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Abstract

We describe a new approach to video editing based on the semi-automatic segmen-
tation of video into multiple layers and the compositing of layers using image-based
rendering. Using figure tracking and background motion estimation, we can segment
a moving figure and reconstruct the background. Using geometrically-correct pixel re-
projection, layers can be composited on the basis of the geometry of the underlying
scene and the position of the virtual camera. We have implemented out approach in an
editing system called SpliceWorld. We show results from editing a Fred Astaire dance
sequence.
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1 Introduction

Digital video editing and compositing is ubiquitous in film and broadcast postpro-
duction. The recent introduction of low-cost editing systems such as Avid Cinema
promises to extend this technology to home use. In these applications, video is rep-
resented as a set of layers with associated mattes that determine how the layers are
combined during compositing. The matte for each layer specifies the contribution it
will make to each pixel in each frame of the composite video.

Using the technique of chroma-keying, mattes can be generated automatically for
objects that are imaged in front of a blue or green screen. 1 This approach is used,
for example, to combine the image of a weather announcer with a computer-generated
weather map. Unfortunately, this technique cannot be applied to existing video footage
since it relies on a specialized imaging setup. The only alternative is the laborious,
frame-by-frame construction of mattes using specialized editing tools. The ability to
extract mattes automatically from conventional video could have a major impact on
postproduction and would support the repurposing of archival video footage. It could
also enable sophisticated editing of home videos by consumers.

Vision techniques for automatically segmenting a video into layers based on motion
coherence [12, 11, 21] can provide a solution to matte-extraction for video editing.
These techniques work well for video in which the camera motion is dominant or where
there are a small number of independently-moving objects. However, they often fail on
video which contains complex objects such as people undergoing nonrigid motion.

In this paper we demonstrate that a combination of figure tracking and conventional
intensity-based segmentation makes matte-extraction of moving figures possible in un-
calibrated, unconstrained video footage. Figure tracking is coupled with background
registration to obtain a coarse segmentation of the video. This provides a starting point
for a more accurate segmentation of the figure based on intensity and edge cues.

The counterpart to matte-extraction is compositing, in which matted video layers
are combined to produce the final video output. The conventional approach to com-
positing uses a transparency (alpha) parameter stored with each pixel to weight the
combination of colors from multiple layers [7]. Augmenting transparency information
with depth information at each pixel would enable a new class of 3-D compositions.
Composited pixel values would depend upon both on the relative depths between layers
and the position of a virtual camera.

Image-Based Rendering [14] (IBR) can be used to compose video layers contain-
ing depth information, thereby supporting 3-D compositing and editing. In the IBR
algorithm of Avidan and Shashua [1], novel images of a static scene are synthesized
from a set of photos using geometrically-correct pixel reprojection. We extend this
approach to the synthesis of video sequences using multiple video layers. Using our
multi-layer IBR algorithm, video layers can be rendered from novel camera viewpoints.
In addition, occlusion relationships between layers are maintained automatically during
compositing. We believe these are the first results in applying Image-Based Rendering
techniques to video editing.

We have developed a system called SpliceWorld which showcases the use of figure

1Also see a more recent variant of this idea known as Z-keying [13].
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Figure 1: Architecture for the SpliceWorld system.

tracking and Image-Based Rendering in video editing. As we demonstrate in Section 4,
our system significantly reduces the amount of labor required to produce mattes for
figure motion. Using SpliceWorld we have segmented a dance sequence from the 1937
movie Shall We Dance? and composited it into a novel background.

The architecture of the SpliceWorld system is illustrated in Figure 1. The central
data structure is the layer repository which holds the video layers that will be compos-
ited to produce the final output. Layers enter the repository through either the Figure-
Background Segmentation module or the Depth Painting module. The segmentation
module takes an input video clip of a moving figure and generates two layers corre-
sponding to the figure and the background. It is described in Section 2. The depth
painting module allows a user to manually construct a background layer from a single
image by adding depth information. It is described briefly in Section 3.4.

