
100

The First 99 Reports

Compiled by James Mason

June 5, 1993

d i g i t a l
Systems Research Center

130 Lytton Avenue

Palo Alto, California 94301

Systems Research Center

The charter of SRC is to advance both the state of knowledge and the state

of the art in computer systems. From our establishment in 1984, we have

performed basic and applied research to support Digital's business objec-

tives. Our current work includes exploring distributed personal computing

on multiple platforms, networking, programming technology, system mod-

elling and management techniques, and selected applications.

Our strategy is to test the technical and practical value of our ideas by

building hardware and software prototypes and using them as daily tools.

Interesting systems are too complex to be evaluated solely in the abstract;

extended use allows us to investigate their properties in depth. This ex-

perience is useful in the short term in re�ning our designs, and invaluable

in the long term in advancing our knowledge. Most of the major advances

in information systems have come through this strategy, including personal

computing, distributed systems, and the Internet.

We also perform complementary work of a more mathematical avor. Some

of it is in established �elds of theoretical computer science, such as the

analysis of algorithms, computational geometry, and logics of programming.

Other work explores new ground motivated by problems that arise in our

systems research.

We have a strong commitment to communicating our results; exposing and

testing our ideas in the research and development communities leads to im-

proved understanding. Our research report series supplements publication

in professional journals and conferences. We seek users for our prototype

systems among those with whom we have common interests, and we encour-

age collaboration with university researchers.

Robert W. Taylor, Director

The First 99 Reports

Compiled by James Mason

June 5, 1993

cDigital Equipment Corporation 1993

This work may not be copied or reproduced in whole or in part for any com-

mercial purpose. Permission to copy in whole or in part without payment

of fee is granted for nonpro�t educational and research purposes provided

that all such whole or partial copies include the following: a notice that

such copying is by permission of the Systems Research Center of Digital

Equipment Corporation in Palo Alto, California; an acknowledgment of the

authors and individual contributors to the work; and all applicable portions

of the copyright notice. Copying, reproducing, or republishing for any other

purpose shall require a license with payment of fee to the Systems Research

Center. All rights reserved.

ii

Abstract

This 100th issue in the SRC Research Report series contains indexed

abstracts of the previous ninety-nine, with book and journal source in-

formation. It also documents what software SRCmakes freely available

for research and educational use.

iii

Contents

Preface v

1 Abstracts of SRC Research Reports 1-99 1

2 Ordering Information 56

2.1 Reports : 56

2.2 Videotapes : 56

2.3 Software : 57

3 List of SRC Research Reports 1-99 61

4 Acknowledgements 69

iv

Preface

We at the Systems Research Center value opportunities to involve our col-

leagues both inside and outside Digital in the work we do. Communicating

our ideas and results freely is an important part of fostering cooperation

with this wider technical community. We publish our results in technical

journals and conference proceedings, but our most identi�able contribution

to the computer science literature is the SRC research report series. Our

reports are readily available to universities, libraries, computer science lab-

oratories, and individual researchers throughout the world.

SRC Report 100 contains the abstracts and title-page cartoons of the

previous ninety-nine, together with an index, and gives information about

software that we make available for others to use and experiment with.

The chief inuence shaping the SRC research reports has been a de-

termined little Englishwoman named Cynthia Hibbard, who has served as

editor for the series almost since its beginning.

On each report Cynthia has played a slightly di�erent role, but always

as a champion for the interests of the reader. Sometimes she has helped

her authors get their thoughts organized so that the reader can follow them.

Sometimes she has helped her authors rewrite their sentences and para-

graphs so that the reader can understand them. All too often she has strug-

gled against recalcitrant typesetting programs so that the reader can in fact

read.

Cynthia has a clear vision of what she calls the \story line" of each

report, and she works to free the story line as Michelangelo worked to free

a statue from the stone. She chips away at bluster, muddle, and reticence,

one notch at a time. We are lucky to have her as a colleague.

Many of the cartoons included here were drawn by our colleague Jorge

Stol�. What Jorge started in a light-hearted way with SRC Report 4 quickly

became a tradition. Other authors solicited cartoons from Jorge, and, en-

couraged by his example, closet cartoonists at SRC have honed their drawing

skills to provide decoration for some of their own research reports.

Coincidentally, this 100th report in our series comes as SRC nears the end

of its �rst decade. There are still many challenges and opportunities ahead

for systems research. We look forward to maintaining productive relations

with our colleagues, and continuing to advance the state of knowledge in

this exciting �eld.

v

Reports 1{2 1

1 Abstracts of SRC Research Reports 1-99

� SRC Research Report 1

A Kernel Language for Modules and Abstract Data Types

R. Burstall and B. Lampson

September 1, 1984. 51 pages.

A small set of constructs can simulate a wide variety of apparently

distinct features in modern programming languages. Using a kernel

language called Pebble based on the typed lambda-calculus with bind-

ings, declarations, and types as �rst-class values, we show how to build

modules, interfaces and implementations, abstract data types, generic

types, recursive types, and unions. Pebble has a concise operational

semantics given by inference rules.

Also in: Information and Computation, February 1988, Volume 76,

Numbers 2 and 3.

� SRC Research Report 2

Optimal Point Location in a Monotone Subdivision

Herbert Edelsbrunner, Leo J. Guibas, and Jorge Stol�

October 25, 1984. 33 pages.

Point location, often known in graphics as hit detection, is one of the

fundamental problems of computational geometry. In a point location

query we want to identify which of a given collection of geometric

objects contains a particular point. Let S denote a subdivision of

the Euclidean plane into monotone regions by a straight-line graph

of m edges. In this paper we exhibit a substantial re�nement of the

technique of Lee and Preparata for locating a point in S based on

separating chains. The new data structure, called a layered dag, can

be built in O(m) time, uses O(m) storage, and makes possible point

location in O(log m) time. Unlike previous structures that attain these

optimal bounds, the layered dag can be implemented in a simple and

practical way, and is extensible to subdivisions with edges more general

than straight-line segments.

Also in: SIAM Journal on Computing, Volume 15, Number 2, pp 317-

340, May 1 1986.

Reports 3{4 2

� SRC Research Report 3

On Extending Modula-2 for Building Large, Integrated Systems

Paul Rovner, Roy Levin, John Wick

January 1, 1985. 46 pages.

This paper addresses some of the problems of using Modula-2 to de-

velop large programs, that is, programs with more detail than can

be managed e�ectively by one person. The primary weaknesses of

Modula-2 for building large systems of concurrent applications that

share data structures and code are discussed. A collection of language

changes and extensions to strengthen Modula-2 for such applications

are described. Experience using the extended language for a large soft-

ware project suggests that it is good for the cooperative development

of large, experimental programs that share memory.

� SRC Research Report 4

Eliminating go to's while Preserving Program Structure.

Lyle Ramshaw

July 15, 1985. 27 pages.

Suppose that we want to eliminate the local go to statements in a PAS-

CAL program by replacing them with multilevel loop exit statements.

There is a standard technique for doing so that succeeds if and only if

the ow graph of the PASCAL program is reducible. This technique

assumes that we don't allow ourselves either to introduce new vari-

ables or to replicate code, but that we do allow ourselves to reorder

the atomic tests and actions within the text of the program and to

rewrite the connecting control structures from scratch. In this paper,

we shall investigate the extent to which go tos can be replaced with

exits while preserving as much as possible of the program's original

structure. On the negative side, we shall �nd that there are programs

whose ow graphs are reducible but whose go tos cannot be elimi-

nated without reordering their tests and actions. That is, programs

with go tos can have their atomic elements in some weird static order,

an order that doesn't correspond in any structured way to the dynamic

ow of control. We shall analyze this situation by augmenting our ow

graphs with edges that encode the static order of the atomic elements

and then showing that the augmented ow graphs of programs with

exits are always reducible. On the positive side, given a program with

Reports 4{6 3

go tos whose augmented ow graph is reducible, we shall show that

we can replace its go tos with exits while preserving essentially all of

its structure. In fact, we can simply delete the go to statements and

the labels they jump to and insert various exit statements and labeled

Repeat-Endloop pairs for them to jump out of, without changing the

rest of the program text in any way.

Also in: Journal of the ACM, October 1988.

� SRC Research Report 5 (Superseded by Reports 58, 60, 72, 74, 82)

Larch in Five Easy Pieces.

J. V. Guttag, J. J. Horning, and J. M. Wing,

July 24, 1985. 125 pages.

The Larch Project is developing tools and techniques intended to aid in

the productive use of formal speci�cations. A major part of the Larch

Project is a family of speci�cation languages. Each Larch speci�cation

has one component written in a language derived from a programming

language and another component written in a language independent

of any programming language. We call the former Larch interface

languages and the latter the Larch Shared Language. We have gath-

ered together �ve documents about the Larch family of languages: an

overview, an informal description of the Shared Language, a reference

manual for the Shared Language, a handbook of speci�cations written

in the Shared Language, and a report on using Larch/CLU, which is

one of the interface languages.

� SRC Research Report 6

A Caching File System for a Programmer's Workstation.

Michael D. Schroeder, David K. Gi�ord, and Roger M. Needham

October 19, 1985. 23 pages.

This paper describes a workstation �le system that supports a group

of cooperating programmers by allowing them both to manage local

naming environments and to share consistent versions of collections of

software. The �le system has access to the workstation's local disk

and to remote �le servers, and provides a hierarchical name space that

includes the �les on both. Local names can refer to local �les or be

attached to remote �les. Remote �les, which also may be referred to

Reports 6{9 4

directly, are immutable and cached on the local disk. The �le system

is part of the Cedar experimental programming environment at Xerox

PARC and has been in use since late 1983.

Also in: Communication of the ACM,March 1988, Volume 31, Number

3.

� SRC Research Report 7

A Fast Mutual Exclusion Algorithm

Leslie Lamport

November 30, 1985. 15 pages.

A new solution to the mutual exclusion problem is presented that, in

the absence of contention, requires only seven memory accesses. It

assumes atomic reads and atomic writes to shared registers.

Also in: ACM Transactions on Computer Systems, February 1987,

Volume 5, Number 1, pp 1-11.

� SRC Research Report 8

On Interprocess Communication

Leslie Lamport

December 25, 1985. 50 pages.

A formalism, not based upon atomic actions, for specifying and reason-

ing about concurrent systems is de�ned. It is used to specify several

classes of interprocess communication mechanisms and to prove the

correctness of algorithms for implementing them.

Also in: Distributed Computing, 1986, Number 1, pp 77-101.

� SRC Research Report 9

Topologically Sweeping an Arrangement

Herbert Edelsbrunner and Leonidas J. Guibas

April 1, 1986. 31 pages.

Sweeping a collection of �gures in the Euclidean plane with a straight

line is one of the novel algorithmic paradigms that have emerged in

the �eld of computational geometry. In this paper we demonstrate the

advantages of sweeping with a topological line that is not necessarily

Reports 9{11 5

straight. We show how an arrangement of n lines in the plane can

be swept over in O(n2) time and O(n) space by such a line. In the

process each element (i.e. vertex, edge, or region) is visited once in a

consistent ordering. Our technique makes use of novel data structures

which exhibit interesting amortized complexity behavior; the result

is an algorithm that improves upon all its predecessors either in the

space or the time bounds, as well as being eminently practical. Nu-

merous applications of the technique to problems in computational

geometry are given|many through the use of duality transforms. Ex-

amples include solving visibility problems, detecting degeneracies in

con�gurations, computing the extremal shadows of convex polytopes,

and others. Even though our basic technique solves a planar problem,

its applications include several problems in higher dimensions.

Also in: Journal of Computer and System Sciences, February 1989,

Volume 38, Number 1, pp 165-194.

� SRC Research Report 10

A Polymorphic lambda-calculus with Type:Type

Luca Cardelli

May 1, 1986. 27 pages.

Type theory has been used in organizing and clarifying programming

language features. As such features become more complex we will

need more advanced and powerful type systems like Martin-Loef's in-

tuitionistic theory of types.

This paper investigates the use of such powerful type systems from a

programming language perspective. To satisfy language design needs,

these type systems must be extended so that their ordinary semantic

theories are no longer applicable. A semantics is developed that jus-

ti�es the extensions of Martin-Loef's type system with recursion and

the Type:Type property.

� SRC Research Report 11

Control Predicates Are Better Than Dummy Variables For Reasoning

About Program Control

Leslie Lamport

May 5, 1986. 19 pages.

Reports 11{13 6

When explicit control predicates rather than dummy variables are

used, the Owicki-Gries method for proving safety properties of con-

current programs can be strengthened, making it easier to construct

the required program annotations.

Also in: ACM Transactions on Programming Languages and Systems,

April 1988, Volume 10, Number 2, pp 267-281.

� SRC Research Report 12

Fractional Cascading

Bernard Chazelle and Leonidas J. Guibas

June 23, 1986. 58 pages.

In computational geometry many search problems and range queries

can be solved by performing an iterative search for the same key in

separate ordered lists. In Part I of this report we show that, if these or-

dered lists can be put in a one-to-one correspondence with the nodes of

a graph of degree d so that the iterative search always proceeds along

edges of that graph, then we can do much better than the obvious

sequence of binary searches. Without expanding the storage by more

than a constant factor, we can build a data-structure, called a frac-

tional cascading structure, in which all original searches after the �rst

can be carried out at only log d extra cost per search. Several results

related to the dynamization of this structure are also presented. Part II

gives numerous applications of this technique to geometric problems.

Examples include intersecting a polygonal path with a line, slanted

range search, orthogonal range search, computing locus functions, and

others. Some results on the optimality of fractional cascading, and cer-

tain extensions of the technique for retrieving additional information

are also included.

� SRC Research Report 13

Retiming Synchronous Circuitry

Charles E. Leiserson and James B. Saxe

August 20, 1986. 42 pages.

This paper shows how the technique of retiming can be used to trans-

form a given synchronous circuit into a more e�cient circuit under

Reports 13{15 7

a variety of di�erent cost criteria. We model a circuit as a graph,

and we give an O(j V k E j lg j V j) algorithm for determining an

equivalent circuit with the smallest possible clock period. We show

that the problem of determining an equivalent retimed circuit with

minimum state (total number of registers) is polynomial-time solvable.

This result yields a polynomial-time optimal solution to the problem

of pipelining combinational circuitry with minimum register cost. We

also give a characterization of optimal retiming based on an e�ciently

solvable mixed-integer linear programming problem.

Also in: Algorithmica, 1991, Volume 6, Number 1, pp 5-35, 1991.

� SRC Research Report 14

An O(n2) Shortest Path Algorithm for a Non-Rotating Convex Body

John Hershberger and Leonidas J. Guibas,

November 27, 1986. 33 pages.

We investigate the problem of moving a convex body in the plane from

one location to another while avoiding a given collection of polygonal

obstacles. The method we propose is applicable when the convex body

is not allowed to rotate. If n denotes the total size of all polygonal

obstacles, the method yields an O(n2) algorithm for �nding a shortest

path from the initial to the �nal location. In solving this problem,

we develop some new tools in computational geometry that may be of

independent interest.

Also in: Journal of Algorithms, 1988, Number 9, pp 18-46.

� SRC Research Report 15

A Simple Approach to Specifying Concurrent Systems

Leslie Lamport

December 25, 1986. 38 pages.

In the transition axiom method, safety properties of a concurrent sys-

tem can be speci�ed by programs; liveness properties are speci�ed

by assertions in a simple temporal logic. The method is described

with some simple examples, and its logical foundation is informally

explored through a careful examination of what it means to imple-

ment a speci�cation. Language issues and other practical details are

largely ignored.

Reports 15{17 8

Also in: Communications of the ACM, January 1989, Volume 32,

Number 1, pp 32-45.

� SRC Research Report 16

A Generalization of Dijkstra's Calculus

Greg Nelson

April 2, 1987. 56 pages.

