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Jérôme Barraquand
Digital Equipment Corporation
Paris Research Laboratory
85, Avenue Victor Hugo
92500 Rueil-Malmaison, France
barraquand@prl.dec.com

Pierre Ferbach
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Abstract

The path planning problem, i.e., the geometrical problem of finding a collision-free path
between two given configurations of a robot moving among obstacles, has been studied by
many authors in recent years. Several complete algorithms exist for robots with few degrees
of freedom (DOF), but they are intractable for more than 4 DOF. In order to tackle problems in
higher dimensions, several heuristic approaches have been developed for various subclasses of
the general problem. The most efficient heuristics rely on the construction of potential fields,
attracting the robot towards its goal configuration. However, there is no obvious way to extend
this approach to manipulation task planning problems.

This report presents a novel approach to path planning which does not make use of a potential
function to guide the search. It is a variational technique, consisting of iteratively improving
an initial path possibly colliding with obstacles. At each iteration, the path is improved
by performing a dynamic programming search in a submanifold of the configuration space
containing the current path. We call this method Variational Dynamic Programming (VDP).
The method can solve difficult high-dimensional path planning problems without using any
problem-specific heuristics. Experiments are reported for several computer simulated robots
in 2D and 3D workspaces, including manipulator arms and mobile robots with up to 16
DOFs. More importantly, an extension of VDP can solve manipulation planning problems of
unprecedented complexity. We report an experiment in dual-arm manipulation planning with
12 DOF in a cluttered workspace.

Résumé

Le problème de la planification de trajectoire, i.e., le problème géométrique consistant à trouver
des chemins sans collision entre deux configurations d’un robot en présence d’obstacles, a été
largement étudié ces dernières années. De nombreux algorithmes existent pour résoudre ce
problème dans des cas pratiques. Toutefois, l’extension de ces méthodes aux problèmes de
planifications de tâches de manipulation n’est pas triviale.

Nous présentons dans ce rapport une méthode variationnelle, consistant à améliorer itéra-
tivement un chemin initial pour éviter une collision éventuelle avec les obstacles. A chaque
itération, le chemin est amélioré en réalisant une recherche par programmation dynamique dans
une sous variété de l’espace des configurations contenant le chemin courant. Nous appelons
cette méthode Programmation Dynamique Variationnelle (PDV). La méthode peut résoudre
des problèmes difficiles de planification de trajectoire en dimension élevée sans recourir à des
heuristiques spécifiques au problème considéré. De plus, une extension de PDV peut résoudre
des problèmes de planification de manipulation d’une complexité sans précédent.
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Path Planning through Variational Dynamic Programming 1

1 Introduction

We present a new method for geometrical path planning with many DOF. This method, unlike
other planning methods for many DOF, does not require problem-specific heuristics such as
potential functions to guide the search. The method was initially developed for the basic path
planning problem in open free space, but its capabilities extend to several other instances of the
more general constrained motion planning problem. In particular, an extension of the method
can solve complex manipulation task planning problems. It is a variational technique, consisting
of iteratively improving an initial path possibly colliding with obstacles. The originality of our
method is to depart from standard gradient-based variational calculus techniques. Instead, at
each iteration, we perturb the current path by performing a dynamic programming search in
a k-dimensional submanifold of the n-dimensional configuration space containing the current
path. In practice, k is chosen equal to 2, 3, or 4 in order to make the dynamic programming
search tractable. Thanks to this dynamic programming strategy, the algorithm can avoid in
many cases spurious local minima of the cost functional. Furthermore, when local minima
arise, the result of the dynamic programming search can be used to adequately modify the cost
functional, by the introduction of additional repulsion points around colliding zones on the
path. This enables the algorithm to get out of the most difficult local minima.

The k-dimensional submanifold is an arbitrarily chosen ruled surface containing the current
path. This surface is quantized into a k-dimensional grid of configurations. Then, the grid is
searched using Dijkstra’s algorithm with an additive cost function proportional to the number
of configurations colliding with obstacles. Thus, it is guaranteed that fewer points in the new
path collide with obstacles. Then, the operation is repeated until a free path is found. We
call this method Variational Dynamic Programming (VDP). The idea behind VDP is to use as
much as possible the power of classical complete dynamic programming-based methods, while
avoiding their exponential memory and time requirements.

We have implemented this approach in a fully functional simulation program, and conducted
extensive tests. Experiments are reported for several computer simulated robots in 2D and 3D
workspaces, including manipulator arms and mobile robots with up to 16 DOF. To the best of
our knowledge, only potential field based methods can solve problems of similar complexity.
The specificity of VDP is that it can solve difficult high-dimensional planning problems without
using any problem-specific heuristics. This is in itself an important point for future research in
geometrical planning. It demonstrates that cluttered high-dimensional spaces can be practically
searched without relying on any problem-specific knowledge. One major implication of this
result is that VDP can be generalized for solving complex manipulation planning problems.
This is to be contrasted with potential field based methods, which require problem-specific
heuristics to resolve such problems. Of course, the generality of the method is obtained at
some cost: the planner is considerably slower than some potential field-based methods, in
particular the RPP method described in Barraquand and Latombe 1991 [5].

In order to explore the flexibility of the VDP approach, we have attempted to imbed into the
planner some heuristic information about the topology of the workspace. More precisely,
instead of applying the VDP method directly on the input workspace, we first generate a series
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2 Jérôme Barraquand and Pierre Ferbach

of more and more cluttered workspaces, the first being virtually free of obstacles, and the last
being the original input workspace. Then, we progressively apply the VDP method to the series
of workspaces. The input path used in the VDP algorithm for a given workspace in the series is
the output path of the VDP method applied to the previous less cluttered workspace. In order to
speed up the algorithm, the dynamic programming search at each iteration is only conducted in
a small neighborhood of the current path. This makes the method considerably faster, although
less general in theory. The idea is that the solution paths for two similar workspaces should be
relatively close to one another in many cases. We call this version of the planner Progressive
Variational Dynamic Programming (PVDP). The resulting planner is less general in theory than
the original VDP planner, since it uses problem-specific heuristics to guide the search. On the
other hand, it is dramatically faster. In fact, it can solve some problems in a time comparable
to that of potential-field based methods.

