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Abstract

A planar mapis a figure formed by a set of intersecting lines and curves. Such an object
captures both the geometrical and the topological information implicitly defined by the data. In
the context of 2D drawing, it provides a new interaction paradigm,map sketching, for editing
graphic shapes. To build a planar map, one must compute curve intersections and deduce from
them the map they define. The computed topology must be consistent with the underlying
geometry. Robustness of geometric computations is a key issue in this process. This report
presents a robust solution to B´ezier curve intersection that uses exact forward differencing and
bounded rational arithmetic. Data structures and algorithms supportingincrementalinsertion
of Bézier curves in a planar map are described. A prototype illustration tool using this method
is also discussed.

Résumé

Considérons la figure plane form´ee par un ensemble de segments de droite et d’arcs de
courbe intersectants. Unecarte planaireest une structure de donn´ees décrivant l’information
géométrique et topologique implicitement d´efinie par les ´eléments de l’ensemble. Dans le cas
du dessin assist´e par ordinateur, les cartes planaires rendent possible une nouvelle technique
d’interaction pour la construction des illustrations et des figures. Pour construire une carte
planaireà partir de l’ensemble de primitives la d´efinissant, il faut calculer les intersections
mutuelles des segments et des courbes et d´eduire la carte de celles-ci. La topologie calcul´ee
par ce processus doit toujours ˆetre cohérente avec la g´eométrie sous-jacente. La robustesse
des calculs g´eométriques est donc un probl`eme clef de ce processus. Ce rapport pr´esente une
solution robuste au probl`eme de l’intersection de courbes de B´ezier. La solution utilise une
méthode exacte de diff´erence en avant et une arithm´etique rationnelle born´ee. Le rapport d´ecrit
les structures de donn´ees et les algorithmes permettant l’insertionincrémentalede courbes de
Bézier dans une carte planaire. Un logiciel d’illustration utilisant les cartes planaires est aussi
présenté.
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Incremental Computation of Planar Maps 1

1 Introduction

There is growing interest in the robustness of geometric computations [9, 5, 13]. Different
graphics algorithms have different sensitivity to numerical errors. In some cases, numerical
errors are acceptable. In others, one can find ways around them. However, exact computation
is sometimes mandatory. The following examples demonstrate the range of effects.

When scan–converting 3D polygons, rounding errors on face equations will not prevent
the z–buffer method from rendering a scene. The few erroneous pixels may not even be
visible. This is a case where numerical errors are innocuous. A second example is a function
performing point location in a polygon with a parity test, using floating point arithmetic. If the
result returned by this function is used for identification of the polygon and, say, modification
of its color, then it is acceptable for the function to return an empty result when a reliable
answer cannot be computed. Hence, in some 2D drawing programs, the user must click well
inside a polygon to select it (which is better than selecting the wrong polygon). As a third
example consider a program implementing an algorithm which presumes infinite precision.
The Bentley–Ottmann algorithm [3, 20] for reporting intersections of a set of non–vertical line
segments relies on the fact that two segments may intersect iff there exists a position of the
vertical sweep–line where they are consecutive. If the implementation produces an error when
inserting a new segment in the sweep–line then some intersections may be missed. In this
case, it is imperative to provide an exact answer.

Figure 1: A planar map.

Methods involving topological decisions based on geometric computations are generally
difficult to implement. We describe a robust solution to an intersection problem which arises
in the context of a 2D drawing application. A set of lines and curves like in Fig. 1 dissects
the plane into vertices, edges and faces. This type of geometric object is known in graph
theory as a map of a planar multigraph [25], hence the nameplanar map, and in computational
geometry as anarrangementin the plane [6]. Data structures describing embeddings of planar
graphs in the plane can be traced back to Baumgart’s winged-edge data structure and have been
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2 Michel Gangnet et al.

studied by numerous researchers [20, 12, 7]. It is standard practice to distinguish between the
geometry, that is the position of the vertices and the geometric definition of the edges, and the
topology, that is the incidence and adjacency of the vertices, edges, and faces.