Once layers have been created and placed in the repository, the multi-layer IBR
module renders them to create the video output. During this process the user can repo-
sition the layers in 3-D and change the pose of the virtual camera used for rendering.
This permits a wide range of 3-D edits. This process is the subject of Section 3, which
includes a more detailed description of the layer repository data structure. In Section 4
we demonstrate the result of compositing a figure layer extracted by the segmentation
module with a background layer created through depth painting.

2 Figure-Background Segmentation

The automatic motion-based segmentation of video into layers has been a popular re-
search topic in the computer vision literature. The basic approach is to fit a set of
parametric motion models to video, estimating both model parameters (i.e affine or
projective transforms) and a segmentation map (e.g. matte) which specifies the contri-
bution each model makes to the observed motion of each pixel in each frame. See [21]
for a detailed review.

Segmentation techniques can be divided into two classes based on whether the
models interact with the pixel motions simultaneously or sequentially. In simultaneous
techniques [12, 24] the Expectation-Maximization (EM) algorithm is used to automat-
ically assign pixels to multiple layers based on the consistency of their motion. A
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straight-forward application of the EM approach to articulated motion models would
require each link in the model to compete for each pixel in the input video. When the
number of links is large, as in the case of the figure, this can be prohibitively expensive.
See [20] for details.

Sequential techniques [11, 2] assume that robust estimation of a single dominant
motion is possible at each stage of a recursive algorithm. For example, when a small
target is moving with respect to a fixed background the camera motion is dominant [3].
Unfortunately, videos containing moving figures often violate the dominant motion
assumption. For example, the torso of the figure may remain relatively stationary while
the arms or legs move, or the figure may occupy a large portion of the field of view.
The result is that dominant motion analysis will often incorrectly assign figure pixels
to the background model.

Figure 2 illustrates a common failure mode of the dominant motion approach in
video clips with moving figures. It was obtained by stabilizing the image sequence
using dominant motion analysis, and then median filtering the stabilized frames to
produce a reconstructed background image [11]. Fred Astaire’s torso is included in
the background because it is nearly stationary for a significant number of frames in the
latter part of the sequence, while his arms and legs are moving. Also significant is the
blurring of the reconstruction due to errors in the camera motion computation.

Figure 2: Failure of dominant motion approach on a sequence containing figure motion
is illustrated via median filtering.

While the automatic segmentation of articulated motion remains a challenging
problem, there is a crucial distinction between video editing and the image coding
and video indexing applications which have been the focus of previous motion seg-
mentation work [23]: Video editing is an interactive process in which the user can be
expected to provide an initial segmentation of the figure. In SpliceWorld this is done
by aligning a stick figure model with the initial frame in a motion sequence. This can
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be accomplished quickly and easily using a simple graphical interface.
Figure tracking techniques [18, 5] can be used to propagate the initial segmentation

through the image sequence. The output of the figure tracker gives the location of the
figure in each frame. Templates or bounding boxes associated with each body part
can provide a coarse segmentation of the figure. Background registration can be used
to recover the camera motion. Its accuracy can be greatly improved by excluding the
coarsely-segmented figure region from analysis.

Once estimates of the background motion are available across the sequence, a back-
ground image can be reconstructed for each frame by filling in the pixels which are
occluded by the figure. This reconstructed background can be used to refine the esti-
mated position of the figure and generate a detailed segmentation of the figure pixels
through background subtraction. It is worth noting that traditional tracking methods
usually start with a good initial state and attempt to propagate it over time. We are
simply extending this idea to the segmentation map.

Our complete algorithm for segmenting a moving figure from the background in the
presence of unknown camera motion is shown as a block diagram in Figure 3. It con-
sists of two modules: Coarse Segmentation and Segmentation Refinement. The coarse
segmentation module couples figure tracking with background registration. Its output
is a sequence of initial figure mattes and reconstructed background images, along with
parameter estimates for the tracker and background motion models. In the refinement
module, probabilistic foreground mattes are computed using intensity and boundary
information. We now describe these two stages in more detail.

