
Dynamic Typing

in a Statically Typed Language�

Mart��n Abadiy Luca Cardelliy Benjamin Piercez Gordon Plotkinx

Abstract

Statically typed programming languages allow earlier error checking, better en-

forcement of disciplined programming styles, and generation of more e�cient object

code than languages where all type consistency checks are performed at run time.

However, even in statically typed languages, there is often the need to deal with data

whose type cannot be determined at compile time. To handle such situations safely,

we propose to add a type Dynamic whose values are pairs of a value v and a type tag

T where v has the type denoted by T. Instances of Dynamic are built with an explicit

tagging construct and inspected with a type safe typecase construct.

This paper explores the syntax, operational semantics, and denotational semantics

of a simple language including the type Dynamic. We give examples of how dynamically

typed values can be used in programming. Then we discuss an operational semantics

for our language and obtain a soundness theorem. We present two formulations of the

denotational semantics of this language and relate them to the operational semantics.

Finally, we consider the implications of polymorphismand some implementation issues.

1 Introduction

Statically typed programming languages allow earlier error checking, better enforcement of

disciplined programming styles, and generation of more e�cient object code than languages

where all type consistency checks are performed at run time. However, even in statically

typed languages, there is often the need to deal with data whose type cannot be determined

at compile time. For example, full static typechecking of programs that exchange data with

�An earlier version of this paper was published as SRC Research Report #47, copyright Digital Equip-

ment Corporation 1989. A condensed version was presented at the Sixteenth Annual ACM Symposium on

Principles of Programming Languages, January, 1989, in Austin, Texas. This extended version appeared
in ACM Transactions on Programming Languages and Systems (volume 13, number 2, pp. 237{268, April

1991), and is here published by permission.

yDigital Equipment Corporation, Systems Research Center.

zSchool of Computer Science, Carnegie Mellon University. (This work was started at DEC Systems

Research Center.)

xDepartment of Computer Science, University of Edinburgh. (This work was started at Stanford's
Center for the Study of Language and Information.)

1

1 INTRODUCTION 2

other programs or access persistent data is in general not possible. A certain amount of

dynamic checking must be performed in order to preserve type safety.

Consider a program that reads a bitmap from a �le and displays it on a screen. Probably

the simplest way to do this is to store the bitmap externally as an exact binary image of its

representation in memory. (For concreteness, assume that the bitmap is stored internally

as a pair of integers followed by a rectangular array of booleans.) But if we take strong

typing seriously, this is unacceptable: when the data in the �le happens not to be two

integers followed by a bit string of the appropriate length, the result can be chaos. The

safety provided by static typing has been compromised.

A better solution, also widely used, is to build explicit procedures for reading and

writing bitmaps|storing them externally as character strings, say, and generating an

exception if the contents of the �le are not a legal representation of a bitmap. This

amounts essentially to decreeing that there is exactly one data type external to programs

and to requiring that all other types be encoded as instances of this single type. Strong

typing can now be preserved|at the cost of some programming. But as software systems

grow to include thousands of data types, each of which must be supplied with printing and

reading routines, this approach becomes less and less attractive. What is really needed is

a combination of the convenience of the �rst solution with the safety of the second.

The key to such a solution is the observation that, as far as safety is concerned, the

important feature of the second solution is not the details of the encoding of a bitmap as

a string, but the fact that it is possible to generate an exception if a given string does not

represent a bitmap. This amounts to a run-time check of the type correctness of the read

operation.

With this insight in hand, we can combine the two solutions above: the contents of a

�le should include both a binary representation of a data object and a representation of its

type. The language can provide a single read operation that checks whether the type in

the �le matches the type declared for the receiving variable. In fact, rather than thinking

of �les as containing two pieces of information|a data object and its type|we can think

of them as containing a pair of an object and its type. We introduce a new data type called

Dynamic whose values are such pairs, and return to the view that all communication with

the external world is in terms of objects of a single type|no longer String, but Dynamic.

The read routine itself does no run-time checks, but simply returns a Dynamic. We provide

a language construct, dynamic (with a lowercase \d"), for packaging a value together with

its type into a Dynamic (which can then be \externed" to a �le), and a typecase construct

for inspecting the type tag of a given Dynamic.

We might use typecase, for example, to display the entire contents of a directory where

each �le may be either a bitmap or a string:

foreach filename in openDir("MyDir") do

let image = read(filename) in

typecase image of

(b:Bitmap)

displayBitmap(b)

(s:String)

displayString(s)

2 HISTORY AND RELATED WORK 3

else

displayString("<???>")

end

This example can be generalized by making the directory itself into a Dynamic. Indeed, the

entire �le system could be based on Dynamic structures. Dynamic objects can also be used

as the values exchanged during interprocess communication, thereby providing type safe

interactions between processes. The Remote Procedure Call paradigm [4] uses essentially

this mechanism. (Most RPC implementations optimize the conversions to and from the

transport medium, so the Dynamic objects may exist only in principle.)

A number of systems already incorporate mechanisms similar to those we have de-

scribed. But so far these features have appeared in the context of full-scale language

designs, and seldom with a precise formal description of their meaning. No attention has

been given to the more formal implications of dynamic typing, such as the problems of

proving soundness and constructing models for languages with Dynamic.

The purpose of this paper is to study the type Dynamic in isolation, from several angles.

Section 2 reviews the history of dynamic typing in statically typed languages and describes

some work related to ours. Section 3 introduces our version of the dynamic and typecase

constructs and gives examples of programs that can be written with them. Section 4

presents an operational semantics for our language and obtains a syntactic soundness the-

orem. Section 5 investigates two semantic models for the same language and their relation

to the operational semantics. Section 6 outlines some preliminary work on extending our

theory to a polymorphic lambda-calculus with Dynamic. Section 7 discusses some of the

issues involved in implementing Dynamic e�ciently.

