
PARIS RESEARCH LABORATORY

d i g i t a l

October 1993

35

Jacques Garrigue
Hassan Aı̈t-Kaci

The Typed
Polymorphic

Label-Selective �-Calculus





35

The Typed
Polymorphic

Label-Selective �-Calculus

Jacques Garrigue

Hassan Aı̈t-Kaci

October 1993



Publication Notes

A reprint of this report will appear in theProceedings of the 21st ACM Symposium on
Principles of Programming Languages, (Portland, OR, January 1994), ACM Press.

Contact addresses of authors:

Jacques Garrigue
garrigue@is.s.u-tokyo.ac.jp

The University of Tokyo
Department of Information Science
7-3-1 Hongo, Bunkyo-ku
Tokyo 113, Japan

Hassan Aı̈t-Kaci
hak@prl.dec.com

Digital Equipment Corporation
Paris Research Laboratory
85 Avenue Victor Hugo
92500 Rueil-Malmaison, France

c Digital Equipment Corporation and University of Tokyo 1993

This work may not be copied or reproduced in whole or in part for any commercial purpose. Permission
to copy in whole or in part without payment of fee is granted for non-profit educational and research
purposes provided that all such whole or partial copies include the following: a notice that such copying
is by joint permission of the Paris Research Laboratory of Digital Equipment Centre Technique Europe
(Rueil-Malmaison, France) and of the Department of Computer of Information Science of the University
of Tokyo (Tokyo, Japan); an acknowledgement of the authors and individual contributors to the work;
and all applicable portions of the copyright notice. All rights reserved.

ii



Abstract

Formal calculi of record structures have recently been a focus of active research. However,
scarcely anyone has studied formally the dual notion—i.e., argument-passing to functions
by keywords, and its harmonization with currying. We have. Recently, we introduced
the label-selective�-calculus, a conservative extension of�-calculus that uses a labeling of
abstractions and applications to perform unordered currying. In other words, it enables some
form of commutation between arguments. This improves program legibility, thanks to the
presence of labels, and efficiency, thanks to argument commuting. In this paper, we propose
a simply typed version of the calculus, then extend it to one with ML-like polymorphic types.
For the latter calculus, we establish the existence of principal types and we give an algorithm
to compute them. Thanks to the fact that label-selective�-calculus is a conservative extension
of �-calculus by adding numeric labels to stand for argument positions, its polymorphic typing
provides us with a keyword argument-passing extension of ML obviating the need of records.
In this context, conventional ML syntax can be seen as a restriction of the more general
keyword-oriented syntax limited to using only implicit positions instead of keywords.

Résumé

Récemment, les calculs formels de structures d’enregistrement ont fait l’objet de recherche
active. Nonobstant, presque personne n’a ´etudié formellement la notion duale—en l’occurrence,
le passage d’arguments par mot-clefs, et son harmonisation avec la curryfication. Nous nous y
sommes int´eress´es. Nous avons introduit r´ecemment le�-calcul label-s´electif, une extension
conservatrice du�-calcul qui utilise un ´etiquetage des abstractions et des applications pour
permettre la curryfication dans le d´esordre. En d’autres termes, il autorise une forme de
commutation entre les arguments. Cela am´eliore la lisibilité, grâceà la présence des ´etiquettes,
et l’efficacité, grâceà la commutation des arguments. Dans cet article, nous proposons une
version simplement typ´ee du calcul, puis nous l’´etendons avec des types polymorphes `a la
ML. Pour ces derniers, nous ´etablissons l’existence de types principaux et nous donnons
un algorithme qui les calcule. Grˆace au fait que le�-calcul label-s´electif est une extension
conservatrice du�-calcul obtenue en y ajoutant des ´etiquettes num´eriques correspondant aux
positions d’arguments, son typage polymorphe nous fournit une extension de ML avec passage
d’arguments par mot-clefs sans n´ecéssiter de structures d’enregistrement. Vue ainsi, la syntaxe
conventionnelle de ML peut ˆetre per¸cue comme une restriction d’une syntaxe plus g´enérale
orientée mot-clefs qui serait limit´eeà seulement utiliser des positions implicites au lieu de
mot-clefs.
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The Typed Polymorphic Label-Selective �-Calculus 1

They were both very pleased with this new view of the
matter, which did credit to them both, and we all parted
on the most friendly terms.

ROBERTGRAVES, I, Claudius

1 Introduction

The use of symbolic labels in programming languages is not new. This has been done
in two ways. The first one, common to nearly all languages, is as field designators in
record structures. Relatively recently, formalisms for records have been proposed. This
started with Cardelli [6], was later extended to a second order calculus [7], and was followed
by a number of record-type inference systems compatible with ML-style polymorphic type
inference [22, 20, 13, 19]. Even more recently, a compilation method was proposed by
Ohori [18], for an extension of�-calculus containing polymorphically typed records.

Another way to use labels in programming languages has been as keywords for parameter-
passing in procedure or function calls. This is the case in Common LISP [21], ADA [15],
and LIFE [4]. However, in Common LISP or ADA, currying is not supported, which makes
the situation rather mild. Although currying is supported in LIFE, even with keywords given
in a different order, it is restricted nonetheless and does not accommodate implicit positions
as it should. Indeed, fully flexible currying with the presence of keywords as well as explicit
and implicit positions was until recently a still unexplored issue. Some proposals do offer this
convenience of parameter-passing without modifying the core calculus [14, 17]. However,
these are based on using a notion of store; that is, bindings from names to values. This
introduces another parameterizing system, independent from�-calculus. Even so, to our
knowledge, no typing system has been proposed for them.

Our own proposal, as originally reported in [2], is to support this new convenience
of labeling arguments directly in�-calculus and accommodate selective unordered currying
through commutation of arguments. In our view, the role of arguments is determined by their
labels, which interact with their order.

Selective�-calculus introduces two types of commutations. The first, and most immediate,
is between symbolic labels. By analogy with tuples, when currying an expressionf(p)
a; q)b; . . .) we obtain an expression((f (p)a))(q)b))(. . .). But since there is no reason
to apply f in this specific order, using the freedom provided by labels allows to curry in a
different order;e.g., ((f (q) b))(p) a))(. . .). Suppressing superfluous parentheses, and
limiting our consideration to two arguments, we obtain that the following equality must hold
in our calculus:

f (p)a)(q)b) = f (q)b)(p)a):

However, this is true under a restriction:p and q must be distinct labels. Successive
applications on the same label must not commute. Indeed, if the labels are equal, the order of
these applications must be obeyed to be unambiguous.

