
September 15, 2000

SRC
Research
Report 165

A Practical, Robust Method for Generating
Variable Range Tables

Caroline Tice
and

Prof. Susan L. Graham

Systems Research Center
130 Lytton Avenue
Palo Alto, California 94301

http://www.research.compaq.com/SRC/

Compaq Systems Research Center

SRC’s charter is to advance the state of the art in computer systems by doing basic
and applied research in support of our company’s business objectives. Our interests
and projects span scalable systems (including hardware, networking, distributed
systems, and programming-language technology), the Internet (including the Web,
e-commerce, and information retrieval), and human/computer interaction (includ-
ing user-interface technology, computer-based appliances, and mobile computing).
SRC was established in 1984 by Digital Equipment Corporation.

We test the value of our ideas by building hardware and software prototypes and
assessing their utility in realistic settings. Interesting systems are too complex
to be evaluated solely in the abstract; practical use enables us to investigate their
properties in depth. This experience is useful in the short term in refining our
designs and invaluable in the long term in advancing our knowledge. Most of the
major advances in information systems have come through this approach, including
personal computing, distributed systems, and the Internet.

We also perform complementary work of a more mathematical character. Some of
that lies in established fields of theoretical computer science, such as the analysis
of algorithms, computer-aided geometric design, security and cryptography, and
formal specification and verification. Other work explores new ground motivated
by problems that arise in our systems research.

We are strongly committed to communicating our results; exposing and testing our
ideas in the research and development communities leads to improved understand-
ing. Our research report series supplements publication in professional journals
and conferences, while our technical note series allows timely dissemination of re-
cent research findings. We seek users for our prototype systems among those with
whom we have common interests, and we encourage collaboration with university
researchers.

A Practical, Robust Method for Generating
Variable Range Tables

Caroline Tice and Prof. Susan L. Graham

September 15, 2000

Prof. Susan L. Graham works in the Electrical Engineering and Computer
Science Department at the University of California, Berkeley. She can be reached
by email at graham@cs.berkeley.edu.

c©Compaq Computer Corporation 2000

This work may not be copied or reproduced in whole or in part for any commercial
purpose. Permission to copy in whole or in part without payment of fee is granted
for nonprofit educational and research purposes provided that all such whole or
partial copies include the following: a notice that such copying is by permission
of the Systems Research Center of Compaq Computer Corporation in Palo Alto,
California; an acknowledgment of the authors and individual contributors to the
work; and all applicable portions of the copyright notice. Copying, reproducing,
or republishing for any other purpose shall require a license with payment of fee to
the Systems Research Center. All rights reserved.

Abstract

In optimized programs the location in which the current value of a single source
variable may reside typically varies as the computation progresses. A debugger
for optimized code needs to know all of the locations – both registers and memory
addresses – in which a variable resides, and which locations are valid for which
portions of the computation. Determining this information is known as the data
location problem [3, 7]. Because optimizations frequently move variables around
(between registers and memory or from one register to another) the compiler must
build a table to keep track of this information. Such a table is known as a vari-
able range table [3]. Once a variable range table has been constructed, finding a
variable’s current location reduces to the simple task of looking up the appropriate
entry in the table.

The difficulty lies in collecting the data for building the table. Previous meth-
ods for collecting this data depend on which optimizations the compiler performs
and how those optimizations are implemented. In these methods the code for col-
lecting the variable location data is distributed throughout the optimizer code, and
is therefore easy to break and hard to fix. This paper presents a different approach.
By taking advantage of key instructions, our approach allows the collection of all
of the variable location data in a single dataflow-analysis pass over the program.
This approach results in code for collecting the variable location information that
is easier to maintain than previous approaches and that is almost entirely indepen-
dent of which optimizations the compiler performs and of how the optimizations
are implemented.