2 History and Related Work

Since at least the mid-1960s, a number of languages have included �nite disjoint unions

(e.g. Algol-68) or tagged variant records (e.g. Pascal). Both of these can be thought of

as \�nite versions" of Dynamic: they allow values of di�erent types to be manipulated

uniformly as elements of a tagged variant type, with the restriction that the set of variants

must be �xed in advance. Simula-67's subclass structure [5], on the other hand, can be

thought of as an in�nite disjoint union|essentially equivalent to Dynamic. The Simula-

67 INSPECT statement allows a program to determine at run time which subclass a value

belongs to, with an ELSE clause for subclasses that the program doesn't know or care

about.

CLU [20] is a later language that incorporates the idea of dynamic typing in a static

context. It has a type any and a force construct that attempts to coerce an any into an

instance of a given type, raising an exception if the coercion is not possible. Cedar/Mesa

[19] provides very similar REFANY and TYPECASE. These features of Cedar/Mesa were

carried over directly into Modula-2+ [33] and Modula-3 [8, 9]. In CLU and Cedar/Mesa,

the primary motivation for including a dynamic type was to support programming idioms

from LISP.

Sha�ert and Scheier gave a formal de�nition [34] and denotational semantics [35] of

CLU, including the type any and the force construct. This semantics relies on a domain of

3 PROGRAMMING WITH DYNAMIC 4

run time values where every value is tagged with its compile time type. Thus, the coercion

mapping a value of a known type into a value of type any is an identity function; force

can always look at a value and read o� its type. Our approach is more re�ned, since it

distinguishes those values whose types may need to be examined at run time from those

that can be stripped during compilation. Moreover, the semantic de�nition of CLU has

apparently never been proved to be sound. In particular, it is not claimed that run time

values actually occurring in the evaluation of a well-typed program are tagged with the

types that they actually possess. The proof of a soundness result for CLU would probably

require techniques similar to those developed in this paper.

ML [16, 25, 26] and its relatives have shown more resistance to the incorporation of

dynamic typing than languages in the Algol family. Probably this is because many of

the uses of Dynamic in Algol-like languages are captured in ML by polymorphic types.

Moreover, until recently ML has not been used for building software systems that deal

much with persistent data. Still, there have been various proposals for extending ML with

a dynamic type. Gordon seems to have thought of it �rst [15]; his ideas were later extended

by Mycroft [28]. The innovation of allowing pattern variables in typecase expressions (see

below) seems to originate with Mycroft. (Unfortunately, neither of these proposals were

published.) Recent versions of the CAML language [38] include features quite similar to

our dynamic and typecase constructs.

Amber [7], a language based on subtyping, includes a Dynamic type whose main use is

for handling persistent data. In fact, the Amber system itself depends heavily on dynami-

cally typed values. For example, when a module is compiled, it is stored in the �le system

as a single Dynamic object. Uniform use of Dynamic in such situations greatly simpli�es

Amber's implementation.

The use of dynamically typed values for dealing with persistent data seems to be

gaining in importance. Besides Amber, the mechanism is used pervasively in the Modula-

2+ programming environment. A REFANY structure can be \pickled" into a bytestring or

a �le, \unpickled" later by another program, and inspected with TYPECASE. Dynamically

typed objects have also been discussed recently in the database literature as an approach

to dealing with persistent data in the context of statically typed database programming

languages [1, 2, 10].

Recently, Thatte [36] has described a \quasi-static" type system based on the one de-

scribed here, where our explicit dynamic and typecase constructs are replaced by implicit

coercions and run time checks.

3 Programming with Dynamic

This section introduces the notation used in the rest of the paper|essentially Church's

simply typed lambda-calculus [12, 17] with a call-by-value reduction scheme [30], extended

with the type Dynamic and the dynamic and typecase constructs. We present a number

of example programs to establish the notation and illustrate its expressiveness.

Our fundamental constructs are �-abstraction, application, conditionals, and arith-

metic on natural numbers. We write e) v to show that an expression e evaluates to a

value v, and e:T to show that an expression e has type T. For example,

3 PROGRAMMING WITH DYNAMIC 5

+ : Nat!Nat!Nat

5+3) 8

(�f:Nat!Nat.f(0)) : (Nat!Nat)!Nat

(�f:Nat!Nat.f(0)) (�x:Nat.x+1)) 1

In order to be able to consider evaluation and typechecking separately, we de�ne the

behavior of our evaluator over all terms|not just over well-typed terms. (In a compiler for

this language, the typechecking phase might strip away type annotations before passing

programs to an interpreter or code generator. Our simple evaluator just ignores the type

annotations.)

Of course, evaluation of arbitrary terms may encounter run-time type errors such as

trying to apply a number as if it were a function. The result of such computations is the

distinguished value wrong:

(5 6)) wrong

(�z:Nat.0) (5 6)) wrong

Note that in the second example a run-time error occurs even though the argument z

is never used in (�z.0): we evaluate expressions in applicative order. Also, note that

wrong is di�erent from ? (nontermination). This allows us to distinguish in the semantics

between programs that loop forever, which may be perfectly well typed, and programs that

crash because of run-time type errors.

To make the examples in this section more interesting we also use strings, booleans,

cartesian products, and recursive �-expressions, all of which are omitted in the formal

parts of the paper. Strings are written in double quotes; k is the concatenation operator

on strings. Binary cartesian products are written with angle brackets; fst and snd are pro-

jection functions returning the �rst and second components of a pair. Recursive lambda ex-

pressions are written using the �xpoint operator rec, where we intend rec(f:U!T)�x:U.e

to denote the least-de�ned function f such that, informally, f = �x:U.e. For example,

<�x:Nat.x+1,1> : (Nat!Nat)�Nat
snd(<�x:Nat.x+1,1>)) 1

(rec(f:Nat!Nat)�n:Nat.

if n=0 then 1 else n*f(n-1)) (5)

) 120

We show at the end of this section that recursive �-expressions actually need not be

primitives of the language: they can be de�ned using Dynamic.

Values of type Dynamic are built with the dynamic construct. The result of evaluating

the expression dynamic e:T is a pair of a value v and a type tag T, where v is the result

of evaluating e. The expression dynamic e:T has type Dynamic if e has type T.