PVDP can be used to address constrained motion planning problems, i.e., extensions of the
basic path planning problem where the free space in not necessarily an open subset of the
configuration space. In particular, we have successfully applied PVDP to high-dimensional
manipulation planning problems. We briefly describe below the extension of the PVDP method
to manipulation planning problems. A complete presentation of the method can be found in
Ferbach and Barraquand 1993 [16]. Given an environment containing a robot, stationary
obstacles, and movable bodies, the manipulation problem consists in finding a sequence of free
robot motions, grasping and ungrasping operations, to reach a given state from a given initial
state in the joint configuration space of the robot and all movable bodies. The movable objects
can only move when they are grasped by the robot. The generalized obstacles (i.e., forbidden
postures) in the joint configuration space C are not only the configurations where the robot
or the movable objects hit the stationary obstacles, but also all postures where the movable
objects are levitating without being grasped by the robot. Hence, the free space of the joint
system is not anymore an open subset of the configuration space manifold. In particular, at
a configuration q where the robot grasps one object, the free space in the neighborhood of q
is an (n � h)-dimensional submanifold of the n-dimensional configuration space C, h being
the number of grasping constraints. The principle underlying PVDP is to replace the equality-
constrained problem by a convergent series of more and more difficult inequality-constrained
planning problems in open free space. In other words, grasping constraints are handled by
PVDP in an iterative fashion. PVDP first computes a path where the movable objects can
levitate without being grasped by the robots. Then, this path is used as the input for a series
of increasingly difficult problems where the objects must get closer and closer to the robots
in order to move. The planner has successfully solved manipulation planning problems of
unprecedented complexity. In particular, we report an experiment in dual-arm manipulation
task planning for a 12 DOF system. Several other examples are described in Ferbach and
Barraquand 1993 [16].

This report is organized as follows. In Section 2, we relate our contribution to previous work in
motion planning. In Section 3, we discuss the representational issues for geometric primitives
relevant to the path planning problem, and more specifically to the collision detection problem.
In Section 4 we describe the general principle underlying Variational Dynamic Programming.
In Section 5 we present the faster heuristic version of the planner PVDP. In Section 6, we
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Path Planning through Variational Dynamic Programming 3

present experimental results illustrating the capabilities of the implemented planners. In
section 7, we briefly discuss some theoretical and practical issues related to variational dynamic
programming.

2 Relation to other work

The path planning problem, i.e., the geometrical problem of finding a collision-free path
between two given configurations of a robot moving among obstacles, has been much studied in
recent years (Latombe 1990 [24]). Today the mathematical and computational structures of the
general problem (when stated in algebraic terms) are reasonably well understood (Schwartz and
Sharir 1983 [32]) (Canny 1988 [11]). In addition, practical algorithms have been implemented
in more or less specific cases, e.g., (Brooks and Lozano-Perez 1983 [9]) (Faverjon 1984 [14])
(Lozano-Perez [27]) (Faverjon and Tournassoud 1987 [15]) (Zhu and Latombe 1991 [35])
(Barraquand Langlois and Latombe 1992 [4] ).

Many efficient and complete algorithms exist when the number of degrees of freedom (DOF)
of the robot is small (Latombe 1990 [24]): exact or approximate cell decomposition methods,
roadmap methods, grid search methods. These methods differ mostly in the data representa-
tions used to construct the connectivity graph of the free space. But they all rely on the same
general algorithmic principle for searching the connectivity graph: Dynamic Programming.
Sometimes, heuristics are imbedded to speedup the search, and various algorithms such as A�

or Best First Search are used instead of Breadth First algorithms such as Dijkstra’s. These
algorithms nevertheless use variants of the Bellman principle of Dynamic Programming, as
exemplified in Bertsekas 1988 [8]. Hence, they suffer from the traditional “curse of dimension-
ality” problem of Dynamic Programming (Bellman 1958 [7]): they require exponential space
and time in the number of DOF. These methods are therefore intractable for more than 4 DOF.
This is not surprising, since these methods are complete, while the path planning problem is
known to be PSPACE-hard.

In order to tackle problems in higher dimensions, several heuristic (i.e., incomplete) approaches
have been developed for various subclasses of the general problem, and some successful systems
have been implemented, e.g., (Donald 1984 [12]) and (Faverjon and Tournassoud 1987 [15]).

Variational techniques, i.e., techniques consisting of improving an initial path possibly colliding
with obstacles, have already been used in an earlier work on path planning (e.g., Buckley
1985 [10], Gilbert and Johnson 1985 [17], Dupont and Derby 1988 [13], Warren 1989 [33]).
In its original form, variational planning suffers from a severe drawback. Indeed, since it
usually consists of minimizing a cost function along its negated gradient by means of standard
variational calculus methods, it gets stuck in most realistic cases in a local minimum of the cost
functional that does not correspond to a free path. In addition, the optimization of the functional
is conducted over the space of all possible paths, and can be quite computationally intensive. To
the best of our knowledge, no robust planning method based solely upon variational techniques
has been developed to date. Variational Dynamic Programming is not a gradient-based method,
hence does not suffer from the same drawbacks.