The problem addressed here is building a data structure to supportincremental insertion
of new curves in a planar map, dynamically computing new intersections and updating the
data structure. In this case, topological information has to be deduced from geometrical
information. When two curves intersect at a new vertex, the ordering of the four edges around
the vertex provides topological information used to follow the contour of a face incident to the
vertex. If floating point arithmetic is used, it has been shown that the computed slopes can give
the wrong order [9, 18]. This is similar to the Bentley–Ottmann algorithm example above.

Our first implementation [19] used the Bentley–Ottmann algorithm and rational arithmetic
to compute the planar map formed by a set of line segments; [10] is the description of a 2D
illustration tool based on this first software. The method was not incremental and the map
had to be recomputed each time a new segment was added. In [11], Greene and Yao solve
the intersection problem for line segments by working directly in the discrete plane. In [8],
Edelsbrunneret al. study arrangements of Jordan curves in the plane from a theoretical point
of view.

In the next section, the utility of planar maps for 2D drawing is briefly discussed. Section
3 details curve intersection. First, B´ezier curves are interpolated by polylines using forward
differencing. Then, the intersection between two interpolating polylines is computed with
rational arithmetic; we show how it is possible to limit the number of bits in this process and
how to control the quality of the interpolation. Section 4 describes the map data structure and
the two main algorithms used in the planar map construction process: incremental insertion of
a curve and point location in a map. The map topology is computed from the geometry of the
polylines. Since exact arithmetic is used in this process, the map topology, although it may be
different from the topology defined by the true curves, is always consistent with the geometry
of the interpolating polylines.

2 Map Sketching

Our interest in planar maps is motivated by practical concerns: with traditional graphic arts
media (pencil, eraser, ink, etc.), it is common practice to build shapes by drawing lines and
curves, erase some pieces thereof, and color or ink the areas they delimit (see [1] and Fig. 2).
The design of logos and monograms, floor plan sketching by architects, and cartoon cell
drawing and inking are examples where this technique is used. In typical drawing software
there is no way to mimic this method. If Fig. 3a is drawn by the user of a drawing application
as four lines, it is impossible for him to color the rectangle (as in Fig. 3b) since no such
rectangle exists. If the drawing were computed as a planar map, this dual interpretation would
be possible.

In [2], we have proposed two extensions to the 2D graphics drawing paradigm: a) objects
are multicolor, multicontour shapes (i.e., planar maps), and b) they are constructed by iteration
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Figure 2: Graphic design by space division (B. Munariin [1]).

a b

Figure 3: Four lines and a rectangle.
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4 Michel Gangnet et al.

of three basic steps: drawing, erasing, and coloring. We call this techniquemap sketchingand
have implemented it in prototype illustration software used to draw the figures in this report.
Fig. 4 illustrates map sketching. Strokes drawn by the user are incrementally added to the map
describing the drawing. Two additional operations are allowed on a map: edge erasing and
face coloring, using point location in a map. These steps can be iterated in any order.

Map sketching closely parallels the traditional pencil and eraser method and is more natural
and more efficient for constructing certain classes of drawings. An illustration is described as
an ordered set of maps, painted in back to front order. As a map can have transparent faces,
shapes with holes may be defined. User interface design issues in map–based illustration
software are further discussed in [2].

Figure 4: Map sketching.

3 Bézier Curve Interpolation and Intersection

The geometry of a map is based on curves described in B´ezier form. Other usual parametric
curves can be converted to or approximated by curves defined in B´ezier form. However, an
application using planar maps (e.g. map sketching) usually deals with more general graphics
primitives. The geometric elements to be incrementally inserted in a planar map are thus
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Incremental Computation of Planar Maps 5

polycurves; a polycurve is a list of B´ezier curves of degree greater than or equal to one
such that the last control point of a curve is equal to the first control point of the next one.
Polycurves can be either open or closed. A polycurve has a natural parameterization defined
by the parameterization of its components. Inserting polycurves instead of curves also avoids
creating unnecessary vertices of degree 2 in the description of the map topology. If a graphics
primitive is made of several polycurves (e.g. the outline of the characterO), these are grouped
as one object at the application level.

