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Authors’ Abstract

Constraints are an important enabling technology for interactive graphics applica-
tions. However, today’s constraint-based systems are plagued by several limita-
tions, and constraints have yet to live up to their potential.

Juno-2 is a constraint-based double-view drawing editor that addresses some
of these limitations. Constraints in Juno-2 are declarative, and they can include
non-linear functions and ordered pairs. Moreover, the Juno-2 solver is not limited
to acyclic constraint systems. Juno-2 also includes a powerful extension language
that allows users to define new constraints. The system demonstrates that fast
constraint solving is possible with a highly extensible, fully declarative constraint
language.

The report describes what it is like to use Juno-2, outlines the methods that
Juno-2 uses to solve constraints, and discusses its performance.

Perspective

Computers now handle the words in the documents that we write, and that is good:
Revising, indexing, and formatting are lots easier, while hyperlinks have opened
up shining vistas. Computers also handle the illustrations in our documents, but
the news on that front is not so good. Producing accurate drawings is still a tedious
task in many cases, revising them later is worse, and animations are not taking off
as fast as hypertext. Even if we grant that a picture is worth a thousand words to
the reader, why is its cost to the writer more like ten thousand?

If computers are ever to help illustrators as effectively as they help authors,
some new ideas will be required. Juno-2 is a drawing editor that explores an
intriguing collection of ideas about two-view editing, constraint-solving, and ex-
tension languages. This brief report gives some early indications of the strengths
and weaknesses of those ideas.

Lyle Ramshaw
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Constraint solver (2429)
Virtual machine (2857)
Compiler (9727)
User interface (10140)
Predefined Juno-2 modules (5778)

Juno-2’s extensibility reaches three dimensions.
Although you can’t tell it from the picture, Juno-2
modeled this tetrahedron in three-space. The edges
were constrained to be equal, and the solver computed
the coordinates of the vertices in three-space. You can
move the tetrahedron in three-space by dragging the
two-dimensional projections of its vertices.

A theorem of
projective geometry.
A complete quadrilateral
(the four black lines in the low-
er half of the figure) has three pairs 
of opposite vertices. Draw lines from these
six vertices through a point on a conic section.
Each line intersects the conic section a second
time. The three chords determined by the three 
pairs of second intersections are concurrent.

The predefined pie chart module is used here
to show the number of lines of code in Juno-2
broken down by function. Juno-2 emulates Spirograph.

Figure 1. Some examples of figures drawn with Juno-2.



1 Introduction

This report describes Juno-2, an experimental, constraint-based, double-
view drawing editor.

Constraints allow you to specify locations in your drawing declara-
tively. For example, to draw an equilateral triangle, you first draw an
arbitrary triangle and then constrain its sides to be equal; Juno-2 will adjust
the vertices to make the triangle equilateral. Moreover, the constraints are
maintained whenever part of the picture is changed, so constraints make it
easier to maintain a picture in the face of modifications.

One of the novel things about Juno-2 is that it allows constraints to
be defined in a powerful declarative extension language. This language
makes it easy to define two-dimensional geometric constraints,which occur
frequently in interactive graphics; but it is not limited to two dimensions
or to geometry.

The Juno-2 extension language is imperative as well as declarative: it
allows you to define new drawing operations as well as new constraints.
You can write programs in Juno-2 the way some people write programs
in PostScript, and execute them to produce pictures. But it is much more
convenient to use Juno-2’s double-view editor, which displays a view of the
picture as it would appear if printed and simultaneously displays a program
in the Juno-2 language that draws the picture. You can edit in either view,
and both views are updated.

We will describe what it is like to use Juno-2 and sketch the main
techniques used to implement it, leaving the more technical details for later
papers. We hope the report will appeal to anybody interested in graphical
user interfaces, not only to specialists in constraint systems.

Contents
 Introduction

 Simple drawings

 Templates and folding

 Juno-2 extensibility

 Drawing an S

 Modules

 The constraint solver

 Performance

 Conclusions

Figure 2. As a test of extensibility, we im-
plemented a Juno-2 module to draw bulleted
slides with items and sub-items. This figure
uses the module to show the table of contents
of this report.

Interactive constraint-based graphics goes back to Ivan Sutherland’s
pioneering program Sketchpad [19]. But there are many difficulties with
constraints, and thirty years after Sketchpad, the sad fact is that constraints
have so far been more promising than useful. The goal of our research is to
identify and solve the problems that continue to prevent constraints from
realizing their potential in interactive graphics. For example:

� It is difficult to build a constraint solver that is fast and reliable.
Juno-2 uses a combination of symbolic and numeric techniques that
seems quite promising.

� Constraints are slippery. When a solver finds a solution to an under-
constrained system, it is often far from the solution the user intended.
Juno-2 addresses this problem using hints: the solution for an un-
known is chosen to be near the user-provided hint for that unknown.

� It can be difficult to design an interface that allows users to determine
and control what constraints are imposed on the drawing. Some
systems have dealt with this problem by making the constraints
visible in the drawing, but this solution can be visually busy and
confusing. We think double-view editing is a better approach: the
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constraints are visible in the program view, and can be modified or
deleted in that view with ordinary text-editing operations.

� The effective definition of constraints can require more mathematical
sophistication than most users have. We hope Juno-2’s program-
mability will help with this problem, by allowing a collection of
useful constraints and drawing operations to be defined once by an
experienced Juno-2 user and then used many times by novices.

Many other systems have similar goals. ThingLab [2] and Garnet
[12] provide extensible constraint solvers. In these systems, users define
constraints imperatively by providing functions to solve individual con-
straints, and the solver attempts to invoke them in an order that solves them
all. However, many useful constraint systems contain cycles and therefore
cannot be solved by this method. In contrast, Juno-2 allows the user to
define constraints declaratively. This can (and usually does) produce cyclic
constraint systems; Juno-2 solves them with numerical methods.

