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DEC's business and technology objectives require a strong research program.

The Systems Research Center (SRC) and three other research laboratories

are committed to �lling that need.

SRC began recruiting its �rst research scientists in l984|their charter, to

advance the state of knowledge in all aspects of computer systems research.

Our current work includes exploring high-performance personal computing,

distributed computing, programming environments, system modelling tech-

niques, speci�cation technology, and tightly-coupled multiprocessors.

Our approach to both hardware and software research is to create and use

real systems so that we can investigate their properties fully. Complex

systems cannot be evaluated solely in the abstract. Based on this belief,

our strategy is to demonstrate the technical and practical feasibility of our

ideas by building prototypes and using them as daily tools. The experience

we gain is useful in the short term in enabling us to re�ne our designs, and

invaluable in the long term in helping us to advance the state of knowledge

about those systems. Most of the major advances in information systems

have come through this strategy, including time-sharing, the ArpaNet, and

distributed personal computing.

SRC also performs work of a more mathematical avor which complements
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motivated by problems that arise in our systems research.

DEC has a strong commitment to communicating the results and experience

gained through pursuing these activities. The Company values the improved

understanding that comes with exposing and testing our ideas within the

research community. SRC will therefore report results in conferences, in
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for our prototype systems among those with whom we have common research
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Author's Abstract

In the transition axiom method, safety properties of a concurrent system

can be speci�ed by programs; liveness properties are speci�ed by assertions

in a simple temporal logic. The method is described with some simple

examples, and its logical foundation is informally explored through a careful

examination of what it means to implement a speci�cation. Language issues

and other practical details are largely ignored.
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Capsule Review

Concurrent systems are notoriously di�cult to design and to specify. The

transition axiom method provides a simple, sound, and powerful formal

basis for the speci�cation of such systems. The method is not as widely

understood as it should be, perhaps because previous discussions obscured

its fundamental principles in the mass of details needed to rigorously describe

its formal basis.

This report focusses on the big picture and subordinates the details. It might

well be subtitled \Everything you wanted to know about transition axioms,

but were afraid to ask." It takes the form of a dialog between the author and

an unusually astute student of the method. The questions are those that

the reader might well ask, arranged to permit an orderly exposition of the

method. The examples are easily understood, yet rich enough to illustrate

all the major points.

Transition axioms can be used to specify safety and liveness properties of

systems separately; only the latter require explicit use of temporal logic.

Reasoning about safety can be done without concern for liveness, but rea-

soning about liveness will involve both safety and liveness properties.

The method includes a precise and general characterization of what it means

to implement a speci�cation, and provides formal methods for verifying that

one speci�cation implements another. These methods apply even if the

state functions and grain of atomicity di�er in the two speci�cations. Since

programs are included as a special kind of speci�cation, program veri�cation

becomes an important special case. Informal reasoning can be justi�ed by

appeal to the underlying formal methods.

The transition axiom method does not presuppose any particular speci�ca-

tion language. One of its charms is that semantics for existing languages

and notations can be given in terms of transition axioms. Another impor-

tant aspect is the separation of transition axioms from interface speci�ca-

tions. The same transition axioms{combined with suitable speci�cations of

interface state functions{might specify the behavior of an interface that is

mechanical, electronic, or software.

Jim Horning
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1 Introduction

Over the past few years, I have developed an approach to the formal speci-

�cation of concurrent systems that I now call the transition axiom method.

The basic formalism has already been described in [13] and [1], but the

formal details tend to obscure the important concepts. Here, I attempt

to explain these concepts without discussing the details of the underlying

formalism.

Concurrent systems are not easy to specify. Even a simple system can be

subtle, and it is often hard to �nd the appropriate abstractions that make

it understandable. Specifying a complex system is a formidable engineering

task. We can understand complex structures only if they are composed

of simple parts, so a method for specifying complex systems must have a

simple conceptual basis. I will try to demonstrate that the transition axiom

method provides such a basis. However, I will not address the engineering

problems associated with specifying real systems. Instead, the concepts will

be illustrated with a series of toy examples that are not meant to be taken

seriously as real speci�cations.

Are you proposing a speci�cation language?

No. The transition axiom method provides a conceptual and logical founda-

tion for writing formal speci�cations; it is not a speci�cation language. The

method determines what a speci�cation must say; a language determines in

detail how it is said.

What do you mean by a formal speci�cation?

I �nd it helpful to view a speci�cation as a contract between the user of a

system and its implementer. The contract should tell the user everything

he must know to use the system, and it should tell the implementer every-

thing he must know about the system to implement it. In principle, once

this contract has been agreed upon, the user and the implementer have no

need for further communication. (This view describes the function of the

speci�cation; it is not meant as a paradigm for how systems should be built.)

For a speci�cation to be formal, the question of whether an implementation

satis�es the speci�cation must be reducible to the question of whether an

assertion is provable in some mathematical system. To demonstrate that he
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has met the terms of the contract, the implementer should resort to logic

rather than contract law. This does not mean that an implementation must

be accompanied by a mathematical proof. It does mean that it should be

possible, in principle though not necessarily in practice, to provide such a

proof for a correct implementation. The existence of a formal basis for the

speci�cation method is the only way I know to guarantee that speci�cations

are unambiguous.

Ultimately, the systems we specify are physical objects, and mathematics

cannot prove physical properties. We can prove properties only of a mathe-

matical model of the system; whether or not the system correctly implements

the model must remain a question of law and not of mathematics.

Just what is a system?

By \system", I mean anything that interacts with its environment in a dis-

crete (digital) fashion across a well-de�ned boundary. An airline reservation

system is such a system, where the boundary might be drawn between the

agents using the system, who are part of the environment, and the terminals,

which are part of the system. A Pascal procedure is a system whose envi-

ronment is the rest of the program, with which it interacts by responding

to procedure calls and accessing global variables. Thus, the system being

speci�ed may be just one component of a larger system.

The solar system is not a system in this sense, both because it is not discrete

and because there is no well-de�ned notion of an environment with which it

interacts.

A real system has many properties, ranging from its response time to the

color of the cabinet. No formal method can specify all of these properties.

Which ones can be speci�ed with the transition axiom method?

The transition axiom method speci�es the behavior of a system|that is,

the sequence of observable actions it performs when interacting with the

environment. More precisely, it speci�es two classes of behavioral properties:

safety and liveness properties. Safety properties assert what the system is

allowed to do, or equivalently, what it may not do. Partial correctness is

an example of a safety property, asserting that a program may not generate

an incorrect answer. Liveness properties assert what the system must do.

Termination is an example of a liveness property, asserting that a program

must eventually generate an answer. (Alpern and Schneider [2] have formally
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de�ned these two classes of properties.) In the transition axiom method,

safety and liveness properties are speci�ed separately.

There are important behavioral properties that cannot be speci�ed by the

transition axiom method; these include average response time and probabil-

ity of failure. A transition axiom speci�cation can provide a formal model

with which to analyze such properties,1 but it cannot formally specify them.

There are also important nonbehavioral properties of systems that one might

want to specify, such as storage requirements and the color of the cabinet.

These lie completely outside the realm of the method.

Why specify safety and liveness properties separately?

There is a single formalism that underlies a transition axiom speci�cation, so

there is no formal separation between the speci�cation of safety and liveness

properties. However, experience indicates that di�erent methods are used

to reason about the two kinds of properties and it is convenient in practice

to separate them. I consider the ability to decompose a speci�cation into

liveness and safety properties to be one of the advantages of the method.