Here is an example of the use of these symbolic labels for the list constructor, in an
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2 Jacques Garrigue and Hassan Aı̈t-Kaci

ML-like language, together with inferred types.1

#let cons car=>a cdr=>b = a::b;;
cons : {car=>’a,cdr=>’a list} -> ’a list

#cons cdr=>[1];;
it : {car=>int} -> int list

The second commutation equality comes from a reversion of the analogy with tuples.
That is, we can see a tuple as a record labeled with numbers:(a; b; . . .) = (1)a; 2)b; . . .).
If we applied the equality used for symbolic labels, we would obtainf (1) a)(2) b) =
f (2)b)(1)a). But, since it is better to see unary application as implicitly using the label 1
and keep conventional currying, we would rather writef(1)a)(1)b), or simply,f a b as
usual. To make this possible, we must define commutation differently on numbers: namely,
f(2)b)(1)a) = f (1)a)(1)b). This can be generalized as:

f (m)a)(n)b) = f (n)b)(m� 1)a) if m> n:

For instance we can use it as follows, (omitting explicitly labeling with1=>):

#let sub x y = x-y;;
sub : {1=>int,2=>int} -> int

#let minus15 = sub 2=>15;;
minus15 : {1=>int} -> int

This second commutation equality is in fact orthogonal to the first one. Commutation on
symbolic labels expresses the intuitive possibility of taking input on multiplechannels, while
the numeric form gives a control on the relative precedence order of input on a givenchannel.

Selective�-calculus provides the above equalities for symbolic and numerical labels
for both application and abstraction. As an untyped calculus, its confluence has been
established [3], along with fundamental properties of�-calculus like Böhm’s theorem [12].

Similarly, the introduction of label-selective types providing simple types for selective
�-terms is done in the same manner as that of simple types in classical�-calculus. The
essential difference is that, in order to emphasize the intrinsic commutativity, we will put
on the same level all argument types to a function. For instance, theconsint operator,
namelyconsint(car) h : int; cdr) t : int list) = (h :: t) for integer lists, should get type
fcar) int; cdr) int listg ! int list. Such a notation shows that it is possible to applyconsint

on bothcar andcdr labels, and that the result is a list of integers.
Then we build a polymorphic typing system̀a la ML for selective�-calculus. As

for ML-style polymorphism, a type inference algorithm exists, which obviates the need for
explicit typing. In other words, this means that we can integrate labeled parameters in any
ML-like programming language. Continuing with the previous example, for the definition
cons(car)h; cdr) t) = (h :: t), we can infer the type8�:(fcar)�; cdr)� listg ! � list).

1We use a notation close to CAML [10]: “let ” denotes a definition, “:: ” the list constructor. Since “=>” is
left unused (abstraction uses “-> ”), we use it for labeling.
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The Typed Polymorphic Label-Selective �-Calculus 3

Such a type system is particularly well-adapted to selective�-calculus, thanks to the
incrementality of typing, which goes together with application. On the other hand a second
order type system, separating type application, would limit commutation possibilities by
introducing new dependencies between abstractions.

Section 2 gives a practical and theoretical motivation for our type system. We then
define symbolic and numerical label-selective�-calculus in Section 3 and 4, combining them
in a product system in Section 5. Sections 6 and 7 present respectively simple typing and
polymorphic typing of the selective�-calculus. To avoid cluttering the casual reader’s attention
with unnecessary details, we have relegated all proofs to the appendix.

2 Motivation

The calculus we present has practical and theoretical motivations. In practice, the use
of labels for argument selection enhances clarity and obviates the need of argument-shuffling
combinators. From a theoretical perspective, the commutation laws of labeled arguments
readily render natural type isomorphisms in�-calculus.

2.1 Keywords: an enhancement for clarity

We start here by giving some examples of how the use of keywords, and their appearance
in types, may help the programmer. Our view is already partially proven by the ubiquitous
use of records as data structures. While theoretically everything could be done with tuples,
one will often prefer using a record, gaining abstraction over a representation using explicitly
ordered formats.

Here are some examples of functions written in an ML-like syntax, with their inferred
types.

#let rec map function=>f = fun
# [] -> []
# | [h|t] -> (f h)::map function=>f t;;

map : {1=>’a list,
function=>{1=>’a} -> ’b} -> ’b list

#map function=>(add 1);;
it : {1=>int list} -> int list

#map [1;2;3];;
{function=>{1=>int} -> ’a} -> ’a list

The advantage of this labeling system is twofold: it is more expressive and it allows doing
partial application selectively on any label.

One could argue that in the functions above, order is clear enough so that, even without
labels, there is no possibility for error. However this becomes less systematic for functions of
three arguments or more. Moreover, it is not so natural in some two-argument functions. This
is the case, for instance, ofmem(membership in a list) orassoc (retrieval from an association
list), whose respective types are:

mem : ’a -> ’a list -> bool
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4 Jacques Garrigue and Hassan Aı̈t-Kaci

assoc : ’a -> (’a * ’b) list -> ’b

There is no special reason for them to respect this particular order. In fact, the opposite order
of arguments would appear more natural, since currying with a given list is more likely. Here,
a quick glance at the type eliminates any ambiguity. However, this is not always sufficient.
Even if such was the case, the following types would certainly be more perspicuous:

mem : {1=>’a,in=>’a list} -> bool
assoc : {1=>’a,in=>(’a * ’b) list} -> ’b

With this, one can define such a function as:

#let digit = mem in=>[0;1;2;3;4;5;6;7;8;9];;
digit : {1=>int} -> bool

This clearly improves legibility.
Still, one may shrug this argument off since with two arguments, there are only two

possibilities of order. With more arguments, however, this quickly becomes irksome. Clearly,
remembering arguments order for functions of more than three arguments—and those are not
so uncommon—is out of the question.

Let us give some more examples. Consider, for instance,it list and list it (fold
left and right), with types:

it_list : (’a -> ’b -> ’a) -> ’a -> ’b list -> ’a
list_it : (’a -> ’b -> ’b) -> ’a list -> ’b -> ’b

An explicit labeling such as:

it_list : {1=>’a list,op=>{1=>’b,2=>’a} -> ’b,zero=>’b} -> ’b
list_it : {1=>’a list,op=>{1=>’a,2=>’b} -> ’b,zero=>’b} -> ’b

would be more expressive, making the types easier to understand.
We have deliberately restricted our examples to generic functions, for which currying is

useful. If we consider functions interfacing a window manager, for example, the number of
arguments per function is such that the use of labels is a necessity. In that case, however, one
could do with records, since currying is not so important. Nevertheless, the trend in functional
languages is towards a systematic use of currying. Standard ML is a notable exception,
preferring uncurried functions, but CAML is an example of an ML dialect preferring currying.

2.2 Relative positions versus combinators

If the main benefit from using symbolic labels is expressiveness, that of relative positions
is in conciseness—and efficiency.

