
11

Control Predicates are Better
than Dummy Variables for
Reasoning about Program

Control

Leslie Lamport

May 5, 1986

Systems Research Center

DEC’s business and technology objectives require a strong research program. The
Systems Research Center (SRC) and three other research laboratories are committed to
filling that need.

SRC began recruiting its first research scientists in l984—their charter, to advance
the state of knowledge in all aspects of computer systems research. Our current
work includes exploring high-performance personal computing, distributed computing,
programming environments, system modelling techniques, specification technology,
and tightly-coupled multiprocessors.

Our approach to both hardware and software research is to create and use real systems
so that we can investigate their properties fully. Complex systems cannot be evaluated
solely in the abstract. Based on this belief, our strategy is to demonstrate the technical
and practical feasibility of our ideas by building prototypes and using them as daily
tools. The experience we gain is useful in the short term in enabling us to refine our
designs, and invaluable in the long term in helping us to advance the state of knowledge
about those systems. Most of the major advances in information systems have come
through this strategy, including time-sharing, the ArpaNet, and distributed personal
computing.

SRC also performs work of a more mathematical flavor which complements our systems
research. Some of this work is in established fields of theoretical computer science, such
as the analysis of algorithms, computational geometry, and logics of programming. The
rest of this work explores new ground motivated by problems that arise in our systems
research.

DEC has a strong commitment to communicating the results and experience gained
through pursuing these activities. The Company values the improved understanding
that comes with exposing and testing our ideas within the research community. SRC
will therefore report results in conferences, in professional journals, and in our research
report series. We will seek users for our prototype systems among those with whom we
have common research interests, and we will encourage collaboration with university
researchers.

Robert W. Taylor, Director

Control Predicates
Are Better Than Dummy Variables
For Reasoning About Program Control

Leslie Lamport

May 5, 1986

iii

Copyright and reprint permissions: This work may not be copied or reproduced
in whole or in part for any commercial purpose. Permission to copy in whole or in
part without payment of fee is granted for non-profit educational and research purposes
provided that all such whole or partial copies include the following: a notice that
such copying is by permission of the Systems Research Center of Digital Equipment
Corporation in Palo Alto, California; an acknowledgement of the authors and individual
contributors to the work; and all applicable portions of the copyright notice. Copying,
reproducing or republishing for any other purpose shall require a license with payment
of fee to the Systems Research Center.

iv

Author’s Abstract

When explicit control predicates rather than dummy variables are used, the Owicki-
Gries method for proving safety properties of concurrent programs can be strengthened,
making it easier to construct the required program annotations.

Capsule Review

If the recipe for program verification is reduced to one sentence, it is “Use invariants.”
For a program that includes more than one process executing concurrently, the relevant
invariant may involve private variables, shared variables, and the program counters of
the different processes. The simple recipe becomes hard to follow, because it is difficult
to factor the invariant into manageable pieces.

This paper begins with a self-contained introduction to the basic methods for writing
and verifying invariants of concurrent programs. The goal of these methods is to factor
the global invariant into local pieces that are attached as annotations to points in the
program text, and simultaneously to factor the proof of invariance into cases. The
standard Owicki-Gries method and a strengthened version of it are considered in some
detail.

Two techniques are available for representing control state in the invariant: control
predicates and dummy variables. At first it seems that the choice between the two is
a matter of technical taste, but the paper argues that control predicates are compatible
with the strengthened Owicki-Gries method, while dummy variables are not.

Greg Nelson

v

Contents

1 Introduction 1

2 Examples 3

2.1 A Simple Example : 3

2.2 The Ashcroft Method : 4

2.3 The Strengthened Owicki-Gries Method : : : : : : : : : : : : : : : : 5

2.4 The Owicki-Gries Method with Dummy Variables : : : : : : : : : : : 6

2.5 Another Example : 8

3 The Formalism 9

3.1 Hoare Logic with Control Predicates : : : : : : : : : : : : : : : : : : 10

3.2 The Strengthened Owicki-Gries Method : : : : : : : : : : : : : : : : 12

3.3 Equivalence to the Ashcroft Method : : : : : : : : : : : : : : : : : : 13

3.4 Other Control Structures : 14

4 Discussion 15

vi

1 Introduction

The Owicki-Gries method, an extension to concurrent programs of Floyd’s method [3]
for proving partial correctness of sequential programs, was developed independently
by Owicki and Gries [11] and by us [8]. These two presentations of the method differed
in two ways. First, Owicki and Gries used a conventional structured programming lan-
guage while we used a flowchart language. This was a purely syntactic difference.1 The
second, more significant difference, involved how control information is represented.

In the Owicki-Gries method, as in Floyd’s method, a program is annotated by attaching
assertions to control points. The major part of the proof involves showing the invariance
of the annotation [7]. In Floyd’s method, the assertions mention only the program’s
variables. However, for concurrent programs, the assertions attached to one process
must also refer to the control state of other processes—that is, they must be functions
of the values of other processes’ “program counters”. The presentations in [11] and
[8] differed in how dependence on the control state was expressed. In [11], Owicki
and Gries avoided explicit mention of the control state by using dummy variables2—
variables introduced only for the proof—to encode control information. In [8], we used
control predicates—assertions that explicitly mention the control state.