The typecase construct is used to examine the type tag of a Dynamic value. For

example, the expression

�x:Dynamic.

typecase x of

(i:Nat) i+1

3 PROGRAMMING WITH DYNAMIC 6

else 0

end

applied to (dynamic 1:Nat), evaluates to 2. The evaluator attempts to match the type

tag of x against the pattern Nat, succeeds, binds i to the value component of x, adds 1 to

i, and returns the result.

The patterns in the case branches need not fully specify the type they are to match:

they may include \pattern variables," which match any subexpression in the type tag of

the selector. The pattern variables are listed between parentheses at the beginning of each

guard, indicating that they are bound in the branch.

The full syntax of typecase is

typecase esel of

...

(~Xi) (xi:Ti) ei

...

else eelse

end

where esel, eelse, and ei are expressions, xi are variables, Ti are type expressions, and ~Xi are

lists of distinct type variables. (It will sometimes be convenient to treat the ~Xi as a set

rather than a list.) If any of the ~Xi are empty, their enclosing parentheses may be omitted.

The occurrences of type variables in Xi are binding and have scope over the whole branch,

that is, over both Ti and ei.

If the type tag of a typecase selector matches more than one guard, the �rst matching

branch is executed. There are other possible choices here. For instance, we could imagine

requiring that the patterns form an \exclusive and exhaustive" covering of the space of

type expressions so that a given type tag always matches exactly one pattern [28].

One example using dynamic values is a function that returns a printable string repre-

sentation of any dynamic value:

rec(tostring: Dynamic!String)

�dv:Dynamic.

typecase dv of

(v: String) "n"" k v k "n""
(v: Nat) natToStr(v)

(X,Y) (v: X!Y) "<function>"

(X,Y) (v: X�Y)
"<" k tostring(dynamic fst(v):X) k ","

k tostring(dynamic snd(v):Y) k ">"

(v: Dynamic)

"dynamic " k tostring(v)

else "<unknown>"

end

The case for pairs illustrates a subtle point. It uses a pattern to match any pair, and

then calls the tostring function recursively to convert the components. To do this, it

3 PROGRAMMING WITH DYNAMIC 7

must package them into new dynamic values by tagging them with their types. This is

possible because the variables X and Y are bound at run time to the appropriate types.

Since the type tag is part of the run-time representation of a dynamic value, the case for

Dynamic should probably return a string representation not only of the tagged value but

of the type tag itself. This is straightforward, using an auxiliary function typetostring

with the same structure as tostring.

rec(typetostring: Dynamic!String)

�dv:Dynamic.

typecase dv of

(v: String) "String"

(v: Nat) "Nat"

(X,Y) (v: X!Y) "<function>"

(X,Y) (v: X�Y)
typetostring(dynamic fst(v):X)

k "�"
k typetostring(dynamic snd(v):Y)

(v: Dynamic) "Dynamic"

else "<unknown>"

end

Neither tostring nor typetostring quite do their jobs: for example, when tostring

gets to a function, it stops without giving any more information about the function. It can

do no better, given the mechanisms we have described, since there is no e�ective way to

get from a function value to an element of its domain or codomain. This limitation even

precludes using typetostring to show the domain and codomain types of the function,

since the argument to typetostring must be a value, not just a disembodied type.

It would be possible to add another mechanism to the language, providing a way

of \unpackaging" the type tag of a Dynamic into a data structure that could then be

examined by the program. (Amber [7] and Cedar/Mesa [19] have this feature.) Although

this would be a convenient way to implement operations like type printing|which may

be important in practice|we believe that most of the theoretical interest of Dynamic lies

in the interaction between statically and dynamically checked parts of the language that

the typecase expression allows. Under the proposed extension, a function could behave

di�erently depending on the type tag of a dynamic value passed as a parameter, but the

type of its result could not be a�ected without giving up static typechecking.

Another example, demonstrating the use of nested typecase expressions, is a function

that applies its �rst argument to its second argument, after checking that the application

is correctly typed. Both arguments are passed as dynamic values, and the result is a new

dynamic value. When the application fails, the type tag of the result will be String and

its value part will be "Error". (In a richer language we could raise an exception in this

case.)

�df:Dynamic. �de:Dynamic.

typecase df of

(X,Y) (f: X ! Y)

typecase de of

3 PROGRAMMING WITH DYNAMIC 8

(e: X) dynamic f(e):Y

else dynamic "Error":String

end

else dynamic "Error":String

end

Note that in the �rst guard of the inner typecase, X is not listed as a bound pattern

variable. It is not intended to match any type whatsoever, but only the domain type of f.

Therefore, it retains its binding from the outer pattern, making it a constant as far as the

inner typecase is concerned.

Readers may enjoy the exercise of de�ning a similar function that takes two functions

as dynamic values and returns their composition as a dynamic value.

In contrast to some languages with features similar to Dynamic (for example, Modula-

2+ [33]), the set of type tags involved in a computation cannot be computed statically:

our dynamic expressions can cause the creation of new tags at run time. A simple example

of this is a function that takes a dynamic value and returns a Dynamic whose value part

is a pair, both of whose components are equal to the value part of the original dynamic

value:

�dx:Dynamic.

typecase dx of

(X) (x: X)

dynamic <x,x>: X � X

else dx

end

It is easy to see that the type tag on the dynamic value returned by this function

must be constructed at run time, rather than simply being chosen from a �nite set of tags

generated by the compiler.

Our last application of Dynamic is more substantial. We show that it can be used

to build a �xpoint operator, allowing recursive computations to be expressed in the lan-

guage even without the rec construct. It is well known that �xpoint operators cannot

be expressed in the ordinary simply typed lambda-calculus. (This follows from the strong

normalization property [17, p. 163].) However, by hiding a certain parameter inside a

dynamic value, smuggling it past the type system, and unpackaging it again where it is

needed, we can write a well-typed version in our language.