Donald Knuth’s METAFONT [9] and John Hobby’s MetaPost [8] also
provide numerical solvers, but these systems are limited to constraints that
are algebraically linear. Unfortunately, this precludes important geometric
predicates like parallelism and congruence. Chris Van Wyk’s IDEAL [20]
solves a larger class of constraints, but not general non-linear constraints.
These systems are programmable, but not WYSIWYG (what you see is
what you get).

Constraint-based drawing programs like Michael Gleicher’s Briar [7],
Steve Sistare’s Converge [18], and Aldus’s commercial program Intel-
liDraw provide numerical non-linear constraint solving, but only over a
fixed set of constraints. These systems are WYSIWYG, but provide no
programming view.

22

Figure 3. Count two of the man’s part of
the basic step of the cha-cha. The figure was
drawn by overlaying several frames of the
animation. At each weight change, the count
is displayed on the weighted foot.

Juno-1 [14], the predecessor of Juno-2, uses double-view editing to
combine the WYSIWYG and programming paradigms. Juno-1 also pro-
vides numerical non-linear constraint solving, but again for a fixed set of
constraints. Although you can define new procedures with Juno-1, you
cannot define new constraints. Since all constraints are specified in terms
of four geometric primitives, using Juno-1 can be a bit like doing construc-
tions with straightedge and compass.

Juno-2’s most important innovation is to allow an extensible class of
nonlinear constraints. A Juno-2 user can introduce new constraints by
declarative first-order predicate definitions, including definitions using ex-
istential quantifiers. In addition, Juno-2 enriches the value space with
ordered pairs, thereby making the constraint language much more expres-
sive.

Juno-2 is still under development, but it is already a useful system.
The figures in this report were all drawn using Juno-2 (except Figure 5,
which is a screen snapshot). The application produces PostScript. As
an experimental system, Juno-2 offers less ease of use than commercial
drawing programs. But this must be weighed against the fact that most easy-
to-use illustrators produce noticeably imperfect drawings, with arrowheads

2



that don’t point quite where they should, labels that aren’t centered, nodes
that aren’t equally spaced, and so forth. These drawings are also tedious
to modify. If you need to produce a precise drawing, Juno-2 has many
advantages over the alternatives, such as programming directly in Postscript
or using a CAD system.

The extensibility of the system makes it useful for experimenting with
constraints in many different user interfaces. For example, we have used
it to prototype user interfaces for drawing bulleted outlines for slides, for
drawing scatter-plots and performance graphs, for drawing labeled directed
graphs, and for editing constrained three-dimensional shapes by dragging
their two-dimensional projections. Figures 1 and 2 contain images from
some of these experiments.

We have also used Juno-2 to experiment with the interactive production
of animations. An animation can be regarded as an underconstrained
drawing in which one of the degrees of freedom represents time. We wish
we could publish this report in a DynaBook with animated figures, but that
isn’t yet possible. In the meantime, we have done our best to illustrate the
flavor of the animations in Figures 3 and 4.

2 Simple drawings

Figure 5 shows a snapshot of the Juno-2 application after we have used it
to draw an equilateral triangle. The triangle is displayed in the graphical
view, and its corresponding program is displayed in the textual program
view.

In this section we will describe how the equilateral triangle was drawn,
using it as an example of a typical simple drawing. In passing, we will
describe some of the aspects of Juno-2 that are important in the rest of the
report.

The standard recipe for making a simple drawing with Juno-2 has three
steps: sketching, constraining, and adjusting. First you create a rough
sketch of the drawing, then you tidy up the drawing by adding constraints,
and finally you use the drag tool to fine-tune the drawing within the degrees
of freedom that remain.

The user interface provides predefined tools for operating on the draw-
ing. To apply a tool to some points in the drawing, you select the tool
and click near the points. Both the drawing and program views are then
modified to show the effect of the operation. Juno-2 has tools for creating,
freezing (that is, fixing), and dragging points; for adding constraints (ei-

Figure 4. If you walk along the graph of
the function y = x

4 carrying a beam that
extends one unit to each side, the inner tip of
the beam traces out a surprising five-pointed
star, as discovered by Rida T. Farouki. The
figure shows several frames from a Juno-2
animation of this phenomenon.

ther predefined or user-defined); and for adding drawing operations (either
predefined or user-defined).

Sketching. To produce the triangle, we used the Create tool in the
palette on the left to create three points, which the system automatically
named a, b, and c. We then drew a filled triangle using the tools for
MoveTo, LineTo, Close, and Fill, which are in the predefined PS
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Figure 5. A screen snapshot of the Juno-
2 user interface. Visible are: the palette of
built-in tools; the palette for the predefined
PSmodule; the menu of predefined modules;
the graphical view; and the program view.

module. The system simultaneously added variable declarations and draw-
ing commands to the program view.

Here is a synopsis of thePSmodule, which provides the PostScript-like
drawing operations used by Juno-2:

� PS.MoveTo(p) starts a path at the point p,

� PS.LineTo(q) extends the current path with a straight segment
to the point q,

� PS.CurveTo(p,q,r) extends the current path with a curved
Bézier segment to r, using p and q as control points (see Figure 6),

� PS.Fill() fills the current path with the current color, and

� PS.Stroke() strokes the current path with the current color in the
current width and style.

The PS module also provides operations for controlling the current
color, controlling the width and style of strokes, and for painting and
measuring text, but we won’t describe them in this report.

Constraining. The second step of the standard procedure is to add con-
straints. In the case of the triangle, adding two predefinedCONG constraints
makes it equilateral; the program view changes simultaneously to include
the constraints as well as the drawing commands, as shown in the right of
Figure 5.

a

a

a

b

d

c

c

d

b

b

c

d

Figure 6. Three Bézier curves controlled by
a, b, c, and d.

