
July 29, 1998

SRC
Research
Report 156

Wrestling with rep exposure

David L. Detlefs
K. Rustan M. Leino

Greg Nelson

d i g i t a l
Systems Research Center
130 Lytton Avenue
Palo Alto, California 94301

http://www.research.digital.com/SRC/



Systems Research Center

The charter of SRC is to advance both the state of knowledge and the state of the
art in computer systems. From our establishment in 1984, we have performed ba-
sic and applied research to support Digital’s business objectives. Our current work
includes exploring distributed personal computing on multiple platforms, network-
ing, programming technology, system modelling and management techniques, and
selected applications.

Our strategy is to test the technical and practical value of our ideas by building
hardware and software prototypes and using them as daily tools. Interesting sys-
tems are too complex to be evaluated solely in the abstract; extended use allows us
to investigate their properties in depth. This experience is useful in the short term
in refining our designs, and invaluable in the long term in advancing our knowl-
edge. Most of the major advances in information systems have come through this
strategy, including personal computing, distributed systems, and the Internet.

We also perform complementary work of a more mathematical flavor. Some of it is
in established fields of theoretical computer science, such as the analysis of algo-
rithms, computational geometry, and logics of programming. Other work explores
new ground motivated by problems that arise in our systems research.

We have a strong commitment to communicating our results; exposing and testing
our ideas in the research and development communities leads to improved under-
standing. Our research report series supplements publication in professional jour-
nals and conferences. We seek users for our prototype systems among those with
whom we have common interests, and we encourage collaboration with university
researchers.



Wrestling with rep exposure

David L. Detlefs, K. Rustan M. Leino, and Greg Nelson

July 29, 1998



Author Affiliations David L. Detlefs is a staff engineer at Sun Microsystems
Laboratories. He can be reached atdavid.detlefs@sun.com . This work
was completed by him and the other two authors before he left SRC in 1996.

c©Digital Equipment Corporation 1998

This work may not be copied or reproduced in whole or in part for any commercial
purpose. Permission to copy in whole or in part without payment of fee is granted
for nonprofit educational and research purposes provided that all such whole or
partial copies include the following: a notice that such copying is by permission
of the Systems Research Center of Digital Equipment Corporation in Palo Alto,
California; an acknowledgment of the authors and individual contributors to the
work; and all applicable portions of the copyright notice. Copying, reproducing,
or republishing for any other purpose shall require a license with payment of fee to
the Systems Research Center. All rights reserved.



Abstract

A central methodological problem in programming with multiple levels of abstrac-
tions is the loosely defined problem ofrep exposure. This paper traces the problem
of rep exposure to the precisely defined notion ofabstract aliasing. The paper also
outlines a statically-enforceable discipline for avoiding abstract aliasing, but the
outline is incomplete.





0 Introduction

The danger ofrep exposurearises when a reference to a mutable component of an
abstract data type is transferred into or out of the scope in which the representation
of the data type is hidden. The danger is that operations on the mutable compo-
nent could affect the value of the abstract data value (or vice-versa: operations on
the abstract data value could affect the value of the mutable component). In the
scope where the representation of the abstract data type is known, these interfer-
ence effects are predictable and can be reasoned about using the method of data
abstraction described by C.A.R. Hoare in 1972 [Hoa72]. But outside the scope,
they are unpredictable and seem difficult to reason about.

For example, if a stacks were implemented in terms of a sequenceq[s] , then
a series ofpush and pop operations ons would not behave as expected if there
were interleaved updates toq[s] , and vice versa.

The danger of rep exposure could be avoided by prohibiting the transfer of
mutable components across abstraction boundaries. But this is too strict: it would
prohibit many useful programs. We mention three examples:

• The initialization method for an abstract type may well take mutable param-
eters that become part of the initialized abstract value.

• For efficiency reasons, it may be desirable to return a mutable component of
an abstract data type to a client; perhaps with restrictions on the operations
that the client can perform on the component.

• If the abstract data type is a “container class” (such as a set, sequence, or
table), the elements inserted and removed from the container may well be
mutable. But the container would be truly useless if its methods were pro-
hibited from storing an in-parameter into the container or from returning an
element from the container as a out-parameter.

An effective methodology for dealing with rep exposure would allow what is
useful while preventing what is harmful. In this paper, we introduce a methodology
that we think is a step toward this goal. Our methodology it not a full solution, but
it applies to many example programs that we have studied, it is simple, and it can
be enforced mechanically.

