
28

A Theorem on Atomicity in

Distributed Algorithms

Leslie Lamport

May 1, 1988

Systems Research Center

DEC's business and technology objectives require a strong research program.

The Systems Research Center (SRC) and three other research laboratories

are committed to �lling that need.

SRC began recruiting its �rst research scientists in l984|their charter, to

advance the state of knowledge in all aspects of computer systems research.

Our current work includes exploring high-performance personal computing,

distributed computing, programming environments, system modelling tech-

niques, speci�cation technology, and tightly-coupled multiprocessors.

Our approach to both hardware and software research is to create and use

real systems so that we can investigate their properties fully. Complex

systems cannot be evaluated solely in the abstract. Based on this belief,

our strategy is to demonstrate the technical and practical feasibility of our

ideas by building prototypes and using them as daily tools. The experience

we gain is useful in the short term in enabling us to re�ne our designs, and

invaluable in the long term in helping us to advance the state of knowledge

about those systems. Most of the major advances in information systems

have come through this strategy, including time-sharing, the ArpaNet, and

distributed personal computing.

SRC also performs work of a more mathematical avor which complements

our systems research. Some of this work is in established �elds of theoretical

computer science, such as the analysis of algorithms, computational geome-

try, and logics of programming. The rest of this work explores new ground

motivated by problems that arise in our systems research.

DEC has a strong commitment to communicating the results and experience

gained through pursuing these activities. The Company values the improved

understanding that comes with exposing and testing our ideas within the

research community. SRC will therefore report results in conferences, in

professional journals, and in our research report series. We will seek users

for our prototype systems among those with whom we have common research

interests, and we will encourage collaboration with university researchers.

Robert W. Taylor, Director

A Theorem on Atomicity in Distributed Algorithms

Leslie Lamport

May 1, 1988

iii

cDigital Equipment Corporation 1988

This work may not be copied or reproduced in whole or in part for any com-

mercial purpose. Permission to copy in whole or in part without payment

of fee is granted for nonpro�t educational and research purposes provided

that all such whole or partial copies include the following: a notice that

such copying is by permission of the Systems Research Center of Digital

Equipment Corporation in Palo Alto, California; an acknowledgment of the

authors and individual contributors to the work; and all applicable portions

of the copyright notice. Copying, reproducing, or republishing for any other

purpose shall require a license with payment of fee to the Systems Research

Center. All rights reserved.

iv

Author's Abstract

Reasoning about a distributed algorithm is simpli�ed if we can ignore the

time needed to send and deliver messages and can instead pretend that

a process sends a collection of messages as a single atomic action, with

the messages delivered instantaneously as part of the action. A theorem

is derived that proves the validity of such reasoning for a large class of

algorithms. It generalizes and corrects a well-known folk theorem about

when an operation in a multiprocess program can be considered atomic.

Capsule Review

In executing a distributed algorithm, process actions and message-delivery

actions can be interleaved in numerous ways. The algorithm is correct if

it works properly no matter how actions are interleaved. In general, all

possible interleavings need to be considered.

This paper presents a theorem that allows some interleavings to be ig-

nored when reasoning about many practical distributed algorithms. Enough

of the underlying formalism is described to make it clear that the theorem

can be stated precisely and proved. The formal discussions can be skipped

by more trusting readers.

Mart��n Abadi

v

Contents

1 Introduction 1

2 The Conditions and Proof of the Theorem 3

2.1 C1: The Restriction on P : 3

2.2 C2{C5: Actions and Commutativity : : : : : : : : : : : : : : 6

2.3 Safety, Liveness, and C6 : 14

3 Discussion 20

References 23

List of Notations 24

vi

1 Introduction

Consider a �nite, connected network of processes, where a process can send

messages to its neighbors. The following algorithm causes each process i

eventually to wind up with its local variable d[i] equal to the distance (num-

ber of links in the minimum-length path) from i to a distinguished root

process. We assume that initially d[i] =1 for every process i, and all mes-

sage bu�ers are empty except for the root's bu�er, which contains the single

message \0".

Distance-Finding Algorithm

for each process i do

while true do

wait until input bu�er nonempty;

remove some message \m" from bu�er;

if d[i] > m

then d[i] := m;

for each neighbor j do send \m+ 1" to j

To prove the correctness of this algorithm, one needs a more precise

description of it. We adopt the common approach of formally de�ning an

execution of a concurrent algorithm to be a sequence of atomic actions; con-

current actions of separate processes are assumed to be \interleaved" in an

arbitrary manner. A formal description of the Distance-Finding Algorithm

requires specifying which of the algorithm's operations are atomic. Consider

a single iteration of process i'swhile loop that removes a message \m" from

the input bu�er, where d[i] > m. In a naive representation of the algorithm,

each of the following actions might be separate atomic operations.

� Remove message \m" from bu�er.

� Test if d[i] > m.

� Set d[i] to m.

� Send \m+ 1" to a neighbor j.

In addition, there would be separate message-delivery actions, performed

by the communication network, that put messages into the processes' input

bu�ers.

Reducing the number of atomic actions makes reasoning about a concur-

rent program easier because there are fewer interleavings to consider. For

1

assertional reasoning, it leads to a simpler invariant and fewer actions to

consider in the proof of invariance. The number of atomic actions in the

Distance-Finding Algorithm can be reduced by appealing to the following

popular observation.

Folk Theorem: When reasoning about a multiprocess program, we can com-

bine into one atomic action any sequence of operations that contains only a

single access to a single shared variable.

Although this theorem is usually asserted for shared-variable programs, it

applies as well to other kinds of multiprocess program because any form of

interprocess communication can be modeled with shared variables.

Since d[i] is local to process i, the Folk Theorem allows us to combine

the �rst three operations|removing the message, evaluating the expression

d[i] > m, and setting d[i]|into a single atomic action. Depending upon how

message passing is modeled, the Folk Theorem might also allow the sending

of messages to process i's neighbors to be part of the same atomic action.