Since control predicates can be simulated by dummy variables, it appears that choosing
between the two approaches is purely a matter of taste. We have preferred to use
control predicates both for aesthetic reasons and because they are necessary for certain
extensions of the method [10]. However, when applying the standard Owicki-Gries
method, there seems to be no basic difference between the two approaches.

In this paper, we show that there is a real difference between control predicates and
dummy variables. Although dummy variables can represent the control state, the
implicit nature of this representation limits their utility. The use of explicit control
predicates allows a strengthening of the ordinary Owicki-Gries method that makes it
easier to write annotations.

Our strengthening of the Owicki-Gries method eliminates a well-known weakness in
the original method. Assertional methods for proving safety properties involve proving
the invariance of an assertion. In the Ashcroft method [1], one writes a single global
assertion; in the Owicki-Gries method, the global assertion is decomposed into an
annotation of the program. It often happens that when the global invariant used in an
Ashcroft-method proof is decomposed in the obvious way, the original Owicki-Gries
method cannot prove its invariance; a different and often more complicated annotation
must be used. This is not the case with the strengthened version. If the Ashcroft method
can prove invariance of a global assertion, then the strengthened Owicki-Gries method
can prove the invariance of the corresponding annotation.

1The syntax used by Owicki and Gries suggested that they were extending Hoare’s method [4], but this
was not the case. See [10] for a generalization of Hoare’s method to concurrent programs.

2They have also been called “auxiliary variables”, “ghost variables”, and “thought variables”.

1

Strengthening the Owicki-Gries method makes it easier to construct proofs; it does
not change what can be proved. The global invariant used in an Ashcroft-style proof
can always be translated into a proof with the original Owicki-Gries method by simply
attaching the global invariant to all control points, though of course this defeats the
whole purpose of the method, which is to decompose the invariant. Moreover, even
though the original Owicki-Gries method fails on one simple decomposition of the
invariant, there may be another equally simple decomposition for which it does work.
What we claim is that using the strengthened method requires less cleverness than using
the original method. Finding the proper annotation to prove a property of a concurrent
program is a difficult art; anything that makes the task easier should be welcome.

Section 2 examines two simple algorithms. The first illustrates the Ashcroft and
Owicki-Gries methods and shows why control predicates can permit a simpler program
annotation than dummy variables. However, it does not convincingly demonstrate the
need for control predicates because an extra lemma allows the same proof to be written
with dummy variables. In Section 2.5, another algorithm is considered, and a proof
using control predicates is given that cannot be so easily rewritten as one using dummy
variables.

To simplify the exposition, we consider n-process programs of the form

cobegin 50 : : : 5n�1 coend

with each process 5i consisting of a sequence of statements

h S1 i ; h S2 i ; : : : ; h Sk i

where the angle brackets denote atomic operations. The atomic statements h Si i are
either ordinary assignment statements or statements of the form

hwhen b do S i

This is a synchronization primitive that causes the process to wait until the boolean
expression b is true, whereupon it executes S as an atomic action. Thus, the semaphore
operation P.s/ can be represented as

hwhen s > 0 do s :D s � 1 i

Since we are concerned only with safety properties, it does not matter whether one
assumes any fairness properties of the when statement. However, it is important that
the evaluation of b and, if it evaluates to true, the subsequent execution of S are a single
atomic action.

By restricting attention to such “straight-line processes”, we avoid some irrelevant
issues raised by branching and looping constructs. These constructs are discussed in
Section 3.4.

2

Þi : h xi := true i;
þi : hwhen :xiý1 do skip i

csi : h critical section i
Ži : h xi := false i

Figure 1: A simple algorithm—process i’s program.

2 Examples

2.1 A Simple Example

We begin with a simple algorithm containing two processes, numbered 0 and 1. The
program for each process i is shown in Figure 1, where ý denotes addition modulo 2.
This algorithm is a simplified version of a popular mutual exclusion protocol. (In
simplifying it, we have eliminated almost all semblance of a real mutual exclusion
algorithm.) We assume that process i’s critical section statement does not modify xi or
xiý1.

The property to be proved for this program is that both processes are not simultaneously
at their critical sections. For any label ½, let at.½/ be the control predicate that is true
if and only if the process’s control is at the point labeled ½. We must prove that
:.at.cs0/ ^ at.cs1// is always true.

In any assertional method, one shows that an assertion P is always true by exhibiting
a global assertion I such that:

1. I is true of the initial state.

2. I implies P.

3. I is invariant—that is, any program step executed with I true leaves it true.

In our example, P is the assertion :.at.cs0/ ^ at.cs1//.

2.2 The Ashcroft Method

In the Ashcroft method, one simply writes the global assertion I as a single formula.
For our example, let I be the assertion

:.at.cs0/^ at.cs1// ^
^

iD0;1

.at.þi / _ at.csi //) xi (1)

where) denotes logical implication. Initially, both processes are at control point Þi

and I is trivially true, so condition 1 holds. Condition 2 is obvious, so we need prove
only condition 3—the invariance of I .

