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Abstract

The Vesta repository is a special-purpose replicated file system, developed as part
of the Vesta software configuration management system. One of the major goals
of Vesta is to make all software builds reproducible. To this end, the repository
provides anappend-only name space; new names can be inserted, but once a name
exists, its meaning cannot change. More concretely, all files and some designated
directories are immutable, while the remaining directories are appendable, allow-
ing new names to be defined but not allowing existing names to be redefined.

The data stored in a repository can be replicated, to support distributed soft-
ware development. The append-only nature of the repository greatly simplifies the
problem of maintaining consistency among replicas. Conceptually, all files and
directories stored in all Vesta repositories are named in one single, global name
space. Each repository stores some subtree of the complete name space. Replica-
tion is present when the subtrees stored by two different repositories overlap; that
is, some of the same names and data occur in both. We call this conceptpartial
replication, because each repository can choose to replicate all, part, or none of the
data stored in any other repository.

In this paper we outline the main features of the repository, give a definition
for the consistency of partial replicas, describe how our replication tools maintain
consistency, and briefly relate our experience in using the system for distributed
software development between groups on opposite coasts of the United States.
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1 Introduction

The Vesta repository is a special-purpose replicated file system, developed as part
of the Vesta software configuration management system.1 Some of our major goals
in developing Vesta were to make all software builds reproducible, to support a
flexible form of distributed software development, and to make the system as fast,
simple, and understandable as we could. An overview of the full system [15] and
papers on its executable modeling language [13] and incremental builder [16] are
available. A book-length report is in preparation [14].

To make the repository understandable and convenient for users, we designed
it as an extended file system. All versions of all source code stored in the repository
are visible in the file system name space, so users can browse and compare them
using existing, familiar tools. We do not provide mechanisms such as views [2] or
viewpaths [3] that can make the meanings of names appear to change depending
on the user, the environment, or what versions currently exist.

The repository plugs into the file system name space by acting as an NFS [19]
server. It also exports a separate remote procedure call (RPC) interface, for access
to operations that do not map naturally onto a standard file system interface. The
repository runs as an ordinary user process, not in the operating system kernel.
It implements directories as in-memory data structures that are kept stable using
a simple logging and checkpointing technique [5]; it implements files by storing
their contents in a hidden native file system on the host machine.

To support reproducible builds, we extended the file system abstraction by
allowing files to be designated asmutable or immutable, and directories to be
designated asmutable, appendable, or immutable. In an appendable directory,
new names can be created, but existing names cannot be deleted and their mean-
ings cannot be changed. Children of an appendable directory must be appendable
or immutable; children of an immutable directory must be immutable. Vesta’s
builder reads source code and build instructions from a directory tree (convention-
ally named /vesta) consisting only of appendable and immutable objects, so the
meanings of names cannot change from one build to another.2

Versioning is not built into the repository itself; instead, a set of replaceable
repository tools handle versioning by defining a naming convention. Immutable
files and directories are used for particular versions of source files or source trees.

1Vesta as discussed in this paper, also known asVesta-2, is a redesign of the Vesta-1 system
developed in the early 1990’s [7, 8, 12, 17]. The Vesta-1 and Vesta-2 repositories have recognizable
similarities, but most of the key ideas presented in this paper are new in Vesta-2.

2The Vesta modeling language [13] is designed so that a successful build cannot depend on the
nonexistence of a name in an appendable directory; thus adding a new name to an appendable direc-
tory cannot change the result of a build, though it can make a build that formerly failed succeed.
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Appendable directories are used both as directories of versions, where their chil-
dren are immutable objects named by version numbers; and at all higher levels
in the tree, where they form a user-defined hierarchical name space of versioned
software packages. This approach contrasts with that of software repositories that
have built-in versioning [18, 20], which does not map straightforwardly onto a
Unix-style unversioned name space.

Besides the appendable /vesta tree, the Vesta repository also provides a tree of
mutable files and directories, conventionally named /vesta-work. The repository
can create and initialize a mutable directory subtree with the contents of a given
immutable directory, and can create an immutable directory subtree as a snapshot
of a given mutable directory. Both these operations are implemented using copy-
on-write for files and delta encoding for successive versions of directories, making
them very fast and avoiding wasted space.3 The repository tools use these opera-
tions to implement a checkout/checkin style of source control.