Contents

1 Introduction 2

2 Using the Optimized Binary 3
2.1 Key instructions . 4
2.2 Identifying key instructions . 5

3 Algorithmic Details 6
3.1 Collecting names of assigned variables 6
3.2 Performing the dataflow analysis 7
3.3 Building the variable range table 9

4 Implementation Experience 10

5 Conclusion 12

A Algorithm for dataflow analysis between basic blocks 13

B Algorithm for generating, passing, and killing location tuples within a
basic block 14

1

1 Introduction

A correct, accurate symbol table is critical for the interactive source-level debug-
ging of optimized code. The symbol table contains information about all the sym-
bols (names) that occur in the source program, including object names, type names,
local and global variables, subroutine names and parameters. Symbol tables also
keep information about the declared types of program variables and about how to
map between locations in the source program and locations in the target program.
An especially important piece of information kept in the symbol table is infor-
mation about where variable values reside during various portions of the program
execution. Debuggers need accurate information about variable locations, both in
memory and in registers, in order to determine where to look when a user requests
to see the value of a variable during the execution of the program.

There is a nice set of relationships that exists between source programs and
their corresponding unoptimized binary programs that makes the task of collect-
ing and generating symbol table information fairly straightforward. For example,
whenever the value of a source variable is updated, the new value is always writ-
ten to the variable’s single home location in memory. Compiler optimizations,
however, destroy these relationships, making the task of determining a variable’s
current location much harder. Once a program has been optimized, the location
that contains a variable’s correct current value can vary as the computation pro-
ceeds, sometimes being one of several different registers; sometimes being one of
several locations in memory; sometimes being a constant value encoded directly
in the instructions; and sometimes, during portions of the computation where the
variable is not live, not being anywhere at all. Determining where to look for a
variable’s value is known as the data location problem.

In order to correctly capture information about variables’ locations, the com-
piler needs to construct a variable range table, such as the one described by Coutant,
Meloy, and Ruscetta [3]. This table associates, with every variable in the source
program, a list of “entries”. Each entry in the list gives a location in which that
variable resides during some portion of the computation. Each location entry in
the table also has associated with it the range(s) of addresses in the binary program
for which the entry is valid. We are assuming a single thread of control in this
paper.

The concept of a variable range table is not new; it has been around for over a
decade. The difficulty is that, until now, there has been no easy way to collect this
information. The standard approach is to track every source variable through every
optimization performed by the compiler, recording each location as the variable
gets moved around. Thus the data evolves as the optimizations are performed, and
when the optimizations are complete the data has been “collected”.

2

This approach has many disadvantages. The greatest of these is that the code
for collecting the variable range table information is distributed throughout the
code for the optimizations. This means that these implementations are very fragile,
because any change to the optimizations (adding an optimization, removing an
optimization, or changing the implementation of an optimization) can break this
code. In addition errors in the code for collecting variable location data are very
hard to track down and fix, because the code is not all in one place.

In this paper we present a completely different technique for collecting this
important information. By using dataflow analysis directly on the optimized binary
program we are able to collect the variable location information in one pass. Our
approach is independent of which optimizations the compiler performs and of how
the optimizations are implemented, although it does rely on accurate information
about key instructions, as explained later. Our approach allows all the source code
for collecting the location information to be in one place, rather than distributed
throughout the source for the optimizations. This makes it simpler to find and fix
errors in the location-collection code. Also the code is more efficient than previous
approaches, because the data is collected only once, not collected and then updated
continuously as optimizations are performed.

The rest of this paper is organized as follows: In Section 2 we give an overview
of our approach and explain the role of key instructions. Section 3 presents the im-
portant algorithmic details for collecting the data and assembling it into the variable
range table. We briefly describe our implementation experiences in Section 4, and
in Section 5 we present our conclusions.

2 Using the Optimized Binary

Our approach builds on the realization that the final optimized binary program
must contain all the required information as to where variables are located. The
optimized binary program encodes the final results of all the optimizations, includ-
ing the low-level optimizations such as instruction scheduling, register allocation,
and spilling. Therefore by performing dataflow analysis on the final optimized
binary program, we can obtain completely accurate and correct information as to
the locations of all the program variables, only performing the analyisis once, and
without having to trace through each optimization individually.