3

The invariance of I means that executing any atomic action of the program starting with
I true leaves I true. Let h½ i denote the atomic statement with label ½. To prove the
invariance of I we must prove fI gh½ ifI g for every atomic program statement ½, where
fPgh ½ ifQg is the Hoare logic formula asserting that if h½ i is executed with P true,
then Q will be true after its execution [4]. (By definition of atomicity, an atomic action
can be executed only if it terminates.) Note that, unlike the Hoare logic ordinarily used
for sequential programs, we allow pre- and postconditions to contain control predicates.

Verifying fI gh½ ifI g for each atomic operation h½ i in the program of Figure 1 is
easy. There are four atomic operations in each process, so there are eight formulas to
check. However, since the two processes are identical except for the value of i, the
corresponding operations in both processes can be handled together, leaving only four
formulas to verify. We will verify fI ghþi ifI g, which is the most interesting one; the
reader can check the others.

Since statement hþi i can be executed only if at.þi / is true, and at.csi /must be true after
it is executed, to prove fI ghþi ifI g, it suffices to prove fI ^ at.þi /gh þi ifI ^ at.csi /g.
Simple logical manipulation shows that

I ^ at.þi / � at.þi /^ xi ^ [.at.þiý1/ _ at.csiý1//) xiý1]

I ^ at.csi / � at.csi /^ xi ^ :at.csiý1/^ .at.þiý1/) xiý1/

We must therefore show

fat.þi /^ xi ^ [.at.þiý1/ _ at.csiý1//) xiý1]g hþi i
fat.csi /^ xi ^ :at.csiý1/^ .at.þiý1/) xiý1/g (2)

Executing h þi i does not change the value of any program variable or of the control
state of process i ý 1, so the only part of the postcondition that is not immediately
obvious is :at.csiý1/. Statement hþi i can be executed only when xiý1 equals false,
and the precondition implies that, in this case, at.csiý1/must also be false. Hence, after
executing hþi i, at.csiý1/ is false, which proves (2). Formal proof rules for deriving
this kind of formula are given in Section 3.1.

2.3 The Strengthened Owicki-Gries Method

In the Owicki-Gries method, the invariant is written as a program annotation. An
annotation in which, for every ½, assertion I ½ is attached to control point ½ represents
the assertion ^

½

.at.½/) I ½/ (3)

To reformulate the proof above in the Owicki-Gries method, using control predicates,
we must write the invariant (1) in the form of (3). Using the equivalence

:.at.cs0/ ^ at.cs1// �
^

iD0;1

.at.csi /):at.csiý1//

4

Þi : h xi := true i;
fxi g þi : hwhen :xiý1 do skip i

fxi ^:at.csiý1/g csi : h critical section i
Ži : h xi := false i

Figure 2: Annotation of process i’s program.

(1) can be written as^
iD0;1

.at.þi /) xi/ ^ .at.csi /) .xi ^ :at.csiý1///

This assertion is expressed as the program annotation of Figure 2.

In the original Owicki-Gries method, the invariance of the assertion I defined by (3) is
proved by verifying the following two conditions for each atomic statement h½ i, where
½C denotes the control point immediately following h½ i.

Sequential Correctness: fI ½gh ½ ifI ½Cg
Interference Freedom: For every control point ¹ in a different process from ½:
fI ¹ ^ I ½gh ½ ifI ¹g

Sequential correctness asserts that executing h½ i starting with I ½ (the assertion attached
to ½) true makes I ½

C
true. Interference freedom asserts that, for any control point ¹ in a

different process, if h½ i is executed starting with both I ½ and I ¹ (the assertion attached
to ¹) true, then the execution leaves I ¹ true. Since execution of h½ i is possible only
when control is at ½, and that execution leaves the process’s control at ½C and does not
change the control point of any other process, so these two conditions imply fI gh½ ifI g.
Thus, proving these conditions for every statement h½ i proves the invariance of I .

Proving sequential correctness for all the atomic actions in a process involves a standard
Floyd-method verification of that process’s annotation. For our example annotation
of Figure 2, proving sequential correctness for hþi i requires proving the following
verification condition:

fxi g hþi i fxi ^ :at.csiý1/g (4)

This cannot be proved. Looking only at process i, there is no reason why an execution
of h þi i starting with xi true should finish with at.csiý1/ false.

The Owicki-Gries method can be strengthened by allowing the use of the other process’s
annotation in proving sequential correctness. To prove sequential correctness for a
statement h½ i of one process, we may assume, as the precondition for h½ i, not just that
I ½ is true but that the assertion I defined by the entire annotation is true. In particular,
we can assume that each other process is at a control point whose attached assertion is
true. Let Ij be the assertion determined by process j ’s annotation, so

Ij � .at.þj /) xj /^ .at.csj /) .xj ^:at.csjý1///

5

Þi : h xi := true i;
fxi g þi : hwhen :xiý1 do acsi := true i

fxi ^ :acsiý1g csi : h critical section; acsi := false i
Ži : h xi := false i

Figure 3: Annotation of process i with dummy variables.