Consider, for example:

#let cons a b = a::b;;
cons : {1=>’a,2=>’a list} -> ’a list

#map function=>(cons 2=>[1;2]);;
it : {1=>int list} -> int list list

#map function=>(sub 2=>10) [11;12;13];;
it = [1;2;3] : int list
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The Typed Polymorphic Label-Selective �-Calculus 5

Of course, the same effect can be obtained using the C combinator defined as:

#let C f x y = f y x;;
C : (’a -> ’b -> ’c) -> ’b -> ’a -> ’c

#map (C sub 10) [11;12;13];;
it = [1;2;3] : int list

But, besides legibility, the hidden loss is efficiency: a combinator is an explicit closure to
build and reduce, whereas label commutation enables direct access into the argument stack
with offsets. Moreover, for more than two arguments, currying on thekth argument would
necessitatek�1 such swaps, or use a special combinator for each position—just as expensive.

In addition to this obviously practical benefit, relative position labels provide a coherent
bridge connecting classical currying and record currying.

2.3 A generic commutation capability

With respect to types, we can see these extensions as the integration into�-calculus of the
natural isomorphism:

A� B ' B� A;

which, combined with currying,

A� B! C' A! (B! C);

gives:

A! (B! C) ' B! (A! C):

This isomorphism becomes clearer when using indexed products, as in category theory,
with explicit projections�1 and�2:

(�1)A) � (�2)B) ' (�2)B)� (�1)A);

and thus:

(�1)A)! ((�2)B)! C) ' (�2)B)! ((�1)A)! C):

Therefore, we obtain a type system in which these isomorphisms, which are part of those
described in [5], are directly included.

If we want to keep a confluent calculus, however, it is necessary to sacrifice either
generality (two identical keywords may not commute) or referential stability of positions (new
projections after commutation). For this reason positions are necessary to allow commuting in
any case. They ensure that association between an abstraction and an application is invariant
even if their respective positions change. This is important operationally as they allow direct
access to distant arguments (i.e., deep in the stack). While symbolic labels are a useful
extension of currying, numerical ones are similar to de Bruijn indices [9].
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6 Jacques Garrigue and Hassan Aı̈t-Kaci

3 �-Calculus with multiple channels

To obtain the behavior that we illustrated with keywords, we define an extension of the
�-calculus, thesymbolic selective�-calculus, with symbolic labels.

Selective�-terms consist of variables, taken from a setV , and two labeled constructions:
abstraction and application. We shall assume a non-empty, totally ordered, set of symbolsS,
to use as labels. We will denote variables byx; y, labels byp; q, and�-expressions by capital
letters. The syntax of selective�-terms is then given as:

M ::= x (variables)

j �px:M (abstractions)

j Mbp M0 (applications).

We will say “to abstractx onp in M”, “to apply M to M0 throughp”. These terms will always
be considered modulo�-conversion.

To make this compatible with the classical�-calculus, we shall distinguish a special label,
written �, to use as default.2 That is, any unlabeled abstraction or application is interpreted as
being labeled by�. In other words, classical�-calculus is the special case whenS = f�g.

The reduction rules for this calculus are given in Figure 1.�-Reduction only happens

Reduction:

(�) (�px:M)bp N ! [N=x]M

Reordering:

(1) �px:�qy:M ! �qy:�px:M p > q

(2) Mbp Nbq P! Mbq Pbp N p> q

(3) (�px:M)bq N ! �px:(Mbq N) p 6= q; x 62 FV(N)

Figure 1. Reduction rules for symbolic selective�-calculus

on abstraction-application pairs with the same label.3 Otherwise they commute by rule (3).
Rules (1) and (2) simply normalize the order of abstractions and applications.

For convenience, we will sometimes use a variant syntax using record notation. Arecord
is an expression of the form(p1)M1; . . .; pn)Mn) thepis are labels and theMis are terms.
We shall use these expressions with the following syntactic equivalence:

2It will be convenient, though not necessary, to assume that� is the least element ofS.
3The notation [N=x]M denotes the term obtained fromM after substituting all the free occurrences of variablex

with the termN.
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The Typed Polymorphic Label-Selective �-Calculus 7

�(p1)x1; . . .; pn)xn):M � �p1x1: � � � :�pnxn:M

M(p1)M1; . . .; pn)Mn) � (. . .(M bp1 M1) . . . bpn Mn):

An example of reduction in the symbolic selective calculus is given in Figure 2

We suppose thatp < q < r < s:

�
�(p)x; q)y; r)z):M

�
(r)N; s)P; p)Q)

� (�px:�qy:�rz:M)br Nbs Pbp Q

!3 (�px:((�qy:�ry:M)br N))bs Pbp Q

!2 (�px:((�qy:�ry:M)br N))bp Qbs P

!� (�qy:�rz:[Q=x]M)br Nbs P

!3 (�qy:((�rz:[Q=x]M)br N))bs P

!� (�qy:([Q=x][N=z]M))bs P

!3 �qy:(([Q=x][N=z]M)bsP)

Figure 2. Example of reduction with symbolic labels

We callsymbolic selective�-calculusthe free combinationof these rules and�-conversion.

Theorem 1 The symbolic selective�-calculus is confluent.

Proof: Consequence of the proof for selective�-calculus, in [2]

4 �-Calculus with relative positions

This calculus is very similar to the previous one. Its syntax is identical; the only difference
is that the labels are positive natural numbers:

M::= x j �n:M j Mbn M0 wheren 2 N � IN � f0g.

Again, for compatibility with the classical�-calculus, we shall use position 1 as default.
That is, any unlabeled abstraction or application is interpreted as being labeled by 1. In other
words, classical�-calculus is the special case whenN = f1g.

The reduction rules are also similar, but with a twist. They are are given in Figure 3. The
main idea here is to preserve coherence between argument position numbers and the property
used for currying that all functions are unary. Hence, it is necessary to adjust a position number
relatively to the form on its left.

Similarly to what we do for symbolic labels, we will also use a number-labeled record-
syntax variant of the raw syntax for convenience. However, unlike the freely commuting
symbolic labels, the numbers used as labels in record notation do not correspond directly to the
relative position labels of the raw syntax. Namely, translating from the record syntax to raw
syntax must readjust an argument’s position index by subtracting an offset equal to the number
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8 Jacques Garrigue and Hassan Aı̈t-Kaci

Reduction:

(�) (�nx:M)bn N ! [N=x]M

Reordering:

(4) �mx:�ny:M ! �ny:�m�1x:M m> n

(5) M bm Nbn P! Mbn Pdm�1 N m> n

(6) (�mx:M)bn N ! �m�1x:(Mbn N) m> n; x 62 FV(N)

(7) (�mx:M)bn N ! �mx:(M cn�1 N) m< n; x 62 FV(N)

Figure 3. Reduction rules for numerical selective�-calculus

of arguments of lesser position indices on its left. More precisely, let(n1)M1; . . .; nk)Mk)
be a record expression whereni 2 N for i = 1; . . .; k. Then, for anyi = 1; . . .; k in this
expression, itsrelative position offsetis the numbero(i) of labels in the setfn1; . . .; ni�1g that
are strictly less thanni. For example, the relative position offsets of the record expression:

(4)M1; 1)M2; 5)M3; 2)M4; 2)M5)

are: o(1) = 0; o(2) = 0; o(3) = 2; o(4) = 1; o(5) = 1.
Hence, the syntactic equivalence is given by:

�(n1)x1; . . .; nk)xk):M � �n1x1: . . .:�nk�o(k)xk:M

M(n1)M1; . . .; nk)Mk) � (. . .(M bn1 M1) . . . dnk�o(k) Mk):

An example of reduction in the numerical selective calculus is given in Figure 4

Theorem 2 The numerical selective�-calculus is confluent.

