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Abstract

A major difficulty with logic programming is combinatorial explosion: since goals are solved
with possibly indeterminate (i.e., branching) reductions, the resulting search trees may grow
wildly. Constraint logic programming systems try to avoid combinatorial explosion by building
in strong determinate (i.e., non-branching) reduction in the form of constraint simplification.
In this paper, we present two concepts, residuation and guarded rules, for further strengthening
determinate reduction. Both concepts apply to constraint logic programming in general and
yield an operational semantics that coincides with the declarative semantics. Residuation
is a control strategy giving priority to determinate reductions. Guarded rules are logical
consequences of programs adding otherwise unavailable determinate reductions.

Résumé

Une difficulté majeure rencontr´ee en programmation logique est l’explosion combinatoire :
puisque les buts sont r´esolus selon des r´eductions potentiellement ind´eterminées (i.e., bran-
chantes), les arbres de recherches qui en r´esultent peuvent grossir d´emesur´ement. Les syst`emes
de programmation par logique de contraintes tentent d’´eviter l’explosion combinatoire en
intégrant des primitives de r´eductions fortement d´eterminées (i.e., non branchantes) en forme
de simplification de contraintes. Dans ce papier, nous pr´esentons deux concepts, la r´esiduation
et les règles guard´ees, pour renforcer davantage les r´eductions d´eterminées. Ces deux con-
cepts s’appliquent `a la programmation logique par contrainte en g´enéral et fournissent une
sémantique op´erationnelle qui co¨ıncide avec la s´emantique d´eclarative. La r´esiduation est une
stratégie de contrˆole donnant priorit´e aux réductions d´eterminées. Les r`egles guard´ees sont des
conséquences logiques de programmes ajoutant des r´eductions d´eterminées qui ne sont pas
autrement disponibles.
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Residuation and Guarded Rules 1

1 Introduction

A major difficulty with logic programming is combinatorial explosion: since goals are solved
with possibly indeterminate (i.e., branching) reductions, the resulting search trees may grow
wildly. Constraint logic programming systems [7, 13, 9] try to avoid combinatorial explosion
by building in strong determinate (i.e., non-branching) reduction in the form of constraint
simplification. In this paper we present two concepts, residuation and guarded rules, for further
strengthening determinate reduction. Both concepts apply to constraint logic programming in
general and yield an operational semantics that coincides with the declarative semantics.

1.1 Residuation

Residuation1 is a control strategy for constraint logic programming meant to replace the rigid
depth first strategy of Prolog, which amounts to eager generation of usually wrong assumptions.
Roughly, residuation makes determinate reduction the rule, and indeterminate reduction the
exception. The latter is left to the user’s discretion by declaring relations asgenerating. Given
a goal, an atom is calleddeterminateif reduction with all but possibly one clause defining
the atom immediately fails due to constraint simplification.Residuationis now the following
control strategy:

� given a goal that contains determinate atoms, a determinate atom must be reduced;

� given a goal that contains no determinate atoms, an atom whose relation is declared as
generatingmust be reduced.

Thus, the user controls which atoms can be reduced indeterminately by declaring some
relations as generating. If no relation is declared generating, indeterminate reduction cannot
occur. Even with generating relations, indeterminate reduction can only occur if determinate
reduction is not possible. A relation is calledresiduatingif it is not declared generating. Given
a goal, an atom is calledresiduatedif it is not determinate and its relation is residuating. An
important feature of the residuation strategy is that goals whose atoms are all residuated are
taken as answers. Often such complex answers are fine as they are. For instance, iflength is
a length predicate for lists, the goal

9N (length(L;N) ^ N � 47)

(“L is a list with at most 47 elements”) may be a perfectly satisfactory answer. If the user is not
satisfied with such a complex answer, he can request indeterminate reduction of a residuated
atom.

Residuation is similar to the control strategy of the Andorra model [10, 11], with the
difference that residuation performs indeterminate reduction only on atoms whose relation is
explicitly declared as generating. The philosophy behind residuation is that for most relations

1The term residuation was coined by Hassan A¨ıt-Kaci [1, 3, 2] for delaying control schemes.
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2 Gert Smolka

indeterminate reduction simply does not make sense, and that complex answers are often
appropriate.

In the examples of this paper, we will assume a constraint system with trees and linear integer
arithmetic.