However, the network actions that put the messages into the neighbors'

bu�ers would still be separate actions.

In this paper, we derive a Reduction Theorem that allows one to consider

an iteration of process i's while loop and the delivery of any messages

generated by it to be a single atomic action. Thus, not only are all the

operations listed above considered to comprise one atomic action, but the

send operations put the messages directly into the recipients' input bu�ers.

There are no separate message-delivery actions. Our Reduction Theorem

is a generalization of the Folk Theorem. Furthermore, it includes some

essential, subtle hypotheses missing from the Folk Theorem.

In general, we consider a distributed algorithm A in which each process

performs a sequence of nonatomic operations, where an operation removes

a (possibly empty) set of messages from the process's input bu�ers, per-

forms some computation, and sends a (possibly empty) set of messages to

other processes. Let the reduced version bA of algorithm A be one in which

an entire operation is a single atomic action and message transmission is

instantaneous|a message appears in the receiver's input bu�er when the

message is sent. (Any loss or corruption of messages occurs when they are

sent.) Algorithm bA is simpler than the original algorithm A, since it has no
computation states in which a process is in the middle of an operation or a

message is in transit. Hence, it is easier to reason about bA than about A.
In this paper, we prove the following:

2

Reduction Theorem: If conditions C1{C6 (given below) are satis�ed, then

A satis�es a correctness property P if and only if bA satis�es P .

The major part of this paper consists of the development of conditions C1{

C6. A state-based approach is taken, in which the execution of an algorithm

produces a sequence of states, and a property is an assertion about the

sequence produced by each individual execution.

The derivation of conditions C1{C6 is perhaps more interesting than the

conditions themselves, which are not hard to obtain once one understands

why each of them is needed. To prevent simple concepts from being obscured

by formalism, the exposition is informal. A sequence of notes indicates how

the arguments can be made rigorous, but they do not attempt to give a

complete formal exposition. The formalism is at the semantic level, and is

independent of language issues. A list of notations appears at the end.

2 The Conditions and Proof of the Theorem

2.1 C1: The Restriction on P

An execution of A consists of a �nite or in�nite sequence of the form

s0
�1! s1

�2! s2
�3! � � �

where the si are states, the �i are atomic actions, and si�1
�i! si denotes an

execution of action �i that takes the algorithm from state si�1 to state si.

A state consists of the following:

� The values of a set of externally visible variables. An externally visible

variable is either local to a process, meaning that it is accessed (read

or written) only by that process, or global, meaning that it is accessed

by more than one process.

� The internal state of each process, consisting of the state of its in-

put bu�ers, the values of its local internal variables, and its program

control state. A process cannot access the internal state of another

process.

� The state of the communication network, which describes the status

of all messages in transit.

3

In the Distance-Finding Algorithm, each d[i] is an externally visible variable

that is local to process i. Each process has a local internal variable m

that holds the value of the message removed from the bu�er. A process's

control state indicates where the process is in its execution|that is, what

statement it will execute next. The state of the communication network

could simply be a multi-set of message, source, destination triples, or it

could contain additional structure describing the order in which messages

may be delivered.

We allow a global externally visible variable to be read and written by

any process. Thus, our Reduction Theorem can be applied to algorithms in

which processes communicate with shared variables, as well as to distributed

algorithms. For programs that communicate only through shared variables,

our theorem provides a rigorous formulation of the Folk Theorem. Since the

Folk Theorem is so well-known, we will not discuss the application of our

theorem to shared-variable programs.

Formalism: We provisionally de�ne an algorithm to be a quadruple (C;
fSc : c 2 Cg;S0;A), where C is a set of state components, the Sc are sets of
values, the set of initial states S0 is a subset of the set of states S, which is the
Cartesian product

Q
fSc : c 2 Cg, and A is a set of actions, where an action is

de�ned to be a subset of S�S. (The de�nition is extended later to include liveness
conditions.)

An execution is a (�nite or in�nite) sequence s0; s1; : : : of states such that
s0 2 S0 and, for each si with i > 0, there is an �i 2 A such that (si�1; si) 2 �i.

For s 2 S and c 2 C, we let s:c denote the c-component of state s, so s:c 2 Sc,
and let scv denote the state s0 such that s0:c = v and s0:c0 = s:c0 for all c0 6= c. An
action � modi�es component c if there exists (s; t) 2 � with s:c 6= t:c; action �

accesses component c if it modi�es c or if there exist (s; t) 2 � and v 2 Sc such that
scv 2 S and (scv; t

c
v) 62 �. (The latter condition is a language-independent de�nition

of what it means for � to read the value of c.)
We assume that the set of actions A is partitioned into a set of communication

actions and a collection of processes. (Formally, a process is the set of actions
belonging to the process.) We also assume that state components are classi�ed
as input bu�ers, local internal variables, etc. One state component represents the
state of the communication network. We assume the existence of a set of messages

in transit that depends only on the communication network's state.

The �rst condition for the Reduction Theorem characterizes the class of

properties P . We assume that P is a property of executions, and we say

that it holds for algorithm A if it is true for all executions of A. We require

that P satisfy the following condition:

4

C1. P depends only on the sequence of di�erent values assumed by the

externally visible variables.

In the Distance-Finding Algorithm, the correctness property P asserts that

there exists some n such that, for all l > n, state sl is one in which each

d[i] equals the distance of process i to the root. This property satis�es C1

because it depends only upon the sequence of values assigned to the d[i],

which are externally visible variables.

Condition C1 requires that P depend on the sequence of values assumed

by externally visible variables; not on when (at which step of the execution)

those values are assumed. In the physical world, the notion of when an event

occurs can be de�ned only relative to the occurrence of other events|for

example, relative to the ticking of a clock or counter. Condition C1 permits

the speci�cation of when values are assumed only if the relevant clock or

counter is an externally visible variable.