3.1 Overview

The incremental insertion algorithm (Sec. 4) has two requirements. First, intersection points
must be ordered without error along a polycurve by their parameter values, including the case
of self-intersection. Second, if two or more polycurves intersect at one point, they must be
ordered without error around the intersection. This ordering is used to follow the boundaries
of the faces. To meet these requirements, we use the following strategy:

� The control points of the B´ezier polycurves have integer coordinates on a grid large
enough for 2D graphics applications. Grid size is discussed in Sec. 3.4.

� The polycurve is replaced with an interpolatingpolyline. The polyline parameterization
is defined by a one-to-one mapping of the polycurve on the polyline. We compute
an exact interpolation of the polycurve by exact forward differencing. There must
be enough bits available to perform forward differencing without a loss of precision
(Sec. 3.2). Rather than storing polylines in the data structure, they are computed as
needed. Some of the polylines may be cached.

� Computing the intersection of two exact polylines causes an explosion in the number
of bits (Sec. 3.4). Thus, we round the points of an exact polyline to the grid. Then
the intersection of tworounded polylinesis essentially the intersection of line segments
whose endpoints have integer coordinates. Ordering two intersection points along the
same line segment or ordering two intersecting line segments around their intersection
point is done with rational arithmetic. Note that the intersection pointsare not rounded
since this could modify the map topology.

� Finally, it is natural with the map sketching technique to use an existing intersection
point as a new polycurve endpoint. We show how to achieve this without increasing the
bit length of the arithmetic (Sec. 3.4).

The map deduced from the intersection process is the one defined by the rounded polylines.
No other rounding occurs. The map topology, although it may be different from the topology
defined by the true polycurves, is always consistent with the geometry of the rounded polylines.
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6 Michel Gangnet et al.

3.2 Interpolation Method

A polynomial Bézier curve of degreed is defined by:

V (t) =
dX

r=0

VrB
d

r
(t); 0� t � 1;

where theVr are thed + 1 control points that form the control polygon ofV (t), and

Bd

r
(t) =

 
d

r

!
tr(1� t)d�r

is therth Bernstein polynomial of degreed [21, 4].

Let kvk = max (jxv j ; jyvj), wherev is a vector in the Euclidean plane. Ford � 2, the
diagonalD and thelengthL of the control polygon ofV (t) are defined as:

D = max
0�r�d�2

kVr+2� 2Vr+1 + Vrk;

L = max
0�r�d�1

kVr+1� Vrk:

Wang [26, 23] gives the following result. If the de Casteljau subdivisionalgorithm (midpoint
case) is applied down to depthk to a polynomial Bézier curve of degreed � 2 with control
pointsVr, with:

k =
�
log4

d(d� 1)
8

D

�

�
; (1)

then all the chords (straight line segments) joining the endpoints of the 2k control polygons
which are the leaves of the subdivision tree are closer to the curve than the threshold�. Since
reference [26] is not available to us, an independent proof of this result is given below, together
with a bound on the chord length.

Computing the first and second derivatives ofV (t) and using the properties of the Bernstein
polynomials gives, for allt in [0; 1]:

kV (2)(t)k � d(d� 1)D; (2)

kV (1)(t)k � d L: (3)

To find the number of subdivisions, we use a chord interpolation theorem [22] which states
that if f (t) is a real–valued function of classC∞ on [a; b], then for allt in [a; b] :

jf (t) � s(t)j � (b� a)2

8
max
a�t�b

���f (2)(t)
���; (4)

wheres(t) is the chord (straight line segment) between (a; f (a)) and (b; f (b)). This last result
is used by Lane [15] in the context of curve rendering.
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Incremental Computation of Planar Maps 7

Let �, 0 < � � 1, be a step size on the interval [0; 1] andn the integer such thatn� = 1.
This definesn intervalsIi = [i�; (i + 1)�], andn chordsSi(t) with endpointsEi = V (i�) and
Ei+1 = V ((i + 1)�). Let � be a given threshold measuring the maximum allowed deviation
between the curve and the chordsSi. We want to ensure that:

kV (t) � Si(t)k � � (5)

holds for alli, 0� i < n, and allt in Ii.

Applying (4) to the coordinates ofV (t) on the intervalIi and using the bound (2), it is
straightforward to see that any� � 1 such that:

0< �2 � 8�
d(d� 1)D

(6)

will satisfy (5).