Research Report Draft September 1993



4 Jérôme Barraquand and Pierre Ferbach

A widely used heuristic consists in guiding the robot along the negated gradient of a real-valued
function defined over the configuration space, called the potential function. The potential has
two components: a goal potential attracting the robot towards its goal configuration, and an
obstacle potential, repulsing the robot from the obstacles. This so-called artificial potential
field approach was originally proposed in Khatib 1986 [20]. Emphasis was put on real-time
efficiency, rather than on completeness. In particular, since it acts as a gradient descent
optimization procedure, this approach may get stuck at a local minimum of the potential
function. The local-minima problem can be addressed at two levels: (1) in the definition of the
potential function, by attempting to specify a function with no or few local minima; and (2)
in the design of the search algorithm, by including appropriate techniques for escaping from
local minima. At the first level, the construction of analytical potentials free of local minima
has been investigated, so far with limited success. Solutions have been proposed only in
Euclidean configuration spaces with spherical or star-shaped obstacles (Koditschek 1987 [21])
(Rimon and Koditschek 1989 [31]). Another line of research has been to construct numerical
potential functions with “good” properties (Barraquand Langlois and Latombe 1992 [4] ). At
the second level, powerful methods have been developed for escaping from local minima, in
particular randomization methods (Barraquand and Latombe 1991 [5]). Very recently, new and
promissing randomization methods have been developed by Overmars 1992 [30] and Kavraki
and Latombe 1993 [19].

Potential field methods appear to outperform other approaches for practical path planning
problems with many degrees of freedom. In particular, the RPP method described in Barraquand
and Latombe 1991 [5] is already being used in industrial settings (Ohlund 1990 [29]), (Graux
et al. 1992 [18]). However, the efficiency of these methods highly depends on the properties
of problem-specific potential functions. In particular, extending the capabilities of potential
field-based planners to more general manipulation task planning problems is a difficult task.

The interest in manipulation task planning is more recent in the robotics literature. The problem
of planning the path of a convex polygonal robot translating in a two-dimensional polygonal
workspace in the presence of multiple convex polygonal movable objects is addressed in
Wilfong 1988 [34]. The general manipulation problem is described in a series of papers from
Alami, Laumond, and Simeon (Alami Simeon and Laumond 1989 [2], Laumond and Alami
1989 [25]). An implemented algorithm for a 2 DOF robot grasping a single object at a time
and several 2 DOF bodies translating in the plane is presented in Alami Simeon and Laumond
1989 [2]. The planner has two components: a classical path planner, and a manipulation
task planner (MTP). The MTP plans a sequence a robot motions, grasping and ungrasping
operations, and transfer motions (i.e., motions of the robot together with a grasped object).
The approach is practically limited to non-redundant robots with few DOF, and requires an
exhaustive exploration of the robot’s configuration space. Koga and Latombe 1992 [22] present
several implemented planners solving various dual-arm manipulation planning problems of
increasing difficulty. They use and extend the framework of Alami Simeon and Laumond 1989
[2]. The planner is again the combination of a path planner and a manipulation task planner.
An extension of this approach yielding impressive experimental results is presented in Koga
and Latombe 1993 [23].
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Our approach to manipulation task planning is fundamentally different. We do not decompose
the problem into a sequence of robot motions and manipulation tasks. Our planner is not a
combination of a path planner and a manipulation task planner. Instead, we simply consider
the whole manipulation problem as a special instance of the basic path planning problem in the
joint configuration space of the robot and the movable objects. The major advantage of this
approach is to avoid the artificial decoupling between motion planning and task planning. As a
consequence, PVDP can solve manipulation planning problems of unprecedented complexity.

3 Centralized versus Distributed Representations

3.1 Definitions

LetA denote the robot,W its workspace, and C its configuration space. A configuration of the
robot, i.e., a point in C, completely specifies the position of every point in A with respect to a
coordinate system attached toW (Lozano-Perez 1983 [26]). Let n be the dimension of C, i.e.,
the number of DOF. We represent a configuration q 2 C by a list of n parameters (q1; :::; qn),
with appropriate modulo arithmetic for the angular parameters (Latombe 1990 [24]). The
subset of C consisting of all the configurations where the robot has no contact or intersection
with the obstacles inW is called the free space and is denoted by Cfree.

For each point p 2 A, one can consider the geometrical application that maps any configuration
q = (q1; :::; qn) 2 C to the position w 2 W of p in the workspace. This map:

X : A� C ! W

(p; q) 7! X(p; q) = w

is called forward kinematic map.

3.2 Centralized Representations: the Problem of Collision Detection

Most solid modeling systems used in scientific computing or computer aided design represent
geometric primitives by algebraic inequalities defining the boundaries of objects. This is
also the case of systems used for the generation of computer graphics scenes. Often, the
algebraic inequalities used are linear, and the geometric primitives are simply polyhedra.
Representations of this kind are called centralized representations. The great advantage of
centralized representations is that they provide a precise description of objects boundaries at
any scale, while minimizing the amount of redundant information. Using such representations,
accurate modeling of 3D structures can fit into the memory of current computer workstations.
However, these representations have a severe drawback. They are unstructured, i.e., assessing
the occupancy of a given location in space requires scanning the list of objects present in the
scene. Therefore, detecting the collision of a given point in space with the objects present
in the scene requires a time linear in the number of geometric primitives. Through the use
of hierarchical representations such as octrees, the assessment of relative positions of static
objects in the scene can be made much faster. Unfortunately, octree decompositions are not
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6 Jérôme Barraquand and Pierre Ferbach

practical when some objects are movable, since they may change dramatically under small
displacements.

The high computational requirements of motion planning are mostly due to the need to perform
repeated collision checking between the robot and the obstacles (Metivier and Urbschat 1990
[28]). Detecting the collision of a robot with many DOF in realistic environments may take as
much as 1/10 to 1 second when using centralized representations. Planning of a path requires
a number of collision detections ranging from a few hundred for the simplest cases to a few
hundreds of thousands for the most complex ones. Such computation times are practically
prohibitive for planning very complex motions using centralized representations.

3.3 Distributed Representations

The experiments reported in this paper were all performed using a distributed representation
of the workspace. The workspaceW is modeled as a N-dimensional bitmap array, with N = 2
or 3 being the dimension of W . The array is defined by the following function BM:

BM : W ! f1; 0g
w 7! BM(w)

in such a way that the subset of points w such that BM(w) = 1 represents the workspace
obstacles and the subset of points w such that BM(w) = 0 represents the empty part of the
workspace. We write: Wempty = fw 2 W ;BM(w) = 0g.