The repository also supports the Vesta builder by providing a means for dynam-
ically constructing arbitrary name spaces in which build tools (such as compilers
and linkers) can be run, calledvolatile directories. Volatile directories enable the
builder to run build tools in an encapsulated environment, in which only the desired
versions of sources and derived files are available. (Thus they give at least the same
power as viewpaths [3], but under direct control by the builder.) Volatile directories
also let the builder detect the precise dependencies and results of each build tool
invocation: the repository tells the builder exactly which of the available files and
directories the build tool accessed and what new files and directories it created. We
do not discuss the volatile directory mechanism or derived file management further
in this paper.

To support distributed software development, sources stored in the repository’s
appendable tree can bereplicated. Our concept of replication is broad, encom-
passing everything from source distributions issued on CD-ROM to cooperative
development of one source pool across many geographically separated sites. Con-
ceptually, all files and directories stored in all Vesta repositories are named in one
single, global name space. Each repository stores some subtree of the complete
name space. Replication is present when the subtrees stored by two different repos-
itories overlap; that is, when some of the same names and data occur in both.

We call this conceptpartial replication, because each repository can choose to
replicate all, part, or none of the data stored in other repositories. Typically, each
Vesta site runs one repository and replicates in it all the sources that need to be built

3We do not currently delta-encode files, because they are stored on disk and normally contain
source code that is typed by a human. Considering the rapidly falling price of disk space, delta
encoding or otherwise compressing such files has little benefit. We do delta-encode directories,
because we store them in memory.
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locally, since the Vesta builder works on only one repository at a time. Sources that
are needed at many sites can be replicated at each one, while other sources need
not be.

The append-only nature of the repository greatly simplifies the problem of
defining and maintaining consistency among replicas. Roughly speaking, we say
that two repositoriesagree (are consistent) if there are no cases where the same
name means something different in two different repositories. We make this defi-
nition precise in Section 2. To allow names to be added to appendable directories
without risking disagreement or requiring multiple repositories to coordinate, we
adopt the simple expedient of designating (at most) one repository to be themaster
of each directory. The master keeps a complete list of names that have been defined
in the directory and can freely add new names, while nonmaster replicas may have
incomplete lists and can add a new name only by copying it from another replica
(not necessarily the master). A newly created object initially has the same master
as its parent directory, but we allow mastership for any object to be transferred to
another repository. To free a directory’s master from the storage burden of having
to keep a complete copy of all objects below it, we also providestub objects—
placeholders for names that exist but whose content is not stored locally. Stubs can
be children only of appendable directories.

Within our concept of replication, many different algorithms might be used to
update one replica from another. We have written a simple replication tool that
updates a destination repository from a source repository. The tool walks over the
source repository, finds all names that match a set of patterns provided to it and
that are not already in the destination, and copies them.

As additional support for the repository tools, the repository providesmutable
attributes on the files and directories it stores. An object’s attributes are a map
from arbitrary character string names to sets of character string values. The tools
use attributes for various purposes, such as keeping track of relationships between
versions and recording checkin comments. The repository itself uses attributes to
hold access control lists. Attributes are not visible to the Vesta builder, so their
mutability does not interfere with build reproducibility.

Since attributes are arbitrarily mutable, their replication has to be handled
differently from files and directories. We use a replication scheme inspired by
Grapevine [4]. We define the current value of an attribute by a history list of times-
tamped update tuples. All tuples are valid and meaningful regardless of the past
history; for example, deleting a value from a name is valid even if the name did
not previously have that value. An object’s attributes at one replica can be updated
from a second replica by copying in any tuples from the second that do not exist
at the first and merging them into the list in timestamp order (with ties broken by
sorting on the other fields of the tuple). There is no notion of inconsistency; any
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Figure 1: Two repositories (western and eastern) that are in agreement.

history can be merged with any other to produce a well-defined result. Although
this form of replication is much looser than the agreement condition we use for
files and directories, it is adequate for our purposes.