So why has no one done this before? In order to perform the dataflow analysis
on the instructions, one needs to know which instructions correspond to assign-
ments to source program variables, and, for those instructions, which variable is
receiving the assignment. As explained in the next section, this critical piece of
information cannot be determined from the instructions by themselves. But we can

3

take advantage of key instructions in order to obtain this vital information.

2.1 Key instructions

The notion of key instructions was originally introduced in order to solve a different
problem relating to debugging optimized code, the code location problem [3, 5, 7].
This problem is determining how to map between locations in the source program
and corresponding locations in the optimized target program. This mapping is
needed for implementing many basic debugger functions, such as single-stepping
and setting control breakpoints. The locations in the source program that are of
interest are those that result in a source-level-visible state change (i.e. changing
either the value of a source variable or the flow of control through the program).
Each piece of source (e.g., statement, expression, subexpression, etc.) that causes
a single potential source-level-visible state change is called an atom. Some source
statements contain only a single atom, but others contain multiple atoms. Every
atom in the source program has a corresponding key instruction in the optimized
target program (in those cases where code has been duplicated, a single atom may
have multiple corresponding key instructions). Intuitively, the key instruction for
any atom is the single instruction, in the set of instructions generated from that
atom, that most closely embodies the semantics of the atom. In particular, out of
the set of instructions generated from the atom, the key instruction is the first in-
struction encountered during program execution that causes a source-level-visible
state change to the program. By definition every atom must have such an instruc-
tion.

Because we are concerned here with assignments to source variables, we will
focus on assignment atoms and their key instructions. Since there is a one-to-
one mapping between atoms and visible state changes in the source, any atom can
assign a value to at most one source variable.1 Therefore the key instruction for an
assignment atom is the instruction that writes the right-hand side of the assignment
to the variable’s location in memory; or, if the write to memory has been optimized
away, it is the final instruction that calculates the right-hand side and leaves it
in a register. In those cases where optimizations cause code for an atom to be
duplicated, such as unrolling a loop some number of times, the atom will have
one key instruction for each copy of the duplicated code that remains in the final
program.

1This discussion assumes there are no constructs in the source, such as a swap statement, that
simultaneously update multiple source variables.

4

2.2 Identifying key instructions

We are assuming that the compiler keeps accurate information throughout the com-
pilation process as to the original source position (file, line, and column position)
from which every piece of internal representation was generated. Thus in the final
phase, every instruction has associated with it information as to the source posi-
tion(s) from which it was originally generated. The compiler has to maintain at
least this basic information to make source-level debugging of the optimized target
program feasible.

Using the source position associated with each instruction, we can identify
the set of all instructions generated from any given atom. Once we have this set
for each atom we need to find the key instruction within the set. Identifying key
instructions for control flow atoms is not too difficult: The key instruction for
a control flow atom is the first conditional branching instruction out the set of
instructions generated from that atom.2 Key instructions for assignment atoms,
however, are much harder to identify. In fact they cannot be identified at all, if one
only has only the set of instructions generated from the atom.

There are three factors that contribute to this difficulty. First, one cannot iden-
tify assignment key instructions by the opcode of the instruction. An assignment
key instruction might be a store instruction, but it could as easily be an add, sub-
tract, multiply, or any other operator instruction (if the store to memory has been
optimized away). Second, one cannot use variable names to sort out the key in-
struction for an assignment, because there are no variable names in the instruc-
tions. Third, one cannot rely on the position of the instruction to identify assign-
ment key instructions. While it is true that, in the absence of code duplication,
the key instruction for an assignment atom will be the last non-nop instruction for
the atom, optimizations such as loop unrolling may result in an assignment atom
having multiple key instructions within a single basic block, making it impossible
to use instruction position to find them all. In fact the only way to identify all the
key instructions for an assignment atom is to perform a careful semantic analysis
of both the instructions and the original source atom.

