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In this paper, we present a preliminary study of musical instrument classification for
use in an audio file annotation system.  Using a sound segment 0.2 seconds in length,
the classifier can determine the instrument source with a 30% error rate: bagpipes,
clarinet, flute, harpsichord, organ, piano, trombone, or violin.  The classifier was
built after experimenting with different parameters such as feature type and
classification algorithm.  The features examined were linear prediction coefficients,
FFT based cepstral coefficients, and FFT based mel cepstral coefficients.  Gaussian
Mixture Models and Support Vector Machines were the two classification algorithms
studied.

Abstract



 Compaq Computer Corporation, 1999

This work may not be copied or reproduced in whole or in part for any commercial purpose.
Permission to copy in whole or in part without payment of fee is granted for nonprofit educational
and research purposes provided that all such whole or partial copies include the following: a notice
that such copying is by permission of the Cambridge Research Laboratory of Compaq Computer
Corporation in Cambridge, Massachusetts; an acknowledgment of the authors and individual
contributors to the work; and all applicable portions of the copyright notice. Copying,
reproducing, or republishing for any other purpose shall require a license with payment of fee to
the Cambridge Research Laboratory. All rights reserved.

CRL Technical reports are available on the CRL’s web page at
http://www.crl.research.digital.com.

Compaq Computer Corporation
Cambridge Research Laboratory

One Kendall Square, Building 700, Suite 721
Cambridge, Massachusetts 02139

USA



                                                                                                     1

1 Introduction

Over the last decade there has been a great deal of work on speech/speaker
recognition research. Progress has been made on the analysis of speech waveforms,
in its perception by humans, and in the use of different statistical methods for
classification.  On the other hand, the field of instrument classification and
recognition has been studied less.  In this paper, we attempt to apply some of the
knowledge gained in speech research to the field of instrument classification.

The interest of building computer systems to classify instruments is evident.  For
example, many Internet search sites, such as AltaVista and Lycos, are evolving from
purely textual indexing to multimedia indexing.  It is estimated that there are
approximately thirty million multimedia files on the Internet with no effective
method available for searching their audio content (Swain, 1998).

Audio files could be easily searched if every sound file had a corresponding text file
that accurately described people’s perceptions of the file’s audio content.  For
example, in an audio file containing only speech, the text file could include the
speakers’ names and the spoken text.  In a music file, the annotations could include
the names of the musical instruments.  Generating these transcriptions manually is
not a feasible alternative, hence automatic methods able to effectively index
multimedia files, many of which contain music, are key.

As we mentioned earlier, there has been a great deal of research concerning the
automatic annotation of speech files.  Currently, it is possible to annotate a speech
file with spoken text and name of speaker using speech recognition and speaker
identification technology.  Researchers have achieved a word error rate of 17.4% for
“found speech”, speech not specifically recorded for speech recognition (Ligget and
Fisher, 1998).  Speaker identification systems have been developed to distinguish
among approximately 50 voices with a 3.2% error rate (Reynolds and Rose, 1995).

The automatic annotation of non-speech sounds has received less attention. Wold,
Blum, Keislar, and Wheaton (1996) built a system that differentiates between the
following sound classes: laughter, animals, bells, crowds, synthesizer, and various
musical instruments. Scheirer and Slaney (1997) were able to classify sounds as
speech or music with a 1.4% error rate. Han, Par, Jeon, Lee, and Ha (1998) have
built a system that differentiates between classical, jazz, and popular music with a
45% error rate.

Most of the work done in music annotation has focused on note identification.
Moorer (1977) built a system that could produce a score for music containing one or
more harmonic instruments.  However, the instruments could not be vibrato or
glissando, and there were strong restrictions on notes that occurred simultaneously.
Subsequently, better transcription systems have been developed (Katayose and
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Inokuchi, 1989), (Kashino, Nakadai, Kinoshita, and Tanaka, 1995), and (Martin,
1996).

There have not been many studies done on musical instrument identification.
Kaminskyj and Materka (1995) built a classifier for four instruments: piano,
marimba, guitar, and accordion.  It had an impressive 1.9% error rate.  However, in
their experiments the training and test data were recorded using the same instruments
in the same laboratory.  Therefore, their system accuracy will most likely decrease
substantially when tested with music played with different instruments in a different
studio.