The remainder of this paper discusses the above issues in more detail. Section 2
gives the full definition of agreement between replicas and shows how replicas can
be created and changed in a decentralized fashion without the risk of introducing
disagreement. Section 3 describes our replica update tool, and Section 4 describes
how the standard repository tools operate across multiple repositories. Access con-
trol and security are difficult problems in a system that can cross administrative
boundaries; Section 5 explains how we have addressed these issues in our design.
We compare the Vesta repository with related work in Section 6. Section 7 sum-
marizes our experience with the system and our conclusions.

2 Replica Agreement

2.1 Example

Figure 1 shows an example of two repositories that partially replicate each other
and are in agreement (consistent). The figure illustrates several common patterns
that occur in real Vesta usage, but the pathnames have been shortened slightly
to reduce clutter. On the left is the west coast repository of the imaginary Vesta
Systems Organization; on the right is its east coast repository.

First, note that the root directory /vesta is not mastered at either repository,
and the names directly under it look like Internet domain names. In order to avoid
getting into the business of running a global name registry for /vesta, we treat this
directory as a special case; any individual or organization may create a name in it
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using an Internet domain name that it owns.4 In the example, the western repository
has created a subdirectory named west.vestasys.org and holds its master copy, and
the eastern repository has done the same for east.vestasys.org.

Partial replication occurs at several levels of the tree. At the top, part of west
.vestasys.org is replicated in the eastern repository. The western copy has a com-
plete list of names (thread, text, table, and cache), while the eastern copy is lacking
table. The western copy does not have the contents of the cache directory, but it
does have a stub with that name as a placeholder; thus no one can create a different
cache directory that would clash with the copy in the eastern repository.

One level down, in the thread package, the western copy is master and has all
three versions that currently exist, while the eastern copy does not currently have
version 3. The text package illustrates the point that a directory need not have
the same master as its parent; it is mastered at the eastern repository. Perhaps
when first created it was mastered at the western repository and later moved to the
eastern repository, since version 1 is present in the west but not in the east. Since
the eastern copy is master, it must have a complete list of names, so it has a stub
for version 1, perhaps inserted at the time it received mastership. In addition, the
eastern copy has a master stub for version 3. A master stub is a placeholder for
an object whose content has not yet been supplied; the master repository is free to
replace it later with a different type of object, but thereafter it cannot be changed
back to a master stub. The repository tools use master stubs to implement a locking
style of checkout (see Section 4).5

2.2 Definition

We are now ready to give the precise definition of agreement. Let A and B be
Vesta source objects. Then A ' B (read “A agrees with B” ) if the following
recursively defined conditions hold. Two repositories agree when their replicas
of the root directory /vesta agree. Let A:master denote the master flag of A,
let A:repos denote the repository where A is stored, and if A is a directory, let
A:names denote the list of names that are bound in it.

1. A:master ^ B:master ) A:repos = B:repos and
2. At least one of the following holds:

(a) A and B are files with identical contents.
(b) A and B are immutable directories where

4This rule is not perfectly safe, since the Vesta system cannot check that users are following it,
and moreover domain names can be deregistered and reregistered by different owners, but it is a good
practical compromise.

5For historical reasons, the current repository implementation also provides ghosts, which are
essentially a variant type of nonmaster stub; we do not discuss them in this paper.
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A:names = B:names, and
8n : n 2 A:names) A=n ' B=n,

(c) A and B are appendable directories where
8n : n 2 A:names ^ n 2 B:names) A=n ' B=n,
A:master ) B:names � A:names, and
B:master ) A:names � B:names.

(d) A and B are both master stubs.
(e) A or B is a nonmaster stub.

Condition 1 effectively says that the same source is not mastered in more than
one repository. It is stated in an odd-sounding way (and condition 2(d) is included)
so that agreement can be reflexive. Conditions 2(a) and 2(b) require replicas of
immutable objects to be identical. Conditions 2(c) and 2(e) make partial replication
possible. By 2(c), two appendable directories can agree even if one or both have
only a subset of the complete set of names defined in the directory. But the master
replica has a complete list of names; thus, the master can coordinate the creation
of new names, assuring that the same name is never bound in different replicas to
sources that do not agree. By 2(e), two appendable directories can agree even if
one has a nonmaster stub where the other has some other object.