Segmentation
Refinement

Figure Tracking

Background Registration

Coarse Segmentation

Video
Figure layer matte,
state of tracker

Reconstructed
background frames

Updated
figure layer
matte

Figure 3: Figure-Background Segmentation Module

2.1 Coarse Segmentation

The coarse segmentation module implements a coupled figure tracking and background
registration process. By interleaving these two steps we improve the reliability of both:
Appearance-based figure tracking benefits from access to a background template, while
background registration is more reliable if pixels from the figure are excluded from
processing.

We employ the appearance-based figure tracker described in [18]. It is based on
a 2-D Scaled-Prismatic model of figure motion in which links can rotate around their
joint centers in the image plane and change length in response to foreshortening. Such
a 2-D motion model is convenient for video editing as it captures the basic properties
of articulated motion in the image plane without requiring a complex 3-D kinematic
model. 3-D models are difficult to initialize and can be challenging to track using a
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single video sequence. The tracker uses templates attached to each link to model the
appearance of the figure. Figure 4 shows a template figure model of Fred Astaire in
two different poses.

Figure 4: Scaled Prismatic Model with Fred Astaire templates shown in two configu-
rations. Each template can rotate in the image plane and scale along the link direction.

Registration begins by predicting the state of the figure in the current frame using a
dynamical model. Using the prediction as a starting point, the final estimate is produced
by nonlinear least squares minimization of the pixel error between each template and
the current video frame. Note that unlike conventional dominant motion algorithms,
the success of the tracker does not depend upon the figure motion being independent
from that of the background. In fact, the case where the figure is stationary or slow-
moving with respect to the background is the easiest situation for the tracker.

However, it is difficult to construct a figure appearance model which remains reli-
able over long sequences. Figure motion produces dynamic appearance changes, due
to out-of-plane body rotation, movement of clothing, self-occlusions, shadows and
changes in illumination. Differencing with a background image can improve the ro-
bustness of the figure tracker to appearance changes. The following algorithm achieves
this by coupling the background and figure registration steps:

1. In the initial frame, the state of the figure tracker is manually initialized by the
user. Masking out the region covered by the figure templates gives the back-
ground image. The masks constitute the initial matte for the figure. In all subse-
quent frames:

2. Predict the state of the figure tracker in the current frame using the previous state
estimate and a dynamic model such as constant velocity.

3. Generate an initial background frame by masking out the region underneath by
the figure templates following prediction. Next register the unmasked back-
ground pixels with the previous background frame using a global motion model.
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4. Fill in the holes in the current background by propagating forward pixels from
previous registered background frames.

5. Using the reconstructed background and the figure appearance templates, update
the figure state through nonlinear least squares minimization.

6. The projection of the figure templates under the updated state estimate gives the
figure matte.

7. Repeat steps 3-6 for a few iterations. Upon convergence, step 3 gives the back-
ground motion estimate, step 4 gives the reconstructed background image, step
5 gives the figure motion estimate, and step 6 gives the figure matte. Advance to
the next frame and return to step 2.

Note that although this approach significantly increases the robustness of the figure
tracker to appearance variations, fully automatic tracking of long motion sequences
remains an elusive goal. Fortunately the user can check for tracking failure and reini-
tialize the system when necessary. This task is much less burdensome then manual
figure segmentation (see Section 4 for a comparison).

Figure 5 illustrates the performance of the coupled figure-background motion esti-
mation on a 250 frame video clip from the movie Shall We Dance?. The top line shows
the estimated figure registration for two frames in the sequence. The 2-D kinematic
model is superimposed in green. Each line segment corresponds to one link in the
figure model.

The mosaic at the bottom of Figure 5 illustrates the result of our background re-
construction algorithm. It was generated by transferring the segmented background
pixels in each frame back into the first frame of the sequence. Pixel transfer is based on
concatenating together the estimated background motions between adjacent frames. At
each pixel location in frame 0, the transferred pixel values were accumulated using an
exponentially weighted average. The weighting term favors pixels from frames which
are closest to the frame 0. This selective weighting is possible because we have an
explicit segmentation of the background in each frame.