(One must prove safety properties in order to verify liveness properties, but

this is a process of decomposing the proof into smaller lemmas.)

Can the method specify real-time behavior?

Worst-case behavior can be speci�ed, since the requirement that the system

must respond within a certain length of time can be expressed as a safety

property|namely, that the clock is not allowed to reach a certain value

without the system having responded. Average response time cannot be

expressed as a safety or liveness property.

The transition axiom method can assert that some action either must occur

(liveness) or must not occur (safety). Can it also assert that it is possible

for the action to occur?

No. A speci�cation serves as a contractual constraint on the behavior of

the system. An assertion that the system may or may not do something

provides no constraint and therefore serves no function as part of the formal

speci�cation. Speci�cation methods that include such assertions generally

1See [20] for an example of failure analysis applied to a speci�cation.
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use them as poor substitutes for liveness properties. Some methods cannot

specify that a certain input must result in a certain response, specifying

instead that it is possible for the input to be followed by the response. Every

speci�cation I have encountered that used such assertions was improved

by replacing the possibility assertions with liveness properties that more

accurately expressed the system's informal requirements.

Imprecise wording can make it appear that a speci�cation contains a pos-

sibility assertion when it really doesn't. For example, one sometimes states

that it must be possible for a transmission line to lose messages. However,

the speci�cation does not require that the loss of messages be possible, since

this would prohibit an implementation that guaranteed no messages were

lost. The speci�cation might require that something happens (a liveness

property) or doesn't happen (a safety property) despite the loss of mes-

sages. Or, the statement that messages may be lost might simply be a

comment about the speci�cation, observing that it does not require that all

messages be delivered, and not part of the actual speci�cation.

If a safety property asserts that some action cannot happen, doesn't its nega-

tion assert that the action is possible?

In a formal system, one must distinguish the logical formula A from the as-

sertion `A, which means that A is provable in the logic; `A is not a formula

of the logic itself. In the logic underlying the transition axiom method, if A

represents a safety property asserting that some action is impossible, then

the negation of A, which is the formula :A, asserts that the action must

occur. The action's possibility is expressed by the negation of `A, which is

a metaformula and not a formula within the logic. See [12] for more details.

2 Safety Properties

2.1 A Soda Machine

We begin with a system consisting of a soda machine, in which the user

deposits either a half dollar or two quarters and the machine in return dis-

penses a can of soda.2 Figure 1, together with the initial condition that

2For the reader unfamiliar with colloquial American English and United States cur-

rency: soda is a carbonated soft drink, a quarter is a coin worth $0.25, and a half dollar

coin is worth $0.50.
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Figure 1: Speci�cation of a soda machine

the machine starts in state I, provides a simple speci�cation of the safety

properties of this machine.

Figure 1 speci�es that, when the machine is in state I, either a deposit quarter

action can occur that takes the machine to state II or a deposit half dollar

action can occur that takes it to state III. From state II, only a deposit

quarter action taking the machine to state III can occur. From state III,

only a dispense soda action taking the machine to state I can occur. This is

a safety speci�cation, so it asserts that these are the only actions that are

allowed to occur; it does not assert that any actions must occur.

What happens if the user deposits �rst a quarter then a half dollar?

The speci�cation disallows this behavior. (Remember that the examples are

not supposed to be realistic speci�cations.) There are two ways to view this

aspect of the speci�cation:

� The speci�cation constrains the behavior of the user, forbidding him

to deposit a half dollar after he has deposited a quarter.

� The speci�cation does not state what the soda machine is supposed to

do if the user deposits a quarter then a half dollar; the implementer

is free to build the machine so it does anything he wants if the user

exhibits this kind of \incorrect" behavior.

Which view we take makes no di�erence to how we write and reason about

speci�cations.
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Figure 1 is supposed to specify the soda machine's behavior; why does it also

specify the user's behavior?

It is impossible to implement a system that functions properly in the pres-

ence of arbitrary behavior by the environment. A more realistic speci�cation

would allow the user to deposit an arbitrary sequence of coins, perhaps re-

turning them if an inappropriate sequence had been deposited; it would not

allow the user to attack the machine with a sledgehammer. (We shall see

later how the sledgehammer is disallowed.) The speci�cation of a program

procedure usually includes a precondition that constrains the environment

by forbidding calls whose arguments do not satisfy the precondition; the

speci�cation of a circuit includes timing constraints that restrict when the

environment can change the input levels [16].

Figure 1 is a simple state-transition diagram. Such diagrams work well for

very simple examples, but don't they become too complicated when specifying

real systems?

Yes; these diagrams do not scale well to larger problems. State-transition

diagrams represent just one particular language that can be used with the

transition axiom method. The shortcomings of these diagrams are limita-

tions of the language, not of the transition axiom method. Other languages

are needed for writing transition axiom speci�cations of larger systems; I

will have more to say about languages later.

What is the fundamental, language-independent concept that is expressed by

the state-transition diagram of Figure 1?

Allowed state transitions. In the transition axiom method, one speci�es

safety properties by describing a set of states and all transitions between

states that are allowed to occur. There are many di�erent languages with

which one can describe states and transitions.

The concept of state transitions, as illustrated by the diagram of Figure 1,

has been used for years. Is there anything di�erent about the transition

axiom method?

What is new in the transition axiom method is not the diagram, but its

interpretation as a formal speci�cation. This new interpretation is needed

because conventional state-transition methods do not adequately address
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the fundamental question of what it means for an implementation to meet

such a speci�cation. One of the advantages of the transition axiom method

is that speci�cations of safety properties can be written in friendly, familiar

notations such as state-transition diagrams. The speci�cations look old; the

meaning we assign to them is new.3

What is di�erent about the interpretation of Figure 1 in the transition axiom

method?

The naive interpretation of Figure 1 is that it speci�es a three-state machine.

In more sophisticated approaches, such as the one described by Jones [8], the

diagram is interpreted to mean that there exists some state function, let's

call it f , that assumes the values I, II, and III; the diagram speci�es how

f can change. More precisely, the soda machine is assumed to have some

unspeci�ed set of states, let's call it S; the machine's behavior is described by

the sequence of states s0, s1, s2, : : : it passes through. The state function f

is a mapping from S to the set of values fI; II; IIIg. The diagram of Figure 1

speci�es that for each state transition si ! si+1 in this sequence, the change

of value from f(si) to f(si+1) is one of the following:

� f(si) = I, f(si+1) = II, and the change is caused by a deposit quarter

action.

� f(si) = I, f(si+1) = III, and the change is caused by a deposit half

dollar action.

� f(si) = II, f(si+1) = III, and the change is caused by a deposit quarter

action.

� f(si) = III, f(si+1) = I, and the change is caused by a dispense soda

action.

With this interpretation, the entire interaction of the user depositing a half

dollar and the machine dispensing a soda is performed as two actions. In the

transition axiom method's interpretation, we allow the additional possibility

that f(si) = f(si+1) (even if si 6= si+1). The interaction of buying a soda

with a half-dollar coin could involve dozens or hundreds of state transitions,

only two of which change the value of f .

3More precisely, I believe that this meaning was new when it was proposed in [13] and

[14]; it has since appeared in [9] and elsewhere.
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What is gained by this new interpretation?

In a real soda machine, dispensing a soda could involve hundreds of separate

state transitions. If a speci�cation asserts that this is just a single action,

then one has to say what it means for a machine operation with hundreds

of state transitions to satisfy a speci�cation asserting that it is a single

action. In the transition axiommethod's interpretation, this is not a problem

because the speci�cation asserts that there is a state function that changes

only once during the dispensing of the soda; it says nothing about how many

separate state transitions occur. The advantages of this interpretation are

discussed later.

