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Abstract

We consider the problem of pricing path-dependent contingent claims. Classically, thisproblem
can becast into the Bl ack-Schol es val uation framework through inclusion of the path-dependent
variables into the state space. This leads to solving a degenerate advection-diffusion Partial
Differential Equation (PDE). Standard Finite Difference (FD) methods are known to be inade-
guate for solving such degenerate PDE. Hence, path-dependent European claims are typically
priced through Monte-Carlo simulation. To date, there is no numerical method for pricing
path-dependent American claims.

Wefirst establish necessary and sufficient conditionsamenable to aLie agebraic characteriza-
tion, under which degenerate diffusions can be reduced to lower-dimensiona non-degenerate
diffusions on a sub-manifold of the underlying asset space. We apply these results to path-
dependent options. Then, we describe a new numerical technique, caled Forward Shooting
Grid (FSG) method, that efficiently copes with degenerate diffusion PDE. Finally, we show
that the FSG method is unconditionally stable and convergent.

The FSG method has been implemented for a number of popular path-dependent options, and
proved to be much faster than traditional Monte Carlo simulation, for a comparable accuracy.
Depending on the type of option, the computation timelies between 1 and 15 secondson a PC,
for a0.1 % precision.

TheFSG method isal so thefirst capabl e of dealingwiththeearly exercisecondition of American
options. Furthermore, when the stock price Sfollowsabinomial process, the method computes
the exact price of any American lookback option on S. The sameis true for barrier options,
such as up-and-in or down-and-out options.

Several numerical examples are presented and discussed, showing in particular that the Snell
envelope upper bounds obtained on American lookback prices are quite overestimated, and
aso that the usual geometric average approximation to the arithmetic average-rate option is
fairly inaccurate.
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Pricing of American Path-Dependent Contingent Claims 1

1 Introduction

Path-dependent optionsare optionswhose payoffs depend on historical values of the underlying
asset over agiven time period as well asits current value. Well-known examples are lookback
call (put) options, which give their owners the right to buy (sell) the asset at an exercise price
equal to the minimum (maximum) price of the asset over the life of the option. Many other
variants exist, e.g. capped options, barrier options etc.

Average-rate or Asian options constitute another class of path-dependent instruments, whose
payoffs depend on the arithmetic average val ue of the asset price for sometimeperiod. Popular
examples include fixed-strike, and floating-strike average-rate options.

Since their introduction in 1982, path-dependent options found their way in several places
such as common stocks and foreign exchange markets, by meeting specific risk management
and investment needs. As evidence of their increasing popularity, some instruments such as
capped options have recently begun to be traded on the Chicago Board of Options Exchange
and American Stock Exchange, see e.g. Hunter and Stowe (1992).

The modern approach to path-dependent option pricing relies on the dynamic hedging principle
of the Black-Scholes model (Black and Scholes (1973)). In their seminal work, Goldman et al.
(1979) have shown that a hedge portfolio could be constructed for an option to buy at the
historical maximum, and that closed-form vauation formulas exist in the European case.
Garman (1989) developed another valuation model, which separates the lookback option into
two underlying options, and givesfurthermore the ability to price a European option on an asset
that pays dividends. The Asian option is analyzed by Yor (1989). Conze and Viswanathan
(1991) derive explicit valuation formulas of most European barrier options, as well as some
upper boundsin the American case. Kemnaand Vorst (1990) use Monte Carlo simulation with
a specific variance reduction method to compute the price of fixed-strike average-rate options.

The path-dependent pricing problem can be cast into the classical Black-Scholes valuation
framework through inclusion of the path dependent variables into the state space (see e.g.
Stanton (1989)). In a few simple cases, the resulting augmented PDE admits a closed form
solution. However, the use of numerical techniques is mandatory in most practical situations.
The augmented PDE associated with a path-dependent problem is generally degenerate, i.e.
the instantaneous covariance matrix is singular. Finite Difference (FD) methods are numer-
ically stable, but they introduce a spurious additional numerical diffusion, and therefore do
not converge towards the theoretical solution. The only practical technique to date consistsin
computing the price through Monte Carlo simulation by means of the Feynman-Kac represen-
tation. This approach is satisfactory for pricing European path-dependent contingent claims.
However, it cannot deal with the early exercise conditions of American claims.

In this paper, we first establish necessary and sufficient conditions under which degenerate
diffusion PDE can be reduced to lower-dimensional non-degenerate PDE on asub-manifold of
the state space. A degenerate PDE that can be reduced in such away is called holonomic. Itis
called non-holonomicotherwise. Itisimportant to determinewhether agiven PDE isholonomic
or not, since this property influences both the type of numerical integration technique that can
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2 Jérébme Barraquand and Thierry Pudet

be used, and the memory required to conduct the integration.

For this purpose, we use the concept of symmetric multiplication for stochastic integrals,
which leads to the notion of Fisk-Stratonovitch differential. Then, we use standard results
regarding discrete approximationsof multidimensional diffusion processesthat establishalink
between stochastic differential equations and deterministic optimal control theory. Finally, we
use standard results on the accessihility of deterministic control systems. Thisleadsto alLie
algebraic characterization of holonomic PDE.

Then, we apply these results to popular types of path-dependent pricing problems. We show
in particular that the average-rate option pricing PDE is nhon-holonomic. Finally, we present a
new numerical technique, called Forward Shooting Grid method, that efficiently copeswith the
degeneracy of these non-holonomic PDE. In particular, we show that, unlike FD methods, the
FSG method isunconditionally stable and convergent in the presence of arbitrary degeneracies.

The FSG method has been implemented, and demonstrated the following capabilities:

1) It is much faster than traditional Monte Carlo simulation, for a comparable accuracy.
Depending on the type of option, the computation time on a PC lies between 1 and 15
seconds, for a 0.1% precision.

2) It can dead with the early exercise condition of American options. To the best of our
knowledge, thisisthefirst method capable of pricing American path-dependent options.

3) When the stock price S follows a Cox-Ross-Rubinstein binomial process, the method
computes exactly the price of any (e.g. minimum or maximum) American lookback
optionon S. Thisis also true for barrier options, such as up-and-in or down-and-out
options.

The next section briefly reviewsthe basic ingredients of the modern contingent claim valuation
model, and discusses the dternative implementations of the numerical solutions. Section 3
examines how path dependency can be aleviated through state augmentation, allowing for
path-dependent claimsto be priced in the standard val uation framework. It a'so emphasizesthe
difficulty of solving the resulting degenerate equations with standard finite difference methods.
Sections 4 and 5 establish necessary and sufficient conditions of holonomy for degenerate dif-
fusions. Section 6 introduces the Forward Shooting Grid method which efficiently copes with
this degeneracy, aswell aswith the early exercise condition of American path-dependent secu-
rities. Section 7 establishes the convergence of the FSG method for general multidimensional
diffusion processes. Finaly, Section 8 gives several examples of European and American
prices for various path-dependent options, and discusses the resullts.

2 Contingent claim valuation

This sectionfirst briefly reviewsthe basic ingredients of the modern contingent claim valuation
mode in a continuoustime framework (see e.g. Duffie (1992)), then discusses the aternative
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Pricing of American Path-Dependent Contingent Claims 3

implementations of the numerical solutions.

2.1 The PDE approach

There exists an asset-price stochastic process § governing the evolution of the statevariable S,
which follows the Itd's stochastic differential equation (SDE):

dS = m(t, S)dt+ b(t, S)dw, S > 0, 2.1)

where w is a standard Brownian motion.

There also exists a bond-price process B, governed by the SDE:
dB: = r(t,§)B, Bo > 0.

This process model s the continuously compounding risk-free interest rate.

Consider a derivative security with terminal payoff g(Sr), where g is some continuous real
function that depends on state variable S. It is shown that in the absence of arbitrage, the price
C(t, S) of the derivative security at timet solves the partial differential equation (PDE):

2
S 9C Y+ S +rt 9SSt g+ bt 5202ty =0 (22

with the boundary condition C(T, S) = g(9).

2.2 The Feynman-Kac formula

Under suitable technical conditionsfor functionsr, ¢, and g, the Feynman-Kac (FK) formula
gives the solutionto eqg. (2.2):

ety = &eo(- i Sdu) g(3)|: 23)

where §, isthe Itd process defined by:

A,

S = Su<lt
dS, = r(u,§)Sdu+ b(u, S)dw, u>t.
Therefore, thevalue (price) C(t, S) of aderivative security can beinterpreted as the expectation

of its discounted payoff under the modified (aka risk-neutral) process §,, whose expected rate
of return istherisklessinterest rate of the market.

Both the fundamental PDE (2.2) and its corresponding FK formula (2.3) extend to the case of
aderivative security contingent to an arbitrary number of assets.
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4 Jérébme Barraquand and Thierry Pudet

2.3 The Black-Scholes equation

In the Black-Scholes model, the stock price S follows a log-normal process, with r and o
constant:

dS = upSdt+o0Sdw, >0
dBi = rB;, Bo> 0.
In thiscase, eg. (2.2) reduces to the Black-Scholes equation:

aC aC 1,_,0%C B
with boundary condition C(T, §) = g(S) = max(0, S— K).