A length relation for lists can be defined as follows (constraints are written initalic font):

length(L;N) $ L = nil ^ N = 0
_ 9H;R;M (L = H:R^ N > 0^M = N� 1

^ length(R;M)):

Instead of the conventional definite clause syntax we use definite equivalences. Such an
equivalence states explicitly that the relation on the left hand side is completely defined by the
right-hand side (we are committed to least model semantics).2

Now, given a goal whose constraint is�, an atom length(L;N) in this goal is de-
terminate if either the constraint� ^ L = nil ^ N = 0 simplifies to?, or the constraint
� ^ 9H;R(L = H:R^ N > 0) simplifies to?, where? is the canonical unsatisfiable con-
straint. Assuming a sufficiently powerful constraint simplifier, the goallength(X;N) ^ N � 2
reduces in two steps determinately to the goal

9Y;Z;U;M (X = Y:Z:U ^M = N� 2^M � 0^ length(U;M));

which is an answer if the relationlength is residuating. In any case, it would not make sense
to reduce this goal further.

Residuation is a simple and powerful alternative to delay primitives such as the delay
annotations of IC-Prolog [5], the freeze construct of Prolog II [8], or the wait declarations
of MU-Prolog [17]. There are major advantages offered by residuation over these delay
primitives.

� Residuation applies to every constraint system (rather than to tree systems only).

� No annotations in clauses are needed—the programmer only decides which relations
should be generating.

� Residuation is much more flexible—even if all relations are declared generating, the
search space is considerably pruned since determinate reductions are performed first.

An idealized method for solving problems with residuation splits the problem solver into a
propagating part and a generating part:

� a predicatepropagate(S) that holds if and only ifS is a solution of the problem, and
that depends only on residuating relations;

2For the special case of Horn clause programming, the translation from the conventional definite clause syntax
to definite equivalences is given by Clark’s completion [4].
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Residuation and Guarded Rules 3

� a predicategenerate(S) that defines candidates for (partial) solutions and depends on
generating relations.

A problem instance is then given as a query:

� ^ propagate(S) ^ generate(S);

where the constraint� describes the particular problem instance. With residuation, the
formula�^ propagate(S) will be reduced determinately to a constraint propagation network
consisting of residuated atoms and a shared constraint. In general, the constraint propagation
network alone is too weak to exhibit solutions. Thus,generate(S) is needed to generate
incrementally assumptionsabout the value of the variableS. As soon as an assumption is made,
the constraint propagation network becomes active since atoms that were residuated before
can now fire. Typically, most of the generated assumptions will be invalidated immediately by
constraint propagation leading to failure. To obtain a feasible search space, two considerations
are essential: (1) the careful design of the propagation and generation component, and (2) an
expressive underlying constraint system.

1.2 Guarded rules

Guarded rules are logical consequences of the program introducing additional determinate
reduction rules. We will see that guarded rules can significantly strengthen the propagation
component of a problem solver.

Consider the following definition of list concatenation:

app(X;Y;Z) $ X = nil ^ Y = Z

j X = H:R ^ Z = H:U ^ app(R;Y;U):

It is written using a sugared syntax (indicated by writingj rather than_), which suppresses
existential quantification of auxiliary variables and allows nesting of constraint terms.

With this definition, the goalapp(X;Y;Y) is not reduced determinately although it is equivalent
to X = nil. In fact, the relationapp satisfies the formula

Y = Z ! (app(X;Y;Z)$ X = nil);

which validates the determinate reduction of the atomapp(X;Y;Z) to the constraintX = nil
if the constraint of the goal entails the “guard”Y = Z.

A guarded ruleis a formula
�! (A$ G);

for convenience written as
� 2 A > G;

where� is a constraint (called theguard), A is an atom, andG is a goal. A guarded rule is
admissibleif it is valid in every model of the declarative semantics (again, we are committed to
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4 Gert Smolka

least model semantics). Thus, admissible guarded rules are redundant as far as the declarative
semantics is concerned.

The operational semantics of guarded rules is defined as follows. Given a goalG,

9X(� ^ A^ R);

and a guarded rule,
 2 A > G0;

the goalG can reduce determinately to:

9X(� ^G0 ^ R)

if the constraint� entails the constraint —that is, if the implication� !  is valid in
every model of the constraint system. Note that9X(� ^ G0 ^ R) is logically equivalent to
G in all models of the declarative semantics if the guarded rule is admissible. Moreover,
9X(� ^ G0 ^ R) is a goal up to constraint simplification and minor syntactic rearrangement.