CONG is one of several predefined geometric constraints:

� p HOR q constrains points p and q to be aligned horizontally,
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� p VER q constrains points p and q to be aligned vertically,

� (a,b) CONG (c,d) constrains the distance between the points a
and b to equal the distance between the points c and d, and

� (a,b) PARA (c,d) constrains the line through the points a and b
to be parallel to the line through the points c and d.

Figure 7 shows how these constraints can be used to draw a block A. Notice
that the segment between two points can be constrained even if it is not
painted; the constraints are defined on points, not painted lines.

Constraints are an integral part of the Juno-2 extension language. In
general, a Juno-2 command of the form

VAR <var> � <hint> IN
<constraint> -> <command>

END

has the following operational semantics: introduce a new variable <var>
with a value near <hint> that satisfies <constraint>, then execute
<command>.

Hints are needed to make constraints useful in the face of non-deter-
minism. For example, the command

VAR x � 1 IN
x * x = 2 -> Print(x)

END

prints the positive square root of 2. There are two solutions to the constraint,
but the solver will converge on the positive square root, since the hint for
x is positive.

Adjusting. The final step of the standard recipe is to adjust the control
points until the picture looks right. There are two tools for moving points
in the drawing: the Drag tool, which updates the drawing in real time as
you move a point; and the Adjust tool, which lets you move a point as an
atomic action. Either of these tools can be used to adjust the size, position,
and orientation of the equilateral triangle.

a b

c d

e f

gh

ij

k

a HOR b AND
a HOR e AND
a HOR f AND
c HOR d AND
j HOR i AND
h HOR g AND
(h, a) PARA (b, c) AND
(h, a) PARA (b, j) AND
(h, a) PARA (b, k) AND
(h, a) PARA (b, g) AND
(g, f) PARA (e, d) AND
(g, f) PARA (e, i) AND
(g, f) PARA (e, k) AND
(g, f) PARA (e, h) AND
(a, b) CONG (c, j) AND
(a, h) CONG (g, f) AND
(b, c) CONG (j, k)

Figure 7. A block letter A and its associated
constraints. The height, width, and thickness
of the letter can be changed by dragging.

In the equilateral triangle, as in most figures, the drawing is undercon-
strained, so that the solver could move the points by large distances and
still satisfy the constraints. If the solver actually did this, the Drag and
Adjust tools would be useless, and the whole Juno-2 approach would
break down. But numerical solvers tend to find solutions that are near the
initial hints, so if the current positions of the points in the graphics view
are used as the hints, large jumps are avoided and the behavior of the solver
is intuitive to the user. Therefore, whenever Juno-2 refreshes the graphics
view by re-executing the command in the program view (this happens once
each time the Adjust tool is used, and continuously while the Drag tool
is being used), the hints are changed in the program view to correspond to
the new positions of the points. Thus, the hint for each new solve operation
is always the solution found by the previous solve operation (except that
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the location of the mouse is always used as the hint for the point being
moved).

The ability to drag a point while the system continuously solves the
constraints and updates the drawing is invaluable, both because it provides
a way of making fine aesthetic adjustments, and because it allows motion
along a continuous trajectory through the constraint solution space. The
latter benefit is especially noticeable in cases where the solution space
contains discontinuities. Using the Adjust tool, it is quite easy to inad-
vertently flip into another branch of the solution space, but to do so using
the drag tool requires a conscious, rapid motion of the mouse.

Most Juno-2 drawings have more than two degrees of freedom, in
which case dragging is ambiguous. For example, in many drawings, the
constraint solver can accommodate a drag operation either by translating
or scaling the drawing, and there is no way to tell which of these the user
intends. To ensure that dragging has the intended result, you can freeze the
points of the drawing that you want to fix. For example, to adjust the height
of the block A in Figure 7 without changing its width or thickness, you
could freeze the points a, b, and f, and drag either g or h. You can move
the mouse both vertically and horizontally, but because of the constraints,
g and h will move only vertically.

3 Templates and folding

Most large drawings have repeated elements. It would be too tedious to
draw each instance of the repeated element individually; so we produce a
template once and instantiate it several times.

Because Juno-2 is programmable, it is possible to define the template
by typing the definition of a Juno-2 procedure into the program view. A
tool will appear for it in the palette for the module in which it is defined, and
the tool can then be used to instantiate the procedure, just as for a built-in
tool. For example, the procedures for drawing circular arcs, arrows, and
dashed lines are all available as tools in the appropriate palettes.

In many cases a repeated element is simple enough that you can program
the template for it by simply drawing the repeated element and folding
it into an appropriate procedure. This allows complicated drawings to
be produced entirely in the drawing view, without explicit editing in the
program view. The folding operation is similar to the grouping and copying
operations supported by many drawing programs, but is more general.

VAR
  a ~ (203, 505),
  b ~ (319, 505)
IN
  a HOR b ->
    EqTr(a, b);
    EqTr(b, a)
END

a b

Figure 8. Drawing a diamond with EqTr.
The equilateral triangle is a simple example of a drawing that you might

want to fold into a procedure. To do this, you draw the triangle as described
above, click the Fold button, and then specify which of the points are to
be parameters to the procedure; the other points become local variables.
When you create a new procedure by folding, you supply a meaningful
name, for example, EqTr. A new tool appears in the tool palette that can
be used just like any of the built-in tools. For example, Figure 8 shows a
diamond drawn by two applications of EqTr.

When a drawing is folded into a procedure, it is critical that the points
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that become local variables receive appropriate hints. For example, the
drawing of the diamond in Figure 8 depends on the fact that EqTr(a,b)
draws an equilateral triangle to the left of the ray ab. To achieve this, the
hint for cmust be to the left of that ray. Since the positions of a and b vary
from call to call, no absolute hint for c will do. Therefore, before folding
the procedure, you must change c’s hint so that it is computed relative to
a and b, instead of absolutely.