The change of variable

Z = log(S/S) —at, o =1 —0?/2, (2.5)
simplifieseq. (2.4) into:
oC 1 ,0°C B

with the boundary condition C(T, Z) = max(0, Sye#+>(T-) — K).
Looking for asolution of theformC(t, Z) = e"(T-9 E(t, Z), eg. (2.6) reducesto the (backward)
heat equation:

- — 5° = 0 2.7

with the boundary condition E(T, Z) = €(T-Y max (0, Spe?+(T-Y — K).
Eq. (2.7) admitsfor solution the Black-Scholes option pricing formula:
Ct,9 = SPX)—e"TIKDX - ayT 1)

X = w% (10g(S/K) + (a+ 0?)(T ~ 1)),

where @ isthe cumulative standard normal distribution function.

2.4 Numerical solutions

The PDE approach and FK formula give two related ways of pricing a derivative security
when no closed form solution exists. either solve PDE (2.2) numerically, or use Monte Carlo
simulation (Hammerd ey and Hanscomb (1964)) and sample the risk-neutral process given by
€g. (2.1) in order to compute an approximation to the expectation of eq. (2.3). The respective
advantages and limitations of these two methods are briefly presented bel ow.
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Pricing of American Path-Dependent Contingent Claims 5

Monte Carlo simulation.

e The space complexity (memory requirement) is linear in the number of state vari-
ables. In genera, the time complexity (computation time) is quadratic in the
number of state variables.

e Due to the high number of samples usually required to get sufficient precision,
execution times are significantly greater than those of finite difference methods.

e Theearly exercise condition of American options cannot be dealt with.

PDE integration. In the context of asset pricing problems, PDEs usually reduce to simple
advection-diffusion equations, whose sol utions are most simply computed through finite
difference methods.

e Both the time and space complexities of FD methods grow exponentialy in the
number of state variables. This makes the PDE approach attractive only when the
number of underlying assetsis small.

e Numerical instabilities of FD methods can be a delicate issue. In particular, it is
well-knownthat FD methodsareill suitedto solving degenerate PDES, that isPDEs
for which the covariance matrix is singular.

e In generd, FD implementations run significantly faster than corresponding Monte
Carlo simulations.

e PDE solving methods are the only onesthat easily handle the early exercise condi-
tion of American optionst.

3 Path dependency

This section first examines popular examples of path dependent problems, then describes how
path dependency can be alleviated through state augmentation. It also emphasi zesthe difficulty
of solving the resulting PDEs with standard FD methods.

3.1 A menagerie of path-dependent options

Historically, many similar path-dependent options have been given different names. This
section presents the most popular path-dependent options, giving explicit formulas for their
associated payoffs.

Without loss of generality, wewill assumeall optionsto beissued at initial timet = 0, expiring
attimeT > 0. We will write Sy the value of asset Sat expiration time T, and K the strike
or exercise price of the option. Cr (resp. Pt) will denote the payoff of a cal (resp. put) at
expiration time, and C (resp. P) the sought value of the call (resp. put) at initial time.

1Theexistence of solutionsto advection diffusion PDE with early exercise boundary conditions has been studied
by several authors McKean (1965); Merton (1973); Harrison and Kreps (1979); Bensoussan (1984); Karatzas
(1988); Jaillet et al. (1988).
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6 Jérébme Barraquand and Thierry Pudet

Let M (resp. m) be the maximum (resp. minimum) value of asset Sover thetime period [0, t]:

My = mMaXoc <t S
L == 3.1
m MiNo<, <t S;. 1)

Let aso A; bethe value of the arithmetic average of Sover [0, t]:

1 t
A = —/ S dr (3.2
t Jo

Ordinary option. An ordinary call (resp. put) option gives its owner the right to buy (resp.
sel) Sat strikeK:

Cr = max(0,Sr —K)
Pr = max(0,K - Sr).

Lookback. A lookback call (resp. put) gives its owner the right to buy (resp. sell) Sat its
lowest (resp. greatest) price over time period [0, T]:

G = S-nmr
Pr = Mr—Sr.

Option on extrema. A cal (resp. put) on maximum (resp. minimum) is like an ordinary
option, but the spot isto be replaced with the historical maximum (resp. minimum) value
of S

C = max(O, Mt — K)
Pr = min(0,K — my).

Capped options. A capped call (resp. put) option is like an ordinary option, as long as the
historical maximum (resp. minimum) of S stays below (resp. above) a predefined upper
(resp. lower) barrier price b. Should the maximum (resp. minimum) reach (resp. fall
below) that barrier, the option is automatically exercised.

o _ b—K  ifMr<b
T = 1 max(0,Sr—K) otherwise

. Keb  ifmr>b
T = | max(0,K—Sr) otherwise

Barrier options. Barrier options are also known as knock-out, knock-in, or trigger options.
We describe below the most popular types.
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Pricing of American Path-Dependent Contingent Claims 7

e Down-and-out call. Up-and-out put.
A down-and-out call (resp. up-and-out put) behaves like an ordinary call (resp.
put) as long as the historical minimum (resp. maximum) of S stays above (resp.
below) apredefined lower (resp. upper) barrier priceb. Should the minimum (resp.
maximum) reach or fall below (resp. reach or rise above) that barrier, the payoff
becomes zero:

e — max(0, St — K) ifmyr > b
T = 0 otherwise

P _ max(0,K — Sr) ifMr<b
T = 0 otherwise.

e Down-and-in call. Up-and-in put.
A down-and-in call (resp. up-and-in put) behaves like an ordinary call (resp. put)
as long as the historica maximum (resp. minimum) of S stays below (resp. above)
apredefined barrier upper price b. Should the maximum (resp. minimum) reach or
rise above (resp. reach or fall below) that barrier, the payoff becomes zero:

Cr

max(0,Sr — K) ifMt <b
0 otherwise

P _ max(0,K — Sr) ifmr > b
T = 0 otherwise

Average-rate options. Average-rate options are also known as Asian options. Their payoffs
depend on the value of the arithmetic average of S over a given time period. There are
two types of such options: fixed-strike, and floating-strike.

o A fixed-strike average-rate option islike an ordinary option, with the time average
Ar substituted for Sr:

C = max(O, At — K)
Pr = max(O, K— AT).

e Symmetrically, in the payoff of a floating-strike average-rate option, the time
average Ar is substituted for the strike K:

C = max(O, Sr— AT)
Pr = max(O, At — S]')

3.2 An introductory example

It should be noted that the PDE (2.2) for the price process can only be written down under
the Markovian assumption that the instantaneous payoff of the derivative security be function
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8 Jérébme Barraquand and Thierry Pudet

only of the current value of asset S i.e. C = C(§,t). If thisisnot the case, the security is
termed path-dependent. To understand the implications of such path-dependency with respect
to the PDE solving approach, the following sections draw on an example devel oped in Stanton
(1989) for the valuation of a simplified zero-strike Asian option in the Black-Scholes model.

Consider astock Swith no dividends, which followsalog-normal price process. Also, assume
aconstant risk-free interest rate. Anoptionon Sisissued at timet = 0, expiringattimeT > 0,
whose terminal payoff gr isthe arithmetic average Ar of Sover period [0, T], cf. eg. (3.2).

Applying the Feynman-Kac formula, the arbitrage-free price of this opti on can be computed
as the discounted expectation of its payoff under the risk-neutral process S;:

= §u<t
r&du+ oSdw, u>t;

and
1 T
clt) = ?e‘r(T‘t)Et [ / Sudu]
0
S S L
= 7 / E: [Su] du.
0

By definition of §,, B[] = S foru <t Foru >t, § isalog-normal process, whose
expectation at timet isgiven by:

E[&] = set.
Therefore,
T R t R T R
/OEt[SU]du _ /OEt[SJ]du—|—/t E [&] du
t
_ S (g
= /Osudqur(er —1).
Finally,

Cit)y = C(t,S,A)

e—r(T—t) t s ;
_ ~ _ ar(T=1)
T /0 Sdu+ 3 (1-em),

(3.3)

which clearly showsthat the value of the security, aswell as its payoff are path-dependent.

3.3 Augmenting the state space

State augmentation is a classical method for converting path-dependent problems into their
equivaent path-independent counterparts. The following example is drawn from Stanton
(1989).
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Pricing of American Path-Dependent Contingent Claims 9

Let ustherefore incorporate A as the second state variable. A; being the average value of Sover
period [0,1],t < T, with Ag = &, the law of evolution of A; is obtained by differentiating eg.
(3.2):

dA = (S - A)ct (3.4

Thevalue of the option at timet becomesC = C(S A, t). Using the same arbitrage arguments
asintheregular case, it is shown that in absence of arbitrage, A; solvesthe PDE:

9C  IC 1 ,,0°C 1 JC

with the boundary condition C(T, S A) = g= A.