Luckily the compiler does perform such an analysis, early in the compilation
process, when it first parses the program and generates the appropriate internal
representation. Therefore it makes sense to take advantage of the compiler and have
the front end tag the piece of internal representation that will eventually become
the key instruction(s) for an assignment atom. These tags can then be propagated
through the compiler, and when the instructions are generated, the key instructions
for assignment atoms are already tagged as such.

2By “first” we mean the first instruction encountered if one goes through the instructions in the
order in which they will be executed.

5

We claimed earlier that our approach to collecting variable location data is
almost entirely independent of the optimization implementations. It is not com-
pletely independent because the key instruction tags do have to be propagated
through the various optimization phases. We feel this is acceptable for two reasons.
First it is far simpler and requires far less bookkeeping to propagate the one-bit tag
indicating that a piece of internal representation corresponds to an assignment key
instruction, than it does to track and record information about variable names and
current variable storage locations. Second, and more importantly, we are assum-
ing that key instructions will be tagged anyway, as a necessary part of solving the
code location problem, without which one cannot implement such basic debug-
ger functions as setting control breakpoints and single-stepping through the code.
Therefore we view our use of key instructions to collect the variable range table
information as taking advantage of an existing mechanism, rather than requiring a
new, separate implementation.

For more information about key instructions, including formal definitions, al-
gorithms for identifying them, and an explanation of how they solve the code loca-
tion problem, see Tice and Graham[5].

3 Algorithmic Details

Our algorithm for collecting the variable location information has two phases.

3.1 Collecting names of assigned variables

Recall that, in order to perform the dataflow analysis on the binary instructions, we
need to know which instructions assign to source variables, and which variables
receive those assignments. The key instruction tags on the instructions identify the
assignment instructions, but we still need to know the name of the variable that
receives each assignment. The first phase collects that information for us. It is
executed fairly early in the back end of the compiler, before variable name infor-
mation has been lost. In this phase a single pass is made over the representation
of the program. Every time an assignment is encountered, it is checked to see if
the assignment is to a source-level variable.3 If so, the name of the variable and
the source position of the assignment atom are recorded in a table. Thus at the
end of this pass we have created a table with one entry for every assignment atom
in the source program. Each entry contains the name of the variable receiving the
assignment and the source position of the assignment atom. We attempt to make
the variable name information collected in this phase as precise as possible.

3The key instruction tags can be used to tell whether or not an assignment is to a source variable.

6

3.2 Performing the dataflow analysis

The second phase, a forward dataflow analysis, is performed at the very end of
the compilation process, after all optimizations (including instruction scheduling)
have finished. The data items being created, killed, etc. by this dataflow analysis
are variable location records, where a variable location record is a tuple consisting
of a variable name, a location, a starting address, and an ending address. For the
rest of this paper we will refer to such a tuple as a “location tuple”. When a loca-
tion tuple is created, it receives the name of the source variable being updated or
moved and the new current location for the variable (either a register or a mem-
ory address). The starting address is the address of the current instruction, and the
ending address is undefined. When a location tuple is killed during the dataflow
analysis, the ending address in the location tuple is filled in with the address of
the killing instruction. Killed location tuples are not passed on during the dataflow
analysis, but they are kept. At the end of the dataflow analysis, all location tuples
will have been killed. The data in these location tuples is then used to construct the
variable range table.

We perform the dataflow analysis at the subroutine level. The initial set of lo-
cation tuples for the dataflow analysis contains one location tuple for each formal
parameter of the subroutine (the compiler knows the initial locations for the pa-
rameters). It also contains one location tuple for each local variable to which the
compiler has assigned a home location in memory. These local variable location
tuples start with a special version of the variable name that indicates that the vari-
able is uninitialized. When the variable is first assigned a value, a new location
tuple is created for it. This allows us to determine those portions of the program
where a variable is uninitialized, which in turn makes it easy for the debugger to
warn a user who queries the value of an uninitialized variable.