When proving sequential correctness for hþi i, we may assume the truth of Iiý1, the
annotation of process i ý 1. Therefore, instead of proving (4), we need prove only the
weaker condition:

fxi ^ Iiý1g h þi i fxi ^:at.csiý1/g (5)

This condition can be verified, since Iiý1 implies that if xiý1 is false (the only case
in which hþi i can be executed) then at.csiý1/ must also be false. In fact, except for
lacking the obvious hypothesis at.þi /, the precondition of (5) is the same as that of (2),
and the postcondition of (5) is part of the postcondition of (2).

Sequential correctness for the other atomic operations is easily verified, and the only
nontrivial interference-freedom condition to be proved is that executing hþi i does not
falsify the assertion attached to csiý1. This involves verifying

fxiý1 ^ :at.csi / ^ xi g hþi i fxiý1 ^:at.csi /g
which is true because hþi i cannot be executed when xiý1 is true. (The formula
fPgh ½ ifQg asserts that every possible execution of h½ i starting from a state in which
P is true terminates with Q true, so it is vacuously valid if h½ i cannot be executed
when P is true.)

2.4 The Owicki-Gries Method with Dummy Variables

Let us now try to reformulate the proof above using dummy variables instead of
control predicates. The first problem we encounter is that our correctness condition,
that :.at.cs0/ ^ at.cs1// is always true, is a control predicate. We therefore have to
introduce a dummy boolean variable acsi to represent the control predicate at.csi /,
where acsi is set true by hþi i and set false by h csi i. This leads to the annotated
program of Figure 3.

Let us consider the proof of sequential correctness for statement hþi i. The verification
condition corresponding to (5) is

fxi ^ Iiý1g hþi i fxi ^ :acsiý1g (6)

where Iiý1 is the assertion

.at.þiý1/) xiý1/ ^ [at.csiý1/) .xiý1 ^:acsi /]

6

that corresponds to the annotation of Figure 3 for process iý1. We cannot verify (6).
The assertion Iiý1 implies that at.csiý1/ is false when xiý1 is false; it does not imply
that acsiý1 is false when xiý1 is false. Even though we introduced the variable acsiý1

to represent the control predicate at.csiý1/, they are formally different. The implication
at.csiý1/) xiý1 can be obtained directly from the annotation of process i ý 1. The
implication acsiý1) xiý1, which is needed to prove (6), is not obtainable directly
from the annotation.

There are two ways to correct this problem. The first is to attach to each control point of
the program the additional assertion acsiý1) xiý1. (More precisely, this assertion is
conjoined with each of the assertions in the annotation, including the implicit assertion
true at control points Þi and Ži .) The resulting annotation can then be verified with the
original Owicki-Gries method.

One can always convert an Ashcroft-method proof to a proof in the original Owicki-
Gries method with dummy variables by strengthening the assertions. Indeed, this
can be done quite trivially by attaching the global invariant to every control point,
replacing control predicates with dummy variables. However, the whole point of the
Owicki-Gries method is to break the large global assertion of Ashcroft’s method into
the simpler local assertions of the annotation, making the invariant easier to understand
and to verify. If this requires more complicated local assertions, then the Owicki-
Gries method may not offer any advantage. In our example, most people would
probably prefer the Ashcroft proof to the Owicki-Gries proof with the extra assertion
acsiý1) xiý1 added to all control points.

The second way to fix the problem is to prove a lemma stating that, if the program
is started in a proper initial state, then acsiý1) xiý1 is always true. Such a lemma
is easily proved with the original Owicki-Gries method. This is the better approach
because, in the spirit of the Owicki-Gries method, it breaks the proof into small parts.
The use of such lemmas is described by Schneider in [12]. However, while possible in
this case, an Ashcroft method proof cannot always be converted by a simple lemma to
an Owicki-Gries method proof with dummy variables. In the next section, an example
is given in which the use of dummy variables instead of control points forces one to
use a different annotation.

2.5 Another Example

Our second example is a highly simplified version of a mutual exclusion protocol used
in [6]. It is an n-process program, with processes numbered 0 through n� 1, whose ith

process is given in Figure 4 with its annotation. The shared variables x and y are of
type integer, with y initially equal to�1. The assertion Pi in the annotation of process i
is defined to equal

8 j 6D i : .:at.csj //^ [.at.j /_ at.Žj //) x 6D j]

With the ordinary Owicki-Gries method, proving sequential correctness of this annota-

7

Þi : h x := i i
þi : hwhen y D �1 do skip i
i : h y := i i

fx D i) y 6D �1g Ži : hwhen x D i do skip i
fPi g csi : h critical section i
fPi g ži : h y :=�1 i

Figure 4: Process i of another mutual exclusion algorithm.

tion for statement h Ži i requires proving the following condition:

fx D i) y 6D �1g h Ži i fPi g
This is not directly provable, since the postcondition asserts (among other things) that
in no other process j is control at control point csj , which cannot be inferred from the
precondition. However, in the strengthened method, we are allowed to assume in the
precondition that the assertion determined by every other process j ’s annotation is true.
Letting Ij denote this assertion, so

Ij � [at.Žj /) .x D j) y 6D �1/] ^ [at.csj /) Pj] ^ [at.žj /) Pj]

it suffices to prove the weaker condition

f.x D i) y 6D �1/ ^ at.Ži /^
V

j 6Di Ijgh Ži ifPi g
This formula follows from the observation that at.Ži /^ Ij implies that, if at.csj / is true,
then x 6D i and statement h Ži i cannot be executed.