Our approach builds on our previous work in reasoning about modular verifi-
cation in terms ofdependencies, as introduced by Leino in his Ph.D. thesis [Lei95]
and extended by Leino and Nelson [LN98a]. We will try to make this paper ac-
cessible to readers who don’t know about dependencies, by defining the relevant
terms as we need them.

1



1 Definitions

A program is a collection ofdeclarations. Declarations introduce names for en-
tities (such as types, abstract and concrete data fields, methods) and/or specify
properties of named entities (such as subtype relationships, representations of ab-
stract fields, method specifications and method implementations). The declarations
of a program are partitioned intounits (sometimes called interfaces and modules).
The declarations visible (that is, in scope) in a unit are its own declarations and the
declarations visible in units that itimports.

We consider a data field, abstract or concrete, to be a map from objects to
values. Thus, where others write

classT = { . . . f : int . . . } ,

we write

type T
var f : T→ int .

Also, we write f [o] where others writeo.f . This semantics models an implemen-
tation in which objects are references to data records containing field values, and
in which two objects are equal when they reference the same data record.

A data field can be declared to beabstractby preceding its declaration with
spec. For example,

spec varvalid: T → bool .

An abstract field occupies no memory at run-time; it is a fictitious field whose
value (orrepresentation) is later given in terms of other fields. This representation
is declared by a syntax like

rep valid[t: T] ≡ f [t] 6= 0 . (0)

The variables appearing in the right-hand side of therep construct for an abstract
variable are called thedependenciesof the abstract variable. The dependencies can
themselves be either concrete or abstract.

We require that dependencies be declared explicitly. For example, the repre-
sentation (0) would cause a static error unlessf [t] were declared as a dependency
of valid[t] , which is done by a declaration of the form

dependsvalid[t: T] on f [t] .

We allow only two forms of dependencies in this paper:staticdependencies of
the form

dependsa[t: T] on c[t] (1)

2



anddynamicdependencies of the form

dependsa[t: T] on c[b[t]] , (2)

whereb is a concrete field. If all the dependencies in a program are static, then the
representation of each abstraction is confined to the fields of a single object, but if
the program contains dynamic dependencies, then some abstraction’s representa-
tion includes fields of multiple objects connected by references (like the fieldb in
(2)). We call the fieldb apivot field.

We impose the rule that the static dependency (1) be visible whereverc is, and
the dynamic dependency (2) be visible whereverb is. These rules seem necessary
for modular soundness, as explained in our companion paper [LN98a]. Because of
the rule that a dynamic dependency must be visible anywhere its pivot field is, it
follows that in any scope where a field is visible, it is known whether the field is a
pivot field or not.

Dependencies affect the verification process. For example, in a scope where
dependsa[t] on c[t] is visible, a procedure call that is known to changea[t] is
assumed by the verifier to possibly changec[t] . But unless the actualrep clause
for a[t] is also visible, nothing can be assumed about the nature of the change to
c[t] . Thus dependencies are abstractions ofrep clauses: they specify what is part
of the representation of what, but they hide the explicit nature of the representation.
This makes them valuable in dealing with rep exposure.

The distinction between static and dynamic dependencies allows us to give a
more precise account of rep exposure: only the mutable components correspond-
ing to dynamic dependencies are dangerous (because with multiple objects, un-
expected interference may occur in scopes where the pivot field and dependency
are not visible); those associated with static dependencies are not (because with a
single object, there is no pivot field to be out of scope).

To prevent harmful rep exposure, we claim that it suffices to preventabstract
aliasing, which roughly means to prevent values of a pivot field from escaping
the scope where the field is declared. The precise definition of abstract alias-
ing is somewhat odd, since it involves both the static program text and dynamic
possibility. We say thata[E] and c[F] are directly abstractly aliasedat some
dynamic execution point ifF = b[E] ∧ F 6= nil holds for some dependency
dependsa[t] on c[b[t]] that is not in scope at the corresponding program point
(which implies thatb is not in scope either at that program point). Notice that the
condition F = b[E] makes sense even outside the scope ofb , sinceb ’s value ex-
ists even at an execution point whereb is not visible at the corresponding program
point. Two expressions of the forma[E] and c[F] areabstractly aliasedat some
dynamic execution point if they are related by the transitive closure of the direct
abstract aliased relation for that execution point, and all free variables ofa[E] and

3



c[F] are in scope at the corresponding program point. In a program without infor-
mation hiding, where all variables are in scope everywhere, abstract aliasing never
occurs.