Two further admissible guarded rules forapp are:

Y = nil 2 app(X;Y;Z) > X = Z ^ list(X)

X = Z 2 app(X;Y;Z) > Y = nil ^ list(X);

where the relationlist is defined as follows:

list(L) $ L = nil j L = H:R ^ list(R):

Our notion of admissible guarded rules is a new concept that must not be confused with the
guarded clauses of committed-choice languages such as Concurrent Prolog [18] or Parlog [6].
In these languages guarded clauses are used to define agents, while in our framework, relations
are defined by definite equivalences and admissible guarded rules are logical consequences
of the definitions. Moreover, committed-choice languages usually do not have a declarative
semantics. Maher [16] has given a declarative semantics for a strongly restricted class of
committed-choice languages, where guards must be mutually exclusive. This is usually not
the case for guarded rules, as can be seen in the list concatenation example.

Guarded rules have some similarity with the demon predicates of CHIP [9], but are much
more general. First, demon predicates in CHIP are defined by guarded rules only, while in
our approach the relation is defined independently by clauses. Second, guards in CHIP are
restricted to positive tree patterns. Third, in our approach guarded rules can be given for
generating relations, while demon predicates in CHIP are residuating by definition. Last but
not least, to our knowledge, no declarative semantics for CHIP’s demon predicates has yet
been even outlined.

In the presence of guarded rules, an atom in a goal is called determinate if it is either
determinate as defined before, or reducible using a guarded rule. Residuation is defined as
before, except that it now relies on the stronger notion of determinate atoms.

June 1991 Digital PRL



Residuation and Guarded Rules 5

Residuation with guarded rules yields a surprisingly strong constraint propagation mechanism,
which we will illustrate with two further examples. Consider the following relational definition
of the Boolean “and” function:

and(X;Y;Z) $ X = 1^ Y = Z ^ bool(Y)

j X = 0^ Z = 0^ bool(Y)

bool(X) $ X = 1 j X = 0:

First, note that the definition ofand in the presence of residuation already realizes four implicit
guarded rules:

X 6= 12 and(X;Y;Z) > X = 0^ Z = 0^ bool(Y)

Y 6= Z 2 and(X;Y;Z) > X = 0^ Z = 0^ bool(Y)

X 6= 02 and(X;Y;Z) > X = 1^ Y = Z ^ bool(Y)

Z 6= 02 and(X;Y;Z) > X = 1^ Y = Z ^ bool(Y):

The second and fourth rule could be optimized since under their guards we haveY = 1, but
residuation will reducebool(Y) anyway toY = 1. By exploiting the symmetry ofand with
respect to its first two arguments, we obtain the admissible guarded rules:

Y 6= 12 and(X;Y;Z) > Y = 0^ Z = 0^ bool(X)

X 6= Z 2 and(X;Y;Z) > X = 1^ Y = 0^ Z = 0
Y 6= 02 and(X;Y;Z) > X = Z ^ Y = 1^ bool(X):

By adding two further admissible guarded rules:

X = Y 2 and(X;Y;Z) > X = Z ^ bool(X)

X 6= Y 2 and(X;Y;Z) > Z = 0^ bool(X) ^ bool(Y);

we obtain an optimal constraint propagation.

In our next example, we consider the problem of solving a crossword puzzle. For this purpose,
it will be useful to use a predicates(I;U; J;V) to characterize the situation where theI-th letter
of the wordU is identical to theJ-th letter of the wordV. Using a predicatesuchthatat(I;U;X)
capturing the fact that the letterX is in positionI in the wordU, this predicate can be defined
as:

s(I;U; J;V) $ I = 1^ U = H:R ^ at(J;V;H)

j I > 1^ U = H:R ^ s(I� 1;R; J;V)

at(I;U;X) $ I = 1^ U = X:R

j I > 1^ U = H:R ^ at(I� 1;R;X):

Now the goals(2;U; J;V) is reduced to:

9X;Y;W (U = X:Y:W ^ at(J;V;Y));
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6 Gert Smolka

which makes explicit the fact that the wordU consists of at least two characters. However, the
symmetric goals(I;U; 2;V)does not reduce determinately. This can be arranged by providing
the following additional admissible guarded rules:

J � 1 2 s(I;U; J;V) > 9H;R (J = 1^ V = H:R ^ at(I;U;H))

J 6= 1 2 s(I;U; J;V) > 9H;R (J > 1^ V = H:R ^ s(I;U; J� 1;R))
:9H;R (V = H:R) 2 s(I;U; J;V) > ?:

1.3 Nondeclarative use of guarded rules

So far, only admissible guarded rules have been considered. Namely, those guarded rules that
are logical consequences of, and are operationally compatible with, the declarative semantics
of a relation defined as an equivalence. However, the operational semantics obtained
by residuation and nonadmissible guarded rules is significantly stronger than what can be
captured by a conventional declarative semantics. In fact, the object-oriented programming
techniques developed for Concurrent Prolog [18] become available if determinate atoms are
selected for reduction with a fair strategy.