Let k be the smallest integer such that� = 2�k satisfies (6), then:

k =
�
log4

d(d� 1)
8

D

�

�
:

Equation (1) is cited in [23] as a result derived by Wang.

We can now bound the length of the chords given bya priori subdivision of depthk. The
mean value theorem applied toV (t) on intervalIi gives:

kEi+1�Eik � � max
t∈ Ii

kV (1)(t)k:

The maximum ofkV (1)(t)k overIi is less than or equal to its maximum over [0; 1]. Using
(3), one getskEi+1�Eik � � dL. The bound on� from (6) gives for alli, 0� i < 2k :

kEi+1�Eik �

s
8d

d� 1
Lp
D

p
�: (7)

Consider the chord endpointsEi; 0 � i � 2k . They form a polylineE. It is faster to use
ordinary forward differencing [16] than de Casteljau subdivision to computeE. Sincea priori
subdivision computes the complete tree to depthk, forward differencing with fixed step size
2�k will generate the same polyline, provided that exact computations are done in both cases.

We now show that the number of bits needed to perform exact forward differencing is
bounded. Suppose that the control points of a B´ezier curve have coordinates coded intob

bits. Then, computing the subdivision tree down to depthk requires at mostb + kd bits for
the coordinates of theEi. In the forward differencing loop, the only values involved in the
ith iteration are the forward differences∆jEi, 0 � j � d. Since we know from subdivision
that, for alli, the computation ofEi = ∆0Ei requires at mostb + kd bits,∆jEi requires at most
b + kd + j bits. Thus, exact forward differencing with step size 2�k can be performed on the
curve ifb + (k + 1)d bits are available.
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8 Michel Gangnet et al.

To limit the total number of bits needed when updating a planar map, the intersection
algorithm usesroundedpolylines. The exact coordinates of theEi are computed by forward
differencing each curve in a polycurve. They are then rounded tob bits. The rounded polyline
associated with a given polycurve is the concatenation of the polylines associated with the
curves in the polycurve. If there are line segments in the polycurve, they are added to the
polyline without further processing.

Thus, given a polycurveC = (Ci; 0 � i � n), where theCi are Bézier curves defined
by control points with integer coordinates, the method described above associates with it
a rounded polylineP = (Pi; 0 � i � m) such that each chord on the polyline is closer
to the corresponding section ofC than the threshold�. As it is necessary to associate a
parameterization ofP with the natural one onC, each pointPi is defined by its coordinates,
the curve index onC, and the value of the parametert on the corresponding curve. As these
last values are always dyadic numbers, it is enough to note the chord index. The chord index
must be recorded because rounding may create chords with a null length, which are not stored
in the polyline.

3.3 Intersection Algorithm

Bézier curve intersection is studied by Sederberg and Parry [23]. In two of the algorithms
they consider, rejection of non-intersecting pieces of two curves is done by bounding box
comparison. Forward differencing is not convenient for successive midpoint evaluations of
a curve. To take advantage of bounding boxes, a preprocessing step breaks the rounded
polylines into monotonic pieces. For such a piece, the box of any subpiece is given by its
endpoints coordinates. This method is also used by Koparkar and Mudur [14] with another
curve evaluation method. In planar map construction, a new polycurve is intersected with a
subset of the polycurves already inserted in the map. The preprocessing of the new polycurve
finds the monotonic pieces, saving data to be used in later computations. The new polycurve
is then immediately inserted in the map.

Preprocessing.Let C be the new polycurve, a) use the interpolation method to compute the
points of the exact polylineE and of the rounded polylineP of C, b) store the points
of P in an array, to be discarded after the insertion ofC, c) find the monotonic pieces
of P , d) at the end of a monotonic piece, save the permanent data associated with it,
that is, its first and last indices (if ; il) on the polyline, its bounding box, its octant, and
the forward differencing context atif (i.e., ∆jEif

, for all j). The bounding box ofP
is also computed. These steps can be performed during the forward differencing loop.
Different polycurves can be processed in parallel.

