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Abstract

We study the problem of pattern matching in order-sorted languages whose evaluation strategy
is lazy. We propose an extension of the Puel-Su´arez compilation scheme to function definitions
via order-sorted patterns. Basically, a list of ordered and possibly ambiguous linear patterns
is transformed into a set of disjoint order-sorted constrained terms. This set is in turn
transformed according to some normalization rules in order to build a pattern matching tree
(PMT). Variables of order-sorted constrained terms now have not only structure, but also
subsort constraints. Accordingly, discrimination trees are defined to have edges labeled with
either structure or subsort constraints. Due to this latter kind of edge, we are not always forced
to reduce terms to normal forms during the pattern matching process, taking advantage in this
way of the lazy reduction scheme. For example, suppose� is a sort greater than�, the variable
x� is a pattern andt� is a term of sort� to be matched. Ift� reduces to a term whose sort is
a subsort of�, it is already decidable that the term obtained matchesx� , even if it is not in
normal form. We show that the PMT is optimal if a decidable property of sequentiality holds
for the sets generated during the compilation process. Our method turns out to be applicable
for strict languages as well.

Résumé

Nousétudions le probl`eme du filtrage dans des langages avec sous-sortes et dont la strat´egie
d’évaluation est paresseuse. Nous proposons une extension d’un sch´ema dû à Puel et Su´arez
pour la compilation des d´efinitions de fonctions bas´ees sur des motifs `a sortes partiellement
ordonnées. En r´esumé, une s´equence ordonn´ee de motifs lin´eaires potentiellement ambigus est
transformée en un ensemble de termes contraints `a sortes ordonn´ees qui sont mutuellement
exclusifs. Cet ensemble est ensuite transform´e à l’aide de règles de normalisation permettant
de construire un arbre de filtrage. Les variables des termes contraints `a sortes ordonn´ees sont
ici soumises `a des contraintes non seulement de structure, mais aussi de sous-sortes. Pour
refléter cela, un arbre de filtrage est dot´e d’arêtesétiquetées par des contraintes de structure
ou de sous-sorte. Grˆaceà ce dernier genre d’arˆetes, il n’est pas toujours n´ecessaire de r´eduire
les termes en forme normale pendant le processus de filtrage, et donc de b´enéficier de cette
manière de la r´eduction paresseuse. Par exemple, supposons que� soit une sorte sup´erieureà
�, que la variablex� soit un motif et quet� , un terme de sorte�, soit à filtrer. Dès quet� est
réduit à un terme de sorte inf´erieure ou ´egaleà �, il est d’ores et d´ejà décidable que le terme
ainsi obtenu est filtr´e parx�, même s’il n’est pas en forme normale. Nous montrons que l’arbre
de filtrage est optimal si une propri´eté décidable de s´equentialité est vérifiée par les ensembles
engendr´es durant la compilation. Notre m´ethode s’av`ere également applicable aux langages
stricts.
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Pattern Matching in Order-Sorted Languages 1

1 Introduction

Many programming languages use pattern matching in a many-sorted term algebra (such as
those in the ML family [6]) or an order-sorted term algebra (such as those in the OBJ family [5])
for function argument-passing. Function definitions consist of an ordered set of rewrite rules.
These rules are often ambiguous as some left-hand sides (LHS) of the same function definition
may overlap. Thus direct access to the relevant rule based on the LHS’s structure is not possible
in general. The na¨ıve operational semantics, amounting to sequential lookup until a calling
term matches a rule’s LHS, obviously leads to poor performance. In addition, since a lazy
evaluation strategy allows the manipulation of infinite objects (i.e. with no finite constructor
normal forms), it is not clear what pattern matching means for lazy languages. For example,
for a term to match a LHS term, the reduction scheme should be such that the only part of
the term to be evaluated is the one required, in some sense. Recently, Puel and Su´arez [10]
devised a clever compilation scheme to generate statically a PMT in lazy languages. Such a
tree is then used at run-time for fast rule-indexing and takes full advantage of the nature of
the LHS terms in a definition. Their work simplified and generalized seminal ideas by Huet
and Lévy [7] that were in turn sharpened by Laville [9]. The gist of the Puel-Su´arez method
rests on generalized notions of constructor terms and sequentiality. They called the new terms
constrained terms.

Although partially ordered sorts provide a substantially improved expressiveness over many-
sorted languages, in an order-sorted system with a lazy reduction strategy, pattern matching
is more complex than with non-ordered sorts in that it necessitates two kinds of verifications.
The first one, as in the conventional case, isstructure matching. The other one is to ascertain
that the argument’s sort is asubsortof the formal parameter’s sort. Moreover, as functions can
have a non-strict semantics, they can yield a result even for some arguments whose evaluation
is non-terminating. Therefore, the arguments need only be evaluated just enough so as to make
either a structure or subsort verification decidable. However, it is not clear how many steps
of reduction must be performed on a given term in order for its sort to become sufficiently
precise.

Consider for example the classical subsort order for the integer numbers: whereo is a constant
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Z
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�
�

int

zeropos

�
�

�
�

Z
Z
Z
Z

zeroneg

Z
Z
Z
Z

�
�

�
�

negzeropos

o :! zero
pred : zeroneg! neg
suc: zeropos! pos

of sortzero, the symbolpred is a constructor of sortnegand the symbolsuccis a constructor
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2 Delia Kesner

of sortpos.

Let C be the characteristic function of natural numbers defined by the following rewrite rules.

C(xzero pos) = 1

C(xzero neg) = 0

Let the order of appearance of these rules be significant as specified. That is, the second rule
is to be considered only if the first one is not applicable. Thus, this definition is equivalent to:

C(xzero pos) = 1

C(xneg) = 0

Now, suppose a term of sortint with non terminating evaluation given by the following
sequence of reductionstint ! tzero pos

1 ! tzero pos
2 ! tzero pos

3 . . . With a strict evaluation
strategy,C(tint) is not defined becausetint has no denotation. Nevertheless, with a lazy
reduction scheme,C(tint) is defined and equal to1 sincetint can be reduced in finitely many
steps just so far as necessary to ascertain that it is of sortzeropos. Thus, there is no need
always to reduce terms to normal forms during the pattern matching process and pattern
matching becomes a non-trivial problem deserving careful attention.

We restrict our interest to syntactic pattern matching.1 Sorts are partially ordered. Minimal
sorts are assumed to be pairwise disjoint and non-minimal sorts are assumed to be the union
of their subsorts. Functions can have more than one declaration [4]. We will also restrict our
attention to linear LHS terms,i.e., without repeated variables. We lose no expressive power,
though we lose some notational convenience.

The order of rules defining a function is significant because LHS terms can beambiguous; that
is, they can be unifiable. Since we are considering deterministic languages, a list of terms with
priority (a pattern) must be constructed. Thus, in order to avoid a more complicated syntax
and a burden to the programmer, a disambiguatingmeta-rule will be necessary to construct such
a list. Usually, this is according to the appearance of the rules in the text but any other priority
will suffice [9]. This must naturally be taken into account when constructing the PMT. We
propose here an extension of the Puel-Su´arez compilation scheme that accommodates order-
sorted constructor-based function definitions. Our compilation method eliminates ambiguous
patterns by introducing order-sorted constrained terms. Moreover, as order-sorted pattern
matching consists of two kind of verifications, discrimination trees are now quite complex
since some edges are now labeled with sort restrictions.