A formal speci�cation should provide all the necessary information to deter-

mine if an implementation is correct. However, from Figure 1, there is no

way to determine if the implementation is supposed to consist of: (1) the

entire soda machine, including the coin box and the soda rack, (2) a control

circuit inside the machine, or (3) a program for the soda machine's micro-

processor. The choice of labels on the arcs may provide some clue, but surely

this choice can have no formal signi�cance. Can a soda machine, a circuit,

and a computer program all be correct implementations of the same formal

speci�cation?

A speci�cation must be incomplete if it does not distinguish between a me-

chanical device, a circuit, and a program. What is missing from Figure 1 is a

speci�cation of the interface|the mechanism by which the system commu-

nicates with the environment. The speci�cation must state whether commu-

nication is by depositing coins and dispensing cans, by raising and lowering

voltages on wires, or by calling and returning from program procedures.

The interface speci�cation stipulates that the deposit quarter action may

not be performed with a sledgehammer. The di�erence between depositing

a quarter and wielding a sledgehammer, or between raising a 5 volt signal

and raising a 5000 volt signal, can be described only in terms of implementa-

tion details. The interface must therefore be speci�ed at the implementation

level.

How is the interface speci�ed?

The environment and the system communicate by changing the values of

state functions. For example, if we are specifying a circuit, then communi-

cation between the circuit and its environment is achieved by changing the
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values of state functions that represent the voltages on wires. 4 To each wire

w there might correspond a state function fw that represents the voltage on

the wire. The speci�cation might permit the environment to communicate

with the circuit by changing the value of fw to 4:5� 1:2 (the voltage on the

wire having some �xed value between 3.3 and 5.7 volts) when the value of

fw0 for some other wire w0 equals 0� 1:2. (Despite the continuous range of

voltages, this can still be considered a discrete system because the voltage

changes are assumed to be instantaneous.)

To specify the interface, we must specify how such interface state functions

change. This can be done by the same method used to specify changes to

internal state functions, such as the function f of the soda machine speci-

�cation. Thus, no extra machinery need be added to the transition axiom

method to specify the interface.

In practice, we usually don't bother specifying the interface in this way.

Instead, we specify the interface in the implementation language, making it

trivial to check that the interface is implemented correctly. For example, the

wires connecting a circuit with its environment would be speci�ed directly

in the hardware design language used to implement the circuit. Instead of

specifying how the actual voltages on a wire w change, we would describe

those changes with the hardware design language's primitives, such as a

w := true. The actual voltages would not be described.

How are program interfaces speci�ed?

The exact nature of the interface speci�cation depends upon the program-

ming language. For a Pascal procedure, the interface is speci�ed by giving

the name of the procedure, the types of its arguments, and the names and

types of any global variables accessed by the procedure. For a Modula-2

package, the interface is speci�ed by the de�nition module [21].

This implies that we cannot specify a procedure independently of the language

in which it is implemented. Shouldn't we be able to write a single speci�cation

of, say, a square root function that is independent of the language in which

it is implemented?

4What we are really specifying is not a circuit but a mathematical model of the circuit.
The state functions are the mathematical objects within the model that represent the

voltages on the wires of the real circuit.
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We are not specifying the language in which the procedure is implemented;

we are just specifying the implementation of the interface. A system whose

interface is speci�ed as a Pascal procedure could be implemented in assem-

bly language; it need only obey the same calling conventions as a Pascal

procedure.

While the speci�cations of a square root function for di�erent program-

ming languages may be similar, they will not be identical. For example,

how errors are handled will depend upon whether or not the language pro-

vides an exception-handling mechanism. Separating the speci�cation of a

square root function into a common part and an interface-dependent part is

a speci�cation-language design issue that is addressed by Guttag, Horning,

and Wing in Larch [6].

The inuence of the interface on the rest of the speci�cation is especially

important in concurrent systems. It is shown in [15] that the speci�cation

of even so basic a property as �rst-come-�rst-served priority cannot be in-

dependent of the interface's implementation details.

You are saying that, even for the highest-level speci�cation, the interface

must be speci�ed at the implementation level. Can't one hide these low-level

implementation details in the high-level speci�cation?

The interface is speci�ed by describing how interface state functions can

change. We shall see below how the changes to internal state functions can

be speci�ed hierarchically; the same approach can applied to the interface

state functions. However, the high level speci�cation is not complete until

the interface is completely speci�ed down to the implementation level. A

complete speci�cation should eliminate the need for any communication

between the user of the system and its implementor. For example, the

speci�cation of a control circuit for a soda machine should contain all the

information about that circuit's behavior needed by the person designing the

rest of the machine, which means that it must specify the actual voltages

on the wires.

While a hierarchical decomposition of the interface may be quite useful, it

is logically just a method of organizing the high level speci�cation. I will

therefore not consider such a decomposition of the interface.
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Can interfaces be speci�ed solely in terms of state functions?

In addition to interface state functions, we need to introduce the notion

of who is responsible for changing the values of these state functions. A

speci�cation of the soda machine interface must state that the environment

(the user) performs the deposit quarter and deposit half dollar actions and

the system (the machine) performs the dispense soda action. The speci�ca-

tion of a procedure interface must state that the environment (the rest of

the program) performs the procedure call and the system (the procedure)

performs the return.

Usually, actions are performed either by the environment or by the system.

However, it is sometimes useful to assert which part of the environment

performs an action. For example, to specify a process that interacts with its

environment through both shared variables and CSP-style operations [7], it

may be useful to distinguish actions performed by a communication channel

(\!" and \?" operations) from ones performed by other processes (setting

shared variables).5

Why is it necessary to state who performs an interface action?

Consider a Modula-2 package that implements a queue by providing put

and get procedures. If we failed to specify that only the environment can

call these procedures, then the speci�cation would be satis�ed by an imple-

mentation that calls the put procedure itself to cause random elements to

appear in the queue.

What is the general form of a safety speci�cation in the transition axiom

method?

A safety speci�cation consists of:

� A set of state functions, partitioned into interface and internal state

functions.

� A speci�cation of the initial value of every state function.

� A set of actions, partitioned into interface and internal actions.

5Although one often thinks of a CSP communication as an action performed jointly by

the sender and the receiver, thinking of it as an action of the channel makes it unnecessary

to introduce the concept of joint actions.
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� For each interface action, a speci�cation of who performs the action.

(Internal actions are always performed by the system.)

� A set of rules, called transition axioms, that describe how each ac-

tion changes the state functions. An interface state function may be

changed only by an interface action.

In the soda machine example, there is a single internal state function f

whose initial value is I; the interface state functions have been left unspec-

i�ed. There are three actions, all of which are interface actions: deposit

quarter and deposit half dollar, performed by the environment, and dispense

soda, performed by the system. The e�ect of the deposit quarter action is

described by a transition axiom asserting that the action can occur only

when f equals I, in which case it changes the value of f to II, or when f

equals II, in which case it changes the value of f to III. The rules for the de-

posit half dollar and dispense soda actions are similar, but a bit simpler. A

complete soda machine speci�cation would also have to describe how these

three actions change the interface state functions.

Precisely what is the meaning of such a speci�cation?

The formal meaning of a transition axiom speci�cation is a formula of tem-

poral logic. To give a rigorous de�nition of that meaning, one must de�ne

the formal semantics of temporal logic and provide an algorithm for trans-

lating a speci�cation into a temporal logic formula. This is done in [13].