2.2 Figure Segmentation Refinement

Since the template model assumes a simple rectangular shape for each limb, a refine-
ment step is needed to segment the actual shapes of the limbs and the clothing. Note
that the shape of the figure can vary significantly in each image frame due, for example,
to the secondary motion of clothing.

The refinement step computes a probabilistic matte for the figure in which each
alpha represents the probability that a particular pixel belongs to the figure layer. We
write the alpha value for the ith pixel as αi and the label variable as ωi. Assuming that
the label is either f (‘figure’) or b (‘background’), the steps for computing the matte
probabilities are:

1. Generate an initial probabilistic segmentation map based on intensity differ-
ences: α̂i = p(ωi = f |X, I ′i), where X is the previously obtained state of the



2.2 Figure Segmentation Refinement 7

Figure 5: Top: Figure tracking results shown for two frames. Bottom: Background
reconstruction and mosaicking produced by coarse segmentation stage (compare with
Figure 2).

figure tracker, and I ′
i is the observed intensity difference between the pixel and

the corresponding pixel in the reconstructed background frame.

2. Estimate a closed boundary for the figure using a chain of cubic B-splines B.
The B-splines are estimated such that the boundary lies as much as possible on
the 0.5 probability points in the initial probability segmentation map.

3. Compute the final probabilistic segmentation map α i = p(ωi = f |B, I ′i, X) by
taking into account the position of the B-spline boundary.

The initial probabilistic segmentation, α̂i, can be expressed as

p(ωi =f |X, I ′i) =
p(I ′i|ωi =f)p(ωi =f |X)

p(I ′i |X)
(1)

The likelihood of observing the difference between the pixel intensity in an image
frame and the predicted intensity from the background appearance model may be com-
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puted by assuming that additive Gaussian noise has been added to the computed back-
ground pixel, i.e. p(I ′

i |ωi =b) ∝ exp(I ′i
2
/σ2), where the σ2 is the pixel noise variance

which can be empirically determined. For simplicity in our experiments we simply
assigned a constant value to p(I ′

i|ωi =f).
The probabilities p(ωi = f |X) depend upon estimates of the tracker state and the

known template dimensions. If the template shapes and state estimates were exact,
p(ωi =f |X) would be a binary mask that assigned all pixels under the template to the
figure model. Under noisy conditions, an effective alternative is to apply an isotropic
Gaussian blur to the template shape, where the associated variance is set manually
based on the accuracy of the tracker state.

Figure 6(a) shows a representative frame from a Fred Astaire dance sequence. Fig-
ure 6(b) shows the initial segmentation map for the figure computed using Equation 1.
The probabilistic segmentation map can be directly interpreted as an alpha channel
for the purpose of compositing. In compositing a segmented figure into a novel back-
ground, each pixel in a frame would contribute to the composite in direct proportion to
the probability that it belongs to the foreground (figure) layer.

(a) (b) (c) (d)

Figure 6: Segmentation Refinement. (a) original figure, (b) initial segmentation map,
(c) B-spline boundary estimation, (d) final segmented figure.

In some applications it may be desirable to have a binary segmentation of the fig-
ure pixels. Intensity-based segmentation is often noisy and setting a threshold on the
probability to produce a binary segmentation can result in noisy boundaries. B-spline
smoothing can be used to generate smooth boundaries, although there is an obvious
tradeoff in preserving the high-frequency detail of the bounding contour.