Eq. (3.5) isin fact the Black-Scholes equation (2.4), into which theterm 1/t(S — At)% has
been incorporated. By augmenting the state space, the value of the option only depends on
the current values of the state variables S and A, hence path dependency has been alleviated.
Furthermore, for this particular boundary condition, a closed-form formulafor C(t, §, Ar) is
easily found:

—r(T—t)
CtLSA) = - At % (1— e—r<T—‘>)7 (3.6)

whichis exactly eq. (3.3) above.

In the case of afixed-strike Asian option with amorerealistic termina payoff g = max(0, A—
K), eg. (3.5) isstill valid but the new boundary condition makes it impossibleto find a closed-
form formula for the price. In general, only numerical methods can handle path-dependent
asset pricing problems, with the usual alternative of Monte Carlo simulation vs. PDE solving.

3.4 Degeneracy of augmented PDE

Augmented PDE are degenerate in nature. Intuitively, the degeneracy comes from the fact
that the augmented state variables, such as A; and S, are corrdlated. In other words, the
increments dS and dA; of asset price and time average are not independent, which implies
that the deterministic relationship between them, as expressed in eg. (3.5) cannot be readily
integrated. In practice, any numerical scheme that approximates an augmented PDE, although
it can be made stable, will not necessarily converge to a solution. This makesthe standard FD
approach impractical. Again, we shall illustrate thiswith the example of the zero-strike Asian
option, eg. (3.6) providing analytic solutionsfor reference.

In eg. (3.5), adiscontinuity occurs at t = 0, which can be eliminated by the change of variable
Y = tA. Together with the change indicated in eqg. (2.5), they simplify eq. (3.5) into:

JE 1 ,0°E  _JE
a2 ozt Sy =0 (3.7)
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10 Jérdbme Barraquand and Thierry Pudet

with the boundary condition E(T,Z,Y) = e "TY/T.

Because there is no second-order termin'Y, eg. (3.7) isastrongly degenerate two-dimensional
advection-diffusion PDE. invert a singular matrix. Writing E(t,Z,Y) as Ej’jk = E(tn, Z]-”, Y,
€g. (3.7) is approximated with the following explicit scheme:

1
—Di(t) = Zo2Di(t+At) + S(t + At)Dy(t+ At),

2
where
En _ gntl 9
Dy(t) = KTk = —YE4O(At
(¥ At ot T OBy
En —_En o
_ ikl j,k=1 _ v 2
Dot) = o = SyE+0BYY
EN . — 2E" + EN 92
_ j+1k j,K -1k 2
Du(t) = INZ = 552E+0(8Z%).

Eq. (3.7) isthen backward integrated as follows:

U — 2Nt
-T2,
o = gt
Y S INZ
B = (1-w)EY 4+ suz(BY+ B + suv (Bl — ERD) (3.8)
n = N-—1,...,0
j = -n....n
K = 0,... kn

with the boundary condition

i’ = —-N,...,N

k = 0,... kn

We implemented the scheme (3.8), and compared results with those obtained with formula
(3.6). Not surprisingly, the numerical procedure failed to give accurate resultson abroad range
of input parameters o and r.

In summary, athough path dependency can be alleviated by augmenting the state space, the
applicability of FD methods in such cases is very limited. This seems to give a definite
advantage to Monte Carlo methods, which just simulate the asset-price process. This fact
has been noted in previous work (Talay (1991)). In Section 6, we will present an aternative
numerical technique for solving degenerate PDES that has several advantages over the Monte-
Carlo method. Before, we derive a mathematical characterization of path-dependence.
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Pricing of American Path-Dependent Contingent Claims 11

4 Characterization of path-dependent price processes in two dimensions

We establish necessary and sufficient conditions under which degenerate diffusion PDE can
be reduced to lower-dimensional non-degenerate PDE on a sub-manifold of the state space.
A degenerate PDE that can be reduced in such away is called holonomic. It is caled non-
holonomic otherwise. It is important to determine whether a given PDE is holonomic or not,
since this property influences both the type of numerical integration techniquethat can be used,
and the memory required to conduct the integration. We introduce in this section the main
intuition behind this characterization in the two dimensional case. In the next section, we treat
the general case.

4.1 The generic two-dimensional path-dependent pricing problem

We consider a price process § following the 1td SDE (2.1), and an arbitrary path-dependent
variable A
A=Y ([S] <)

We assume that A; follows an 116 SDE of the type:
dA( = mA(t7 37 At)dt + bA(t7 37 At)dW
For example, if A; isthe mean value of S up to timet, we see from the previous section that:

ma(t, S A) = %(s_ A), ba(t,SA) =

In order to compute the price of a path-dependent contingent claim C(t, §, Ar), we must solve
for the following two-dimensional degenerate PDE:

aC oc | 2820 ac ,9°C C. 9°C

wheree ms=rS, bs=Dh.

The numerical integration of the above equation requires a priori to quantize both variables S
and A. Hence, if each variable is quantized using N samples, the memory requirement of the
numerical pricing procedure is proportional to N2.

However, since the time evolutions of Sand A depend on the same Brownian motion W, there
is asimplerelationship between the three (stochastic) differentialsdt, dS, and dA:

dw = (meba — bsma)dt — bAdS+ bedA = 0 (4.2)

The numerical integration of the PDE will require a memory proportional to N2 only if this
differentia relationship cannot beintegrated, i.e. if thereisno potential function F(t, S A) and
no integrating factor A(t, S A) such that:

dF = \dw
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12 Jérdbme Barraquand and Thierry Pudet

Indeed, if such F and A exist, then the differential relationship (4.2) is equivaent to the
following:

F(t,S A) = F(0, S, Ag)

Hence, we can perform (under suitabletechnical conditions) the following change of variables
in PDE (4.1):

o= OLSA) =t
S = Pgt,SA) = S
F = ®(,SA = F({SA
and get:
oC ac gﬂc ac zzﬁc 9C
where we have defined for notational convenience:
_OF 8F 1,,0%F oF , 0°F O%F
M= 5 + Mgt 20555 + Mg T m%mf+%ma$m
and oF 5
F
br = bsa + bAaA

But by Itd’s formula
dF = medt + bpdw

Since by assumption dF = Adw = 0, weget me = b = 0. Hence, thetransformed PDE (4.3)
simplifiesto the usual one-dimensiona Black-Scholes equation:

2
ey 98, € L 150%C

or T Msgs t3P5552 =0 (4.4)

In order to price a contingent claim with terminal payoff g(Sr, At), one must first solve for
A = ¢(t,§) as afunction of t and Sin equation F(t, S, A) = F(0, S, Ag), and then solve
backwards in time the above one-dimensional PDE with the boundary condition C(T, S, A) =
9(S ¢(T,S)). Thememory required to conduct the numerical integration is now proportional
to N instead of N2. Also, the above one dimensional PDE is not degenerate, and can be
integrated using standard FD methods.

4.2 Fisk-Stratonovitch stochastic differentials

It isan important matter to characterize the conditionsunder which the differential relationship
(4.2) can be integrated. For that purpose, we will first introduce the notion of stochastic
differential in the Fisk-Stratonovich sense.

LetO=1ty) < t; < ... < ty = t bean arbitrary partition of the interval [0, t] with a modulus
n = max;(tiy1 — ti).
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Formally, the Fisk-Sratonovitch SDE dx = b o dw for two continuous semi-martingales b, w
can be interpreted as a notation for the identity

m-1
v, x(t) = x(0) + lim 37 2P G )
n—044

where the limit is taken in probability.

Intuitively, whereas the It0 differential dx = bdw isaforward differential which can beloosely
interpreted as:
X(t 4 dt) = x(t) + b(t) (w(t+ dt) — w(t))

the Fisk-Stratonovitch differential dx = bo dwisasymmetric differential, which can beloosely

interpreted as:

b(t) + b(t + dt

X(t + dt) = x(t) + w(w(t +dt) — w(t))
It can be shown (see eg. Karatzas and Shreve (1988)) that, unlike 1t6 differentials which
follow It0’'s chain rule, Fisk-Stratonovitch differentials follows the chain rule of the classica
differential calculus. In particular, for any smooth real-valued function f (t, Xy, . .., Xq) and

continuous vectors of semi-martingalesX = (x, . . ., X4), we have:
d
of of
df (t, X) = =5 (t, X)dt + ; 8—Xi(t,X) o dx,