The main advantage of distributed representations is that they are structured, i.e., assessing
the occupancy of any point in workspace is performed in a time constant in the number and
shape of the obstacles, and in the resolution of the bitmap. A point x is occupied if and only if
BM(x) = 1. Consequently, checking the collision of the robot with obstacles can be done by
simply “drawing” the robot on the bitmap. The drawing procedures used are reminiscent of the
Bresenham’s algorithm well known in Computer Graphics literature. Details on the collision
detection methods employed can be found in (Barraquand and Latombe 1991 [5]).

The drawback of distributed representations is the high memory requirement associated with
the bitmap array, especially for 3D workspaces. In the experiments, the resolution used was
2562 for 2D workspaces, and 1283 for 3D workspaces. In order to store high resolution
3D bitmaps on current workstations, it is necessary to compress the bitmap. Indeed, some
industrial settings require a resolution of the order of 10003. Corresponding bitmaps arrays do
not fit in the memory of current low cost computer workstations without compression. Strong
compression ratios can be obtained by using an octree or a runlength coding technique for one
of the spatial dimensions. However, assessing occupancy over the compressed representation
is no longer constant in the resolution of the bitmap. Collision checking is typically one order
of magnitude slower for such compressed representations.
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Path Planning through Variational Dynamic Programming 7

4 Variational Dynamic Programming

In this section we describe the Variational Dynamic Programming (VDP) method. It is based
upon a dynamic programming technique applied successively to various submanifolds of the
configuration space. The idea behind VDP is to use as much as possible the power of classical
complete dynamic programming-based methods, while avoiding their exponential memory and
time requirements. In order to generate a free path in a configuration space of much higher
dimension, VDP conducts iteratively several searches in 2 or 3-dimensional submanifolds of
the configuration space.

4.1 General VDP algorithm

The input to the algorithm is:

� The initial configuration qinit

� The goal configuration qgoal

� The specification of the forward kinematic map and the distribution of obstacles in the
workspace. In the current implementation, the workspace in represented as a bitmap as
described in Section 3. However, the algorithm below is independent of the chosen data
representation.

The output of the algorithm at any given iteration is a path lying as much as possible in free
space. The total number of iterations is arbitrarily bounded to a prespecified number. The
algorithm terminates if a free path is found at a given iteration. Otherwise, the algorithm returns
the best available path obtained after the prespecified number of iterations.

The general VDP algorithm can be described as follows.
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8 Jérôme Barraquand and Pierre Ferbach

algorithm VDP (VARIATIONAL DYNAMIC PROGRAMMING)
begin

Generation of the initial path;
while Collision with obstacles

Generation of submanifold;
Generation of repulsion points;
Generation of cost function;
Generation of minimum cost path within submanifold;
Reparameterization of path;

endwhile;
end;

This algorithm generates iteratively a series of paths joining qinit to qgoal, with a decreasing
percentage of collision points.

We now describe the various parts of the general algorithm in more detail.

4.2 Generation of the initial path

In the current implementation, the initial path  is simply a geodesic path (for an appropriate
metric) between (0) = qinit and (1) = qgoal in the configuration space manifold. For
example, if the configuration space is a convex open subset of Rn, the initial path is the straight
line joining qinit and qgoal. This straight line is quantized into a series of m + 1 equally spaced
configurations, the (i+ 1)th point being (i=m) = (1� i=m)qinit + i=mqgoal. The distance dref

between two consecutive configurations is chosen small enough so as to induce a small robot
motion in the workspace (see e.g., Barraquand and Latombe 1991 [5] for a discussion).

4.3 Collision with obstacles

This function returns true if the current path collides with obstacles, and false if the current
path is a free path. More precisely, it examines each discrete point along the path and computes
the corresponding position of the robot using the forward kinematic map. Then, it tests if this
position hits obstacles using the collision detection techniques described in Section 3.

4.4 Generation of the repulsion points

At a given iteration of the VDP algorithm, the current path  collides with obstacles at one or
more points. We partition the path into a series of connected free and colliding zones. More
precisely, we compute a subdivision 0 = s0 < s1 < : : : < s2r+1 = 1 of the interval [0; 1]
verifying the following properties:

8i 2 [0; r]; 8s 2]s2i; s2i+1[; (s) 2 Cfree

8i 2 [0; r� 1]; 8s 2 [s2i+1; s2i+2]; (s) 62 Cfree
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For each colliding zone [s2i+1; s2i+2], i 2 [0; r � 1], we define a repulsion point repi =
((s2i+1 + s2i+2)=2) in the middle of the zone. The definition of these r repulsion points
will be useful for escaping local minima of the overall cost function along the path. We also
compute for each repulsion point repi the radius of the corresponding colliding zone:

Ri =
1
2

d((s2i+1); (s2i+2))

where d(q; q0) is the Riemanian distance between q and q0 for an appropriate metric in the
configuration space manifold C. In practice, d is the Euclidean distance between the two
vectors q and q0 considered as elements of Rn.

4.5 Generation of the submanifolds

We describe how a k-dimensional submanifold of the configuration space containing a given
path can be constructed. At a given iteration of the VDP algorithm, we have a current path
(s) linking (0) = qinit and (1) = qgoal.

In a first step, we select two unit vectors vinit and vgoal in the generalized coordinate system
(q1; : : : ; qn). In the absence of reliable heuristic, we select these two vectors randomly using
a uniform probability distribution on the unit sphere in Rn. We extend the path  at both
extremities by defining the extended path ̃ in the following fashion:

̃(s) =

8<
:

qinit + svinit if s < 0
(s) if s 2 [0; 1]
qgoal + svgoal if s > 1

In general, the extended path ̃ can be defined for all s 2 R, i.e., it can be prolongated indefinitely
in both directions. However, we assume that the configuration space is a bounded manifold.
This is a very reasonable assumption, since any practical robotics system has a bounded range
of action. Hence, the generalized coordinates q = (q1; : : : ; qn) stay in a bounded subset of Rn.
Therefore, there exist two numbers smin < 0 < 1 < smax such that all configurations ̃(s) for
s 62 [smin; smax] are unreachable.