Formalism: Let E denote the set of externally visible state components, and let
E : S !

Q
fSc : c 2 Eg denote the projection mapping. We extend any mapping

whose domain is S to a mapping on the set of sequences of states in the obvious way,
so E(s0; s1; : : :) = E(s0); E(s1); : : :. For any sequence �, let \� denote the sequence
obtained by removing repeated elements from �|for example, \1; 2; 2; 2; 3;3 =
1; 2; 3 and \1; 1; 1; : : := 1. Condition C1 asserts that P is a Boolean-valued function
on sequences of states such that \E(�) = \E(�0) implies P (�) = P (�0).

Even if the desired correctness property depends upon parts of the state that

are not externally visible, adding dummy variables1 to the algorithm usu-

ally allows the correctness property to be restated in a form satisfying C1.

For example, one might want to prove that the Distance-Finding Algorithm

eventually terminates, meaning that it reaches a state in which there are no

more messages in any input bu�er or in transit. As stated, this termina-

tion property does not satisfy C1 because it depends upon the state of the

communication network and of the processes' input bu�ers, which are not

externally visible variables. (Making them externally visible would violate

other hypotheses of the Reduction Theorem.) However, we can add a global

externally visible dummy variable x whose value equals the number of un-

processed messages, and we can modify the algorithm so that after process

i removes a message from its input bu�er, it increments x by the number

of messages it is going to send in response minus one. The termination

1A dummy variable is one that does not a�ect the execution of the algorithm and need

not be implemented [9].

5

property is expressed by the assertion that x eventually equals zero|an as-

sertion that satis�es condition C1. Similarly, by adding a dummy variable to

count the total number of messages sent, P can express message-complexity

properties.

Formalism: Let A = (C; fSc : c 2 Cg;S0;A), and A0 = (C0; fSc : c 2 C0g;S0
0
;A0)

be algorithms such that C = C [fyg, Y(S0) = S, and Y(S00) = S0, where S and
S
0 are the state spaces of A and A0, respectively, and Y is the obvious projection

mapping. We say that A0 is obtained from A by adding the dummy component y
if there is a one-to-one correspondence � $ �0 between A and A

0 such that (i) if
(s0; t0) 2 �0 then (Y(s0);Y(t0)) 2 � and (ii) if (s; t) 2 �, s0 2 S

0, and Y(s0) = s, then
there exists t0 2 S

0 such that (s0; t0) 2 �0. If A0 is obtained from A in this way,
then � is an execution of A if and only if there is an execution �0 of A0 such that
� = Y(�0).

2.2 C2{C5: Actions and Commutativity

An atomic action executed by a process is assumed to be one of the following.

� An internal action that may access the process's local internal vari-

ables and control state, and may read (but not modify) externally

visible variables that are local to the process.

� A receive action that removes a message from the process's input

bu�er; it may read the contents of the bu�ers, it may access the pro-

cess's internal state, and it may read the process's local externally

visible variables. (The action may be executed only if the input bu�er

is nonempty.)

� A send action that changes the state of the communication network

to indicate that an additional message is in transit from this process

to another process. (The message's destination is determined when

it is sent.) The action may also access the process's local variables

and control state and may read the process's local externally visible

variables.

� An externally visible action that may (but need not) access externally

visible variables, variables local to the process, and the process's con-

trol state.

In addition to these process actions, we assume that the communication

network executes deliver actions, which put a message (sent by a previous

6

send action) into a process's input bu�er. We allow a deliver action to

corrupt the message or simply destroy it without delivering it, so faulty

communication can be modeled. Delivery of multiple copies of a message

can be modeled by allowing multiple send actions, each sending a copy

of the same message. (The program can nondeterministically choose how

many copies to send.) Thus, we can model a network that loses, corrupts,

or duplicates messages.

Process i of the Distance-Finding Algorithm executes the following ac-

tions:

� A receive action that waits for the bu�er to be nonempty and removes a

message from it, storing the message's value in a local internal variable

and changing the control state.

� An internal action that evaluates the expression d[i] > m and modi�es

the control state accordingly.

� An externally visible action that sets d[i], accessing the local internal

variable m and modifying the control state.

� For each neighbor j, a send action that initiates the transmission of a

message from i to j.

The �rst condition on A is

C2. In A, each process's algorithm executes a sequence of operations of

the form R; hX i;L, where

� R consists only of receive or internal actions.

� L consists only of send or internal actions.

� hX i is a single externally visible action.

� If control has reached L, then there exists a terminating execution

of L.

The only other actions in A are deliver actions performed by the com-

munication network. It is always possible for all messages in transit

to be delivered (or lost) by deliver actions without any further process

actions.

The requirement that there exists a terminating execution of L rules out, for

example, a communication network in which a message cannot be sent until

7

the previous message was delivered|since there would be no terminating

execution of L if the previous message had not been delivered.

In the Distance-Finding Algorithm, each iteration of a process's while

loop is an operation that executes a receive action followed by an internal

action (evaluating d[i] > m) and then either does nothing or else executes an

externally visible action followed by a sequence of send actions. An operation

that does not execute an externally visible action can be considered to be

part of the \R" of the next iteration's operation. Thus, Condition C2 is

satis�ed.

Alternatively, we can pretend that when process i �nds d[i] � m, it

executes an external action that does not change the value of any externally

visible variable. By C1, adding such an action does not a�ect the truth of

property P . Adding this dummy action makes each iteration of a process's

loop have the form R; hX i;L of Condition C2. (In the condition, R or L

may be null.)

In general, we could extend C2 to allow operations of the form R;L, but

adding this extra case would complicate our discussion.