Notice that the agreement relation is not transitive. Pairwise agreement be-
tween A and B and between B and C is not sufficient to guarantee agreement
between A and C . This nontransitivity is an unavoidable property of partial repli-
cation. Replicas are considered to agree when their overlapping portions do not
clash; but A and C may overlap and clash in a portion that does not overlap with
B. For example, /vesta/foo/bar might be an immutable directory in repository A,
absent in repository B, and an immutable file in repository C . Then B agrees with
A and with C (assuming /vesta/foo is not mastered at B), but the directory at A
clashes with the file at C .

2.3 Preservation

It is easy to establish initial agreement among repositories, since a new repository
that contains only an empty copy of the root directory /vesta agrees with every other
repository. Thereafter, we need to know how to make changes to agreeing repos-
itories in a safe way, one that is guaranteed not to break the agreement. We want
repositories to operate mostly autonomously, so it is important that most operations
can be performed without consulting another repository, and that the rest require
consulting only one other. Our definition of agreement is designed to make this
fairly easy. The following operations are safe, and the repository server provides
each one as a primitive. All are atomic except primitive 7.

1. Create a new master appendable directory in /vesta, using a locally owned Internet
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domain name.
2. Create a new child object of any immutable or appendable type in a master append-

able directory.
3. Replace a master stub with a new immutable object.
4. Replace any child of an appendable directory with a nonmaster stub.
5. Copy any child into an appendable directory from another repository, possibly re-

placing an existing nonmaster stub. If the original is an appendable directory, the
copy is an empty nonmaster appendable directory; if desired, its children can be
copied by further applications of this primitive. If the original is immutable, how-
ever, it is copied in full, including all its descendants.

6. Create a nonmaster stub in an appendable directory, if another repository has that
name defined.

7. Transfer mastership on an object from one repository to another, at the same time
adding stubs to the new master for any missing children of the old master.

Internally, the repository builds the more complex primitives on top of a set of
simpler primitives for adding and replacing single objects, using a built-in feature
that allows for short atomic transactions within a single repository.

Primitives 1–4 run entirely at a single repository.
Primitives 5 and 6 require consulting another repository, but a multi-site atomic

transaction is not required; it is sufficient to read the data from the source repos-
itory, then atomically insert a copy into the destination. No lock on the source
repository is needed while reading the original, since it cannot change; at worst,
it can be replaced with a stub while the read is in progress, but this simply causes
the primitive to return an error without changing the destination. The destination
repository optimizes the copying process to avoid making redundant copies of ob-
jects (such as multiple objects that have the same content but different names) by
keeping a table in which each locally stored immutable file and immutable direc-
tory tree can be looked up by its fingerprint [6]. When an object is to be copied, the
repository first looks up its fingerprint in the table to find whether a copy is already
present; if so, the repository links the existing copy into its name space instead
of making another. In addition, if a directory being copied is delta-encoded in the
source repository, and the destination repository already has a copy of the directory
that the delta is relative to, then the destination delta-encodes the copy as well.

Primitive 7, mastership transfer, is the most complex. Our goals in choosing an
implementation were to guarantee that agreement could not be violated, to avoid
blocking either repository during the transfer protocol, to minimize the likelihood
of a failure resulting in neither repository being master, and to keep a hint on each
nonmaster object as to where its master repository is located. In outline, our imple-
mentation consists of two separate atomic operations. First, the repository ceding
mastership on an object makes a complete list of its children and turns off its master
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vrepl rcp
Replicate Size Nearby Distant Nearby Distant
+repos/124 to empty repository 1.2 MB 1.7 s 45 s 17 s 57 s
+repos/125 with 124 present 582 KB 0.6 s 14 s 1.6 s 14 s
@repos/124 to empty repository 127 MB 140 s 3200 s 620 s 2600 s
@repos/125 with 124 present 640 KB 9.6 s 120 s 1.4 s 13 s

Table 1: Vesta replicator performance.

flag; second, the repository acquiring mastership inserts any missing children into
its copy as nonmaster stubs and turns on the master flag. To meet our goals, the full
implementation also takes care of updating the master location hints, and it keeps a
stable record of in-progress transfers at both repositories, persistently retrying them
until they are complete. With this implementation, agreement cannot be violated,
and the object can be left without a master only if one repository crashes perma-
nently or the network link between them is permanently severed while a transfer is
in progress.