Given a pattern matching problemS, thestrict set of S is the set of terms for which every
PMT associated toSwill fail to terminate and anoptimal PMT is a PMT that will only fail to
terminate on the strict set ofS. We show that optimality of an order-sorted PMT is a decidable
property equivalent to a generalization of the notions of strongsequentiality presented in [7]
and [10]. Sequentiality of a pattern matching problemS is the possibility of systematically
expanding any term step by step until either it matches a pattern ofSor it is clear that a positive

1See [8] for a discussion of unification and matching in equational theories.

May 1991 Digital PRL



Pattern Matching in Order-Sorted Languages 3

matching is impossible. Our notion of sequentiality takes not only the structure of terms into
account, but also the sort system. We present a more general treatment of pattern matching
compilation in which the unsorted and many-sorted languages are particular cases.

The paper is organized as follows. Section 2 presents unitary signatures and function
definitions by order-sorted equations. Section 3 defines the syntax and semantics of order-
sorted constrained terms and patterns. Section 4 describes our compilation method. This
consists of three kinds of rules acting on constrained terms. Invariance and completeness of
these rules are given. Finally, in Section 5, the new notion of sequentiality for order-sorted
constrained terms is presented. We show that sequentiality and optimality of pattern-matching
problems are equivalent. A brief description of order-sorted type systems covered by our work
can be found in Section 6.

2 Functions Defined by Order-Sorted Patterns

All the conventional notions regarding substitutions, instantiation, and unification of unsorted
terms are readily extended to order-sorted terms [14].

A signature � = hS;�;F ;C;V ;Di consists of a set of sort symbolsS = f�; �; �; . . .g,
a partial order� on S, a set of function symbolsF = fF;G;H; . . .g, a set of constructor
symbolsC = ff ; g; h; . . .g, a set ofS-indexed variablesV = fx� ; y�; z�; . . .g with a countably
infinite number of variables for each sort symbol�, and a set of declarationsD of the form
q : �1 . . .�n ! � whereq 2 F [C. We will call �1 . . .�n thedomain of f and� its codomain.
The setsS, F , C andV are mutually disjoint. For brevity, we will writes2 � for any symbol
s in S, F , C, V orD. We use~�; ~�; . . . to denote possibly empty sequences of sorts. The order
� is extended componentwise to sequences of the same length inS� and is also denoted�.

�-terms are constructed in the usual manner with the additional constraint that they bewell-
sorted. Formally, a variablex� 2 � is a well-sorted�-term of sort� if � � �, andq(t1 . . .tn)
is a well-sorted�-term of sort� if and only if there exists a declarationq : �1 . . .�n ! � 2 �

such that� � � and for all1 � i � n, ti is a well-sorted�-term of sort�i. Where� is
understood, we will refer simply to terms instead of�-terms.

A signature� is calledregular if all terms have a least sort. We may emphasize the fact that
a termt has least sort� by writing it ast� . A signature� is calledunitary if it is regular and:

(S;�) is a boolean lattice with least upper bound operationt, greatest lower bound
operationu, greatest element> and least element?.2

No function or constructor declaration contains the sort symbol?.

(Minimal codomain sort) If f 2 C, then there exists a declarationf : ~� ! � 2 � and
� is a minimal sort (i.e., if � � � then� = ? or � = �).

(Disjoint domain sort) If f 2 C andf : �1 . . .�n ! � 2 � andf : �1 . . .�m ! � 2 �

are two different declarations off in �, thenn 6= m or n = m � 1 and~� and~� are

2A lattice (S;�) is said to be boolean iff8� 2 S;9 ! �c 2 S such that� u �
c
= ? and� t �

c
= >.
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4 Delia Kesner

disjoint (i.e., 9i; 1� i � n; �i u �i = ?).

In the sequel, we assume all signatures to be unitary. Motivations for considering such
signatures are discussed in Section 6.

Constructor terms are those terms that do not contain function symbols. A term is called
linear if its variables occur at most once andground if it contains no variables.

Pattern matching is a prefix ordering,v, induced by instantiation on constructor terms
modulo variable renaming. Formally,t v t0 iff t0 = �(t), where� is a substitution. We say
that t0 matchest. Note that when only linear terms are on the left-hand side, thenx� v t� if
� � �, andf (t1 . . .tn) v f (h1 . . .hn) if and only if for all (1� i � n) ti v hi.

Unification is a least upper bound operation forv. We will note the least upper bound of
two �-termst andt0 asttt0. Two terms are said tooverlap, or to beambiguous, if they are
unifiable. Regular signatures are finitary unifying and they make order-sorted term unification
well-behaved (see [14] for a discussion). If in addition the signature is unitary, then a unique
unifier is produced.

A function definition is specified by a set ofrewrite rules fF(ti) = pig
m
i=1, whereF 2 F , the

ti ’s are (possibly mutually ambiguous) linear constructor terms (thepatterns of F) and eachpi

is a term containing no variables not inti. A program P is a set of function definitions.

3 Order-Sorted Constrained Terms

3.1 Syntax

For a signature�, we define the syntax and semantics of constructor�-terms,�-constraints,
constrained�-terms and�-patterns. We will drop the prefix� where it is understood.

Let t be a term,l a linear term,� a sort andT andF the two logical constants denoting
truth and falsehood, respectively. ThenT ;F ; t : � and t 3 l areatoms. A constraint is
recursively defined as an atom or asC1 _ C2 or as C1 ^ C2 whereC1,C2 are constraints.
When f : �1 . . .�n ! � 2 � andx1 . . .xn are pairwise distinct variables, we may write an
atom t 3 f (x�1

1 . . .x�n
n ) as t3f � or t3f if the sorts are clear from the context. We will write

t3ff1; . . .; fng for a constraintt3f1 ^ . . .^ t3fn andA 2 C for an atomA of the constraint
C. The intended interpretation of asort constraint t : � is that it is decidable that termt has
sort�, and the interpretation of astructure constraint t 3 l is that it is decidable thatt is
structurally different froml.

If t is a constructor term andC a constraint, thent jC is a constrained term. If t is linear
(resp. ground), thent jC is a linear (resp. ground) constrained term. Apattern is a non-empty
list of linear constructor termsp1 . . .pn. A constrained pattern is a non-empty list of linear
constrained termsP1 . . .Pn.

For brevity, we will refer to either a term or a constraint as an object. The set offree variables
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Pattern Matching in Order-Sorted Languages 5

of an objecth, denotedV(h), is defined as expected except thatV(t 3 l) = V(t : �) = V(t).
Substitution, denoted�(h), is also defined as expected except that�(t 3 l) = �(t) 3 l and
�(t : �) = �(t) : �.

We will also refer to therestriction of a constraintC to a set of variablesV, denotedCjV. For
atomic constraintsC, CjV = C if V(C) � V, otherwiseCjV = T . For constraints formed
from _ and^, the restriction distributes through to their arguments.

3.2 Semantics

With a lazy reduction scheme, functions can yield a result even when applied to arguments
whose evaluation is non-terminating. A new element is thus necessary to give semantics to
such functions. We will introduce a new symbol�� for each sort� in the signature. Formally,
anaugmented signature�� is a unitary signature� without variables and without function
symbolsfF;G;H; . . .g but with a 0-ary constructor�� for each sort symbol� 2 � different
from?. �� denotes those terms of sort� that cannot be reduced to a term having a constructor
symbol at the root (so-calledhead-normal form). Note that all��-terms are ground.