Instead of taking such a formal approach here, I will try to provide an intu-

itive understanding of what a transition axiom speci�cation means through

careful consideration of what it means to implement the speci�cation.

In developing an intuitive understanding of transition axiom speci�cations, it

is useful to know the general shape of the formula underlying a speci�cation.

I will ignore the part of the speci�cation having to do with who performs

the actions. Let f1, : : : , fn be the internal state functions and g1, : : : , gm
be the interface state functions of the speci�cation. The formal meaning of

the speci�cation is a temporal logic formula of the form6

9f1; : : : ; fn s:t: X

6Note that the interface state functions gi are free variables in the formula; the signif-
icance of this is discussed below.
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interface procedures deposit coin : : : ;

dispense soda : : : ;

var x: f0; 25; 50g;

y: f25; 50g;
begin loop �: h x := 0 i;

�: while h x < 50 i

do : h y := deposit coin only if x+ ynew � 50 i;
�: hx := x + y i

od;

�: h dispense soda i

end loop

Figure 2: Another speci�cation of a soda machine.

where X is a formula describing how the fi and gi are allowed to change.

More precisely, X is a formula that constrains the sequence of states the

system assumes by constraining the values of the state functions fi and gi
on this sequence of states.

Why is there quanti�cation only over internal state functions and not over

interface state functions?

The absence of quanti�cation over the interface state functions is the for-

mal expression of the observation that the interface must be speci�ed at the

implementation level. The existential quanti�cation over the internal state

functions allows complete freedom in how these state functions are imple-

mented. Because the interface state functions are free (not quanti�ed over)

in the speci�cation, those same state functions must appear in the imple-

mentation. All this should become clearer with the next example, which

will serve to address the question of what it means for an implementation

to be correct.

2.2 Another Speci�cation of a Soda Machine

Figure 2 is a soda machine speci�cation written in an ad hoc language that

resembles an ordinary declarative programming language. The interface

procedures declarations provide the interface speci�cation, which is omit-

ted; the var declarations determine the range of values that can be assumed

by x and y. Angle brackets denote that the operation they surround is a
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single (atomic) action. Statement  performs an action consisting of a de-

posit coin interface action plus the action of setting the value of y to the

value of the deposited coin, the only if clause (a notation invented just for

this statement) meaning that the action can take place only if the value of

x+ y after the assignment is at most 50. Thus, the only if clause disallows

the possibility of depositing a half dollar after a quarter is deposited.

Figure 2 looks like a program. How is it interpreted as a transition axiom

speci�cation?

To interpret Figure 2 as a transition axiom speci�cation, we must describe

the state functions, actions, etc. that it de�nes. The internal state functions

are the variables x and y and an additional state function, let us call it

pc, that describes the program control state; the interface state functions

are presumably speci�ed (perhaps implicitly) in the omitted part of the

interface procedures. The state function x can assume the values 0, 25,

and 50; the state function y can assume the values 25 and 50; and the state

function pc can assume the values �, �, , �, and �. The initial values of x

and y are unspeci�ed; the initial value of pc is �, indicating that control is

initially at statement �. There are �ve actions, one for each pair of angle

brackets, that are labeled � : : : �. Actions  and � are interface actions,

the former performed by the environment and the latter by the system; the

rest are internal actions. The transition axioms for these actions specify the

following allowed changes to the state functions.

�: This action can occur only when pc has the value �. It changes the

value of x to 0, it changes the value of pc to �, and it leaves the value

of y unchanged.

�: Can occur only when pc = �. If x < 50 then it changes the value of

pc to , otherwise it changes the value of pc to �. It leaves the values

of x and y unchanged.

: Represents the user action of depositing a coin. It sets the value of

y equal to the value of the coin deposited, which must be either a

quarter or a half dollar (because y can equal only 25 or 50); it leaves

the value of x unchanged. This action can occur only when pc = 

and the new value of y will satisfy x+ y � 50.

�: Can occur only when pc = �. It sets the value of x equal to its old

value plus the old value of y, it leaves the value of y unchanged, and
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it sets the value of pc to �.

�: Can occur only when pc = �. It sets pc to � and leaves the values of

x and y unchanged. This action represents the dispensing of a can of

soda.

In this speci�cation, x and y look like ordinary program variables, but pc

seems strange. Isn't there a fundamental di�erence between the state func-

tion pc and the state functions x and y?

No. To describe the execution of a program written in a declarative pro-

gramming language, we must describe how the program control position

changes as well as how the values of variables change. The programmer

cannot explicitly refer to the \program counter", but its value is just as

much part of the program state as is the value of an ordinary variable. A

programmer often has the choice of whether to use an extra variable or a

more complicated control structure to represent the state of a computation.

Is every program a speci�cation?

Yes. A program written in any programming language can be interpreted as

a transition axiom speci�cation. A major task in writing a compiler from a

source language to a target language is to represent, in the target language,

the state functions speci�ed by the program, including ones like pc and the

procedure-calling stack that are not explicitly declared. A program written

in a higher-level language is a speci�cation of the object code produced by

the compiler. The only di�erence between a program and a higher-level

speci�cation is that the program is implemented by the compiler without

human intervention.

If any program is a speci�cation, why not write speci�cations in an ordinary

programming language instead of devising speci�cation languages?

This can be done. However, programming languages are constrained by the

requirement that programs must be compiled into reasonably e�cient code.

Because speci�cations do not have to be compiled, speci�cation languages

can permit simpler speci�cations than can be written in programming lan-

guages. Also, programming languages tend to encourage overly restrictive

speci�cations. For example, in most programming languages it is easy to

state that one action must follow another but hard to state that two actions
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can be performed in either order. Such languages encourage speci�cations

that unnecessarily constrain the order in which actions must be performed.

What kind of constructs can speci�cation languages use that programming

languages cannot?

The primary programming language construct for indicating explicit state

changes is the assignment statement. In a speci�cation language, the assign-

ment statement can be extended to allow an arbitrary relation between the

old and new values of state functions. For example, statement  of Figure 2

can be described as the following relation between the old and new values

of the variables:

ynew = deposit coin ^ xnew = xold ^ ynew + xold � 50 (1)

where deposit coin is some expression involving old and new values of in-

terface state functions that is presumably de�ned by the omitted interface

speci�cation.

An ordinary assignment statement is a speci�c form of relation in which the

new value of a variable equals an expression involving only the old values of

variables. However, one can have more general relations, such as

aold = sin2 bnew + 3 cos bnew

which expresses a relation between the new value of the variable b and

the old value of the variable a. Such a relation cannot be expressed in a

programming language because it cannot be compiled into e�cient code,

but there is no reason not to allow it in a speci�cation language.

A transition axiom for an action, which determines the changes to state

functions allowed by the action, is just such a relation between old and new

values of state functions. For example, the transition axiom for statement

 is obtained by conjoining relation (1), which asserts how x and y may

change, with

pcold =  ^ pcnew = �

The latter relation asserts how pc may change and includes the requirement

that the action can be performed only when the initial value of pc equals .

The program of Figure 2 can be replaced by a set of �ve transition axioms

of this form. However, the speci�cation is easier to follow if we use ordinary

programming language constructs like \;" and while to describe implicitly
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if pc = � ! f = I

pc = � or pc =  ! if x = 0 ! f = I

x = 25 ! f = II

x = 50 ! f = III (impossible if pc = )

�

pc = � ! if x + y = 25 ! f = II

x + y = 50 ! f = III

x + y = 75 ! impossible

�

pc = � ! f = III

�

Figure 3: De�nition of f in terms of x, y, and pc.

how the value of pc may change instead of explicitly writing the relations

between its old and new values.