Juno-2’s REL function is useful for such hints. If a and b are points
and x and y are real numbers, then the expression

(x,y) REL (a,b)

is the point with coordinates (x,y) in the coordinate system in which a is
the origin and b is at the tip of the unit x vector, as shown in Figure 9. For
example, (0.5,0) REL (a,b) is the midpoint of the segment ab. The
REL function has the nice property that it is invariant under translation,
rotation, and scaling.

a

b
(1,0) REL (a,b)

(1,1) REL (a,b)

(0,1) REL (a,b)

Figure 9. The REL function.
It is so common to express one point’s hint relative to the location of

two other points that a Rel tool is built into the Juno-2 user interface.
Applying this tool to the points c, a, and b in Figure 5 changes the hints
in the program view to the following:

VAR
a � (179.5, 197.1),
b � (271.2, 223.6),
c � (0.5, 0.866) REL (a, b)

IN
...

END

The Rel tool chooses the numbers in the hint for c based on the current
position of c relative to a and b, so the drawing view doesn’t change. The
Rel tool has made the command suitable for folding into a procedure with
arguments a and b and local variable c.

4 Juno-2 extensibility

The features described so far all derive from Juno-1. In the rest of the
report, we describe Juno-2’s powerful extension features, and we present
some examples that exploit them.

The Juno-2 programming language is a full-fledged imperative pro-
gramming language with conditionals, loops, assignments, global vari-
ables, local variables, procedures, and closures. For example, Figure 10
was produced with a recursive procedure. The drawing operations are those

Figure 10. A dragon curve of order 10. This
is an example of a figure drawn by a recursive
procedure.

of PostScript [1], and the control structures are those of guarded commands
[5, 15]. Larger Juno-2 programs are organized into modules, which are
collections of definitions.

The language is dynamically typed. Its value space is the smallest set
that (1) contains the real numbers, text strings, and the special value NIL,
and (2) is closed under the formation of ordered pairs. The inclusion of

7



ordered pairs is significant. As in pure Lisp [10], they have the virtue of
providing structure to the value space sufficient to construct a variety of
data structures, including two and three dimensional points, lists, records,
and trees. Ordered pairs are allowed in constraints, so it is possible to
constrain the structure of a value and to place constraints on its embedded
values.

Definitions. Here is the Juno-2 syntax for defining procedures, predi-
cates, and functions:

PROC P(<args>) IS <command> END;
PRED Q(<args>) IS <constraint> END;
FUNC <res> = F(<args>) IS <constraint> END;

Procedures are parametrized commands; predicates and functions are
parametrized constraints. In a function definition, the constraint should
determine <res> uniquely from <args>, but Juno-2 doesn’t check this.
In a procedure definition, Juno-2 allows IN, OUT, and INOUT parameters,
but in this report we consider IN parameters only.

Juno-2 constraints allow existential quantifiers, with the syntax:

(E <var> � <hint> :: <constraint>)

This constraint is true if the constraint solver can find a value for the
existentially quantified variable (using the optional hint) that makes the
constraint true.

For example, here are two simple definitions:

PRED Hor(a,b) IS
(E ax, bx, y :: a = (ax,y) AND b = (bx,y))

END;

FUNC y = Sqrt(x) IS
y � 1 AND y * y = x

END;

The existentially quantified variables in Hor need no hints, since they are
determined by pair constraints and equalities; there is nothing non-linear
about them. The result variable for Sqrt does need a hint, to exclude the
negative root.

a

ab

bc

cd cd

bcd

p = abcd

b

abc

Figure 11. A geometric visualization of
the OnBezier predicate with t = 2=3.
This method of constructing a Bézier curve
is known as the de Casteljau algorithm.

As another example, here is a definition of the constraint that the point
p lies on the Bézier curve determined by a, b, c, and d (see Figure 11):

PRED OnBezier(p, a, b, c, d) IS
(E t � ..., ab, bc, cd, abc, bcd, abcd
:: ab = (t, 0) REL (a, b)

AND bc = (t, 0) REL (b, c)
AND cd = (t, 0) REL (c, d)
AND abc = (t, 0) REL (ab, bc)
AND bcd = (t, 0) REL (bc, cd)
AND abcd = (t, 0) REL (abc, bcd)
AND p = abcd)
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bc
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e
f g

h
i

j

kl

m

g = NearMid(a, m)

g = NearMid(b, l)

g = NearMid(c, k)

g = NearMid(d, j)

g = NearMid(e, i)

g = NearMid(f, h)

(c, d) PARA (c, e)

Figure 12. Our freehand S is on the left.
The six NearMid constraints produced the
symmetrical but cuspy version in the mid-
dle. Adding the PARA constraint removed
the cusps at d and j. Adjusting to taste pro-
duced the smooth version on the right.

END

It is well known that for t = 1=2, p is the midpoint of the Bézier cubic.
More generally, p varies over the whole curve as t varies over the real
line. Farin’s text [6] describes Bézier curves and other models for curves
and surfaces. Juno-2’s constraint solver is powerful enough to use this
definition effectively, and it is one of Juno-2’s predefined predicates (as are
Hor and Sqrt). However, the OnBezier predicate doesn’t work very
well unless it has a good initial hint for t, and the formula we use for this
hint is complicated enough that we have replaced it by an ellipsis in the
listing above.

5 Drawing an S

Drawing an S from scratch is a hard test for any drawing program. Our
solution illustrates the value of Juno-2’s programmability.