The verification of the other sequential correctness conditions and of interference free-
dom is straightforward and is left to the reader.

In this example, the proof of sequential correctness for h Ži i requires assuming that, if
another process j is at control point csj , then the attached assertion Pj is true. However,
sequential correctness for h Ži i proves that Pi is true when process i reaches control
point csi . Thus, we are using an inductionargument, showing that if every other process
that has already reached control point csj did so with Pj true, then Pi will be true when
process i reaches csi .

In the previous example, the information contained in the annotation of another process
needed to prove sequential correctness could be established separately as a simple
lemma. We now indicate why this is not the case here. In the sequential correctness
proof, the information obtained from the annotation of process j is exactly the result
we are trying to prove for process i. Assuming the truth of the assertion Ij in the
sequential correctness proof for process i is analogous to assuming, in an ordinary
proof by mathematical induction, that the desired result is true for all j < i and proving
that it is true for i. Trying to replace the assumption that Ij holds for j 6D i by a lemma
would be like trying to replace the induction assumption that the theorem is true for all

8

j < i by a lemma, which cannot be done because proving the lemma is equivalent to
proving the original theorem.

The correctness of the annotation of Figure 4 cannot be proved with the original form
of the Owicki-Gries method, and thus this proof cannot be translated into one using
dummy variables instead of control predicates. A different annotation is required when
dummy variables are used.

In writing a proof of this algorithm for the original version of [6], we were unable to
find a simple annotation that could be proved invariant with the original Owicki-Gries
method, and we were forced to introduce the extended method to give a simple proof.
Afterwards, J. Misra discovered a proof as simple as ours using dummy variables and
the original Owicki-Gries method [2]; we intend to use his proof in the next version
of [6]. We do not know if it is always possible to construct a simple proof with the
ordinary Owicki-Gries method, but we do know that it is not always easy.

3 The Formalism

The discussion of the examples in the preceding section included an informal expla-
nation of how one applies the Owicki-Gries method using control predicates in the
annotation. In this section, we develop a formalism that justifies our informal reason-
ing. For now, we continue to consider only simple straight-line multiprocess programs.
Section 3.4 discusses the extension of the formalism to other control structures.

3.1 Hoare Logic with Control Predicates

To prove that a program 5 leaves invariant a global assertion I , one must prove the
Hoare logic formula fI gh½ ifI g for every (atomic) statement h½ i of 5. (This can be
viewed as either the definition of invariance or an application of the Decomposition
Principle of [10].)

The presence of control predicates in P and Q makes the formulas fPgh ½ ifQg fun-
damentally different from ordinary Hoare triples. The Control Predicate Hoare Logic
(CPHL) for reasoning about these formulas is therefore different from ordinary Hoare
logic. Consider the statement
Þi : h x := i i from the program of Figure 4. If the assertion P does not mention
the variable x , then the ordinary Hoare formula fPgx :D ifPg is valid, but the CPHL
formula fPgh Þi ifPg need not be valid. For example, even though the predicate at.Þj /

does not mention x , the formula fat.Þj /gh Þi ifat.Þj /g is valid only if j 6D i; it is invalid
when j D i because executing hÞi i makes at.Þi / false.

CPHL subsumes ordinary Hoare logic through the following rule.

Subsumption Rule: For the statement ½: h S i, the validity of the ordinary Hoare

9

logic formula fPgSfQg (where P and Q do not contain control predicates) implies
the validity of the CPHL formula fPgh ½ ifQg.

Using the subsumption rule, we can derive the following CPHL rule from ordinary
Hoare logic:

when Rule: For the statement ½: hwhen b do S i, the validity of the ordinary
Hoare logic formula fPgSfQg implies the validity of fP _ :bgh½ ifQg.

Given the axioms and rules of ordinary Hoare logic, the subsumption rule captures
the semantics of atomic language constructs. Ordinary Hoare logic also has rules that
are independent of the language constructs. These rules, as listed below, are included
in CPHL. (They differ from the corresponding rules of ordinary Hoare logic only in
allowing control predicates in the pre- and postconditions.)

Rule of Consequence: If fPgh ½ ifQg, P 0) P, and Q) Q0, then fP 0gh ½ ifQ0 g.
Disjunction Rule: If fPgh ½ ifQg and fP 0gh ½ ifQ0g, then
fP _ P 0gh½ ifQ _ Q0g.
Conjunction Rule: If fPgh ½ ifQg and fP 0gh ½ ifQ0g, then
fP ^ P 0gh½ ifQ ^ Q0g.

Thus far, all our CPHL rules are derived from ordinary Hoare logic rules. Reasoning
about control predicates requires the following additional rules and axioms. Their
soundness is self-evident. Recall that ½C denotes the control point immediately follow-
ing statement h ½ i.