In a second step, we randomly select a set of k�1 independent unit vectors u1; : : : ; uk�1, using
again a uniform probability distribution on the unit sphere in Rn. This enables us to define
parametrically a k-dimensional ruled submanifold S of the configuration space C:

S = fq 2 C j 9(s; �1; : : : ; �k�1); q = ̃(s) +
k�1X
i=1

�iuig

As it is the case for the first parametric coordinate s, all other parametric coordinates�1; : : : ; �k�1

are bounded, since the configuration space is assumed bounded:

8i 2 [1; k� 1]; �i 2 [�i
min

; �i
max]
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10 Jérôme Barraquand and Pierre Ferbach

Hence, the set of parametric coordinates (s; �1; : : : ; �k�1) is a bounded subset of Rk. The
bounded submanifold S is then quantized into a finite cartesian grid along its parametric co-
ordinates s; �1; : : : ; �k�1, using constant increments �s; ��1; : : : ; ��k�1. Within the quantized
submanifold, the set of neighbors of a given configuration q is the classical k-neighborhood for
the parametric coordinates, i.e., the set of 3k � 1 configurations whose parameters differ from
those of q of one quantization step at most. For notational convenience, we will indifferently
denote by s or �0 the parameter along the current path. The quantization ��i along each
parameter �i is chosen in such a way that the distance between two neighboring configurations
is of the order of dref .

Remark: The construction of the k-dimensional submanifold described above can be slightly
modified in the following fashion. Instead of selecting constant unit vectors vinit and vgoal, we
can select two series of “slowly” varying vectors 8s < 0; vinit(s) and 8s > 1; vgoal(s) such that
the difference between two consecutive vectors in the series is “small”. Similarly, we can define
slowly varying series of vectors 8s; ui(s) for each index i 2 [1; k � 1]. In our experiments,
we have implemented both approaches. The experimental performance of the VDP algorithm
does not seem to be affected by the variability of unit vectors. However, there is an important
theoretical difference between the two approaches. Indeed, the version using varying unit
vectors is probabilistically resolution-complete, i.e., if a solution path exists in open free space,
then the probability of finding a quantized path at distance less than dref to this solution path
tends towards one when the computation time tends towards infinity.

Let us assume that a collision free path sol exists. If the unit vectors are allowed to vary along
the coordinate s, it is easily seen that at each iteration, there is a very small but strictly positive
lower bound p on the probability that the submanifold generated contains a path 

0 identical
to sol up to the configuration space quantization dref . In this event, 0 is a collision-free path
in the search submanifold. The algorithm will therefore necessarily find a collision-free path
thanks to the optimality of Dijkstra’s algorithm. We can conclude that the probability of finding
a solution path after N iterations of VDP is lower bounded by 1 � (1 � p)N. Therefore, this
probability tends towards 1 when the number of iterations tends towards infinity. The rate of
convergence is geometric. However, the lower bound p is so small in practice that this result
says little about the actual efficiency of VDP.

4.6 Generation of the cost function

The VDP algorithm consists in iteratively improving an initial path by performing dynamic
programming searches in k-dimensional submanifold grids. We describe the cost function
used for the search within a given grid. The total cost along a quantized path (s0 =
0); (s1); : : : ; (sm = 1) is an additive functional:

JC() =
m�1X
i=0

C((si); (si+1))
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Path Planning through Variational Dynamic Programming 11

The elementary cost function C(q; q0) between two neighboring configurations is the product
of two components:

C(q; q0) = Cobst(q; q0)� Crep(q; q0)

The component Cobst has higher values in colliding zones, thereby inducing the optimal path to
lie as much as possible in free space. The componentCrep has higher values in the neighborhood
of repulsion points, thereby forcing the optimal path out of local minima of the pure obstacle-
avoidance functional JCobst .

We now describe in more detail the expressions of Cobst and Crep.

Cobst(q; q0) =

(
0:001� d(q;q0

)

dref
if q and q’ are non-collision configurations

1� d(q;q0
)

dref
if q or q’ is a collision configuration

where d(q; q0) is again the distance between q and q0 in configuration space.

rep1; : : : ; repr being the r repulsion points precomputed at the current iteration, and R1; : : : ;Rr

the radii of the corresponding colliding zones, the multiplicative cost factor Crep is defined as
follows.

Crep(q; q0) = 1 +
rX

i=1

�i
Ri

d(q00; repi)

where q00 = q+q0

2 , and�1; �2; : : : ; �r are positive coefficients chosen at each iteration randomly
between 0.5 and 2 for example. We call these coefficients the repulsion coefficients.

4.7 Generation of the minimum cost path within a submanifold

This procedure achieves the dynamic programming search of an optimal path within the
quantized submanifold using the standard Dijkstra’s algorithm (see e.g., Aho Hopcroft and
Ullman 1983 [1]). The priority queue is implemented as a heap.

4.8 Reparameterization of the path

After an optimal path has been found by the search algorithm, the distance in configuration
space between two consecutive points along the path is not equal anymore to the reference
distance dref . This procedure simply reparameterizes the path in such a way that the distance
between two consecutive points equals dref .

5 Progressive Variational Dynamic Programming

5.1 Reducing the size of the search space

The experiments presented in Section 6 show that VDP is a powerful path planner. Indeed, it can
solve very difficult planning problems in cluttered workspaces with robots having many DOF.

Research Report Draft September 1993



12 Jérôme Barraquand and Pierre Ferbach

We have found that VDP can solve all the problems that have been solved by the potential field
based planner RPP (Barraquand and Latombe 1991 [5]). However, in its original form, VDP
is about two orders of magnitude slower than RPP for the most difficult problems. This can be
easily understood, since at each iteration of the algorithm, VDP performs an uninformed search
(Dijkstra’s algorithm) of the whole k-dimensional array of quantized parametric coordinates
�0; : : : ; �k�1.