This paper gives a self-contained account of a general calculus of pro-

gram semantics, from �rst principles through the semantics of recur-

sion. The calculus is like Dijkstra's guarded commands, but without

the Law of the Excluded Miracle; like extended dynamic logic, but

with a di�erent approximation relation; like a relational calculus stud-

ied by deBakker, but with partial relations as well as total relations;

like predicative programming, but with a more standard notion of to-

tal correctness. The treatment of recursion uses the �xpoint method

from denotational semantics.

Also in: Transactions on Programming Languages and Systems,

October 1989, Volume 11, Number 4, pp 517-561.

� SRC Research Report 17

win and sin: Predicate Transformers for Concurrency

Leslie Lamport,

May 1, 1987. 30 pages.

Dijkstra's weakest liberal precondition and strongest postcondition

predicate transformers are generalized to the weakest invariant and

strongest invariant. These new predicate transformers are useful for

reasoning about concurrent programs containing operations in which

the grain of atomicity is unspeci�ed. They can also be used to replace

behavioral arguments with more rigorous assertional ones.

Also in: ACM Transactions of Programming Languages and Systems

July 1990, Volume 12, Number 3, pp 396-428.

Reports 18{20 9

� SRC Research Report 18 (Withdrawn)

Synchronizing Time Servers,

Leslie Lamport

June 1, 1987. 34 pages.

The paper has been withdrawn because, although we still believe its

algorithm to be correct, the properties proved are not strong enough

to demonstrate the algorithm's correctness.

� SRC Research Report 19

Blossoming: A Connect-the-Dots Approach to Splines

Lyle Ramshaw

June 21, 1987. 172 pages.

The standard explanations of the theory underlying the Bezier and

B-spline curves and surfaces used in computer-aided geometric design

are not as simple as they should be, because there is no easy way to

tell, from the labels in the diagrams, what geometric relationships hold

among the labeled points. This paper proposes a new labeling scheme,

based on the work of P. de Casteljau. The key idea is a classical math-

ematical principle, which we christen the Blossoming Principle: a uni-

variate polynomial of degree n is equivalent to a symmetric polynomial

in n variables that is linear in each variable separately. Blossoming a

Bezier curve or surface provides lucid labels both for its Bezier points

and for all of the intermediate points that arise in the de Casteljau

Algorithm. Blossoming a spline curve with parametric continuity pro-

vides lucid labels for its de Boor points and for the points that arise

in the de Boor Algorithm. Spline curves with geometric continuity

and spline surfaces with triangular patches present unsolved labeling

challenges, however.

� SRC Research Report 20

Synchronization Primitives for a Multiprocessor:

A Formal Speci�cation

A. D. Birrell, J. V. Guttag, J. J. Horning, R. Levin

August 20, 1987. 21 pages.

Formal speci�cations of operating system interfaces can be a useful

part of their documentation. We illustrate this by documenting the

Reports 20{22 10

Threads synchronization primitives of the Taos operating system. We

start with an informal description, present a way to formally specify

interfaces in concurrent systems, and then give a formal speci�cation

of the synchronization primitives. We briey discuss both the imple-

mentation and what we have learned from using the speci�cation for

more than a year. Our main conclusion is that programmers untrained

in reading formal speci�cations have found this one helpful in getting

their work done.

� SRC Research Report 21

Evolving the UNIX System Interface to Support Multithreaded

Programs

Paul R. McJones and Garret F. Swart

September 28, 1987. 100 pages.

Multiple threads (program counters executing in the same address

space) make it easier to write programs that deal with related asyn-

chronous activities and that execute faster on shared-memory multi-

processors. Supporting multiple threads places new constraints on the

design of operating system interfaces. Part I of this report presents

guidelines for designing (or redesigning) interfaces for multithreaded

clients. We show how these guidelines were used to design an inter-

face to UNIX-compatible �le and process management facilities in the

Topaz operating system. Two implementations of this interface are

in everyday use: a native one for the Firey multiprocessor, and a

layered one running within a UNIX process. Part II is the actual

programmer's manual for the interface discussed in Part I.

� SRC Research Report 22

Building User Interfaces by Direct Manipulation

Luca Cardelli

October 2, 1987. 45 pages.

User interfaces based on mice, bitmap displays, and windows are be-

coming commonplace, and there is a growing expectation that all pro-

grams, no matter how trivial or how complicated, should present a

graphically elegant and sophisticated user interface. Unfortunately,

such polished interfaces are normally di�cult to build. Our goal is to

Reports 22{23 11

make these tasks much simpler, so that application builders and even

application users can confront them as routine and painless activities.

The approach described in this report achieves this goal by separat-

ing the user interface from the application program, as is done in

many user interface management systems, and by using a user inter-

face editor to build the interfaces. In a sense, we apply the direct

manipulation style characteristic of user interfaces to the very process

of building them, as opposed to building them by programming.

� SRC Research Report 23

Firey: A Multiprocessor Workstation

C. P. Thacker, L. C. Stewart, and E. H. Satterthwaite, Jr.

December 30, 1987. 17 pages.

The Firey is a shared-memory multiprocessor workstation that is used

as the primary source of computing at the Digital Equipment Corpo-

ration Systems Research Center (SRC). Two versions of the Firey

have been built. The �rst version contains from one to seven Mi-

croVAX 78032 processors, each with a oating point unit and a six-

teen kilobyte cache. The caches are coherent, so that all processors

see a consistent view of main memory. A system may contain from

four to sixteen megabytes of storage. Input-output is done via a stan-

dard DEC QBus. Input-output devices are an Ethernet controller,

�xed disks, and a monochrome 1024 x 768 display with keyboard and

mouse. Optional hardware includes a high resolution color display and

a controller for high capacity disks. The second version of the Fire-

y contains faster CVAX 78034 processors, sixty-four kilobyte caches,

and a main memory of up to 128 megabytes.

The Firey runs a software system that emulates the Ultrix system

call interface. It also supports medium and coarse-grained multipro-

cessing through multiple threads of control in a single address space.

Communication is implemented uniformly through the use of remote

procedure calls.

This report describes the goals, architecture, implementation, and per-

formance analysis of the Firey. It then presents some measurements

of hardware performance, and concludes with some brief remarks on

the evolution of the software.

Reports 23{25 12

Also in: IEEE Transactions on Computers, August 1988, Volume 37,

Number 8, pp 909-920.

� SRC Research Report 24

A Simple and E�cient Implementation for Small Databases

Andrew D. Birrell, Michael B. Jones, and Edward P. Wobber

January 30, 1988. 13 pages.

This paper describes a technique for implementing the sort of small

databases that frequently occur in the design of operating systems and

distributed systems. We take advantage of the existence of very large

virtual memories, and quite large real memories, to make the tech-

nique feasible. We maintain the database as a strongly typed data

structure in virtual memory, record updates incrementally on disk in

a log, and occasionally make a checkpoint of the entire database. We

recover from crashes by restoring the database from an old check-

point, then replaying the log. We use existing packages to convert

between strongly typed data objects and their disk representations,

and to communicate strongly typed data across the network (using

remote procedure calls). Our memory is managed entirely by a gen-

eral purpose allocator and garbage collector. This scheme has been

used to implement a name server for a distributed system. The result-

ing implementation has the desirable property of being simultaneously

simple, e�cient, and reliable.

� SRC Research Report 25

Real-time Concurrent Collection on Stock Multiprocessors

John R. Ellis, Kai Li, and Andrew W. Appel

February 14, 1988. 24 pages.

We've designed and implemented a copying garbage-collection algo-

rithm that is e�cient, real-time, concurrent, runs on commercial unipro-

cessors and shared-memory multiprocessors, and requires no change to

compilers. The algorithm uses standard virtual-memory hardware to

detect references to it \from space" objects and to synchronize the

collector and mutator threads. We've implemented and measured a

prototype running on SRC's 5-processor Firey. It will be straightfor-

ward to merge our techniques with generational collection.

Reports 25{27 13

An incremental, non-concurrent version could be implemented easily

on many versions of Unix.

� SRC Research Report 26

Parallel Compilation on a Tightly Coupled Multiprocessor

Mark Thierry Vandevoorde

March 1, 1988. 87 pages.

This thesis describes a C compiler that runs in parallel on a tightly

coupled multiprocessor. The compiler, called PTCC, consists of a two-

stage pipeline. The �rst stage performs extended lexical analysis for

the second stage, which does the parsing and assembly code generation.

The second stage processes units of the source program concurrently.

Units as �ne as a single statement are compiled in parallel.

To avoid unproductive concurrency, a new scheduling abstraction,

called WorkCrew, is used in PTCC. In the WorkCrew model of com-

putation, the client creates tasks and speci�es how they can be sub-

divided. WorkCrews favor serial execution when parallel execution is

unproductive and coarser grains of parallelism over �ner ones.

Several experiments were done to measure the performance of PTCC.

With 5 processors, PTCC performed up to 3.3 times better than a

similar sequential compiler.

� SRC Research Report 27

Concurrent Reading and Writing of Clocks

Leslie Lamport

April 1, 1988. 7 pages.

As an exercise in synchronization without mutual exclusion, algo-

rithms are developed to implement both a monotonic and a cyclic

multiple-word clock that is updated by one process and read by one

or more other processes.

Also in: ACM Transactions on Computer Systems, November 1990,

Volume 8, Number 4, pp 305-310.

Reports 28{29 14

� SRC Research Report 28

A Theorem on Atomicity in Distributed Algorithms

Leslie Lamport

May 1, 1988. 21 pages.

Reasoning about a distributed algorithm is simpli�ed if we can ignore

the time needed to send and deliver messages and can instead pretend

that a process sends a collection of messages as a single atomic action,

with the messages delivered instantaneously as part of the action. A

theorem is derived that proves the validity of such reasoning for a

large class of algorithms. It generalizes and corrects a well known folk

theorem about when an operation in a multiprocess program can be

considered atomic.

Also in: Distributed Computing, 1990, Volume 4, pp 59-68.

� SRC Research Report 29

The Existence of Re�nement Mappings

Mart��n Abadi and Leslie Lamport

August 14, 1988. 42 pages.

Re�nement mappings are used to prove that a lower-level speci�ca-

tion correctly implements a higher-level one. We consider speci�ca-

tions consisting of a state machine (which may be in�nite-state) that

speci�es safety requirements, and an arbitrary supplementary prop-

erty that speci�es liveness requirements. A re�nement mapping from

a lower-level speci�cation S1 to a higher-level one S2 is a mapping

from S1's state space to S2's state space. It maps steps of S1's state

machine to steps of S2's state machine and maps behaviors allowed

by S1 to behaviors allowed by S2. We show that, under reasonable

assumptions about the speci�cations, if S1 implements S2, then by

adding auxiliary variables to S1 we can guarantee the existence of a

re�nement mapping. This provides a completeness result for a practi-

cal, hierarchical speci�cation method.

Also in: Theoretical Computer Science,May 1991, Volume 82, Number

2, pp 253-284.

Reports 30{32 15

� SRC Research Report 30

The Power of Temporal Proofs

Mart��n Abadi

August 15, 1988. 57 pages.

Some methods for reasoning about concurrent programs and hardware

devices have been based on proof systems for temporal logic. Unfor-

tunately, all e�ective proof systems for temporal logic are incomplete

for the standard semantics, in the sense that some formulas hold in

every intended model but cannot be proved. We evaluate and compare

the power of several proof systems for temporal logic. Speci�cally, we

relate temporal systems to classical systems with explicit time param-

eters.

A typical temporal system turns out to be incomplete in a strong sense;

we exhibit a short, valid formula it fails to prove. We suggest the ad-

dition of new rules to de�ne auxiliary predicates. With these rules, we

obtain nonstandard soundness and completeness results. In particu-

lar, one of the simple temporal systems we describe is as powerful as

Peano Arithmetic.

Also in: Theoretical Computer Science, Volume 65, Number 1, June

1989 and corrigendum in Theoretical Computer Science, Volume 70,

Number 2, January 1990, page 275.

� SRC Research Report 31 (Superseded by report 52)

Modula-3 Report

Luca Cardelli, James Donahue, Lucille Glassman, Mick Jordan, Bill

Kalsow, Greg Nelson

August 24, 1988. 55 pages.

See also: Systems Programming with Modula-3, edited by Greg Nelson.

Prentice-Hall, Inc., Englewood Cli�s, New Jersey, 1991.

� SRC Research Report 32

Bounds on the Cover Time

Andrei Broder and Anna Karlin

October 15, 1988. 22 pages.

Reports 32{34 16

Consider a particle that moves on a connected, undirected graph G

with n vertices. At each step the particle goes from the current vertex

to one of its neighbors, chosen uniformly at random. The cover time

is the �rst time when the particle has visited all the vertices in the

graph starting from a given vertex.

In this paper, we present upper and lower bounds that relate the ex-

pected cover time for a graph to the eigenvalues of the Markov chain

that describes the random walk above. An interesting consequence is

that regular expander graphs have expected cover time �(n logn).

Also in: Journal of Theoretical Probability, February 1989, pp 101-120.

� SRC Research Report 33

A Two-view Document Editor with User-de�nable Document Structure

Kenneth P. Brooks

November 1, 1988. 193 pages.

Lilac is an experimental document preparation system which combines

the best features of batch-style document formatters and WYSIWYG

editors. To do this it o�ers the user two views of the document: a

WYSIWYG view and a formatter-like source view. Changes in either

view are rapidly propagated to the other. This report describes both

the user interface design and the implementation mechanisms used to

build Lilac.

� SRC Research Report 34

Blossoms Are Polar Forms

Lyle Ramshaw

January 2, 1989. 46 pages.

Consider the functions H(t) := t2 and h(u; v) := uv. The identity

H(t) = h(t; t) shows that H is the restriction of h to the diagonal

u = v in the uv-plane. Yet, in many ways, a bilinear function like

h is simpler than a homogeneous quadratic function like H . More

generally, if F (t) is some n-ic polynomial function, it is often helpful to

study the polar form of F , which is the unique symmetric, multia�ne

function f(u1; : : : ; un) satisfying the identity F (t) = f(t; : : : ; t). The

Reports 34{35 17

mathematical theory underlying splines is one area where polar forms

can be particularly helpful, because two pieces F and G of an n-ic

spline meet at r with Ck parametric continuity if and only if their

polar forms f and g satisfy

f(u1; =ldots; uk; r; : : : ; r
| {z }

n�k

) = g(u1; =ldots; uk; r; : : : ; r
| {z }

n�k

)

for all u1 through uk .

This polar approach to the theory of splines emerged in rather di�erent

guises in three independent research e�orts: Paul de Faget de Castel-

jau called it shapes through poles; Carl de Boor called it B-splines

without divided di�erences; and Lyle Ramshaw called it blossoming.

This paper reviews the work of de Casteljau, de Boor, and Ramshaw

in an attempt to clarify the basic principles that underlie the polar

approach. It also proposes a consistent system of nomenclature as a

possible standard.

Also in: Computer Aided Geometric Design, November 1989, Volume

6, Number 4, pp 323{358.

� SRC Research Report 35

An Introduction to Programming with Threads

Andrew D. Birrell

January 6, 1989. 35 pages.

This paper provides an introduction to writing concurrent programs

with threads. A threads facility allows you to write programs with mul-

tiple simultaneous points of execution, synchronizing through shared

memory. The paper describes the basic thread and synchronization

primitives, then for each primitive provides a tutorial on how to use

it. The tutorial sections provide advice on the best ways to use the

primitives, give warnings about what can go wrong and o�er hints

about how to avoid these pitfalls. The paper is aimed at experienced

programmers who want to acquire practical expertise in writing con-

current programs.

Report 36 18

� SRC Research Report 36

Primitives for Computational Geometry

Jorge Stol�, January 27, 1989, 228 pages.