A �xpoint of a function f is an argument x for which f(x) = x (our use of the equality

sign here is informal). A �xpoint operator fix is a function that returns a �xpoint of a

function f when applied to f:

fix f = f (fix f):

In call-by-value lambda-calculi, an extensional version of this property must be used in-

stead: for any argument a,

(fix f) a = f(fix f) a

3 PROGRAMMING WITH DYNAMIC 9

One function with this property (a call-by-value version of the standard Y combinator

[3, p. 131], [30]) can be expressed in an untyped variant of our notation by:

fix = �f. d d

where

d = �x. �z. (f (x x)) z:

To see that (fix f) a = f (fix f) a for any function f and argument a, we calculate

as follows.

(fix f) a = ((�f. d d) f) a

= (d d) a

= (�z. (f (d d)) z) a

= (f (d d)) a

= (f ((�f. d d) f)) a

= (f (fix f)) a

To build something similar in the typed language, we need to do a bit more work.

Rather than a single �xpoint function, we have to build a family of functions (one for each

arrow type). That is, for each arrow type T!U we de�ne a function fixT!U whose type

is ((T!U)!(T!U))!(T!U). Unfortunately, there is no way to obtain fixT!U by just

�lling in suitable type declarations in the untyped fix given above. We need to build it

in a more roundabout way.

First, we need an expression aT for each type T. (It does not matter what the expressions

are; we need to know only that there is one for every type.) De�ne:

aNat = 0

aString = ""

aT�U = <aT,aU>

aT!U = �x:T. aU

aDynamic = dynamic 0:Nat

Next, we build a family of \embedding" functions from each type T into Dynamic, and

corresponding \projection" functions from Dynamic to T:

embT = �x:T. dynamic x:T

projT = �y:Dynamic.

typecase y of

(z:T) z

else aT

end

It is easy to see that if an expression e of type T evaluates to some value v, then so does

projT(embT(e)).

Now we are ready to construct fixT!U. Abbreviate:

emb = embDynamic!(T!U)

proj = projDynamic!(T!U)

d = �x:Dynamic. �z:T. f ((proj x) x) z

4 OPERATIONAL SEMANTICS 10

To see that d is well-typed, assume that f has type (T!U)!(T!U). The type of d works

out to be Dynamic!(T!U). Then

fixT!U = �f:((T! U)! (T! U)). d (emb d)

has type ((T!U)!(T!U))!(T!U), as required, and has the correct behavior.

4 Operational Semantics

We now formally de�ne the syntax of the simply typed lambda-calculus with Dynamic and

give operational rules for typechecking and evaluation.

4.1 Notation

TVar is a countable set of type variable identi�ers. TExp is the class of type expressions

de�ned over these by the following BNF equation, where T and U range over TExp and X

ranges over TVar:

T ::= Nat

j X

j T ! U

j Dynamic

Similarly, Var is a countable set of variables and OpenExp is the class of open expressions

de�ned by the following equation, where e ranges over OpenExp, x over Var, and T over

TExp:

e ::= x

j wrong

j �x:T.ebody

j efun(ebody)

j 0

j succ enat

j test enat 0:ezero succ(x):esucc

j dynamic ebody:T

j typecase esel of

...

(~Xi) (xi:Ti) ei

...

else eelse

end

Recall that ~Xi denotes a list of distinct type variables, and that if the list is empty the

enclosing parentheses may be omitted.

4 OPERATIONAL SEMANTICS 11

This is a simpler language than we used in the examples. We have omitted strings,

booleans, cartesian products, and built-in recursive �-expressions. The natural num-

bers, our only built-in datatype, are presented by 0, succ, and test. The test

construct helps reduce the low-level clutter in our de�nitions by subsuming the usual

if...then...else... construct, test for zero, predecessor function, and boolean datatype

into a single construct. It is based on Martin-L�of's elimination rule for natural numbers

[23].

We give special names to certain subsets of TExp and OpenExp. FTV (e) is the set of

free type variables in e. FV (e) is the set of free variables in e. ClosedExp denotes the

closed expressions; Exp denotes the expressions with no free type variables (but possibly

with free variables); TypeCode denotes the closed type expressions. When we write just

\expression," we mean an expression with no free type variables.

Evaluation is taken to be a relation between expressions and expressions (rather

than between expressions and some other domain of values). We distinguish a set

Value � ClosedExp of expressions \in canonical form." The elements of Value are de-

�ned inductively: wrong is in canonical form; 0, succ 0, succ(succ 0), : : : are in canon-

ical form; an expression (�x:T.ebody) is in canonical form if it is closed; an expression

dynamic ebody:T is in canonical form if T is closed and ebody is in canonical form and

di�erent from wrong.

A substitution � is a �nite function from type variables to closed type expressions,

written [X T; Y U; : : :]: Subst denotes the set of all substitutions. Subst ~Xi denotes

the set of substitutions whose domain is ~Xi. We use a similar notation for substitution of

canonical expressions for free variables in expressions.

A type environment is a �nite function from variables to closed type expressions. To de-

note the modi�cation of a type environment TE by a binding of x to T, we write TE [x T]:

The empty type environment is denoted by ;.

We consistently use certain variables to range over particular classes of objects. The

metavariables x, y, and z range over variables in the language. (They are also sometimes

used as actual variables in program examples.) The metavariable e ranges over expres-

sions. Similarly, X, Y, and Z range over type variables and T, U, V, and W range over type

expressions. The letter � ranges over substitutions. TE ranges over type environments.

Finally, v and w range over canonical expressions.

These de�nitions and conventions are summarized in Figures 1 and 2.

4.2 Typechecking

Our notation for describing typechecking and evaluation is a form of \structural operational

semantics" [31]. The typing and evaluation functions are speci�ed as systems of inference

rules; showing that an expression has a given type or reduces to a given value amounts

precisely to giving a proof of this fact using the rules. Because the inference rules are

similar to those used in systems for natural deduction in logic, this style of description has

also come to be known as \natural semantics" [18].