For instance, an agent that reads two input streamsX, Y and merges them into one output
streamZ can be defined by four nonadmissible guarded rules:

X = nil 2 merge(X;Y;Z) > Y = Z

X = H:R 2 merge(X;Y;Z) > 9U (Z = H:U ^merge(R;Y;U))

Y = nil 2 merge(X;Y;Z) > X = Z

Y = H:R 2 merge(X;Y;Z) > 9U (Z = H:U ^merge(X;R;U)):

Operationally, this merging agent will behave exactly as expected: as soon as a message
appears on one of the two input streams, it can fire and put the message on the output stream.

However, it is easy to see that nomerge relation may be defined with an equivalence such that
the given guarded rules be admissible. In this particularmerge example, one could attempt
modeling streams as bags (i.e., lists whose order does not matter) rather than lists, but in
general, this would destroy the declarative semantics of stream consumers.

The rest of the paper presents a simple and general framework for declarative constraint logic
programming with residuation and admissible guarded rules. The complications of Jaffar and
Lassez’s framework [14] are avoided by not providing negation as failure.

2 Reduction Systems

The abstract notion of a well-founded reduction system captures important properties of logic
programming. It builds on predicate logic in that it takes for granted first-order structures
and formulae with the usual connectives and quantifiers. We assume that? (“falsity”) is a
variable-free formula that is invalid in every structure.
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Residuation and Guarded Rules 7

A reduction systemconsists of the following:

� a set of formulae calledgoalscontainingthe trivial goal ?;

� a set of structures calledmodelsin which the goals are interpreted;

� a set of equivalencesG$ G1 _ . . ._Gn calledreductions such that:

– G andG1; . . .;Gn are goals, andG 6= ?;

– G$ G1 _ . . ._ Gn is valid in every model.

A reductionG$ G1 _ . . ._ Gn appliesto the goalG and no other goal. Typically, a reduction
system contains many reductions with the same left hand side; that is, more than one reduction
applies to a goal. A reduction system can be seen as a rewrite system which allows to rewrite
a disjunction of goals into an equivalent disjunction of goals by replacing a goal according to
a reduction. The idea is to rewrite until no further reduction applies. The reduction systems
corresponding to logic programs are nonterminating in general; that is, there are goals from
which infinite rewrite derivations issue.

A reduction system can be separated into adeclarative componentgiven by its goals and
models on one hand, and anoperational componentgiven by its goals and reductions on the
other hand.

We say that a goalG reduces in one step toG0 and writeG ) G0 if there exists a reduction
G$ G1 _ . . ._Gn such thatG0 = Gi for somei. We say that a goalG reduces toG0 if
G)� G0, where)� is the reflexive and transitive closure of).

An interpretation is a pair consisting of a modelA and a variable valuation� into A. A
solution of a goalG is an interpretation(A; �) such thatG is valid inA under�. A goal is
satisfiableif it has at least one solution.

An answer is a goal to which no reduction applies. Note that? is always an answer (the
trivial answer). An answer for a goalG is an answerG0 such thatG)� G0. A set of answers
for a goalG is completeif it contains for every solution� of G an answerG0 such that� is a
solution ofG0.

Thecomputational serviceprovided by a reduction system is that ofsolving of goals; that is,
the enumeration of a complete set of answers for a given goal. The declarative component of
a reduction system specifies a class of problems where every goal corresponds to a particular
problem instance and the solutions of the goal are the solutions of the problem instance. The
operational component of a reduction system specifies a method for solving problem instances,
where solving means to enumerate a complete set of answers.

A reduction system iswell-founded if there exists a well-founded ordering on pairs of goals
and interpretations such that for every reductionG$ G1 _ . . ._Gn and every solution�
of G there exist ani = 1; . . .; n such that(G; �) > (Gi; �) and� is a solution ofGi. A
well-founded reduction system has two important properties:
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8 Gert Smolka

� every goal has a complete set of answers;

� a complete set of answers for a goalG can be enumerated as follows: if no reduction
applies toG, thenfGg is a complete set of answers; otherwise, choose arbitrarily any
reductionG$ G1 _ . . ._ Gn and solve the goalsG1; . . .;Gn in parallel.