Many geometric algorithms become simpler, more general, and more

e�cient when recast in the language of projective geometry. Some

reasons for this are the uniform handling of points at in�nity, the

attendant reduction in the number of special cases, and the perfect

duality between points and hyperplanes that are possible in the pro-

jective model. In fact, the homogeneous coordinates so widely used

in computer graphics are essentially an analytical model of classical

projective geometry. However, projective space is topologically quite

di�erent from Euclidean space. For example, in the projective plane

lines have only one side, all triangles have the same handedness, and

there are two distinct segments with any given pair of endpoints. These

di�erences are a serious practical problem, since many geometric algo-

rithms depend on orientation, ordering and separation tests that make

sense only in the Euclidean model.

This dissertation describes a slightly modi�ed form of projective geom-

etry which is free from this problem. Analytically, the change consists

in making the signs of homogeneous coordinates more signi�cant. Geo-

metrically, the change consists in adopting oriented lines and planes as

the elementary objects of the model, and rede�ning the basic geomet-

ric operation of meet and join so as to produce results with a de�nite

orientation. Topologically, this is equivalent to working with a dou-

ble covering projective space, which is equivalent to an n-dimensional

sphere.

The resulting framework, here called oriented projective geometry,

combines the elegance of classical projective geometry with the ability

to talk about oriented lines and planes, signed angles, line segments,

convex �gures, and many other concepts that cannot be conveniently

de�ned within that model. The goals of this dissertation are: (1) to

develop an intuitive understanding of oriented projective geometry in

two and three dimensions; (2) to describe a formal geometric calculus

for handling oriented lines, planes, and at spaces of arbitrary dimen-

sion; and (3) to investigate the e�cient representation of such objects

in computers.

Reports 36{39 19

� SRC Research Report 37

Ruler, Compass, and Computer: The Design and Analysis of

Geometric Algorithms

Leonidas J. Guibas and Jorge Stol�

February 14, 1989. 55 pages.

In this paper the authors endeavor to convey the avor of techniques,

especially recent ones, that have been found useful in designing and

analyzing e�cient geometric algorithms. Each technique is presented

by means of a worked out example. The paper presupposes some

elementary knowledge of algorithmic geometric techniques and a more

advanced knowledge of classical data structures. The aim is to share

with the reader some of the excitement that permeates one of the most

active areas in theoretical computer science today, namely the �eld of

Computational Geometry. The paper is based on a series of lectures

delivered at the 1987 NATO Symposium on Theoretical Foundations

of Computer Graphics and CAD.

� SRC Research Report 38

Can fair choice be added to Dijkstra's calculus?

Manfred Broy and Greg Nelson

February 16, 1989. 17 pages.

The paper studies the incorporation of a fair nondeterministic choice

operator into a generalization of Dijkstra's calculus of guarded com-

mands. The new operator is not monotonic for the orderings that are

generally used for proving the existence of least �xpoints for recursive

de�nitions. To prove the existence of a �xpoint it is necessary to con-

sider several orderings at once, and to restrict the class of recursive

de�nitions.

� SRC Research Report 39

A Logic of Authentication

Michael Burrows, Mart��n Abadi, and Roger Needham

February 28, 1989. Revised Febuary 22, 1990. 48 pages.

Questions of belief are essential in analyzing protocols for authentica-

tion in distributed computing systems. In this paper we motivate,

Reports 39{40 20

set out, and exemplify a logic speci�cally designed for this analysis; we

show how various protocols di�er subtly with respect to the required

initial assumptions of the participants and their �nal beliefs. Our

formalism has enabled us to isolate and express these di�erences with

a precision that was not previously possible. It has drawn attention

to features of protocols of which we and their authors were previously

unaware, and allowed us to suggest improvements to the protocols.

The reasoning about some protocols has been mechanically veri�ed.

This paper starts with an informal account of the problem, goes on to

explain the formalism to be used, and gives examples of its application

to protocols from the literature, both with conventional shared-key

cryptography and with public-key cryptography. Some of the examples

are chosen because of their practical importance, while others serve

to illustrate subtle points of the logic and to explain how we use it.

We discuss extensions of the logic motivated by actual practice|for

example, in order to account for the use of hash functions in signatures.

The �nal sections contain a formal semantics of the logic and some

conclusions.

In this revised version of the report, we have included a short note,

\The Scope of a Logic of Authentication." The aim of the note is

to clarify what the logic captures and what it does not capture, and

where there is room for other formal or informal techniques. The note

is self-contained.

Also in: ACM Transactions on Computer Systems, February 1990,

Volume 8, Number 1, pp 18-36.

Proceedings of the Royal Society of London, December 1989, Series A,

426, 1871, pp 233-271.

� SRC Research Report 40

Implementing Exceptions in C

Eric S. Roberts

March 21, 1989. 13 pages.

Traditionally, C programmers have used specially designated return

codes to indicate exception conditions arising during program

Reports 40{41 21

execution. More modern languages o�er alternative mechanisms that

integrate exception handling into the control structure. This approach

has several advantages over the use of return codes: it increases the

likelihood that programming errors will be detected, makes it easier to

structure the speci�cation of an abstraction, and improves the read-

ability of the implementation by providing better syntactic separation

between handling of conventional and exceptional cases. This paper

describes a set of language extensions to support exception handling in

C, and a preprocessor-based implementation of those extensions that

demonstrates both the feasibility and the portability of this approach.

� SRC Research Report 41

Evaluating the Performance of Software Cache Coherence

Susan Owicki and Anant Agarwal

March 31, 1989. 29 pages.

In a shared-memory multiprocessor with private caches, cached copies

of a data item must be kept consistent. This is called cache coherence.

Both hardware and software coherence schemes have been proposed.

Software techniques are attractive because they avoid hardware com-

plexity and can be used with any processor-memory interconnection.

This paper presents an analytical model of the performance of two

software coherence schemes and, for comparison, snoopy-cache hard-

ware. The model is validated against address traces from a bus-based

multiprocessor. The behavior of the coherence schemes under various

workloads is compared, and their sensitivity to variations in workload

parameters is assessed. The analysis shows that the performance of

software schemes is critically determined by certain parameters of the

workload: the proportion of data accesses, the fraction of shared ref-

erences, and the number of times a shared block is accessed before it

is purged from the cache. Snoopy caches are more resilient to varia-

tions in these parameters. Thus, when evaluating a software scheme

as a design alternative, it is essential to consider the characteristics of

the expected workload. The performance of the two software schemes

with a multistage interconnection network is also evaluated, and it is

determined that both scale well.

Reports 42{43 22

� SRC Research Report 42

WorkCrews: An Abstraction for Controlling Parallelism

Eric S. Roberts and Mark T. Vandevoorde

April 2, 1989. 17 pages.

When implementing parallel programs, it is important to �nd strate-

gies for controlling parallelism that make the most e�ective use of

available resources. In this paper, we introduce a dynamic strategy

called WorkCrews for controlling the use of parallelism on small-scale,

tightly-coupled multiprocessors. In the WorkCrew model, tasks are as-

signed to a �nite set of workers. As in other mechanisms for specifying

parallelism, each worker can enqueue subtasks for concurrent evalua-

tion by other workers as they become idle. The WorkCrew paradigm

has two advantages. First, much of the work associated with task

division can be deferred until a new worker actually undertakes the

subtask, and avoided altogether if the original worker ends up execut-

ing the subtask serially. Second, the ordering of queue requests under

WorkCrews favors coarse-grained subtasks, which reduces further the

overhead of task decomposition.

� SRC Research Report 43

Performance of Firey RPC

Michael D. Schroeder and Michael Burrows

April 15, 1989. 17 pages.

In this paper, we report on the performance of the remote procedure

call implementation for the Firey multiprocessor and analyze the im-

plementation to account precisely for all measured latency. From the

analysis and measurements, we estimate how much faster RPC could

be if certain improvements were made.

The elapsed time for an inter-machine call to a remote procedure that

accepts no arguments and produces no results is 2.66 milliseconds. The

elapsed time for an RPC that has a single 1440-byte result (the max-

imum result that will �t in a single packet) is 6.35 milliseconds. Max-

imum inter-machine throughput using RPC is 4.65 megabits/second,

achieved with 4 threads making parallel RPCs that return the maxi-

mum sized single packet result. CPU utilization at maximum through-

put is about 1.2 on the calling machine and a little less on the server.

Reports 43{45 23

These measurements are for RPCs from user space on one machine to

user space on another, using the installed system and a 10 megabit

per second Ethernet. The RPC packet exchange protocol is built on

IP/UDP, and the times include calculating and verifying UDP check-

sums. The Fireies used in the tests had 5 MicroVAX II processors

and a DEQNA Ethernet controller.

� SRC Research Report 44

Pretending Atomicity

Leslie Lamport and Fred B. Schneider

May 1, 1989. 29 pages.

We present a theorem for deriving properties of a concurrent pro-

gram by reasoning about a simpler, coarser-grained version. The the-

orem generalizes a result that Lipton proved for partial correctness

and deadlock-freedom. Our theorem applies to all safety properties.

� SRC Research Report 45

Typeful Programming

Luca Cardelli

May 24, 1989. 63 pages.

There exists an identi�able programming style based on the widespread

use of type information handled through mechanical typechecking tech-

niques.

This typeful programming style is in a sense independent of the lan-

guage it is embedded in; it adapts equally well to functional, impera-

tive, object-oriented, and algebraic programming, and it is not incom-

patible with relational and concurrent programming.

The main purpose of this paper is to show how typeful programming is

best supported by sophisticated type systems, and how these systems

can help in clarifying programming issues and in adding power and

regularity to languages.

Reports 46{47 24

� SRC Research Report 46

An Algorithm for Data Replication

Timothy Mann, Andy Hisgen, and Garret Swart

June 1, 1989. 55 pages.

Replication is an important technique for increasing computer system

availability. In this paper, we present an algorithm for replicating

stored data on multiple server machines. The algorithm organizes the

replicated servers in a master/slaves scheme, with one master election

being performed at the beginning of each service period. The status of

each replica is summarized by a set of monotonically increasing epoch

variables. Examining the epoch variables of a majority of the replicas

reveals which replicas have up-to-date data. The set of replicas can be

changed dynamically. Replicas that have been o�-line can be brought

up to date in background, and witness replicas, which store the epoch

variables but not the data, can participate in the majority voting.

The algorithm does not require distributed atomic transactions. The

algorithm also permits client machines to cache copies of data, with

strict cache consistency being ensured by having the replicated servers

keep track of which clients have cached what data. The work reported

in this paper is part of an ongoing project to build a new replicated

distributed �le system with client caching, called Echo.

� SRC Research Report 47

Dynamic Typing in a Statically Typed Language

Mart��n Abadi, Luca Cardelli, Benjamin C. Pierce, Gordon D. Plotkin

June 10, 1989. 35 pages.

Statically typed programming languages allow earlier error checking,

better enforcement of disciplined programming styles, and generation

of more e�cient object code than languages where all type-consistency

checks are performed at run time. However, even in statically typed

languages, there is often the need to deal with data whose type cannot

be determined at compile time. To handle such situations safely, we

propose to add a type Dynamic whose values are pairs of a value v

and a type tag T where v has the type denoted by T. Instances of

Dynamic are built with an explicit tagging construct and inspected

with a type-safe typecase construct.

Reports 47{49 25

This paper explores the syntax, operational semantics, and denota-

tional semantics of a simple language with the type Dynamic. We give

examples of how dynamically typed values can be used in program-

ming. Then, we discuss an operational semantics for our language and

obtain a soundness theorem. We present two formulations of the deno-

tational semantics of this language and relate them to the operational

semantics. Finally, we consider the implications of polymorphism and

some implementation issues.

Also in: ACM Transactions on Programming Languages and Systems,

April 1991, Volume 13, Number 2, pp 237-268.

� SRC Research Report 48

Operations on Records

Luca Cardelli and John C. Mitchell

August 25, 1989. 60 pages.

We de�ne a simple collection of operations for creating and manipulat-

ing record structures, where records are intended as �nite associations

of values to labels. A second-order type system over these operations

supports both subtyping and polymorphism. We provide typechecking

algorithms and limited semantic models.

Our approach uni�es and extends previous notions of records, bounded

quanti�cation, record extension, and parameterization by row-variables.

The general aim is to provide foundations for concepts found in object-

oriented languages, within a framework based on typed lambda-calculus.

Also in: Mathematical Structures in Computer Science, 1991, Volume

1, pp 3-48.

� SRC Research Report 49

The Part-Time Parliament

Leslie Lamport

September 1, 1989. 41 pages.

Recent archaeological discoveries on the island of Paxos reveal that the

parliament functioned despite the peripatetic propensity of its part-

time legislators. The legislators maintained consistent copies of the

parliamentary record, despite their frequent forays from the chamber

Reports 49{50b 26

and the forgetfulness of their messengers. The Paxon parliament's pro-

tocol provides a new way of implementing the state-machine approach

to the design of distributed systems|an approach that has received

limited attention because it leads to designs of insu�cient complexity.

� SRC Research Reports 50a and 50b

Report 50a

An E�cient Algorithm for Finding the CSG Representation

of a Simple Polygon

David Dobkin, Leonidas Guibas, John Hershberger, and Jack Snoeyink

September 10, 1989. 22 pages.

Modeling two-dimensional and three-dimensional objects is an impor-

tant theme in computer graphics. Two main types of models are used

in both cases: boundary representations, which represent the surface

of an object explicitly but represent its interior only implicitly, and

constructive solid geometry representations, which model a complex

object, surface and interior together, as a boolean combination of sim-

pler objects. Because neither representation is good for all applica-

tions, conversion between the two is often necessary.

We consider the problem of converting boundary representations of

polyhedral objects into constructive solid geometry (CSG) represen-

tations. The CSG representations for a polyhedron P are based on

the half-spaces supporting the faces of P . For certain kinds of polyhe-

dra this problem is equivalent to the corresponding problem for simple

polygons in the plane. We give a new proof that the interior of each

simple polygon can be represented by a monotone boolean formula

based on the half-planes supporting the sides of the polygon and using

each such half-plane only once. Our main contribution is an e�cient

and practical O(n logn) algorithm for doing this boundary-to-CSG

conversion for a simple polygon of n sides. We also prove that such

nice formul� do not always exist for general polyhedra in three dimen-

sions.

Videotape 50b

Boolean Formulae for Simple Polygons

John Hershberger and Marc H. Brown. Time 6:15.

Reports 50b{52 27

This videotape shows the boundary-to-CSG conversion algorithm in

action, featuring a visualization created with the Zeus algorithm an-

imation system. Multiple color views, updated as the program runs,

illustrate di�erent aspects of the algorithm.

� SRC Research Report 51

Experience with the Firey Multiprocessor Workstation

Susan Owicki

September 15, 1989. 17 pages.

Commercial multiprocessors are used successfully for a range of appli-

cations, including intensive numeric computations, time-sharing, and

shared servers. The value of multiprocessing in a single-user work-

station is not so obvious, especially in an environment where numeric

problems do not dominate. The Digital Equipment Corporation Sys-

tems Research Center has had several years of experience using the

�ve-processor Firey workstation in such an environment. This report

is an initial assessment of how much is gained from multiprocessing on

the Firey.

Reported here are measurements of speedup and utilization for a vari-

ety of programs. They illustrate four sources of concurrency: between

independent tasks, within a server, between client and server, and

within an application. The nature of the parallelism in each example

is explored, as well as the factors, if any, that constrain multipro-

cessing. The examples cover a wide range of multiprocessing, with

speedups on a �ve-processor machine varying from slightly over 1 to

nearly 6. Most uses derive most of their speedup from two or three

processors, but there are important applications that can e�ectively

use �ve or more.

� SRC Research Report 52

Modula-3 Report (revised)

Luca Cardelli, James Donahue, Lucille Glassman,

Mick Jordan, Bill Kalsow, Greg Nelson

November 1, 1989. 71 pages.