Control Axiom: fat.½/g h½ i fat.½C/g
Noninterference Axiom: If ¹ is a control point in a different process from h½ i,
then fat.¹/g h ½ i fat.¹/g
Locality Rule: If fP ^ at.½/g h½ i fQ ^ at.½C/g then fPgh ½ ifQg.

Note that the converse of the Locality Rule follows from the Control Axiom and the
Conjunction Rule.

In addition to these rules and axioms, we need axioms for proving simple formulas
about state predicates. For example, we must be able to prove that, if ¹ and ¼ are
different control points in the same process, then at.¹/^ at.¼/ � f alse. Such axioms
are given in [7] for a more complicated language; we do not consider them here.

Observe that CPHL has no equivalent to the Rule of Composition of ordinary Hoare
logic—the rule for reasoning about the “;” construction. The semantics of the “;” are
given by the Control Axiom, together with the implicit rule for calculating ½C. (For

10

example, in the program of Figure 4, we know that ÞCi D þi .) As we shall see, it
is characteristic of CPHL that flow of control is specified by relations among control
predicates rather than by the special inference rules of ordinary Hoare logic.

As an illustration of how the rules of CPHL are applied, we sketch the formal proof of
(5) from our first example. By the Rule of Consequence and the definition of Iiý1, it
suffices to prove

fxi ^ .at.csiý1/) xiý1/g h þi i fxi ^:at.csiý1/g
Expressing the precondition as a disjunction and applying the Disjunction Rule reduces
the problem to proving the following two conditions:

fxi ^ xiý1g hþi i fxi ^ :at.csiý1/g (7)

fxi ^:at.csiý1/g hþi i fxi ^ :at.csiý1/g (8)

Formula (7) follows from the Rule of Consequence and the formula

fxiý1ghþi if f alseg
which is a consequence of the when Rule (with false substituted for both P and Q).

To prove (8), we apply the Conjunction Rule to break it into the two conditions:

fxi g hþi i fxi g
f:at.csiý1/g hþi i f:at.csiý1/g

The first follows from the proof rule for the when statement. To prove the second, we
use the equivalence

:at.csiý1/ � at.Þiý1/_ at.þiý1/_ at.Žiý1/ _ after.Žiý1/

and the Disjunction Rule, and we apply the Noninterference Axiom four times.

3.2 The Strengthened Owicki-Gries Method

We assume an n-process program5with processes50, : : : ,5n�1. We let ¹ 2 5mean
that ¹ is a control point of 5, and similarly ¹ 2 5i means that ¹ is a control point of
process5i .

In the Owicki-Gries method, the invariant I has the form^
¹25

at.¹/) I ¹ (9)

where I ¹ is the assertion attached to control point ¹. Let Ij denote
V
¹25j

at.¹/) I ¹,
the assertion represented by the annotation of process 5j . If h½ i is a statement of

11

process5i , then

at.½/^ I � at.½/^ I ½ ^
^
j 6Di

Ij

at.½C/ ^ I � at.½C/ ^ I ½
C ^

^
j 6Di

Ij

Thus, by the Locality Rule, the Control Axiom, and the Conjunction Rule, to prove the
invariance condition fI gh½ ifI g it suffices to prove:

fI ½ ^Vj 6Di Ij g h½ i fI ½C ^
V

j 6Di Ij g (10)

In the standard Owicki-Gries method, one applies the Conjunction Rule to break the
verification of (10) into two parts:

fI ½g h½ i fI ½Cg (11)

8 j 6D i 8¹ 2 5j : fI ½ ^ .at.¹/) I ¹/g h½ i fat.¹/) I ¹g (12)

Condition(11) is sequential correctness for h½ i. To verify (12), we write at.¹/) I ¹ as
I ¹_:at.¹/ and apply the Disjunction Rule and the Rule of Consequence to decompose
it into the problem of verifying the following two conditions:

8 j 6D i 8¹ 2 5j : fI ½ ^ I ¹g h½ i fI ¹g (13)

8 j 6D i 8¹ 2 5j : f:at.¹/g h½ i f:at.¹/g (14)

Condition 13 is interference freedom. Since :at.¹/ � W
¼25j ;¼6D¹ at.¼/ (because

control must be somewhere in process j), formula (14) follows from the Disjunction
Rule and the Noninterference Axiom.

Formulas (11) and (13) represent the sequential correctness and interference freedom
conditions of the standard Owicki-Gries method. Since our goal is to prove the invari-
ance of I , it is easy to see that we can weaken these conditions (by strengthening their
preconditions) as follows:

Weak Sequential Correctness: fI ½ ^Vj 6Di Ij g h½ i fI ½Cg
Weak Interference Freedom: 8 j 6D i 8¹ 2 5j :

fI ½ ^ I ¹ ^ at.¹/ ^Vk 6Di; j Ikg h ½ i fI ¹g

It is this weak sequential correctness condition that we used in our two examples.
The weak interference freedom condition is weaker than (13) because, to prove that
executing the statement h½ i of process i leaves invariant the assertion I ¹ attached to
process j , we are allowed to use the additional hypothesis that, for any third process k,
the assertion Ik defined by the annotation of process k is true.