For C2 to be satis�ed by the modi�ed version of the Distance-Finding

Algorithm, where the variable x has been added to detect termination, the

same atomic action that changes d[i] must also change x. Since x is a dummy

variable added only for the proof, we are free to choose which action modi�es

it.

Formalism: We assume that the actions in A are disjoint (sets of pairs of states).
This implies that if � = s0; s1; : : : is an execution, then for each i > 0 there is a
unique action �i such that (si�1; si) 2 �i, so we can consider � to be the sequence

s0
�1! s1

�2! s2
�3! � � �. (This representation of � is used throughout the proof of

the Reduction Theorem. Making the actions in A disjoint could, but seldom will,
require adding dummy variables.)

The internal state of each process contains program control information for that
process. This information can be expressed by a function Np such that Np(s) is
the set of possible next actions of process p. For any action � in process p, if there
exists a state t with (s; t) 2 �, then � 2 Np(s); but the converse need not be true.
If an action � in A is not an action of process p, and (s; t) 2 �, then Np(s) = Np(t).

A set of actions all belonging to the same process is called an operation of that
process. A terminating execution of an operation A of a process p is a �nite sequence
s0, : : : , sn such that each (si�1; si) belongs to an element ofA andNp(sn) is disjoint
from A. An operation A can terminate from state s if there exists a terminating
execution of A starting with s.

We de�ne \;" by saying that, if A and B are operations of process p, then the
operation A [B is of the form A;B if the following conditions hold: (i) A and B

8

are disjoint, (ii) for all � 2 A, if (s; t) 2 � then Np(t) is a subset either of A or of
B, and (iii) for all � 2 B, if (s; t) 2 � then Np(s) is a subset either of A or of B
and Np(t) is either a subset of or disjoint from B. It follows that A [B [C is of
the form (A;B);C if and only if it is of the form A; (B;C), in which case we say
that it is of the form A;B;C.

Condition C2 asserts that the set of actions of each process is the disjoint union
of operations of the form R; hX i;L for sets of actions R, hX i, and L, where:
(i) hX i contains a single action, (ii) the actions in R, hX i, and L can modify and
access the appropriate state components, (iii) ifNp(s) contains an action in L, then
L can terminate from state s, and (iv) for any initial state s in S0, Np(s) contains
actions only from the sets R. We assume that send and deliver actions have the
obvious e�ects on the set of messages in transit, and that deliver and receive actions
are the only ones that access a process's input bu�er.

If algorithm A satis�es C2, then an atomic action of bA has the form

hR; hX i; bL i, where R; hX i;L is an operation of a process p in A, and bL
consists of the actions of L together with the deliver actions that deliver (or

lose) messages sent by the send actions in L. Given any execution � of bA,
we obtain an execution � of A by expanding each action hR; hX i; bL i of bA
into the sequence R; hX i; bL of actions of A. The externally visible variables

are changed only by hX i, so it follows from C1 that � satis�es property P

if and only if � does. Since an algorithm satis�es a property if and only if

all its executions do, this implies that if A satis�es P , then bA also satis�es

P .

For convenience, we identify the execution � of bA with the corresponding

execution � of A. Thus, the set of executions of bA is a subset of the set of

executions of A.

Formalism: Let � denote the usual composition operator on relations, de�ned by
(s; u) 2 � � � if and only if there exists t such that (s; t) 2 � and (t; u) 2 �. For

any send action � and deliver action �, let �� be the (possibly empty) subaction

of � � � consisting of all pairs (s; t) for which s
���
! t represents the action of

sending a message and then immediately delivering that message. (If the state of
the communication network contains unordered multisets of messages, it may be
necessary to add a dummy variable for �� to be de�ned.) Let b� be the union of the
actions �� for all deliver actions �.

For any operation A, de�ne hA i to be the action consisting of the set of all
pairs (s; t) such that there exists a terminating execution s = s0, s1, : : : , sn = t of
A with n > 0. Condition C2 asserts of A that the set of actions of each process p
is the disjoint union of actions of the form R; hX i;L. The algorithm bA is de�ned
to have the same components, states, and initial states as A, and to have a set of
actions consisting of all the actions hR; hX i; bL i, where bL is obtained from L by
replacing each send action � with b�.

9

To complete the proof of the Reduction Theorem, we must prove that

if bA satis�es property P then A does too. We do this by constructing, for

every execution � of A, a corresponding execution b� of bA such that P is

true of � if and only if it is true of b�. We �rst consider the case in which �

is �nite|more precisely, when � is a �nite initial segment of an execution.

(� may be a complete execution if the execution is �nite.) The extension to

complete in�nite executions is given in Section 2.3.

In an execution of A, actions of other processes and of the communica-

tion network may be interleaved between the actions of a single operation

R; hX i;L and between the send actions in L and their corresponding deliver

actions. We construct b� from � by permuting the order in which actions

are executed so that there are no other actions interleaved between the ac-

tions in a single operation R; hX i; bL. We do this by moving actions of R

to the right and actions of bL to the left. In constructing b�, we �rst delete
any action from a partially completed operation in which the hX i action
has not been executed (which we can do because actions in R a�ect only

the process's internal state) and complete any un�nished operation in which

hX i has been executed (which we can do because condition C2 guarantees

the existence of a terminating execution of L) and add actions to deliver

any outstanding messages (which C2 allows us to do).

We say that an atomic action � right commutes with an atomic action

�, or that � left commutes with �, if and only if, whenever �;� (a � action

followed by a � action) can be executed, it is also possible to produce the

same result by executing �; �. In other words, if s
�
! t

�
! u is possible then

s
�
! t0

�
! u is possible for some state t0. Two actions are said to commute

if and only if each right commutes with the other. Commutativity of two

actions means that executing them in either order has the same e�ect.

Formalism: Action � right commutes with action � if and only if � � � � � � �. If
neither action accesses any component modi�ed by the other action, then � � � =
� � �, so the actions commute.