The goal of Modula-3 is to be as simple and safe as it can be while

meeting the needs of modern systems programmers. Instead of

Reports 52{53 28

exploring new features, we studied the features from the Modula fam-

ily of languages that have proven themselves in practice and tried to

simplify them and �t them into a harmonious language. We found that

most of the successful features were aimed at one of two main goals:

greater robustness, and a simpler, more systematic type system.

Modula-3 descends from Mesa, Modula-2, Cedar, and Modula-2+. It

also resembles its cousins Object Pascal, Oberon, and Euclid.

Modula-3 retains one of Modula-2's most successful features, the pro-

vision for explicit interfaces between modules. It adds objects and

classes, exception handling, garbage collection, lightweight processes

(or threads), and the isolation of unsafe features.

The Modula-3 report was published by Olivetti and Digital in August

1988. Implementation e�orts followed shortly at both companies. In

January 1989, the committee revised the language to reect the ex-

periences of these implementation teams. The main changes were the

introduction of branded reference types, the requirement that opaque

types be branded, the legalization of opaque supertypes, and the new

exibility in revealing information about an opaque type.

See also: System Programming with Modula-3, Edited by Greg Nel-

son, Prentice-Hall, Englewood Cli�s, New Jersey, 1991 and Modula-

3, Samuel P. Harbison, Prentice-Hall, Englewood Cli�s, New Jersey,

1992.

� SRC Research Report 53

IO Streams: Abstract Types, Real Programs

Mark R. Brown and Greg Nelson

November 15, 1989. 46 pages.

The paper proposes standard Modula-3 interfaces for text input and

output. It also describes an implementation of the interfaces, focusing

on two novel features of Modula-3: the partially opaque type and the

explicit isolation of unsafe code.

Reports 54{55 29

� SRC Research Report 54

Explicit Substitutions

Mart��n Abadi, Luca Cardelli, Pierre-Louis Curien, Jean-Jacques Levy

February 6, 1990. 56 pages.

The lambda, sigma-calculus is a re�nement of the lambda-calculus

where substitutions are manipulated explicitly. The lambda, sigma-

calculus provides a setting for studying the theory of substitutions,

with pleasant mathematical properties. It is also a useful bridge be-

tween the classical lambda-calculus and concrete implementations.

Also in: Journal of Functional Programming, October 1991, Volume

1, Number 4, pp 375-416.

� SRC Research Report 55

A Semantic Basis for Quest

Luca Cardelli and Giuseppe Longo

February 14, 1990. 51 pages.

Quest is a programming language based on impredicative type quan-

ti�ers and subtyping within a three-level structure of kinds, types and

type operators, and values.

The semantics of Quest is rather challenging. In particular, di�cul-

ties arise when we try to model simultaneously features such as con-

travariant function spaces, record types, subtyping, recursive types,

and �xpoints.

In this paper we describe in detail the type inference rules for Quest,

and we give them meaning using a partial equivalence relation model

of types. Subtyping is interpreted as in previous work by Bruce and

Longo, but the interpretation of some aspects, namely subsumption,

power kinds, and record subtyping, is novel. The latter is based on a

new encoding of record types.

We concentrate on modeling quanti�ers and subtyping; recursion is

the subject of current work.

Also in: Journal of Functional Programming, October 1991, Volume

1, Part 4, pp 417-458.

Reports 56{58 30

� SRC Research Report 56

Abstract Types and the Dot Notation

Luca Cardelli and Xavier Leroy

March 10, 1990. 32 pages.

We investigate the use of the dot notation in the context of abstract

types. The dot notation|that is, a:f referring to the operation f pro-

vided by the abstraction a|is used by programming languages such

as Modula-2 and CLU. We compare this notation with the Mitchell-

Plotkin approach, which draws a parallel between type abstraction and

(weak) existential quanti�cation in constructive logic. The basic op-

erations on existentials coming from logic give new insights about the

meaning of type abstraction, but di�er completely from the more fa-

miliar dot notation. In this paper, we formalize simple calculi equipped

with the dot notation, and relate them to a more classical calculus �a la

Mitchell and Plotkin. This work provides some theoretical foundations

for the dot notation, and suggests some useful extensions.

� SRC Research Report 57 (Superseded by report 79)

A Temporal Logic of Actions

Leslie Lamport

April 1, 1990, 24 pages.

� SRC Research Report 58

Report on the Larch Shared Language: Version 2.3

John V. Guttag, James J. Horning, Andr�es Modet

April 14, 1990. 43 pages.

The Larch family of languages is used to specify program interfaces in a

two-tiered de�nitional style. Each Larch speci�cation has components

written in two languages: one that is designed for a speci�c program-

ming language and another that is independent of any programming

language. The former are the Larch interface languages, and the lat-

ter is the Larch Shared Language (LSL). Version 2.3 of LSL is similar

to previous versions, but contains a number of re�nements based on

experience writing speci�cations and developing tools to support the

speci�cation process. This report contains an informal introduction

and a self-contained language de�nition.

Reports 58{59 31

This report supersedes Pieces II and III of Larch in Five Easy Pieces,

SRC Report 5, by J. Guttag, J. Horning, and J. Wing.

Also in:

IEEE Software, September 1985, Volume 2, Number 5.

Science of Computer Programming, March 1986, Volume 6, Number

2, pp 103-134.

ACM Transations on Programming Languages and Systems, January

1987, Volume 9, Number 1.

� SRC Research Report 59

Autonet: a High-speed, Self-con�guring Local Area Network with Point-

to-point Links

Michael D. Schroeder, Andrew D. Birrell, Michael Burrows, Hal Mur-

ray, Roger M. Needham, Thomas L. Rodehe�er, Edwin H. Satterth-

waite, Charles P. Thacker

April 30, 1990. 42 pages.

Autonet is a self-con�guring local area network composed of switches

interconnected by 100 Mbit/second, full-duplex, point-to-point links.

The switches contain 12 ports that are internally connected by a full

crossbar. Switches use cut-through to achieve a packet forwarding

latency as low as 2 microseconds per switch. Any switch port can be

cabled to any other switch port or to a host network controller.

A processor in each switch monitors the network's physical con�gura-

tion. A distributed algorithm running on the switch processors com-

putes the routes packets are to follow and �lls in the packet forwarding

table in each switch. This algorithm automatically recalculates the for-

warding tables to incorporate repaired or new links and switches, and

to bypass links and switches that have failed or been removed. Host

network controllers have alternate ports to the network and fail over

if the active port stops working.

With Autonet, distinct paths through the set of network links can

carry packets in parallel. Thus, in a suitable physical con�guration,

many pairs of hosts can communicate simultaneously at full link band-

width. The aggregate bandwidth of an Autonet can be increased by

adding more links and switches. Each switch can handle up to 2 mil-

lion packets per second. Coaxial links can span 100 meters and �ber

links can span 2 kilometers.

Reports 59{60 32

A 30-switch network with more than 100 hosts is the service network

for Digital's Systems Research Center.

Also in: IEEE Journal on Selected Areas in Communications, October

1991.

� SRC Research Report 60

Debugging Larch Shared Language Speci�cations

Stephen J. Garland, John V. Guttag, James J. Horning

July 4, 1990. 34 pages.

The Larch family of speci�cation languages supports a two-tiered def-

initional approach to speci�cation. Each speci�cation has components

written in two languages: one designed for a speci�c programming lan-

guage and another independent of any programming language. The

former are called Larch interface languages, and the latter the Larch

Shared Language (LSL).

The Larch style of speci�cation emphasizes brevity and clarity rather

than executability. To make it possible to test speci�cations without

executing or implementing them, Larch permits speci�ers to make

claims about logical properties of speci�cations and to check these

claims at speci�cation time. Since these claims are undecidable in the

general case, it is impossible to build a tool that will automatically

certify claims about arbitrary speci�cations. However, it is feasible

to build tools that assist speci�ers in checking claims as they debug

speci�cations. This paper describes the checkability designed into LSL

and discusses two tools that help perform the checking.

This paper is a revised and expanded version of a paper presented at

the April 1990 IFIP Working Conference on Programming Concepts

and Methods.

Also in: IEEE Transactions Software Engineering, September 1990,

Volume 16, Number 9, pp 1044-57.

Report 61 33

� SRC Research Report 61

In Memoriam: J.C.R. Licklider 1915-1990

August 7, 1990. 41 pages.

In the 1960s, J.C.R. Licklider published his ideas about the future role

of multiaccess interactive computing. He looked beyond the existing

limitations of punched cards and paper tape to a time when comput-

ers would interact in real time with the human user. By performing

numerous routine tasks on demand, computers could contribute to a

person's ability to formulate new insights and decisions. He saw man-

computer interaction as enhancing both the quality and e�ciency of

human problem solving.

Articulating his vision was an important contribution in challenging

people to examine the implications of an emerging technology. But

through his work for the Advanced Research Projects Agency (ARPA),

he was also able to give his vision reality. The projects sponsored by his

program provided the research direction for computer science in this

country for many subsequent years. Furthermore, his program was the

�rst to provide the signi�cant public funding necessary to guarantee

the �nancial stability on which long-term research depended.

Perhaps his most important inuence, however, was in the area of

computer science education. Prior to his work at ARPA, there were

no departments in US universities o�ering a PhD in computer science.

His program sponsored research at four of the �rst universities to of-

fer graduate computer science degrees. These departments in turn

provided role models for other departments that followed.

J.C.R. Licklider thus played a central role in initiating and sustaining

computer science research and education in this country. To commem-

orate his important contributions, we reprint here two of his papers,

Man-Computer Symbiosis and The Computer as a Communication

Device. In recognition of the debt owed to him by the whole com-

puter science profession, and by every user of interactive computing,

we dedicate this report in his memory.

Reports 62{63 34

� SRC Research Report 62

Subtyping Recursive Types

Roberto M. Amadio and Luca Cardelli

August 14, 1990. 60 pages.

We investigate the interactions of subtyping and recursive types in a

simply typed lambda-calculus. The two fundamental questions here

are whether two (recursive) types are in the subtype relation and

whether a term has a type.

To address the �rst question, we relate various de�nitions of type

equivalence and subtyping that are induced by a model, an order-

ing on in�nite trees, an algorithm, and a set of type rules. We show

soundness and completeness between the rules, the algorithm, and

the tree semantics. We also prove soundness and a restricted form of

completeness for the model.

To address the second question, we show that to every pair of types in

the subtype relation we can associate a term whose denotation is the

uniquely determined coercion map between the two types. Moreover,

we derive an algorithm that, given a term with implicit coercions, can

infer its least type whenever possible.

� SRC Research Report 63

Heap Usage in the Topaz Environment

John D. DeTreville

August 20, 1990. 42 pages.

Topaz, the experimental computing environment built and used at

SRC, is implemented in the Modula-2+ programming language, which

provides garbage collection. Garbage collection simpli�es the construc-

tion of complex systems, and is tied to a number of other Topaz and

Modula-2+ features, such as runtime polymorphism, language safety,

information-hiding, object cleanup, persistent objects, and network

objects.

Although there are costs to using garbage collection, these are avoided

or tolerated in Topaz. For example, because Topaz must avoid no-

ticeable interruption of service due to garbage collection, it uses a

concurrent garbage collector.

Reports 63{64 35

Measurements show that the use of the REF heap in Topaz is simi-

lar in many ways to the use of heaps in Lisp-like environments, but

di�erent in others. For example, in typical large programs, the REF

heap contains millions of bytes, with tens of thousands of objects from

among hundreds of statically-declared types; objects of only a few

types predominate. Although most objects are small, most bytes are

in relatively large objects. Cycles are rare; most cycles are of size 2.

Most objects are short-lived, but not as short-lived as in Lisp-like envi-

ronments that allocate large amounts of ephemeral data on the heap.

� SRC Research Report 64

Experience with Concurrent Garbage Collectors for Modula-2+

John DeTreville

November 22, 1990. 54 pages.

Garbage collection is an integral component of Modula-2+, the prin-

cipal systems programming language at SRC. The initial Modula-2+

collector was a concurrent reference-counting collector; it did not re-

claim cyclic structures, and the cost of assigning references was rela-

tively high.

I implemented three experimental collectors for Modula-2+ and tested

them to explore alternatives to the initial collector: �rst a simple con-

current mark-and-sweep collector; then a modi�ed concurrent mark-

and-sweep collector that used VM synchronization between the muta-

tor and the collector; and then a concurrent mostly-copying collector

that also used VM synchronization.

These collectors had advantages and disadvantages compared to the

initial Modula-2+ collector. They reclaimed cyclic structures and

tended to reduce the cost of assignments, but they provoked VM

thrashing far more readily and sometimes produced noticeable inter-

ruptions of service. For this reason, we adopted a combined reference-

counting and mark-and-sweep collector for Modula-2+ at SRC, in

which the reference-counting collector reclaims most garbage and the

mark-and-sweep collector executes infrequently to reclaim cyclic garbage.

Reports 65{66 36

� SRC Research Report 65

An Axiomatization of Lamport's Temporal Logic of Actions

Mart��n Abadi

October 12, 1990. 18 pages.

Lamport recently invented a temporal logic of actions suitable for ex-

pressing concurrent programs and for reasoning about their computa-

tions. In this logic, actions have syntactic representations, which can

be combined and analyzed. The basic construct for relating actions

and computations is []; a computation satis�es the formula [A] if ei-

ther the computation has halted or the �rst action in the computation

is an A action. In addition, the language includes the temporal op-

erators \always" and \eventually", and thus it is easy to write both

safety and liveness formulas.

However, the temporal logic of actions is not very expressive in some

respects (just expressive enough). One cannot de�ne the \next" and

the \until" operators of many previous temporal logics. This is ac-

tually a feature, in that formulas with \until" are too often incom-

prehensible, and \next" violates the important principle of invariance

under stuttering.

A proof system for the logic of actions might be obtained by translat-

ing into previous, richer formalisms. In this translation we forfeit the

logic and its advantages. A new suit of rules for temporal reasoning

with actions is therefore wanted. A complete axiomatization can pro-

vide some guidance in choosing and understanding the rules used in

practice, and in particular the laws for reasoning about programs.

In this paper, we study a proof system for a propositional logic, PTLA.

After an informal introduction, we de�ne the syntax and semantics

of PTLA precisely, and then present our proof system and prove its

completeness.

� SRC Research Report 66

Composing Speci�cations

Mart��n Abadi and Leslie Lamport

October 10, 1990. 90 pages.

A rigorous modular speci�cation method requires a proof rule asserting

that if each component behaves correctly in isolation, then it behaves

Reports 66{68 37

correctly in concert with other components. Such a rule is subtle

because a component need behave correctly only when its environment

does, and each component is part of the others' environments. We

examine the precise distinction between a system and its environment,

and provide the requisite proof rule when modules are speci�ed with

safety and liveness properties.

Also in: ACM Transactions on Programming Languages and Systems,

January 1993, Volume 15, Number 2, pp 73-268.

� SRC Research Report 67

Authentication and Delegation with Smart-cards

M. Abadi, M. Burrows, C. Kaufman, B. Lampson

October 22, 1990. 24 pages.

The authentication of users in distributed systems poses special prob-

lems because users lack the ability to encrypt and decrypt. The same

problems arise when users wish to delegate some of their authority to

nodes, after mutual authentication.

In most systems today, the user is forced to trust the node he wants to

use. In a more satisfactory design, the user carries a smart-card with

su�cient computing power to assist him; the card provides encryption

and decryption capabilities for authentication and delegation.

Authentication is relatively straightforward with a su�ciently power-

ful smart-card. However, for practical reasons, protocols that place

few demands on smart-cards should be considered. These protocols

are subtle, as they rely on fairly complex trust relations between the

principals in the system (users, hosts, services). In this paper, we

discuss a range of public-key smart-card protocols, and analyze their

assumptions and the guarantees they o�er.