Finally, it can be shown that there is the following relationship between 1t6 and Fisk-
Stratonovitch SDE. If X = (Xy, . . ., X4) followsthe 1td SDE:

k
Vi€ [Ld], dq=m(tX)dt+ > bi(t, X)dw
=1

Then
k

d k
. 1 obij
Vi e [1,d], dxi(mz E E blj@)(:]) dt + E bij o dw,
=1

| =1 =1
4.3 The stochastic Frobenius integrability condition in two dimensions

In this subsection, we introduce the integrability conditions for equation (4.2). We consider
for simplicity thecased = 2, k = 1. The system of 1t6 SDE:

dx1 = My (t, X1, X2)dt + by (t, X1, X2) dw
dxo = Mmp(t, X1, X2)dt + ba(t, X1, X2) dw

admits the following Fisk-Stratonovitch equivalent:

dx; = m]_(t, X1, Xz) dt + b]_(t7 X1, Xz) o dw
dxo = fMp(t, X1, X2)dt + ba(t, X1, X2) o dw
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14 Jérdbme Barraquand and Thierry Pudet

with
M =m -3 (blg—gi + bzg—%)
p = mp — § (ba522 + b 3%2)

By eliminating dw, we get the following differential relationship:

dw = wodt +wpodxg +woodxo = (m]_bz — mzb]_)dt —byodx;+biodxo =0
By the Fisk-Stratonovitch (i.e. classical) chain rule, a sufficient condition for the existence of
apotentia function F(t, X, X2) and an integrating factor A(t, x1, X2) such that dF = Adw is:
oF oF oF

From the above relations and the symmetry of the second order mixed partial derivativesof F,
we get after elimination of A:

Jws  Owi Jws  Odwo Owr  Owol
“°(a—m‘a—m)+“l(ﬁ‘a—m)+“2(ﬁ‘a—xl)—° (4.6)

It can be shown (see section 5) that the above rdlation is a necessary and sufficient condition for
the existence of F. We can express the above condition in terms of my and by instead of wj. Let
us denote By = (1, fing, i) T and By = (0, by, by) 7. After elementary algebraic manipulations,
the integrability condition (4.6) is shown to be equivalent to:

det (BO7 Bl7 [BO7 Bl]) =0

where [By, Bi] is the Lie Bracket (see aso section 5) of the vector fields By and By, i.e. the
vector field:
[Bo, B1] = dBy.B; — dB;.Bg

and where dB; denote the Jacobian matrix of the vector field B;.

4.4 Characterization of path dependent prices processes

We consider the path-dependent price process of subsection (4.1). Wetakex; = Sandx, = A.

Define 1 ob
e — e Lpdbs
Ms = Ms — Sbs g

. 1/, dba , Oba

M=M= 3 (bS% * bAa—A)

and let By = (1, s, Ma) T, and By = (0, bs, ba)T. Then:

The degenerate two-dimensional Black-Scholes PDE (4.1) in the variables (SA)
can be reduced to the one-dimensional non-degenerate PDE (4.4) if and only if
the following condition is satisfied:

det (Bo, B1,[Bo,B1]) = 0
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We can apply theaboveresult to the case of apath-dependent variable Awhichisinstantaneously
riskless. i.e. by = 0.

We have: By = (1, s, Ma) T, By = (0, bs, 0)T, hence

om
det (Bo, By, [Bo, B1]) = —bga—SA

Therefore, the problem can be reduced to a one-dimensional problem iff ma does not depend
on S. Thisisobviously not the case for the average-rate option pricing problem:

GmA_l
os 170

We can state:

Theaverage-rate option pricing PDE (3.5) cannot bereduced to a one-dimensional
non-degenerate PDE.

5 Characterization of path-dependent price processes: general case
In this section, we turn to a generalization of the above result.

5.1 The general diffusion problem
We consider an advection-diffusion equation of the type:

d
of of 1 %
_5__rf+;m8_xi+§%:7”—8xi8xj (5.1
where X = (xq,...,%d)T € R4, M = (my, ..., mg)7, with the following boundary condition:

f(T, X, ..., %) =9(X1, ..., Xd)
We assume that the real valued functionsr (t, X, ..., Xq) > 0, m(t, xq, ..., %q),i € [1,d], and

Yij(t, X, - -+, %), (i, 1) € [1, d]? on [0, oo x RY are bounded and sufficiently smooth. Weassume
furthermore that for any t, Xy, . . ., X4 the matrix:

F(t X, - Xa) = (i (t X0, - -+ X)) (i jefr.d
is symmetric and non-negative. We denote by B its Cholesky decomposition:
r=BB'

Bisad x kmatrix of rank k, withk < d.
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16 Jérdbme Barraquand and Thierry Pudet

By the Feynman-Kac formula, the solution of the above PDE can be expressed:

T
f(t,X1,..., %) = Et (e<p (—/ r(r,X(r))dr) g(X(T)))
0
where X is the solution of the SDE:
dX = Mdt + BdW, X(t) = (xq,...,X4)" (5.2)

W = (wi, ..., W) isak-dimensiona standard Brownian motion.

We can define the vector M:
d k

. N 1 aby

VIE[].,d]7 m:m—zg E b|j—

Then, from subsection (4.2):
dX = Mdt + Bo dW (5.3)

We denote by SV (Xo) the support of the above SDE for X(0) = Xo, i.e. the smallest closed set
of paths X(t) (elements of the Wiener space Karatzas and Shreve (1988); Ikeda and Watanabe
(1981)) such that Prob(SY(Xo)) = 1. The set of accessible states at time't of SDE (5.3) for
X(0) = Xo, i.e. theset of values X(t) for elements of SV(Xo), isdenoted by AV(t, Xo). In other
words, AV(t, Xo) isthetimet projection of SV(Xo). Clearly,

Prob(X(t) € AV(t, X)) = 1
The set of accessible states from X, for system (5.3) is defined as:
AY(Xo) = Ur=0A"(t, Xo)
Clearly,
Prob(vt, X(t) € AY(Xo)) = 1
5.2 The certainty equivalence theorem of Stroock and Varadhan

The following theorem was first established by Stroock and Varadhan (1972). We use here
the formulation of Ikeda and Watanabe, where the theorem is established as a consequence of
general convergence resultsfor approximationsof diffusion processes (see lkedaand Watanabe
(1981)).

We consider the deterministic control system:

X -~ du
where U (t) = (uy(t), ..., ux(t)) is apiecewise smooth function of time.
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We define the support S (Xg) of system (5.4) as the set of al possible paths X(t) starting at
Xo for al possible control paths U. Similarly, we define the set AY(t, Xo) C RY of accessible
states at time t from Xg as the set of states X* € RY such that there exist a control U(t)
verifying X* = X(t). The set AY(Xo) ¢ RO of accessible states from X is similarly defined
as AY(Xo) = U>0AY(t, Xo). Finally, we say that a state X* is weakly accessible from Xo
if there exist a sequence Xp, X1, ..., Xy = X* such that either X, is accessible from X;, or
X; is accessible from X, 1. The set of states weakly accessible from Xg is denoted WA(Xo).
By definition, any accessible state is weakly accessible, i.e. A(Xo) € WA(Xp). For a non-
symmetric system, i.e. asystem such that the controlsU cannot always be inverted, then there
may be weakly accessible states that are not accessible.

We have the following fundamental result (Stroock and Varadhan (1972)):

(Stroock and Varadhan, 1972)

For any Xg, the support of the Fisk-Stratonovitch system (5.3) is the closure of
support of the deterministic system (5.4):

S"(Xo) = F(X0)
We will only use the following immediate corollary:

For any Xg, and any time t, the set of accessible states at time t from Xy of the
Fisk-Sratonovitch system (5.3) isthe closure of the set of accessible states at time
t from X of the deterministic system (5.4):

¥t> 0, ¥Xo, A(t,Xo) = AY(t, Xo)
5.3 Frobenius integrability condition and Chow's theory

In the previous section, we used the certainty equivalence theorem in order to establish alink
between stochastic and deterministic accessibility for differential equations. In this section,
we apply standard result on the accessibility of deterministic control systems to characterize
the integrability of degenerate SDE.

We consider again the deterministic system (5.4). For the purpose of the following discussion,
wewill includethetimevariablet in the state, i.e. we consider the state of the system at timet
tobeY = (yo(t),ya(t), ..., Ya(t)) = (t,xa(t), ..., %a(t)) € RO+L If by denote the elements of
the matrix B, we define the extended (d + 1) x (d 4 1) matrix B:

1 O ... O

M b1 ... by
B= '

Mg bar ... Dag
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18 Jérdbme Barraquand and Thierry Pudet

Then, system (5.4) is equivaent to the following system in RA+1:

dv _ gd0 (55)
where U(t) = (t,U(t)) = (t,us(t),...,u(t)) = (To(t), Ua(t),...,Uk(t)) is the extended
control.

Let AY (Yo) denote the set of extended states accessible from Yo = (0, Xo). Clearly:

ALNJ (Yo) = UtZO{t} X AU (t, XO)

and .
WA (Yo) = Urso{t} x WAU(t, Xo)

By definition, any accessible state is weakly accessible. Reciprocally, if the drift is zero, i.e.
M = (ffy, ..., M) = 0, then weak accessibility is equivalent to accessibility. Indeed, since
the system (5.5) is symmetric in the control variableU (i.e. —U isan admissible control iff U
is an admissible control), the extended control U becomes symmetric for a zero drift.