The free order-sorted term algebra on the signature� is denoted byT� . An interpretation of
a signature� over its��-term algebraT�� satisfies:

�T�� := fs j s is a��-term of sort�g

?T�� is the empty set and>T�� the universe ofT��

� � � implies�T�� � �T��

If f is a constructor andf : �1 . . .�n ! � 2 �, thenf T�� is a function
�
T��

1 � . . .� �
T��

n ! �T�� such thatf T�� (s1 . . .sn) = f (s1 . . .sn)

Sorts and subsorts sometimes allow us to decide if a term matches a pattern even if its
evaluation is non-terminating. We show how to characterize such nice terms.

We associate to each constructor termt three disjoint sets of��-terms such that the union of
these three sets is theT�� -algebra. The first one, denoted by [[t]]T or simply by [[t]] and called
thedenotationor solution of t, is the set of��-terms that are instances oft. The second one,
denoted by [[t]]U and called theuncertain or strict set oft, is the set of all��-terms for which
we cannot decide if they are instances oft. The last, [[t]]F , is the set of��-terms that are not
instances oft. Formally,

[[ t]]T = f�(t)j� is a(V ; ��)-assignmentg

[[ t]]U is defined by recursion as:

[[x� ]]U = f��j� u � 6= ? and� 6� �g

[[ f (t1 . . .tn)� ]]U = f��j� � �g [ ff (a1 . . .an) j 9i ai 2 [[ ti ]]U and8j aj =2 [[ tj ]]F g

In both cases we can decide that�� does not matcht� when� and� are disjoint. In
the first case, we can decide also that�� matchesx� when� � �. Under the opposite

Research Report No. 10 May 1991



6 Delia Kesner

conditions, we cannot decide and then�� 2 [[x� ]]U . In the second case,� is a minimal
sort (we are dealing with unitary signatures) and so, every�� with � comparable with
� (i.e. � � �) belongs to the strict set oft. Note also that we can decide that a term
with the same constructor symbol does not match if at least one of its arguments does
not match.

[[ t]]F = T�� � [[ t]]T � [[ t]]U

Example 3.1 Consider the following subsort order:

�

�
�

�
��

Z
Z
Z
ZZ

��

�
Z
Z
Z
ZZ

�
�

�
��

�

B

B
BB

�

�
��

�

b :! �
�

a :! �

p : � � �! �
q : � � �! �

f : � � � ! �

[[ f (x� ; b)]]T = ff (b; b); f (��; b); f (��; b); f (a; b); . . .g
[[ f (x� ; b)]]U = ff (b; ��); f (��; ��); f (a; ��); ��; . . .g
[[ f (x� ; b)]]F = fb; a; f (��; ��); f (a; a); . . .g

Proposition 1 [[ t]]T and[[ t]]U are disjoint,[[x� ]] = �T�� ; and[[ t1tt2]] = [[ t1]] \ [[ t2]]

To each constraintC, we associate a three-valuedtruth value — true; falseor uncertain—
under a(V(C); ��)-assignment�, denoted [[C]]� . The important cases are defined as follows.
The other cases follow standard three-valued logic with^ being the minimum of its arguments
and_ the maximum (false< uncertain< true).

[[ t 3 l]]� =

8><
>:

true if �(t) 2 [[ l]]F
false if �(t) 2 [[ l]]T
uncertain if �(t) 2 [[ l]]U

[[ t : �]] � =

8
>>><
>>>:

true if �(t) 2 �T��

false if �(t) is of sort�
and� u � = ?

uncertain otherwise

Example 3.2 With the subsort order of Example 3.1:

[[x� : �]] [x� ��� ] = uncertain [[x� : �]] [x� ��� ] = true
[[ f(b; b)3 a]]� = true [[x� 3 f (b; b)]] [x� ��� ] = uncertain

To each constrained termtjC, we associate three disjoint sets of��-terms. The first one,
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Pattern Matching in Order-Sorted Languages 7

denoted by [[tjC]]T or simply by [[tjC]] and called thedenotation or solution of tjC, is the
set of��-terms that are instances oft and satisfyC. The second one, denoted [[tjC]]U and
called theuncertain or strict set, is the set of��-terms for which we cannot decide if they are
instances oft or if they satisfyC. The third one, denoted [[tjC]]F , is the set of��-terms that
are not instances oft or do not satisfyC. Formally,

[[ tjC]]T = f�(t) j � is a(V(t); ��)-assignment and [[CjV(t)]] � = trueg

[[ tjC]]U = f�(t) j � is a(V(t); ��)-assignment and [[CjV(t)]] � = uncertaing [ [[ t]]U

[[ tjC]]F = T�� � [[ tjC]]U � [[ tjC]]T

A constrained term isconsistentif it denotes a nonempty set. IfC1_ . . ._Cn is the disjunctive
normal form ofC, the denotation oftjC is the union of the denotations oft jC1 . . .t jCn.

Example 3.3 Let T = f (x� ; y�) j x� : � ^ y�3q(a; z�). With the subsort order of
Example 3.1:

[[T]]T = ff (b; b); f (��; b); . . .g
[[T]]U = ff (��; b); f (b; ��); . . .g
[[T]]F = ff (a; q(a; ��)); b; a; . . .g

Proposition 2 The following equivalences will be used where required:

[[x� ]] = [[x� jx� : �]] if � � �

[[ t]]F = [[x> jx> 3 t]]T

[[ t jC1 _ C2]] = [[ t jC1]] [ [[ t jC2]] and[[ t jC1 ^ C2]] = [[ t jC1]] \ [[ t jC2]]

[[ t j F ]] = fg, [[ t j T ]] = [[ t]] and, if t is a ground constructor term, then[[ t]] = ftg

To each constrained patternP1 . . .Pn (and thus in particular to each pattern), we associate three
sets of��-terms. Thesolution or denotation of P1 . . .Pn, denoted by [[P1 . . .Pn]]T or simply
by [[P1 . . .Pn]], is the set of��-termst for which there exists aPi such thatt matchesPi and
it is decidable thatt does not matchPk; k < i. Theuncertain or strict set of a constrained
patternP1 . . .Pn, denoted [[P1 . . .Pn]]U , is the set of��-termst such that there exists aPi for
which we cannot decide whethert matchesPi andt is not in the denotation of any preceding
prefixP1 . . .Pk, k < i of the pattern. The last one, denoted [[P1 . . .Pn]]F , is the set of��-terms
that, decidably, are not solutions ofP1 . . .Pn. Formally:

[[P1 . . .Pn]]T = ft j 9i (1� i � n) t 2 [[Pi ]]T and8k (k < i) t 2 [[Pk]]Fg

[[P1 . . .Pn]]U = ft j 9i (1� i � n) t 2 [[Pi ]]U and8k (k < i) t =2 [[P1 . . .Pk]]T g

[[P1 . . .Pn]]F = T�� � [[P1 . . .Pn]]T � [[P1 . . .Pn]]U

Example 3.4 Consider the constrained pattern:

P1;P2 = f (x� ; b) j x� : � ; f (y�; z�) j z� : � ^ z�3a
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8 Delia Kesner

With the subsort order of Example 3.1:
f (��; b) 2 [[P2]]T and f(��; b) =2 [[P1]]F , sincef(��; b) 2 [[P1]]U . Hence,f (��; b) =2

[[P1;P2]]

4 Compilation Rules

In this section, we describe our compilation method. This consists of three kinds of rules acting
on constrained terms. Thesimplification rules transform restrictions on terms into restrictions
on variables.Partitioning transforms an ambiguous order-sorted pattern into an equivalent
set (modulo simplification) of disjoint order-sorted constrained terms. Thenormalization
rules transform a set of disjoint order-sorted constrained terms into a set of simpler ones that
facilitates the construction of the pattern discrimination tree.