We will construct b� from � by a series of interchanges, replacing a

sequence of the form � � �
�
! s

�
! � � � by � � �

�
! s0

�
! � � �. We can do this if �

right commutes with �.

To construct b� from �, actions in R must be moved to the right, while

actions in L and deliver actions must be moved to the left. Actions belong-

ing to the same process do not have to be interchanged, so commutativity

relations between actions from the same process are not needed. Two ac-

10

tions obviously commute if they do not both access the same variable or

state component, so we have the following commutativity relations.

� An internal action commutes with every action not belonging to the

same process.

� An \hX i" action commutes with every deliver action and every action

of another process except another \hX i" action.

� A receive action commutes with all actions in other processes, and

with deliver actions delivering messages to other processes.

By C2, R contains only receive and internal actions, and L contains only

send and internal actions. Therefore, b� can be constructed by commuting

the actions of � if the following commutativity relations are satis�ed.

� A send action must commute with

{ send actions of other processes.

{ deliver actions.

� A receive action in a process p must right commute with actions that

deliver a message to p.

� A deliver action delivering a message to process p must

{ commute with other deliver actions.

{ commute with send actions.

{ left commute with receive actions process p.

These commutativity relations are su�cient to allow the construction of
b�, but they are not all necessary. A send action need not commute with

the corresponding deliver action|the one that delivers the message that

the send had sent. Also, two deliver actions need not commute if they

occur in the same order as their corresponding send actions. The remaining

commutativity relations are implied by the following three conditions, where

�(p; q) denotes the set of deliver actions that deliver to process q a message

sent by process p.

C3. A send action � commutes with every send action in another process

and with every deliver action except the one that delivers the message

sent by �.

11

C4. A receive action of process p right commutes with every deliver action

that delivers a message to p.

C5. For every pair of processes p, q: if messages from p to q are delivered in

the order in which they are sent, then every action in �(p; q) commutes

with every deliver action not in �(p; q); otherwise, if messages may

be delivered out of order, then every action in �(p; q) commutes with

every other deliver action (including ones in �(p; q)).

The following are two examples of communication schemes that satisfy these

conditions.

(a) The state of the communication system consists of an unordered set of

message, source, destination triples; and each process's input bu�er is

an unordered set of message, source pairs. A process can receive any

message in its input bu�er.

(b) The state of the communication system contains a FIFO (�rst-in-�rst-

out) message queue for each sender, receiver pair; and each process

has a separate FIFO input bu�er for each sender process. A process

can receive a message at the head of any queue.

Condition C3 is not satis�ed if a process that tries to send a message

can be suspended because other processes have �lled the network's message

bu�ers, so the condition essentially requires unbounded bu�ering by the

communication network. Although communication schemes can be devised

that fail to satisfy C3 despite having unbounded bu�ering, they don't seem

to arise in practice.

Condition C4 states that if a receive action can be performed before

a message is delivered, then that same action can be performed after the

delivery. We can restate this condition somewhat more informally as:

C40. A process's operation cannot depend upon the absence of a message.

For example, the algorithm cannot require that a certain action be taken

only if a process's input bu�er is empty. In example (b) above, C40 implies

that a process cannot query its input queues in a �xed order, since there

would then be states in which the absence of a message in one queue is

necessary for the process to receive a message from the following queue.

There appears to be no simple, intuitive restatement of condition C5.

However, the two examples above are common enough that they are worth

stating as the following condition, which implies C5.

12

C50. For each process p, either

(a) p has an input bu�er consisting of an unordered set of messages,

or

(b) p has a separate input queue for each process from which it re-

ceives messages, and messages from any single process are deliv-

ered in the order that they are sent.

For example, process p cannot maintain a single FIFO input queue in which

it puts messages from all processes. If it did, two deliver actions that deliver

messages from di�erent processes would not commute because reversing their

order of execution reverses the order of the messages in the queue.

Do C3{C5 hold for the Distance-Finding Algorithm? C3 is a condition on

the communication network, which we haven't speci�ed. It is implied by the

assumption of unbounded bu�ering usually made when studying this type

of algorithm. Condition C4 asserts that receipt of a message cannot prevent

a process from performing an action that it could have performed had the

message not arrived|an assertion that holds for this algorithm. Condition

C5 depends upon the queueing discipline employed by the algorithm. By

not specifying which message is to be removed from the bu�er, we have

allowed each process to maintain a single bu�er containing an unordered set

of messages|an implementation for which C50(a) holds.

Since no queueing policy is speci�ed, the Distance-Finding Algorithm

can be implemented by any policy. The most general queueing policy is

represented by a single, unordered bu�er. Any other policy is a special case,

whose executions are the same as possible executions with the unordered

bu�er. The correctness of the more general algorithm implies the correctness

of the special case. For example, the bu�er could be implemented as a single

FIFO queue. However, C5 does not hold for this queueing discipline, so if the

algorithm were to specify a single FIFO bu�er, then our Reduction Theorem

would not apply. We would then have to generalize the algorithm to allow

an unordered bu�er in order to simplify the proof.

Formalism: The formal statement of Conditions C3 and C4 is straightforward,
since they simply express commutativity relations among the actions of A. In C3,
the fact that commutativity is not required between the actions of sending and
delivering the same message is expressed by requiring for any send action � and
deliver action � only that � � � = � � � [��, rather than full commutativity.

Condition C5 assumes that the set of communication network actions can be
partitioned into the sets �(p; q). To make this partition possible, one might have

13

to modify A by partitioning a single action � into subactions �1, : : : , �m. Such a
change does not alter the set of executions.

2.3 Safety, Liveness, and C6

Conditions C2{C5 guarantee that, for any �nite initial segment � of an

execution of A, we can construct an execution b� in which the actions in any

process's operation and the corresponding deliver actions are contiguous.