Intersection. If the bounding boxes of the two polylines associated with two polycurves
intersect, consider the pairwise intersections of a monotonic piece ofP , with indices
(if ; il), with a monotonic piece of an existing polycurveG, with indices (jf ; jl), whose
bounding boxes overlap. First, computeQ, the rounded polyline ofG, betweenjf andjl
using the forward differencing context atjf which has been saved when preprocessing
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Incremental Computation of Planar Maps 9

G, and store the result into an array. Then, search the intersecting chords using binary
subdivision on the respective arrays (the box of any subset of points considered in this
subdivision is given by its two endpoints and the octant information). It is also possible
to use linear search on both arrays.

In the map sketching application, the existing curveG may be partially erased. In this
case only the monotonic pieces containing a non-erased part ofG are intersected with
C. Different pairs of intersecting pieces can be processed in parallel.

Since two polylines may be partially or totally overlapping (e.g. the case of two abutting
rectangles), all intersections between two monotonic pieces are not transverse. To handle this
case, the intersection algorithm returns anintersection contextwhich describes the common
interval on the two polylines (a closed interval in the transverse case), the parameters of its
endpoints on the two polylines, and the ordering of the two polylines around each endpoint of
the interval.

After preprocessing, a new curve is intersected with itself to detect multiple points and
self-overlapping. It is worthwhile to cache partially– or totally–generated polylines. Two
cases are frequent: a) the same monotonic piece ofG intersects different pieces ofC, and b)
successive new polycurves intersect the same existing one.

3.4 Topology Consistency

This section describes how a consistent topology is obtained from the geometric data given
by the intersection process. For illustration software, the input can be rounded to an integer
grid if the grid size is large enough. A typical case is to output the results on a 2400� 2400 page
at 300 dpi. Then, input control points may be defined on twice as large an area, to permit
clipped curves. We must also choose a maximum zoom factor: a reasonable value is 8. Since
the rounded chords must have odd coordinates (see below), the input is scaled up by a factor
of two. The control points coordinates are thus coded onb = 18 bits. Setting� = 1 in equation
(1) givesk = 10 for a degree 4 curve with the maximum diagonal, which is twice the grid size.
Thus, 62 bits are needed for the exact forward differencing of this curve; this goes up to 102
bits for a degree 7 curve with the same diagonal. The much more usual case of a cubic with a
400 diagonal is 45 bits.

If chord intersection is performed on the exact polylines the number of bits grows very
rapidly. When two chordsAB andCD intersect atI , the coordinates ofI and the values of the
two parametersu andv such thatAI = uAB andCI = vCD must be computed exactly. All
of these can be expressed as rational numbers; for example,u = (AC � CD)� (AB � CD)
where� is the cross product. With endpoints coded onb + kd bits, this is 2(b + kd) + 3 bits
for the numerator and the denominator of the rationals. Since different intersections along
the same chord are ordered by comparing their rational parameter values, the final number of
bits is 4(b + kd) + 6. For the first curve in the example above, this is 238 bits. The situation
is worse if we want to use an existing intersection as the endpoint of a new curve. Setting
b = 238 in the above computations gives 1118 bits. As noted by Forrest and Newell [9], the
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10 Michel Gangnet et al.

major drawback in the rational arithmetic approach is the blow–up in the number of bits.

1

2

3
4

5 6

(m;n) (m;n) (m;n)

a b c

Figure 5: Vertex (m;n) and chord ordering.

To limit this number, the chord endpoints of the exact polylines are rounded to odd integer
values. Chord intersection is done on the rounded chords and the intersection points are
exactly represented as rational numbers. To use an existing intersection point as the endpoint
of a new curve without increasing the bit length, we consider the semi-open rectangles
Rm;n = [m� 1; m + 1)� [n� 1; n + 1), wherem and n are odd. Since the vertical and
horizontal lines limiting the rectangles have even coordinates, there are no rounded chords
collinear with these lines. So, it is always possible, if two or more chords intersect inside
Rm;n, to order them along the boundary ofRm;n by using either the coordinates of their
intersections with the lines limiting the rectangle or their slopes if they leaveRm;n at exactly
the same point (Fig. 5a). We define the center ofRm;n as thevertexof the intersection points
lying insideRm;n. This associates intersection points with vertices but does not round their
coordinates. To use a chord intersection point as the endpoint of a new curve, we do not use
the point itself but its vertex (Fig. 5b). Therefore, small faces lying inside a single rectangle
will not be represented in the map data structure (Fig. 5c).

