-2
relocatable, 3-2
Control character interrupts,
3-3
Control character routines,
Core, 3-1

3-2

2-8

INDEX

Core dump, 2-17

Core image, 2-18, 5-1
truncated, 2-18

Current set, 7-16

Data organization, 7-4
Data recording,
directoried,

MTC.), 7-5
nondirectoried (MTF),
.DAT slots, 5-2, 5-6
table, 6-9
DECtape "A" handler (DTA.)
(flowcharts), A-1
DECtape directory (figure), 7-2
DECtape file organization, 7-~1
DECtape/magnetic tape differences,

(MTA.,

7-5

7-4
Device assignment table (.DAT),
6-13
Device handlers, 5-1
1/0, 3-3, 8-1, 8-7, 8-11
PI and API entries to (figure),
8-3
UNIBUS, 8-9

writing special I/0, 8-7
Device table, 6-12
Directoried data recording
(MTA., MTC.), 7=5
Directoried DECtape, 7-1
Directory bit map, 7-2
Directory entry section, 7-2
Disk "A" handlers (flowcharts),
B-1
Disk buffer (figure), 7-15
Disk file organization, 7-14
Disk file structure, 7-12
Disk-resident blocks, 6-1
Disk-resident changing block,
6-10
Disk-resident tables,
Dump mode, 7-4

6-12

EAE registers, 8-5

Exec mode, 3-10, 3-14

EXECUTE, loading (figure), 5-3
Expanded error processor, 2-14

File bit map blocks (figure), 7-3
File buffer transfer vector
table, 6-14
File labels, user,
Filenames in labels,
File structures, 7-1

7-9
7-10

Index-1

INDEX

File structures (cont.),
disk, 7-12

File transfer, 2-17

Flags, 2-18, 3-26

.GET CAL function, 2-17

Handler name, 6-10
Handlers, 6-13
disk "A" (flowchart),
system loader disk, 5-
UNIBUS device, 8-9
see also Device handlers;
I/0 device handlers

B-1
1

Image mcde, 7-4
Index register, 8-5
Initialization code, 3-2
Initializing .SCOM, 3-1
Input/output communication
(I0C) table, 6-13
Instructions, 3-2
Interrupts, 2-6, 3-3, 8-4
Interval timing (SC.ETT), 2-3
I1/0 aborted, 2-10
I/0 device handlers, 3-3, 8-1
example, 8-11
writing special, 8-7
IOPS ASCII, 7-4
IOPS binary, 7-4
I0PS error processor, 2-11
I/0 transfers, continuous, 7-10

Linking loader (figure), 5-3
Loading resident monitor, 3-1
Loading system programs, 5-1

Magnetic tape, 7-5
Magnetic tape/DECtape difference,
7-4

Magnetic tape file directory,
7-7

Magtape file structure (figure),
7-8

Manual bootstrap, 3-1

Mass storage busy table, 6-14,
6~15

Master file directory (MFD),
7-12

(Cont.)

Mini-ODT, 2-22

commands, 2-23
Mnemonics, 6-1

for I/0 devices, 6-10
Monitor appendages, 3-2
Monitor, nonresident, 4-1

(figure), 4-2
Monitor, resident, 3-1
.MTAPE commands, 7-1
.MTRAN system macro, 2-15

Nondirectoried data recording,
(MTF), 7-5
Nondirectoried DECtape, 7-1
Nonresident Monitor, 4-1
additions, 4-4
commands, 4-5
initialization (figure), 4-2
Nulls in .SIXBT text, 2-12

Overlay table,
.OVRLA, 6-12

6-12, 6-15

Patching facilities, resident
monitor, 2-24

PI and API entries to device
handlers (figure), 8-3

PIC interrupt service routine,
8-8

Poller, UNICHANNEL, 3-21

(figure), 3-23

Pre-allocation of blocks, 7-16

Procedure file, C-1

.PUT CAL function, 2-17

Real time clock, 3-14
routines (figure), 3-15
Recording, staggered, 7-1, 7-3
Relocatable constants, 3-2
Request flags, 2-27
Reserved address locations, 6-15
Reserved word locations, 6-14,
6-15
Resident monitor, 3-1
patching facilities, 2-24
Retrieval information klock (RIB),
7-14
(figure), 7-15

Routine, auxiliary,

3-4, 3-10

Index-2

INDEX (Cont.)