We started by drawing a rough sketch of the S from four Bézier curves,
as shown first in Figure 12. Next, we used constraints to make the S prettier.
We could have made the S radially symmetric about its center point g, but
the top of an S should be smaller than the bottom. So what is really needed
is some kind of scaled radial symmetry. Juno-2 provides no predefined
constraint for scaled radial symmetry, so we typed the following function
definition into the program view:

FUNC mid = NearMid(a,b) IS
mid = (0.45, 0) REL (a,b)

END;

which caused a NearMid tool to appear. We applied this tool six times to
produce the constrained S shown second in Figure 12. To remove the cusps
at the points d and j, we made c, d, and e collinear by applying a single
PARA constraint (by symmetry, this also made i, j, and k collinear). A
little dragging produced the final S path.

troking the S path of Figure 12 with a calligraphic pen produced
the version used as the initial letter for this paragraph. Juno-2
provides no predefined operation to stroke a path with a calli-

graphic pen, so we defined a procedure PenStroke that performs this
operation. We won’t show the complete Juno-2 definition of the proce-
dure, but we will describe how it is implemented. The procedure takes six
arguments: the first four determine the curve to be stroked and the last two
control the size and slant of the pen:
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, a, b, c, dPenStroke( p, q)

trajectory pen

Figure 13 illustrates how the stroke is filled. The points a, b, c, and
d control the path of the center of the pen; the tips of the arrows through
these points control the path of the right edge of the pen; and the tails of the
arrows control the path of the left edge of the pen. Thus it is straightforward
to compute these two paths and fill the region enclosed by them. This can
still leave a triangular notch to be filled. Our PenStroke procedure uses
the constraint solver to compute the vertices of the notch: one vertex is on
both Bézier curves, and the others are on the common tangent to the two
curves.

a

b
c

d
p

q

Figure 13. Stroking a calligraphic pen de-
fined by the points p and q over the Bézier
curve a, b, c, d. Arrows are used in the
diagram to indicate vectors that are equal.

6 Modules

The Juno-2 language includes modules, to provide organized libraries for
common drawing operations. For example, there is a Dash module for
drawing dashed lines that was used to draw Figure 9. Dash is one of
Juno-2’s several dozen predefined modules; the “Open Module” menu in
Figure 5 shows the names of most of them. Opening a module gives a
menu containing tools for its procedures, predicates, and functions. For
example, Figure 5 shows the menu for the PS module.

One of the predefined modules is DiGraph, which can be used to
draw directed graphs with labeled nodes connected by arrows. The module
exports a procedure for drawing a node at a particular point, and for drawing
straight or curved edges between nodes. Figure 14 shows the modules
imported directly and indirectly into the implementation of the DiGraph
module. The figure was drawn in a few minutes with theDiGraphmodule
itself.

We have also written a Plot module for drawing scatter-plots. Fig-
ure 15 shows a graph drawn with this module. The graph shows the per-
formance of Juno-2’s software double-buffering. The performance section
below describes the system configuration on which this data was collected.

The Plot module illustrates the use of lists: one of the parameters to
the plotting procedure is the list of (x; y) data points to plot.

7 The constraint solver

DiGraph

PS Geometry

Arrow Ellipse

Math

R2

Figure 14. The DiGraph module and its
imports. The DiGraph module itself was
used to draw the figure.

The remainder of the report discusses important implementation aspects
of the Juno-2 system. Juno-2 consists of a compiler, an interpreter for
a virtual machine, and user interface code. The compiler transforms a
Juno-2 command into instructions for the virtual machine, which is a
bytecode interpreter. The SOLVE bytecode instruction invokes the runtime
constraint solver. In this section, we outline the method used by Juno-2 to
solve constraints.

The input to the solver is a list of unknowns to be solved for and a
constraint to be solved. In Juno-2, a constraint is a restricted form of
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predicate from the first-order theory of the real numbers (with equality)
together with the theory of ordered pairs. Constraints may involve ex-
istential quantification and conjunction, but not universal quantification,
disjunction, or negation. The atomic formulas in constraints may include
primitive, predefined, or user-defined predicates or functions (including
pair, addition, multiplication, trigonometric, and exponential functions),
but not inequalities and integer functions such as FLOOR and MOD.

Although we don’t allow inequalities in constraints, we have rarely
missed them. Inequality constraints are most useful in systems like user
interface toolkits where the system must lay out objects in response to
dynamic user input. In Juno-2, we have found that hints give the user more
precise control over layout.

However, we have needed inequalities occasionally, for example, to
construct sliders. Inequalities can be defined in terms of the built-in Juno-2
primitives. For example,

PRED NonNegative(x) IS (E y :: y * y = x) END;

PRED NonZero(x) IS (E y :: y * x = 1) END;

PRED Greater(x, y) IS
NonNegative(x-y) AND NonZero(x-y)

END;

Unfortunately, the constraint solver doesn’t work very reliably with in-
equalities defined in this way. Therefore, to avoid misleading users, we
decided not to predefine them. 0 100 200 300 400

0

3

6

9

12

15

Area
(K pixels)

Time (ms)

Figure 15. Performance of Juno-2’s soft-
ware double-buffering during dragging of a
simple drawing. Each point (x; y) corre-
sponds to a single frame; x is the num-
ber of pixels painted for the frame and y

is the elapsed time in milliseconds between
that frame and the next. The graph shows
that software double-buffering costs about
3 ms / frame plus 1 ms / 40K pixels / frame.

Preprocessing. To reduce the number of unknowns that the solver must
handle, the Juno-2 compiler preprocesses the constraints to generate in-
line assignments where possible. Extracting these assignments is a limited
form of the local propagation technique used by many simple constraint
solvers. For example, in the command

VAR x, y, z, w IN
x = a + a AND
x = y * y AND
w = x * a AND
z = (x, y) -> ...

which solves for the unknowns x, y, z, and w in terms of the known value
a, the compiler will find pre-assignments for x and w, but will need to rely
on the constraint solver for y and z. The resulting instructions are:

x := a + a;
w := x * a;
SOLVE(y, z: x = y * y AND z = (x, y))

Here we write SOLVE(v: C) to represent the instruction that sets v to
satisfy the constraint C using v’s initial value as a hint. This is just our way
of describing one of the bytecodes, not legal Juno-2 syntax.