4.1 Simplification Rules

The simplification rules define a reduction relation�!s on constraints that transforms a
structure or sort constraint on terms into an equivalent constraint on variables, that is, eitherT ,
F , or of the formx 3 t or x : �. Figure 1 presents the simplification rules. Most are derived
from [10, 3, 11] and are self-explanatory. The interesting ones are rules 14 and 15.

The complete sort rule allows us to simplify several structural constraints to a single sort
constraint. It states that a term does not match any of the constructors of a sort� if and only if it
is not of sort�. Note that this rule is only applicable when the constructors of� are finite. The
negative sortrule states that any termt, which is of sort� but not of sort�, is of sort� � �,
where� � � = � u �c.3 We will write as� � f�1; . . .; �kg the sort(. . .(� � �1)� . . .)� �k.

If x� : � appears in a constraintC, then the variablex� is said to berestricted by � in
C, otherwise it is restricted by�. We shall say that a constraintC is in simplified form
(irreducible by�!s), denotedC #s, if and only if it is eitherT orF or

If x� : � is in C then� > � and� 6= ?

If x� 3 t� is in C thent is not a variable and� � �

If x 3 ff1; . . .; fng 2 C andfi : ~�i ! �i 2 � (i = 1 . . .n), thenf1; . . .; fn are not all the
constructors off�1 . . .�ng

Example 4.1 The constraintx� : � ^ y�3f (a; a) is in simplified form whilex�3z� and
y�3fp; qg are not.

Theorem 1 (Simplification) Let tjC be a constrained term.

3Note that(� � �) � � and(�� �) u � = ?.
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Structures

1: f (t1 . . .tn)� 3 f (h1 . . .hn)�

�!s
W

1�i�n ti 3 hi

2: f (t1 . . .tn) 3 g(h1 . . .hm) �!s T

3: f () 3 f () �!s F

4: t� 3 h� �!s T
if � u � = ?

Conjunction and Disjunction

5: t 3 l ^ t 3 l0 �!s t 3 l
if l v l0

6: t 3 l _ t 3 f (~h) �!s t 3 ltf (~h)
if ltf (~h) exists

7: x : � ^ x3 t� �!s x : �
if � u � = ?

8: x : � ^ x : � �!s x : � u �

9: x : � _ x : � �!s x : � t �

if � and� are comparable

Positive Sorts

10: t� : ? �!s F

11: t� : > �!s T

12: t� : � �!s T

if � � �

13: t� : � �!s t� : � u �

if � and� are not comparable

Negative Sorts

14: t� 3 y� �!s t� : � � �

Complete Sort

15:
Vn

i=1 x� 3 fi �!s x� : � � f�ig
n
i=1

if fi : ~�! �i 2 � and thefi ’s
are all the constructors off�ig

n
i=1

Figure 1: Simplification Rules
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10 Delia Kesner

(Invariance) If C�!s C0 then[[ tjC]] = [[ tjC0]]
(Termination) There are no infinite chains C1 �!s C2 �!s . . .
(Completeness) For each constrained term tjC where C is not in simplified form,

there exists a C0 such that C�!s C0

Proof: (Sketch) The invariance claim must be verified for each rule—a tedious task, since there are
so many cases, but straightforward. Completeness can be easily shown by considering a constrained
term whose constraint is not in simplified form. To prove the termination claim, we use the lexical
ordering over(C1;C2;C3;C4), where:

C1 =
P

(t3h)2C size(t), wheresize(t) is defined as one would expect,
C2 is the number of structure atoms inC,
C3 is the number of sort atoms inC and,
C4 =

P
(t:�)2C path(�), wherepath(�) is the length of the maximal path from? to � in the

sort lattice.

Rules1; 2; 3; 4 decreaseC1; rules5; 6; 7; 14;15decreaseC2; rules8; 9; 10; 11;12decreaseC3; and
rule13decreasesC4. When one rule decreasesCi , Ck(k < i) does not change. Thus, the complexity
with respect to the lexical ordering is always reduced and the length of a�!s derivation is bounded.

4.2 Partitioning

The definition of a pattern’s denotation (Section 3.2) suggests splitting a pattern into an
equivalent set of constrained terms, whose set denotations are disjoint, and whose union is the
set denotation of the pattern.

Let T1 = t1jC1 andT2 = t2jC2 be two constrained terms. We sayT2 matchesT1, denoted
T1 v T2, iff there exists a substitution� such thatt1 v t2 (i.e. t2 = �(t1)) andC2 ) �(C1),
where) is logical implication. A substitution� unifies two constrained termsT1 andT2 if
and only if� unifiest1 andt2 and the constrained term�(t1) j �(C1 ^ C2) is consistent. If�
unifiesT1 andT2, thenT1tT2 = t1tt2j�(C1 ^C2) is the least upper bound with respect tov
and we say thatT1 andT2 are compatible constrained terms.

Let T = tjC be a constrained term. Therestriction of T under a substitution�, denotedTj� ,
is defined to betjC0 whereC^ t 3 �(t) �!�

s C0.

Proposition 3 [[T1tT2]] = [[ t1jC1]] \ [[ t2jC2]] and[[�(T)]] \ [[Tj� ]] = ;

The recursive function,PART , takes a constrained termT and a patternp1 . . .pn as arguments,
and partitionsT according top1 . . .pn into a set of constrained terms whose denotations
are disjoint.4 To illustrate, suppose we wish to partitionx>jT according to the pattern
p1 . . .pn. The first set generated isfp1jT g and we go on to recursively partition the decidable
x>-complement ofp1, that is,x>jx>3p1, according to the rest of the patternp2 . . .pn. Note
that the order of the pattern is respected.

4In fact, we mean “partitions the set denotation ofT” but we shall say simply “partitionsT”.
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PART (T; []) = ;;

PART (T; p1 . . .pn) =

8>>>><
>>>>:

PART (T; p2 . . .pn)

if T andp1jT are not unifiable;

fT t (p1jT )g [ PART (Tj� ; p2 . . .pn);

otherwise; where� is the mgu ofT andp1jT .

Example 4.2 With the subsort order of Example 3.1, letg be a constructor whose domain
sort is(� t �)� nat, where� t � andnatare disjoint sorts. Partitioningx>jT according to
the patterng(x� ; 0); g(y�; znat); x> yields:

fg(x� ; 0); g(y�; znat
)jy� : �; g(y�; znat

)jznat
30; x>jx>3g(x�; 0)^ x>3g(y�; znat

)g

Proposition 4 If PART (x>jT ; p1 . . .pn) = fP1; . . .;Png, then Pi = fpij
V

j<i pi 3 pjg and
[[Pi ]] \ [[Pj ]] = ; for i 6= j.