2 Example

As an example that will be useful here and later in the paper, we will consider a
design of a lexer abstraction built on top of a reader abstraction.

A readermodels an input stream. Here is a part of the unit declaring the reader
abstraction:

unit Rd
type Rd.T
spec varrvalid: Rd.T → bool
...

proc GetChar(rd: Rd.T): char
requires rvalid[rd]
...

proc Close(rd: Rd.T)
modifiesrvalid[rd] .

This declares a typeRd.T and a boolean-valued abstract fieldrvalid that records
whether objects of that type are valid. Typically, there will be many operations that
require and preserve validity, of which we show one example,GetChar. We have
also shown one procedure,Close, that destroys validity. The interface does not de-
clare the fields that are relevant only to the implementation of readers. These fields
would be declared in another unit, an implementation unit. The implementation
unit would also provide the representation of the abstract fieldrvalid .

A lexer is an abstraction that returns lexical tokens. The interface to lexers is
very similar to that of readers:

unit Lexerimport Token
type Lexer.T
spec varlvalid: Lexer.T → bool
...

proc GetToken(lx: Lexer.T): Token.T
requires lvalid[lx]
...

The implementation of lexers contains a variety of fields, of which we show
one, rdr , which is a reference to the reader that supplies the stream to be converted

4



into tokens:

unit LexerImplimport Lexer,Rd,Token
var rdr: Lexer.T→ Rd.T
dependslvalid[lx: Lexer.T] on rvalid[rdr[lx]]
rep lvalid[lx: Lexer.T] ≡ rvalid[rdr[lx]] ∧ . . .
...

The idea is that the readerrdr[lx] supplies the character stream that is tokenized
by the lexer lx . We omit the other data fields of lexers, and the part of the repre-
sentation oflvalid that concerns these fields.

In fact, the fieldrdr is a pivot field, since we need the conjunctrvalid[rdr[lx]]
in the representation oflvalid[lx] , and therefore there is a dynamic dependency of
lvalid on rvalid .

Envision a situation where the lexer interface provides a procedure,P , that
returns the associated reader. A client could then use procedureP to retrieve the
reader of a lexer, close the reader, and then operate on the lexer:

given lvalid[lx],
rd := P(lx) ;
Close(rd) ;
...

tok := GetToken(lx) .

This would go wrong at run-time (because the lexer is invalidated by the closing of
the reader), but a modular verifier would miss the error. Note that in this program
fragment, abstract aliasing occurs as defined in Section 1: after the linerd :=
P(lx) , the condition rd = rdr[lx] ∧ rd 6= nil holds, and (we assume) this is a
scope where therdr field is not visible. (If therdr field were visible, then the
dependency would be too, and a modular verifier would not miss the error.)

Informally, we say thatP causessimple upward leaking: it creates the possi-
bility of abstract aliasing by “leaking” the value of a pivot field by directly returning
it to a caller outside the scope of the field.

3 Practical basis

We have not yet implemented our methodology. We had planned to do so in the
context of the Modula-3 Extended Static Checker (ESC) [DLNS98, LN98b, Det96,
ESC], but this plan was not completed. In the meantime, the design of our method-
ology was shaped by the following programs:

5



• The Modula-3 object-oriented buffered streams package (readers and writ-
ers; about a thousand lines of Modula-3; originally written in Modula-2+ by
Kai Li and Butler Lampson) [BN91].

• The NI2 indexing library (about 20,000 lines of C code written by Mike
Burrows; the heart of the AltaVista World-Wide Web Index).

Both of these libraries use object-oriented programming techniques to implement
abstract data types. Both of them hide the representation of their abstract types,
and both of them occasionally transfer mutable components of the hidden repre-
sentation into and out of the scope in which the representations are hidden, thus
risking rep exposure.

We have annotated the I/O streams library and checked it with ESC. Since the
methodology of this paper was not implemented, we never mechanically verified
the absence of abstract aliasing, but we did mechanically check the package for
many other errors, including race conditions, deadlocks, array index errors, and
nil -dereference errors. Thus we have identified all the pivot fields and are aware of
all places in which mutable components of abstract types cross abstraction bound-
aries. We believe that our methodology for avoiding abstract aliasing is flexible
enough to handle this library.