In most respects the details of our dataflow algorithm are quite standard [2].
But the rules for creating and killing location tuples inside a basic block deserve
comment. Although we have focused so far on instructions that update the values
of source-level variables, in fact every instruction in the basic block must be exam-
ined carefully when performing the dataflow analysis. The following paragraphs
enumerate the different types of instructions that require some kind of action and
explain what actions are appropriate. Our dataflow algorithm can be found in Ap-
pendix A. Appendix B shows our algorithm for examining instructions within basic
blocks.

Key Instructions. First we need to determine if the key instruction is for an
assignment atom or not. We can determine this by comparing the source position
associated with the key instruction with the source positions in the table collected
during the first phase. If the source position is not in the table, we know the key

7

instruction is not for an assignment atom, so we treat it like any other instruction.
If the source position is found in the table, then we use the table to get the name
of the variable receiving the assignment. We kill any other location tuples for
that variable. We also kill any location tuple whose location is the same as the
destination of the assignment instruction. Finally we generate a new location tuple
for the variable, starting at the current address, and with a location corresponding
to the destination of the assignment instruction.

Register Copy Instructions. If the instruction copies contents from one reg-
ister to another, we first kill any location tuples whose locations correspond to the
destination of the copy. Next we check to see if the source register is a location in
any of the live location tuples. If so, we generate a new location tuple copying the
variable name from the existing location tuple. We make the starting address of the
new location tuple the current address, and set the location to the destination of the
register copy. This can, of course, result in the same variable having multiple live
location records, at least temporarily.

Load Instructions. For load instructions, we check the memory address of
the load to see if it corresponds to any of the addresses the compiler assigned to
any variables or to any location in a live location tuple (i.e. a spilled register). In
either case we generate a new location tuple for the variable, starting at the current
address, and using the destination of the load as the location. We also kill any
existing live location tuples whose locations correspond to the destination of the
load.

Store Instructions. First we kill any location tuples whose locations corre-
spond to the destination of the store. Next we check the address of the store to see
if it corresponds to an address the compiler assigned to a variable, in which case
we generate a new location tuple for the variable. We also generate a new location
tuple if the source of the store corresponds to a location in any live location tuple
(i.e. a register spill).

Subroutine Calls. For subroutine calls we kill any location tuple whose loca-
tion corresponds to subroutine return value locations.

All Other Instructions. If the instruction writes to a destination, we check to
see if the destination corresponds to any location in any live location tuple. Any
such location tuples are then killed. (The corresponding variable’s value has been
overwritten.)

The actions outlined above do not take pointer variables into consideration.
Pointers require a little more work, e.g., modifying the code for memory load and
store instructions to check if the operand being used to obtain the memory location
corresponds to a live location for a source variable (dereferencing a variable in the
live location tuple set); and modifying the code for mathematical operator instruc-
tions to correctly take into consideration operands that correspond to the locations

8

in the set of live variable locations (i.e. using a variable in the live location tuple
set as part of an address calculation for a pointer access.) The actual details can
become somewhat complicated, but the basic ideas are straightforward.

3.3 Building the variable range table

Once the dataflow analysis is complete, we have a large amount of data that needs
to be combined into the variable range table. To make the range table as small as
possible, we combine and eliminate location tuples wherever this is possible and
reasonable. We also compute, for every variable, all the address ranges for which
the variable does not have any location.

In order to consolidate the data we first sort the location tuples by variable
name. For each variable, the location tuples for that variable need to be sorted by
location. Any location tuples for a given variable and location that have consec-
utive ranges need to be combined. For example, the location tuples 〈x, $r4, 1, 7〉
(translated as “variable x is in register 4 from address one through address seven”)
and 〈x , $r4, 7, 10〉 (“variable x is in register 4 from address seven through address
ten”) can be combined into 〈x, $r4, 1, 10〉 (“variable x is in register 4 from address
one through address ten”).