� SRC Research Report 68

Trestle Reference Manual

Mark S. Manasse and Greg Nelson

December, 1991. 154 pages.

This is a reference manual for Trestle, a Modula-3 toolkit for the X

window system. Trestle is a collection of interfaces structured around

Reports 68{69 38

a central abstract type: a \virtual bitmap terminal" or VBT, which

represents a share of the workstation's screen, keyboard, and mouse|a

thing comparable to the viewers, windows, or widgets of other systems.

Trestle is included in SRC Modula-3 version 2.0, which is available via

public ftp.

Trestle includes a fairly standard set of interactors, including menus,

buttons, \container" classes that provide overlapping or tiled subwin-

dows, and \leaf" windows that display text or other data. This refer-

ence manual also speci�es the interfaces that allow you to create your

own window classes. Knowledge of X is not required.

A Trestle window is an object whose behavior is determined by its

methods. For example, a window's response to a mouse click is deter-

mined by calling its mouse method. This is fast becoming the standard

architecture for toolkits, but Trestle carries it further than most. For

example, you can change the way a Trestle window paints by overriding

its paint method; this is useful for sophisticated e�ects like groupware.

Trestle provides a novel strategy for writing applications that are inde-

pendent of the type of display screen they are running on. For example,

it is easy to write a Trestle application that can be moved back and

forth between a color display and a monochrome display where the

application will look good on both.

� SRC Research Report 69

Trestle Tutorial

Mark S. Manasse and Greg Nelson

May 1, 1992. 70 pages.

This is a tutorial introduction to programming with Trestle, a Modula-

3 window system toolkit currently implemented over the X window

system. We assume that you have some experience as a user of window

systems, but no previous experience programming with X or other

window systems. To run Trestle, you need a copy of SRC Modula-3

and an X server.

The tutorial begins with examples of programming using built-in Tres-

tle interactors and continues by showing you how to build your own

interactors: both leaf interactors and interactors that contain their

own sub-windows and modify their behavior.

Reports 69{71 39

The source code presented in the tutorial is shipped as part of the

Modula-3 release from SRC, in the package \trestletutorial." At SRC,

you can fetch a copy of this by typing in your home directory:

cp -r /proj/m3/pkg/trestletutorial .

At other sites, you'll have to ask the people who installed SRC Modula-

3 where they put the package sources. You will probably want to have

a copy of the Trestle Reference Manual (SRC Report 68) nearby as

you work through the tutorial.

The �rst few examples in the tutorial are programs; their source code

is reproduced in subdirectories named after that program. The later

examples are new classes of interactors. For these, the subdirectories

are named after the interactor, and contain both src and test subdirec-

tories. The src directories contain the source code for the interface and

implementation of the new interactor, and the test directory contains

a simple program to exercise the interactor.

� SRC Research Report 70

A Calculus for Access Control in Distributed Systems

M. Abadi, M. Burrows, B. Lampson, G. Plotkin

March 4, 1991. 41 pages.

We study some of the concepts, protocols, and algorithms for access

control in distributed systems, from a logical perspective. We account

for how a principal may come to believe that another principal is

making a request, either on his own or on someone else's behalf. We

also provide a logical language for access control lists, and theories for

deciding whether requests should be granted.

� SRC Research Report 71

Trading Space for Time in Undirected s-t Connectivity

Andrei Z. Broder, Anna R. Karlin, Prabhakar Raghavan, Eli Upfal

May 7, 1991. 19 pages.

Aleliunas et al. posed the following question: \The reachability prob-

lem for undirected graphs can be solved in logspace and O(mn) time

[m is the number of edges and n is the number of vertices] by a prob-

abilistic algorithm that simulates a random walk, or in linear time

Reports 71{73 40

and space by a conventional deterministic graph traversal algorithm.

Is there a spectrum of time-space trade-o�s between these extremes?"

We answer this question in the a�rmative for graphs with a linear

number of edges by presenting an algorithm that is faster than the

random walk by a factor essentially proportional to the size of its

workspace. For denser graphs, our algorithm is faster than the random

walk but the speed-up factor is smaller.

� SRC Research Report 72

LM3: A Larch Interface Language for Modula-3

A De�nition and Introduction, Version 1.0

Kevin D. Jones

June 13, 1991. 76 pages.

This report describes a Larch interface language (LM3) for the Modula-

3 programming language. LM3 is a complete example of a Larch in-

terface language and addresses areas previously ignored in interface

language de�nition, such as the speci�cation of non-atomic procedures

and object types.

We give a complete de�nition of the syntax and illustrate it with some

straightforward examples. We also give translation functions from

LM3 speci�cations to Larch Shared Language traits and show their

use for type checking. Finally, we present example speci�cations of

standard Modula-3 interfaces.

To remove the possibility of misunderstanding, this report presents

LM3 using its base syntax and does not use any syntactic sugar. In

practice, such sugar is convenient and the checker accepts a sugared

form as well as the raw form presented here.

� SRC Research Report 73

Decidability and Expressiveness for First-Order Logics of Probability

Mart��n Abadi and Joseph Y. Halpern

June 18, 1991. 39 pages.

We consider decidability and expressiveness issues for two �rst-order

logics of probability. In one, the probability is on possible worlds,

while in the other, it is on the domain. It turns out that in both cases

it takes very little to make reasoning about probability highly

Reports 73{74 41

undecidable. We show that when the probability is on the domain,

if the language contains only unary predicates then the validity prob-

lem is decidable. However, if the language contains even one binary

predicate, the validity problem is �2

1
complete, as hard as elementary

analysis with free predicate and function symbols. With equality in

the language, even with no other symbol, the validity problem is at

least as hard as that for elementary analysis, �1

1
hard. Thus, the logic

cannot be axiomatized in either case. When we put the probability

on the set of possible worlds, the validity problem is �2

1
complete with

as little as one unary predicate in the language, even without equal-

ity. With equality, we get �1

1
hardness with only a constant symbol.

We then turn our attention to an analysis of what causes this over-

whelming complexity. For example, we show that if we require rational

probabilities then we drop from �2

1
to �1

1
. In many contexts it suf-

�ces to restrict attention to domains of bounded size; fortunately, the

logics are decidable in this case. Finally, we show that, although the

two logics capture quite di�erent intuitions about probability, there is

a precise sense in which they are equi-expressive.

� SRC Research Report 74

Introduction to LCL, A Larch/C Interface Language

J. V. Guttag and J. J. Horning

July 24, 1991. 81 pages.

This report is aimed primarily at the C programmer who wishes to

begin to integrate formal speci�cations into the program development

cycle. We present a speci�cation language targeted speci�cally at C

and discuss how it can be used to support a style of C programming

in which abstraction plays a vital role.

The report begins with a quick overview of the use of the Larch family

of languages for program speci�cation. It continues with an overview

of LCL, a Larch interface language for (ANSI) standard C. It then

describes LCL by means of an extended example. Parts of an imple-

mentation of the speci�ed interfaces are provided in the body of the

report. The remaining parts of the implementation are presented in

an appendix. Another appendix contains a brief introduction to the

Larch Shared Language.

Reports 75{76b 42

� SRC Research Report 75

Zeus: A System for Algorithm Animation and Multi-view Editing

Marc H. Brown

February 28, 1992. 23 pages.

Algorithm animation is a form of program visualization that is con-

cerned with dynamic and interactive graphical displays of a program's

fundamental operations. This paper describes the Zeus algorithm ani-

mation system. Zeus is noteworthy for its use of objects, strong-typing,

and parallelism. Also of interest is how the system can be used for

building multi-view editors.

� SRC Research Reports 76a and 76b

Report 76a

Color and Sound in Algorithm Animation

Marc H. Brown and John Hershberger

August 30, 1991. 31 pages.

Although systems for animating algorithms are becoming more power-

ful and easier for programmers to use, not enough attention has been

given to the techniques that an algorithm animator needs to create

e�ective visualizations. This paper reviews the techniques for algo-

rithm animation reported in the literature thus far and introduces

new techniques that we have developed for using color and, to a lesser

extent, sound. The paper also presents six algorithm animations that

illustrate the new techniques.

Also in: Computer December 1992, Volume 25, Number 12, pp 52-63.

Videotape 76b

An Anthology of Algorithm Animations using Zeus

Edited by Marc H. Brown

Time: 59:00

Contents:

1. An Introduction to Zeus

Marc H. Brown

2. Topologically Sweeping an Arrangement: A Parallel Implementation

Marc H. Brown and Harald Rosenberger

Reports 76b{78 43

3. Competitive Spinning Algorithms

Anna R. Karlin and Marc H. Brown

4. Boolean Formulae for Simple Polygons

John Hershberger and Marc H. Brown

5. Multilevel Adaptive Hashing

Andrei Broder and Marc H. Brown

6. Compliant Motion in a Simple Polygon

John Hershberger

� SRC Research Report 77

Automatic Recon�guration in Autonet

Thomas L. Rodehe�er and Michael D. Schroeder

September 18, 1991. 47 pages.

Autonet is a switch-based local area network using 100 Mbit/s full-

duplex point-to-point links. Crossbar switches are interconnected to

other switches and to host controllers in an arbitrary pattern. Switch

hardware uses the destination address in each packet to determine the

proper outgoing link for the next step in the path from source to desti-

nation. Autonet automatically recalculates these forwarding paths in

response to failures and additions of network components. This auto-

matic recon�guration allows the network to continue normal operation

without need of human intervention. Recon�guration occurs quickly

enough that higher-level protocols are not disrupted. This paper de-

scribes the fault monitoring and topology acquisition mechanisms that

are central to automatic recon�guration in Autonet.

� SRC Research Report 78

Using Transformations and Veri�cation in Circuit Design

James B. Saxe, Stephen J. Garland, John V. Guttag, James J. Horning

September 25, 1991. 27 pages.

We show how machine-checked veri�cation can support an approach

to circuit design based on transformations. This approach starts with

a conceptually simple (but ine�cient) initial design and uses a combi-

nation of ad hoc and algorithmic transformations to produce a design

that is more e�cient (but more complex).

Reports 78{80 44

We present an example in which we start with a simpli�ed CPU design

and derive an e�cient pipelined form, including circuitry for reverting

the e�ects of partially executed instructions when a successful branch

is detected late in the pipeline. The algorithmic stage of our derivation

applies a transformation, retiming, that has been proven to preserve

functional behavior in the general case. The ad hoc stage requires

special justi�cation, which we supply in the form of a machine-checked

formal veri�cation.

� SRC Research Report 79

The Temporal Logic of Actions

Leslie Lamport

December 25, 1991. 73 pages.

The temporal logic of actions (TLA) is a logic for specifying and rea-

soning about concurrent systems. Systems and their properties are

represented in the same logic, so the assertion that a system meets its

speci�cation and the assertion that one system implements another are

both expressed by logical implication. TLA is very simple; its syntax

and complete formal semantics are summarized in a little over a page.

Yet, TLA is not just a logician's toy; it is extremely powerful, both in

principle and in practice. This report introduces TLA and describes

how it is used to specify and verify concurrent algorithms. The use

of TLA to specify and reason about open systems will be described

elsewhere.

� SRC Research Report 80

An Extension of System F with Subtyping

Luca Cardelli, Simone Martini, John C. Mitchell, Andre Scedrov

December 30, 1991. 42 pages.

System F is a well-known typed lambda-calculus with polymorphic

types, which provides a basis for polymorphic programming languages.

We study an extension of F, called F <: (pronounced ef-sub) that

combines parametric polymorphism with subtyping.

The main focus of the paper is the equational theory of F <:, which

is related to PER models and the notion of parametricity. We study

some categorical properties of the theory when restricted to closed

Reports 80{81 45

terms, including interesting categorical isomorphisms. We also inves-

tigate proof-theoretical properties, such as the conservativity of typing

judgments with respect to F.

We demonstrate by a set of examples how a range of constructs may

be encoded in F <:. These include record operations and subtyping

hierarchies that are related to features of object-oriented languages.

Also in: International Conference on Theoretical Aspects of Computer

Software, Lecture Notes in Computer Science October 1991, Number

526, pp 750-770, Springer-Verlag, T. Ito and A. R. Meyers (Editors).

� SRC Research Report 81

Extensible Records in a Pure Calculus of Subtyping

Luca Cardelli

January 3, 1992. 44 pages.

Extensible records were introduced by Mitchell Wand while studying

type inference in a polymorphic lambda-calculus with record types.

This paper describes a calculus with extensible records, F <: �, that

can be translated into a simpler calculus, F <:, lacking any record

primitives. Given independent axiomatizations of F <: � and F <:

(the former being an extension of the latter) we show that the trans-

lation preserves typing, subtyping, and equality.

F <: � can then be used as an expressive calculus of extensible records,

either directly or to give meaning to yet other languages. We show

that F <: � can express many of the standard benchmark examples

that appear in the literature.

Like other record calculi that have been proposed, F <: � has a rather

complex set of rules but, unlike those other calculi, its rules are justi�ed

by a translation to a very simple calculus. We argue that thinking

in terms of translations may help in simplifying and organizing the

various record calculi that have been proposed, as well as in generating

new ones.

Reports 82{83 46

� SRC Research Report 82

A Guide to LP, The Larch Prover

Stephen J. Garland and John V. Guttag

December 31, 1991. 95 pages.

This guide provides an introduction to LP (the Larch Prover), Re-

lease 2.2. It describes how LP can be used to axiomatize theories in

a subset of multisorted �rst-order logic and to provide assistance in

proving theorems. It also contains a tutorial overview of the equa-

tional term-rewriting technology that provides, along with induction

rules and other user-supplied nonequational rules of inference, part of

LP's inference engine.

� SRC Research Report 83

Authentication in Distributed Systems: Theory and Practice

Butler Lampson, Mart��n Abadi, Michael Burrows, Edward Wobber

February 4, 1992. 45 pages.

We describe a theory of authentication and a system that implements

it. Our theory is based on the notion of principal and a \speaks for" re-

lation between principals. A simple principal either has a name or is a

communication channel; a compound principal can express an adopted

role or delegation of authority. The theory shows how to reason about

a principal's authority by deducing the other principals that it can

speak for; authenticating a channel is one important application. We

use the theory to explain many existing and proposed mechanisms for

security. In particular, we describe the system we have built. It passes

principals e�ciently as arguments or results of remote procedure calls,

and it handles public and shared key encryption, name lookup in a

large name space, groups of principals, loading programs, delegation,

access control, and revocation.

Also in: ACM Transactions on Computer Systems, November 1992,

Volume 13, Number 4, pp 265-310.

Reports 84{85 47

� SRC Research Reports 84 and 84b

Report 84

Graphical Fisheye Views of Graphs

Manojit Sarkar and Marc H. Brown

March 17, 1992. 24 pages.

A �sheye camera lens is a very wide angle lens that magni�es nearby

objects while shrinking distant objects. It is a valuable tool for see-

ing both local detail and global context simultaneously. This paper

describes a system for viewing and browsing graphs using a software

analog of a �sheye lens. We �rst show how to implement such a view

using solely geometric transformations. We then describe a more gen-

eral transformation that allows hierarchical or structured information

about the graph to a�ect the view. Our general transformation is a

fundamental extension to previous research in �sheye views.

Videotape 84b

Graphical Fisheye Views of Graphs

Marc H. Brown, James R. Meehan, Manojit Sarkar

July 1, 1992. Time: 3:51 minutes.

� SRC Research Report 85

On-line Data Compression in a Log-structured File System

Michael Burrows, Charles Jerian, Butler Lampson, Timothy Mann

April 15, 1992. 20 pages.