Mike Burrows has checked the NI2 indexing library with LCLint [Eva96],
which warns about transfers of mutable components across abstraction boundaries.
He found that these warnings were not indicative of real errors, and therefore used
the “-repexpose ” flag to LCLint, which globally suppresses all warnings of this
type. We ran LCLint without this flag and examined the warnings that it reported.
We believe this showed us the parts of the program relevant to abstract aliasing,
while saving us the need to read all 20,000 lines. It is possible, but not certain, that
our methodology for avoiding abstract aliasing is flexible enough to handle this
library.

The experience of Mike Burrows with LCLint and NI2 suggests that abstract
aliasing may be more of a theoretical than a practical problem. It is clear that rep
exposure makes simple program proof systems unsound. But it is not clear whether
inadvertent rep exposure is a common source of errors.

4 Methodology

This section describes our methodology informally.
To prevent simple upward leaking, we impose the somewhat drastic restriction

that no return value (or, more generally, out-parameter) of any procedure is allowed
to be the value of any pivot field.

6



Slightly more subtly, a procedure could leak the value of a pivot field by as-
signing it to a global variable or to some field of some other object. We defend
against this with another drastic restriction: at any instant, the values of pivot fields
are not allowed to overlap with the values of global variables, nor with the values
of non-pivot fields. We call this restrictionapartheid. For brevity in the future,
a non-pivot locationmeans a global variable or non-pivot field. Thus, apartheid
forbids any overlap between the values of pivot fields and the values of non-pivot
locations.

Let us say that a procedurecapturesan in-parameter if it assigns the param-
eter to some global variable or field (pivot or not). In order to enforce apartheid,
each procedure specification will have to disclose whether it captures any of its pa-
rameters. For a formal parameter that is captured into a pivot field, the procedure
specification must require the value of the parameter to be distinct from the values
of all non-pivot locations. Otherwise, the checker would complain that the proce-
dure body may violate apartheid. Similarly, for a formal parameter that is captured
into a non-pivot location, the specification must require the value of the parame-
ter to be distinct from the values of all pivot fields. Our methodology includes a
captures notation to make it convenient to write these kinds of specifications.

So far our methodology allows a computation to transfer a value between a
pivot field and a non-pivot location, so long as no value is simultaneously shared
between a pivot field and a non-pivot location. We have noticed that this freedom
is unused in the example programs that we have encountered, and it appears to
us that giving up this freedom simplifies our methodology. Therefore, we make
another drastic rule, which we callmonomorphism. The rule is that once an object
becomes the value of a pivot field, it is no longer allowed ever to become the
value of a non-pivot location, and vice versa. This rule is reminiscent of Leino
and Stata’s technique for keeping track of which objects have reference count zero
without keeping track of the exact reference count of objects [LS97].

In light of the monomorphism rule, we make the following definitions. At a
particular state in a computation, we say that a value is apivot if it is or has been
the value of some pivot field, that it isplenaryif it is or has been the value of some
non-pivot location, and that it isvirgin otherwise.

Our methodology also includes what we call thedisjoint ranges requirement.
It states that pivot fields declared in distinct scopes have disjoint ranges. That
is, if b and d are pivot fields whose declarations occur in different scopes, then
b[s] = d[t] ∧ b[s] 6= nil is forbidden, for anys and t . The justification for
this requirement is rather technical and is explained in our companion paper on
dependencies [LN98a].

7



5 Enforcing the methodology

In this section, we describe our methodology more formally, and also describe
how to enforce it mechanically. Given as input a program annotated with spec-
ifications, we show how to transform it into another annotated program that will
verify exactly when the input program would verify and the input program obeys
our methodology.

For our purposes, it is not necessary to describe the specification language in
any detail. We assume the reader is familiar with pre- and postconditions and mod-
ifies clauses, which we introduce with the Larch keywordsrequires , ensures,
and modifies (see, for example, the CLU book [LG86]).

The methodology is enforced in three steps: we introduce some special fields,
we transform the input program, and we transform the input specifications.

It is a consequence of our methodology that an object starts off being virgin and
can transition into being either plenary or a pivot, but not both. To keep track of
these transitions, we introduce three special boolean-valued fields:virgin , pivot ,
and plenary. These fields are special in that they are used only in describing
the semantics of programs—the input program cannot read or write them directly.
Furthermore, the fieldspivot and plenary are not allowed to occur directly in
specifications; they can be introduced into specifications only using the constructs
described in this section.