After all such consecutive location tuples have been combined, we sort all of
the location tuples for each variable (regardless of location) by starting address.
For some address ranges a variable may be in multiple locations, while for other
address ranges a variable may not be in any location. For those address ranges
where a variable has multiple locations, we select one location (usually the one
with the longest address range) to be the location we will record in the variable
range table. This is an implementation decision, rather than a feature of our algo-
rithm. Admittedly by not recording all locations for a variable we are losing some
information. If the debugger for optimized code were to allow users to update the
values of variables, then the information we are losing would be critical. We are
assuming, for this work, that users are not allowed to update source variables from
inside the debugger once a program has been optimized, as such an update could
invalidate an assumption made by the compiler, which in turn could invalidate
an optimization, and thus make the program start behaving incorrectly. Updating
variables after optimizations have been performed is an open research issue, and is
beyond the scope of this paper. For those address ranges for which a variable does
not have any location, we create an “evicted” record for the variable and put that
in the variable range table.4 Thus an additional benefit of this approach is that we
can automatically determine not only the correct locations of variables, but also the

4Evicted variables are part of the residency problem identified by Adl-Tabatabai and Gross [1].

9

address ranges for which variables are uninitialized or evicted.

4 Implementation Experience

We implemented a prototype of our approach for building a variable range table
inside the SGI Mips-Pro 7.2 C compiler, a commercial compiler that optimizes
aggressively. This compiler consists of nearly 500,000 lines of C and C++ source
code. The symbol table format used is the DWARF 2.0 standard format [4]. Since
we were implementing an entire solution for debugging optimized code, we mod-
ified the compiler to identify key instructions as well as to generate the variable
range table information. We also modified a version of the SGI dbx debugger to
use the resulting symbol table for debugging optimized code.

Modifying the compiler to collect the variables names, to perform the dataflow
analysis and to write the variable range table into the symbol table took roughly
2 months, and required modifying or writing approximately 1,500-2,000 lines of
code. Modifying the debugger to use the variable range table to look up a variable’s
value took about 2 weeks and 300-500 lines of code. As these numbers show it is
quite easy to adapt existing compilers and debuggers to create and use this variable
range table. The numbers here do not include the time it took to implement the
key instruction scheme, which took roughly five months and involved 1,500-2,000
lines of code. A large part of the five months was spent becoming familiar with the
compiler code.

When implementing our dataflow analysis we encountered a small problem.
As in standard dataflow analysis algorithms, the in-set for each basic block was
constructed by joining all out-sets of the predecessor basic blocks. Occasionally
when joining sets of locations from predecessor blocks we found inconsistencies
between the predecessors. Two different basic blocks might indicate the same
variable being in two conflicting locations, as shown in Figure 1. At the end of
basic block BB2, variable v is in register $r4, while at the end of basic block
BB3, v is in register $r7.5 The question is where, at the beginning of basic block
BB4, should we say that v is? The answer would appear to be “it depends on
the execution path”. However the execution path is something we cannot know at
compile time, when we are constructing the variable range table.

To deal with this problem, we chose to “kill” both of the conflicting location
tuples at the end of the basic blocks from which they came. If there are no location
tuples for the variable that do not conflict at this point, the range table will indicate
the variable as being evicted, i.e. not residing anywhere.

5Note that it would be find if BB2 and BB3 both reported that v was stored both in $r4 and $r7.

10

BB2 BB3

BB4

v is in $r4 v is in $r7

Where is v?

Figure 1: Inconsistency problem during dataflow analysis

This choice was reasonable because the problem in Figure 1 typically arises
only when v is dead on entry to BB4. Otherwise the compiler would require defini-
tive information as to where it could find the variable.6 Since the variable is dead,
killing its location tuple (evicting it, in effect) seems a reasonable, simple solution.

An alternative approach would be to tag the conflicting location tuples in some
special way. In the final variable range table all the conflicting alternative locations
could be entered, leaving the correct resolution up to the debugger or the debugger
user.