Figures 1 and 2 are two di�erent speci�cations of the soda machine. How

are they related?

They are equivalent|assuming that they are completed with the proper

interface speci�cations. In other words, each one is a correct implementa-

tion of the other. I will show that Figure 2 correctly implements Figure 1.

Demonstrating the converse requires some concepts that will be introduced

with another example.

The interpretation of Figure 1 as a transition axiom speci�cation asserts

the existence of a state function f with certain properties. To prove that

Figure 2 satis�es this speci�cation, we must demonstrate the existence of f .

This is done by de�ning f in terms of the state functions x, y, and pc, whose

existence is asserted by the interpretation of Figure 2 as a transition axiom

speci�cation. We �rst observe that x < 50 when pc =  and x + y � 50

when pc = �. (This is proved by showing that these two assertions are true

initially and are left true by every action.) The value of f is de�ned by the

expression in Figure 3, written using Dijkstra's if construct.7 Finally, we

show that, with this de�nition of f , every action allowed by the speci�cation

of Figure 2 either leaves f unchanged or corresponds to an action (a change

7Note that Figure 3 is not a program; it is just an ordinary mathematical de�nition of

f as a function of x, y, and pc written with Dijkstra's notation.
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of f) allowed by the speci�cation of Figure 1. The reader can check that

actions �, �, and � do not change f . For example, � can be executed only

when pc = �, in which case f = I, and its execution sets pc = � and

x = 0, which leaves f equal to I. The reader can also check that execution

of  corresponds either to a deposit quarter or a deposit half dollar action

allowed by Figure 1. For example, suppose  is executed starting in a state

with x = 25. Since it can only be executed when pc = , this implies that

initially f = II. The speci�cation of the  action implies that, starting with

x = 25, it can change the values of x, y, and pc only by setting y to 25 and

pc to �, which makes f = III. This change of the value of f from II to III is

permitted by the deposit quarter action of Figure 1. The reader can check

that executing  starting with x = 0, the only other possibility, also yields

a change of f allowed by the deposit quarter or deposit half dollar action of

Figure 1, and that executing � changes f as allowed by the dispense soda

action of Figure 1.

Is this all there is to the proof?

We have not proved that Figure 2 correctly implements the interface of

Figure 1. This requires showing that deposit coin and dispense soda are

correct implementations of the corresponding actions of Figure 1, which

we cannot do because neither they nor the interface of Figure 1 have been

speci�ed.

How can we formalize the informal reasoning used in the proof?

Let a state vector for the speci�cation of Figure 2 be a triple of possible

values of x, y, and pc, and let a state vector for the speci�cation of Figure 1

be a possible value of f (either I, II, or III). To de�ne f in terms of x, y, and

pc, we de�ned a mapping F from state vectors of Figure 2 to state vectors

of Figure 1. For example, F (0; 25; �) = II means that f = II when x = 0,

y = 25, and pc = �.

For any action �, let A� denote the transition axiom for �. This is a relation

between old and new values|in other words, a set of pairs of state vectors.

For example, the pair ((0; 50; ); (0; 25; �)) is in A because it is possible to

execute  starting with x = 0, y = 50, and pc =  and ending with x = 0,

y = 25, and pc = �.
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Let A1 and A2 denote the set of actions of Figures 1 and 2, respectively.

Formally, we proved the theorem

8� 2 A2 8(v; w) 2 A� 9� 2 A1 s:t: (F (v); F (w)) 2 A�

This formula has the following English translation, where bracketed expres-

sions indicate the correspondence with the formula: for every action [�] of

Figure 2 [in A2] and every change to the values of x, y, and pc [from v to

w] allowed by this action [(v; w) in A�], there exists an action [�] of Figure 1

[in A1] such that the corresponding change to the value of f [from F (v) to

F (w)] is allowed by that action [(F (v); F (w)) is in A�].

Exactly what does this prove?

The formal meaning of the speci�cation of Figure 1 is a formula 9f s:t: X1,

where X1 is a formula describing how the value of f is allowed to change;

the meaning of Figure 2 is a formula 9x; y; pc s:t: X2, where X2 describes

how the values of x, y, and pc are allowed to change. We proved the formula

(9x; y; pc s:t: X2) � (9f s:t: X1)

Thus, correctness of an implementation means simple logical implication:

the speci�cation is implied by the (speci�cation of the) implementation.

This implication was proved by proving X2 � X1, where X1 is the formula

obtained by substituting for f in X1 its expression in terms of x, y, and

pc de�ned in Figure 3. In other words, assuming the existence of the state

functions x, y, and pc satisfying X2, we proved the existence of a state

function f satisfying X1 by explicitly constructing the required f in terms

of x, y, and pc.

In a complete speci�cation, X1 and X2 would also describe the allowed

changes to the interface state functions. However, because there is no quan-

ti�cation over interface state functions, this type of argument can work only

if X1 and X2 contain the same interface state functions, and the behavior

of those interface state functions asserted by X1 is implied by the assertions

about their behavior made by X2. This is the formal statement of the ob-

servation that the interface must be speci�ed (in X1) at the implementation

level (using the same state functions and interface actions as in X2).

The proof that Figure 2 correctly implements Figure 1 can be reduced to

logical implication because both speci�cations are expressed by formulas in
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type dbase : : : : ;

value : : : : ;

op fcn : dbase ! dbase;

res fcn : dbase ! value;

internal state function data : dbase;

procedure exec(op: op fcn; res : res fcn) : value

begin �: h datanew = op(dataold) ^ execnew = res(dataold) i
end

Figure 4: A database speci�cation.

the same logical system. This in turn is possible only because we inter-

pret the state-transition diagram of Figure 1 in terms of the state function

f . If Figure 1 were interpreted as specifying the behavior of a three-state

machine while Figure 2 speci�ed the behavior of a 30-state machine, then

they would express formulas in di�erent logical systems and it would not be

clear what correctness of an implementation meant. Traditional de�nitions

of correctness of an implementation, involving mappings on behaviors, have

ignored problems that arise in specifying the interface. See [14] for further

discussion of this issue.

2.3 A Database

Let us now consider a toy speci�cation of a database concurrency control

mechanism. Clients of the database issue operations by calling an exec pro-

cedure with arguments indicating the operation to be performed. There are

two arguments: op, indicating the change to the database and res, indicat-

ing the value to be returned. (I assume that, as in Modula-2, procedures

may return values.) These arguments are described formally as functions.

Although the exec procedure may be called concurrently by multiple clients,

the operations are to be performed as if they occur in a serial order. In other

words, the database operations are to be performed as if they were atomic.8

The speci�cation is given in Figure 4, using programming language notation.

The internal state function data represents the state of the database. The

interface is speci�ed as a procedure call. There is a single internal action �.

8In database circles, atomicity often means that a failure cannot result in a partially

completed operation. The possibilty of failure is not considered in this example.
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In this action, op and res denote the arguments of the procedure call, and

exec is the value that is returned by the procedure. The procedure call and

return are interface actions that are not explicitly speci�ed.

How is Figure 4 interpreted as a transition axiom speci�cation?

The interface speci�cation must contain state functions whose values indi-

cate the set of processes currently executing the exec procedure|that is,

the set of processes that executed a call that has not yet returned. There

must also be state functions that indicate the following information for each

such process:

� The values of op and res .

� The program control location, indicating whether the process is exe-

cuting the call, is at control point �, or is executing the return.