We transform the input program to an equivalent program that keeps the special
fields up-to-date. The following table shows how the transformation is done. In
the table,T denotes any object type,E any object-valued expression,b any pivot
field, f any non-pivot field,g any global variable, ando any object.

input program transformed program

o := new(T) o := new(T) ; virgin[o] := true ;
pivot[o] := false; plenary[o] := false

b[o] := E b[o] := E ; virgin[b[o]] := false; pivot[b[o]] := true

f [o] := E f [o] := E ; virgin[f [o]] := false; plenary[f [o]] := true

g := E g := E ; virgin[g] := false; plenary[g] := true

As a consequence of these transformations, the following predicates are guar-
anteed to hold at all control points in the input program. In these formulas,o
ranges over non-nil objects, andb , f , and g are used as in the table above.

〈 ∀ o :: virgin[o] 6= (pivot[o] ∨ plenary[o]) 〉

〈 ∀ o :: pivot[b[o]] 〉 ∧ 〈 ∀ o :: plenary[f [o]] 〉 ∧ plenary[g]

8



(Since b[o] and g may benil , we introduce the boundary assumptionspivot[nil ]
and plenary[nil ] .)

The third step in enforcing our methodology is to transform the specifications.
This involves desugaring eachcaptures clause and inserting extra conditions in
pre- and postconditions.

There are two forms ofcaptures clauses. The first form is

captureso ,

where o is an in-parameter. It desugars into

requires o= nil ∨ ¬pivot[o]
modifiesvirgin[o],plenary[o] .

Thus, if a procedure specification includescaptureso , the procedure implemen-
tation is assured thato is not a pivot and is allowed to captureo into a non-pivot
location.

The second form is

captureso into b[t] ,

where o is an in-parameter,b is a pivot field, andt is an expression. It desugars
into

requires o= nil ∨ virgin[o]
modifiesvirgin[o],pivot[o],b[t]
ensuresb′[t] = o ,

where b′ denotes the value ofb in the post-state. Thus, if a procedure specifica-
tion includescaptureso into b[t] , the procedure implementation is assured thato
is virgin and is constrained to captureo into the specific pivot fieldb[t] .

The captures into annotation can be viewed as a more precise version of
LCLint’s annotationexposed . Thus, we write

proc m(v, x)
capturesx into b[v]

where in LCLint one would write

proc m(v, /*@exposed@*/ x) .

Perhaps surprisingly,captures into is not a strengthening ofcaptures: the
latter is used when a parameter is captured into a non-pivot location, the former
when a parameter is captured into a pivot field. The reason for the asymmetry is
as follows. When a parameter is captured into a pivot field, the soundness of the

9



methodology requires explicit mention of the pivot field in the specification (as
we shall see below). But when a parameter is captured into a non-pivot location,
explicit mention of the non-pivot location is not necessary, and typically not useful.

If there is nocaptures clause for some parameter, a caller can pass a pivot as
the corresponding actual parameter: since the parameter is not captured, there is
no danger that the procedure call would violate apartheid.

All that remains is to strengthen the pre- and postconditions of the input pro-
gram.

We strengthen each procedure’s postcondition by a conjunct

r = nil ∨ ¬pivot′[r] (3)

for each of its out-parametersr (including the return value). This enforces the rule
against returning pivots.

Finally, we add invariants as conjuncts to all pre- and postconditions. To en-
force apartheid, we add

〈 ∀ o :: ¬(pivot[o] ∧ plenary[o]) 〉 .

To enforce the disjoint ranges requirement, we add

〈 ∀ s, t :: b[s] = d[t] ⇒ b[s] = nil 〉
for each pair of pivot fieldsb and d that are visible and whose declarations are in
distinct scopes. In these formulas,o , s, and t range over non-nil objects.

Note that the apartheid invariant mentions only the fieldspivot and plenary,
both of which change monotonically in any execution. Therefore it is impossi-
ble for a procedure to temporarily violate and then restore apartheid. This obser-
vation permits the invariant to be checked incrementally, instead of at procedure
boundaries: one can check¬pivot[x] at every update ofplenary[x] and check
¬plenary[x] at every update ofpivot[x] .

The disjoint ranges requirement does not necessarily change monotonically, so
it is enforced only on procedure boundaries.

6 What we have achieved

The contribution of our methodology is that it allows passing a pivot value across
an abstraction boundary in cases where this is useful. In this section, we illustrate
this contribution by continuing the lexer/reader example.