The B-spline boundary may be considered to be a soft classification model which
imposes a probability profile in directions normal to the curve. The profile used has a
sigmodal shape of the form p(ωi =f |B) = 1/(1 + exp(di/s)), where di is the normal
displacement of the pixel from the curve in an outward direction (i.e. positive away
from the figure, negative towards the figure), and s is a variable determining the sharp-
ness of the profile. Based on this profile, the maximum-likelihood configuration of the
B-spline control points is computed using standard active contour techniques[16], with
the goal being to maximize

p(I ′i, X |B) ∝ p(ωi =f |X, I ′i)p(ωi =f |B) +
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p(ωi =b|X, I ′i)p(ωi =b|B) (2)

The steps involved in the B-spline boundary estimation are:

1. The tracker state and original configuration of the templates are analyzed and an
initial polygonal bounding curve is extracted.

2. The vertices of this polygonal bounding curve are then automatically adjusted to
maximize p(I ′

i , X |B) in the neighborhood of each vertex. The vertices of the
polygonal bounding curve are then fixed.

3. Each straight edge in the polygonal bounding curve is then separately treated as
an open cubic B-spline active contour with end-points which are fixed to the end-
points of the edge. If the straight active contour does not sufficiently maximize
p(I ′i, X |B) in its vicinity, additional control points are automatically inserted [4]
to increase curve complexity and further optimized. This insertion-optimization
cycle is applied a number of iterations until p(I ′

i, X |B) is close to the maximum.

An example of a B-spline boundary estimation result is shown in figure 6(c). Given
the estimation of the B-spline boundary, the final probabilistic segmentation map p(ω i =
f |B, I ′i, X) can be expanded into products of conditional probabilities as in Equation 1.
The final segmentation map is illustrated in Figure 6(d).

3 Multi-layered Image-based Rendering

We now describe the Image-based rendering (IBR) module which is used in Splice-
World to generate video output (see Figure 1). IBR has emerged as an attractive alter-
native to traditional 3-D model-based rendering. IBR techniques operate on an input set
of images to directly produce novel output images; they include morphing, mosaicking,
dense sampling and interpolation, and geometrically-valid pixel reprojection [1, 17],
which is the basis for our approach. See [14] for a comparative review.

The appeal of IBR stems from its ability to create novel images by transferring
and interpolating pixel values, without an intermediate step of 3-D reconstruction and
modeling. As such, IBR is well-suited to video editing applications, where one is often
interested in making small changes in camera viewpoint or in the positions of objects
and it is usually not feasible to accurately reconstruct the complete 3-D geometry of
the scene.

We will show that by augmenting a conventional layered description of video based
on color and transparency with relative depth we can employ IBR techniques to enable
a new class of 3-D edits. We describe a novel algorithm for multi-layer geometrically
correct pixel reprojection and use it to resynthesize existing video footage from novel
camera angles with significant occlusions. We describe a technique called depth paint-
ing which simplifies the specification of relative depth.

The general architecture for our proposed multi-layered image-based rendering sys-
tem is depicted in the block diagram in Figure 7. The input to the system is a set of
models which provide the sources for novel view generation. We have identified three
types of models:
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Figure 7: Architecture for multi-layered image-based rendering system.

• Image-Based Layer, a pixel plus depth single image or a collection of still images
of a static scene,

• Video-Based Layer, a matted video sequence, such as a video sequence of the
segmented-out figure, and

• 3-D Based Layer, a conventional 3-D graphics model.

The relative pose and scale of each layer can be changed independently to create a new
scene. Subsequently, virtual viewpoints of the new scene can then be generated. An
earlier version of this module that handles only still image and 3-D model inputs is
described in [15].

Image-based layers consist of either a depth-augmented image or a set of still im-
ages of a static scene. This model is often used to describe a static background, which
forms the backdrop for foreground objects, such as actors and actresses on a movie
set. For each collection of images, a set of correspondence maps is assumed computed.
These correspondences indirectly specify the relative geometry in the image data.

The video-based layer is essentially a matted video sequence. The matte is a mask
which specifies the pixels in each frame of the video that are associated to the model.
Each video layer can describe a single coherent rigid body motion, or in the case of
the figure, a body with complex motion. A video sequence containing multiple moving
objects would produce multiple models, each one containing a different matte sequence
which selects a single object. As with the still image model, each video frame has an
associated correspondence map which brings its pixels into correspondence with pixels
in the previous video frame.