We will see that every Horn clause program yields a well-founded reduction system.

A reduction isdeterminate if its right hand side is a single goal. We say thatG reduces
determinately to G0 if G reduces toG0 using only determinate reductions. IfG reduces
determinately toG0, thenG andG0 have exactly the same solutions. A reduction system is
determinate if it has only determinate reductions. Note that, in well-founded and determinate
reduction systems, there exist no infinite reduction chainsG ) G1 ) G2 ) � � � issuing from
a satisfiable goalG.

A reduction system isterminating if there exists no infinite chainG ) G1 ) G2 ) � � � of
reduction steps. Note that a terminating reduction system is always well-founded, but not
vice versa. Even a well-founded and determinate reduction system may not terminate on
unsatisfiable goals.

3 Constraint Systems

A constraint systemis a terminating and determinate reduction system whose goals are closed
under conjunction, existential quantification, and variable renaming. In a constraint system
we call the goalsconstraints, the answerssimplified constraints, and the process of reducing
a constraint to a simplified constraintconstraint simplification. Note that in a constraint
system, it is possible to compute a simplified constraint for every constraint. Moreover, if a
constraint simplifies to the trivial constraint?, it must be unsatisfiable. A constraint system is
calledcompleteif a constraint is unsatisfiable if and only if it simplifies to?. Thus, constraint
simplification in a complete constraint system is a decision algorithm for satisfiability of
constraints.

The operational component of a constraint system is called aconstraint simplifier , and the
operational component of a complete constraint system is called aconstraint solver. Our
framework does not require that the underlying constraint system be complete. In practice,
given a set of constraints with the corresponding models, one may prefer an incomplete
constraint simplifier since a (tractable) constraint solver may not exist.

Our notion of a constraint system is deliberately very general: every set of formulae with a
corresponding class of models can be seen as a constraint system if we provide no reductions
and close the formulae under conjunction, existential quantification and variable renaming. Of
course, such trivial constraint systems provide no computational service and are uninteresting
in practice.
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Residuation and Guarded Rules 9

4 Definite Construction

We now introduce definite construction, a paradigm which is the principle underlying constraint
logic programming. We obtain a very simple framework for constraint logic programming
with residuation. The two theorems given in this section are consequences of the results
in [12].

We assume that a constraint system and a set ofdefinite relation symbolsare given, where the
definite relation symbols take a fixed number of arguments and do not occur in the constraint
system.

An atom takes the formr(x1; . . .; xn), wherer is a definite relation symbol takingn arguments
andx1; . . .; xn are pairwise distinct variables. Adefinite goaltakes the form

9X (� ^ R);

whereX is a possibly empty set of existentially quantified variables,� is a constraint, andR is
a possibly empty conjunction of atoms. Note that the definite goals containing no atoms are
exactly the constraints. Adefinite equivalencetakes the form

A$ G1 _ . . ._ Gn;

whereA is an atom andG1; . . .;Gn are definite goals called theclausesof A. A definite
specification is a set of definite equivalences containing for every definite relation symbolr
exactly one equivalence withr appearing at the left hand side.

In the following, we assume that a definite specification is given. Moreover, we assume that
� and range over constraints,A over atoms,R over possibly empty conjunctions of atoms,
andG over definite goals. We will construct a reduction system for definite goals by defining
definite models (the declarative semantics) and definite reductions (the operational semantics).

For convenience, we will often refer to definite goals simply as goals.

A definite structure is a structure that can be obtained from a model of the constraint system
by adding interpretations for the definite relation symbols. Definite structures are partially
ordered as follows:A � B iff A andB extend the same constraint model andrA � rB

for every definite relation symbolr. A definite quasi-modelis a definite structure that is a
model of the definite specification. Adefinite model is a minimal definite quasi-model. The
following theorem validates our declarative semantics.

Theorem 1 For every model of the constraint system there exists exactly one definite model
extending it.

Next, we define the operational semantics. We assume that the order in which atoms are
written in a definite goal does not matter.

An equivalenceG$ D is adefinite reduction iff the following conditions are satisfied:
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10 Gert Smolka

� G = 9X(� ^ A^ R) is a definite goal;

� A$
Wn

i=1 9Yi (�i^Ri) is obtained from a definite equivalence of the definite specification
by variable renaming such that only the variables inA are shared withG;

� obtain for every clause9Yi (�i ^ Ri) of the definite equivalence the goal

Gi :=
�
? if � ^ �i simplifies to?,
9X[ Yi ( i ^ Ri ^ R) if � ^ �i simplifies to i 6= ?;

� D is the disjunction of allGi 6= ?; if all Gi ’s are?, thenD = ?.