4 OPERATIONAL SEMANTICS 12

Nat numbers

Var variables

TVar type variables

TExp type expressions

TypeCode = fT 2 TExpj FTV (T) = ;g closed types

OpenExp open expressions

ClosedExp = fe 2 OpenExpj FV (e) = FTV (e) = ;g closed expressions

Exp = fe 2 OpenExpj FTV (e) = ;g expressions

Value = fe 2 OpenExpj e in canonical formg canonical expressions

Subst = TVar
�n
�! TypeCode substitutions

Subst ~Xj = TVar
�n
�! TypeCode substitutions with domain ~Xj

TEnv = Var
�n
�! TypeCode type environments

Figure 1: Summary of Basic De�nitions

x, y, z variables

e expressions

v, w canonical expressions (values)

X, Y, Z type variables

T, U, V, W type expressions

� substitutions

TE type environments

Figure 2: Summary of Naming Conventions

The rules closely follow the structure of expressions, and incorporate a strong notion of

computation. To compute a type for efun(earg), for example, we �rst attempt to compute

types for its subterms efun and earg and then, if we are successful, to combine the results.

This exactly mimics the sequence of events we might observe inside a typechecker for the

language.

The formalism extends fairly easily to describing a variety of programming language

features like assignment statements and exceptions. This breadth of coverage and \oper-

ational style" makes the notation a good one for specifying comparatively rich languages

like Standard ML [26]. A group at INRIA has built a system for directly interpreting

formal speci�cations written in a similar notation [6, 13, 14].

The rules below de�ne the situations in which the judgement \expression e has type

T" is valid under assumptions TE . This is written \TE ` e : T".

The �rst rule says that a variable identi�er has whatever type is given for it in the type

environment. If it is unbound in the present type environment, then the rules simply fail

4 OPERATIONAL SEMANTICS 13

to derive any type. (Technically, the clause \x 2 Dom(TE)" is not a premise but a side

condition that determines when the rule is applicable.)

x 2 Dom(TE)

TE ` x : TE(x)

A �-expression must have an arrow type. The argument type is given explicitly by

the annotation on the bound variable. To compute the result type, we assume that the

bound variable has the declared type, and attempt to derive a type for the body under

this assumption.

TE [x U] ` ebody : T

TE ` �x:U.ebody : (U!T)

A well-typed function application must consist of an expression of some arrow type

applied to another expression, whose type is the same as the argument type of the �rst

expression.

TE ` efun : (U!T)

TE ` earg : U

TE ` efun(earg) : T

The constant 0 has type Nat.

TE ` 0 : Nat

A succ expression has type Nat if its body does.

TE ` enat : Nat

TE ` succ enat : Nat

A test expression has type T if its selector has type Nat and both of its arms have

type T. The type of the second arm is derived in an environment where the variable x has

type Nat.

TE ` enat : Nat
TE ` ezero : T

TE [x Nat] ` esucc : T

TE ` (test enat 0:ezero succ(x):esucc) : T

A dynamic expression is well-typed if the body actually has the type claimed for it.

TE ` ebody : T

TE ` (dynamic ebody:T) : Dynamic

4 OPERATIONAL SEMANTICS 14

The typecase construct is a bit more complicated. In order for an expression of the

form (typecase esel of ... (~Xi) (xi:Ti) ei ... end) to have a type T, three con-

ditions must be met: First, the selector esel must have type Dynamic. Second, for every

possible substitution � of typecodes for the pattern variables ~Xi, the body ei of each branch

must have type T. Third, the else arm must also have type T.

The second premise is quanti�ed over all substitutions � 2 Subst ~Xi . Strictly speaking,

there are no inference rules that allow us to draw conclusions quanti�ed over an in�nite set,

so a proof of this premise requires an in�nite number of separate derivations. Such in�nitary

derivations present no theoretical di�culties|in fact, they make the rule system easier to

reason about|but a typechecker based naively on these rules would have poor performance.

However, our rules can be replaced by a �nitary system using skolem constants that derives

exactly the same typing judgements.

TE ` esel : Dynamic
8i; 8� 2 Subst ~Xi : TE [xi Ti�] ` ei� : T

TE ` eelse : T

TE ` (typecase esel of

: : :(~Xi) (xi:Ti) ei: : :

else eelse

end) : T

Finally, note that the expression wrong is assigned no type. It is the only syntactic

form in the language with no associated typing rule.

4.3 Evaluation

The evaluation rules are given in the same notation as the typechecking rules. We de�ne

the judgement \closed expression e reduces to canonical expression v," written \e) v,"

by giving rules for each syntactic construct in the language. In general, there is one rule

for the normal case, plus one or two others specifying that the expression reduces to wrong

under certain conditions.

In this style of semantic description, there is no explicit representation of a nonter-

minating computation. Whereas in standard denotational semantics an expression that

loops forever has the value ? (bottom), our evaluation rules simply fail to derive any

result whatsoever.

When the evaluation of an expression encounters a run-time error like trying to apply

a number as if it were a function, the value wrong is derived as the expression's value. The

evaluation rules preserve wrong.

There is no rule for evaluating a variable: evaluation is de�ned only over closed expres-

sions. Parameter substitution is performed immediately during function application.

The constant wrong is in canonical form.

` wrong) wrong

Every �-expression is in canonical form.

4 OPERATIONAL SEMANTICS 15

` �x:T.ebody) �x:T.ebody

We have chosen a call-by-value (applicative-order) evaluation strategy: to evaluate a

function application, the expression being applied must be reduced to a canonical expres-

sion beginning with � and the argument expression must be reduced to some legal value,

that is, its computation must terminate and should not produce wrong. If one of these

computations results in wrong, the application itself reduces immediately to wrong. Oth-

erwise the argument is substituted for the parameter variable in the � body, which is then

evaluated under this binding.

` efun) �x:T.ebody
` earg) w (w 6= wrong)

` ebody[x w]) v

` efun(earg)) v

` efun) w (w not of the form (�x:T.ebody))

` efun(earg)) wrong

` efun) w (w = (�x:T.ebody))

` earg) wrong

` efun(earg)) wrong

The constant 0 is in canonical form.

` 0) 0

A succ expression is in canonical form when its body is a canonical number (that is,

an expression of the form 0 or succ n, where n is a canonical number). It is evaluated by

attempting to evaluate the body to a canonical value v, returning wrong if the result is

anything but a number and otherwise returning succ applied to v.