On a polycurve, an intersection point is represented as aparameter valuep = (i; u) wherei
is the chord index on the polyline andu is a rational number giving the exact position of the
point on the chord. Since all chords have now rounded endpoints, ordering two intersection
points along one curve requires at most 4b+6 bits. It is possible to reduce this bound by further
subdividing the chords, using a larger value ofk which can be deduced from equation (7).
However, this implies also subdividing the line segments which may be part of a polycurve.

We also need to order the intersections of the chords with the lines limiting the rectangles
Rm;n. These are B´ezier curves of degree 1, thus the stated bound is valid. In the common
case where only one intersection point is associated with a vertex, the slopes are used to order
the chords, requiring at most 2b + 3 bits. In addition, the method must support the erasing of
polycurve pieces limited by intersection points. It is therefore necessary to keep the initial data
defining the polycurve and to mark as erased or non-erased the corresponding pieces. As noted
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Incremental Computation of Planar Maps 11

above, the intersection algorithm uses this information to return only actual intersections. A
polycurve is removed from the map data structure iff it has been totally erased.

This method has two limitations. First, intersection is performed on the rounded polylines.
Thus, there are situations (e.g. tangencies) where intersections between the true polycurves are
ignored. Likewise, polylines may intersect even if true polycurves do not (e.g. two concentric
circles with very close radii interpolated by regular polygons whose sides intersect pairwise).
Second, the topology of a map computed in this way is not invariant under a general affine
transform. Thus, the map has to be recomputed from the original data whenever it is rotated
or scaled. The first limitation is inherent in any linear interpolation process. However, for
2D graphics applications, it is always possible to prevent any visible effects by choosing an
appropriate grid size. The second limitation can only be solved by using exact arithmetic
on real numbers or symbolic computation on algebraic curves, which are currently too slow
for interactive applications. Without recomputing the map, it is possible to perform integer
translation (e.g. when dragging a map) if we remain inside the grid.

In this section, we have shown that a robust method for the computation of planar maps with
linearly interpolated B´ezier curves requires at mostb+(k+1)d bits for the forward differencing
step and 4b+ 6 bits for the intersection and sorting steps. Our implementation uses an efficient
arbitrary precision integer arithmetic package coded in assembly language [24]. In practice,
the average size of the numbers involved in the process is much smaller than the above bounds.
The only operation we must perform on rational numbers is comparison, which is two integer
multiplications and a test. This operation can be optimized by computing and comparing the
two cross products digits in high to low order. The value ofb is a parameter of the program,
allowing the grid size to be adapted to the resolution of the display.

4 Data Structure and Algorithms

After describing the planar map data structure, we detail below the two main algorithms.
Curve insertion uses point location in a map to find the face containing the first endpoint of a
polycurve, but we first describe insertion since point location is performed as the insertion in
the map of a dummy line segment.

4.1 Planar Map Description

A map contains two different sets of data. The first one describes the geometry of the
polycurves and their intersections, and the second contains the topological data. In what
follows, the word polycurve should be understood as the rounded polyline associated with the
polycurve.

Geometry. When inserted, a polycurve is cut intoarcs by the other polycurves. An arc
is described by its endpoints on the polycurve. Eachpoint (i.e., an intersection or a
polycurve endpoint) is identified by its parameter valuep = (i; u) on the polycurve,
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12 Michel Gangnet et al.

s
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�(s) !(s)
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a b

Figure 6: Map topology.

as in Sec. 3.4. In the transverse case, an intersection yields two points, one on each
polycurve. As parameters are totally ordered along a polycurve, an arc is noted below
as a parameter interval [p1; p2]. Arcs are marked as either erased or non-erased.

Topology. The mapping defined in Sec. 3.4 associates with each point a unique vertex. To
support arc overlap, we attach to an arc anedgeconnecting its vertices. Arcs lying
entirely in one rectangleRm;n are not considered. Overlapping arcs share the same
edge. The geometry of an edge is the geometry of one of the arcs itsupports. Different
edges can connect the same pair of vertices. The ordering of the edges around a vertex
is the chord ordering defined by the rectanglesRm;n.