� The value of exec (the value to be returned), if the process has executed

action �.

Figure 4 seems to specify that the entire database operation must be done as

a single atomic action; doesn't this rule out concurrency?

The speci�cation asserts the existence of a state function data that changes

atomically; it does not assert that changes to the database must actually

be performed atomically. Figure 2 implements Figure 1 even though the

operations of depositing a half dollar and dispensing a can of soda consist

of two atomic actions in Figure 1 and six atomic actions in Figure 2. The

implementation was proved correct by de�ning f in such a way that only

two of those six actions change f , doing so as allowed by Figure 1; the other

four actions leave f unchanged.

In the same way, the change to the database, which is represented by ex-

ecuting the single atomic action � in Figure 4, can be implemented as a

sequence of thousands of atomic actions. Correctness of the implementation

means that the state function data can be de�ned as a function of the im-

plementation state functions in such a way that only one of those thousands

of atomic actions changes its value, doing so as indicated by Figure 4.

The state function must be de�ned so that a single atomic action causes the

entire database operation, which could be arbitrarily complex, suddenly to be
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performed|even though each atomic action makes only a small change to

the actual database. How is this possible?

The only way to understand how it is done is by working out an example.

One such example is the speci�cation and implementation of a FIFO queue

in [13], where the speci�cation asserts that the operations of adding and

removing an element from the queue are atomic, but an implementation

that adds and removes elements one bit at a time is proved correct.

The proof method is a generalization of assertional methods for proving

safety properties of concurrent programs [18]. In these assertional methods,

one constructs an invariant, which is a boolean state function whose value

never changes; in the transition axiom method, one constructs state func-

tions whose values change only in the manner prescribed by the transition

axioms.

2.4 Another Database Speci�cation

The concurrency control mechanism speci�ed by Figure 4 is called serial-

ization [5] because database operations are executed as if they occurred in

some serial order. However, Figure 4 is not the most general speci�cation of

serialization because it requires that the actual reading and writing of the

database occurs between the call of exec and the subsequent return, which

implies that if one call to exec returns before another call is initiated, then

the operation performed by the �rst call precedes the operation performed

by the second in the serialization order. Some concurrency control algo-

rithms that are considered to be serializable do not have this property. So,

let us now consider the more general speci�cation of a serializable database

given in Figure 5.

The interface of the new speci�cation is the same as that of Figure 4: a pro-

cedure named exec with two arguments that specify the operation. However,

instead of performing the operation immediately, action � chooses a com-

pletely arbitrary value to return (the value v) and saves that value together

with the arguments of the procedure call in saved ops, a bag of operations to

be performed later.9 A separate, asynchronous action  at some later time

9A bag, also called a multiset, is a set in which the same element can appear more than

once.
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type dbase : : : : ;

value : : : : ;

op fcn : dbase ! dbase;

res fcn : dbase ! value;

internal state function

gdata : dbase;

saved ops : bag of (op fcn, res fcn, value);

procedure exec(op: op fcn; res : res fcn) : value

begin �: h 9v s:t: execnew = v ^
saved opsnew = saved opsold [ f(op; res; v)g i

end

internal process

begin loop : h 9(o; r; v)2 saved opsold s:t:

gdatanew = o(gdataold) ^

v = r(gdataold) ^
saved opsnew = saved opsold � f(o; r; v)g i

endloop

end

Figure 5: A more general database speci�cation.

23



will perform the operation. The internal process keyword denotes that

its actions are performed by the system independently of actions performed

through calls to the exec procedure. The clause v = r(gdataold) in the spec-

i�cation of action  means that the action is performed only if the database

state is such that the result that was already chosen (by the � execution

that put the triple (o; r; v) in the bag saved ops) was the correct one.

Since this is a safety speci�cation, it does not assert that  will ever do

anything; it simply asserts that  cannot perform a database operation

unless the result agrees with the one that the � action had already decided

to return. We must also require the liveness property that every operation

saved in saved ops is eventually performed. Section 3 indicates how this

property is speci�ed.

This speci�cation is completely bizarre; it requires that the exec procedure

guess what the correct result of the database operation will be before actually

executing it. How can one possibly implement such a speci�cation?

Figure 5 is bizarre only if viewed as a description of how the exec procedure

is to be implemented. A program describes how something is to be done,

while a speci�cation describes only what is to be done. Figure 5 describes

the observable behavior of the database system; it makes no formal assertion

about how that behavior is to be implemented.

It is important to realize that even though a transition axiom speci�ca-

tion may look super�cially like a program, apparently describing how the

system is to be implemented, it really speci�es only the externally visible

behavior|that is, how the interface state functions may change. Internal

state functions such as saved ops need not appear in any obvious form in

the implementation's data structures. Indeed, as I will explain below, they

need not appear at all.

If Figure 5 is a more general speci�cation than Figure 4, then Figure 4 should

implement Figure 5. However, the implementation executes fewer actions

than the speci�cation, a single � action performing the database operation

that the speci�cation asserts is done by a � action (to put the operation in

saved ops) and a  action (to change the database). How do we prove that

this is a correct implementation?

As in the proof for the soda machine example, we must de�ne the speci�-

cation state functions gdata and saved ops in terms of the implementation
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state function data. We let gdata equal data and de�ne saved ops always to

equal the empty bag. Again we must show that every action of the imple-

mentation changes the values of the speci�cation state functions as allowed

by the speci�cation actions. However, we drop the requirement that each

implementation action corresponds to at most a single speci�cation action

and allow it to correspond to a sequence of speci�cation actions. There is

only one internal action in Figure 4: the action �. Executing action � pro-

duces the same changes to gdata and saved ops as an execution of a � action

followed by an execution of a  action. The  action immediately executes

the operation that the � action puts in saved ops, the total e�ect being to

leave saved ops empty and to produce the required change to gdata.

Is one always allowed to implement a sequence of speci�cation actions with

a single implementation action?

Two conditions must be satis�ed for a sequence of speci�cation actions to

be implementable by a single implementation action:

� At most one of the speci�cation actions can be an interface action.

� All the actions (the speci�cation actions and the implementation ac-

tion) must be performed by the same agent|either the system or the

environment.

These two conditions rule out pathological implementations.

The case of several speci�cation actions implemented with a single action

arises only when demonstrating that one speci�cation is at least as general

as another. (I just demonstrated that Figure 5 is at least as general as

Figure 4.) In real implementations, a single speci�cation action is usually

implemented with dozens or even thousands of separate actions.

What is the formal justi�cation for the correctness of implementing several

speci�cation actions with a single action?

Recall that the formula represented by a transition axiom speci�cation is of

the form 9f1; : : : ; fn s:t: X , where the fi are the internal state functions.

The reason we are allowed to implement several actions with a single one

lies in the formal meaning, given in [4], of existential quanti�cation of a

state function. In proving that the formula represented by the implemen-

tation implies the formula represented by the speci�cation, the existential
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quanti�cation over the internal state functions allows one to consider the

execution obtained by splitting one action into several successive actions to

be equivalent to the original execution if the extra actions change only the

internal state functions. However, an explanation of why this is so involves

subtle points of temporal logic that are beyond the scope of this paper.

Is this all there is to the proof that Figure 4 correctly implements Figure 5?

Yes. The two systems have identical interfaces, so it is obvious that the

interface actions of Figure 4|the ones that perform the procedure call and

the return|correctly implement the interface actions of Figure 4; they are

the same actions. Therefore, we just have to show that the internal state

functions of Figure 5 are correctly implemented by Figure 4, which we did.