` enat) v (v a canonical number)

` succ enat) succ v

` enat) v (v not a canonical number)

` succ enat) wrong

A test expression is evaluated by evaluating its selector, returning wrong if the result is

not a number, and otherwise evaluating one or the other of the arms depending on whether

the selector is zero or a positive number. In the latter case, the variable x is bound inside

the arm to the predecessor of the selector.

4 OPERATIONAL SEMANTICS 16

` enat) 0

` ezero) v

` (test enat 0:ezero succ(x):esucc)) v

` enat) succ w

` esucc[x w]) v

` (test enat 0:ezero succ(x):esucc)) v

` enat) w (w not a canonical number)

` (test enat 0:ezero succ(x):esucc)) wrong

A dynamic expression is evaluated by evaluating its body. If the body reduces to wrong

then so does the whole dynamic expression.

` ebody) w (w 6= wrong)

` (dynamic ebody:T)) dynamic w:T

` ebody) wrong

` (dynamic ebody:T)) wrong

A typecase expression is evaluated by evaluating its selector, returning wrong imme-

diately if this produces wrong or anything else that is not a dynamic value, and otherwise

trying to match the type tag of the selector value against the guards of the typecase. The

function match has the job of matching a run-time typecode T against a pattern expres-

sion U with free variables. If there is a substitution � such that T=U�, then match(T,

U)=�. (For the simple type expressions we are dealing with here, � is unique if it exists.)

Otherwise, match(T, U) fails. Section 7.2 discusses the implementation of match .

The branches are tried in turn until one is found for which match succeeds. The

substitution returned by match is applied to the body of the branch. Then the selector's

value component is substituted for the parameter variable in the body, and the resulting

expression is evaluated. (As in the rule for application, we avoid introducing run-time

environments by immediately substituting the bound variable xi and pattern variables Ti
into the body of the matching branch.) The result of evaluating the body becomes the

value for the whole typecase.

If no guard matches the selector tag, the else body is evaluated instead.

` esel) dynamic w:T

8j<k: match(T; Tj) fails

match(T; Tk) = �

` ek�[xk w]) v

` (typecase esel of

: : :(~Xi) (xi:Ti) ei: : :

else eelse)

end)) v

4 OPERATIONAL SEMANTICS 17

` esel) dynamic w:T

8k: match(T; Tk) fails
` eelse) v

` (typecase esel of

: : :(~Xi) (xi:Ti) ei: : :

else eelse)

end)) v

` e) v (v not of the form (dynamic w:T))

` (typecase esel of

: : :(~Xi) (xi:Ti) ei: : :

else eelse)

end)) wrong

4.4 Soundness

We have de�ned two sets of rules|one for evaluating expressions and one for deriving

their types. At this point, it is reassuring to observe that the two systems \�t together"

in the way we would expect. We can show that \evaluation preserves typing"|that if a

well-typed expression e reduces to a canonical expression v, then v is assigned the same

type as e by the typing rules. From this it is an easy corollary that no well-typed program

can evaluate to wrong.

We begin with a lemma that connects the form of proofs using the typing rules (which

use type environments) with that of proofs using the evaluation rules (which use substi-

tution instead of binding environments). Since many of the type environments we are

concerned with will be empty, we write \` e : T" as an abbreviation for \; ` e : T."

Lemma 4.4.1 (Substitution preserves typing) For all expressions e, canonical ex-

pressions v, closed types V and W, type environments TE, and variables z, if ` v : V and

TE [z V] ` e : W; then TE ` e[z v] : W:

Proof: We argue by induction on the length of a derivation of TE [z V] ` e : W: There

is one case for each of the typing rules; in each case, we must show how to construct a

derivation of TE ` e[z v] : W from the a derivation whose �nal step is an application

of the rule in question. We give the proof for three representative cases:

� e = x

If x = z, then e[z v] = v. By the typing rule for variables, TE [z V] ` z : V.

Immediately, TE ` e[z v] : V.

If x 6= z, then e[z v] = x and TE ` e[z V] : W.

4 OPERATIONAL SEMANTICS 18

� e = �x:T.ebody

If x = z, then e[z v] = e. Immediately, TE ` e[z v] : W.

If x 6= z, then for the typing rule for �-expressions to apply (giving TE [z V] `
e : T!U for some T and U), it must be the case that TE [x T; z V] ` ebody : U.

By the induction hypothesis, TE [x T] ` ebody[z v] : U. By the typing rule

for � again, TE ` �x:T.(ebody[z v]) : T!U. By the de�nition of substitution,

TE ` e[z v] : T!U.

� e = efun(earg)

For the typing rule for application to apply (giving TE [z V] ` e : W), it must be

the case that TE [s v] ` efun : T!W and TE [z V] ` earg : T for some T. By the

induction hypothesis, TE ` efun[z v] : T!W and TE ` earg[z v] : T. Now by the

typing rule for application, TE ` (efun[z v])(earg[z v]) : W. By the de�nition of

substitution, TE ` e[z v] : W.

End of Proof.

Now we are ready for the soundness theorem itself.

Theorem 4.4.2 (Soundness) For all expressions e, canonical expressions v, and types

W, if ` e) v and ` e : W; then ` v : W:

Proof: By induction on the length of the derivation ` e) v: There is one case for each

possible syntactic form of e. We show only a few representative cases:

� e = �x:T.ebody

Immediate, since v = e.

� e = efun(earg)

The typechecking rule for application must be the last step in the derivation of ` e : W,
so ` earg : T and ` efun : T!W for some T.

If the last step in the derivation of ` e) v is the second evaluation rule for applica-

tion, then ` efun) u for some u not of the form �x:T.ebody. But among canonical

expressions, only those of this form are assigned a functional type by the typing rules,

so our assumption contradicts the induction hypothesis.

Similarly, if the last step in the derivation of ` e) v is the third evaluation rule for

application, then ` earg) wrong. But wrong is not assigned any type whatsoever

by the typing rules, again contradicting the induction hypothesis.