To access the faces of a planar map, it is convenient to consider an edge as two directed
edges, calledsides. If an edgee is a loop incident to the vertexv, then the clockwise
(cw) and counterclockwise (ccw) orientations alonge define the two sides associated
with e (Fig. 6a). Two mappings are defined on the sides of a map:�(s) is the side
next tos in the ccw order around the vertex incident tos, and!(s) is the other side of
the edge [17]. We note the ordering of the sides around a vertex,�-order. To follow
the boundary containing a sides, the compound mapping�! is applied repeatedly until
back ins (Fig. 6b). The result is a face boundary called acontour. Contours with a ccw
orientation areoutercontours, others areinnercontours. Adding a virtual inner contour
located at infinity, there is exactly one inner contour for each face of a map.

The edges may form several connected components which are partially ordered by
inclusion in the plane. This partial ordering is described by aninclusion treewhose
nodes are the contours. The root is the virtual inner contour at infinity. The leaves are
either inner contours with no connected component included or outer contours with an
empty interior. This tree is stored in the data structure describing a map and used by the
polycurve insertion and point location algorithms.
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4.2 Polycurve Insertion

A non–erased arc isvisiblein a face if it is supported by an edge of which at least one side
is in a contour bounding the face. Polycurve insertion uses the method described in Sec. 3
to compute the intersections between a new polycurveC and all the arcs visible in the faces
whereC is lying (Fig. 7). AlongC, p is the current parameter value andnext(p) is either 1 or
the parameter value of the next intersection point,p < next(p).

0 F

p

next(p)

C

1

Figure 7: Polycurve insertion (first iteration).

Step 1. Using point location (Sec. 4.4), find the faceF containing the first point ofC. Set
parameterp to 0.

Step 2. If F has already been processed, jump to step 3. Otherwise, compute the intersections
between arc [p; 1] and all the arcs visible inF . Cut the arc [p; 1] and the intersected arcs
of F at each intersection point and create the corresponding vertices and sides. At the
end of this step, there are no more intersections betweenp andnext(p), and the�-order
around the vertices alongC has been updated.

Step 3. If there is no overlapping, create an edge between the vertices associated withp and
next(p), link it with the arc [p; next(p)] in the data structure, and update the inclusion
tree accordingly (see section 4.3). Otherwise, the edge already exists, so link it with the
arc [p; next(p)].

Step 4. If next(p) = 1 then stop. Otherwise, lets be the side of arc [next(p); next(next(p))]
associated withnext(p). Since the�-order around the two corresponding points is
known,s is known. SetF to the face incident to�(s), andp to next(p). Repeat step 2.

An arc is visible in at most two faces but an existing polycurveG can be visited several
times. However, the intersection between the arc [p; 1] ofC andG is done only once: the first
time an arc ofG becomes visible in the current faceF . The intersection points located outside
F are stored for further use.
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4.3 Updating the Inclusion Tree

The insertion algorithm uses the contour inclusion tree to find all visible arcs in a face.
Contours are modified by edge addition and edge removal. This section details the operations
on the inclusion tree. We begin by edge classification.

The degreed of a vertexv is the number of sides incident tov, andv is adangling vertexif
d(v) = 1. If both sides of an edge are in the same contour, it is adangling edge, otherwise it
is aborder edge. A dangling edge isconnectingif it has no dangling vertex,terminalif it has
exactly one dangling vertex, andisolatedif it has two dangling vertices. A loop incident to a
vertexv with d(v) = 2 is anisolated border edge.

An edge falls into one of the following types:

1. a terminal edge with both sides in an inner contour,

2. a connecting edge with both sides in an inner contour,

3. a border edge with both sides in two distinct inner contours,

4. a border edge with one side in an inner contour and the other side in an outer contour,

5. an isolated edge,

6. a terminal edge with both sides in an outer contour,

7. a connecting edge with both sides in an outer contour,

8. an isolated border edge.