3 Liveness Properties

Liveness properties assert that something must happen. In a transition

axiom speci�cation, the things that happen are changes to values of state

functions; what must happen is expressed by explicit axioms about how

these values must eventually change.

Axioms to specify liveness are written in temporal logic, obtained by extend-

ing ordinary logic with the temporal operators 2 (read henceforth) and 3

(read eventually). The formula 2P asserts that P is true now and at all

future times, and the formula 3P asserts that P is true now or at some

future time. Since P is eventually true if and only if it is not always false,

3P is equivalent to :2:P . (See [12] for a discussion of this equivalence.)

It is convenient to de�ne the operator ; (read leads to) by letting P ; Q

equal 2(P � 3Q), which asserts that whenever P becomes true, Q will be

true then or at some later time. A more detailed exposition of our temporal

logic can be found in [19].

In the soda machine speci�cation of Figure 1, we might require that, after

the user has deposited enough money, the machine must eventually dispense

the soda. This is expressed by the formula (f = III); (f = I), which asserts

that if f = III then f must eventually equal I.

The soda machine speci�cation should probably have no other liveness ax-

ioms, since we don't require that the user must deposit money. However, we

might require that if he deposits one quarter then he must deposit another,
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which is asserted by the axiom (f = II); (f = III).

In the soda machine speci�cation of Figure 2, we require that the next action

must eventually be performed, except if it is a  action, which the user need

never perform. If the next action is an � action, this is asserted by the

axiom (pc = �) ; (pc = �). However, we could instead make only the

weaker assertion that (pc = �) ; (pc 6= �), since Figure 2 implies that if

pc = �, then the only way the value of pc can change is for it to become

equal to �. The complete liveness speci�cation for this example is

8� 6=  : (pc = �) ; (pc 6= �) (2)

These liveness axioms are obvious from looking at Figures 1 and 2. Can't

we just make the liveness axioms implicit in the language instead of having

to write them separately?

One might want to make certain liveness axioms implicit in the language.

However, the liveness conditions that appear in speci�cations are too varied

to be expressed only implicitly by any reasonable collection of language

constructs.

The informal liveness requirement for the database speci�cation of Figure 5

is that any operation saved in saved ops is eventually executed. How is this

expressed formally?

Our �rst attempt at specifying this might be the axiom

8(o; r; v) : (o; r; v) 2 saved ops ; (o; r; v) 62 saved ops

which asserts that if a triple (o; r; v) is in the bag saved ops, then eventually

it will not be in that bag. The rest of the speci�cation implies that the only

way a triple can be removed from the bag is by performing the appropriate

database operation with a  action.

This axiom would express the desired requirement if saved ops could never

contain two copies of one triple. However, if the same triple (o; r; v) were

continually inserted by di�erent calls to the exec procedure, then saved ops

might always contain a copy of (o; r; v), so the axiom would not be satis�ed.

All we can assert is that, if some triple (o; r; v) is in saved ops, then eventually

at least one copy of it is removed|that is, eventually there is a  action
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that removes (o; r; v).10 Our formulas mention states, not actions; we assert

that a  action occurs by a temporal formula asserting that, at some time,

the bag contains k copies of the triple and, at a later time, it contains fewer

copies. The desired liveness condition is expressed by the following axiom,

where e]B denotes the number of copies of element e in bag B:

8(o; r; v) : [(o; r; v)2 saved ops ] ;

[9k s:t: ((o; r; v)]saved ops = k) ^ 3((o; r; v)]saved ops < k)]

One can introduce notations that make it easier to assert that a certain

action eventually occurs, allowing this axiom to be written more or less as

[(o; r; v)2 saved ops ] ; (o; r; v)

However, explaining these notations would lead us into language design is-

sues that I do not wish to discuss here.

Are 2 and 3 (and operators like ; de�ned in terms of them) all one needs

for specifying liveness properties?

Yes.

How does one verify that an implementation satis�es the liveness properties

of a speci�cation?

One must verify each liveness axiom. Consider the liveness axiom

(f = III) ; (f = I) (3)

for the speci�cation of Figure 1. To prove that Figure 2 implements this

speci�cation, we de�ned f in terms of the implementation state functions x,

y, and pc, the de�nition appearing in Figure 3. Substituting this expression

for f in (3) yields

[(pc = �^x = 50)_ (pc = �^x+y = 50)_ (pc = �)]; [(pc = �)_ : : : ] (4)

To verify that the implementation satis�es axiom (3), we must prove that

the liveness axioms and the safety properties of the speci�cation of Fig-

ure 2 imply (4). (This makes sense because (4) is an expression about the

implementation state functions.)

10Note that identical triples are indistinguishable, so it makes no sense to ask which

copy of a triple is removed.
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From the liveness axiom (2) and the safety properties, we can establish the

following chain of ; relations:11

(pc = � ^ x+ y = 50); (pc = � ^ x = 50); (pc = �); (pc = �)

For example, to verify (pc = �^x = 50); (pc = �), observe that (2) implies

that eventually pc 6= �, and the transition axioms imply that if pc = � and

x = 50, then the value of pc can change only to �. (Note that the proof uses

both safety and liveness properties of the implementation.)

We leave it to the reader to check that this chain of ; relations intuitively

implies (4). The formal method underlying all of this informal reasoning is

described in [19].

What is the general method behind this example?

Recall that formally, a speci�cation is a formula 9f1 : : : fn s:t: X , where the

fi are the internal state functions and X is a formula specifying how the

values of the internal and interface state functions change. Similarly, the im-

plementation is represented by a formula 9h1 : : : hm s:t: Y , where the hi are

the implementation's internal state functions and Y is a formula involving

the hi and the interface state functions. Correctness of the implementation

is expressed by the formula

(9h1 : : : hm s:t: Y ) � (9f1 : : :fn s:t:X)

This formula is proved by expressing the speci�cation state functions fi in

terms of the implementation state functions hi and proving Y � X, whereX

is the formula obtained from X by substituting for the fi their expressions

in terms of the hi.

Splitting the speci�cation into its safety and liveness requirements means

writing X = Xs^Xl, where Xs are the safety axioms and Xl are the liveness

axioms, and similarly writing Y = Ys ^ Yl. When we prove that the safety

properties of the speci�cation are satis�ed, which we do by showing that

every implementation action that changes the speci�cation state functions

does so as allowed by some speci�cation action, we are proving Ys � Xs. To

prove that the liveness properties of the speci�cation are satis�ed, we prove

(Ys ^ Yl) � Xl; in other words, we use both safety and liveness properties of

the implementation to prove the liveness properties of the speci�cation.

11The formula A; B ; C is an abbreviation for (A; B) ^ (B ; C).
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4 Further Questions

4.1 Internal State Functions

A speci�cation should specify only the externally observable behavior of a sys-

tem, yet the transition axiom method introduces internal state functions and

internal transitions. Doesn't this produce overly restrictive speci�cations?

To specify externally observable behavior, one must describe all permitted

sequences of interface actions. Most conventional methods for specifying

sequences of actions use implicit internal states. For example, a context-free

grammar is equivalent to an automaton, whose states are implicit in the

grammar. Milner's CCS [17] can be viewed as a single automaton whose

states are the set of CCS formulas. It would be easy to use context-free

grammars or CCS as the language in which to express transition axioms.

Using explicit rather than implicit internal state functions does not make

the speci�cations any more restrictive.

Temporal logic and other axiomatic methods have been used to write speci�-

cations that do not mention internal states. Aren't these speci�cations more

general than transition axiom speci�cations?