In another study, researchers built a classifier that could distinguish between
saxophone and oboe music.  The sound segments classified were between 1.5 and 10
seconds long.  In this case, the test set and training set were recorded using different
instruments and under different conditions.  The average error rate was 7.5%
(Brown, 1999).

Martin and Kim (1998) built a system that could identify 15 musical instruments
using isolated tones.  The test set and training set were recorded using different
instruments and under different conditions.  It had a 28.4% error rate.  Since the
classifier used isolated tones, we believe that the system would have limited use in
an audio annotation system.

In this study, a musical instrument classifier was built that could distinguish between
eight types of solo music: bagpipe, clarinet, flute, harpsichord, organ, piano,
trombone, and violin.  Since the Internet does not contain many files with solo
music, this type of system is not immediately practical.  However, it does show
“proof of concept”.  Using the same techniques, this work can potentially be
extended to include other types of sound such as musical style (jazz, classical, etc.)
and sound effects.

A more immediate use for this work is in audio editing applications.  Currently, these
applications do not use information such as instrument name for traversing and
manipulating audio files.  For example, a user must listen to an entire audio file in
order to find instances of specific instruments.  Audio editing applications would be
more effective if annotations were added to the sound files (Wold, Blum, Keislar,
and Wheaton, 1996).

The outline of the paper is as follows. In section 2 we describe the sound database,
the choice of feature set, and the classification algorithms.  In section 3 we present
our results.  We explore the different feature sets, classification algorithms, and the
effect of using test data originating from the same source as the training data.  We
finish the paper with our conclusions and suggestions for future work.
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2 Database and System Description

2.1 Sound Database

The training and test data were recorded from 16 compact disks (CDs).  We had two
solo CDs for each of the musical instruments studied.  One CD was used for training
data, and one CD was used for test data.  We recorded approximately ten minutes of
music from each training CD and approximately two minutes of music from each test
CD.  The audio was sampled at 16 kHz using 16 bits per sample and was stored in
AU file format.  The amplitude was linearly scaled to the range -1 to 1.

We divided the recorded audio into segments 0.2 seconds in length. We
experimented with segment lengths varying from 0.1 seconds to 0.4 seconds.
However, our classification results were quite similar for all lengths.  We settled on a
0.2 second segment duration for our experiments.  In addition, segments with an
average amplitude (after scaling) between -0.01 and 0.01 were not used.  This
automatically removed any silence from the training and test sets.  This threshold
value was determined by listening to a random portion of the data.  Lastly, each
segment’s average loudness was normalized to 0.15.  We normalized the segments in
order to remove any loudness differences that may have existed between the CD
recordings.

We then composed the training and test sets by randomly choosing a subset of
segments from the recorded audio, 1024 training segments and 100 test segments for
each instrument.  We emphasize that the training and test sets were disjoint and were
recorded from different CDs.

2.2 Audio Segment Representations

Several alternatives are possible when converting a fixed duration sound segment
into a vector.  For example one can explore information contained in the spectral
envelope, the phase, or the time evolution of the signal. We decided to experiment
with feature set representations that are popular in the speech recognition and coding
fields. We believe that the reasons that make these representations valid for speech
processing are also valid, to a first degree of approximation, in music processing. We
tried three different feature sets: linear prediction coefficients (LPC), FFT based
cepstral coefficients, and FFT based mel cepstral coefficients.

2.2.1 Linear Prediction Features

The LPC feature parameterization assumes the speech production model shown in
Figure 1.  The source u(n) is a series of periodic pulses produced by air forced
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through the vocal chords, the filter H(z) represents the vocal tract, and the output
o(n) is the speech signal (Rabiner and Juang, 1993).

u(n) H(z) o(n)

Figure 1  Linear prediction model for speech and music production.

The LPC feature set attempts to approximate the vocal tract system, H(z), with an
all-pole model,
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where G is the model’s gain, p is the order of the LPC model, and {a1 … ap} are the
model coefficients. These coefficients compose the feature vector.