We have incorporated on-line data compression into the low levels of

a log-structured �le system (Rosenblum's Sprite LFS). Each block of

data or meta-data is compressed as it is written to the disk and de-

compressed as it is read. The log-structuring overcomes the problems

of allocation and fragmentation for variable-sized blocks. We observe

compression factors ranging from 1.6 to 2.2, using algorithms run-

ning from 1.7 to 0.4 MBytes per second in software on a DECstation

5000/200. System performance is degraded by a few percent for normal

activities (such as compiling or editing), and as much as a factor of 1.6

for �le system intensive operations (such as copying multi-megabyte

�les). Hardware compression devices mesh well with this design.

Reports 85{87b 48

Chips are already available that operate at speeds exceeding disk trans-

fer rates, which indicates that hardware compression would not only

remove the performance degradation we observed, but might well in-

crease the e�ective disk transfer rate beyond that obtainable from a

system without compression.

� SRC Research Report 86

A Logical View of Composition

Mart��n Abadi and Gordon D. Plotkin

May 1, 1992. 35 pages.

We de�ne two logics of safety speci�cations for reactive systems. The

logics provide a setting for the study of composition rules. The two

logics arise naturally from extant speci�cation approaches; one of the

logics is intuitionistic, while the other one is linear.

� SRC Research Reports 87a and 87b

Report 87a

Animation of Geometric Algorithms: A Video Review

Edited by Marc H. Brown and John Hershberger

June 6, 1992. 23 pages.

Geometric algorithms and data structures are often easiest to under-

stand visually, in terms of the geometric objects they manipulate. In-

deed, most papers in computational geometry rely on diagrams to

communicate the intuition behind the results. Algorithm animation

uses dynamic visual images to explain algorithms. Thus it is natural

to present geometric algorithms, which are inherently dynamic, via

algorithm animation.

Videotape 87b

Animation of Geometric Algorithms: A Video Review

Edited by Marc H. Brown and John Hershberger

June 6, 1992. Time: 70:00.

This videotape presents a video review of geometric animations; the

review was premiered at the 1992 ACM Symposium on Computational

Geometry. The review includes single-algorithm animations and sam-

ple graphic displays from \workbench" systems for implementing

Reports 87b{88 49

multiple geometric algorithms. The accompanying report contains

short descriptions of the algorithm, animation, and implementation

techniques used in each video segment.

Contents:

1. Real-Time Closest Pairs of Moving Points

Simon Kahan

2. The XYZ GeoBench: Animation of Geometric Algorithms

Peter Schorn, Adrian Br�ungger, Michele De Lorenzi

3. Optimal Two-Dimensional Triangulations

Herbert Edelsbrunner, Roman Waupotitsch

4. Boolean Formulae for Simple Polygons

John Hershberger, Marc H. Brown

5. SHASTRA: A Distributed and Collaborative Design Environment

Chandrajit L. Bajaj

6. Tetrahedral Break-Up

Leonidas Palios, Mark Phillips

7. Compliant Motion in a Simple Polygon

Joseph Friedman

8. Workbench for Computational Geometry

P. Epstein, J. Kavanagh, A. Knight, J. May, T. Nguyen, J.-R. Sack

9. Topologically Sweeping and Arrangement:

A Parallel Implementation

Marc H. Brown, Harald Rosenberger

10.The New Jersey Line-Segment-Saw Massacre

Ayellet Tal, Bernard Chazelle, David Dobkin

� SRC Research Report 88

Factors in the Performance of the AN1 Computer Network

Susan S. Owicki and Anna R. Karlin

June 15, 1992. 29 pages.

AN1 (formerly known as Autonet) is a local area network composed of

crossbar switches interconnected by 100Mbit/second, full-duplex links.

In this paper, we evaluate the performance impact of certain choices

in the AN1 design. These include the use of FIFO input bu�ering in

the crossbar switch, the deadlock-avoidance mechanism, cut-through

routing, back-pressure for ow control, and multi-path routing. AN1's

Reports 88{90 50

performance goals were to provide low latency and high bandwidth in

a lightly loaded network. In this it is successful. Under heavy load, the

most serious impediment to good performance is the use of FIFO input

bu�ers. The deadlock-avoidance technique has an adverse e�ect on the

performance of some topologies, but it seems to be the best alterna-

tive, given the goals and constraints of the AN1 design. Cut-through

switching performs well relative to store-and-forward switching, even

under heavy load. Back-pressure deals adequately with congestion in

a lightly-loaded network; under moderate load, performance is accept-

able when coupled with end-to-end ow control for bursts. Multi-path

routing successfully exploits redundant paths between hosts to improve

performance in the face of congestion.

� SRC Research Report 89

Compositional Re�nement of Interactive Systems

Manfred Broy

July 15, 1992. 48 pages.

We use functional speci�cation techniques to describe systems and

their components. We de�ne the notions of property re�nement and

interaction re�nement for interactive systems and their components.

Interaction re�nement allows changes to the syntactic interface (the

number of channels and the sorts of messages on the channels) as

well as the semantic interface (causality ow between messages and

interaction granularity). We prove that these notions of re�nement

are compositional with respect to sequential and parallel composition,

communication feedback, and recursive declarations of system compo-

nents. These proofs demonstrate that re�nements of networks can be

accomplished in a modular way by re�ning their components. We gen-

eralize the notions of re�nement to re�ning contexts. Finally, we de�ne

full abstraction for speci�cations and show compositionality with re-

spect to this abstraction as well.

� SRC Research Report 90

A High-speed DES Implementation for Network Applications

Hans Eberle

September 23, 1992. 24 pages.

Reports 90{92a 51

This paper describes a high-speed data encryption chip implementing

the Data Encryption Standard (DES). The DES implementation sup-

ports Electronic Code Book mode and Cipher Block Chaining mode.

The chip is based on a gallium arsenide (GaAs) gate array contain-

ing 50K transistors. At a clock frequency of 250 MHz, data can be

encrypted or decrypted at a rate of 1 GBit/second, making this the

fastest single-chip implementation reported to date. High performance

and high density have been achieved by using custom-designed circuits

to implement the core of the DES algorithm. These circuits employ

precharged logic, a methodology novel to the design of GaAs devices.

A pipelined ow-through architecture and an e�cient key exchange

mechanism make this chip suitable for low-latency network controllers.

� SRC Research Report 91

An Old-Fashioned Recipe for Real Time

Mart��n Abadi and Leslie Lamport

October 12, 1992. 67 pages.

Traditional methods for specifying and reasoning about concurrent

systems work for real-time systems. Using TLA (the temporal logic

of actions), we illustrate how they work with the examples of a queue

and of a mutual-exclusion protocol. In general, two problems must

be addressed: avoiding the real-time programming version of Zeno's

paradox, and coping with circularities when composing real-time as-

sumption/guarantee speci�cations. Their solutions rest on properties

of machine closure and realizability.

� SRC Research Reports 92a and 92b

Report 92a

Hector: Connecting Words with De�nitions

Lucille Glassman, Dennis Grinberg, Cynthia Hibbard James Meehan,

Loretta Guarino Reid, Mary-Claire van Leunen

October 20, 1992. 46 pages.

Hector is a feasibility study on high-tech corpus lexicography. Oxford

University Press provided the lexicographers and a corpus of 20 million

words of running English text; Digital Equipment Corporation

Reports 92a{93 52

Systems Research Center provided the high-tech tools to enable the

lexicographers to do all of their work on-line.

The tools provide the ability to query the corpus in various ways and

see the resulting matches, to write and edit dictionary entries, and

to link each occurrence of a word in the corpus with its sense as dis-

played in the entry editor. Additional support tools give statistical

information about words in the corpus, derivatives and related words,

syntactic structures, collocates, and case-variants.

This report describes the tools and the status of the project as of July

1992.

Videotape 92b

Hector: Connecting Words with De�nitions

Lucille Glassman, Dennis Grinberg, Cynthia Hibbard, James Meehan,

Loretta Guarino Reid, Mary-Claire van Leunen

October 20, 1992. Time: 14:34

� SRC Research Report 93

Experiences with Software Speci�cation and Veri�cation Using LP, the

Larch Proof Assistant

Manfred Broy

November 12, 1992. 69 pages.

We sketch a method for deduction-oriented software and system de-

velopment. The method incorporates formal machine-supported spec-

i�cation and veri�cation as activities in software and systems devel-

opment. We describe experiences in applying this method. These

experiences have been gained by using the LP, the Larch proof assis-

tant, as a tool for a number of small and medium size case studies for

the formal development of software and systems. LP is used for the

veri�cation of the development steps. These case studies include:

{ quicksort

{ the majority vote problem

{ code generation by a compiler and its correctness

{ an interactive queue and its re�nement into a network

Reports 93{95 53

The developments range over levels of requirement speci�cations, de-

signs and abstract implementations. The main issues are questions of

a development method and how to make good use of a formal tool like

LP in a goal-directed way within the development. We further discuss

of the value of advanced speci�cation techniques, most of which are

deliberately not supported by LP and its notation, and their signi�-

cance in development. Furthermore, we discuss issues of enhancement

of a support system like LP and the value and the practicability of

using formal techniques such as speci�cation and veri�cation in the

development process in practice.

� SRC Research Report 94

How to Write a Proof

Leslie Lamport

February 14, 1993. 12 pages.

A method of writing proofs is proposed that makes it much harder

to prove things that are not true. The method, based on hierarchical

structuring, is simple and practical.

� SRC Research Report 95

Baby Modula-3 and a Theory of Objects

Mart��n Abadi

February 2, 1993. 43 pages.

Baby Modula-3 is a small, functional, object-oriented programming

language. It is intended as a vehicle for explaining the core of Modula-

3, from a biased perspective: Baby Modula-3 includes the main fea-

tures of Modula-3 related to objects, but not much else. To the theo-

retician, Baby Modula-3 provides a tractable, concrete example of an

object-oriented language, and we use it to study the formal semantics

of objects.

Baby Modula-3 is de�ned with a structured operational semantics and

with a set of static type rules. A denotational semantics guarantees

the soundness of this de�nition.

Reports 96{98 54

� SRC Research Report 96

How to Make a Correct Multiprocess Program Execute Correctly on a

Multiprocessor

Leslie Lamport

February 14, 1993. 10 pages.

A multiprocess program executing on a modern multiprocessor must

issue explicit commands to synchronize memory accesses. A method

is proposed for deriving the necessary commands from a correctness

proof of the algorithm.

� SRC Research Report 97

An Implementation of F <:

Luca Cardelli

February 23, 1993. 49 pages.

F <: is a highly expressive typed lambda-calculus with subtyping.

This paper describes an implementation of F <: (extended with recur-

sive types), and documents the algorithms used. Using this implemen-

tation, one can test F <: programs and examine typing derivations.

To facilitate the writing of complex encodings, we provide a exible

syntax-extension mechanism. New syntax can be de�ned from scratch,

and the existing syntax can be extended on the y. It is possible

to introduce new binding constructs, while avoiding problems with

variable capture.

To reduce the syntactic clutter, we provide a practical type inference

mechanism that is applicable to any explicitly typed polymorphic lan-

guage. Syntax extension and type inference interact in useful ways.

� SRC Research Report 98

The 1992 SRC Algorithm Animation Festival

Marc H. Brown

March 27, 1993. 12 pages.

During the last two weeks of July 1992, twenty researchers at Digital

Equipment Corporation's Systems Research Center participated in the

1st Annual SRC Algorithm Animation Festival. Only two of the

researchers had previously animated an algorithm, and not too many

more had ever written an application that involved graphics. In this

paper, we report on the Animation Festival, describing why we did it

and what we did, and commenting on what we learned.

� SRC Research Report 99

High Speed Switch Scheduling for Local Area Networks

Thomas E. Anderson, Susan S. Owicki, James B. Saxe, and Charles

P. Thacker

April 26, 1993. 37 pages.

Current technology trends make it possible to build communication

networks that can support high performance distributed computing.

This paper describes issues in the design of a prototype switch for an

arbitrary topology point-to-point network with link speeds of up to

one gigabit per second. The switch deals in �xed-length ATM-style

cells, which it can process at a rate of 37 million cells per second. It

provides high bandwidth and low latency for datagram tra�c. In addi-

tion, it supports real-time tra�c by providing bandwidth reservations

with guaranteed latency bounds. The key to the switch's operation is a

technique called parallel iterative matching, which can quickly identify

a set of conict-free cells for transmission in a time slot. Bandwidth

reservations are accommodated in the switch by building a �xed sched-

ule for transporting cells from reserved ows across the switch; parallel

iterative matching can �ll unused slots with datagram tra�c. Finally,

we note that parallel iterative matching may not allocate bandwidth

fairly among ows of datagram tra�c. We describe a technique called

statistical matching, which can be used to ensure fairness at the switch

and to support applications with rapidly changing needs for guaran-

teed bandwidth.

55

2 Ordering Information

2.1 Reports

Many SRC Research Reports are available via anonymous ftp from Internet

node:

gatekeeper.dec.com (16.1.0.2)

The ftp pathname to them is:

/pub/DEC/SRC/research-reports/

Please read the README �le in this directory before retrieving reports.

For DEC sites without IP connectivity, the SRC Reports are also available

via DECnet in the directory:

DECWRL::\/pub/DEC/SRC/research-reports"

For hardcopy orders of SRC research reports, please send electronic mail

to one of the addresses below and include your full postal address and the

number of the report you wish to receive.

src-report@src.dec.com

decsrc::src-report

Orders may also be placed by sending requests to:

Report Distribution

Digital Systems Research Center

130 Lytton Avenue

Palo Alto, CA 94301

2.2 Videotapes

There are currently videotapes available in the Research Report series. They

are identi�ed in the abstracts section. Their reference numbers are 50b, 76b,

56

84b, 87b, and 92b. The contents of tape 50b are now included in tape 76b.

All are available in NTSC, PAL, and SECAM formats upon request.

2.3 Software

Software is available via anonymous ftp. The following describes what is

available and gives the appropriate directory path on gatekeeper.dec.com

(16.1.0.2).

� Modula-3

pub/DEC/Modula-3:

Modula-3 is a programming language developed jointly by DEC and

Olivetti. The authors describe it as follows:

The goal of Modula-3 is to be as simple and safe as it can be while

meeting the needs of modern systems programmers. Instead of ex-

ploring new features, we studied the features of the Modula family of

languages that have proven themselves in practice and tried to sim-

plify them into a harmonious language. We found that most of the

successful features were aimed at one of two main goals: greater ro-

bustness, and a simpler, more systematic type system.

Modula-3 descends from Mesa, Modula-2, Cedar, and Modula-2+. It

also resembles its cousins Object Pascal, Oberon, and Euclid.

Modula-3 retains one of Modula-2's most successful features, the pro-

vision for explicit interfaces between modules. It adds objects and

classes, exception handling, garbage collection, lightweight processes

(or threads), and the isolation of unsafe features.

The de�nition of Modula-3 is contained in the book System Program-

ming with Modula-3, edited by Greg Nelson, Prentice-Hall, Inc., En-

glewood Cli�s, New Jersey, 1991.

The relevant Usenet newsgroup is comp.lang.modula3. The archives

are available via anonymous ftp from gatekeeper.dec.com and all in

57

pub/DEC/Modula-3/comp.lang.modula3. If you do not have access

to Usenet you can use a relay mailing list; to be added to it, send a

message to m3-request@src.dec.com.

There is only one implementation available today. It has been built by

SRC and is available via anonymous ftp from gatekeeper.dec.com

in pub/DEC/Modula-3/release. Contributed software can be found

in pub/DEC/Modula-3/contrib.

� Larch

The Larch family of speci�cation languages supports a two-tiered, def-

initional style of speci�cation for program module interfaces. Each

speci�cation has components written in two languages: one language

that is designed for a speci�c programming language and another lan-

guage that is independent of any programming language. The former

kind are called Larch interface languages, and the latter is the Larch

Shared Language (LSL).

Readers interested in new developments of the Larch tools should sub-

scribe to the electronic mailing list:

larch-interest@src.dec.com

This list is used for announcements and queries of general interest.