Proof: (Sketch) By induction oni, using the fact that if the substitution�i is defined by�i(x>) = pi

for all 1 � i � n, then(. . .(x>jT )j�1 . . .)j�n = x>jx>3p1 ^ . . .^ x>3pn.

Theorem 2 (Partitioning) Let p1 . . .pn be a pattern such thatPART (x>jT ; p1 . . .pn) =

fP1; . . .;Png, then

[[p1 . . .pn]]T �
S

1�i�n[[Pi ]]T

If t 2
S

1�i�n[[Pi ]]T , then9j such that t2 [[pj ]]T and t2 [[pk]]F , for k < j

[[p1 . . .pn]]F = [[P1 . . .Pn]]F

Proof: (Sketch) The first claim is shown by induction onn. The second one is shown by
Proposition 4 and the second item of Proposition 2. To show the last claim, it suffices to prove that
both [[p1 . . .pn]]F and [[P1 . . .Pn]]F are equal to

T
1�i�n[[pi]]F .

Thus, partitioning transforms an ambiguous list of order-sorted terms (a pattern) into an
unambiguous set of order-sorted constrained terms. It changes neither the decidable sets
associated to each pattern nor the strict one. We say thatfS1; . . .;Sng is a complete
decomposition if and only if there exists a patternp1 . . .pn such that partitioningx>jT
according to the list [p1 . . .pn x>] yields fS1; . . .;Sng. Whenx> is appended to the list of
patterns, both the success and the failure of the matching are considered. This does not change
the original problem because the discrimination tree covers all the cases that may appear during
the pattern matching process. It turns out that whenfS1; . . .;Sng is a complete decomposition
andt 2 [[Sj ]]F , there exists1� i � n such thatt 2 [[Si ]]T .
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12 Delia Kesner

4.3 Normalization

In order to simplify the construction of the PMT, we use four normalization rules (flattening,
sort, structure, empty) that operate over sets of disjoint constrained terms. Since the
formalization of these rules is quite complex, while the underlying idea is rather intuitive, we
first show three typical examples where such normalizations are to be performed.

The first rule decomposes a complex structural constraint into several simpler ones with only
one constructor in the right hand side of each structure atom. Normalizingx>jx> 3 cons(1; z)
with theflattening rule yieldsx>jx> 3 cons( ; ) andcons(y; z)jy3 1.

Now, consider the constrained termx>jx>3cons(y; z). Recall that, with a lazy evaluation
mechanism the sort of a well-sorted expression can be known before its structure. Thus, ifx>

is substituted by a term whose sort is incompatible with that ofcons(y; z), it is not necessary to
reduce the term. On the other hand, ifx> is substituted by alist expression, it is necessary to
continue reduction in order to decide whether it is a “cons” term. Thus, assuming thatlist and
int are the only sorts in the system, thesort rule transformsx>jx>3cons(y; z) into x>jx> : int,
x>jx> : list ^ x>3cons(y; z).

If a variable has a common occurrence in more than one constrained term and is restricted
by different structural constraints, then thestructure rule can be applied. For example,
f (a; xint) j xint 3 1 and f (b; xint) j xint 3 2, is transformed intof (a; 2)jT , f (b; 1)jT ,
f (a; xint) j xint

3 1 ^ xint
3 2 and f (b; xint) j xint

3 1 ^ xint
3 2. Now, the subterm at

position2 is a variable restricted by the same set of symbols or it is just one of such symbols.

We shall say thattjC is in normalized form, if and only if C is in simplified form but is
different fromF and wheneverx3f (t1 . . .tn)� appears inC and f : �1 . . .�n ! � 2 �,
then x is restricted by� in C and t1 . . .tn are mutually distinct variables of sort�1 . . .�n

respectively. We shall say that a set of constrained termsft1jC1; . . .; tnjCng is in normalized
form (irreducible by�!n), if and only if everytijCi is in normalized form and, whenever there
exist two termsti andtj and there exists a positionu such that for allv <pos u, ti and tj have
the same structure symbol at positionv, ti=u andtj=u are variables restricted by the same sort
and by nonempty setssi andsj of structure symbols inCi andCj respectively, thensi = sj.

Example 4.3 The constrained termh(x�; y�)jy�3f (v�;w�) is in normalized form while
f (x� ; y�)jx�3a andh(x� ; y�)jy�3f (v�;w�) are not.

Figure 2 presents the normalization rules. There, we assumef : �1 . . .�n ! � 2 � and
x�1

1 ; . . .; x�n
n are pairwise distinct variables. When� is a substitution,(tjC)hh�ii denotes the

term �(t) j �(C) #s. When normalizing, rules are applied in the order that they appear in
Figure 2. They satisfy the properties of Theorem 1; namely, termination, invariance and
completeness.

Theorem 3 (Normalization) Let S be a set of constrained terms.
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Flattening: If 9i (1� i � n) such thatti is not a variable of sort�i, then

S[ f t j x3f (t1 . . .tn)� ^ C g �!n

S[ f t j x3f ^ C; (t j x3f (t1 . . .tn)� ^ C)hhx f (x1 . . .xn)ii g

Sort: If x is restricted by� in C and� > �, then

S[ f t j x3f � ^ C g �!n S[ f t j (x : � � � ^ C) #s; t j (x : � ^ x3f � ^ C) #s g

Structure: If 9u such thatt1=u = fx�jx�3s1g and t2=u = fy� jy�3s2g; f � 2 s1,
but f � =2 s2 and 8v; v <pos u; t1 and t2 have the same constructor
symbol at positionv, then

S[ f t1 j P1; t2 j P2 g �!n

S[ f t1 j P1; t2 j (P2 ^ y�3f �) #s; (t2 j P2)hhy�  � f (x1 . . .xn)ii g

Empty: S[ ftjFg �!n S

Figure 2: Normalization Rules
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14 Delia Kesner

(Invariance) If S�!n S0, then[[S]] = [[S0]]
(Termination) There are no infinite chains S�!n S0 �!n . . .
(Completeness) If S is not in normalized form,9S0 such that S(�!s [ �!n) S0

Proof: (Sketch) The invariance claim is straightforward. Now, supposeSis not in normalized form.
If there exists a constrained termtjF , the empty rule can be applied. If there istjC such thatx3f � is
in C andx is restricted by� with � > �, the sort rule can be applied. If there existsx3f (t1 . . . tn)� ,
wheref : �1 . . .�n ! � 2 � andti not a variable of sort�i , then the flattening rule can be applied.
Suppose there exist two termsti and tj and there exists a positionu such thatti=u = fx� jx�3sig,
tj=u = fy�jy�3sjg, for all v <pos u, ti andtj have the same structure symbol at positionv, butsi 6= sj .
If f � 2 si or sj with � > �, then the sort rule can be applied. Otherwise, the structure rule can be
applied. To prove the termination claim over a setft1jC1; . . .; tnjCng of constrained terms, note that
rules are applied in order. Flattening decreases the complexity of right-hand sides of structure atoms
of Ci ’s; sort decreases

P
i=1...n

P
(x3f�)2Ci

distance(x3f �;Ci), wheredistance(x3f �;Ci) is defined
as 0 if x is restricted by� in Ci , 1 otherwise; structure decreasesjsi � sj j + jsj � sij, and empty
decreases the number of constrained terms.