So we may assume that the main evaluation rule for application is the last step

in the derivation of ` e) v, from which it follows that ` efun) �x:T.ebody,

` earg) w (w 6= wrong), and ` ebody[x w]) v. By the induction hypothesis, ` w : T
and ` �x:T.ebody : T!W. Since the last step in the latter derivation must be the

typing rule for �-expressions, [x T] ` ebody : W. By Lemma 4.4.1, ` ebody[x w] : W.

Finally, by the induction hypothesis again, ` v : W.

5 DENOTATIONAL SEMANTICS 19

� e = dynamic ebody: T

If ` ebody) wrong, then by the induction hypothesis and the typing rule for dynamic,

` wrong : T. This cannot be the case.

So assume that ` ebody) w (w 6= wrong), so that the main evaluation rule for

dynamic is the last step in the derivation of ` e) v. The typechecking rule for

dynamic must be the last step in the derivation of ` e : W (here W = Dynamic), so

` ebody : T. By the induction hypothesis, ` w : T. By the typing rule for dynamic

again, ` v : W.

� e = typecase esel of

...

(~Xi) (xi:Ti) ei

...

else eelse

end

Assume that ` esel) dynamic w:U, that for some k, match(U; Tk) = � while

match(U; Tj) fails for all j < k, and that ek�[xk w]) v, so that the main evalua-

tion rule for typecase is the last step in the derivation of ` e) v. (The argument

for the second typecase rule is straighforward; the wrong case proceeds as in the

previous two arguments.)

By the typechecking rule for typecase, ` esel : Dynamic. By the induction hypothesis,
` w : U. By the typechecking rule again, [xk Tk�] ` ek� : W. By the de�nition of

match , this can be rewritten as [xk U] ` ek� : W. By Lemma 4.4.1, ` ek�[xk w] :

W. Now by the induction hypothesis, ` v : W.

End of Proof.

Since wrong is not assigned any type by the typing rules, the following is immediate:

Corollary 4.4.3 For all expressions e, canonical expressions v, and types T, if ` e) v

and ` e : T then v 6= wrong:

5 Denotational Semantics

Another way of showing that our rules are sound is to de�ne a semantics for the language

and show that no well-typed expression denotes wrong. In general terms, this involves

constructing a domain V and de�ning a \meaning function" that assigns a value [[e]]� in

V to each expression e in each environment �. The domain V should contain an element

wrong such that [[wrong]]� = wrong for all �.

Two properties are highly desirable:

� If e is a well-typed expression then [[e]]� 6= wrong for well-behaved �.

� If ` e) v then [[e]]=[[v]] (that is, evaluation is sound).

5 DENOTATIONAL SEMANTICS 20

To prove the former one, it su�ces to map every typecode T to a subset [[T]] of V not

containing wrong, and prove:

� If ` e : T then [[e]]� 2 [[T]] for all � (that is, typechecking is sound).

In this section we carry out this program in an untyped model and suggest an approach

with a typed model.

5.1 Untyped Semantics

In this subsection we give meaning to expressions as elements of an untyped universe V

and to typecodes as subsets of V. It would appear at �rst that the meaning of Dynamic

can simply be de�ned as the set of all pairs hv; Ti, such that v 2 [[T]]. But T here ranges

over all types, including Dynamic itself, so this de�nition as it stands is circular. We must

build up the denotations of type expressions more carefully.

We therefore turn to the ideal model of types, following MacQueen, Plotkin, and

Sethi [22]. (We refer the reader to this paper for the technical background of our con-

struction.) Typecodes denote ideals|nonempty subsets of V closed under approximations

and limits. We denote by Idl the set of all ideals in V.

The ideal model has several features worth appreciating. First, to some extent the ideal

model captures the intuition that types are sets of structurally similar values. Second, the

ideal model accounts for diverse language constructs, including certain kinds of polymor-

phism. Finally, a large family of recursive type equations are guaranteed to have unique

solutions. We exploit this feature to de�ne the meaning of Dynamic with a recursive type

equation.

We choose a universe V that satis�es the isomorphism equation

V �= N+ (V!V) + (V�TypeCode) +W;

where N is the at domain of natural numbers andW is the type error domain fwg?. The
usual continuous function space operation is represented as !; the product-space E�A of

a cpo E and a set A is de�ned as fhe; ai j e 2 E; e 6=?; and a 2 Ag [f?Eg, with the

evident ordering.

V can be obtained as the limit of a sequence of approximations V0, V1, : : : , where

V0 = f?g
Vi+1 = N+ (Vi!Vi) + (Vi�TypeCode) +W:

We omit the details of the construction, which are standard [3, 22].

At this point, we have a universe suitable for assigning a meaning to expressions in

our programming language. Figure 3 gives a full de�nition of the denotation function [[]],

using the following notation:

� \d in V," where d belongs to a summand S of V, is the injection of d into V;

� wrong is an abbreviation for \w in V";

5 DENOTATIONAL SEMANTICS 21

[[]] : Exp!(Var!V)!V

[[x]]� = �(x)

[[wrong]]� = wrong

[[�x:T.ebody]]� = (�v: if v = wrong then wrong else [[ebody]]�fx vg) in V

[[efun(earg)]]� = if [[efun]]� 6<- (V!V) then wrong else ([[efun]]�j V! V)([[earg]]�)

[[0]]� = 0 in V

[[succ enat]]� = if [[enat]]� 6<- N then wrong else ([[enat]]�j N + 1) in V

[[test enat 0:ezero succ(x):esucc]]�
= if [[enat]]� 6<- N then wrong

else if [[enat]]� = 0 in V then [[ezero]]�
else [[esucc]]�fx (([[enat]]�j N � 1) in V)g

[[dynamic ebody:T]]� = if [[ebody]]� = wrong then wrong else (h[[ebody]]�; Ti in V)

[[typecase esel of : : :(~Xi)(xi:Ti)ei: : :else eelse]]�
= if [[esel]]� 6<- (V�TypeCode) then wrong

else let hd; Ui = [[esel]]�j V�TypeCode in

if : : :

else if match(U; Ti) succeeds

then let � = match(U; Ti) in [[ei�]]�fxi dg

else if : : :

else [[eelse]]�

Figure 3: The Meaning Function for Expressions

� vjS yields: if v = (d in V) for some d 2 S then d, otherwise ?;

� v<- S yields ? if v =?, true if v = (d in V) for some d 2 S, and false otherwise;

� = yields ? whenever either argument does.