Requests to be added to (or deleted from) this list, as well as more

specialized queries, should be sent to:

larch-interest-request@src.dec.com.

Updated information on Larch tools is kept online on the Internet host

gatekeeper.dec.com. It is available for anonymous ftp as:

/pub/DEC/Larch/Information.tex

58

A full bibliography on Larch is available by anonymous ftp from In-

ternet host:

larch.lcs.mit.edu as /pub/larch-bib/larch-bib.tex.

Suggested additions for the online version should be sent to:

ymtan@lcs.mit.edu.

For documentation about Larch, and for descriptions of the Larch

tools and their use, please refer to the Larch entries in the index of

this report. The following book is also available:

Larch: Languages and Tools for Formal Speci�cation, John V. Guttag

and James J. Horning (editors), with Stephen J. Garland, Kevin D.

Jones, Andr�es Modet and Jeannette M. Wing, Springer-Verlag, Texts

and Monographs in Computer Science, 1993.

� Fsub 1.5.0

/pub/DEC/Fsub 1.5.0

F <: (pronounced ef-sub) is a typed lambda-calculus with polymor-

phism and sybtyping. It is a very minimal system, and as such it has

been the focus of several theoretical studies. It can be considered as

the kernel of the Quest language.

The FSub system is an implementation of the F <: calculus; it can be

used to evaluate and typecheck F <: expressions. It was implemented

mostly to test typechecking algorithms for polymorphic languages with

subtyping, in a clean setting.

For details please refer to SRC Research Report 55.

59

� Quest

/pub/DEC/Quest

Quest is an experimental programming language. It was designed to

integrate a number of advanced type-theoretical topics in a coherent

language design. The main features are explicit polymorphism, sub-

typing, and type operators.

Quest is also available on a UNIX CD-ROM from Prime Time Free-

ware, 370 Altair Way, Suite 150, Sunnyvale, CA 94086 (408 738 4832).

For details please refer to Research Report 97.

60

3 List of SRC Research Reports 1-99

� 1. A Kernel Language for Modules and Abstract Data Types

R. Burstall and B. Lampson

� 2. Optimal Point Location in a Monotone Subdivision

Herbert Edelsbrunner, Leo J. Guibas, and Jorge Stol�

� 3. On Extending Modula-2 for Building Large, Integrated Systems

Paul Rovner, Roy Levin, John Wick

� 4. Eliminating go to's while Preserving Program Structure.

Lyle Ramshaw

� 5. Larch in Five Easy Pieces.

J. V. Guttag, J. J. Horning, and J. M. Wing

� 6. A Caching File System for a Programmer's Workstation.

Michael D. Schroeder, David K. Gi�ord, and Roger M. Needham

� 7. A Fast Mutual Exclusion Algorithm

Leslie Lamport

� 8. On Interprocess Communication

Leslie Lamport

� 9. Topologically Sweeping an Arrangement

Herbert Edelsbrunner and Leonidas J. Guibas

� 10. A Polymorphic lambda-calculus with Type:Type

Luca Cardelli

� 11. Control Predicates are Better Than Dummy Variables

for Reasoning About Program Control

Leslie Lamport

� 12. Fractional Cascading

Bernard Chazelle and Leonidas J. Guibas

� 13. Retiming Synchronous Circuitry

Charles E. Leiserson and James B. Saxe

61

� 14. An O(n2) Shortest Path Algorithm for a Non-Rotating

Convex Body

John Hershberger and Leonidas J. Guibas

� 15. A Simple Approach to Specifying Concurrent Systems

Leslie Lamport

� 16. A Generalization of Dijkstra's Calculus

Greg Nelson

� 17. win and sin: Predicate Transformers for Concurrency

Leslie Lamport

� 18. Synchronizing Time Servers,

Leslie Lamport

� 19. Blossoming: A Connect-the-Dots Approach to Splines

Lyle Ramshaw

� 20. Synchronization Primitives for a Multiprocessor:

A Formal Speci�cation

A. D. Birrell, J. V. Guttag, J. J. Horning, R. Levin

� 21. Evolving the UNIX System Interface to Support Multithreaded

Programs

Paul R. McJones and Garret F. Swart

� 22. Building User Interfaces by Direct Manipulation

Luca Cardelli

� 23. Firey: A Multiprocessor Workstation

C. P. Thacker, L. C. Stewart, and E. H. Satterthwaite, Jr.

� 24. A Simple and E�cient Implementation for Small Databases

Andrew D. Birrell, Michael B. Jones, and Edward P. Wobber

� 25. Real-time Concurrent Collection on Stock Multiprocessors

John R. Ellis, Kai Li, and Andrew W. Appel

� 26. Parallel Compilation on a Tightly Coupled Multiprocessor

Mark Thierry Vandevoorde

� 27. Concurrent Reading and Writing of Clocks

Leslie Lamport

62

� 28. A Theorem on Atomicity in Distributed Algorithms

Leslie Lamport

� 29. The Existence of Re�nement Mappings

Mart��n Abadi and Leslie Lamport

� 30. The Power of Temporal Proofs

Mart��n Abadi

� 31. Modula-3 Report

Luca Cardelli, James Donahue, Lucille Glassman, Mick Jordan,

Bill Kalsow, Greg Nelson

� 32. Bounds on the Cover Time

Andrei Broder and Anna Karlin

� 33. A Two-view Document Editor with User-de�nable Document

Structure

Kenneth P. Brooks

� 34. Blossoms are Polar Forms

Lyle Ramshaw

� 35. An Introduction to Programming with Threads

Andrew D. Birrell

� 36. Primitives for Computational Geometry

Jorge Stol�

� 37. Ruler, Compass, and Computer:

The Design and Analysis of Geometric Algorithms

Leonidas J. Guibas and Jorge Stol�

� 38. Can fair choice be added to Dijkstra's calculus?

Manfred Broy and Greg Nelson

� 39. A Logic of Authentication

Michael Burrows, Mart��n Abadi, and Roger Needham

� 40. Implementing Exceptions in C

Eric S. Roberts

� 41. Evaluating the Performance of Software Cache Coherence

Susan Owicki and Anant Agarwal

63

� 42. WorkCrews: An Abstraction for Controlling Parallelism

Eric S. Roberts and Mark T. Vandevoorde

� 43. Performance of Firey RPC

Michael D. Schroeder and Michael Burrows

� 44. Pretending Atomicity

Leslie Lamport and Fred B. Schneider

� 45. Typeful Programming

Luca Cardelli

� 46. An Algorithm for Data Replication

Timothy Mann, Andy Hisgen, and Garret Swart

� 47. Dynamic Typing in a Statically Typed Language

Mart��n Abadi, Luca Cardelli, Benjamin C. Pierce, Gordon D. Plotkin

� 48. Operations on Records

Luca Cardelli and John C. Mitchell

� 49. The Part-Time Parliament

Leslie Lamport

� 50a An E�cient Algorithm for Finding the CSG Representation

of a Simple Polygon

David Dobkin, Leonidas Guibas, John Hershberger, Jack Snoeyink

� 50b (video)

Boolean Formulae for Simple Polygons

John Hershberger and Marc H. Brown

� 51. Experience with the Firey Multiprocessor Workstation

Susan Owicki

� 52. Modula-3 Report (revised)

Luca Cardelli, James Donahue, Lucille Glassman,

Mick Jordan, Bill Kalsow, Greg Nelson

� 53. IO Streams: Abstract Types, Real Programs

Mark R. Brown and Greg Nelson

64

� 54. Explicit Substitutions

Mart��n Abadi, Luca Cardelli, Pierre-Louis Curien, Jean-Jacques

Levy

� 55. A Semantic Basis for Quest

Luca Cardelli and Giuseppe Longo

� 56. Abstract Types and the Dot Notation

Luca Cardelli and Xavier Leroy

� 57. A Temporal Logic of Actions

Leslie Lamport

� 58. Report on the Larch Shared Language: Version 2.3

John V. Guttag, James J. Horning, Andr�es Modet

� 59. Autonet: a High-speed, Self-con�guring Local Area Network

with Point-to-point Links

Michael D. Schroeder, Andrew D. Birrell, Michael Burrows,

Hal Murray, Roger M. Needham, Thomas L. Rodehe�er,

Edwin H. Satterthwaite, Charles P. Thacker

� 60. Debugging Larch Shared Language Speci�cations

Stephen J. Garland, John V. Guttag, James J. Horning

� 61. In Memoriam: J.C.R. Licklider 1915-1990

� 62. Subtyping Recursive Types

Roberto M. Amadio and Luca Cardelli

� 63. Heap Usage in the Topaz Environment

John D. DeTreville

� 64. Experience with Concurrent Garbage Collectors for Modula-2+

John DeTreville

� 65. An Axiomatization of Lamport's Temporal Logic of Actions

Mart��n Abadi

� 66. Composing Speci�cations

Mart��n Abadi and Leslie Lamport

� 67. Authentication and Delegation with Smart-cards

M. Abadi, M. Burrows, C. Kaufman, B. Lampson

65

� 68. Trestle Reference Manual

Mark S. Manasse and Greg Nelson

� 69. Trestle Tutorial

Mark S. Manasse and Greg Nelson

� 70. A Calculus for Access Control in Distributed Systems

M. Abadi, M. Burrows, B. Lampson, G. Plotkin

� 71. Trading Space for Time in Undirected s-t Connectivity

Andrei Z. Broder, Anna R. Karlin, Prabhakar Raghavan, Eli Upfal

� 72. LM3: A Larch Interface Language for Modula-3

A De�nition and Introduction, Version 1.0

Kevin D. Jones

� 73. Decidability and Expressiveness for First-Order Logics

of Probability

Mart��n Abadi and Joseph Y. Halpern

� 74. Introduction to LCL, A Larch/C Interface Language

J. V. Guttag and J. J. Horning

� 75. Zeus: A System for Algorithm Animation and Multi-view Editing

Marc H. Brown

� 76a Color and Sound in Algorithm Animation

Marc H. Brown and John Hershberger

� 76b (video)

An Anthology of Algorithm Animations using Zeus

Edited by Marc H. Brown

� 77. Automatic Recon�guration in Autonet

Thomas L. Rodehe�er and Michael D. Schroeder

� 78. Using Transformations and Veri�cation in Circuit Design

James B. Saxe, Stephen J. Garland, John V. Guttag,

James J. Horning

� 79. The Temporal Logic of Actions

Leslie Lamport

66

� 80. An Extension of System F with Subtyping

Luca Cardelli, Simone Martini, John C. Mitchell, Andre Scedrov

� 81. Extensible Records in a Pure Calculus of Subtyping

Luca Cardelli

� 82. A Guide to LP, The Larch Prover

Stephen J. Garland and John V. Guttag

� 83. Authentication in Distributed Systems: Theory and Practice

Butler Lampson, Mart��n Abadi, Michael Burrows, Edward Wobber

� 84. Graphical Fisheye Views of Graphs

Manojit Sarkar and Marc H. Brown

� 84b (video)

Graphical Fisheye Views of Graphs

Marc H. Brown, James R. Meehan, Manojit Sarkar

� 85. On-line Data Compression in a Log-structured File System

Michael Burrows, Charles Jerian, Butler Lampson, Timothy Mann

� 86. A Logical View of Composition

Mart��n Abadi and Gordon D. Plotkin

� 87a Animation of Geometric Algorithms: A Video Review

Edited by Marc H. Brown and John Hershberger

� 87b (video)

Animation of Geometric Algorithms: A Video Review

Edited by Marc H. Brown and John Hershberger

� 88. Factors in the Performance of the AN1 Computer Network

Susan S. Owicki and Anna R. Karlin

� 89. Compositional Re�nement of Interactive Systems

Manfred Broy

� 90. A High-speed DES Implementation for Network Applications

Hans Eberle

� 91. An Old-Fashioned Recipe for Real Time

Mart��n Abadi and Leslie Lamport

67

� 92a Hector: Connecting Words with De�nitions

Lucille Glassman, Dennis Grinberg, Cynthia Hibbard, James

Meehan, Loretta Guarino Reid, Mary-Claire van Leunen

� 92b (video)

Hector: Connecting Words with De�nitions

Lucille Glassman, Dennis Grinberg, Cynthia Hibbard, James

Meehan, Loretta Guarino Reid, Mary-Claire van Leunen

� 93. Experiences with Software Speci�cation and Veri�cation Using LP,

the Larch Proof Assistant

Manfred Broy

� 94. How to Write a Proof

Leslie Lamport

� 95. Baby Modula-3 and a Theory of Objects

Mart��n Abadi

� 96. How to Make a Correct Multiprocess Program Execute Correctly

on a Multiprocessor

Leslie Lamport

� 97. An Implementation of F <:

Luca Cardelli

� 98. The 1992 SRC Algorithm Animation Festival

Marc H. Brown

� 99. High Speed Switch Scheduling for Local Area Networks

Thomas E. Anderson, Susan S. Owicki, James B. Saxe, and

Charles P. Thacker.

68

4 Acknowledgements

Many people contributed to SRC Report 100.

Bob Taylor provided the environment in which the previous ninety-nine re-

ports were produced.

Cynthia Hibbard worked on the index and provided editorial help, Jim Horn-

ing gave timely advice at all stages of production, Lyle Ramshaw assisted

with technical graphics issues, and Lucille Glassman contributed to the in-

dex.

Mart��n Abadi, Marc H. Brown, Mike Burrows, Luca Cardelli, John Hersh-

berger, Bill Kalsow, Leslie Lamport, and Paul McJones took time to review

the index and make suggestions for improving the document. Allan Heydon

provided help with formatting.