If M = 0, we get:

vt, WAY(t, Yo) = AY(t, Xo)
We now recall the definition of the Lie bracket of two vector fields. Let (V1,V?) be any pair
of vector fieldsin RA+1.

Given any point Yo = (t,Xo) € R41, let us consider a path starting at Yo and obtained by
concatenating the four following paths:

- thefirst path follows the flow? of V1 during 6t;

- the second path follows the flow of V2 during dt;
- the third path follows the flow of —V?* during dt;
- the fourth path follows the flow of —V/2 during ét.

Let Y1 = (t4 dt, X1) be the configuration reached at the end of these four paths. A straightfor-
ward Taylor expansion showsthat:

lim L~ Yo

=dvZ.vi—dvt.v?
st—0  Ot2

where dV2 - V! and dv! - V2 denote the products of the (d + 1) x (d + 1) Jacobian matrices:

*Theintegral curveof avector field V is a curve whose tangent at every point Y is V(Y). We say that the curve
follows the flow of V.
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9 7 9vd 9 7 9vd
dv? = . .|y avi= . s
9 T 9yd 9 T 9yd
and the (d + 1)-vectors:
1_ (Lot 1T 2 _ T
Vi=gvi oD vE=( v L v

The expression dv2 - V1 — dv?! - V2 determines anew vector field which is commonly denoted
by [V, V2] and called the Lie bracket of V! and V2.

Let By, . . ., By bethe columnsof the extended matrix B. By definition, the Control Lie Algebra

associated with system (5.5), denoteq by CLA(B), is the smallest Lie algebra which contains

Bo, ..., Bq. Stated otherwise, CLA(B) is the subspace of vector fields generated by all the
linear combinationsof vector fidldsBy, . . ., By and al their Lie brackets recursively computed.

For every Yo € RI*L, let CLA(B)(Yo) denote the subspace of vectors spanned by the vector
fields of CLA(B) at Yo. A connected sub-manifold M of R+ is an integral sub-manifold
of CLA(B) if at each Y € R%* the tangent space to M is contained in CLA(B)(Y). M isa

maximal integral sub-manifold of CLA(B) if it is not properly included in any other integral
manifold.

The Frobenius integrability theorem can be stated as follows:

Frobenius I ntegrability Theorem If the dimension of CLA(B)(Y) has a constant
valuer for every Y € RI*+1, there exists a partition of RA*+1 into maximal integral

sub-manifolds of CLA(B) all of dimensionr.

The maximal integral sub-manifold of dimensionr passing through Y is denoted M, (Y).

Thefollowing results derive from the work of Chow (1939). They were elucidated in Hermann
(1963); Haynes and Hermes (1970); Lobry (1970); Sussmann and Jurdjevic (1972); Hermann
and Krener (1977). We follow the presentation of Hermann and Krener (1977).

Chow’s Theorem If the dimension of CLA(B)(Y) hasa constant valuer for every
Y € R+ then
VY e RAFL ML (Y) = wal(Y)

Furthermore, theinterior of AY(Y) asa subset of M, (Y) = WAY(Y) isnot empty.
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20 Jérdbme Barraquand and Thierry Pudet

5.4 A characterization of holonomy for degenerate diffusions

By inspection of the extended matrix B, and since the original matrix B is by definition regular,
the minimal dimension of the Control Lie Algebraisrmin = k+ 1.

Let us assume that the Control Lie Algebra has a constant dimensionk + 1 < r < d+ 1
We will show that there exist exactly m = d + 1 — r constraints satisfied almost surely by the
solution of the Fisk-Stratonovitch system (5.3).

We will first show m > d + 1 — r. Indeed, Chow’s Theorem states that the set of weakly
accessible statesfor (5.5) isa sub-manifold of dimensionr. Thismeansthat there exist a set of
d + 1 - r independent constraints F = (F(t, X4, ..., Xq), - - -, Fat1—r(t, Xq, . . ., Xq)) suchthat

Vte R, ¥Xoe RY, WAY(t,Xo) = {X e R, F(t,X) = F(0,Xp)}

Thisresult, together with the Certainty Equiva ence Theorem, impliesthat the set of accessible
statesfrom Xg of theFisk-Stratonovitch system (5.3) satisfiesthe constraintsF (t, X) = F (0, Xop)
almost surely. Indeed, the set of accessible states is a subset of the set of weakly accessible
states. Hencem>d+ 1 —r.

Reciprocally, let usassumethat the solution X (t) of the Fisk-Stratonovitch system (5.3) satisfies
amost surely m independent constraints F = (Fy,...,Fm). By the certainty equivalence
theorem, we have F(AY(Yp)) = F(Yo). But, by Chow’s theorem, the interior of AY(Yp) in
M, isnot empty. Hence, it cannot satisfy more than d + 1 — r constraints, since M; is of
dimensionr. Thisimpliesm<d+1-r.

We can state:

Condition for the existenceof d + 1 — r constraints

If the Control Lie Algebra CLA(B) has constant dimension r, then there exist
exactly d + 1 — r independent constraints F = (F4, ..., Fg41-r) such that the
solution of the Fisk Sratonovitch system (5.3) satisfies the constraints almost
surely.

Prob (Vt, F(t,X(t)) = F(0,Xo)) =1

A degenerate 1td SDE of the form (5.2) and a degenerate advection-diffusion PDE on the
form (5.1) are caled holonomic if they can be reduced to lower dimensiona non-degenerate
counterparts on an appropriate sub-manifold of Re. They are called non-holonomic otherwise.
We have the following characterization of holonomy:

Characterization of holonomy for degenerate diffusions

Consider a degenerate d-dimensional 1t6 SDE of rank k < d of the form (5.2) and
its corresponding degenerate advection-diffusion PDE on the form (5.1). Assume

that the control Lie algebra CLA(B) has a constant dimensionr.

Then, the 1td6 SDE (5.2) and the corresponding PDE (5.1) are holonomic if and
onlyifr=k+1
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When dealing with a degenerate PDE of the form (5.1), we must first compute the dimension
of the control Lieagebra. If thedimensionisminima (k+ 1), then we must change variables,
replacing thelast d —k variablesby thed —kintegrable constraintsF, . . ., Fq_k. Then,thePDE
istransformed into anon-degenerate PDE onthek dimensional integral sub-manifoldsatisfying
the constraints. Hence, standard FD methods can be used for the numerical integration.

Ontheother hand, if thedimensionof thecontrol Liealgebraisnot minimal (r > k+1), thenthe
PDE is non-holonomic, i.e. intrinsically degenerate. Then, FD methods are not appropriate.
In the next section, we describe an aternative numerical integration technique for solving
non-holonomic diffusion PDE. We first describe the method for typical two-dimensional path-
dependent pricing problems such as the average-rate option pricing problem. Then, we present
the method in full generality.

6 The Forward Shooting Grid (FSG) method

This section introduces a new numerical method for the path-dependent asset pricing problem,
which we cal the Forward Shooting Grid method (FSG). FSG efficiently copes with the
degeneracy of augmented PDEs. More generaly, the FSG method is adequate for solving any
non-hol onomic advection-diffusion equation.

The FSG method was first introduced (under a different name) by Barraquand and Latombe
(1993) for solving non-holonomic Hamilton-Jacobi-Bellman equations in a deterministic set-
ting. However, to the best of our knowledge, the FSG method has never been used before for
solving non-holonomic stochastic optimal control problems such as the advection-diffusion
problem described here.

6.1 Principle

The FSG method consists in taking advantage of the forward SDE equations that govern the
correlated evolutions of the augmented state variables with respect to the underlying asset
variables. Combined with an a priori quantization of the augmented state, those equations
alow to construct the discrete state graph of the correlated variables, which is used in turn to
integrate backwards in time the degenerated equation in the state variables.

Consider apath-dependent contingent claim onanasset S withterminal payoff Cr = g(Sr, Ar),
where Aisapath-dependent variable, e.g. the historical minimumor average of S. Also, assume
Sfollowsan 1t SDE, such asineg. (2.1).

By augmenting the state space with A, the price C of the claim depends on both Sand A. Let
us define an a priori quantization as follows. Given atime step At, we fix two values AY, AZ,
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and two invertible quantization functions S, A, such that:

S = S(nAt,jAz) = g
A = A(nAt, kAY) = A
(6.1)
n = 0,...,N=T/At
j jO(n)v'--jm(n)
k = ko(n),...kn(n).

Second, let us assume a function +» quantifying the correlated evolutions of A with respect to
S i.e for an arbitrary time step At:

Agn = V(AL Siar)- (6.2)

Eq. (6.2) relates the variations of S and A upon a transition from state (§, A;) to state
(Sat, Acrar) . Under the quantization (6.1), it has the following discrete equivalent:

A = v (A g (6.3)
where jnew (resp. knew) denote the set of al j (resp. k) values used to approximate state
(S+at, Acyar) Of the transition. By assumption, the law of evolution of S is known, hence
jnew Values can be obtained from the approximation of the corresponding SDE (e.g. through a

Cox, Ross, Rubinstein (CRR) binomial approximation). In order to get the corresponding Knew,
we invert the quantization function A at time (n + 1)At, and take the resulting nearest integer

value:
e (e 5)) ] (6.4)

= est
Knew near AV

= ¢(k7 Jnew) .