Let us call a speci�cation purely temporal if it does not mention internal

states. The work of Alpern and Schneider [3] shows that purely temporal

speci�cations are no more general than transition axiom speci�cations. They

de�ned a logic that is at least as powerful as most of the logics used for

purely temporal speci�cations and showed that any formula in their logic is

equivalent to an assertion about an automaton constructed from the formula.

This automaton can be interpreted as a transition axiom speci�cation that

is equivalent to the purely temporal speci�cation represented by the original

formula.

Even if purely temporal speci�cations are logically no more general than

transition axiom speci�cations, doesn't their avoidance of explicit internal

state functions mean that, in practice, they are less likely to overly constrain

the implementation?

The transition axiom method does make it easier than purely temporal

methods to describe a particular implementation instead of specifying only

30



the desired interface behavior. However, eliminating internal state functions

requires the use of complicated temporal formulas. The reader can appre-

ciate the extra complexity needed to specify behavior with purely temporal

methods by writing two informal prose speci�cations of a memory register:

one that uses the value of the register (which is an internal state function)

and a purely temporal one that talks only about read and write operations

without mentioning the register's value.

I have found that purely temporal speci�cations are hard to understand.

While they are less likely to overspecify the system, they are much more

likely to underspecify it by omitting important constraints. In practice,

purely temporal methods are hard to use because they don't tell one where

to start (what properties should be speci�ed explicitly and what properties

should be consequences of other properties?) or when to stop (do all desired

properties follow from the speci�cation?). In contrast, the transition axiom

method provides a well structured approach to writing speci�cations: �rst

choose the state functions, then specify how they are allowed to change (the

transition axioms), and �nally specify when they must change (the liveness

axioms).

Proving the correctness of an implementation requires de�ning the speci�ca-

tion state functions in terms of the implementation state functions. Aren't

there cases when this is impossible because some speci�cation state functions

are unnecessary and are not actually implemented?

Yes. One example is a program, viewed as a speci�cation of its compiled

version, in which an optimizing compiler eliminates a local variable that it

discovers is set but never read. Moreover, the unimplemented state function

need not be unnecessary. Imagine a speci�cation that begins by letting the

system decide if it is to act as a soda machine or a database, and there-

after acts exactly like the single system chosen. This absurd speci�cation

describes the state functions for both the soda machine and the database.

However, the speci�cation can be met by implementing either a soda ma-

chine or a database, without implementing the state functions of the other.

How is the correctness of an implementation proved if it does not implement

the speci�ed state functions?

In proving the correctness of the implementation, one is allowed to add aux-

iliary state functions to the implementation. An auxiliary state function is
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similar to an auxiliary variable added to prove the correctness of a concur-

rent program [18]. It is an internal state function that is added in such a way

that it does not alter the speci�cation of how the \real" state functions are

allowed to change. The existing transition axioms are modi�ed to indicate

how they change the auxiliary state functions.

By adding auxiliary state functions, isn't one proving the correctness of a

new implementation|one with extra state functions|rather than the orig-

inal implementation?

No. To understand why not, one must again examine the formal meaning

of existential quanti�cation over state functions. Intuitively, the formula

9h s:t: A asserts the existence of h not in the \real world", in which the only

state functions that exist are the ones described by the implementation,

but in a \mythical world" in which every possible state function is assumed

to exist. The auxiliary state functions do not change the implementation;

they serve as constructive proofs of the existence of certain possible state

functions. One could rewrite the correctness proof to eliminate the auxiliary

state functions, but the resulting proof would be harder to understand.

The situation in which a speci�cation state function is not expressible in

terms of implementation state functions is atypical. Just as a good program

does not compute values that are never used, a good speci�cation does not

include state functions that are not needed. Speci�cations that give the

implementer the choice of which state functions to implement are rare; in

practice, one does not specify a system that can choose to act as either a

soda machine or a database system. Auxiliary state functions are therefore

seldom needed. I advise against introducing them just to make it easier to

express the speci�cation state functions, since one learns a great deal about

an implementation by expressing the speci�cation state functions in terms

of the \real" implementation state functions.

4.2 Concurrency

The transition axiom method is supposed to specify concurrent systems, yet

the system's behavior is described as a sequence of actions. Where's the

concurrency?
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Underlying almost all formal methods in computer science is the assumption

that the behavior of a system can be described as a collection of discrete

atomic actions. The most general approach is to assume that the temporal

ordering among these atomic actions is a partial order. However, a partial

order is equivalent to the set of all total orders that are consistent with

it. It turns out that as long as one is concerned only with safety and live-

ness properties, no information is lost by replacing a partially ordered set

of events by the set of all sequences obtained by extending the partial or-

der to a total order. Thus, we can consider a behavior to be a sequence of

actions. Concurrency appears as nondeterminism|if two actions are con-

current, then the set of possible behaviors contains sequences in which they

are performed in either order.

A formalism based upon sequences may be inadequate for discussing other

properties of the system's behavior, such as whether two actions occur con-

currently. While such properties may be of interest when analyzing a given

system, I have not found them to be relevant to the system's speci�cation.

The transition axiom method speci�es the atomic actions comprising each

operation. Can one specify an operation without stating what the atomic

actions are?

The transition axiom method can be extended to allow the speci�cation

of nonatomic operations|that is, operations composed of an unspeci�ed

number of atomic actions. Writing such a speci�cation is easy; for example,

we can just remove the angle brackets from Figure 2. However, it is not so

easy to say precisely what such a speci�cation means and how one veri�es

the correctness of an implementation. The transition axiom method can be

extended to handle nonatomic operations by introducing the formal concepts

described in [11] and [10].

4.3 Modularity and Hierarchical Decomposition

Can one hierarchically decompose transition axiom speci�cations?

There are two kinds of hierarchical decomposition: (1) decomposition within

a single level of abstraction, and (2) representation of a higher-level system

as a composition of lower-level ones. The second kind of decomposition
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involves a change in the grain of atomicity|usually a single atomic action

is decomposed as a set of lower-level actions; the �rst does not.

Decomposition within a single level involves organizing the information con-

tained in a single speci�cation to make it easier to understand. For example,

one can decompose a transition axiom by writing it as a conjunction of sev-

eral relations, where each conjunct is described separately. This type of

decomposition is a language design issue that raises no basic logical ques-

tions.

Representing a higher-level system as the composition of lower-level systems

means implementing the higher-level system with the lower-level composite

system. The implementation of one system with a lower-level one has already

been discussed here at considerable length.

How are speci�cations of individual components combined to specify a single

system?

Formally, to say that a system M is the composition of two systemsM1 and

M2 means that the speci�cation of M , which is a temporal logic formula,

is the conjunction of the speci�cations of M1 and M2. In the transition

axiom method, the speci�cation of M is obtained by simply combining the

speci�cations of M1 and M2. The state functions in the speci�cation of M

consist of the state functions from the speci�cations of both M1 and M2,

and the set of actions of M is the union of the sets of actions of M1 and M2.

Combining speci�cations may necessitate some renaming. Internal state

functions and actions may have to be renamed to avoid conicts, since an

internal state function of M1 represents a di�erent state function from any

internal state function of M2. Also, the act of combining M1 and M2 may

imply a renaming or identi�cation of interface state functions. Suppose M1

is a circuit with an interface state function named output that represents the

voltage on its output wire andM2 is a circuit with an interface state function

named input the represents the voltage on its input wire. Connecting the

output wire of M1 to the input wire of M2 implies that input and output

become two names for the same state function.
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