5 Sequentiality and Optimality

Compiling pattern matching consists of transforming a function defined by order-sorted
patterns into a case-expression presented as a discrimination tree. The tree obtained is not
always optimal, that is, it could fail to terminate on some terms that are not in the strict set of
the pattern. As the evaluation mechanism is sequential, we must choose an order of verification
running the risk of losing some solutions. In a many-sorted framework, consider Berry’s
example [1] formed by the patternsf (true; true; z), f(false; y; true), f(x; false; false). Given
a termf( ; ; ), we must choose an argument position in order to start the matching. If we
start at position three, the termf (true; true; �Bool) will not be matched, even though it belongs
to the denotation of the first pattern. The same happens with the termsf(false; �Bool; true),
f (�Bool; false; false) if we start at the second or third positions, respectively.

With a strict evaluation mechanism, an optimal PMT will be faster but the solutions (that is,
those terms that match or not) will remain the same as that of a non-optimal tree. On the other
hand, in a lazy evaluation framework, some non-optimal trees may fail to terminate due to
unnecessary verifications that try to reduce subterms that do not have a head-normal form.

In our framework, the sort of each term is examined before its structure, because the sort can
be refined after usually only a few reduction steps whereas to examine the structure, more
reduction steps are required to obtain head-normal form. The construction method for PMT’s
that we present here chooses a direction (intuitively, a position in a term at which to start
reduction) and thus decides whether a subsort or structure verification is required. At each
level of the tree, the structures and sorts are more precise than those of preceding levels.

We propose a notion ofsequentialityof the pattern matching predicate that takes not only the
structure of terms into account, but also the sort system. Intuitively, a disjoint setSof patterns
is sequential in the sense of [7, 10] if it is possible to decide the matching property without
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doing some look-ahead. That is, for any constrained termT not matching any pattern ofS,
there exists a position (so-calleddirection) where a reduction must be performed in order to
decide the matching property. Furthermore, this position can be determined without looking
at the subterms ofT which are not computed yet. Our definition of sequentiality requires the
setSof patterns to have also thesort property : intuitively,Shas the sort property if whenever
u is a position of a constrained termT to be evaluated and two different patterns ofS that are
compatible withT have variablesx� , y� at positionu respectively, then� and� are either
disjoint or comparable sorts. In fact, if� and� have a common subsort� different from?; �
and�, the positionu cannot be taken as a direction because unnecessary reductions ofT may
be performed in order to distinguish between� and�.

For example, consider the three unambiguous patternsf (true; y�; z), f(false; y�; true),
f (x; y�; false), where the subsort order is that of Example 3.1. If the PMT associated
with this problem needs to know whether a term is of sort� (resp. of sort�) as in the case of
f (false; ��; true) (resp. f (true; ��; true)), it will fail to terminate even though the term is in
the denotation of the second (resp. first) pattern.

Optimal PMT’s will only fail to terminate on the strict set of the problem. It turns out that
sequentiality of a pattern matching problem is equivalent to optimality of its tree. Thus,
sequentiality becomes a necessary and sufficient condition for the construction of an optimal
tree. We shall next give an effective decision procedure for sequentiality on disjoint sets of
patterns.

In reading the following section, familiarity with the work of [7] would be helpful, but the
treatment is self-contained enough to be meaningful on its own.

5.1 Sequentiality

The set ofpositionsor occurrencesof a constrained termtjC, denotedO(tjC), is defined as
the set of positions oft, which is recursively defined as usual as finite sequences of positive
integers such that� 2 O(t) andk:u 2 O(f (t1 . . .tn)) if u 2 tk. We use<pos to denote the
lexical ordering between positions. The subterm oft at positionu, denotedt=u, is defined as
t=� = t and f (t1 . . .tn)=k:u = tk=u. We use(tjC)=u to denote the constrained term(t=u)jD,
whereD is the constraint of all the atoms inC restricting variables oft=u. For example,
(f (g(x�; a); y�)jx� : � ^ x�3f ^ y�3g)=1 = g(x� ; a)jx� : � ^ x�3f . If the replacement of
the subterm oft at positionu by a termp is a well-sorted term, we definet[u p] to be that
term. If T = tjC andP = pjD are two constrained terms andt[u p] is a well-sorted term,
T[u P] is defined ast[u p]j(C^ DjV(t[u p])). For example, ifg(x� ; a) is a term of sort
�, (f (g(x�; a); b)jx� : � ^ x�3f )[1 y� jy�3g] = f (y�; b)jy�3g.

We can think of a set of disjoint patternsSas a predicate on constrained terms such thatS(M) is
true if and only if9P 2 S;Pv M. If truth values are considered to be ordered byfalsev true,
S is a monotonic predicate on constrained terms. Increasing information about the term (in the
sense ofv) can only change the value of the predicate to a favorable one.
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16 Delia Kesner

A positionu 2 O(tjC) is said to be adirection of T = tjC in a set of disjoint constrained
patternsS= ft1jC1; . . .; tnjCng if and only if

T=u has the formx� jP

For every constrained termM such thatT v M andS(M) is true,M=u 6v T=u

(Sort property) If 9i; j such that8v; v <pos u, ti andtj have the same constructor symbol
at positionv; ti=u is a variable restricted by�i in Ci andtj=u is a variable restricted by�j

in Cj , then�i u �j = ? or �i � �j or �j � �i.

Lemma 1 Let T be a constrained term tjC. A position u is a direction of T in S= fS1; . . .;Sng

if and only if T=u has the form x� jP and for every constrained pattern Si 2 S compatible with
T, we have that u is an occurrence of Si, Si=u 6v T=u and the sort property holds.

Proof: Let u be a direction ofT in fS1; . . .;Sng andSi be a constrained pattern compatible withT.
ThenT=u has the formx� jP with x� restricted by� in P. Suppose thatu =2 O(Si). Then, there exists
a positionv such thatu = v:w, w 6= � andSi=v is y�jD. SinceSi is compatible withT, there exists
a constrained termM = mjF such thatSi v M, T v M; that is,M=v is an instance ofy�jD. Now,
(M=v)[w z�jP] = M[u z�jP] is a well-sorted constrained term that is also an instance ofSi and
obviously ofT. ThereforeM=uv T=u by construction, which contradicts the hypothesis.

Conversely, letM be a constrained term such thatT v M and Si v M and supposeM=u v T=u.
Then,Si=uv M=uv T=u, which contradicts our hypothesis.

By normalization, a complete decompositionSreduces to another complete decompositionS0

and the set of directions of any termT in S is the set of directions ofT in S0.

We say that a constrained termT is compatible with a set of disjoint constrained patternsS if
and only if there existsM such thatT v M andS(M) is true. In particular, ifS has only an
elementfPg, T is compatible withS if and only if T andP are unifiable,i.e., 9M such that
T v M andP v M.

A set of disjoint constrained patternsS is sequential in a constrained termT if and only
if, wheneverS(T) is false but it is compatible withS, then there exists a direction ofT in
S. We say thatS is sequential if and only if it is sequential in all constrained terms in
normalized form. Sequentiality of a predicateS is the possibility of systematically expanding
any constrained term step by step until either the predicate is true or it is clear that a positive
answer is impossible.