By reducing the size of this search space at each iteration, the total computation time can be
dramatically reduced. Let i be the path at the end of iteration i of the VDP algorithm. If the
path i is already close to a collision free-path, the optimal path i+1 obtained after the search
of the whole k-dimensional submanifold at iteration i + 1 lies in a small neighborhood of i.
Hence, a solution for dramatically reducing the number of explored cells is to limit the search
for i+1 to a small “tubular” neighborhood of i. This will work if the configuration space is
not too cluttered, i.e., if the motion planning problem at hand is simple.

In order to use the same idea for more difficult problems, a solution is to replace the initial
motion planning problem by a series a simpler problems in less cluttered workspaces converging
towards the initial problem. More precisely, instead of applying the VDP method directly on
the input workspace, we can first generate a series of more and more cluttered workspaces
using heuristic ad-hoc techniques, the first being virtually free of obstacles, and the last being
the original input workspace. Then, we progressively apply the VDP method to the series of
workspaces. The input path used in the VDP algorithm for a given workspace in the series is
the output path of the VDP method applied to the previous less cluttered workspace. Since
two consecutive problems in the series are similar, it can be expected that the solution paths
for those two problems will also be similar. Hence, the dynamic programming search at each
iteration can be only conducted in a small neighborhood of the current path. This idea of
Progressive Variational Dynamic Programming is described in more detail below.

5.2 Progressive Variational Dynamic Programming

Let P be our initial motion planning problem, consisting in finding a path  joining (0) = qinit

and (1) = qgoal while avoiding obstacles:

8s 2 [0; 1]; (s) 2 Cfree

We can define in many different ways (see next subsection) a decreasing finite sequence of
free-spaces C � C0

free � C1
free � : : : � C i

free � : : :C imax
free = Cfree. Then, we can replace problem

P by the sequence of problems Pi whose solution paths i must satisfy the simpler obstacle
avoidance constraints:

8s 2 [0; 1]; i(s) 2 C
i
free

The original VDP algorithm can be reparameterized to better fit the need of each subproblem
Pi.

VDP(Cfree; k; �k
max; nbiter; repulsion)

Cfree is the set of authorized configurations. k is the dimension of the submanifold where
the search is conducted. �

k
max is the radius of the tubular neighborhood where the search is
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Path Planning through Variational Dynamic Programming 13

conducted around the current path. nbiter is the number of iterations of the VDP algorithm, i.e.,
the number of times a submanifold is generated and searched. repulsion is a boolean variable
set to true if the repulsion parameters have positive values, false if they are all set to zero,
i.e., there is no repulsion.

The number �k
max is chosen as a function of the dimension k of the submanifold. Typically, for

k = 2, �2
max is chosen equal to about 8 times the size of the quantization step dref . For k = 3,

�
3
max is chosen equal to 4 � dref . For k = 4, �4

max is chosen equal to dref . In other words, in
a 4-dimensional submanifold, the search is only conducted along the immediate neighboring
configurations of the current path.

The Progressive Variational Dynamic Programming algorithm can be described as follows.
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14 Jérôme Barraquand and Pierre Ferbach

algorithm PVDP (PROGRESSIVE VARIATIONAL DYNAMIC PROGRAMMING)
begin

Generation of the initial path 0 using standard VDP planner;
for i = 1, i < imax, i = i + 1

VDP(C i
free; 2; �2

max; nbiter, true);
VDP(C i

free; 3; �3
max; nbiter, false);

VDP(C i
free; 4; �4

max; nbiter, false);
if not found Backtrack ;

endfor;
end;

In other words, for each subproblem Pi, PVDP performs a few (nbiter) iterations of the VDP
algorithm using 2D submanifolds, then performs a few iterations using 3D submanifolds, and
finally continues with a few iterations using 4D submanifolds. Of course, if a free path is
found to problem Pi after any of those iterations, the algorithm immediately steps to the next
subproblem Pi+1. If a valid path for problem Pi is not found, the algorithm backtracks, i.e., a
new initial path 0 is generated using the standard VDP planner for problem P1, and the PVDP
procedure is restarted from there.

The number nbiter is typically set to 5. The search is continued until a free path i is found. The
algorithm is stopped after a solution path imax =  is found for the original problem. Since
the algorithm may never terminate, we artificially impose an upper bound on the total running
time. The algorithm returns failure if this upper bound is reached.

Remark: Instead of searching for a better path in a neighborhood of the current path  for all
times t 2 [0; 1], it is possible to limit the search locally to subintervals of [0; 1] for which 

does not satisfy the constraints. This is how the search algorithm has been implemented in the
PVDP method.

5.3 Definition of the approximating sequence by a penalty function

As described in Section 3, the obstacles in the workspace can be represented either using
geometrical primitives (e.g., polygons), or using distributed representations (e.g., bitmaps). In
order to define the sequence of free spaces C i

free, we have chosen to use the representation
of obstacles by geometrical primitives. Similar algorithms could be defined using bitmap
representations.

We assume for the sake of simplicity that obstacles can be described as a finite set of convex
polygons B1; : : : ;Bm. However, our approach can easily be generalized to the case of obstacles
boundaries represented by higher-order polynomials. Alternatively, the obstacles could be
represented through a bitmap description, and the following definition of the sequence of free
spaces could be adapted accordingly.

Each face Bl
j of polygon Bj is modeled as an affine function (i.e., a polynomial of degree one)
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Path Planning through Variational Dynamic Programming 15

denoted gl
j. Let hj be the number of faces of Bj. We define:

8w 2 W ; gj(w) = min
l2[1;hj]

gl
j(w)

Polygon Bj can be defined in the following way.