When inserting a polycurve, new edges may be added to the map. Adding an edge implies
creating its sides, vertices, and updating the�-order around the vertices. The updated contours
are thus available through the mapping�!. The inclusion tree is updatedafter each edge
addition, so it is therefore possible to find the type of a new edge by counting its dangling
vertices and checking the updated contours. The inclusion tree is then updated by performing
the following actions, indexed by edge type:

2. merge: inner& outer! inner,

3. split: inner! inner& inner,

4. split: outer! outer& inner,

5. create: outer,

7. merge: outer& outer! outer,

8. create: outer& inner.
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For example, if an edge of type 2 is added to a map, one inner contour and one outer contour
are merged to give a single inner contour.

When erasing a polycurve or an arc, existing edges may be removed from the map. The
inclusion tree is updatedbeforeeach existing edge removal, using the same tests as above.
When the type of the edge has been found, the inclusion tree is updated by performing the
following actions, indexed by edge type:

2. split: inner! inner& outer,

3. merge: inner& inner! inner,

4. merge: outer& inner! outer,

5. delete: outer,

7. split: outer! outer& outer,

8. delete: outer& inner.

Adding or removing an edge of type 1 or 6 (i.e., terminal edges) does not modify the
inclusion tree.

4.4 Point Location

Given a query point with integer coordinates, the point location algorithm returns either a
face, an edge, or a vertex. In map sketching, all selections are done through this algorithm
(e.g. coloring a face or selecting an existing intersection as the endpoint of a new polycurve).
One method is to intersect a line segmentS with all polycurves.S is defined by the query
pointM , with parameter 0, and a point outside the bounding box of the map, with parameter
1. If no intersection is found,M is inside the infinite face. Else, retain the polycurveG whose
intersection is closest toM . This intersection is known by its parameter valuesp on S and
q onG. The parameterq gives the arc ofG containing the intersection. Ifp = 0, thenM is
exactly on the edge supporting this arc. Otherwise,M is inside one of the two faces incident
to the edge. The side which seesM to its right gives the answer (a side defines a unique
orientation on a polycurve).

This method does not take advantage of the partition of the plane defined by the faces of the
map. To reduce the average number of visited polycurves, the following algorithm uses face
adjacency (Fig. 8). This algorithm is similar to the polycurve insertion algorithm, but it uses
polycurve intersection instead of arc intersection. A polycurve isvisiblein a face if one of its
non–erased arcs is visible in the face.

Step 1.SetF to the infinite face andS to [0; 1]. S is the line segment defined above.
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M

s

q

p

G

F

S

Figure 8: Point location.

Step 2. If F has no outer contours then returnF . Otherwise, intersectS with the polycurves
visible in the outer contours ofF (if two or more polycurves are overlapping, it is
enough to consider one of them). If there is no intersection, returnF . Otherwise, lete
be the edge which gives the smallest parameterp onS, ands the side ofe which sees
M to its right. If s is part of an outer contour, returnF . Otherwise, setS to [0; p] and
setF to the face incident tos.

Step 3. IntersectS with the polycurves visible in the inner contour ofF . If there is no
intersection, call recursively step 2. Otherwise, lete be the edge which gives the smallest
parameterp onS, ands the side ofe which seesM to its right;s is necessarily part of an
inner contour. SetF to the face incident to this contour andS to [0; p]. Repeat step 3.

Like polycurve insertion, point location may visit a polycurve several times, but only one
intersection withS is performed. The geometric tests are performed on rational numbers, thus
they are exact. Indications on the complexity of both algorithms are given by the horizon
theorem for Jordan curves included in [8]. However, this last result cannot be applied in a
straightforward way as the number of intersections between two polylines may be greater than
the number of intersections between the true polycurves, and the polylines may be partially
overlapping.

5 Conclusion

A method has been presented which allows for incremental construction of planar maps.
Robustness of the computation and consistency between geometry and topology are achieved
through linear interpolationof B´ezier polycurves and exact intersection of the resulting rounded
polylines. Our main goal was to produce a fast and reliable system to be used in the context
of 2D drawing and illustration software.
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Though it has some limitations, the method described in this report provides a powerful
tool for constructing illustrations. The planar map data structure and algorithms also allow for
automated compound operations, such as the ones described in Fig. 9 and Fig. 10. Fig. 11 and
12 show illustrations produced with the map sketching technique.

Figure 9: Cleaning a face removes its dangling edges.

Figure 10: Cookie–cutter.
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Figure 11: Wickerwork
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Figure 12: CHI’88 logo.
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