In other words, we obtain kney by shooting the best approximating A bucket forward in time
through function ¢, hence the name of the method.

Thelast step consistsin finding thelaw of evolutionfor Cj’jk = C(nAt, %", AY). By the Feynman-
Kac formula, the price C(0, S, A) can be computed as the discounted expectation of its payoff
future under the risk neutral process (SJ,AU). Choosing a CRR hinomial approximation,
we have jnew = {j + 1,] — 1}. We let knew = {k+,k—}, where k— = ¢(k,j — 1), and
k+ = o(k,j + 1). Thisgives:

erjk = u Cjn-|—-|—11,k+ +(1-u) Cjn_-|—117k_7 (6.5

whereu = 1/2 + a/At/ 202 isthe associated risk-neutral probability.
The pricing a gorithm proceeds in two steps by first building the discrete state latice induced
by the binomial approximation, using the forward integration of eq. (6.3), then computing the

price C, using the backward integration of eg. (6.5). It is straightforward to check for the early
exercise condition at each time step n of this scheme.
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6.2 Application

This section details the numerical valuation of two typical path-dependent instruments. a
lookback call, and an average-rate call options on stock S. Thereafter, pricing algorithms for
other path-dependent instrumentsbased on the historical minimum (maximum) or time average
of Sare easily derived. Thisincludes all types of barrier options on stock, futures or foreign
exchange.

6.2.1 Lookback option

We consider alookback call option on astock S, assumed to follow alog-normal process. The
call hastermina payoff Cr = S — my, where my isthe historical minimum of S, cf. eqg. (3.1).

Given atime step At, we fix two valuesAZ, AY:

AZ = oVt
AY = AZ;
and quantize Sand mas follows:
_ giz
r?; _ ;0 Y (6.6)

The choice AZ = AY is justified by the fact that since mis minimum over S it necessarily
yields one of thosevalues. Therefore, mwill be optimally quantized by choosing AY = AZ.

The correlated evolutions of Sand m arise from the definition of the minimum:

Myae = Min(My, Sqae)- (6.7)

Under a binomia approximation of S and m, we associate to the upward (resp. downward)
transition §' — 1 (resp. § — §7) in S thetransition nff — n{it* (resp. M — Mt in
m. The discrete equivaent of eg. (6.7) isthen:

= mined, 1)
rn:-l_-l = mln(nﬂvquf‘)y

from which the following values k+ of k+ and k— are found, using definition (6.6) of the
guanti zation:

kt = min(kj+1). (6.8)

Taking the risk-neutral probability u from a CRR approximation of the log-normal process
governing S, the lookback call price equation writes:
Chk = UG +(1-ugH

n = N-—1....0 (6.9)

i,k = —-n,....n
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with boundary condition
Ch = - = S -5
j,k = —=N,...,N.

The range of variations of k+ istrivialy bounded, i.e. from inspection of eg. (6.8), |k+| < n.
The scheme (6.9) is therefore feasible. Using eq. (6.8) to compute k+ values, eq. (6.9) is
eventually backward integrated in order to get the price 0870 of the lookback call.

The pricing agorithm of a lookback put is similar. The terminal payoff changes to Py =
Mt — Sr, where M, isthe historical maximum of S cf. eg. (3.1). Inthis case, the quantization
(6.6), and the recursion equation (6.8) still hold, with M and max substituted for m; and min
respectively. The price equation (6.9) becomes then:

n _ n+1 n+1
Pl = WP +(1-uPRT,

n = N-1,....0 (6.10)
i,k = —-n....n;

with boundary condition
A= M-S = s s
j,k = —=N,...,N.

6.2.2 Average-rate (Asian) option

We consider an average-rate (Asian) call option on a stock S assumed to follow a log-normal
process. We shall develop the example of a floating-strike average-rate call, with terminal
payoff Cr = max(0, St — Ar), where A; isthetime average S, given by eq. (3.2).

Given atime step At, we fix two valuesAZ, AY:
AZ = oVt
AY = pAZ, p< 1
and quantize Sand A as follows:
— SOéAZ
Al = Sy,

Notice that since A is an average, it does not necessarily yields one of the Svalues. In order
to preserve accuracy, the quantization step AY has to be smaller than AZ, hence p < 1. We
postpone the determination of p until the price equation is established.

(6.11)

The relation giving the correlated evolutions of A with respect to Sarise from eq. (3.4):

(t+ YA + At Sya
t+ 2At

Aciat (6.12)
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Under a binomial approximation of S and A, we assaciate to the upward (resp. downward)
transition §' — S (resp. § — §7) in Sthetransition AR — AYT* (resp. AR — AFT) inA.
The discrete equivaent of eq. (6.12) isthen, with A = S:

. _ (P DACH it

+ n+4 2
gt = (FDAHGY
_ n_l_ 2 ’
from which the following values of k+ and k— are found:
(n+ 1)ekpAz + elix1)az
log >
kt = nearest pzzf . (6.13)

Taking the risk-neutral probability u from a CRR approximation of the log-normal process
governing S, the average-rate price equation writes.

Ch = uchttt .+ (1- u)cj“jlfk_

j+Lk+
n = N-1...,0 (6.14)
j = -n,...,n
k = —kn(n),...,kn(n);
with boundary condition

Clh = §'-A = g - e

j = —-N,...,N

kK = —kn(N),...,kn(N).

In order for the previous schemeto be feasible, the following three points need to be addressed.

e Bound therange of variationsof k (i.e. find k).
For any timestep n, the maximum value max A} for average A cannot be greater than the
maximum value max; §' for asset S, hence AL < §,. Eq. (6.11) impliesthen km < n/p.
Thus, we let;

kn =
P

e Bound the range of variations of k+.
Starting from eg. (6.13), and after some agebraic manipulations, one gets |k+| <

(n/p) + 1/p, hence:

1
kel <kt
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e Find p value.
Because of the very simple structure of eq. (6.14), the propagation of error due to the
quantization (6.11) can be shown (see next section) to be less than SempAZ(e22 — 1).
With AZ = o+/At, this gives a maximum relative error ¢ ~ pAZeNWE. Typicaly,
N = 100, At = 0.00274 (1 day), ¢ < 1, hence ¢ ~ 0.05p. Thus, the value p = 0.02
ensuresa 0.1 % precision. In practice, cf. sec. 8.2, thevalue p = 0.1 issufficient.

7 Convergence of the FSG method

7.1 Lipschitz conditions

In the previous section, we introduced the FSG method for typical path-dependent asset pricing
problems. However, the principle underlying the FSG method is very general, and can in fact
be applied to arbitrary diffusion equations. We analyse below the convergence of the FSG
method for diffusions equations of the type (5.1).

In order to prove the convergence of the FSG method, we will assume that the boundary
condition g in problem (5.1) is Kg-Lipschitz, i.e.:

WX e RLY eR |g(X) - g(Y)] < KglIX = Yl|o
with

[ X[leo = max [xi]
ie[1,d]

Thisassumptionisvery reasonable for option pricing applications, since most payoff functions
are clearly 1-Lipschitz.

For the quantization of the PDE (5.1), we select d quantization functions whose inverse map
the original space variablesxy, . . ., Xq into the transformed spaces variablesys, . . ., yq.

X(t,Y) = (Xa(t,y1), ..., Xa(t, ya))

We assume that X; is a strictly monotonic function of its second variabley;, and we define its
inverse by the following relation:

XXt ) = ¥
Finally, we assume that X; is K;-Lipschitz in its second variabley;, i.e.:
VYR XY = Xt YA < KilyE - ¥

7.2 Quantization of time

Itisawell-known consequence of the central limit theorem that the standard Brownian motion
isthelimit when At — 0 of the binomial distribution of step v/At (seee.g. Cox and Rubinstein
(1985); Duffie (1988)). We define the k-dimensional binomial process WA as follows:

Ve = (e1,...,e) € {—1,1}¥  Prob(WA(t + At) = WA (t) 4 eV/At) = 2_1k
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In light of the previous discussion, we get under suitable technical conditions (see e.g. Duffie
(1988)):

T

f(t,Xg, ..., %) = AtIi_rﬂof(t,xl. LX) =E (e<p (_/o r(r, X(r))dr) g(f((T)))

where X is defined by the forward stochastic difference equation:
X(t4 At) = X(t) + M(t, X(t)) At + V(t, X(t)) (W(t + At) — W(t))

Remark: The definition of X above corresponds to choosing an Euler scheme for the quanti-
zation of the SDE. Other schemes of higher order of convergence in At could be used, such as
Talay-Milshtein schemes (Milshtein (1974); Talay (1984)). However, we did not explore this
aternative.