SAT - see Storage Allocation
Table

SC.DAY (calendar date), 2-2
SC.ETT (interval timing), 2-
.SCOM, initializing, 3-1
.SCOM location (SC.TCB), 2-19
.SCOM registers, 5-1, 5-5
.SCOM table, 6-1, 6-2
SC.TIM (time of day), 2-1
SGNBLK, 6-1, 6-9

(figure), 6-11
Skeleton I/0 device handler,

3

g-11
Skip chain, 6~13, 8-4
table, 6-10

Software interrupt, 3-4
Staggered recording, 7-1, 7-3
Storage allocation tables
(SATs), 7-17
Storage retrieval on file-
structured magnetic tape,
7-11
Submaps, 7-17
SYSBLK, 6-1
(figure), 6-8
System bootstrap, 2-16, 5-1
System communication (.SCOM)
table, 6-~1, 6-2
see also .SCOM

System integrity, 2-7, 3-3, 3-10

System loader, 5-1

System loader disk handler, 5-1

System parameters, 6-9

System program loader (figure),

5-3

Tables, 5-4
Tables and blocks, 5-2
Tables, disk-resident, 6-12

Task control blocks, 2-19, 2-21

Temporary tables, 6-14
Time of day (SC.TIM), 2-2
Timeouts, 3-22

.TIMER interrupt routine, 2-3,

3-10, 3-14
deactivated, 2-8
using without API,

2-6
Timing mechanisms, 2-1

UCl5 OFF command, 2-19

UCl5 ON command, 2-1°

.UFD table, 6-9

UNIBUS device handlers, 8-9

UNICHANNEL poller, 3-21
(figure), 3-23

User File Directory (.UFD), 6-13,

7-12
(figure), 7-21

User file header label format
(figure), 7-9

User file labels, 7-9

User identification codes (UIC),
7-12

User mode, 3-10, 3-14, 3-26

Word locations, reserved, 6-14,
6-15

Writing special I/O device han-
dlers, 8-7

XVM mode, 2-16, 3-26
.XVMOFF CAL, 2-17
.XVMON CAL, 2-17

Index-3

XVM/DOS Systems Manual
DEC-XV-0ODSAA-A-D

READER'S COMMENTS

NOTE: This form is for document comments only. Problems
with software should be reported on a Software
Problem Repcrt (SPR) form.

Did you find errors in this manual? If so, specify by page.

Did you find this manual understandable, usable, and well-organized?
Please make suggestions for improvement.

Is there sufficient documentation on associated system programs
required for use of the software described in this manual? If not,
what material is missing and where should it be placed?

Please indicate the type of user/reader that you most nearly represent.

Assembly language programmer
Higher-level language programmer
Occasional programmer (experienced)
User with little programming experience

Student programmer

000000

Non-programmer interested in computer concepts and capabilities

Name Date
Organization
Street
City State Zip Code
or
Country

If you require a written reply, please check here. E]

Fold Here

Do Not Tear - Fold Here and Staple

FIRST CLASS
PERMIT NO. 33
MAYNARD, MASS.

BUSINESS REPLY MAIL
NO POSTAGE STAMP NECESSARY IF MAILED IN THE UNITED STATES

Postage will be paid by:

dlilgliltiall

Software Communications
P. 0. Box F
Maynard, Massachusetts 01754

dlilgliftlall

digital equipment corporation

	000
	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	1-01
	1-02
	2-01
	2-02
	2-03
	2-04
	2-05
	2-06
	2-07
	2-08
	2-09
	2-10
	2-11
	2-12
	2-13
	2-14
	2-15
	2-16
	2-17
	2-18
	2-19
	2-20
	2-21
	2-22
	2-23
	2-24
	2-25
	2-26
	2-27
	2-28
	3-01
	3-02
	3-03
	3-04
	3-05
	3-06
	3-07
	3-08
	3-09
	3-10
	3-11
	3-12
	3-13
	3-14
	3-15
	3-16
	3-17
	3-18
	3-19
	3-20
	3-21
	3-22
	3-23
	3-24
	3-25
	3-26
	4-01
	4-02
	4-03
	4-04
	4-05
	4-06
	4-07
	4-08
	5-01
	5-02
	5-03
	5-04
	5-05
	5-06
	6-01
	6-02
	6-03
	6-04
	6-05
	6-06
	6-07
	6-08
	6-09
	6-10
	6-11
	6-12
	6-13
	6-14
	6-15
	6-16
	7-01
	7-02
	7-03
	7-04
	7-05
	7-06
	7-07
	7-08
	7-09
	7-10
	7-11
	7-12
	7-13
	7-14
	7-15
	7-16
	7-17
	7-18
	8-01
	8-02
	8-03
	8-04
	8-05
	8-06
	8-07
	8-08
	8-09
	8-10
	8-11
	8-12
	8-13
	8-14
	8-15
	8-16
	9-01
	9-02
	A-01
	A-02
	A-03
	A-04
	A-05
	A-06
	A-07
	A-08
	A-09
	A-10
	B-01
	B-02
	B-03
	B-04
	B-05
	B-06
	B-07
	B-08
	B-09
	B-10
	B-11
	B-12
	B-13
	B-14
	B-15
	B-16
	B-17
	B-18
	B-19
	B-20
	B-21
	B-22
	B-23
	B-24
	B-25
	B-26
	B-27
	B-28
	C-01
	C-02
	C-03
	C-04
	C-05
	C-06
	Index-1
	Index-2
	Index-3
	Index-4
	replyA
	replyB
	xBack