In addition to the pixel and correspondence data, each of the still and video models
also contain a description of the pose, position, and intrinsic camera parameters for
the camera for each image in the model. Intrinsic camera parameters include the focal
length, aspect ratio, and image skew.
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The third and final type of input layer is a conventional computer graphics model,
consisting of a set of explicit 3-D surfaces (whose representation may be polygons,
Non-Uniform Rational B-Splines (NURBS), etc.) with texture-mapped or shaded sur-
faces. The 3-D model may be a volumetric model as well. There is no explicitly stored
correspondence information with this model, since correspondences can be generated
automatically given two viewpoints of the 3-D model.

3.1 Intra-layer indexing

Each input layer is represented either by a set of image stills, a collection of video
frames, or a 3-D model. Each of these has an associated intra-layer index which iden-
tifies a layer component as a reference for the synthesis algorithm. An image layer, for
example, consists of a number of frames, any one of which could be used as reference
for synthesis. The intra-layer index specifies the reference frame. In conjunction with
the desired virtual camera view, it completes the specification of the synthesis task.

In the case of a video input layer, the index specifies a particular reference frame
from the sequence, around which new viewpoints can be synthesized. Similarly, for a
collection of image stills, the user can choose a reference image. In each of these cases
the virtual camera input specifies a camera motion relative to the camera configuration
for the reference image. In the 3-D model case, the index is the reference pose at which
the 3-D model will be rendered using conventional 3-D graphics. The rendered 3-D
model can then be processed in exactly the same manner as the other still-image-based
and video-based layers.

Once the intra-layer indexing is done, the system then makes all the layers compati-
ble by transforming all of them to a global reference frame (for our case, corresponding
to the “background” layer). This allows the creation of composite reference images,
from which new views can be generated using a pixel transfer technique.

The implemented version of our multi-layered IBR system is a subset of the general
architecture described above. Instead of recovering all the camera intrinsic parameters,
we recover only the camera focal length from input images. We also assume that each
frame of the video layer has depth that is known a priori. We assign a “bump” depth
distribution to each frame, i.e., the depth as a monotonic function of the distance to the
boundary.

3.2 Single Layer Rendering

The base representation for a layer is a pair of images with correspondences and cam-
era motion. This representation is adopted because it is independent of camera intrinsic
parameters such as the focal length. In addition, pixel transfer can be performed with-
out intermediate depth computation using the trilinear tensor. This idea has been used
to generate novel views from either two or three reference images [1]. Our work ex-
tends this framework slightly by describing efficient pixel transfer in the multi-layer
case and in the case of video sequences. Other representations exist, such as pixel with
(single) depth, or the LDI (Layered Depth Image) [8].

All layers are converted into the base representation for rendering. To see how our
multi-layered IBR technique works, let us first delineate the steps for rendering a single
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layer from two images:

1. Register images (using spline-based registration [22])

2. Recover epipolar geometry and camera focal length [6]

3. Compute trilinear/trifocal tensor and use it to transfer pixels for the creation of
novel views

4. Fill intralayer holes, so-called because they occur within a layer, through direct
pixel interpolation [9].

The key to rendering in our multi-layered IBR technique is the precomputation of
reference viewpoints. These reference viewpoints usually correspond to the viewpoints
of the “background” layer, which we define as the layer that dominates the output by
virtue of its relative size. When multiple layers are added and manipulated, their ap-
pearance within the new scene at the reference views is computed based on depth or-
dering. Note that this is done only once. Subsequent viewpoints at perturbed locations
are generated using the exact same pixel transfer method as applied to a single layer,
with one notable exception: Two different types of holes can occur, and they must be
filled differently.

3.3 Multi-Layer Pixel Transfer and Rendering

In multi-layered IBR, two types of holes can occur in generated images: intralayer
holes, which occur within a layer, or interlayer holes, which occur between layers.
Intralayer holes are created when projecting a collection of pixels within a small region
to a larger region. They can be removed through any standard interpolation technique;
we use the Elliptical Weighted Average filter described in [9].