From the law of iterated expectations, we see that f satisfies the following recursive backward
equation:

1 1 .
f(t,x) = TTREN 2 > f(t+ AL X+ MU X)At+ V(LX) VA (7.1)
e€{-1,11k
where R(t, X) is defined by:
_ 1« (—r(t, X)At)
ITRLx) Pt

7.3 Quantization of space

We select d quantization steps AY = (Ay,...,Ayq) for the transformed space variables
Y1,...,Yd. We denote by J the d-uple of integers J = (j1,...,]jq), and by JAY the d-uple
JAY = (leY17 .. '7jdAyd)-

For any given couple (n, J), and any € € {—1,1}%, we define J"*¥(n, J, ¢) = T b
by:

X (0 DA, x)
Ay;

Vie[1,d], j* = nearest

with
X* = X(nAt, JAY) + M(nAt, X(nAt, JAY))At + ¢V (nAt, X(nAt, JAY))v/At

In other words, we obtain J"™™ by shooting forward in time the best approximating bucket in
the space variables X.

Then, we approximate equation (7.1) above by:

- 1
approx _
f (nAL, JAY) = 1+ R(nAt, X(nAt, JAY))
F e {_mkffﬂl@l@rOX((nJr 1)At, X((n+ 1)At, J"®(n, J, )AY)) (7.2)
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7.4 Convergence

Combining (7.2) with (7.1) and with the Lipschitz properties of functionsg and X, we see that
a time (N — 1)At, we have for al possible X:

fapprox (N — 1)At, X) — f((N — DAL, X)| < K, Ki Ay,

PPN — 1), X) = PN — 1)t X)] < K max K, max Ay
Then, a straightforward backward induction on n shows that the same inequality istruefor all
timesprior to N. Finaly:

vn < N, VX, [F3PO¥(nAt, X) — f(nAt, X)| < Kg max K; max Ay,
ie[Ld ie[1,d]
Hence, we can guarantee a precision on the result of Af by choosing the space quantization
steps such that:
Af
Vie[ld, Ay < ———
Jelbd, By Kg maXicry dj Ki

If the payoff is that of an option, we have typically Ky = 1. If we furthermore choose a
logarithmic quantization, i.e. if X;(t,y;) = & then K; is simply the maximum value taken by
the variable x; at any point in time. Therefore, it is practically easy to choose the quantization
steps Ay; for reaching a prespecified desired accuracy.

Furthermore, the above inequality shows that the FSG method is unconditionally convergent.
Indeed, the approximate value converges towards the theoretical value whenever At and Ay;
converge towards zero. Thisistrueregardless of any quantitative relationships between At and
Ay;.

If kK = d, i.e. if the covariance matrix I is regular, then finite difference methods are also
convergent, and are faster than the FSG method. However, as soon as k < d, i.e. when
the covariance matrix is degenerate, finite difference methods introduce a spurious numerical
diffusion, whereas the efficiency of the FSG method is unaffected.

The FSG method therefore is an attractive solution for all degenerate numerical valuation
problems. Such problems arise in many other cases than the path-dependent case.

8 Results

This section reports European and American prices found with the FSG method for different
path-dependent options. Since the FSG method reduces to the classical CRR method for
ordinary options, prices of at-the-money ordinary options are also given for reference.

The stock price § = 100 and the interest rate r = 10% are held constant, while the values of
the volatility o, the maturity T, and the exercise price K vary. Maturities 3, 6, and 12 must be
read in months, corresponding to 91, 182, and 364 days respectively. Both call (C) and put (P)
prices are reported. When possible, we a so indicate the corresponding analytic price C;, or Pa.
In al cases, we have chosen the number of time steps so as to reach a 0.1% accuracy.
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Ordinary option

At-the-money ordinary call option At-the-money ordinary put option
S = 100, r = 10% S = 100, r = 10%
European European | American
s | T anaytic FSG=CRR o | T analytic FSG = CRR
Ca C Pa P

3 3438 3.435 3 0.976 0.973 1.223

10| 6 5.837 5.835 10| 6 0.973 0.971 1.450
12| 10284 10.283 12 0.792 0.791 1.632

3 5.286 5.280 3 2.823 2.818 3.064

20| 6 8.262 8.258 20| 6 3.398 3.394 3913
12| 13244 13.241 12 3.752 3.749 4811

3 9.148 9.138 3 6.686 6.675 6.909

40| 6 13.559 13551 40| 6 8.694 8.687 9.205
12| 20285 20.280 12| 10794 10788 | 11.944

Table 1. Reference tablefor an at-the-money ordinary option. Time step was set to 0.5 day for
all maturities. Precision for CRR pricesis 0.1%.

Pricesfor at-the-money ordinary optionsarelistedintable 1. Thetimestep was chosen constant
(0.5 day) for al maturities. For moderate values of the volatility (< 50%), about N = 100
time steps are enough to get 0.1% precision. The time complexity is O(N?), and the memory
requirement O(N). The computation time for one call/put is a few milliseconds on a DEC
alpha PC, and the required memory 20 Kilobytes.

8.1 Lookback option

Results for a lookback option are presented in table 2. The time step was chosen constant
(1 day) for all maturities. In practice, N = 100 time steps are sufficient. The time complexity
is O(N3), the memory requirement is O(N?). The computation time for one call/put is about 1
second on a DEC alpha PC, and the required memory 400 Kilobytes.

Lookback payoffs depend on extreme values of the underlying asset S. The continuous time
framework, inwhich closed-form formulasare derived, capturesthe variationsof those extrema
over infinitely small timeperiods. In practicehowever, theextremaval uesin alookback contract
are to be computed on adaily basis. Therefore, lookback prices computed from a closed-form
formulaincorporate spuriousintra-day variations, and thus overestimate the prices. Compared
to the FSG method with a1 day time step, this overestimation is about 5%°.

3By contrast, both the CRR approximation to the ordinary option, and the FSG approximation to the average-rate
with 100 time steps give European prices close to within 0.1% to their respective analytic (continuous) prices.
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L ookback call option L ookback put option
S =100, r = 10% S =100, r = 10%
European | American European | American
analytic FSG analytic FSG
o | T y o | T y
Ca C Pa P
3 5.266 5.028 5.028 3 2.927 2.668 3.087
10| 6 8.253 8.019 8.019 10| 6 3632 3.368 4.209
12| 13298 13075| 13.075 12 4281 4012 5.630
3 8.939 8.482 8.482 3 6.969 6.434 6.845
20| 6 13174  12733| 12733 20| 6 9.283 8.729 9.606
12| 19614 19203| 19.203 12| 12021  11.448| 13307
3 16052 15209 | 15209 3 15559 14406 | 14.811
40| 6 22658 21872 | 21.872 40| 6 21685 20456 | 21.362
12| 31804 31106| 31106 12| 29906 28583 | 30.661

Table 2: Results of the FSG method for alookback option. Time step was set to 1 day for all
maturities. Precision for FSG pricesis 0.1%. Lookback analytic prices are overestimated by
about 5%.

On the other hand, we checked that the above discrepancy would vanish as the time step
tends towards 0. Results are presented in table 3 below for a 3 months lookback call option.
Interestingly enough, while the decrease of the precision AC/C islinear in thetime step for an
ordinary option aswell asan average-rate option, it isonly square root for the lookback option.

Finally, in order to estimate the accuracy of the FSG method, we have checked by an additional
convergence test that 1 day time step yields aleast 0.1% accuracy in the computed price.

Lookback options are more expensive than ordinary at-the-money options, roughly twice as
much. As pointed out in Conze and Viswanathan (1991), the values of an American and a
European lookback call are equal. Also, the price of an American lookback put is aways
greater than the European one.

However, table 4 shows that the upper bounds on the lookback put price derived with Snell
envelopes technigques in Conze and Viswanathan (1991), are quite loose. Thisis especially
true for short maturities, for which the price is overestimated by a factor of more than 100%
on average.

8.2 Average-rate option

Results for fixed-strike and floating-strike average-rate options are presented in tables 6 and 5
respectively. Because the average variable needs a dense quantization (p = 0.1), the required
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Lookback call option
S = 100, r = 10%

European
analytic st FSG
c | T y P (Ca—C)/C
Ca (day) C
2 8.250 7.71%
1 8.480 5.13%
20| 3 8.939 05 8.611 3.67%
0.1 8.790 1.66%
0.05 8.833 1.12%

Table 3: Measured convergence of the FSG method for alookback option.