As a first approximation, the model shown in Figure 1 is also suitable for musical
instrument sound production.  The source u(n) is a series of periodic pulses produced
by air forced though the instrument or by resonating strings, the filter H(z) represents
the musical instrument, and the output o(n) represents the music.  Linear prediction
analysis attempts to approximate the musical instrument system, H(z).  Since there
are substantial parallels between speech production and musical instrument sound
production, we feel that linear prediction is a reasonable model for music analysis.

In our experiments, we computed linear prediction coefficients using an
autoregression model of order 16. Before the autoregression method was applied,
each audio segment was multiplied by a Hamming window to smooth out
discontinuities at the beginning and end of the segment. The gain was discarded and
only the filter coefficients were used as features.

2.2.2 Cepstral Features

Unlike the previous representation that tries to estimate parameters of an assumed
production model, cepstral analysis tries to estimate the model H(z) directly using
homomorphic filtering. First, the audio segment is multiplied by a Hamming window
to smooth out discontinuities at the beginning and end of the segment. Then, the Fast
Fourier Transform (FFT) of the windowed segment is computed.  We then compute
the logarithm followed by the inverse FFT.  This is shown in equation (2).  We used
the first 16 coefficients of the output as the cepstral feature set.

).|))(FFT(|ln(FFT)cepstrum( 1 noo −=              (2)
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It can easily be demonstrated that the first components of the cepstrum correspond to
the production model or general shape of the spectrum.  The higher components of
the cepstrum correspond to fast changing spectral components that can easily be
related to the excitation in a typical speech production model (Oppenheim and
Schafer, 1989).

2.2.3 Mel Cepstral Features

A variation of the cepstral representation set is the mel cepstrum.  This feature
representation is identical to the cepstrum except that the signal undergoes a mel
transformation before the cepstral transform is calculated.  This transformation
modifies the signal so that its frequency content is more closely related to a human’s
perception of frequency content.  The relationship is linear for lower frequencies and
logarithmic at higher frequencies (Rabiner and Juang, 1993).

The mel transformation is based on human sound perception experiments.
Therefore, it represents how humans perceive sound with more frequency resolution
at frequencies below 1 kHz and less frequency resolution above. In as much as music
is originally created to be optimally perceived by humans, we hypothesize that a mel
frequency analysis might improve classification results.

2.3 Classification Algorithms

We explored two different classification algorithms: Gaussian mixture models
(GMM) and Support Vector Machines (SVM).  GMM is a popular and easy to
implement classification algorithm that has been applied to instrument classification
problems before (Brown, 1999), (Martin and Kim, 1998).  On the other hand SVMs
have not been used in the area of instrument classification, but they have
outperformed GMMs in a variety of classification tasks. 

2.3.1 Gaussian Mixture Models

Given an ensemble of training corpora feature vectors },...,{ 1 mxxX =  where
d

i Rx ∈ and assuming that the m vectors are statistically independent and identically

distributed, the likelihood that the entire ensemble has been produced by instrument
C1 is,

.)|()|},...,{(
,1

111 ∏
=

==
mi

im CxpCxxXp  (3)

If we assume that the likelihood of a vector can be expressed with a mixture of
Gaussian distributions then,
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)|( 1ClP is the prior probability of  Gaussian l  for instrument class 1C , and

),|( 1Clxp i is the likelihood of vector ix  being produced by Gaussian l  within

instrument class 1C . The parameters of this Gaussian distribution are the mean

vector 1,lµ  and  the diagonal covariance matrix 1,l∑ .

During training, we collect all the vectors for a given instrument class and our task is
to learn the parameters of the Gaussian mixture, i.e. the mixing weights, the mean
vectors and the diagonal covariance matrices.  We achieve this goal using the well-
known Expectation-Maximization (EM) algorithm. EM is an iterative algorithm that
computes maximum likelihood estimates (Dempster, Laird, and Rubin, 1977).  The
initial Gaussian parameters (means, covariances, and prior probabilities) used by EM
are generated via the k-means method (Duda and Hart, 1973).

Once the Gaussian mixture parameters for each instrument class have been found,
determining a test vector’s class is straightforward.  A test vector x  is assigned to

the class that maximizes )|( xCp j , which is equivalent to maximizing

)()|( jj CpCxp  using Bayes rule.  When each class has equal

a priori probability, the probability measure is simply )|( jCxp .  Therefore, the

test vector x is classified into the instrument class jC that maximizes )|( jCxp .