We did not need the weak interference freedom condition in our two examples. (In-
deed, except for the extra hypothesis at.¹/, it is the same as the original condition (13)

12

when there are only two processes, as in our first example.) In most of the concurrent
algorithms that we have studied, safety properties can be proved by considering the
processes two at a time, so the stronger postcondition employed in the weak interfer-
ence freedom condition does not help. However, as the examples indicate, the weak
sequential correctness condition is very useful.

3.3 Equivalence to the Ashcroft Method

We now show that the strengthened Owicki-Gries method is as powerful as the Ashcroft
method. More precisely, we prove that, given an assertion I of the form (9), the CPHL
formula fI gh½ ifI g that must be verified (for all ½) with the Ashcroft method is provable
if and only if the weak sequential correctness and interference freedom conditions for
½ are provable. The proof assumes the ability to prove simple logical equivalences
among predicates. This means that, barring some pathological weakness in the ability
to reason about predicates, an annotation can be proved correct with the strengthened
Owicki-Gries method if and only if the corresponding global assertion can be proved
invariant with the Ashcroft method.

We showed above that the two weak verification conditions of the extended Owicki-
Gries method imply the Ashcroft method condition fI gh½ ifI g; we now show the
converse. Recall that Ij �

V
¹25j

.at.¹/) I ¹/, so I �Vj Ij . Our proof is based upon
the equivalence

Ij �
_
¹25j

.at.¹/ ^ I ¹/ (15)

which follows from the observation that
�W

¹25j
at.¹/

�
� t rue and, for any ¹; ¼ 2 5j

with ¹ 6D ¼: at.¹/ ^ at.¼/ � f alse.

Assume fI gh½ ifI g. From the Control Axiom, the Conjunction Rule, and the observa-
tion that Ii ^ at.½/ � I ½ ^ at.½/, we infer

fI ½ ^ at.½/^Vj 6Di Ijg h ½ i fI g (16)

The weak sequential correctness condition now follows from the Locality Rule and the
Rule of Consequence.

To prove the validity of the weak noninterference condition, we use (15) to substitute
for Ij and apply the distributive law for the logical operators to rewrite (16) as

fV¹25j
I ½ ^ at.½/^ I ¹ ^ at.¹/ ^Wk 6Di; j Ikg h½ i fI g

The weak noninterference condition now follows from the Locality Rule and the Rule
of Consequence.

13

3.4 Other Control Structures

To indicate how sequential control structures are handled, we consider first the while
statement. Suppose a process contains

while þ:h b i do ¦ :S od ; : : : :

where þ, ¦ , and are labels and S is any sequence of statements. The angle brackets
indicate that the evaluation of the expression b is a single atomic action. The evaluation
of b is one of the atomic operations of the program; to prove the invariance of an
assertion I , we must show this evaluation leaves I true. In other words, we must prove
the CPHL formula fI ghþ ifI g, where hþ i denotes the evaluation of the condition in
the while statement.

Ordinary Hoare logic includes only formulas fPgSfQg in which S is a complete state-
ment; it has no such formulas as fI ghþ ifI g where hþ i is a while-statement test. The
need for these formulas is not surprising, since the Owicki-Gries method generalizes
Floyd’s method rather than Hoare’s method, and Floyd’s method has a proof rule for
flowchart “test” boxes. (The generalized Hoare logic of concurrency, described in [10],
does not have these Floyd-like rules.)

The proof rule for the while test hþ i is complicated by the fact that, after its execution,
control is either at ¦ or at . Hence, there is no unique successor control point þC.
It is useful to define the control predicate after.½/ to be true if and only if control is
immediately after the statement or test h½ i. For an assignment or when statement,
after.½/� at.½C/. However, for the while statement above, after.þ/ � at.¦/_ at. /.
The control axiom is strengthened to

fat.½/g h½ i fafter.½/g
which is equivalent to the one given above when h ½ i is an assignment or when
statement.

All our rules for reasoning about concurrent programs, including the strengthened
Owicki-Gries method for proving invariance, remain valid if we define

I þ
C � .at.¦/) I ¦/ ^ .at. /) I /

when h þ i is the while test above. To enable us to prove CPHL formulas for the atomic
action þ, we need the following axiom:

while Test Axiom: If P contains no control predicates, then

fPg h þ i f.at.¦/ ^ P ^ b/_ .at. / ^ P ^:b/g
This axiom does not completely define the semantics of the while statement; additional
axioms are needed to specify the flow of control. We already mentioned one such
axiom: after.þ/ � at.¦/ _ at. /. This asserts that, after executing the test, control

14

goes to either ¦ or . We also need to specify that, after executing S, control goes back
to þ. Define after.S/ to be after.½/, where ½: h Sn i is the last statement in the list S
of atomic statements. The axiom after.S/ � at.þ/ asserts that control loops back to þ
after executing the body of the while statement. The semantics of the while statement
are captured by the while Test Axiom and these two axioms about control predicates.