Recall that each lexerlx contains a readerrdr[lx] that supplies the characters
that lx tokenizes. We argue that this reader should be a parameter to the lexer

10



initialization method, so that, for example, a lexer from a file could be constructed
as follows:

rd := File.Open("/etc/passwd" ) ;
lx := Lexer.Init(new(Lexer.T), rd) .

(4)

The alternative would be to make the lexer implementation itself allocate the reader.
But then it could support only a fixed number of reader subtypes. By making the
reader a parameter to the lexer initialization method, any reader subtype can be
used, even subtypes that were not envisioned at the time the lexer implementation
was coded. This is one of the key advantages of object-oriented programming.

Since the lexer initialization method captures its reader parameter, our method-
ology forces this fact to be disclosed in its specification:

proc Lexer.Init(lx: Lexer.T ; rd: Rd.T): Lexer.T
requires lx 6= nil ∧ virgin[lx] ∧ rvalid[rd]
capturesrd into rdr[lx]
modifies lvalid[lx]
ensureslvalid′[lx] ∧ result = lx .

(The preconditionvirgin[lx] is not absolutely necessary, but it is convenient as will
be explained in Section 8.)Lexer.Init returns the lexer that it initializes, following
a common convention for initialization methods.

BecauseLexer.Init captures itsrd parameter into a pivot field, its specifica-
tion must use the second form ofcaptures, in which the pivot fieldrdr is men-
tioned explicitly. Consequently, the field must be visible in the interface, rather
than hidden in the implementation. Therefore, we must move the declaration of
the rdr field from the unitLexerImpl to the unit Lexer. Because of our rules for
the placement of dependencies, the declaration

dependslvalid[lx: Lexer.T] on rvalid[rdr[lx]]

must also move fromLexerImpl to Lexer.
At first these changes seem shocking and bad, but they are necessary and harm-

less. Necessary, because immediately after the callLexer.Init(lx, rd) both lx and
rd are visible expressions andrd = rdr[lx] . Therefore, if the fieldrdr were not
visible, abstract aliasing would occur by the definition in Section 1. Harmless, be-
cause the exposure of therdr field in the interface does not entail any real loss
of abstraction: therep clause of lvalid is still hidden in the implementation. In
fact, the pivot field is effectively read-only to clients: since the dependency is vis-
ible, changes tordr[lx] are known to affectlvalid[lx] , but, since therep is not
visible, it is impossible to prove that a change tordr[lx] maintains lvalid[lx] . A

11



more subtle example of this “read-only by specification” technique is described by
Leino and Nelson [LN98a].

In summary, we can soundly allow pivots to cross abstraction boundaries by
placing the dependency in the interface: The abstraction representation remains
hidden in the implementation. If a perverse client tried to close the reader from
under the lexer, the checker would detect that this action compromises the validity
of the lexer, because the dependency is in scope. Indeed, we have structured the
annotation language to railroad the programmer into this pattern: To verify the
body of a procedure that captures a pivot, the programmer must specify it using the
captures into notation, and thus must declare the pivot field in the interface, and
therefore must declare the dependency there as well.

7 What we have not achieved

Our approach carefully controls the global variables and fields that can contain a
pivot b[o] , but it doesn’t say anything about how theownerof this pivot, o , might
be reached. For example, our methodology does not prevent the code fragment (4)
that initializes rd and lx to be followed by a procedure call like

P(lx, rd) ,

where P is a procedure that is implemented where therdr field is not visible.
In this scenario, abstract aliasing would occur in the implementation ofP . Even
more alarmingly, abstract aliasing could occur if the first parameter toP were any
object from whichlx is reachable, or iflx were reachable from a global variable
visible to the implementation ofP .

8 Discussion of variations

To smooth the exposition, we have presented our methodology in strict and simple
terms. In this section, we sketch some possible variations.

First, the rule against returning pivots is more drastic than necessary. For ex-
ample, it would be perfectly sound to forbid the return only of those pivots that
were not among a procedure’s in-parameters. The more liberal rule is sound be-
cause simple upward leaking occurs only when a procedure provides a caller with
access to a pivot that was not accessible before the call. In fact, we expect a liberal-
ization along these lines to be very convenient; for example, to avoid clashing with
the convention that initialization methods return the object initialized. The reader
may have wondered why the conjunctvirgin[lx] was present in the precondition

12



of Lexer.Init : without the precondition, no implementation that uses the initial-
ization convention will be able to establish the postcondition (3),¬pivot[result] .
By liberalizing the rule about returning pivots, this restrictive precondition could
be omitted.