The sort property enriches the known notions of sequentiality by taking intoaccount the sort
system. When a variable’s position is restricted by two sorts with nonempty and nontrivial
intersection, some solutions are lost, as illustrated by the following example.

Example 5.1 With the subsort order of Example 3.1, the following set of disjoint
constrained patterns is not sequential:
f h(p; y>; z�)jy> : �; h(x�; y>; p)jx�3p^ y> : �; h(x�; y>; q)jy> : � g
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If pattern matching starts at the first position (resp. at the third), it will fail to terminate on the
termh(��; f (a; a); q) (resp. h(p; b; ��)) even though it belongs to the denotation of the third
(resp. first) pattern. Now, note that the first and second constrained terms have variables at
position 2 which are restricted by sorts with nonempty and nontrivial intersection. If matching
starts at this position asking whether or not a term is of sort� (resp. of sort�), it will fail to
terminate onh(q; ��; p) (resp. h(p; ��; p)), even though it is in the denotation of the second
(resp. first) pattern.

5.2 Construction of pattern matching trees

A pattern matching tree (PMT) for a constrained termT and a complete decomposition
S= fS1; . . .;Sng is defined as:

T is the root and each node is a constrained linear pattern in simplified form.

If u is the direction ofP in SandT1; . . .;Tk are the children ofP, then:

T1 . . .Tk are pairwise incompatible constrained terms;
P=u has the formx� jT , Ti andP only differ onu andP=u< Ti=u;
for everyTi , there exists a patternSj such thatTi v Sj .

If H1 . . .Hm are the leaves of the tree, thenfS1; . . .;Sng �!
�
n fH1; . . .;Hmg

A PMT of a complete decompositionfS1; . . .;Sng is a pattern matching tree for the constrained
term x>jT and fS1; . . .;Sng. A PMT of fS1; . . .;Sng is optimal if and only if it fails to
terminate only for the strict set ofS1 . . .Sn.

We now describe an algorithmT REE that constructs a PMT for a constrained termT = tjC
and a complete decompositionfS1; . . .;Sng. If C is non-consistent, return the empty tree.
Otherwise, ifT is an Si, return the single-node treeT. Otherwise, normalizefS1; . . .;Sng

into fH1; . . .;Hmg and search a directionu of T in fH1; . . .;Hmg. If such a direction
cannot be found,fH1; . . .;Hmg is not sequential inT so fail. Otherwise, proceed with
DIR(T; fH1; . . .;Hmg; u) whereT = tjC; T=u = x� jT ; Hi = hijCi andDIR is defined by:

DIR (T; fH1; . . .;Hmg; u) =

Let Sortsbe the maximal sorts off � j T v Hi; hi=u 2 V is restricted by� g and

let Formsbef fi j T v Hi ; hi=u= fi(. . .) g in

if Sorts= ;

then (a structure step) build a tree rooted atT with children :

T REE(T[u f (. . .)] #s; fH1; . . .;Hmg) for eachf in Formsand

T REE(t j (C^ x� 3 Forms) #s; fH1; . . .;Hmg))

else (a sort step) build a tree rooted atT with children:

T REE(t j (C^ x� : �) #s; fH1; . . .;Hmg) for each� 2 Sortsand

T REE(t j (C^ x� : � � Sorts) #s; fH1; . . .;Hmg))
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18 Delia Kesner

Example 5.2 Let us consider the subsort order of Example 3.1. Let� be the sort� t �

andg be the constructor of� whose domain sort is� � nat, with nat and� disjoint sorts.
Consider the patterng(x�; ynat); g(x�; 0); g(x�; 1). Normalization yields:

g(x�; ynat)
g(x�; 0)jx� : �
g(x�; 1)jx� : �
y>jy> : natt �

g(x�; ynat)jx� : � ^ ynat3 0^ ynat3 1

Figure 3 shows the PMT. The directions are between square brackets.

Z

Z

Z
Z

�

�

�
�

y> j T [�]

y> j y> : � [�] y> j y> : natt �

g(x�; ynat) j T [1]
�
�

�
�
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Figure 3: Pattern Matching Tree

Theorem 4 A finite complete decomposition in normalized form S= fS1; . . .;Sng is sequen-
tial in every normalized term if and only if it is sequential in every node of its associated
PMT.

Proof: Since nodes of the PMT are in normalized form the left to right implication is evident.
Conversely, letM be a constrained term in normalized form such thatS(M) is false andM is
compatible withS. As x>jT is the root of the pattern matching tree butM does not match any pattern
of S, there exists a nodeT = tjC whose children areT1 . . .Tm and whose direction inS is u such that
T v M and for all1 � i � m, Ti 6v M. We will prove thatu is a direction ofM in S, that is (by
Lemma 1) the sort property holds, (1)M=u has the formx�jP and for allSi 2 Scompatible withM,
(2) u is an occurrence ofSi and (3)Si=u 6v M=u.
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By definition of discrimination treeT=u is x� jT and so (1) holds. By construction each level is either
a sort or a structure step and sinceu is a direction ofT in Sthe sort property holds.

In the sort step case,T1=u . . .Tm=u are variablesx�1
1 . . .x�m

m and (1) immediately holds. SinceT v M
and nodes at the same level ofT are defined to be incompatible, ifSi is a pattern compatible withM,
thenT v Si and (2) holds. By construction, for everySj compatible withT we haveSj=u 6v T=u. In
particular we haveSi=u 6v T=u. Now, if T=u = M=u (3) holds. Otherwise, supposeSi=uv M=u. As
M is in normalized form and� is not a minimal sort,M=u does not have any structure atom and then
M=u is of the formx�jT and� > �. SinceSi=u v M=u, Si=u is x�i jT and�i � �. By hypothesis for
all 1 � j � m, Tj=u 6v M=u and then�j 6� �. As T v Si , there existsTj such thatTj v Si and then
�j = �i . Then�j � � which contradicts the hypothesis.

In the structure step caseT1=u = f1; . . .;Tm�1=u = fm�1 andTm=u = x� jx�3ff1 . . . fm�1g. Since
T v M and for all1 � i � m, Ti 6v M, T=u = M=u or M=u = x� jx�3S. In the first case, we have
u is a direction ofM in S. In the second case (1) immediately holds. LetSi be a constrained pattern
compatible withM. As in the sort step case,T v Si and (2) holds too. Now, supposeSi=u v M=u.
ThenSi=u is a variable and there must be a childTj of T such thatTj v Si . We haveTj=u is also a
variable and thus necessarilyj = m andff1 . . . fm�1g � S. By construction,T andTj only differ onu
andT v M. ThereforeTj v M which contradicts the hypothesis and thus (3) holds.

Theorem 5 A PMT of a complete decomposition S in normalized form is optimal iff S is
sequential.

Proof: By Theorem 4,fS1; . . .;Sng is sequential if and only if there exists a discrimination tree in
which eachnodetjC has a direction in the setfS1; . . .;Sng and the sort property holds. The set of
terms for which the algorithm does not terminate is generated at eachnodetjC of the PMT by some
terms of the form(tjC)[u ��], whereu is the chosen direction oftjC in fS1; . . . ;Sng. By definition
fS1; . . .;Sng is optimal if and only if it fails to terminate only for the strict set offS1; . . .;Sng. We
must verify that the algorithm fails to terminate in(tjC)[u ��] if and only if it is in the strict set
of fS1; . . .;Sng. The right to left implication is evident. Conversely, by constructioneach level is
either a sort or a structure step. IfT1; . . .;Tm are the children of the nodetjC, two cases are to be
considered:

In the structure level case,Ti = (tjC)[u f �i ]; i = 1 . . .m�1 andTm = t j (C^x�3ff �1 ; . . .; f �m�1g).
By normalizationT=u is a variable restricted by� and then� = �. Thus,(tjC)[u ��] is in the
strict set of eachTi and then in the strict set of each leafSj such thatTi v Sj . Then(tjC)[u ��] is
in the strict set offS1; . . .;Sng.