11



The compiler could extract post-assignments as well, though it doesn’t
do this now. For example, in the example above, the compiler could remove
z from the call to SOLVE, inserting an explicit assignment to z after the
call.

Unpacking constraints. After preprocessing, the compiler converts the
remaining constraint into a conjunction of primitive constraints that are
known to the runtime solver. This process is called unpacking.

Most things that appear to the Juno-2 user to be primitive are actually
predefined entities in the Juno-2 language, and are not primitive from the
point of view of the constraint solver. For example, while the geometric
predicates are built into the user interface, they are not built into the solver:
They are defined in terms of addition, multiplication, and pair constraints.
Even subtraction and division are predefined. In fact, when all the defini-
tions are eliminated, the constraint solver is presented with a conjunction
of primitive constraints, of which there are only six types:

FUNC res = SegLenSq(s) IS
  (E px, py, qx, qy, dx, dy ::
    s = ((px, py), (qx, qy)) AND
    qx = px + dx AND
    qy = py + dy AND
    res = dx * dx + dy * dy)
END;

PRED CONG(s, t) IS
  SegLenSq(s) = SegLenSq(t)
END;

Figure 16. The CONG constraint is not
primitive from the point of view of the solver,
but is predefined by the Juno-2 definitions
above.

x = y x = tan(y)
x = y + z x = exp(y)
x = y * z x = (y, z)

In these six forms, x, y, and z are variables or constants.
By converting constraints into conjunctions of primitives, we simplify

the interface to the runtime solver. Although the number of primitive
constraints is small, they are extremely expressive when combined with
declarative predicate and function definitions. For example, they can be
used to define any constraint expressible in Euclidean geometry. Figure 16
shows the definition of CONG.

To unpack, the compiler repeatedly replaces predicates and functions
with their instantiated definitions and un-nests the term structure by insert-
ing existentially quantified variables. For example, given

FUNC y = Half(x) IS x = y + y END

the constraint

u = Half(w * z)

would unpack to

(E s :: s = w * z AND s = u + u)

a

b
c

VAR
  a = (200, 210),
  b = (300, 310),
  c ~ (131.6, 333.8)
IN
  (a, b) CONG (a, c) ->
    Circle.Draw(a, b);
    PS.Stroke()
END

Figure 17. The point c is constrained by
a single CONG constraint to be on the circle
defined by the frozen points a and b.

Unpacking interacts with preprocessing, since the replacement of a
defined function or predicate with its body can allow new pre-assignments
to be extracted. The processes eventually terminate, leaving a list of
unknowns and primitive constraints that the compiler bundles together into
a SOLVE instruction for the virtual machine. Figure 18 shows the result
of preprocessing and unpacking the command shown in Figure 17 using
the definition of CONG from Figure 16. Notice how a pre-assignment was
generated for the expressionSegLenSq(seg1)once the CONG predicate
was instantiated.
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Separating constraints. The first step in solving a constraint at runtime
is to separate the pair and equality constraints from the numeric constraints,
so that they can be solved independently. It is intuitively clear that this sepa-
ration is possible, since a constraint like x=(y,z) constrains the structure
of the solution, while constraints like x=y+z and x=y*z constrain the
numeric values embedded in the solution.

Our technique for separating out the pair constraints is based on a
technique used in mechanical theorem proving [13].

Unification closure. We use unification closure to solve the pair con-
straints. Computing the unification closure is a basic step in resolution
theorem-proving and in the type-inference algorithm used by the program-
ming language ML.

The input constraint is first converted into a representation called an
equivalence graph, or E-graph. An E-graph is a directed graph together
with an equivalence relation on its nodes. The nodes of the graph are
labeled by variables and function names, and there are ordered edges from
each function node to the nodes representing its arguments. Two nodes

a := (200, 210);
b := (300, 310);
seg1 := (a, b);
seg1LenSq := SegLenSq(seg1);
c := (133.5, 247.4);
seg2 := (a, c);
SOLVE(
  c, seg2, p, q,
  px, py, qx, qy,
  dx, dy, dxSq, dySq
: seg2 = (a, c) AND
  seg2 = (p, q) AND
  p = (px, py) AND
  q = (qx, qy) AND
  qx = px + dx AND
  qy = py + dy AND
  dxSq = dx * dx AND
  dySq = dy * dy AND
  seg1LenSq = dxSq + dySq);
Circle.Draw(a, b);
PS.Stroke()

Figure 18. The command produced by
preprocessing and unpacking the command
of Figure 17 using the definition for CONG
shown in Figure 16.

are in the same equivalence class if and only if the values they denote
must be equal to satisfy the constraint. Initially, each node is in its own
equivalence class. Then, for each equality in the input constraint, the
equivalence classes of the nodes representing the two sides of the equality
are merged.

To solve the pair constraints, the solver computes the unification closure
of the E-graph over the pair nodes. This is the smallest equivalence relation
such that if pair nodes (x; y) and (x0; y0) are equivalent, then x is equivalent
to x0 and y is equivalent to y0.

In the example shown in Figure 18, unification closure produces four
nontrivial equivalence classes. Since the points a and b are both frozen,
the variables seg1 and seg1LenSq are fixed as well. (Notice that
neither occurs in the list of SOLVE unknowns.) Due to the two constraints
involving seg2, the value for a is unified with the variable p. This causes
px andpy to be unified with the values200 and210, respectively. Finally,
the unknown c is unified with the unknown q.