3 Replicator

The primitives listed in the previous section give us a safe way to copy data and
transfer mastership between repositories, but they are quite low-level. In this sec-
tion we briefly describe a higher-level replicator. It is available both as a standalone
tool (vrepl) that can be invoked from the command line and as a library that can be
called by other tools, such as the checkout and checkin tools described in the next
section.

Our replicator takes as input a set of pathname patterns and the network ad-
dresses of two repositories, a source and a destination. The replicator walks the
directory tree of the source to find all names that match the patterns and copies
those that are not already present at the destination. It also updates the mutable at-
tributes of every name that matches by merging update tuples from the source into
the destination. As a trivial example, the command “vrepl -d east.vestasys.org -e+
/vesta/west.vestasys.org/vesta/repos/LAST” would replicate the highest-numbered
version of the Vesta repository source code from the local repository into the repos-
itory at east.vestasys.org. The full pattern language is similar to Unix shell glob
patterns with some extensions. Prefixing a pattern with “+” adds the objects that
match it to the set to be copied; prefixing it with “ -” removes them.

The replicator also has a feature that replicates everything needed to do a partic-
ular Vesta build. For example, the command “vrepl -s west.vestasys.org -e@ /vesta/
west.vestasys.org/vesta/repos/124/.main.ves” would replicate everything needed to
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rebuild version 124 of the Vesta repository from the west.vestasys.org repository
into the local repository, including the entire programming environment (libraries,
compilers, etc.) that was available to the build. This feature works by first pars-
ing the build description (written in the Vesta modeling language [13]), walking its
import tree, and emitting a + pattern for every package found; then passing these
patterns on to the basic replication algorithm. In practice, it has turned out that @
is used far more often than + and -.

To give an idea of the replicator’s performance, Table 1 gives a few simple
measurements. Each repository was running on a 500 to 600 MHz Alpha 21164A
processor. All times are averaged over three trials and rounded to two signifi-
cant figures. In the Nearby cases, the two repository host machines were directly
connected via gigabit ethernet. In the Distant cases, the two machines were on
opposite coasts, connected via 10 hops through a corporate intranet. As a rough
point of comparison, the rcp columns give the time to copy the same files directly
out of the native file system that the repository is built on top of.

4 Cross-repository Checkout

When two sites running separate repositories are closely cooperating, users at one
site may want to check out packages whose master copies are in the other site’s
repository. In this section we outline how our checkout tools support this. We
first briefly describe the single-repository case, then explain the extension to the
cross-repository case.

  = Immutable
  = Master Appendable
  = Nonmaster Appendable
  = Master Stub
  = Nonmaster Stub
  = Mutable

copy

create
create 

copy

4

4

0

thread

/vesta

west.vestasys.org

thread

checkout3

/vesta−work

jones

Figure 2: Single-repository checkout.
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The vcheckout tool, illustrated in Figure 2, makes a copy of the latest ver-
sion of a software package (here /vesta/west.vestasys.org/thread/3) in a mutable
working directory that the user can edit (/vesta-work/jones/thread). As mentioned
earlier, making this copy is very fast, because the mutable directory is itself stored
in the repository and is implemented using delta encoding, with copy-on-write for
the files stored in it. The tool also makes an appendable directory called the ses-
sion directory (thread/checkout/4), where the user can store intermediate, private
versions of the package that he creates during development but that are not ready
to be checked in for use by others. The session directory is initialized to contain a
version 0 that is identical to the initial contents of the working directory. Finally,
the next version number for the package is reserved by creating a master stub with
that number as its name (thread/4).