Moreover, P holds for � if and only if it holds for b�. Before considering

arbitrary executions, we must return to the question of how one speci�es an

algorithm.

The speci�cation of an algorithm is the conjunction of two parts: a

safety speci�cation that describes what the actions may do, and a liveness

speci�cation that describes what actions must eventually be performed.2

Consider an algorithm containing the program statement hx := x+ 1 i. The
algorithm's safety speci�cation implies that executing this statement may

change the value of x only by adding one to it, but it does not imply that

the statement is ever executed. A requirement that the statement must

eventually be executed when control reaches it would be part of the liveness

speci�cation, which is usually implicit in the semantics of the programming

language.

In general, the safety speci�cation may be any safety property, which is

one that holds for an execution if and only if it holds for all �nite initial

segments of the execution. Mutual exclusion, FIFO service, and partial

correctness are all safety properties.

The liveness speci�cation must be a liveness property, which is one for

which any �nite sequence of states and actions can be extended to a sequence

that satis�es the property [1]. This de�nition is independent of any algo-

rithm. A liveness speci�cation may not be an arbitrary liveness property,

but must satisfy the stronger requirement that any �nite sequence of states

and actions that satisfy the algorithm's safety speci�cation can be extended

to a sequence that satis�es both its liveness and safety properties. This

stronger requirement essentially means that the liveness speci�cation does

not specify any additional safety properties; it is satis�ed by all commonly

used liveness speci�cations.

An arbitrary property P holds for an algorithm if and only if it is implied

by the conjunction of the algorithm's safety and liveness speci�cations. But

a safety property holds for an execution if and only if it holds for every

2The term \fairness" is sometimes used in place of \liveness".

14

�nite initial segment of the execution, and every such segment that satis�es

the safety speci�cation can be extended to an execution that satis�es both

the safety and the liveness speci�cations. Therefore, a safety property is

satis�ed by the algorithm if and only if it is implied by the algorithm's

safety speci�cation alone, which is true if and only if the property holds for

every �nite initial segment of every execution.

Conditions C2{C5 were chosen to guarantee that the execution b� con-

structed from the �nite initial segment � of an execution of A satis�es the

safety speci�cation of bA. Hence, b� is a �nite initial segment of an execution

of bA. Moreover, C1 implies that P holds for b� if and only if it holds for �.

Hence, our construction of b� from � proves that if P is a safety property,

then A satis�es P if and only if bA does. We have therefore proved the Re-

duction Theorem for a safety property P without using C6. Condition C6

need apply only when P is not a safety property.

Formalism: Let � be any �nite portion of an execution of A. Let �0 be obtained
from � by appending to it L actions and deliver actions so that, in the last state,
there are no undelivered messages and control in every process is either not inside
its operation or inside its R operation. (Condition C2 implies the existence of
�0.) Since no actions have been added that a�ect the externally visible state, C1
implies that �0 satis�es P if and only if � does. By commuting actions as allowed
by C2{C5 and the assumptions about which actions can access and modify which
state components, we can transform �0 to a sequence b� of the form �1; : : :�i;�,
where each �j is a subsequence consisting of a complete execution of the operation

R; hX i; bL of some process and � consists only of R actions. (Each deliver action

� is moved left until reaching a position � � �s
�
! t

�
! u for a send action � with

(s; u) 2 �� .) Moreover, the states immediately before and after each hX i action

are the same in �0 and in b�, so C1 implies that �0 satis�es P if and only if b� does.
But b� is an execution of bA, so we have proved that, for every �nite execution �
of A, there exists an execution b� of bA that satis�es P if and only if � does. This
proves the Reduction Theorem if P is a safety property.

To prove the Reduction Theorem for any arbitrary property P , we need

to construct b� when � is an in�nite execution of A. Conditions C2{C5 are
not enough to make this construction possible. In b�, every process operation
R; hX i;L is completed and every message sent by L is delivered. In the �nite

case, we could complete un�nished operations by adding actions to the end

of �. We cannot do this in the in�nite case; the actions must already be

in �. To construct b�, in the execution � every process operation must be

completed and every message delivered. This can be guaranteed by requiring

that these conditions be part of A's liveness speci�cation. (\Delivery" of a

15

message includes the possibility that the message is destroyed, so requiring

eventual delivery does not rule out the possibility of losing messages.) With

this requirement, we can construct b� as the limit of the sequences c�n, where

�n consists of the �rst n steps of �. (The required liveness conditions implies

that each operation of b� consists of actions from �.)

Requiring these liveness conditions to be part ofA's liveness speci�cation
ensures that b� can be constructed, but it does not guarantee the validity

of the Reduction Theorem if the speci�cation contains other liveness condi-

tions as well. The problem is that b� need not satisfy these other liveness

properties, so it need not be an execution of bA. Thus, P can hold for bA
without holding for A. As an example, consider the following algorithm A
with two processes, p and q. Process p repeatedly performs an operation

that sends two messages to q; process q repeatedly performs an operation

that removes one message from its input queue and then nondeterministi-

cally sets the externally visible variable x to either 0 or 1. To this safety

speci�cation we add the liveness requirement that if q's input bu�er ever

contains two messages, then some later action of q (not necessarily the next

one) must set x to 1. Let property P assert that x must equal 1 at some

point in the execution. In algorithm bA, the two messages that p's operation

sends to q are put into the bu�er simultaneously, so the liveness requirement

implies that P holds for every execution of bA. However, A has a possible

execution � in which process q removes messages from its bu�er as fast as

they arrive, so its bu�er never contains two messages, and it always sets x

equal to 0. (For this �, the sequence b� is not an execution of bA.) Then P

holds for bA but not for A.
The simplest statement of the precise condition C6 needed to complete

the Reduction Theorem is that, when P is not a safety condition, if � satis�es

the liveness speci�cation of A then the sequence bA can be constructed and

satis�es the liveness speci�cation. However, such a condition is not very

convenient because verifying it requires reasoning about executions. Instead,

we give the following more restrictive condition that seems to handle most

cases of interest. An action � is said to be enabled in a state if it is possible

to execute � starting in that state|that is, if the safety speci�cation allows

such an execution of �.