2.3.2 Support Vector Machines

Support Vector Machines have been used in a variety of classification tasks, such as
isolated handwritten digit recognition, speaker identification, object recognition, face
detection, and vowel classification.  When compared with other algorithms, they
show improved performance.  This section introduces the theory behind SVMs. Lack
of space prohibits a more detailed discussion, but interested readers are referred to
(Vapnik, 1995) for an in depth discussion or to (Burges, 1998) for a short tutorial.

The Linearly Separable Case
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Suppose we have a set of training samples mxx ,...,1  where d
i Rx ∈  which are

assigned labels myy ,...,1  ( where { }1,1−∈y  ).  The labels indicate which of

two classes each sample belongs to.  Then the hyperplane bxw +⋅ )( separates the

data if and only if

1if0)( =>+⋅ ii ybxw       (5)

1if0)( −=<+⋅ ii ybxw .      (6)

We can scale w and b so that this is equivalent to

1if1)( =≥+⋅ ii ybxw     (7)

1if1)( −=−≤+⋅ ii ybxw      (8)

or

ibxwy ii ∀≥+⋅ 1))(( .   (9)

To find the optimal separating hyperplane, we need to find the plane that maximizes
the distance between the hyperplane and the closest sample.  The distance of the
closest sample is
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and from equation (9) we can see that the appropriate minimum and maximum
values are 1± . So we need to maximize
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2
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Therefore, our problem is equivalent to minimizing 2|| 2w  subject to the

constraints expressed in equation (9).  By forming the Lagrangian, and solving the
dual problem, this can be translated into the following (Burges, 1998): Minimize

jijij
ji

i
i

i xxyy ⋅− ∑∑ ααα
,2

1
  (12)

subject to

0≥iα           (13)



8                            2  DATABASE AND SYSTEM DESCRIPTION

0=∑
i

ii yα               (14)

The iα are the Lagrange multipliers; there is one Lagrange multiplier for each

training sample.  The training samples for which the Lagrange multiplier is non-zero
are called support vectors, and are such that the equality in equation (9) holds.  The
samples with Lagrange multipliers of zero could be removed from the training set
without affecting the position of the final hyperplane.

This is a well-understood quadratic programming problem, and software packages
exist which can find a solution.  Such solvers are non-trivial, however, especially in
cases where we have large training sets (Osuna, 1998).

The Non-Separable Case

The optimization problem described in the previous section will have no solution if
the data is not separable.  In order to cope with this scenario, we modify equations
(7) and (8) such that the constraints are looser, but a penalty is incurred for
misclassification:

1if1)( =−≥+⋅ iii ybxw ξ     (15)

1if1)( −=−≤+⋅ iii ybxw ξ     (16)

ii ∀≥ 0ξ     (17)

If ix is to be misclassified, we must have 1>iξ .  This implies that the number of

errors is less than ∑
i

iξ .  So we may add a penalty for misclassifying training

samples by replacing the function to be minimized by ∑+
i

iCw )(2|| 2 ξ ,

where C  is a parameter which allows us to specify how strictly we want the
classifier to fit to the training data.  The dual Lagrangian now becomes: Minimize

jijij
ji

i
i

i xxyy ⋅− ∑∑ ααα
,2

1
  (18)

subject to

Ci ≤≤ α0               (19)

0=∑
i

ii yα                 (20)
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The Non-Linear Case

The classification framework outlined above is limited to linear separating
hyperplanes.  However, SVMs can circumvent this problem by mapping the sample
points to a higher dimensional space using a non-linear mapping chosen in advance.

That is, we choose a map HRd a:Φ where the dimension of H is greater than
d .  We then seek a separating hyperplane in the higher dimensional space; this is

equivalent to a non-linear separating surface in dR .

When finding a separating hyperplane, the training data always appears in the form
of dot products as shown in equation (12).  Therefore, in higher dimensional space

we are only concerned with the data in the form ( ) ( )ji xx Φ⋅Φ .  If the

dimensionality of H is very large, then this could be difficult, or very
computationally expensive to compute.  However, if we have a kernel function such

that ( ) ( ) ( )jiji xxxxK Φ⋅Φ=, , then we can use this in place of

ji xx ⋅ everywhere in the optimization problem, and never need to know explicitly

what Φ  is.