Bj = fw 2 W ; gj(w) � 0g

Hence, a point w in the workspace does not intersect with any obstacle iff

gobst(w) = max
j2[1;m]

gj(w) < 0

Besides, if the robot considered is articulated, we must check whether or not it collides with
itself. We assume the set of configurations where the robot does not collide with itself can be
defined by:

fq 2 C; gautocoll(q) < 0g

Let X be the forward kinematic map of the robot A. The free space Cfree being defined as the
set of configurations such that the robot does not collide with itself or obstacles, we can write:

Cfree = fq 2 C; gautocoll(q) < 0g \ fq 2 C; 8p 2 A; gobst(X(p; q)) < 0g

We consider a finite decreasing sequence of numbers �1 > �2 > : : : > �imax = 0, and we define
the corresponding finite sequence of free spaces

C i
free = fq 2 C; gautocoll(q) < 0g \ fq 2 C; 8p 2 A; gobst(X(p; q))< �ig

The sequence �i is called �-strategy. More complex �-strategies can be defined. For example,
for a given obstacle Bj, the function gj can be replaced by any other function g0j:

g0j(w) = min
l2[1;hj]

�ig
l
j(w)

where �1; : : : ; �hj are arbitrary positive numbers. Also, any other additional heuristic can be
added to improve the progressiveness in the sequence of problems Pi. Examples of practical
�-strategies will be given in Section 6. In general we call �-strategy the whole set of empirical
parameters that can be used to define the sequence C i

free. The function gobst is called a penalty
function, since it is used in the sequence of problems Pi to increasingly penalize the robot
motions that do not satisfy the obstacle avoidance constraints.

5.4 Applications of PVDP to manipulation planning problems

PVDP can be used to address constrained motion planning problems, i.e., extensions of the
basic path planning problem where the free space in not necessarily an open subset of the
configuration space. In particular, we have successfully applied PVDP to high-dimensional
manipulation planning problems. We briefly describe below the extension of the PVDP method
to manipulation planning problems. A complete presentation of the method can be found in
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16 Jérôme Barraquand and Pierre Ferbach

Ferbach and Barraquand 1993 [16]. Given an environment containing a robot, stationary
obstacles, and a movable object, the manipulation problem consists in finding a sequence of
free robot motions, grasping and ungrasping operations, to reach a given state from a given
initial state in the joint configuration space of the robot and of the movable object. The movable
object can only move when it is grasped by the robot. The generalized obstacles (i.e., forbidden
postures) in the joint configuration space C are not only the configurations where the robot or
the movable object hit the stationary obstacles, but also all postures where the movable object
is levitating without being grasped by the robot.

It is shown in Ferbach and Barraquand 1993 [16] that under suitable conditions on the set of
stable configurations for the movable object, the grasping constraints are holonomic, i.e., they
can be represented by:

8s 2 [0; 1]; ggrasp((s)) = 0

where  is the path followed by the robot and the movable object.

Hence, we can define in a fashion similar to that of the previous subsection a decreasing
sequence of positive numbers �i converging towards zero, and consider the corresponding
sequence of problems Pi for which the original grasping constraint is replaced by:

8s 2 [0; 1]; ggrasp((s))< �i

The principle underlying PVDP is to replace the original problem by the series of problems
Pi. In other words, grasping constraints are handled by PVDP in an iterative fashion. PVDP
first computes a path where the movable objects can levitate without being grasped by the
robots. Then, this path is used as the input for a series of increasingly difficult problems where
the objects must get closer and closer to the robots in order to move. PVDP has successfully
solved manipulation planning problems of unprecedented complexity. We report in Section
6 an experiment in dual-arm manipulation task planning for a 12 DOF system. Several other
examples are described in Ferbach and Barraquand 1993 [16].

6 Experimental results

We have implemented both VDP and PVDP in two programs written in C, running on a
DEC3000-500 Alpha AXP workstation. We have experimented with VDP and PVDP using a
variety of robot structures. Several of these experiments are derived from the RPP simulation
program developed at the Stanford Computer Science Robotics Laboratory (see e.g., Bar-
raquand and Latombe 1991 [5]). We present below some of the most significant experiments,
and we compare the capabilities of VDP to that of RPP.

6.1 10-DOF non-serial manipulator robot in 2D workspace

We applied VDP to the planar non-serial manipulator robot depicted in Figure 1, which includes
three prismatic joints (telescopic links) and seven revolute joints. Figure 1 illustrates a path
found by VDP for a relatively simple obstacle avoidance problem.
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Path Planning through Variational Dynamic Programming 17

Figure 1: VDP method, 2D submanifolds.

Figure 2: VDP method, 3D submanifolds

Research Report Draft September 1993



18 Jérôme Barraquand and Pierre Ferbach

Figure 3: PVDP method

Figure 4: Various workspaces used in the PVDP method
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Path Planning through Variational Dynamic Programming 19

In this example, the dimension of the submanifolds was chosen equal to k = 2. The number of
iterations of the VDP algorithm was 34. The total computation time was about 3 minutes. This
is slower than the computation time using the RPP method, which takes about 10 seconds in this
case. Using 3D submanifolds, VDP finds a path in only 3 iterations instead of 34. However,
the overall computation time is over 13 minutes, since a single 3D iteration is computationally
intensive. PVDP solves the same problem in less than 30 seconds. We see that the performance
of PVDP is comparable to that of RPP on this relatively simple problem.

We also tested VDP on the more difficult problem depicted in Figure 2. Figure 2 shows a
path found by VDP using 3D submanifolds. The number of iterations was 76, and the total
computation time was 7 hours. The VDP method using only 2D submanifolds failed to solve
this problem. This is dramatically slower than RPP, which solved this problem in about 30
seconds. Figure 3 shows a path found by PVDP for the same problem. The total computation
time was 20 minutes. This is much faster than VDP, but still not nearly as fast as RPP.

We now describe the �-strategy that was used by PVDP for this problem. The original problem
P was replaced by a sequence of 15 problems Pi. Figure 4 shows a few of the workspaces in
the series. The length L of the two bars in the middle was chosen according to the following
formula:

8i 2 [1; 15]; Li = L1 + (L15 � L1)
p

i=15

A strictly similar formula was used for the diameter D of the diamond on the left. We see in
the above formula that the lengths of the obstacles were increased with the square root of the
problem index i, since the last steps are the most difficult.