The numeric constraints that remain can be considered to constrain
the values of equivalence classes in the E-graph, instead of single nodes.
The solver exploits this fact to reduce the number of numeric unknowns.
Figure 19 shows the numeric constraint system that remains after the pair

SOLVE(
  px, py, qx, qy,
  dx, dy, dxSq, dySq,
: qx = 200 + dx AND
  qy = 210 + dy AND
  dxSq = dx * dx AND
  dySq = dy * dy AND
  20000 = dxSq + dySq)

Figure 19. The numeric constraint system
that remains after applying unification closure
to the SOLVE command of Figure 18.

constraints have been eliminated from the SOLVE constraint of Figure 18
by unification closure. Once the numeric solve completes, the unification
closure machinery must still construct values for pair-valued unknowns
from the numeric values. In this case, the value for c will be constructed
by pairing qx with qy.

Currently, unification closure happens at runtime. However, we plan
to move it to compile-time, since unlike the numeric constraints, the pair
constraints can be solved by code that is independent of the runtime values
of the variables.
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Repacking. One more step is used to reduce the number of unknowns:
the primitive numeric constraints and unknowns are repacked. For exam-
ple, consider the following three primitive equations in three unknowns:

x = y + 1
z = y * x
z = x + 2

Repacking will produce one equation in one unknown:

(x - 1) * x = x + 2

After this equation is solved for x, values for y and z can be computed
immediately. As another example, repacking the constraint of Figure 19
produces one equation in two unknowns:

20000 = (qx� 200)2
+ (qy� 210)2

Numeric solving. After repacking, the numeric constraints are solved by
Newton’s method. This method consists simply in repeating the following
step: replace the constraints by the linear constraints that approximate
them around the current point, then solve the linear constraints by Gaussian
elimination to produce the next point. For an accessible description, see
Conte and de Boor’s text [4].

It was not obvious at the start of the project whether Newton’s method
would do the trick. Our first version of the solver failed so often that it was
unwise to demonstrate it, much less use it. After fixing many problems
the solver still is not perfect, but it works well enough to be quite useful.
The detailed account of our struggles with Newton’s method belongs in
a separate paper, but we will briefly mention the four main problems that
needed fixing.

First, hints were lost as the constraints were preprocessed, unpacked,
separated, subjected to unification closure, and repacked. We found that
each of these steps must be implemented carefully to preserve the informa-
tion in the hints. For example, a hinted variable should never be eliminated
during repacking unless its hint can be transferred to one of the variables
that remain.

Second, we found that ordinary Newton iteration is too willing to move
large distances. Because of this, the adjust and drag tools often surprised
users by changing the drawing more than necessary to solve the constraints.
We fixed this by ensuring that each Newton step was as short as possible.

Third, ordinary Newton iteration is unreliable when the constraints are
consistent but redundant. Consistent but redundant nonlinear systems tend
to produce inconsistent or ill-conditioned linear systems for the individual
steps. To solve this problem, we modified our Gaussian elimination routine
to use only the “well-conditioned part” of its matrix and ignore the ill-
conditioned part.

Fourth, it is difficult to know when to stop the Newton iteration. Be-
cause roundoff errors can occur in unpredictable ways when evaluating
the constraints, fixed error thresholds do not work, regardless of whether
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they are absolute or relative. We therefore determine the error threshold
by estimating the roundoff error.

Why unpack/repack? It seems odd to unpack and later repack. But
unpacking is necessary to separate the numeric from the non-numeric con-
straints, and repacking makes Newton’s method faster and more reliable.
The whole process distills the essential numeric problem out of a large
collection of user-defined constraints.

For example, consider the problem of solving the constraint

OnBezier(p, a, b, c, d) -> ...

for p. When all the definitions are unpacked, the result is a conjunction of
99 primitive constraints on 137 unknowns: 39 pair constraints, 36 addition
constraints, and 24 multiplication constraints. The compiler finds pre-
assignments for 3 of the unknowns, leaving 134; after unification closure,
61 numeric unknowns remain. Fifty-four of these unknowns are eliminated
by repacking, so that the final Newton iteration solves a system with six
nonlinear constraints on seven unknowns. Without repacking, Newton’s
method would have to solve a system of size 61 by 60 instead of 7 by 6.
The number of Newton iterations required to solve the system depends on
the values of a, b, c, and d and on the hint for p, but is typically less than
five.

8 Performance

In this section we report the performance measurements we have made,
and our tentative conclusions about the performance limits of the Juno-2
approach.

4.0

0.5 

Figure 20. An engineering-style drawing of
a flange and its cutaway view.

The results in this section describe Juno-2 running on a DEC 3000/600
Alpha workstation equipped with a 175 megahertz DECchip 21064 pro-
cessor running OSF/1. The entire system is written in Modula-3 [16].
Juno-2’s user interface is based on the FormsVBT [3] and Trestle [11]
object-oriented user interface toolkits, which use the X window system
[17] for doing graphics. A standard Trestle module provides software
double-buffering. Trestle reduces curved paths to polygonal paths; X
strokes and fills the polygonal paths.

The reported times include Modula-3 runtime checks and garbage col-
lection. We have tuned the program to make the collection costs almost
negligible (less than 1.5 per cent of the frame times), but the costs of
runtime checks are more significant.

When animating or dragging, the current command is compiled once,
and executed once per displayed frame. The compiler does preprocessing
and unpacking; the run-time solver does unification closure, repacking,
and numeric solving. Compilation time is noticeable but acceptable for
our experimental purposes (less than a second for most of the figures in
this report). We have not studied the compilation time carefully, but have
concentrated instead on the per-frame run-time costs.
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As samples for study, we take three rather simple drawings, the filled
equilateral triangle, the block A, and the tetrahedron shown in Figures 5,
7, and 1; and one more complicated drawing, the engineering drawing of
the flange shown in Figure 20. We wrote Juno programs to animate these
figures, and then measured their per-frame costs.