Some examples of kernel functions are the polynomial kernel
p

jiji xxxxK )1(),( +⋅= and the Gaussian radial basis function (RBF) kernel

2
2||

2),( σjxix

exxK ji

−

= .  The kernel function used in this research was

3)1(),( +⋅= jiji xxxxK .  We chose a polynomial of order 3 because it has

worked well in a variety of classification experiments. We verified this in our
experiments.  Other kernels such as the RBF or polynomials of order 2 or 4 also
worked reasonably well.

Multi-class classifiers

So far we have only discussed using SVMs to solve two-class problems.  However,
if we are interested in conducting instrument classification experiments, we will need
to choose among multiple classes.  The best method of extending the two-class
classifiers to multi-class problems is not clear.  Previous work has generally
constructed a “one vs. all” classifier for each class (Scholköpf, 1995), or constructed
a “one vs. one” classifier for each pair of classes.

The “one vs. all” approach works by constructing a classifier for each class which
separates that class from the remainder of the data.  A given test example x is then

classified as belonging to the class whose boundary maximizes ( ) bxw +⋅ .  The

“one vs. one” approach simply constructs for each pair of classes a classifier which
separates those classes.  A test example is then classified by all of the classifiers, and
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is said to belong to the class with the largest number of positive outputs from these
sub-classifiers.

In (Weston and Watkins, 1998) a method of extending the quadratic programming
problem to multi-class problems is presented.  However, the results presented
suggest that it performs no better than the more ad-hoc methods of building multi-
class classifiers from sets of two-class classifiers.

3 Results and Discussion

We now present results exploring our three feature representations (LPC, cepstrum,
and mel cepstrum) and two classification algorithms (SVM and GMM).  We also
studied the effect of segment length on classification accuracy and examined the
implications of using test data originating from the same CDs as the training data.

3.1 Audio Segment Representations

The mel cepstral feature set gave the best results with an overall error rate of 37%
classifying segments 0.2 seconds long.  We performed this experiment using the
Gaussian Mixture Model classification algorithm with 2 mixture components.  All of
the feature representations were parameterized with 16 dimensional vectors.  Figure
2 shows our results.
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Figure 2   Results for the feature set experiment using a GMM classifier with 2
mixture components. The segments were 0.2 seconds in length.

The cepstral representation performed better than the linear prediction set. This is in
agreement with results in speech recognition where LPC coefficients are scarcely
used (Rabiner and Juang, 1993).  Additionally, the mel scaled cepstral representation
gave better performance than the cepstral representation.  This is also in agreement
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with speech recognition results.  Therefore, it appears likely that the mel scaling is
also beneficial in the music domain.

3.2 Classification Algorithm

The Support Vector Machine classification algorithm gave the best results with an
overall error rate of 30% when classifying segments of 0.2 seconds of sound.  We
used the mel cepstral feature set (16 dimensional vector) and the “one vs. all”
algorithm for this experiment.  Figure 3 shows the results.

In the SVM experiments, the “one vs. all” algorithm performed slightly better than
the “one vs. one” algorithm.  In the GMM experiments, we achieved the best results
using two Gaussians for each instrument model.  Using more than two Gaussians did
not improve performance significantly.
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Figure 3   Results for the classification algorithm experiment using a
mel cepstral representation and 0.2 second segments.  The GMM

classifier used two gaussians per class. The SVM was trained with the
“one vs. all” multi-class method.

3.3 Classification Based on Sequences of Segments

The previous experiments classify single segments, 0.2 seconds in length. However,
it is also interesting to classify longer examples. In this experiment, we classified
examples that were two seconds long.

For the SVM classifier, we classified an example using a simple majority rule.  First,
we divided the sound into 10 segments 0.2 seconds in length.  After determining the
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most likely instrument for each segment, the class with the most votes was chosen as
the final instrument.

For the GMM classifier, we divided the sound into 10 segments with the

corresponding feature vectors },...,{ 1 mxx .  Then, we determined the probability

that the sequence was played by each of the eight instruments, 81 CC K , using

equation (21).  The class with the highest probability was chosen as the final
instrument.