The vadvance tool advances to the next private version by taking an immutable
snapshot of the working directory and inserting it in the session directory. In the
example of Figure 2, repeatedly editing files in /vesta-work/jones/thread and invok-
ing vadvance would create private versions named /vesta/west.vestasys.org/thread/
checkout/4/1, 4/2, 4/3, etc. Our tools support such private versions for two reasons:
first, they are a convenient feature, offering the developer the ability to look back
at his recent work and undo mistakes; second, in order to guarantee that all builds
are reproducible, even a developer’s private test builds, the Vesta builder operates
only on immutable sources. Thus an immutable version must be created each time
the builder is to be run on modified sources. (We generally run the builder from a
short shell script that automatically invokes vadvance before starting the build.)

Finally, the vcheckin tool makes a new public version. It replaces the master
reservation stub created by vcheckout (thread/4) with a copy of the newest private
version in the session directory (in our example, perhaps thread/checkout/4/3), then
deletes the working directory to end the session. The session directory is not auto-
matically deleted, since it may be of use later.

How do the tools change for the cross-repository case? Almost all of the
changes are in vcheckout, as shown in Figure 3. The source repository, where
the package being checked out is mastered, is on the left; the destination reposi-
tory, which the user doing the checkout wants to work in, is on the right. Notice
that the actions in the destination repository are similar to the single-repository
case in Figure 2. The steps in cross-repository checkout are: (1) Examine the mas-
ter replica in the source repository to find the highest version number. (2) If this
version does not exist in the destination, call the replicator to copy it in. (3) Create
the reservation stub and empty session directory in the source repository. (4) Call
the replicator to copy them to the destination repository. (5) Transfer mastership
on them from the source to the destination. (6) Insert version 0 in the session and
create the working directory at the destination.
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Figure 3: Cross-repository checkout.

No changes are needed to vadvance, since both the working and session direc-
tories are in the destination repository.

It would not be strictly necessary to change vcheckin either, since vcheckout
moves mastership of the reservation stub to the destination repository. However,
it is likely that the source repository will want a copy of the new version soon, so
we modified vcheckin to call the replicator and copy the new version there after
checking it in locally.

There are also Vesta tools for creating new packages, branching the version se-
quence, finding the latest version, and finding who has packages checked out. Each
of these tools required minor modifications to be cross-repository aware, similar to
what was done to vcheckout but considerably simpler.

One problem currently remains with the cross-repository tools. In the single-
repository case, each of our tools uses the repository’s short atomic transaction
support to make its complete action atomic. This support does not work across
multiple repositories, so the tools become nonatomic in this case. With vcheckout,
steps (3) and (6) are individually atomic, but if there is a failure between them, the
checkout is left in an incomplete state. We have not yet automated the recovery
from this state, but it is not hard to recover manually.

Table 2 shows the results of a performance benchmark on the Vesta tools. The
steps listed were run in order, 50 times each on 50 separate packages. The table
gives the average time for each step, rounded to two significant figures. The Local
column is the single repository case, Nearby is the cross-repository case where the
local and remote repositories are connected by a single hop of gigabit ethernet, and
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Step Description Local Nearby Distant
1 create an empty package 50 ms 250 ms 6400 ms
2 check out the new package 64 ms 590 ms 5700 ms
3 copy in 1204 KB of source code 5300 ms 5400 ms 5200 ms
4 advance the package 2500 ms 2600 ms 2500 ms
5 advance again (no changes) 170 ms 170 ms 180 ms
6 touch a 108 KB file 34 ms 32 ms 30 ms
7 advance the package 160 ms 180 ms 180 ms
8 touch all files in the package 3200 ms 3300 ms 3200 ms
9 advance the package 2500 ms 2500 ms 2600 ms

10 check in the package 110 ms 780 ms 18000 ms
11 check out the package 49 ms 730 ms 5800 ms
12 touch a 108 KB file 49 ms 73 ms 59 ms
13 advance the package 150 ms 160 ms 160 ms
14 check in the package 64 ms 170 ms 4700 ms

Table 2: Vesta repository tool performance.