Proof: Consequence of the proof for selective�-calculus.

5 The selective �-calculus

The selective�-calculus combines orthogonally the symbolic and the numerical selective
�-calculi by usingL = S �N as set of labels.4 Thus its syntax is:

M::= x j �`:M j M b̀M0 where`= pn2 L = S �N .

The reduction system is the combination in Figure 5. Applying these rules simply amounts
to applying independently the symbolic and numeric systems. One may see reordering rules
as structural equalities, and�-reduction as unique reduction rule. Since the combination is
orthogonal, it inherits confluence from both systems.

4In [2] this particular variant was defined as aproduct system, and what we called there selective�-calculus as
thesumsystemL = S [N . Properties of the two systems being similar, we work here on the most general one.
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The Typed Polymorphic Label-Selective �-Calculus 9

(�(2)x; 1)y; 4)z):M)(4)N;6)P; 2)Q)

� (�2x:�1y:�2z:M)b4 Nb5 Pb2 Q

!4 (�1y:�1x:�2z:M)b4 Nb5 Pb2 Q

!7 (�1y:((�1x:�2z:M)b3 N))b5 Pb2 n3

!5 (�1y:((�1x:�2z:M)b3 N))b2 Qb4 P

!7 (�1y:�1x:((�2z:M)b2 N))b2 Qb4 P

!� (�1y:�1x:[N=z]M)b2 Qb4 P

!7 (�1y:((�1x:[N=z]M)b1 Q))b4 P

!� (�1y:[Q=x][N=z]M)b4 P

!7 �1y:([Q=x][N=z]Mb3 P)

Figure 4. Example of reduction with numeric labels

Reduction:

(�) (�`x:M) b̀N ! [N=x]M

Symbolic reordering:

(1) �pmx:�qny:M ! �qny:�pmx:M p > q

(2) M bpmN bqn P! M bqn P bpmN p> q

(3) (�pmx:M) bqn N ! �pmx:(M bqn N) p 6= q; x 62 FV(N)

Numeric reordering:

(4) �pmx:�pny:M ! �pny:�pm�1x:M m> n

(5) M bpmN bpn P! M bpn P dpm�1 N m> n

(6) (�pmx:M) bpn N ! �pm�1x:(M bpn N) m> n; x 62 FV(N)

(7) (�pmx:M) bpn N ! �pmx:(M dpn�1 N) m< n; x 62 FV(N)

Figure 5. Reduction rules for selective�-calculus
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10 Jacques Garrigue and Hassan Aı̈t-Kaci

Theorem 3 The selective�-calculus is confluent.

Proof: This is a consequence of the proof for the sum system in [2]. We extend easily the use of
numerical indices, which can be seen as being limited to a only one keyword in the sum system, to
all keywords thanks to channel independence.

To let this system include the symbolic calculus and numerical calculus as sub-calculi, we
will identify a symbolic keywordp in the former with the label(p; 1), and a numeric indexn
in the latter with the label(�; n). Thus, the classical unlabeled�-calculus is also syntactically
embedded in selective�-calculus by taking(�; 1) as the default label of all abstractions and
applications.

6 Simple types

As in classical�-calculus, we introduce simple types. There are two benefits. First,
we gain a better understanding of the label-selective calculus itself by explicating the type
structure that it needs. Second, simply typed selective�-calculus gains the same nice expected
properties;e.g., strong normalization of well-typed terms.

6.1 Syntax and types

The original syntax of terms is extended to:

M::= x j �`x: t:M j M b̀M0:

which requires abstracted variables to be explicitly typed.
We define the syntax of label-selective simple types with the following grammar:

` ::= pn (labels)

u ::= u1 j u2 j . . . (base types)

r ::= f`) t; . . .g (record types)

t ::= u j r ! u (general types)

where the expressionf`) t; . . .g denotes a finite partial function fromL to types, including
the empty functionfg. We shall identify a functional type of the formfg ! u with the base
type u. Note that record types arenot types of expressions of our term language. They are
used exclusively as the left subexpression of function types.

The idea behind this syntax of types is to convey that an application can be done
indifferently through any label that is present in the type, on a value of corresponding type.

6.2 Record concatenation

We shall provide a simple-type inference system as expected. In order to do so, we
must define a record-type concatenation operation needed for extending the domain type of a
functional type. Before we give it formally, it is preferable to build some preliminary intuition.
We will illustrate the essential mechanism on an example.
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The Typed Polymorphic Label-Selective �-Calculus 11

To simplify the discussion, let us first restrict ourselves to numeric labels only. Consider
the two record typesr = f2) t1; 4) t2g ands = f2) u1; 3) u2g. Extending the typer
on the right withs must be done such that the relative positions be kept in coherence. Now,
r expectst1 in second position andt2 in fourth position. In other words, positions 1, 3, 5 and
up, are “free” inr in the sense that if more arguments were to be expected by an extension
of r, they could use these free slots in sequence. Consider now extendingr with s. The first
argument’s position ins is 2. Hence, inr’s context, this argument corresponds to the second
“free” slot; i.e., position 3. The following one ins is in position 3, and hence corresponds to
the third “free” slot inr; i.e., position 5. Thus, the record type resulting from the concatenation
of r ands is r � s= f2) t1; 3)u1; 4) t2; 5)u2g.

The case of multiple channels is not more complicated since the above scheme is to be
used on each channel independently. Intuitively, this operation reminds of stream merging. In
fact, this is exactly what is happening as the indices on a given channel in a record indicate the
expected positions, but only relative to this specific record. Extending the record with more
indices on this channel necessitates adjusting the new indices by taking their positions with
respect to the sequence of indices unused by the initial record. We now proceed to defining
formally this record-type concatenation operation.

Let r = f`1) t1; . . .; `n) tng be a record type. We shall denote byDr = f`1; . . .; `ng the
set of labels defined inr. Recall that our record labels are not simple symbols, but pairs of the
form pn, a symbol and a position index.