In contrast, interlayer holes are the result of disocclusion between different layers.
They should not be filled in the same manner as intralayer holes. Doing so would cause
textures from different layers to be blended by interpolation, resulting in an undesirable
mixing of textures. Intralayer holes are identified by the fact that they are surrounded
by pixels from the same layer. While interlayer holes are surrounded by pixels from
different layers.

To fill interlayer holes, we perform forward mapping from the layers to screen
space. In the forward mapping process, only regions of each layer that are not part of
the precomputed composite image are involved. The general idea is to compute, for
each unexposed pixel in each layer, its new location corresponding to the new camera
viewpoint. If a pixel is mapped to an interlayer hole, its depth is computed and stored.
Once this is done for all the unexposed pixels, depth ordering is then used to determine
the right pixel to expose. Note that depth computation and comparison are necessary
only at the interlayer hole locations. We do not employ the alternative inverse mapping
technique based on epipolar search due to its sensitivity to errors in correspondence
and its higher computational expense.
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Figure 8: The depth painting system, with the interface shown on the right.

3.4 Depth Painting to Create Layers

In order to expand our repertoire of image-based layer inputs, we have devised an in-
tuitive method, which we call depth painting, for generating depths for single images.
Figure 8 shows the overall functionality of our depth painting system. In general, the
system allows interactive specification of regions within the image as well as interac-
tive change of depth. The user can define regions and objects by tracing their bound-
ary curve using the mouse. Obviously, more sophisticated techniques for interactive
boundary extraction, such as the “Intelligent Scissors,” [19], can be used.

Critical to the system is the display of four auxiliary side views corresponding to
left, right, up, and down side views (right of Figure 8). These views help add the third
dimension to the input image. They facilitate visualization of the user’s progress; any
change in depth can be quickly propagated across these views.

This system allows the user to assign depth to a single image in an intuitive way.
The operations used to modify the image depth can be roughly classified as either local
or region-based. During local operations, which can affect any part of the image, the
user uses the mouse as a “brush” that adds or subtracts depth within the footprint of
the brush. Region-based operations, however, affect only the current region of interest.
The user can also manipulate the viewpoint of the central image at any time in addition
to changing camera parameters such as focal length or fields of view.

In contrast with Horry et al.’s “Tour into the picture” system [10], which adds the
third dimension to the single image through polygons and planar regions, our system
provides a means for more expressive depth variations that result in more realistic ren-
dering.

4 Experiments and Results

As a proof of concept test of our editing system, we extracted a a segmented figure layer
of Fred Astaire from a 170-frame dance sequence from the movie Shall We Dance?, and
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composited this with a scene from the movie American in Paris using depth-painting
and image-based rendering. There were two objectives in this task: (1) we wanted to
compare the time and effort required to carry out figure segmentation using our figure-
background decomposition system and that required using purely manual effort, and
(2) we wanted to observe the effects and quality of the video generated using depth-
painting and image-based rendering.

The first task involved the application of the coupled figure tracking and back-
ground registration system to the video clip, as was illustrated in Figure 3. A 2D
19-DOF articulated model was used for the tracking, while a global translation model
was used for the background registration. The final result required 33 manual restarts
to correct for both minor (22 slight misregistrations) and major (11 tracking failures)
errors. This amounted to approximately 5 frames per restart, although the distribution
of restarts across the sequence was quite uneven and depended upon the complexity
of the figure motion. The total operation time was 1 hour 6 minutes, which includes
computation time for both figure tracking and background registration/reconstruction.

The second task is segmentation refinement. This task took 1 hour 35 minutes
but is fully automatic. A sample frame from the segmentation output may be seen in
figure 9. As the segmentation still contains some gross errors, manual refinement have
to be carried out on the segmentation, an example of which is also shown in figure 9.

Figure 9: Left: automatic figure segmentation. Right: manually refined segmentation.