Distant is the cross-repository case where the repositories are on opposite coasts
connected by ten hops through a corporate intranet. Note that copying, touching,
and advancing are always local operations. In each case, the tools were run on a
client workstation connected to the local server by 100 Mb ethernet. As the table
shows, the tools are very fast in the local and nearby cases, and fast enough to be
usable even in the distant case.

5 Cross-realm Access Control

Access control for replicated repositories presents some challenges. We expect
replication and even cross-repository checkout to sometimes be needed between
repositories that are in different realms; that is, repositories that are under sepa-
rate administration, have different spaces of user names, and perhaps do not en-
tirely trust one another. Thus we need a practical way of authenticating and access
checking cross-realm requests. In addition, for repositories that are cooperating
closely, we would like it to be meaningful to replicate access control lists, so that
each repository does not have to separately administer them. This section outlines
how we have addressed these issues.

All access control lists and access checking in the repository are done in terms
of global principal names, with the syntax user@realm or ˆgroup@realm.
The realm is an arbitrary name chosen by a system administrator, typically an
Internet domain name that makes the realm’s user names valid email addresses.

We have kept the repository’s access control lists close to the Unix style so that
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they can be manifested fairly accurately through the NFS interface. Each object
has an owner ACL and a group ACL, plus a set of nine flags that indicate whether
the owner, group, and others are granted read, write, and/or directory search access.
Unlike the Unix model, the owner and group are sets of global names, not single-
tons; we have provided this feature mainly so that an object can be given different
owners in different realms if desired. Therefore, when choosing which owner and
group to manifest through the NFS interface, the repository searches first for one
in the local realm. The repository maps between global principal names and the
numeric ids used through the NFS interface by examining the local operating sys-
tem’s user and group registries (on Unix, /etc/passwd and /etc/group) and building
up a translation table.

Objects also have a few special ACLs that refer to repositories rather than users:
one lists the repositories that mastership on the object can be ceded to, one lists the
repositories that mastership can be accepted from, and one lists the repositories that
replicas can be taken from. No special ACL is needed to control giving replicas;
read access by the requesting user is sufficient for that.

Access control lists and flags are stored in mutable attributes and can be repli-
cated if desired. To save space, we use a form of inheritance; if an object does
not have a particular access control attribute, it inherits the value from its parent
directory. The names of all access control attributes begin with an identifying char-
acter (“#” ), and the replicator can be instructed not to copy them even if ordinary
attributes are being copied.

Each incoming request to the repository must be authenticated as coming from
some particular user. Several authentication methods are supported. The repository
administrator fills in a table (similar in style to an NFS export table) that specifies
which user names to accept, from which hosts, using which authentication meth-
ods, and whether to grant normal or read-only access. Currently we have imple-
mented only two rather insecure authentication methods: the NFS AUTH UNIX
style, where the user provides his numeric Unix user id and is believed if he comes
from a trusted host (needed to support most current NFS clients), and a similar
style where the user supplies a global principal name and is believed if he comes
from a host that is trusted for names from that realm. We have a design sketch for
adding Kerberos authentication and hope to implement it in the future.

Our general model for group access is that the user need only authenticate his
user name; the repository determines what groups he is in. This model works well
for intra-realm access, because the repository uses the local operating system’s
facilities to determine the group membership of local users. A user accessing a
remote repository, however, by default will not be recognized as a member of any
groups, even groups from his own realm. To address this problem, we allow reposi-
tory administrators to augment the group membership table with additional entries,
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but this is a bit labor-intensive. A useful future addition might be to allow group
membership tables to be replicated.

As an additional feature, one user name or group name can be designated as an
alias for another; this is useful when the same person has a login in two different
realms or when two cooperating realms each have a group that is working on the
same project.

6 Related Work

The term repository is common in the software configuration management liter-
ature; it has been used to mean anything from a simple collection of versioned
source files to a full-fledged relational or object-oriented database containing de-
tailed information to support the software development process. Van der Hoek [20]
provides a useful overview of such systems. Our repository lies between these ex-
tremes, storing source files and mutable attributes in a hierarchical name space, and
also providing unstructured storage (not described in this paper) for derived files
managed by the Vesta builder and cache.