L ookback put option
S = 100, r = 10%

American
o | T FSG Sndll u. b. error
P P |(P—P)/P|

3 3.087 5.260 70 %

10| 6 4.209 8.653 105 %
12| 5.630 14.920 165 %

3 6.845 9.121 33%

20| 6 9.606 14.288 49 %
12 | 13.307 23.135 74 %

3 | 14811 17.294 17 %

40| 6 | 21.362 26.614 25 %
12 | 30.661 42.067 37 %

Table 4: Comparison of American lookback FSG put prices and corresponding Snell envelope
upper bounds.
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Floating-strike average-rate call option Floating-strike average-rate put option
S = 100, r = 10% S = 100, r = 10%
European | American European | American
o | T C o | T P
3 1.852 2.142 3 0.632 1.194
10| 6 3.092 3.404 10| 6 0.671 1.494
12 5.382 5.670 12| 0614 1.799
3 2.943 3.689 3 1.724 2.773
20| 6 4,555 5.514 20| 6 2.135 3.684
12 7.259 8.463 12| 2498 4812
3 5.195 6.817 3 3.981 5.996
40| 6 7.673 9.860 40| 6 5.260 8.223
12| 11509 14.446 12| 6785 11.229

Table 5: Results of the FSG method for a floating-strike average-rate option. Time Steps were
setto 1, 2, and 3 daysfor 3, 6, and 12 months maturities respectively. Precision for FSG prices
is0.1%.

memory is1/p = 10 times as much asin thelookback case. Maintaining a1 day time step for
all maturitieswould thusreguire too much memory on casua machines. Time Stepswere set to
1, 2, and 3daysfor 3, 6, and 12 months maturitiesrespectively, so asto get about N = 100time
steps in each case. Thisis till quite reasonable. Time and space complexities are O(N3/p)
and O(N?/p) respectively. The computation timefor one call/put is about 15 second on a DEC
alpha PC, and the required memory 4 Megabytes.

There is no analytic solution to the average-rate option pricing problem in general. However,
as seen in sec. 3.3, the zero-strike case leads to the closed-form formula of eq. (3.6). Table 7
compares the analytic prices, and those computed with the FSG method in thiscase. The preci-
sionis0.1% at least. Because the PDE (3.5) governing the average-rate price is homogeneous
in the spot price § and the strike K, the convergence of the FSG method does not depend on
the value of K. Therefore, given the quantization with p = 0.1 of A, we can state an overall
precision of at least 0.1% in our results.

Average-rate options are much cheaper than ordinary and lookback options. Also, since the
average is not a strictly decreasing (increasing) time process as is the case for the minimum
(maximum), American average-rate calls are worth exercising.

A possible method for approximating European call and put prices Cgurith and Pgrith Of afixed-
strike average-rate option consistsin replacing the arithmetic time-average with the geometric
time-average, in which case closed-form formulas can be derived for prices Cyeq and Pgeo
(Kemna and Vorst (1990)). Since the geometric average is always less than the arithmetic
average, the following relationshipsholds: Cyey < Cyrith, aNd Pgeo > Pharith.
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Fixed-strike average-rate call option Fixed-strike average-rate put option
S = 100, r = 10% S = 100, r = 10%
European | American European | American
c| T] K C c| T| K P
95 6.132 6.546 95 0.013 0.013
3 | 100 1.869 1.967 3 | 100 0.626 0.832
105 0.151 0.152 105 3.785 5.337
95 7.248 7.632 95 0.046 0.051
10| 6 | 100 3.100 3.212 10| 6 | 100 0.655 0.978
105 0.727 0.735 105 3.039 5.287
95 9.313 9.616 95 0.084 0.104
12| 100 5.279 5.394 12 | 100 0.577 1.079
105 2.313 2.336 105 2.137 5.230
95 6.500 7.371 95 0.379 0.407
3 | 100 2.960 3.219 3 | 100 1.716 2.066
105 0.966 1.001 105 4598 6.108
95 7.793 8.805 95 0.731 0.820
20| 6 | 100 4548 4.893 20| 6 | 100 2.102 2.629
105 2.241 2.337 105 4552 6.338
95 10.336 11.218 95 1.099 1.318
12 | 100 7.079 7.521 12 | 100 2.369 3.181
105 4539 4.729 105 4.356 6.596
95 8.151 9.447 95 2.025 2.223
3 | 100 5.218 5.826 3 | 100 3.970 4581
105 3.106 3.347 105 6.735 8.168
95 10.425 10.927 95 3.215 3.610
40| 6 | 100 7.650 8.519 40| 6 | 100 5.197 6.078
105 5.444 5.913 105 7.748 9.438
95 13.825 15.649 95 4,550 5.263
121100 | 11213 12.439 12 | 100 6.465 7.761
105 8.989 9.790 105 8.767 10.927

Table 6: Results of the FSG method for a fixed-strike average-rate option. Time Steps were
setto 1, 2, and 3 daysfor 3, 6, and 12 months maturities respectively. Precision for all prices
is0.1%.
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Zero-strike average-rate call option
S =100, r = 10%

European

anaytic  FSG
c | T [(Ca— C)/C]

Ca C
3 98.763 98.780 0.02%
10| 6 97.547 97.579 0.03%
12| 95175 95.232 0.05%
3 98.763 98.781 0.02%
20| 6 97.547 97.580 0.03%
12| 95175 95.239 0.07%
3 98.763 98.785 0.02%
40| 6 97.547 97.587 0.04%
12| 95175 95.277 0.10%

Table 7: Accuracy of the FSG method measured against the zero-strike average-rate option.
Time Stepswere set to 1, 2, and 3 daysfor 3, 6, and 12 months maturities respectively.

Table 8 shows that the geometric average approximation is good for low terms and low
volatilities. However, the error rapidly grows with the option term and volatility, and stops
being acceptable (up to 10%) for one year and longer standing options.

9 Conclusion

In this paper, we have analyzed the problem of pricing path-dependent contingent claims.
We have shown that these problems lead to solving degenerate diffusion PDE in the space
augmented with the path-dependent variables. We have established necessary and sufficient
conditions under which these degenerate PDE are holonomic, i.e. can be reduced to lower
dimensional non-degenerate PDE. We have applied these results to popular types of path-
dependent options. In particular, we have shown that the average-rate option pricing problem
is non-holonomic.

Then, we have described a new numerical technique called the Forward Shooting Grid method
(FSG) for pricing both European and American non-holonomic contingent claims, and have
tested it on lookback and average-rate options. It is straightforward to use the FSG method in
order to price other popular path-dependent options, such as capped or barrier options.

The FSG method proves to be as accurate as Monte Carlo simulation, with faster execution
time. Itisalsothefirst method capable of dealing with the early exercise condition of American
path-dependent options, showing that the Snell envel ope upper bounds obtained on American
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Geometric average-rate call option

S =100, r = 10%

Geometric average-rate put option
S = 100, r = 10%

European European

. error w.r.t. . error w.r.t.

c | T| K | analytic FSG arith c | T| K | analytic FSG arith
95 6.093 0.63% 95 0.013 -0.00 %
3 | 100 1.830 2.08% 3 | 100 0.627 -0.16 %
105 0.141 6.62% 105 3.815 -0.80 %
95 7.165 114% 95 0.047 217 %
10| 6 | 100 3.022 252% 10| 6 | 100 0.660 -0.76 %
105 0.683 6.05% 105 3.079 -1.32%
95 9.160 1.64% 95 0.086 -2.38%
12100 5.135 2.73% 12100 0.587 -1.73%
105 2.196 5.06 % 105 2173 -1.68 %
95 6.402 151% 95 0.384 -1.32%
3 | 100 2.872 297% 3 | 100 1.730 -0.82%
105 0.908 6.00 % 105 4.643 -0.98 %
95 7.742 0.65% 95 0.746 -2.05 %
20| 6 | 100 4374 3.83% 20| 6 | 100 2134 -1.52%
105 2102 6.20% 105 4619 -1.47 %
95 9.979 3.45% 95 1.142 -3.91%
12100 6.751 4.63% 12100 2.440 -3.00 %
105 4251 6.34% 105 4.465 -2.50 %
95 7.862 354% 95 2.089 -3.16 %
3 | 100 4.959 4.96 % 3 | 100 4.064 -2.37%
105 2.889 6.99 % 105 6.870 -2.00 %
95 9.867 5.35% 95 3.355 -4.35 %
40| 6 | 100 7.136 6.72% 40| 6 | 100 5.380 -352%
105 4.983 8.47 % 105 7.985 -3.06 %
95 | 12743 7.83% 95 4.847 -6.53 %
12/100| 10.200 9.03% 12100 6.829 -5.63 %
105| 8048 10.47 % 105 9.203 -4.97 %

Table 8: Comparison between the European prices of afixed-strike geometric average-rate call
and a fixed-striked (arithmetic) average-rate call. FSG prices, which are not reported here,
were taken from table 6 in order to computethe relative error.
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lookback prices are quite overestimated. Our numerical experiments have also shown that the
usual geometric average approximation of arithmetic average-rate optionsis inaccurate.

The FSG method is a general purpose solution technique for arbitrary multidimensional
advection-diffusion equations. However, since these problems require a memory space ex-
ponential inthe number of variables, the FSG method, like any finite difference or | attice-based
method, can only be used on problems with few variables.

Unlike Finite Difference Methods, the FSG method is unconditionally convergent, even when
the diffusion term is degenerate. Such degeneracy arises in several other important pricing
problems. In particular, we plan to investigatethe application of the FSG method to the pricing
of path-dependent interest rate contingent claims such as M ortgage-Backed securities.
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