Another way to liberalize the rule against returning pivots would be to have
a dual to thecaptures into annotation, which would allow returning a pivot pro-
vided that the specification states explicitly what is being returned. For example, if
x is an out-parameter or a global variable, the annotation

returns E asx

could cause the conjunct¬pivot′[x] to be omitted from the postcondition, and in
its place add the conjunct

ensuresx′ = E .

This liberalization is sound for the same reason as the other liberalization is sound:
returning a pivot does not cause abstract aliasing if the associated pivot field is in
scope in the caller. We found several procedures in the NI2 indexing library for
which returns as, or something like it, would be useful.

Secondly, it would be perfectly sound to weaken the precondition in the desug-
aring of captureso into b[t] from requires virgin[o] to requires¬plenary[o] .
However, we doubt that this would be convenient in practice, since, for one thing,
the precondition of virginity is generally needed to prove that an initialization of a
pivot field preserves the disjoint ranges requirement.

Thirdly, one can imagine cases where a procedure captures a parameter into a
pivot field, but where it is inconvenient to name the owner at the point of declaration
of the procedure. This suggests a notation like

captureso into b

whose desugaring has the postcondition

〈 ∃ t :: b′[t] = o 〉 .

We have encountered one example program in which this notation might be useful.

9 Related work

The central problem addressed in this paper is to find an effective methodology for
dealing with rep exposure that allows what is useful (passing a reader to an initial-
izing method of a lexer) while preventing what is harmful (invisibly invalidating a
lexer by closing the reader under it).

13



We learned the term rep exposure from the CLU community, but this com-
munity seems not to have developed any formal methodology for avoiding the
problem [LG86].

Keeping track of references is a crucial difficulty in many kinds of static pro-
gram analyses. There are several papers introducing annotation techniques related
to ours. The Larch C Lint checking tool (LCLint) warns of places where a C pro-
gram transfers mutable components across abstraction boundaries [Eva96]. The
annotations for turning off inappropriate warnings from LCLint are similar, but
less precise, than those used in our methodology. In the course of developing a
tool to assist in the structural change of programs, Chan, Boyland, and Scherlis
have encountered problems similar to the rep exposure problem, and have devel-
oped a number of annotations similar to ours [CBS98].

Our pivot and virgin attributes are similar to theuniqueandfreemodes of John
Hogg’s Islands paper [Hog91]. Almeida’s Balloons paper also outlines a program-
ming discipline for programming with object references [Alm97]. However, the
Islands and Balloons papers are not directed toward the rep exposure problem and
do not consider the connection between a reader and its enclosing lexer, and there-
fore do not provide a solution to the problem we are addressing in this paper.

The Flexible Alias Protection paper of Noble, Vitek, and Potter describes pro-
gramming rules that prevent rep exposure [NVP98]. But the rules are too strict:
they outlaw the lexer/reader program, because in this program a part of the repre-
sentation of the lexer is referenced from outside the scope of the lexer’s implemen-
tation.

Jones describes simple formal rules for avoidinginterference, which is related
to abstract aliasing, but his rules are too strict to be useful [Jon96].

The methodology described in this paper can be more precise because it is
based on dependencies [LN98a]. Another of our contributions is that our paper is
the first treatment of the rep exposure problem that contains no pictures.

10 Conclusions

It is difficult to design a programming discipline that prevents the unsound cases
of rep exposure but allows useful and sound object-oriented programming styles.
The theory of dependencies sheds new light on this problem. In particular:

• Rep exposure is usually defined as the transfer of mutable components of
an abstract data type across the abstraction boundary for that type. But in
fact, only those components that correspond to dynamic dependencies are
problematical; components that correspond to static dependencies can be

14



ignored. From this observation we have traced the source of unsoundness to
the notion of abstract aliasing, precisely defined in terms of dependencies.

• If some abstractiona[t] depends on the mutable value of some component
b[t] (that is, if dependsa[t] on c[b[t]] ), a checker can detect the interfer-
ence between updates toa[t] and c[b[t]] even if the details of the repre-
sentation ofa are not visible. All that is required is for the dependency to
be in scope. This observation allows pivots to cross abstraction boundaries
provided that the associated pivot field and dependency are in scope in the
relevant interface.