Other sequential control structures are handled similarly. For example, consider the
statement

if þ:h b i then ¦ :S fi ; : : : :

The axiom for the test h þ i in this statement is identical to the while Test Axiom above.
The flow of control axioms are: after.þ/ � at.¦/ _ at. / and after.S/ � at. /.

Observe that the only difference in the axioms for the while and if statements are in
the axiom for after.S/. This reflects the fact that the only difference between the two
statements is that, after executing S, the while loops back to the beginning and the if
continues to the followingstatement. In CPHL, flow of control is described by relations
among control predicates, not by special inference rules.

One can also extend the Owicki-Gries method to programs having any process structure
that can be expressed with nested cobegin statements. In this case, the interference
freedom condition must be generalized by letting ¹ range over all control points in
concurrently active processes. (These control points are determined syntactically.)
Control predicate axioms assert that control is at the beginning of each clause (process)
when it is at the beginning of the cobegin, and control is at the point immediately
following the coend when it is at the end of each clause. Care must also be exercised
in defining I ½ and I ½

C
for the control points immediately before and after the cobegin

when applying the method.

4 Discussion

We have shown how the Owicki-Gries method can be strengthened by using weaker
sequential correctness and interference freedom conditions. The significant change is
the weaker sequential correctness condition, which permits the use of information from
other processes’ annotations. This strengthening is useful only when control predicates
appear in the annotation; it is of no benefit if the control predicates are replaced by
dummy variables, as in the method originally advocated by Owicki and Gries. Unlike
the original Owicki-Gries method, the strengthened version has the property that it
works for any annotation that represents an invariant assertion.

When expressed formally, the weak sequential correctness and interference freedom
conditions are more complicated than the original ones (11) and (13). However, this
is a welcome complication because it adds hypotheses to the precondition of a Hoare
formula. In practice, one adds only those extra hypotheses that are useful. (Formally,

15

this means applying the Rule of Consequence.)

The significant distinction between control predicates and dummy variables is not
between predicates and variables, but between control and “dummy”. When proving
properties of concurrent programs, one must reason about the control state. Although
dummy variables can be used to represent the control state, the lack of a formal
connection between these variables and the control predicates that they represent limits
their utility.

As mentioned in [9], control predicates can be viewed as implicit variables. (We prefer
the term “implicit” to “dummy” or “auxiliary” because these variables represent a
part of the program state that is just as real as that represented by ordinary variables;
they differ from ordinary variables only in that the programming language provides no
explicit mechanism for representing their values.) Relations among control predicates,
such as after.þ/ � at.¦/ _ at. /, become aliasing relations among these variables.
Our Control Predicate Hoare Logic can be obtained by extending the ordinary Hoare
logic to handle aliasing relations (as in [9]) and assertions containing implicit variables.

Considering control predicates to be implicit variables can provide a more elegant
formal justification of the Owicki-Gries method, but it does not change the way the
method is used to reason about specific programs. This formal approach works best
with the generalized Hoare logic of concurrency. It provides one of the techniques used
in [5] to define a formal semantics for concurrent programming languages.

Acknowledgement

I wish to thank Fred Schneider for his help in clarifying the distinction between CPHL
and ordinary Hoare logic and Edsger Dijkstra for communicating Misra’s correctness
proof of the algorithm of Figure 4.

16

References

[1] E.A. Ashcroft. Proving assertions about parallel programs. J. Comput. Systm.
Sci., 10:110–135, January 1975.

[2] Edsger W. Dijkstra. Misra’s proof for Lamport’s mutual exclusion. November
1985. EWD948.

[3] R. W. Floyd. Assigning meanings to programs. In Proc. Symposium on Applied
Math., Vol. 19, pages 19–32, Amer. Math. Soc., 1967.

[4] C.A.R. Hoare. An axiomatic basis for computer programming. Communications
of the ACM, 12(10):576–583, October 1969.

[5] Leslie Lamport. An Axiomatic Semantics of Concurrent Programming Languages,
pages 77–122. Springer-Verlag, Berlin, 1985.

[6] Leslie Lamport. A fast mutual exclusion algorithm. 1985. Submitted for publi-
cation.

[7] Leslie Lamport. The ‘Hoare logic’ of concurrent programs. Acta Informatica,
14(1):21–37, 1980.

[8] Leslie Lamport. Proving the correctness of multiprocess programs. IEEE Trans-
actions on Software Engineering, SE-3(2):125–143, March 1977.

[9] Leslie Lamport and Fred B. Schneider. Constraints: a uniform approach to
aliasing and typing. In Proceedings of the Twelfth ACM Symposium on Principles
of Programming Languages, ACM SIGACT-SIGPLAN, New Orleans, January
1985.

[10] Leslie Lamport and Fred B. Schneider. The “Hoare logic” of CSP, and all that.
ACM Transactionson Programming Languages and Systems, 6(2):281–296,April
1984.

[11] Susan Owicki and David Gries. An axiomatic proof technique for parallel pro-
grams. Acta Informatica, 6(4):319–340, 1976.

[12] F. B. Schneider and G. Andrews. Concepts for concurrent programming. In
J. W. de Bakker, W. P. de Roever, and G. Rozenberg, editors, Current Trends in
Concurrency, Springer-Verlag, 1986.

17