69

Index

3-phase commit, 25

Abadi, Mart��n, 14, 15, 19, 24, 29,

36, 37, 39, 40, 46, 48, 51,

53

abstract data types, 1, 30

I/O streams, 28

object types, 27

opaque types, 27

threads, 9, 12

Trestle VBT, 37, 38

Zeus VBT, 42

abstract machines, 29

access control, in distributed sys-

tems, 39

a�ne interpolation, 16

Agarwal, Anant, 21

algorithm animation, 26, 42

color and sound in, 42

of geometric algorithms, 48

SRC Animation Festival, 54

the Zeus system, 42

Amadio, Roberto, 34

AN1 (formerly Autonet), 31

performance, 49

recon�gurability, 43

AN2, 50, 55

Anderson, Thomas, 55

Appel, Andrew, 12

ARPA, 33

ATM, 55

atomicity, 23, 54

in distributed algorithms, 14

audio, 42

authentication

in distributed systems, 39, 46

logic of, 19

smart-cards, 37

Autonet, see AN1

auxiliary predicates, 15

availability (�le systems), 24

B-spline, 9, 16

B�ezier curve, 9

B�ezier point, 16

back-pressure, and congestion avoid-

ance, 49

Bajaj, Chandrajit L., 48

bandwidth reservation, 55

binary search, reducing cost of, 6

Birrell, Andrew, 9, 12, 17, 31

block structure, eliminating gotos,

2

Blossoming Principle, 9, 16

boundary-to-CSG conversion, 26

Br�ungger, Adrian, 48

Broder, Andrei, 15, 39, 42

Brooks, Kenneth, 16

Brown, Marc H., 26, 42, 47, 48, 54

Brown, Mark R., 28

Broy, Manfred, 19, 50, 52

bu�ered streams (Modula-3), 28

Burrows, Michael, 19, 22, 31, 37,

39, 46, 47

Burstall, R., 1

Byzantine generals problem, 25

C language

implementing exceptions in, 20

Larch interface language for,

41

parallel compilation, 13

caching, 54

70

�le systems, 3, 24

software cache coherence, 21

Cardelli, Luca, 5, 10, 23{25, 27,

29, 30, 34, 44, 45, 54

Cedar �le system, 3

Chazelle, Bernard, 6, 48

chip design, 50

circuits

retiming, 6

verifying circuit design, 43

clock synchronization, 13

color, in animations, 42

commit protocol, 25

compilers, 13

composition rules, logics for, 48

compression (�le system), 47

computational geometry

con�guration space, 7, 19

CSG (constructive solid geom-

etry), 26

duality, 19

�nger trees, 19

fractional cascading, 6, 19

geometric transformations, 19

motion planning, 7

persistent data structures, 19

plane sweep, 4, 19

point location, 1

primitives for, 18

solid modeling, 26

space sweep, 19

video review and animations

of, 54

computer graphics, 9, 26, 42, 47,

48, 54

computer science education, 33

concurrency

and interface design, 10

and safety, 5

concurrent clocks, 13

copying garbage collection al-

gorithm, 12

garbage collectors for Modula-

2+, 35

heap usage, 34

Modula-2, 2

multiprocessor performance, 27

mutual exclusion, 4

of reads and writes, 4

parallel compilation, 13

predicate transformers, 8

temporal logic, 7, 15, 36, 44,

51

threads paradigm, 17

transition axiom method, 7

WorkCrews, 22

writing speci�cations, 36

congestion control in networks, 49

constructive solid geometry (CSG),

26

control predicates, 5

convexity, 7, 18

corpus lexicography, 51

correctness proofs, 5, 8, 54

cover time bounds, for an undi-

rected graph, 15

critical sections, algorithm, 4

cryptography

public-key, 19, 37

shared-key, 19

Curien, Pierre-Louis, 29

cut-through routing, 49

data compression

�le system, 47

data encryption (DES), 50

data replication, 24

data structures

71

�nger trees, 19

fractional cascading, 6, 19

layered dag, 1

persistent, 19

databases

implementing distributed, 25

small, 12

using logs, 12

Davenport-Schinzel sequences, 19

de Boor Algorithm, 9, 16

de Casteljau Algorithm, 9, 16

De Lorenzi, Michele, 48

deadlock avoidance, 49

debugging speci�cations, 32

decidability, for logics of probabil-

ity, 40

dependent types, 1, 5

DES (Data Encryption Standard),

50

DeTreville, John, 34, 35

dictionary data structure, 6

Dijkstra

guarded commands, 8, 19

predicate transformers, 8

shortest path algorithm, 7

distributed systems

and security, 39

authentication, 46

message passing, 14

small databases, 12

state-machine approach, 25

stepwise re�nement of, 50

Dobkin, David, 26, 48

document editor (Lilac), 16

Donahue, James, 27

dot notation, 30

dovetail operator, 19

duality, in projective geometry, 4,

18, 19

dummy variables, 5

Eberle, Hans, 50

Echo �le system, 24

Edelsbrunner, Herbert, 1, 4, 48

Ellis, John, 12

encryption chip, 50

Epstein, P., 48

exceptions

in C programs, 20

in Modula-2, 2

in Modula-3, 27

existential quanti�cation, 23, 30

expander graphs, 15

extensible records, 25, 45

extensible syntax, 54

FIFO input bu�ering, in a switch-

based network, 49

�le systems

Cedar, 3

Echo, 24

on-line data compression, 47

replication algorithms, 24, 25

�nger trees, 19

Firey (SRC multiprocessor)

architecture, 11

garbage collection, 12, 35

heap usage, 34

multithreaded programs, 10

parallel compilation, 13

performance, 11, 27

RPC performance, 22

synchronization primitives for,

9

Taos operating system, 10

�sheye views of graphs, 47

�xpoint semantics, 8, 19

fractional cascading, 6, 19

72

Friedman, Joseph, 48

fun, in the summertime, 54

gallium arsenide

gate array, 50

garbage collection

concurrent, 12, 35

heap usage, 34

in Modula-2+, 35

in Modula-3, 27

Garland, Stephen, 32, 43, 46

gate arrays, 50

generic interfaces (Modula-3), 27

geometric algorithm animations, 48

geometric transformations, 19

Gi�ord, David K, 3

Glassman, Lucille, 27, 51

goto statement, 2

graphical user interface, 10, 26, 37,

38, 42, 47, 48, 54

graphs

�sheye views of, 47

random walks on, 15, 39

Grinberg, Dennis, 51

guarded commands, 8, 19

Guibas, Leonidas, 1, 4, 6, 7, 19, 26

Guttag, J. V., 3, 9, 30, 32, 41, 43,

46

Halpern, Joseph, 40

hardware

AN1 network, 31

circuits, 6

data encryption, 50

Firey design, 11

Firey performance, 27

smart-cards, 37

switch scheduling for LAN, 55

verifying circuit design, 43

Hector (computer tools for corpus

lexicography), 51

Hershberger, John, 7, 26, 42, 48

Hibbard, Cynthia, 51

high speed switching, 55

Hisgen, Andy, 24

history variables, 14

horizon trees, 4

Horning, J. J., 3, 9, 30, 32, 41, 43

I/O streams, in Modula-3, 28

input-bu�ered switches, in a switch-

based LAN, 55

interactive consistency, 25

interactive systems

compositional re�nement of, 50

early vision, 33

interfaces, in Modula-3, 27

interprocess communication, 4

invariance, 5, 8, 14, 23, 44

Jerian, Charles, 47

Jones, Kevin, 40

Jones, Michael, 12

Jordan, Mick, 27

Kahan, Simon, 48

Kalsow, Bill, 27

Karlin, Anna, 15, 39, 42, 49

Kaufman, C., 37

Kavanagh, J., 48

Knight, A., 48

Kripke models, 36

lambda-calculus, 1, 5, 24, 29, 30,

34, 44

with extensible records, 25, 45

with objects, 53

with subtyping, 44, 54

73

Lamport, Leslie, 4, 5, 7, 8, 13, 14,

23, 25, 30, 36, 44, 51, 53,

54

Lampson, Butler, 1, 37, 39, 46, 47

LAN (Local Area Network), 31

automatic recon�guration, 43

performance, 49

switch scheduling for, 55

Larch interface language

for C, 41

for Modula-3, 40

Larch Prover (LP)

experiences with, 52

for circuit design, 43

for speci�cation debugging, 32,

46

guide to, 46

Larch Shared Language (LSL)

brief introduction, 41

for speci�cation debugging, 32

language de�nition, 30

threads speci�cation, 9

Law of the Excluded Miracle, 8

layered dag, 1

LCL (Larch/C interface language),

41

Leiserson, Charles, 6

Leroy, Xavier, 30

Levin, Roy, 2, 9

Levy, Jean-Jacques, 29

lexicography

computer tools for, 51

Li, Kai, 12

Licklider, J.C.R., 33

Lilac (2-view document editor), 16

Lipton, partial correctness proof,

23

liveness properties, 7, 14, 36, 44,

51

LM3 (Larch Modula-3 interface lan-

guage), 40

local area networks, 31

log-structured databases, 12

log-structured �le systems, 47

logic

authentication, 19

for access control, 39

intuitionistic, 48

linear, 48

modal, 39

of probability, 40

of safety speci�cations, 48

propositional temporal logic (PTLA),

36

temporal, 7, 15, 36, 44, 51

TLA, 36, 44, 51

Longo, Giuseppe, 29

LP, see Larch Prover

LSL, see Larch Shared Language

Manasse, Mark, 37, 38

Mann, Timothy, 24, 47

Markov chains, 15

Martin-Loef, type system, 5

Martini, Simone, 44

May, J., 48

McJones, Paul, 10

mechanical theorem proving, 43,

46

Meehan, James, 47, 51

Mesa, program structure, 2

Mitchell, John, 25, 44

Mitchell-Plotkin abstract types, 30

Modet, Andr�es, 30

Modula-2, 2

Modula-2+

extensions to Modula-2, 2

garbage collection, 35

74

opaque types in, 2

threads speci�cation, 9

Modula-3

de�nition, 27

I/O streams, 28

Larch interface language for,

40

object theory, 53

partially opaque types, 28

safety properties, 27

Trestle tutorial, 38

windows toolkit, 37

motion planning, con�guration space,

7

multi-path routing, 49

multi-view general-purpose editor,

42, 54

multia�ne map, 9, 16

multilinear map, 9

multiprocessing

atomicity in distributed algo-

rithms, 14

cache coherence, 21

correctness proofs, 54

Firey hardware design, 11

garbage collection, 12

hardware performance, 27

multithreaded programs, 10, 17

mutual exclusion, 4

parallel compilation, 13

RPC performance, 22

threads speci�cation, 9

multiprojective map, 9

multithreaded programs, 10, 17, 22

Murray, Hal, 31

mutual exclusion algorithm, 4

naming (�le system), 3

Needham, Roger, 3, 19, 31

Nelson, Greg, 8, 19, 27, 28, 37, 38

networks, 33

AN1 high-speed LAN, 31

AN1 performance, 49

automatic recon�guration, 43

DES implementation, 50

high speed switching in, 55

modular re�nement of, 50

Nguyen, T., 48

nonatomic operations, 4, 13

nondeterministic choice operator,

19

object-oriented languages, 25, 45

Modula-3 language, 27

theory, 53

window system for X, 37, 38

opaque types

in Modula-2+, 2

in Modula-3, 27, 28

operating systems

�le system, 32

multiple threads, 10

small databases, 12

oriented projective geometry, 18

Owicki, Susan, 5, 21, 23, 27, 49,

55

Owicki-Gries method, 5, 23

Oxford University Press, 51

Palios, Leonidas, 48

parallel iterative matching, in switch

operation, 55

parallelism, 12, 13, 27, 35, 42

WorkCrew abstraction, 22

partial equivalence relations, 25, 29,

44

Pascal, program structure, 2

Peano arithmetic, 15

75

Pebble language, 1

performance

of AN1 network, 49

of multiprocessor Firey, 27

of RPC on Firey, 22

of software cache coherence schemes,

21

Phillips, Mark, 48

Pierce, Benjamin, 24

pipelining, 13

DES encryption, 50

hardware circuits, 6

Pl�ucker coordinates, 18

planar separators, 1

plane sweep, 4, 19

Plotkin, Gordon, 24, 39, 48

point location

Lee and Preparata technique,

1

polar form, 9, 16

polymorphism, 1, 24, 25, 44, 54

polynomial map, 9

predicate transformers, 8

probability, logics of, 40

program transformations, 2

program veri�cation, 5, 8, 23

correctness proofs, 13

program visualization, see visual-

ization

programming languages

C extensions, 20

formal semantics, 8

Modula-2 extensions, 2

Modula-3, 27

Pebble, 1

Quest, 23, 29, 30

threads guidelines, 17

type theory, 1, 23, 25, 27, 29,

34, 44, 45, 53, 54

projective geometry, 18

proofs, how to write, 53

property re�nement for interactive

systems, 50

propositional temporal logic (PTLA),

36

PTCC compiler, 13

quasi-interpolant, 16

Quest language, 23, 29, 30

Raghavan, Prabhakar, 39

Ramshaw, Lyle, 2, 9, 16

random walks on graphs, 15, 39

recon�guration, in LAN, 43

record types, 25, 29, 45

rectangular surface patches, 9

recursion, 8, 19, 34

recursive types, 34

reducibility, 2

re�nement mappings, 14

Reid, Loretta Guarino, 51

replication �le systems, 24

Paxos Parliament, 25

retiming circuitry, 6

Roberts, Eric, 20, 22

robotics, 7

Rodehe�er, Thomas, 31, 43

roles, in security, 39

Rosenberger, Harald, 42, 48

Rosenblum, M., 47

Rovner, Paul, 2

RPC (remote procedure call), 12

performance, 22

runtime environments, 12, 34, 35

Sack, J.-R., 48

safety properties, 5, 7, 8, 14, 23,

36, 44, 51

in Modula-3, 27

76

logics for, 48

Sarkar, Manojit, 47

Satterthwaite, Jr. Edwin, 11, 31

Saxe, James, 6, 43, 55

Scedrov, Andre, 44

scheduling abstraction, WorkCrews,

13, 22

Schneider, Fred, 23

Schorn, Peter, 48

Schroeder, Michael, 3, 22, 31, 43

security

in distributed systems, 39, 46

logic, 19

semantics

denotational, 5, 24, 29, 34, 53

�xpoint, 8, 19

of objects, 53

structured operational, 24

shared data, 4

shortest path algorithm, 7

simple polygons, 26

smart-cards, 37

Snoeyink, Jack, 26

snoopy caching, 21

software cache coherence, 21

solid modeling, 26

sound, in animations, 42

space sweep, 19

space-bounded complexity, 39

speci�cation

assumption/guarantee, 48

debugging, 32

for concurrent programs, 7, 44

Larch Shared Language, 30

modular, 36

of C interfaces, 41

of interactive systems, 50

of Modula-3 interfaces, 40

of real-time systems, 51

of threads, 9

re�nement mappings, 14

Temporal Logic of Actions (TLA),

36, 44, 51

using Larch Prover, 52

spline reproductivity, 16

splines, 9

polarized approach to, 16

Sprite log-structured �le system,

47

static typing, 24

statistical matching, in switch op-

eration, 55

Stewart, Larry, 11

Stol�, Jorge, 1, 18, 19

structured programming, 2

substitutions, theory of, 29

subtyping, 25, 29, 44, 54

in Modula-3, 27

recursive types, 34

Swart, Garret, 10, 24

switch-based network, 31, 49, 55

synchronization, 4, 9, 12, 13, 35

on multiprocessor, 54

programming with threads, 17

without mutual exclusion, 13

WorkCrews abstraction, 22

Tal, Ayellet, 48

Taos operating system, 10

heap usage, 34

Taylor, Robert, 33

temporal logic, 7, 15, 36, 44, 51

Temporal Logic of Actions (TLA),

36, 44, 51

tensors, 9, 16

Thacker, Chuck, 11, 31, 55

theorem proving

mechanical, 32, 43, 46

77

threads

adding to Modula-2, 2

formal speci�cation, 9

in Unix, 10

Modula-3 de�nition, 27

programming hints, 17

time-sharing, 33

time-space tradeo�s, 39

TLA (Temporal Logic of Actions),

36, 44, 51

Topaz

heap usage, 34

programming with threads, 10,

17

RPC performance, 22

topological plane sweep, 4

transaction commit, 25

transformations in circuit design,

43

transition axiom method, 7

Trestle, Modula-3 toolkit for X win-

dows

reference manual, 37

tutorial, 38

triangular surface patches, 9

two-sided plane, 18

type theory, 29

abstract types, 30

Baby Modula-3, 53

dependent types, 5

dynamic typing, 24

Modula-3, 27

object-oriented languages, 25,

45

polymorphism, 1, 23{25, 44,

54

recursive types, 34

typechecking algorithms, 34, 54

typeful programming, 23

Ultrix, 11

undirected connectivity, 39

Unix, adding threads to, 10

Upfal, Eli, 39

user interface editors, 10

van Leunen, Mary-Claire, 51

Vandevoorde, Mark, 13, 22

VBT, 37, 38

veri�cation, 5, 8, 13, 23, 36, 44,

51, 54

composition, 48

of circuit design, 43

re�nement mappings, 14

using Larch Prover, 52

videos of, 26, 42, 48

videotapes

algorithm animations, 42

constructive geometry (CSG),

26

corpus lexicography, 51

�sheye graph views, 47

geometric animations, 48

simple polygons, 26

virtual memory, 12, 35

visibility graph, 7

visualization, 26, 42, 47, 48, 54

VLSI, 50

Voronoi diagrams, 19

Waupotitsch, Roman, 48

Wick, John, 2

Wing, J. M., 3

Wobber, Edward, 12, 46

WorkCrews, scheduling abstraction,

13, 22

WYSIWYG editor, 16

X window system, Trestle toolkit,

37, 38

78

Xerox PARC, 3

Zeno's paradox, 51

Zeus, algorithm animation system,

26, 42, 54

Zeus, for algorithm animation, 42

79