Our simple approach was particularly attractive in the context of Optdbx [6],
the debugger for which it was built, because Optdbx performs eviction recovery,
capturing the values of variables before the compiler overwrites them. This tech-
nique allows the debugger to recover the correct variable value in these cases. Us-
ing our example to illustrate this, whenever execution reaches either the end of
basic block BB2 or basic block BB3, the debugger will notice that v is about to
be evicted and so will cache the current value of v in a special table. If the user
suspends execution at the top of basic block BB4 and asks to see the value of v,
the debugger will first look in the range table, where it will see that v is currently

6It is possible to construct pathological cases for which this assumption is false; however we do
not believe such pathological cases ever actually arise inside compilers, and therefore we feel it is
reasonable to make this assumption.

11

evicted. It will then get the value of v from its special table.
The preceding discussion illustrates one of the added benefits of using dataflow

analysis to construct the variable range table: one can obtain (with no extra work)
exact information about variable evictions, uninitialized variables, and variables
that have been optimized away. (The last case would be those variables for which
no location tuples were created.) Users of our debugger especially liked its ability
to indicate these special cases.

5 Conclusion

In this paper we have presented a new method for collecting the variable location
information to be incorporated into a variable range table. This is necessary for
solving the data location problem, allowing debuggers of optimized code to de-
termine where variable values reside during execution of the program. By taking
advantage of key instruction information, our method uses dataflow analysis tech-
niques to collect all the variable location information in a single pass over the final
optimized internal representation of the program.

Our approach has many advantages over previous approaches. It is faster than
previous approaches, because it collects the data in one dataflow pass, rather than
building an initial set of data and evolving the set as optimizations are performed.
Unlike previous approaches the person implementing this technique does not need
to understand how all of the optimizations in the compiler are implemented. In
previous approaches the source code for collecting the variable location data has to
be distributed throughout the code for the optimizations; any time an optimization
is added, removed, or modified, the code for collecting the variable location data
must be modified as well. By contrast our approach is completely independent
of which optimizations the compiler performs and of how those optimizations are
implemented. The code for performing the dataflow analysis is all in one place,
making it easier to write, to maintain, and to debug.

A further benefit of using dataflow analysis on the final representation of the
program to collect the variable location data is that this also allows for easy identifi-
cation of those portions of the target program for which any given variable is either
uninitialized or non-resident. Previous variable range tables have not contained
this information at all.

Finally by implementing these ideas within an existing commercial compiler
and debugger, we have shown that these ideas work and that they can be retrofitted
into existing tools without too much effort.

12

A Algorithm for dataflow analysis between basic blocks

Let N be the set of nodes in the graph, where each node corresponds to a basic block.

/* Initialize data in nodes; n.visited is the number of times this algorithm has
processed a node */

forall n ∈ N do
n.visited← 0
n.locations← ∅

od

/* Initialize variables; loopCnt counts the number of times the outer loop of this
algorithm iterates; topsOfLoops is a set containing the basic blocks in the graph
that correspond to tops of loops. */

EntryBB.locations← initialSet
loopCnt← −1
topsOfLoops← ∅

/* Outer loop: This loop is necessary because it is impossible, in the presence of
loops, to process all the nodes in the graph such that all of a node’s predecessors
are processed before the node itself. If the graph contains no loops, this outer
loop will iterate once; otherwise it will iterate until no changes occur in the
location set for any basic block. */

do {
workset← topsOfLoops ∪ { EntryBB }
topsOfLoops← ∅
loopCnt← loopCnt + 1
changes← false