.)|()|},...,{(
,1

1 ∏
=

==
mi

jijm CxpCxxXp (21)

We ran our experiment using eighty examples of music, two seconds in length, using
both the GMM and SVM classifiers. The overall error rate for the 80 sounds was
approximately 17%.  All of the bagpipe, clarinet, flute, organ, piano, and violin
examples were classified correctly.  However, 70% of the trombone and harpsichord
examples were classified incorrectly. We suspect the trombone error rate was high
because the classifier was trained with a tenor trombone, and tested with a bass
trombone. We believe that the harpsichord accuracy was low for similar reasons; the
system was trained and tested with two harpsichords very different in frequency
range.

3.4 Sensitivity to Recording Conditions, Instrument Instance,
and Performer

In the experiments described above, the training and test data for each instrument
were extracted from different CDs.  Thus, the training and test data were recorded in
changed conditions using distinct instruments, and different performers. To explore
the classifier’s sensitivity to recording conditions, instrument instance and performer,
we designed an experiment in which the training and test data were recorded in the
same acoustic conditions using identical instruments and performers.

We used the mel cepstral feature set and the SVM (one vs. all) classification
algorithm.  As we expected the error rate decreased by an order of magnitude to 2%.
This result is in agreement with Kaminskyj and Materka (1995).

4 Conclusions and Future Work

In this paper, we developed an eight-instrument classifier. Our most successful
system had a 30% error rate when classifying 0.2 seconds of audio.  It used 16 mel
cepstral coefficients as features and employed the Support Vector Machine
classification algorithm with the “one vs. all” multi-class algorithm. When the
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segments used for training and testing the classifiers were recorded in the same
acoustic conditions using identical instruments and performers, the classification
error rate decreased dramatically to a 2% error rate. We also explored classification
based on segment sequences two seconds in length achieving an error rate of 17%.

While the performance of the system is still far from ideal and the size of the corpora
is small, we believe this research proves that instrument classification using
techniques originating in automatic speech recognition and speech coding is feasible.
This work is also one of the first applications of SVM’s to music classification.

There are three important areas of future work: (1) Improve the accuracy of the
eight-instrument classifier.  (2) Add the capability to classify concurrent sounds.  (3)
Build more practical sound classifiers for use in audio annotation systems.

4.1 Accuracy Improvements

The eight-instrument classifier can be improved by increasing the generality of the
training data.  In this study, the training data for each instrument was recorded from a
single CD.  Therefore, each instrument model was trained using just one instrument
example. Using more CDs would lead to more general training data.

The accuracy of the eight-instrument classifier can also be improved using temporal
information both in the feature representation and in the classifier. For example, the
log-lag correlogram representation has been previously used in music classification
with some success (Martin and Kim, 1998). A Hidden Markov model classifier could
also be used to capture the temporal evolution of the feature set, perhaps improving
classification performance (Rabiner and Juang, 1993).

4.2 Classification of Concurrent Sounds

Currently the classifier cannot identify sounds that occur simultaneously.  For
example, it cannot distinguish between a clarinet and a flute being played
concurrently.

There has been a great deal of work in perceptual sound segregation.  Researchers
believe that humans segregate sound in two stages.  First, the acoustic signal is
separated into multiple components.  This stage is called auditory scene analysis
(ASA).  Afterwards, components that were produced by the same source are grouped
together (Bregman, 1990).

There has not been much progress in automatic sound segregation.  Most systems
rely on knowing the number of sound sources and types of sounds.  However, some
researchers have attempted to build systems that do not rely on this data.  One group
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successfully built a system that could segregate multiple sound streams, such as
different speakers and multiple background noises (Brown, 1994).

4.3 Additional Sound Classifiers

In order to build an annotation system that will add meaningful labels to any audio
file, more sound classifiers will need to be built.  Some particularly important
classifiers are musical style detectors, music lyric recognizers, and sound effect
classifiers.

We believe that it is possible to build an annotation system that can automatically
generate descriptive and accurate labels for any sound file.  Once this occurs, it will
no longer be difficult to search audio files for content.
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