Definition 1 (occupied position) The nth position on p in a record type r is said to be
occupiedif r is such that pn2 Dr .

Given a record typer, we denote byor(pn) the offsetof n on p in r to be the number
of occupied positions on symbolp in r with index less than or equal ton. That is,
or(pn) = j(fpg � [1; n]) \ Dr j.

For example, consider the two following record types:

r = fp2) t1; p4) t2; q1) t3; q2) t4; q5) t5g;

s= fp2)u1; p3)u2; q2)u3; q3)u4g:

The offsets of the labels ofs in r are, respectively,or(p2) = 1, or(p3) = 1, or(q2) = 2, and
or(q3) = 2.

Given a record typer and a given symbolp, we need to identify the least index ofp in r
that is not an occupied position. More precisely, it is useful to know thenth such free position
for symbolp in r.

Definition 2 (free position) The nth free positionfor p in r is given by:

�r;p(n) = minfi 2 N j i � or(pi) = ng:

For example, given the previous example’s two record types, the free positions inr
available for the indices ins are, respectively,�r;p(2) = 3, �r;p(3) = 5, �r;q(2) = 4, and
�r;q(3) = 6.
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12 Jacques Garrigue and Hassan Aı̈t-Kaci

For fixed r, this function is extended to work also on a record type by distributing it on
each label. Namely, for anys= fpini) tigk

i=1, �r(s) = fpi�r;pi(ni)) tigk
i=1.

For example, forr andsused above:�r(s) = fp3)u1; p5)u2; q4)u3; q6)u4g. It is
not coincidental that the label domain of the�r(s) is disjoint from that ofr. It is easy to show
that this is true in general.

Definition 3 (concatenation) Record-typeconcatenationis defined as r�s= r]�r(s), where
] denotes union of functions with disjoint domains.

Going back to the two record typesr and s used in the examples above, we have
r � s = fp2) t1; p3)u1; p4) t2; p5)u2; q1) t3; q2) t4; q4)u3; q5) t5; q6)u4g:

Proposition 4 Label-selective record-types form a monoid;i.e., concatenation is associative
with neutral elementfg.

Proof: This is because�r�s = �r � �s (see appendix).

6.3 Record matching

It is essential for a syntax-directed inference system, like the typing system that we are
about to give, to be able to solve syntactic equations of the formr � x = s. More specifically,
to extract a subexpressionr out of a record type expression it is convenient to write the latter
asr ] s (i.e., splitting it), and let that be the result of an expressionr � x, solving forx.

Remarkably, there is an inverse to record-type concatenation that allows solving such an
equation and thus may be used to identify a given record type as the result of the concatenation
of two other record types. We call this operationrecord-type matching.5 It will be used with
great benefit in typing rules as well as for polymorphic type unification and type inference as
shown in the next section.

Let r andsbe two record types with disjoint label domains (i.e., such as could be obtained
by partitioning one into two). Letpi be a label ins. For p, the positioni can be seen as the
result of having concatenatedr with the same type originally at positioni � or(pi). In fact, for
all the label indicesi of p in s, this defines an inverse function for�r;p as��1

r;p(i) = i � or(pi).
That is,��1

r;p(i) computes the index corresponding toi on channelp skipping the occupied
positions onp in r that are less than or equal toi.

As before, for fixedr, ��1 is extended to record types. Namely, for anys= fpini) tigk
i=1

such thatpini 62 Dr for all i = 1; . . .; k, ��1
r (s) = fpi�

�1
r;pi
(ni)) tigk

i=1.

Definition 4 (matching) Record-typematchingis defined as r] s = r � ��1
r (s), where]

denotes union of functions with disjoint domains.

Let r = fp1) t1; q2) t2g and s = fp2) u1; q3) u2g. The unique solution to the
matching equationr ] s= r � x is x= ��1

r (s) = fp1)u1; q2)u2g.

5Althoughdivisionshould be more appropriate.
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The Typed Polymorphic Label-Selective �-Calculus 13

6.4 Typing rules

We now have all we need to define well-typedness. We will denote by� a typing
environment; i.e., a mapping from term variables to types. The notation� [x 7! � ] denotes the
typing environment that coincides with� everywhere, except onx for which it gives the type
� .

Definition 5 A term M iswell-typedif there is a mapping� from the free variables of M to
types and a type� such that� ` M : � is derivable in the type inference system of Figure 6.

� [x 7! � ] ` x : � (I)

� [x 7! �] ` M : r ! �

� ` �`x:�:M : fl)�g � r ! �
(II)

� ` M : f`)�g � r ! � � ` N : �

� ` M b̀N : r ! �
(III)

Figure 6. Typing of simply-typed label-selective calculus

Simply typed selective�-calculus verifies the two fundamental properties of typed
�-calculi.

Proposition 5 (subject reduction) Reduction preserves the types;i.e., if � ` M : � and
M ! N then� ` N : � .

Theorem 6 (strong normalization) The simply-typed label-selective�-calculus is strongly
normalizing.

7 Polymorphic selective �-calculus

While there exist typing systems that are more powerful than ML’s (e.g., second-order
polymorphic�-calculus), the style of polymorphism used in ML is much simpler. This is
essentially due to restricting type quantification to appear only at the outset of type expressions,
which facilitates type instantiation to be done implicitly following applications. The main
advantage of this type system is that, for�-calculus, any term has a principal (i.e., most
general) type that can be reconstructed from the shape of the term alone. This obviates explicit
type declarations: a simple type unification algorithm synthesizes missing types.

We show here that this form of polymorphism is valid also for label-selective�-calculus.
This means that, from a typing point of view, the addition of labels is coherent with
polymorphically typed�-calculus.
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14 Jacques Garrigue and Hassan Aı̈t-Kaci

7.1 Syntax and types

The syntax is that of untyped selective�-calculus with alet construct to introduce
polymorphism, types being provided by inference. Thus, the syntax of terms is given by:

M::= x j �`x:M j M b̀M0 j let x = M in M0

and the reduction rule corresponding to the new construct is:

let x = M in N ! [x=M]N:

As in Damas and Milner’s definition [8], types are partitioned into monotypes, ranged
over byt, and polytypes, ranged over by�. Thus, the language of types is given by:

w ::= u j v (return types)

r ::= f`) t; . . .g (record types)

t ::= w j r ! w (monotypes)

� ::= t j 8v:� (polytypes)

where return typesu stand for base types andv for type variables. Here again, record types are
not types of expressions of the term language.