Two sets of timing tests were conducted for the manual segmentation: the first
involves totally manual segmentation, the second involves refining the automatic seg-
mentation. In both cases the users carried out the segmentation on Adobe Photoshop.
Results are shown in Table 1. The time for the first frame is shown separately from
successive frames because in the latter case the manual segmentation process can be
bootstrapped by using the segmentation map from the previous frame because of tem-
poral continuity. The greatest gain achieved by the refinement process is therefore in
the first frame. From the results shown, it can seen that even in the case of successive
frames, the refinement task achieves a 40 percent increase in efficiency compared to
manual segmentation.

A further comparison can be made on total time required to complete the segmenta-
tion as shown in table 2. The results in the table show the projected total times needed
for the 170-frame sequence. In the case of the system, a portion of the total time is
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involved in figure tracking which requires more human attention than painstaking high
precision work, and a further portion of the time is used in segmentation refinement
which is totally automatic. The speedups show the efficiency gain in comparison with
the high-precision manual segmentation effort.

First Frame Successive Frames
Fully manual 12mins 36s 5mins 18s
Refinement 3mins 29s 3mins 13s

Table 1: Comparative Timings on Manual Segmentation and Segmentation Refinement
Tasks per Frame

After the segmentation was completed, the figure layer was composited with a
depth-painted scene from An American in Paris. Figure 10(a) illustrates the disoc-
cluded regions that become visible during view synthesis from a single background
still. Figure 10(b) shows the result after depth painting is used to pad these regions.

(a) (b)

Figure 10: Frame 10 of video composited using image-based rendering: (a) unpadded
scene layer with automatically segmented figure layer, (b) padded scene layer.

By specifying a variety of camera-motions, the 3D parallax effects may be observed
when image-based rendering is applied. The result for several frames in the motion
sequence is shown in Figure 11. An important point is that the motion of Fred Astaire
is matched to that of the scene layer. This can be automatically done because the
original background motion was recovered through background registration.

We informally compared the computational cost of IBR to conventional graphics
pipeline rendering. SpliceWorld can generate depth-encoded 240×320 images through
pixel reprojection at 8-10 frames/sec on a 400 MHz PC. In contrast, generating images
of comparable quality using 3-D models took several seconds per frame on the same
machine. We obtained this latter result by converting an image layer into a 3-D mesh
with one vertex per pixel and rendering it using 3D Studio MAX.
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Figure 11: Composition of segmented figure into novel multi-layer background. Note
change in viewpoint and occlusion by foreground objects.
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Time Speedup

Fully manual Total 15.1 hrs 1.0
System Total 11.8 hrs 1.28
human attention 10.2 1.48
human high precision 9.1 hrs 1.66

Table 2: Comparison of Total times for Segmentation

5 Summary and Conclusions

Video editing systems can benefit substantially from two lines of computer vision re-
search: automatic segmentation of video into multiple layers, and image-based render-
ing (IBR). Automatic segmentation greatly reduces the effort involved in constructing
layered video representations, while IBR enables a new class of 3-D edits in which
the camera position and the spatial relationships between objects can be manipulated
directly.

We have demonstrated the use of figure tracking to segment complex articulated
motion which is not amenable to current motion-based segmentation methods. Cou-
pling figure tracking with background registration improves both the quality of the
background reconstruction and the tracker’s performance (see Figure 5).

IBR is well-matched to the video editing problem, as it is very effective when the
desired changes in camera viewpoint are small. While editing is based on multiple
layers, however, conventional IBR systems have worked with only a single group of
photos [1]. Our multi-layer IBR algorithm addresses the problems of interlayer hole-
filling and efficient rendering through the use of precomputed reference views. We
have shown that techniques developed for still photos can be easily applied to video
sequences.

We have implemented a prototype video editing system, called SpliceWorld, which
incorporates video segmentation and IBR. Using our system, we have demonstrated a
40% decrease in the time required to segment a 170-frame video sequence.
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