Per-frame elapsed times for the triangle, block A, and tetrahedron are
16, 40, and 73 milliseconds, respectively. This is fast enough to produce
the illusion of continuous motion. The costs in executing each frame can
be divided into four categories:

� executing the graphics operations to paint the new frame, including
stroking, filling, painting text, communicating with the X server, and
the pixmap copy required by software double-buffering,

� solving the pair constraints (unification closure),

� repacking and solving the numerical constraints, and

� all other overhead in the bytecode interpreter, including the time to
decode the arguments to the run-time constraint solver.

Figure 21 shows these costs for the triangle, block A, and tetrahedron.
The costs of solving the pair constraints are quite significant (more so than
the figure indicates, since much of the overhead is attributable to decoding
the pair constraints). We estimate that most frame rates will double when
we move the pair-solving to compile time.

graphics 11
pair solve 2

numeric solve 1
overhead 2

total 16

Equilateral triangle

graphics 12
pair solve 10

numeric solve 10
overhead 8

total 40

Block A

graphics 14
pair solve 26

numeric solve 12
overhead 21

total 73

Tetrahedron

Figure 21. Per-frame elapsed times of three
simple figures, in milliseconds.

The cost of each Newton step is the cost of evaluating the Jacobian plus
the cost of performing Gaussian elimination. Asymptotically, Gaussian
elimination is O(n3) while evaluating the Jacobian is only O(n2). But for
the matrix sizes we currently observe in Juno-2, evaluating the Jacobian
takes about half the time. These numeric algorithms have predictable costs;
comparing them with the machine’s SPEC rating indicates that we are not
getting the performance we should, even allowing for the costs of runtime
checks (which are roughly 25% for these algorithms). We don’t yet know
why.

In summary, we are confident that the numeric solving could be made
considerably faster and that the pair-solving cost and about half the over-
head could be eliminated by moving pair-solving to compile time. This
would make graphics dominate the other per-frame costs in simple draw-
ings like the equilateral triangle, block A, and tetrahedron.

graphics 58
pair solve 136

numeric solve 118
overhead 142

total 454

Figure 22. Per-frame elapsed times of the
flange, in milliseconds.

A more important question is how the cost of constraint solving scales.
The flange example addresses this question, since it uses many of the pre-
defined Juno-2 modules, such as those for drawing circular arcs, dashed
lines, and arrows. The per-frame elapsed time for the flange is 454 mil-
liseconds (see Figure 22), which is responsive enough to be usable, but not
to provide the illusion of continuous motion during dragging or animation.

Juno-2 encourages the user to structure a drawing as a hierarchy of
groups and subgroups, using defined procedures and predicates, so that
drawing a frame involves solving many small systems instead of one big
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one. For example, in drawing the flange, the constraint solver is invoked
157 times per frame, but the largest of these 157 systems is only 12 by 12.
Thus, in the case of the flange, hierarchy is working. (The reader may be
surprised by the number of invocations of the constraint solver. Our style
certainly does not spare the constraint solver: it is invoked for each dash
of a dashed line and for many circular arcs.)

Of the 157 invocations of the solver per frame of the flange, 105 of
them produced trivial matrices (zero by zero). This could easily be fixed
by preprocessing more aggressively. Of the 52 nontrivial numeric solves,
all of them were square matrices. This is because the process of repacking
constraints tends to produce final Newton systems that are square or nearly
square. Figures 23 and 24 show histograms illustrating the number of
Newton steps required and the sizes of the matrices for these 52 invocations
of the solver.
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Figure 23. Most of the 52 calls to Newton’s
method used to draw the flange took 3 or 4
iterations; none took more than 6.

The distribution of the number of Newton iterations in Figure 23 is
encouraging. As long as adequate hints are provided, we expect this
number to remain near four even for very large drawings. (The spike at
one iteration is because some of the systems are actually linear. This could
be detected at compile time, but there is no clear advantage in doing so.)

The distribution of the sizes of the Newton systems in Figure 24 is not
so encouraging. It is not clear how the matrix size will scale as drawings
get larger. Hierarchy helps, but until Juno-like methods see more use, we
won’t know how much. To adapt our methods to particular applications,
it may be necessary to design the application carefully to keep the matrix
sizes manageable.

9 Conclusions

Juno-2 shows that fast constraint solving is possible with a highly extensi-
ble, fully declarative constraint language. The Juno-2 constraint language
allows first-order function and predicate definitions as well as structural and
non-linear constraints. By adding ordered pairs to the theory, we support a
variety of structural constraints without greatly complicating the solver.
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20 
25 

1 2 4 6 12
0 

Figure 24. The 52 calls to Newton’s method
used to draw the flange produced matrix sizes
ranging from 1 by 1 to 12 by 12. All the
matrices were square.

Juno-2 is structured around a small number of general primitives whose
combinations are highly expressive. In Juno-2, as in so many systems,
this structure was effective in maximizing functionality and minimizing
complexity.

The generality in the Juno-2 system has been valuable for our ex-
periments, but is daunting for novice users. For example, the PostScript
drawing model presents difficulties for new users who are used to drawing
editors like MacDraw. It takes a while to adjust to the idea that paint is
simply a side-effect of the drawing operations, and not a virtual object
to be selected and manipulated. Similarly, the loops, conditionals, and
closures in the language are essential for some kinds of work, but overkill
for many simple drawings. We believe that Juno-2’s constraints could be
used in a more specialized drawing program with a simpler, less general
user interface.
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Constraints do not eliminate the need for careful thinking, and it takes
practice to use them effectively. But they do remove much of the tedium
from graphical programming. A flexible constraint mechanism allows you
to specify graphical shapes at a level of abstraction that is close to the
artwork itself, avoiding the need for explicit calculations of coordinates.

Using Juno-2 is fun. Our experiments with it have strengthened our
belief that constraints are destined to become an important enabling tech-
nology in interactive graphics. We hope that some of the techniques
explored in Juno-2 will be useful steps towards that future.
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