7.2 Type substitution

The distinction we introduce here between return types and monotypes is specific to
selective�-calculus. Indeed, as we shall see, the main difficulty in our system, when compared
to �-calculus with ML-style polymorphic types, is that function types are always kept flat.
Observe, indeed, that function types are not return types. For example,f`)�g ! (f`0)
�g ! ) is nota valid type expression in our type language. It is possible, however, to obtain
such an expression as the result of substituting a valid type for a type variable in another valid
type. For example, doing a direct substitution withf1)g ! � for � in typef1)�g ! �

would result inf1)(f1)g ! �)g ! (f1)g ! �). This means that when we substitute
a variable that appears as return type with a functional type, we will need to modify the
structure of the type.

The solution is to define type substitution with a built-in flattening of the domain type. We
will denote this operation as [� 0n�]� (i.e., substitute type� 0 for type variable� in � ) and it is
performed as expressed by the following simple rule:

[(r0 ! !)n�](r ! �) =
�
([(r0 ! !)n�]r) � r0

�
! !:

With this rule, our example above results in the valid typef1)(f1)g ! �); 2)g ! �

This illustrates how our domain of types is radically different from the conventional
Herbrand universe with the arrow and base type constructors, whose well-known term
unification is exploited for ML-type inference. We shall thus need to provide our explicit
unification algorithm. It is a nice property of our system that unique most general unifiers
exist for our type terms. As we shall see, this is essentially due to the well-foundedness of
normalization to flattened types which does not change the size of types.
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The Typed Polymorphic Label-Selective �-Calculus 15

7.3 Typing rules

The typing rules are given in Figure 7. It is interesting to remark that Rules (IV)–(VI)

� [x 7! �] ` x : � (I)

� [x 7! �] ` M : r ! �

� ` �`x:M : fl)�g � r ! �
(II)

� ` M : fl)�g � r ! � � ` N : �

� ` M b̀N : �
(III)

� ` M : �

� ` M : 8�:�
� not free in� (IV)

� ` M : 8�:�

� ` M : [�n�]�
(V)

� ` M : � � [x 7! �] ` N : �

� ` let x = M in N : �
(VI)

Figure 7. Typing rules for polymorphic selective�-calculus

are in no way specific to selective�-calculus. Since type quantifiers are external, they
are independent of the structure of monotypes. Thus, these rules are exactly the same
used in classical�-calculus. Their roles aregeneralization(IV), instantiation(V), and let-
introduction (VI). The only, but important, difference between these rules and the classical
ones is hidden in the use of our flattening type substitution [�n�]� in Rule (V).

Again, all the desirable properties hold for the polymorphically typed selective�-calculus,
as expressed by the two following propositions.

Proposition 7 (subject reduction) If � ` M : � in polymorphically typed selective�-
calculus, and M! N, then� ` N : � .

Theorem 8 (strong normalization) Polymorphic selective�-calculus is strongly normaliz-
ing.

7.4 Type unification

The key for type synthesis is unification. We give here a unification algorithm for
the label-selective monotypes defined above. It can be expressed as a simple E-unification
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16 Jacques Garrigue and Hassan Aı̈t-Kaci

problem [11], where the equational theory is that deciding equality of record types. Then,
our type substitution operation using record-type concatenation constitutes a complete set
of reduction for this theory. We next give this unification procedure as a complete set of
equivalence-preserving transformations on a set of type equations.

A set of type equations' is said to be insolved formif every equation in it is of the
form � = � such that the type variable� occurs only once in'; viz., as this equation’s
lefthand-side. As usual, such a solved-form defines a variable substitution that can be applied
to type expressions.

Figure 8 contains the complete set of transformations for the unification of label-selective
monotypes. We use the notation� for type variables,! for return types, and� or � for any
type expression. (Again,fg ! ! is identified with!.)

These rules work on a set (a conjunction) of type equations, transforming it into another
such set. Upon termination, having started from a set' of equations, the resulting equation
set is either?, the inconsistent equation indicating that no solution exists, orsol('), a set of
equations in solved form equivalent to'.

In either case, this process can be seen as returning a substitution. In the first case, it is the
failing substitution? such that? (�) =? for all types� , where? denotes the inconsistent
type. In the second case, the solved formsol(') is the most general unifier (MGU) of' (up
to variable renaming). The rules are written as rewrite rules using a comma as an associative
and commutative set constructor, and the equal sign as a symmetric equation constructor. That
is, in these rules the particular order of equations in the set as well as the orientation of an
equation are irrelevant. As established by the following theorem, they are solution-preserving
and there is a deterministic strategy that makes them always terminate.

Theorem 9 (label-selective type unification) There is an algorithm that computes the most
general unifier of a set of equations on monotypes or reports failure if there is none.

7.5 Type inference

It is now easy to derive a type inference algorithm by combining type unification with the
typing rules of Figure 7. It is sufficient to following the syntactic structure of a given term,
accumulating new equations in a set, as shown in Figure 9. The functionTp takes a typing
environment� (a function from term variables to types) and a selective�-termM, and returns
a pairh'; �i where' is a set of type equations in solved form (i.e., a type substitution), and
� is the principal type ofM. The functionstrip applies to a type expression8�1: � � �8�n:� ,
wheren� 0, and returns the expression obtained from� where all the�is, if any, are replaced
with fresh names.6 The expressionFV(�) is the set of free variables in� , and by extension
FV(�) =

S
x FV(�(x)). The expressionsol('), where' is a set of type equations, is

the solved form of' (i.e., the MGU of'). It is the result of applying the transformation
rules of Figure 8 to' until none applies. The expression'(�) is the result of applying
the substitution' to the type expression� . By extension,'(�) is the function defined by
'(�)(x) = '(�(x)).

This algorithm constructs a derivation tree whose root is� ` M : � , where� andM are
given. Since there is only one way to construct this tree, by induction on the structure ofM,

6If n = 0 there is no quantifier, and thusstrip returns the given type expression as is.
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(Base type)

'; u= v

?

u 6= v

u; v base types

(Variable recurrence)

'; � = �

?

� 6= �

� 2 Var(�)

(Variable orientation)

'; � = �

'; � = �

� variable

� not variable

(Function type)

'; u= r ! !

?

u base type

r 6= fg

(Variable elimination)

'; � = �

[�n�]'; �= �

� 2 Var(')� Var(�)

if � variable, then� 2 Var(')

(Redundancy)

'; � = �

'

(Decomposition)

'; f`)�g � r ! ! = f`)�0g � r0 ! !0

'; � = �0; r ! ! = r0 ! !0

(Label completion)

'; f`)�g � r ! ! = r0 ! !0

'; f`)�g � r ! ! = f`)�g ] r0 ! �; !0 = ��1
r0 f`)�g ! �

r0 6= fg

` 62 Dr0

� fresh

Figure 8. Equation-rewriting rules for type unification
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18 Jacques Garrigue and Hassan Aı̈t-Kaci

Tp(�; x) = h;; strip(�(x))i

Tp(�; �`x:M) = h'; [�n�](f`)�g ! �)i

where

8<
:
h'; �i= Tp(� [x 7! �];M)

�; � fresh

Tp(�;M b̀M0) = hsol(' [ '0 [ f� = f`)� 0g ! �g); �i

where

8>>><
>>>:

h'; �i= Tp(�;M)

h'0; � 0i= Tp(�;M0)

� fresh

Tp(�; let x = M in M0) = hsol(' [ '0); � 0i

where

8>>><
>>>:

h'; �i= Tp(�;M)

h'0; � 0i= Tp(� 0;M0)

� 0 = � [x 7! 8
�
FV(�)� FV('(�))

�
:� ]

Figure 9. Type inference algorithm
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this algorithm is complete and correct. This is because only necessary equations are added,
except for generalization and instantiation, which are handled in the most general way in the
variable andlet cases.