C6. If P is not a safety property, then the liveness speci�cation for A must

include the following conditions:

� Every process operation (which by C2 has the form R; hX i;L)
that is begun is eventually completed.

16

� For every execution of a send action there is a corresponding ex-

ecution of a deliver action that delivers (or destroys) the message

that was sent.

The liveness speci�cation also may include any of the following types

of conditions:

� For the entire algorithm: A does not halt if some action is en-

abled.

� For an individual process p:

{ If there is a message in p's input bu�er, then some action of

p is eventually executed.

{ If there is a message from a particular process q in p's input

bu�er, then p eventually removes some message from q from

its input bu�er.

� For the communication network: if in�nitely many messages are

sent from process p to process q, then in�nitely many of them

eventually arrive at their destination.

Condition C6 has two parts. The �rst part describes the conditions that

the liveness speci�cation must contain; it guarantees that the sequence b�
can be constructed for any execution � of A. The sequence b� obviously

also satis�es these conditions. The second part describes the only other

conditions that the liveness speci�cation may (but need not) contain. To

complete the proof of the Reduction Theorem, we need only show that if �

satis�es any such condition, then b� does as well. It is easy to check that this

is the case. For example, if � satis�es the last kind of allowed condition,

then b� also satis�es it because every message that is sent from p to q in

execution �, or that arrives at its destination in execution �, also does so

in execution b�.
In the Distance-Finding Algorithm, we have tacitly assumed a liveness

speci�cation with the following conditions:

1. If there is a message in process p's input bu�er, then (a) some message

is removed from the bu�er and (b) the entire operation of reading the

message and reacting to it is eventually completed.

2. Every message that is sent eventually arrives at its destination.

Condition 1(a) is a type of condition allowed by C6, and 1(b) is the �rst

of the two conditions required by C6. Condition 2 is the conjunction of

17

two conditions: (a) every send action has a corresponding deliver action,

which is the second of C6's required conditions, and (b) no deliver action

destroys a message, which is part of the safety speci�cation. Therefore, the

Distance-Finding Algorithm satis�es C6.

Formalism: We must extend our original de�nition of an algorithm as a quadruple
(C; fSc : c 2 Cg;S0;A), to include a liveness speci�cation. The liveness conditions
used in specifying most algorithms can be expressed by adding a set of weak fairness

conditions and a set of strong fairness conditions. A fairness condition is a pair
(L;�) where L is a Boolean-valued function on the set of states and � is a subset
of the set of actions.

An in�nite sequence s0; s1; : : : satis�es the weak fairness condition (L;�) if and
only if the following condition is satis�ed (where 22 means \is an element of an
element of")

8i 9j � i : (sj ; sj+1) 22 � or :L(sj)

The sequence satis�es the strong fairness condition (L;�) if and only if the following
condition is satis�ed

8i 9j � i : (sj ; sj+1) 22 � or 8k � j : :L(sk)

A �nite sequence s0; : : : ; sn is considered to be equivalent to the in�nite one
s0; : : : ; sn; sn; sn; : : :. An execution of the algorithm is now required to satisfy the
fairness conditions.

The liveness conditions allowed by C6 for the entire algorithm and for an in-
dividual process are weak fairness conditions. The condition allowed for the com-
munication network is a strong fairness condition (L;�), where L asserts that a
message has been sent from p to q and � is the set of actions that successfully
deliver such a message.

The required condition that each send has a corresponding deliver implies that
for any portion of an execution si

�
! si+1 � � � sj where � is a send action, we can

determine if the message sent by � has already been delivered when state sj is
reached. If this can be determined by just examining state sj , then the condition
can be expressed by weak fairness conditions. Otherwise, it is a more complicated
type of condition and must be added separately to the liveness speci�cation.

C6's required liveness conditions allow us to extend to in�nite executions the
method given above for constructing the execution b� of bA from the �nite execution
� of A. As before, � satis�es P if and only if b� does. To prove the Reduction The-
orem, we must show that if the execution � satis�es any of the liveness conditions
allowed by C6, then b� also satis�es these conditions.

C6's entire-algorithm condition is maintained because, if � does not halt, then
neither does b�. An individual-process condition allowed by C6 is a weak fairness
condition of the form (L;�) where � is a set of receive actions. Moreover, L is
initially false; it is made true by executing a deliver action; and it is made false

18

again only by executing a corresponding action of �. This weak fairness condition
asserts that an execution contains either an in�nite number of � actions, or else
L is false in�nitely often. If � has an in�nite number of � actions, then so does
b�. If � has only a �nite number of � actions, then L false in�nitely often implies
that there are only a �nite number of deliver actions that make L true, each of
which has a receive action that makes L false again. If this latter condition holds
for �, then it must also hold for b�, which is obtained from � by commuting receive
actions to the right and deliver actions to the left.

A communication-network condition allowed by C6 is a strong fairness condition
(L;�) where L is made true by executing a send action and is made false only by

executing a corresponding deliver action in �. In constructing b�, a deliver action
is never moved to the right of its corresponding send action, so b� satis�es the
condition if � does.

3 Discussion

The six hypotheses of the Reduction Theorem may seem like a formidable

array of conditions that would prevent the theorem from being of much

practical value. However, the Distance-Finding Algorithm is not a uke, but

rather an example of a broad class of distributed algorithms to which the

theorem can be applied. Condition C3 implies unbounded bu�ering, which

is assumed of most distributed algorithms considered in the literature. The

only condition that eliminates a large class of algorithms is C4. By requiring

that the receipt of a message not disable an action, C4 rules out real-time

algorithms in which a process does something when it has not received a

message within a certain length of time.