Our analysis has led us to a conclusion that is shockingly different from the
other approaches that we know. Instead of forbidding pivot values from ever cross-
ing an abstraction boundary, we allow them to, provided that the pivot field is
declared in the interface to the abstraction. Soundness is saved by declaring the
dependency in the interface as well.

We have developed these observations into a set of rules for avoiding abstract
aliasing and have described how to enforce them mechanically. The rules prevent
many cases of abstract aliasing, but not all cases.

Acknowledgements

We are grateful to Mart´ın Abadi, Monika Henzinger, Cynthia Hibbard, Sharon Perl,
Jim Saxe, Raymie Stata, and Bill Weihl for comments on the presentation.

References

[Alm97] Paulo Sérgio Almeida. Balloon types: Controlling sharing of state
in data types. In Mehmet Aks¸it and Satoshi Matsuoka, editors,
ECOOP’97—Object-oriented Programming: 11th European Confer-
ence, volume 1241 ofLecture Notes in Computer Science, pages 32–
59. Springer, June 1997.

[BN91] Mark R. Brown and Greg Nelson. I/O streams: Abstract types,
real programs. In Greg Nelson, editor,Systems Programming with
Modula-3, Series in Innovative Technology, chapter 6, pages 130–169.
Prentice-Hall, Englewood Cliffs, NJ, 1991.

[CBS98] Edwin C. Chan, John T. Boyland, and William L. Scherlis. Promises:
Limited specifications for analysis and manipulation. InProceed-

15



ings of the IEEE International Conference on Software Engineering
(ICSE’98), pages 167–176. IEEE Computer Society, April 1998.

[Det96] David L. Detlefs. An overview of the Extended Static Checking sys-
tem. In Proceedings of The First Workshop on Formal Methods in
Software Practice, pages 1–9. ACM SIGSOFT, January 1996.

[DLNS98] David L. Detlefs, K. Rustan M. Leino, Greg Nelson, and James B.
Saxe. Extended static checking. Research Report 159, Digital Equip-
ment Corporation Systems Research Center, 1998. To appear.

[ESC] Extended Static Checking home page, Compaq Systems Research
Center. On the Web athttp://www.research.digital.com/

SRC/esc/Esc.html .

[Eva96] David Evans. LCLint User’s Guide, Version 2.1a, April 1996.
Available fromhttp://www.sds.lcs.mit.edu/lclint/guide/

index.html .

[Hoa72] C. A. R. Hoare. Proof of correctness of data representations.Acta
Informatica, 1(4):271–281, 1972. Reprinted in C. A. R. Hoare and
C. B. Jones, editors,Essays in Computing Science, Series in Computer
Science, chapter 8. Prentice Hall International, 1989.

[Hog91] John Hogg. Islands: Aliasing protection in object-oriented languages.
In Andreas Paepcke, editor,Object-Oriented Programming Systems,
Languages, and Applications (OOPSLA’91), pages 271–285. ACM
Press, October 1991.

[Jon96] C. B. Jones. Accommodating interference in the formal design of con-
current object-based programs.Formal Methods in System Design,
8(2):105–122, March 1996.

[Lei95] K. Rustan M. Leino.Toward Reliable Modular Programs. PhD thesis,
California Institute of Technology, 1995. Available as Technical Report
Caltech-CS-TR-95-03.

[LG86] Barbara Liskov and John Guttag.Abstraction and Specification in Pro-
gram Development. MIT Electrical Engineering and Computer Science
Series. MIT Press, 1986.

[LN98a] K. Rustan M. Leino and Greg Nelson. Abstraction and specification
revisited. Internal manuscript KRML 71, Digital Equipment Corpo-

16



ration Systems Research Center, 1998. To appear as a SRC Research
Report 160.

[LN98b] K. Rustan M. Leino and Greg Nelson. An Extended Static Checker
for Modula-3. In Kai Koskimies, editor,Compiler Construction: 7th
International Conference, CC’98, volume 1383 ofLecture Notes in
Computer Science, pages 302–305. Springer, April 1998.

[LS97] K. Rustan M. Leino and Raymie Stata. Virginity: A contribution to the
specification of object-oriented software. Technical Note 1997-001,
Digital Equipment Corporation Systems Research Center, April 1997.

[NVP98] James Noble, Jan Vitek, and John Potter. Flexible alias protection.
In Eric Jul, editor,ECOOP’98—Object-oriented Programming: 12th
European Conference, volume 1445 ofLecture Notes in Computer Sci-
ence, pages 158–185. Springer, July 1998.

17