/* Inner loop: Process all nodes in the graph once, in an order such that, except
for the tops of loops, no node is processed until all of its predecessor nodes
are processed. */

do {
currentBB← (B s.t. (B ∈ workset) ∧ (∀ C ∈ predecessor(B), C.visited > 0))
if currentBB = Null

currentBB← an element in workset /* All nodes in worklist must be tops of loops */
topsOfLoops← topsOfLoops ∪ { currentBB }

fi
workset← workset \ { currentBB }

13

/* Initial set is union of all predecessor sets */

currentSet← currentBB.locations ∪ {⋃
p∈predecessor(current B B) p.locations}

/* Final set is initial set minus kill set union gen set; Appendix B shows
algorithm for generating kill & gen sets */

currentSet← (currentSet \ Kill(currentBB)) ∪ Gen(currentBB)
if (currentBB.locations �= currentSet)

changes← true
currentBB.locations← currentSet
currentBB.visited← currentBB.visited + 1

/* Add successors to workset only if their visit count is less than the loop count;
this prevents loop bottoms adding loop tops again (infinitely). */

workset← workset ∪ { B | (B ∈ successor(currentBB)) ∧ (B.visited ≤ loopCnt) }
} while workset �= ∅

} while changes = true

B Algorithm for generating, passing, and killing location
tuples within a basic block

currentSet← ⋃
p∈predecessor(current B B) p.locations

i← first instruction for basic block
do {

if (i has a destination)
forall l in currentSet

if (l.location = i.destination)
kill(l)

fi
endfor

fi

if (i is an assignment key instruction)
varname← name lookup(i.source position)
forall l in currentSet

if (l.varname = varname)
kill(l)

fi
endfor
newRecord← gen (varname, i.dest, i.address, undefined)

14

currentSet← currentSet ∪ { newRecord }
else if (i is a register copy)

forall l in currentSet
if (l.location = i.source)

newRecord← gen (l.varname, i.dest, i.address, undefined)
currentSet← currentSet ∪ { newRecord}

fi
endfor

else if (i is a function call)
forall l in currentSet

if (l.location = return value register)
kill(l)

fi
endfor

else if (i is a memory read)
if (i.memory location is “home” address of variable)

newRecord← gen (name of var, i.dest, i.address, undefined)
currentSet← currentSet ∪ { newRecord }

else
forall l in currentSet

if (l.location = i.mem loc)
newRecord← gen (name of var, i.dest, i.address, undefined)
currentSet← currentSet ∪ { newRecord }

fi
endfor

fi
else if (i is a memory write)

forall l in currentSet
if (l.location = i.source)

newRecord← gen(l.varname, i.mem loc, i.address, undefined)
currentSet← currentSet ∪ { newRecord }

fi
endfor

fi

i← i.next instruction
} while (i �= ∅)

References

[1] A. Adl-Tabatabai and T. Gross, “Evicted Variables and the Interaction of Global Regis-
ter Allocation and Symbolic Debugging”, Conference Record of the Twentieth Annual

15

ACM Symposium on Principles of Programming Languages, January 1993, pp. 371-
383

[2] A. Aho, R. Sethi, and J. Ullman, “Compilers Principles, Techniques, and Tools”,
Addison-Wesley Publishing Company, 1986

[3] D. Coutant, S. Meloy, and M. Ruscetta, “DOC: A Practical Approach to Source-Level
Debugging of Globally Optimized Code”, In Proceedings of the 1988 PLDI Confer-
ence, 1988

[4] J. Silverstein, ed., “DWARF Debugging Information Format”, Proposed Standard,
UNIX International Programming Languages Special Interest Group, July 1993

[5] C. Tice and S. L. Graham, “Key Instructions: Solving the Code Location Problem for
Optimized Code”, Tech. Report 164, Compaq Systems Research Center, Palo Alto,
CA, Sept. 2000

[6] C. Tice, “Non-Transparent Debugging of Optimized Code”, Ph.D. Dissertation, Tech.
Report UCB//CSD-99-1077, University of California, Berkeley, Oct. 1999.

[7] P. Zellweger, “High Level Debugging of Optimized Code”, Ph.D. Dissertation, Uni-
versity of California, Berkeley, Xerox PARC TR CSL-84-5, May 1984.

16