In the sort level case,T=u has the formx� jT and by construction eachTi is of the formt j (C^x� : �i)

with �i < �. Since the decomposition is complete,
F

i=1...m�i = � and by the sort property�1 . . .�m

are pairwise disjoint sorts. If the algorithm fails to terminate in(tjC)[u ��], there exists at least
onei such that� 6� �i and� u �i 6= ?. We have(tjC)[u ��] in the strict set ofTi . Now, for all Sj

such thatTi v Sj , we have eitherTi=u = Sj=u or Sj=u = f �i or Sj=u = x�i jx�i3ff �i ; g�i ; . . .g and then
(tjC)[u ��] is in the strict set ofSj . Then(tjC)[u ��] is in the strict set offS1; . . .;Sng.

6 Discussion

Unitary signatures have been defined in Section 2 to be regular and to verify some constraints
over the set of sort symbols and the set of function and constructor declarations. Since
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complements of sorts are often used during the compilation scheme we require the lattice of
sorts to be boolean. On the other hand, regularity is a sufficient condition for signatures to
be finitary unifying. Nevertheless, it is not very clear why we restrict our interest to unitarity
ones. We present two simple transformation rules acting on signatures. A signature obtained
through these rules is constructed to verify the minimal codomain sort and the disjoint domain
sort properties. The transformation preserves the set of well-sorted ground constructor terms
(i.e. the free order-sorted term algebra) and so, we can think of our compilation scheme as one
that not only transforms patterns, but also signatures. We show in what follows how to obtain
this “compiled” version.

First, let us justify the need for constructors to verify the hypothesis of minimal codomain sort
(the third condition of unitarity). Let� = hS;�;F ;C;V ;Di be a regular signature which
does not satisfy this condition and(S;�) be a boolean lattice. Then, there exists a constructor
f 2 C such thatf : ~� ! � 2 D and� is not a minimal sort. Thedownward signature� 0

obtained from� is

hS [ f�g [ f�c
g;� [ f� > �g [ f�c > � j� 2 �g;F ; C;V; (D� ff : ~� ! �g) [ ff : ~�! �gi

where� and�c are new sort symbols and� is the set of maximal sorts off� j � u �= ?g.

Note that� is strictly greater than the new symbol� which is now a minimal sort. Intuitively,
�0 has the same structure, but constructors are in a “lower level” of the lattice. When the
number of non-minimal codomain constructors is finite, this transformation terminates and the
same set of ground constructor terms can be built in� 0. The new partial order set of sorts is
also a boolean lattice.

Now, suppose the minimal codomain sort condition is verified whereas the disjoint domain
sort is not. Let� = hS;�;F ; C;V ;Di and f a constructor with two different declarations
f : �1 . . .�n ! � and f : �1 . . .�m ! �. If n = m = 0, thenf :! � and f :! � implies
� = �, because� and� are minimal and whenever� is regular they must be comparable.
Thenn = m� 1 and~�; ~� are not disjoint sorts. In this case there exists a term (not necessarily
a ground term) having� and� as sorts. Since� is regular and�, � are minimal we also have
� = �. Thedisjoint domain signature obtained from� is � 0 = hS;�;F ; C;V;D0i, where
the new set of declarations is defined in this way:

If ~� � ~�, f : ~� ! � is redundant and we can remove it.D0 isD � ff : ~� ! �g

Otherwise,

I� = fi 2 [1 . . .n] j �i � �i 6= ?g

8i 2 I�; 8j 2 [1 . . .n]; �i
j is �i � �i if i = j, �i otherwise

D� = ff : �i
1 . . .�i

n ! � j i 2 I�g

I� = fi 2 [1 . . .n] j �i � �i 6= ?g

8i 2 I�; 8j 2 [1 . . .n]; �i
j is �i � �i if i = j, �i otherwise

D� = ff : �i
1 . . .�i

n ! � j i 2 I�g

D0 isD � ff : ~� ! �; f : ~� ! �g [ ff : ~� u ~� ! �g [ D� [ D�
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This transformation always terminates and the obtained declarations have incompatible
domains by definition of “�” (set difference). Even now, we can build the same set of ground
constructor symbols.

Comon [2] noticed that an order-sorted signature� is a finite bottom-up tree automaton where
the set of final states is the set of sortsS. It turns out that the set of well-sorted terms of sort
� is the set of trees recognized by a tree automaton at the final state corresponding to�. The
transformations of signatures we have proposed above are simply transformations of their tree
automata. When restricting the set of final states of the new tree automaton� 0 to that of�,
the same set of well-sorted terms is recognized.

Unsorted and many-sorted signatures are particular cases of unitary ones, and therefore our
work also remains applicable to them. There are two other interesting order-sorted type
systems to be considered. The work of A¨ıt-Kaci and Smolka [13] has shown thatfeatures
typesand constructor types are dual concepts. In this kind of system every constructor symbol
has exactly one declaration and is a constructor of a minimal sort. In addition, the set of
feature terms is a prelattice, provided the sort symbols are ordered as a lattice. On the other
hand, Smolka [12] proposes a discipline with polymorphic order-sorted types restricted to free
constructors. Specification of the inclusion order between types is defined via special classes
of terminating rewriting systems and no function symbol contains more that one declaration.
He shows that the set of sort terms equipped with the order specified by the rewriting rules is
a well-founded quasi-lattice having? as its least element. Reasonable algorithms to compute
the greatest common subsort and least common subsort of two sort terms are given. Our
order-sorted framework also allows us to accommodate pattern matching in languages with
such a type system.

7 Conclusion

The method of treating ambiguous linear order-sorted pattern matching presented in this paper
generalizes previous work on non-ambiguous linear patterns [7], ambiguous linear patterns [9]
and ambiguous linear patterns using constrained terms [10]. We extend several notions
introduced in [10], such as constrained terms, non-reducible� terms, strict sets of patterns,
sequentiality and pattern-matching trees, to the order-sorted case. We define discrimination
trees to have not only edges labeled with structure constraints, but also with subsort restrictions.
This feature allows to decide pattern matching without reducing terms to normal forms, taking
advantage in this way of the lazy evaluation strategy. It turns out that our method constructs
optimal order-sorted PMT’s for sequential order-sorted pattern matching problems and can be
used either with a lazy or strict evaluation strategy. As in [10], our method can also be used
for non-sequential problems.

Our general order-sorted framework accommodates lazy pattern matching on all the regular
systems described in Section 6. Compilation of non-linear and higher-order patterns remains
as further research work.
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Research Report 3: Introduction to Programmable Active Memories. Patrice Bertin, Didier
Roncin, and Jean Vuillemin. June 1989.

Research Report 4: Compiling Pattern Matching by Term Decomposition. Laurence Puel
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