Replication of mutable data has engendered many complex algorithms and sys-
tems. Strict consistency tends to imply low availability, and is not suitable for our
application: reads and writes become atomic operations on replica quorums, with
the requirement that every write quorum intersect every read or write quorum, forc-
ing writes (and perhaps also reads) to be performed as multi-site atomic transac-
tions [11]. Loosening consistency requirements tends to open a Pandora’s box of
complexity; the many algorithms that have been used for propagating updates and
reconciling inconsistent changes made to different replicas are complicated, and it
is difficult to give a precise definition or make guarantees on what sort of consis-
tency they provide [9]. We have cut through this knot of complexity by restricting
the mutability of the data to be replicated, allowing us to give a simple, flexible,
and comprehensible definition of consistency for partial replicas and to preserve
this consistency with simple algorithms.

Our approach to replication differs sharply from that of ClearCase MultiSite
[1], which is perhaps the most closely related software configuration management
system to Vesta. In ClearCase, the choice of what to replicate is made at a much
coarser grain than in Vesta—an entire Versioned Object Base, of which there are
typically only one or a few per site. ClearCase replicas exhibit eventual consis-
tency; that is, an update algorithm is used that would eventually make the replicas
identical if they all were to stop changing for sufficiently long, but there are no
clear guarantees on what differences can exist between replicas when changes have
been made recently. ClearCase’s update algorithm is operation-based and requires
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knowledge of the full set of replicas; that is, each ClearCase replica must keep a
history of recent operations that have changed it and keep track of which changes
have not yet been propagated to each other replica. Vesta’s algorithm is state-based
and works when the set of replicas is unknown and changing; the replication tool
simply compares the states of two replicas, copying any data from the first that is
missing and desired in the second. The ClearCase approach has some advantages;
in particular, an operation-based approach should scale better when replicas share
a great deal of data but very little is changing. However, the Vesta approach is
much simpler, provides a clearly defined level of consistency, supports usage pat-
terns where the replicas are more loosely coupled, and has performed adequately
in our experience.

The Vesta repository is implemented as a user-space NFS server. Other ap-
proaches to plugging into the file system name space include intercepting system
calls by replacing a shared library (as in n-DFS [10]) or connecting to the ker-
nel’s file system switch (as in ClearCASE [2]). We chose the NFS server approach
for ease of debugging, portability, and compatibility with statically linked appli-
cations. Our approach probably sacrifices some performance; although we do not
have measurements of the systems just cited, the repository is certainly slower than
a kernel resident file system. (In comparisons on the same hardware, the repository
shows a write data rate of about 96% of a standard in-kernel NFS server, a read
data rate of about 55%, and comparable performance on other operations. Vesta
builds are still roughly as fast or faster than builds using make in a conventional
file system, however, owing to efficiencies in the builder [16] and to some steps of
a typical build being CPU-bound.)

7 Experience and Conclusions

For the past two years, Vesta was in daily use by a group of about 150 developers
working on a large microprocessor design. Both the chip design itself and the
group’s custom design software were stored in the repository and processed using
the builder; the current code size is about 500,000 lines.

Initially only two repositories were in production use, one belonging to the chip
designers (in New England) and the other to the Vesta developers (in California).
We ran the replicator in both directions: distributing updates to Vesta by copying
the source code from west to east, and reproducing build problems for debugging
by copying parts of the chip design from east to west.

More recently the replication features have been used much more intensively,
as some of the members of the New England group began working on Vesta main-
tenance and porting, and a group of developers in California joined the chip design
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team using a third repository. The three groups have made extensive use of cross-
repository checkout and cross-realm access control.

We found this experience highly valuable in validating the Vesta design, shak-
ing out bugs in the implementation, and exposing the need for features that were
not initially anticipated. The chip design team in turn was pleased with Vesta;
they have stated that its strong support for parallel source development and repro-
ducible builds saved them considerable time (3 to 6 months in the architectural
design phase alone), and that the cross-repository features provided answers to
some extremely difficult problems in bicoastal software and design database man-
agement.

Our ongoing work on Vesta includes porting the implementation to Linux,
making it publicly available under an open source license, and completing a book-
length report on the entire system.
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