Note that our definition of definite reductions corresponds exactly to SLD-resolution [15] for
the special case of Horn clauses.

Given a constraint systemC and a definite specificationD over C, we defineR(C;D) as
the reduction system whose goals are the corresponding definite goals, whose models are the
corresponding definite models, and whose reductions are the corresponding definite reductions
togetherwith the reductions of the constraint systemC. It is easy to verify thatR(C;D) is in
fact a reduction system.

Theorem 2 R(C;D) is a well-founded reduction system whose answers are exactly the
simplified constraints.

It is now straightforward to build inresiduation. We only have to discard unnecessary
indeterminate reductions:

� discard all indeterminate reductions for goals that do have determinate reductions;

� discard all indeterminate reductions obtained by reducing a residuating atom (an atom
whose relation is not declared generating).

Let us call the obtained reduction systemR�(C;D;G), whereG is the set of generating
relation symbols. Clearly,R�(C;D;G) is still a well-founded reduction system. Moreover,
let R�(C;D) be the reduction systemR�(C;D;G) where all definite relations are declared
generating. Then,R�(C;D) is well-founded and has again exactly the simplified constraints
as answers (this follows immediately from the above theorem). The important difference
betweenR(C;D) andR�(C;D) is thatR�(C;D) has significantly smaller search spaces
(even for the case of Horn clauses), a fact that has only been realized recently in the Andorra
model [10, 11].

5 Guarded Rules

Let a constraint systemC and a definite specificationD overC be given. Aguarded ruleis a
formula:

�! (A$ G);
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Residuation and Guarded Rules 11

where� is a constraint (called theguard), A is an atom, andG is a definite goal. A guarded
rule isadmissibleif it is valid in every definite model.

LetF be a set of admissible guarded rules. ThenG$ G0 is called aforward reductioniff the
following conditions are satisfied:

� G = 9X(� ^ A^ R) is a definite goal;

�  ! (A $ 9Y(�0 ^ R0)) is obtained from a guarded rule inF by variable renaming
such that only the variables in the atomA are shared withG;

� � ^ : is a constraint that simplifies to?;

� G0 =
�
? if � ^ �0 simplifies to?,
9X[ Y (�00 ^ R0 ^ R) if � ^ �0 simplifies to�00 6= ?.

If � ^ : simplifies to?, then� entails ; that is, the implication� !  is valid in every
model of the constraint system. Moreover, if the constraint system is complete, then� ^ : 

simplifies to? if and only if � entails .

The reduction systemR(C;D;F) is obtained fromR(C;D) by adding the forward reductions
defined by the admissible guarded rules inF . It is easy to verify thatR(C;D;F) is in fact a
reduction system, and that every goal ofR(C;D;F) has a complete set of answers.

In general,R(C;D;F) is not well-founded; consider, for instance, the admissible guarded
rule:? ! (A$ A). It is the responsibility of the programmer to design the guarded rules in
F such thatR(C;D;F)be well-founded. Further research is necessary to find good sufficient
conditions for the well-foundedness ofR(C;D;F).

Residuation forR(C;D;F) is defined as before.

6 Conclusions

Residuation is a control strategy for CLP meant to replace the rigid depth first strategy of
Prolog, which amounts to eager generation of usually wrong assumptions. Residuation makes
determinate reduction the rule, and indeterminate reduction the exception. Consequently,
residuation may produce complex answers containing residuated atoms.

Guarded rules are logical consequences of programs adding otherwise unavailable determinate
reductions. Together with residuation guarded rules yield a general and powerful constraint
propagation mechanism resulting in drastically smaller search spaces.

Residuation overcomes the strictly sequential computation strategy of Prolog. With residuation
every determinate atom can be reduced next, which amounts to multiple threads of computation
if a fair selection strategy is used.

The operational semantics of residuation and nonadmissible guarded rules is more expressive
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than what can be captured by classical declarative semantics. In fact, the object-oriented
programming techniques developed for Concurrent Prolog [18] can be expressed.

Topics for further research include: investigation of abstract incrementality properties ensuring
efficient implementation if satisfied by constraint simplifiers; design of an abstract machine
separating control from constraint simplification; and investigation of parallel reduction
strategies.
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