6.2 8-DOF serial manipulator arm in 2D workspace

We consider the 8-DOF serial manipulator with 8 revolute joints depicted in Figure 5. Figure
5 shows a path found by VDP using 3D submanifolds. The number of iterations was 93. The
total computation time was 6 hours. Figure 6 shows a path found by PVDP for the same
problem. The computation time was 20 minutes. This is still not nearly as fast as RPP, which
solved the same problem in less than 20 seconds. Figure 7 shows a few of the 40 different
workspaces used in the progressive method.

6.3 Coordination of two 3-DOF mobile robots

The same planner was applied to problems requiring the coordination of two 3-DOF mobile
robots in a two-dimensional workspace made of several corridors. The problem shown in
figure 8 is particularly difficult because the two robots have to interchange their positions in
the central corridor; hence, both of them must first move to an intermediate position in order
to allow the permutation. Notice that in the initial configuration both robots are rather close to
their respective goal configurations, however the paths to move there are quite long.

Figure 8 shows a path found by VDP using 3D submanifolds. The total number of iterations
was 67, and the computation time 2 hours and 50 minutes. The same problem was solved by
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Figure 5: VDP method, 3D submanifolds.

Figure 6: PVDP method, 40 steps.
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Figure 7: A few of the 40 workspaces used in the PVDP method

Figure 8: Coordination of two mobile robots.
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22 Jérôme Barraquand and Pierre Ferbach

PVDP in 26 minutes. This is still considerably slower than RPP, which solved this problem in
less than 20 seconds.

6.4 16-DOF manipulator robot in 3D workspace

Figure 9: 3 views of a path found by VDP for a 16DOF manipulator in a 3D workspace.

VDP was also tested on the 16-DOF manipulator illustrated in Figure 9. This manipulator
consists of 5 telescopic links connected by 5 spherical joints. The bar at the end of the
manipulator is connected to the last link by a revolute joint. A path generated by the program
is illustrated in Figure 9. Three different views (left, center, and right) are given for each of
the five configurations (from top to bottom) represented along the solution path. The number
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of iterations of VDP using 3D submanifolds was 20. The total computation time was 2 hours
and 15 minutes. RPP solved this problem in less than 3 minutes.

6.5 A manipulation planning problem using two articulated fingers

The 10-DOF robot depicted in Figure 1 was used in the pick and place problem illustrated
in Figure 10. We used the PVDP method. The RPP planner is not designed for solving
manipulation planning problems, hence cannot be compared with PVDP on this example.

The task assigned to this robot is a simple pick and place operation consisting in grasping the
disk in the lower right corner of the workspace, bringing it to the lower left corner, and then
returning to its initial configuration. The total number of degrees of freedom for the whole
problem is 12. Figure 10 illustrates a manipulation plan found by PVDP.

In this example, the robot is said to have grasped the disk when the following conditions are
satisfied:

� the center M of the disk coincides with the middle R = E1+E2
2 of the two end-effectors

E1 and E2 of the robot.

� the distance jjE1E2jj between the two end effectors E1 and E2 is equal to the diameter D
of the disk.

Let M1 and M2 be the initial and goal configurations of the disk. The grasping constraint
8t; F((t)) = 0 is replaced in the approximating problem P� by the constraint 8t;F((t))< �

with the following expression for F(q).

F(q) = min

�
max(jjE1E2jj � D; jjRMjj); min

i2f1;2g
jjMMijj

�

In other words, in problem P�, either the disk is at distance less than � of a docking position, or
if satisfies both conditions jjE1E2jj < D + � and jjRMjj< �.

The initial value of � is one fourth of the size of the workspace. Then, it is decreased at each
iteration of the penalty function method by 0:001, i.e., 0:1% of the size of the workspace. The
tolerance value was set to �tol = 0:006, i.e 0:6% of the workspace. The path was computed in
about half an hour.

7 Discussion and conclusion

The experiments reported in Section 6 demonstrate that VDP can solve difficult motion planning
problems with many degrees of freedom. VDP is by far the most reliable and powerful
variational planner developed to date. But VDP is dramatically slower than potential field
based planners such as RPP. PVDP is fast for simple problems, but still not nearly as fast as
RPP for more difficult problems. This is not surprising, since VDP does not use the numerical
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Figure 10: A pick and place operation using a two-fingered 10-DOF robot

potential functions that make much of the power of planners such as RPP. In the current
implementation of VDP, the submanifolds used for searching collision-free paths are generated
purely at random. We think it should be possible to use information deriving from potential
functions in order to improve the procedure generating the submanifolds. Future research
will determine whether or not VDP can be made as fast as RPP through the use of numerical
potential functions.

On the other hand, VDP has several unique features. First, it is a variational planner, and
can therefore be used in constrained motion planning problems such as manipulation planning
problems. Such problems are out of reach of classical planners such as RPP. However, as
outlined in Ferbach and Barraquand 1993 [16], it may be possible to develop a variational
version of RPP. Future research will determine whether a variational version of RPP can be
made as efficient as PVDP for solving manipulation planning problems.

Second, VDP uses dynamic programming. This may become an important advantage over ran-
domized planners when addressing motion planning problems with non-holonomic constraints.
Indeed, optimal algorithms based upon dynamic programming already exist (Barraquand and
Latombe 1993 [6]) for planning motions of non-holonomic mobile robots with few DOF. We
think it is possible to use the main ideas underlying VDP to develop a motion planner for
non-holonomic robots with many DOF. This extension is left for future research.

Third, VDP can be used in cases where the constraints on the solution paths are different
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from those encountered in classical obstacle avoidance problems. One might think of planning
problems where the task assigned to the robot is to avoid dangers other than obstacles, such as
heat or radiation sources. In such a case, the constraint imposed upon the path is not binary but
real valued. For example, the robot’s task may be to minimize along its path the accumulated
heat or radiation level. Then, the minimum cost functional J of VDP can be easily extended
to take into account such real-valued constraints. More generally, VDP can be viewed as a
systematic technique for addressing optimal control problems for high-dimensional holonomic
dynamical systems. Its possible applications extend far beyond those in robotics, to many other
fields of control theory.
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