8 Conclusion and further work

We have proposed two typing systems for label-selective�-calculus: simple types and
ML-style polymorphic types. The latter are smoothly accommodated thanks to the existence
of a simple but flexible record-type concatenation operation that facilitates building label-
selective currying right into type substitution and unification. Integrated into a polymorphic
functional programming language with currying, this provides a powerful tool, extending
currying facilities and helping to memorize multi-argument functions.

An interesting subject is how to mix record operations and selective�-calculus. The idea
comes from the natural encoding of records in the untyped calculus, as:

f`1)a1; . . .; `n)ang �! �sels:(s b̀1 a1 . . . b̀n an)

wheresel is a distinguished fixed channel ands is a function selecting a label and discarding
the others individually (we have no way to discard them at once), like�`1x1: . . .:�`nxn:xk.
We can even have functions using more than one label. This is in fact the basic idea for a
transformation calculus. However, there are some essential differences between a classical
definition of records and this encoding as itaccommodates numerical indices. We suspect that
type inference of such a calculus with useful operations might turn out to be rather complex.

Another application of this calculus might be found in parallel processing. If we now
see labels on a stream as identifying threads, the commutation capability directly interprets a
concurrent evaluation. This is an idea very close to the dataflow paradigm, but we hope to
replace flow analysis by type synthesis. Another, but not contradictory, view is to see labels
as names, like for process communication. It shows a link, which can easily be made more
evident, with calculi like Milner’s�-calculus [16]. The conjunction of those two views seems
an interesting prospective.

The last, but more immediate, concern is compilation. Two different versions of selective
�-calculus using de Bruijn indices, through explicit substitutions [1], have been developed.
They reflect two different levels of compilation: one that is faithful to label names, and one
where they can be replaced by numeric stack offsets. This might be the basis for an efficient
compilation method, which should be built on a completely curried vision. That is, there
should be no overhead caused by currying. The efficient compilation method given by Ohori
for a record calculus [18] gives us some evidence that this is possible.
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Appendix: Proofs of theorems

Proposition 4 Record-type concatenation is associative.

Proof: Let us show that�r � �s = �r]�r(s). We proceed with inverses:

��1
r]�r (s);p

(i) = i � or]�r (s)(pi)

= i � or(pi)� os(��
1

r;p (i))

= ��1
s;p (�

�1
r;p (i)):

We then have:

r � (s � t) = r ] �r(s] �s(t))

= r ] �r(s) ] �r(�s(t))

= r ] �r(s) ] �r]�r (s)(t)

= (r � s) � t:

Proposition 5 (subject reduction) If � ` M : � and M! N then� ` N : � .

Proof: We only need to prove this property whenM is a redex andN is the result of this reduction.
We can then generalize by substitution and repetition.

If M is a�-redex, it is of the form(�`x:�:P) b̀Q. Then, the basis of the proof tree is:

� [x 7! �] ` P : r ! �

� ` �`x:�:P : fl)�g � r ! �
� ` Q : �

� ` M : r ! �

After reduction the result isN = [x=Q]P. We obtain a derivation tree for� ` [x=Q]P from those
of � [x 7! �] ` P : r ! � and� ` Q : � as follows: (1) doing all�-conversions necessary to the
substitution ofx by Q; (2) suppressingx in the environments (except where it is redefined by an
abstraction); (3) wherex appears without being defined in the environment, replacing� 0 ` x : � by
the derivation tree of� 0 ` Q : �. This poses no problem since8y2 FV(Q) � (y) = � 0(y).

If the reduction is a reordering, we have seven cases. We will only work out in detail cases (3), (6)
and (7).

Case (3): If the reduction is (3), then the derivation tree must have the following form:

� [x 7! �] ` M : fqn)�0g � r ! �

� ` �pmx:�:M : fpm)�; qn)�0g � r ! �
� ` N : �0

� ` (�pmx:�:M) bqnN : fpm)�g � r ! �

Sincex 62 FV(N), we can obtain the following derivation tree after reordering:
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� [x 7! �] ` M : fqn)�0g � r ! � � [x 7! �] ` N : �0

� [x 7! �] ` M bqn N : r ! �

� ` �pmx:�:(M bqn N) : fpm)�g � r ! �

Case (6): If the reduction is (6), thenn < m, and the derivation tree must have the following form:

� [x 7! �] ` M : fpn)�0g � r ! �

� ` �pmx:�:M : fpn)�0; pm)�g � r ! �
� ` N : �0

� ` (�pmx:�:M) bpnN : fp(m� 1))�g � r ! �

Sincex 62 FV(N), we can obtain the following derivation tree after reordering:

� [x 7! �] ` M : fpn)�0g � r ! � � [x 7! �] ` N : �0

� [x 7! �] ` M bpn N : r ! �

� ` �p(m�1)x:�:(M bpn N) : fp(m� 1))�g � r ! �

Case (7): If the reduction is (7), thenm< n, and the derivation tree must have the following form:

� [x 7! �] ` M : fp(n� 1))�0g � r ! �

� ` �pmx:�:M : fpm)�; pn)�0g � r ! �
� ` N : �0

� ` (�pmx:�:M) bpnN : fpm)�g � r ! �

Sincex 62 FV(N), we can obtain the following derivation tree after reordering:

� [x 7! �] ` M : fp(n� 1))�0g � r ! � � [x 7! �] ` N : �0

� [x 7! �] ` M dp(n�1) N : r ! �

� ` �pmx:�:(M bpn N) : fpm)�g � r ! �

Theorem 6 The simply typed selective�-calculus is strongly normalizing.

Proof: The idea is to construct a function that gives the longest reduction of a term in function of its
input. By reduction steps, we only mean here�-reductions, since we already know that reordering
is Noetherian.

First, let us definezero functions, and the operation ofrectificationof a function. In fact, we use
selective functionsin place of classical functions, labeling arguments. They are only a practical
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notation since we know that selection is deterministic by the confluence theorem, and we could
translate them to classical functions using their types and the order on labels.