C4 may also be violated because of unnecessary overspeci�cation of the

input bu�er. The well-known minimum spanning tree algorithm of Gallager,

Humblet, and Spira, as described in [5], does not satisfy C4 because it spec-

i�es that each process maintain a single FIFO input queue. The algorithm

does not require the single queue; it can be generalized by having a pro-

cess maintain a separate queue for each neighboring process.3 This is still

not su�cient, because the algorithm moves certain messages that cannot be

processed immediately to the end of the input queue. C4 is not satis�ed

because the action of moving a message to the end of the queue does not

right commute with the action of delivering a new message to the queue; the

order of messages in the queue depends upon the order in which the actions

3Multiple input queues are a generalization because they can be implemented by a

single queue.

19

are executed. However, the algorithm can just as well be implemented by

not moving a message to the back of the queue, but allowing messages later

in the queue to be processed before it. With this additional modi�cation,

the minimum spanning tree algorithm satis�es C1{C6, and the reduction

theorem can be applied.

Our Reduction Theorem can be applied to a multiprocess algorithm

in which there is no message passing, so all interprocess communication

is performed with global, externally visible shared variables. In this case,

C3{C5 are vacuous, and condition C2 is just the hypothesis of the Folk

Theorem. However, conditions C1 and C6, which are not mentioned by the

Folk Theorem, are not vacuous. These or similar conditions are necessary

for the Folk Theorem to be valid.

The Folk Theorem asserts that two programs|the original and the re-

duced version|are equivalent. Equivalence means that they satisfy the

same properties, and it can be valid only if one speci�es the class of proper-

ties under consideration. Condition C1 recti�es this omission from the Folk

Theorem.

Condition C6, which is needed to apply the Reduction Theorem to live-

ness properties, is a more insidious omission from the hypotheses of the Folk

Theorem. The Folk Theorem is not valid for arbitrary liveness properties

without some additional hypothesis such as C6. Counterexamples are easily

obtained by using liveness speci�cations that determine under what con-

ditions a process is guaranteed eventually to execute its next action. For

example, consider a multiprocess program with the following process

hx := 2 i;
while true do hx := 1 i;

hn := n+ 1 i;
hx := 2 i

od

where x is local to the process. The Folk Theorem would allow us to make

the entire loop body a single atomic action. However, suppose that the pro-

gram contained the liveness speci�cation that the process is only guaranteed

to take a next step when x 6= 1. The reduced program satis�es the liveness

property that n must get arbitrarily large, but the original program does

not, since it permits an execution in which this process does nothing after

the �rst time it sets x to 1.

20

Acknowledgments

In [8], Lipton proved a reduction theorem similar to ours for reasoning about

partial correctness and deadlock-freedom properties of nondistributed pro-

grams, concentrating on programs that use semaphores. His result was

extended by Doeppner [4] to a somewhat larger class of safety properties.

In [2] and [3], Dijkstra proved a restricted version of our reduction theorem

for reasoning about partial correctness properties of two-process distributed

programs. Using a formalism based upon event traces instead of states, Jon-

sson proved in [6] what is essentially a special case of our reduction theorem

for a system with FIFO bu�ers, and he cited a related result by Pachl for

reachability and deadlock properties. There have undoubtedly been many

other variations on the same theme that we are unaware of. The observa-

tion that the Folk Theorem is not valid for liveness properties was made by

Reino Kurki-Suonio and Ralph Back, and reported to us by Kurki-Suonio.

Discussions with Fred Schneider led to the writing of this paper, which in

turn led to our generalizing Lipton's and Doeppner's results in [7]. I wish to

thank Mart��n Abadi, Eike Best, Richard Koo, Michael Merritt, Gil Neiger,

Van Nguyen, Prasad Sistla, and Sam Toueg for their comments on earlier

drafts.

21

References

[1] Bowen Alpern and Fred B. Schneider. De�ning liveness. Information

Processing Letters, 21(4):181{185, October 1985.

[2] Edsger W. Dijkstra. When messages may crawl. 1979. EWD708.

[3] Edsger W. Dijkstra. When messages may crawl, ii. 1979. EWD710.

[4] Thomas W. Doeppner, Jr. Parallel program correctness through re�ne-

ment. In Fourth Annual ACM Symposium on Principles of Programming

Languages, pages 155{169, ACM, January 1977.

[5] R. G. Gallager, P. A. Humblet, and P. M. Spira. A distributed algorithm

for minimum-weight spanning trees. ACM Transactions on Programming

Languages and Systems, 5(1):66{77, January 1983.

[6] Bengt Jonsson. Compositional Veri�cation of Distributed Systems. PhD

thesis, Uppsala University, 1987.

[7] Leslie Lamport and Fred B. Schneider. Pretending Atomicity. research

report 44, Digital Equipment Corporation, Systems Research Center,

May 1989.

[8] Richard J. Lipton. Reduction: a method of proving properties of paral-

lel programs. Communications of the ACM, 18(12):717{721, December

1975.

[9] S. Owicki and D. Gries. An axiomatic proof technique for parallel pro-

grams i. Acta Informatica, 6(4):319{340, 1976.

22

List of Notations

A The set of program actions.

A The algorithm under consideration.

bA The reduced version of algorithm A.

hA i The action obtained by executing the operation A as an atomic action.

C The set of state components.

d[i] A variable of the Distance-Finding Algorithm.

L An operation of A, as in C2.

bL The operation obtained by adding to L the actions that deliver mes-

sages sent by L.

Np(s)The set of possible next actions of process p from state s.

P The correctness property.

R An operation of A, as in C2.

S The set of states.

S0 The set of initial states.

Sc The range of values of state component c.

hX i An action of A, as in C2.

� Usually denotes an execution of A.

b� The execution of bA that corresponds to an execution � of A.

23