Let � = f`1 ) �1; . . .; `n ) �ng ! u be a simple type. Thezero-functionfor � , noted0� , is
the function�(`1 ) x1 : ��1 ; . . .; `n ) xn : ��n ):0, of type ��, where� is defined by induction as
(f`1)�1; . . .g ! u)� = f`1)��1 ; . . .g ! int (we replace every base type withint).

To rectify a functionf of type� = f`1)�1; . . .; `n)�mg � r ! u to r ! u one simply applies it to
the corresponding zero-functions:rect(r ! u; f : � ) = f (`1)0�1; . . . ; `n)0�n).

We define our functionT� (M) by induction on the structure of the termM, annotated with types in
some typing environment� . We suppose that keywordsS and variablesV are independent, and
useV [ S as symbols for the respective selective functions.

For a variable� ` x : � , the associated function is�xx: ��:x.

For an abstraction� ` �`x:�:M : fl)�g � r ! � , the associated function is�`x:��:T� [x7!�](M).

For an application� ` M b̀N : r ! � , with � ` N : �, the associated function is:

T� (M b̀N) = �x1x1: � � � :�xnxn:
�
(T� (M) bx1 x1 . . . bxk xk b̀Na) + rect(int;Na : ��) + 1

�

where:

1. FV(N) = fx1; . . .; xng;

2. FV(M) \ FV(N) = fx1; . . .; xkg, 0� k� n;

3. Na = T� (N) bx1 x1 . . . bxn xn;

4. for f : f`1)�1; . . .; `n)�ng ! int anda : int,
f + a = �(`1)x1 :�1; . . .; `n)xn :�n):(f (`1)x1; . . . ; `n)xn) + a):

This sum of three terms expresses thatN may be reduced after substitution inM, or before, and that
there may be one step of�-reduction.

In this function we make two approximations. The first one is that we count one step foreach
application, whether or not there is an abstraction to reduce. The second one is that we take the
sum of the call-by-name and call-by-value strategies, and not their maximum. Since these are only
over-estimations, our function gives an upper-bound of the longest reduction path.

If � ` M : f`1)�1; . . . ; `n)�ng ! � and� jFV(M) = fx1 7! �1; . . .; xm 7! �mg, thenT� (M) is a
total function from��1 � � � �� ��n � ��1 � � � �� ��m to int. This means that on any complete input that
is coherent with its typing,M will terminate. Moreover, an upper bound of its longest reduction
path is given byrect(int;T� (M) : (r ! � )�).

Proposition 7 (subject reduction) If � ` M : � in polymorphically typed selective�-
calculus, and M! N then� ` N : � .

Proof: Since polymorphism can only be used in conjunction withlet, the proof for simple types is
enough except forlet-reduction.

In this last case, the derivation tree starts with:

� ` M : � � [x 7! �] ` N : �

� ` let x = M in N : �
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We first perform all�-conversions necessary to the substitution ofx by M. After reduction, we
obtain a tree with root� ` [x=M]N : � from the derivation tree of� [x 7! �] ` N : � by replacing
every occurrence of the axiom� 0[x 7! �] ` x : � by the derivation tree of� 0 ` M : �; observing
that8y2 FV(M) � (y) = � 0(y).

Theorem 8 Polymorphic selective�-calculus is strongly normalizing.

Proof: We find an upper bound of the longest evaluation ofM by that ofM̃, which isM where
all occurrences oflet are suppressed by transforminglet x = P in N into Kb1 ([x=P]N)b1 P, where
K = �1x:�1y:x. We needK for the case wherex does not appear inN. Since the result is
monomorphic everywhere, the argument for the simply typed calculus holds.

Theorem 9 (label-selective type unification) There is an algorithm that computes the most
general unifier of a set of equations on monotypes or reports failure if there is none.

Proof: We first prove the correctness of the rewriting system of Figure 8. That is, foreach rewrite
rule, any solution of the denominator is a solution of the numerator, and conversely, any solution
of the numerator can be extended into a solution of the denominator, possibly by introducing new
variables missing in the numerator.

The rules labeledBase type, Variable recurrence, Function typedetect inconsistencies in the
equations. That is, respectively, equation between two different base types, between a type variable
and a type containing it, or between a base type and a functional type. When one of these rules
applies, the system has no unifier.

TheVariable eliminationrule substitutesvariables (usingflattening type substitution),while keeping
their referents. Let� be a solution of the numerator. Then, by construction,�(�) = �(� ), thus it
is also a solution of the denominator; and conversely.

TheVariable orientationrule simply reorients an equation. It is not really necessary and is provided
only to obtain the solved form with all solved variables on the left. Clearly, it leaves unchanged the
set of unifiers. So does theRedundancyrule which just suppresses tautological equations.

Decompositiontakes a label already present on the two sides of an equation, and equates the types.
Correctness is clear.

Whenever a label appears only on one side of an equation, it is necessary to introduce it in the other
side. This is done by theLabel completionrule using record-type matching. Any unifier of the
denominator is also a solution of the numerator, sincef`) �g ] r0 ! � = r0 � ��1

r0 f`) �g ! �,
which is by unification equal tor0 ! !0. Conversely, if� is a unifier of the numerator, then it
maps!0 to a functional type of the form��1

r0 f`)�(�)g � r00 ! !00, which can be extended for the
denominator by adding�(�) = r00 ! !00.

We next prove that there is a terminating strategy. Termination follows for the well-foundedness of
a decreasing measure. A variable issolvedwhen it appears only once, and as the lefthand-side of
an equation. We exhibit a strategy that reduces the lexicographical measure(number of unsolved
variables,sum of sizes), where the size of a type is the total number of labels, variable occurrences
and base types it contains.

The three failing rules terminate. Redundancy, and Decomposition reduce the sum of sizes.
Variable elimination and Variable orientation reduce the number of unsolved variables.

Label completion by itself does not reduce the measure. But if it is always used it in combination
with Decomposition on the same equation, eliminating or failing as soon as possible, this always
reduces the number of unsolved variables. If!0 is not a variable, we fail immediately. Otherwise,
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it is solved, but we create a new variable�. We repeat this until we can solve a “successor” of�

with the left hand side (which may suppose creating a lineage to! too, if completion is mutual).
This sequence terminates, since there is only a finite number of labels on each side.

Last, we must show that our result is in solved form. First, in every equation, at least one side is
a solved variable. If the two sides are functional types, then either Decomposition or Completion
applies. If one side is a base type, then the other side is a solved variable, otherwise Elimination,
Redundancy or some failure applies. If the two sides are variables, then at least one is solved.

We construct the substitution� by taking for each equation� = � , � solved,�(�) = � . � is a
most general unifier of the final system, and, as a consequence, if we suppress definitions for all
variables introduced by completion,�0 is a most general unifier of the original system.
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