Note that the de�nition of = guarantees that [[(�x:T.ebody)(earg)]]� =? whenever

[[earg]]� =?.

The denotation function \commutes" with substitutions and evaluation is sound with

respect to the denotation function:

Lemma 5.1.1 Let e be an expression, � a substitution, and � and �0 two environments.

Assume that � maps each variable symbol x for which � is de�ned to [[x�]]�0, and that it

coincides with �0 elsewhere. Then [[e�]]�0 = [[e]]�.

Proof: The proof is a tedious inductive argument, and we omit it. End of Proof.

5 DENOTATIONAL SEMANTICS 22

Theorem 5.1.2 For all expressions e and v, if ` e) v then [[e]] = [[v]].

Proof: We argue by induction on the derivation of ` e) v. There is one case for each

evaluation rule. We give only a few typical ones.

� For function applications: Assume that [[efun]] = [[�x:T.ebody]], [[earg]] = [[w]] with

w 6= wrong, and [[ebody[x w]]] = [[v]], to prove that [[efun(earg)]] = [[v]]. Note

that [[�x:T.ebody]]� must be a function from V to V for all �, and w cannot de-

note wrong (since w is canonical). Therefore, we have [[efun(earg)]]� = [[ebody]]�fx vg

where v = [[earg]]�, for all �. Since [[earg]] = [[w]], Lemma 5.1.1 yields [[efun(earg)]]� =

[[ebody[x w]]]�, and the hypothesis [[ebody[x w]]] = [[v]] immediately leads to the

desired equation.

� For construction of dynamic values: Assume that [[ebody]] = [[w]] with w 6= wrong,

to prove that [[dynamic ebody:T]] = [[dynamic w:T]]. As in the previous case, be-

cause w cannot denote wrong, we have [[dynamic ebody:T]]� = h[[ebody]]�; Ti and

[[dynamic w:T]]� = h[[w]]�; Ti. The desired equation follows at once from [[ebody]] = [[w]].

� For typecase operations: Assume that [[esel]] = [[dynamic w:T]], match(T; Tj) fails for

all j < k, match(T; Tk) = �, and [[ek� [xk w]]] = [[v]], to prove that [[typecase esel

of : : :(~Xi) (xi:Ti) ei: : :else eelse end]] = [[v]]. As usual, w cannot denote wrong,

and hence we obtain the following chain of equalities, for arbitrary �: [[typecase esel

of : : :(~Xi) (xi:Ti) ei: : :else eelse end]]� equals [[ek�]]�fxk dg, where d is [[w]]� (by

the hypotheses and the de�nition of [[]]), equals [[ek�[xk w]]]� (by Lemma 5.1.1),

equals [[v]]� (by the hypotheses). The case where the else branch of a typecase is

chosen is similar but simpler.

End of Proof.

Although we now have a meaning [[e]] for each program e, we do not yet have a meaning

[[T]] for each typecode T. Therefore, in particular, we cannot prove yet that typechecking

is sound. The main di�culty, of course, is to decide on the meaning of Dynamic.

We de�ne the type of dynamic values with a recursive equation. Some auxiliary oper-

ations are needed to write this equation.

De�nition 5.1.3 If I � V is a set of values and T is a typecode, then

IT = fc j hc; Ti 2 I g:

(Often, and in these de�nitions in particular, we omit certain injections from summands

into V and the corresponding projections fromV to its summands, which can be recovered

from context.)

De�nition 5.1.4 If I � V and J � V are two sets of values, then

I !! J = fhc; T!Ui j c(IT) � JU; where T; U 2 TypeCodeg:

Note that if I and J are ideals then so is I !! J.

Using these de�nitions, we can write an equation for the type of dynamic values:

5 DENOTATIONAL SEMANTICS 23

D = N � fNatg
[D !! D

[D � fDynamicg

Here the variable D ranges over Idl, the set of all ideals in V.

The equation follows from our informal de�nition of the type of dynamic values as the

set of pairs hv; Ti where [[v]] 2 [[T]]. Intuitively, the equation states that a dynamic value

can be one of three things. First, a dynamic value with tag Nat must contain a natural

number. Second, if hc; T!Ui is a dynamic value then c(v) 2 [[U]] for all v 2 [[T]], and hence

hc(v); Ui is a dynamic value whenever hv; Ti is. Third, a dynamic value with tag Dynamic

must contain a dynamic value.

How is one to guarantee that this equation actually de�nes the meaning of Dynamic?

MacQueen, Plotkin, and Sethi invoke the Banach Fixed Point Theorem to show that

equations of the form D = F (D) over Idl have unique solutions, provided F is contractive

in the following sense.

Informally, the rank r(a) of an element a of V is the least i such that a \appears" in Vi

during the construction of V as a limit. A witness for two ideals I and J is an element that

belongs to one but not to the other; their distance d(I; J) is 2�r, where r is the minimum

rank of a witness for the ideals. The function G is contractive if there exists a real number

t < 1 such that for all X1; : : : ;Xn;X
0
1;: : : ;X

0
n, we have

d(G(X1; : : : ;Xn); G(X
0
1; : : : ;X

0
n)) � t �maxfd(Xi;X

0
i) j 1 � i � ng:

Typically, one guarantees that an operation is contractive by expressing it in terms of

basic operations such as � and !, and then inspecting the structure of this expression. In

our case, we have a new basic operation, !!; in addition, � is slightly nonstandard. We

need to prove that these two operations are contractive.

Theorem 5.1.5 The operation � is contractive (when its second argument is �xed). The

operation !! is contractive.

Proof: The arguments are based on the corresponding ones for Theorem 7 of [22]. In

fact, the proof for � is a trivial variant of the corresponding one. We give only the proof

for !!.

Let c be a witness of minimum rank for I!!J and I'!!J', being, say, only in the former

ideal. Then c 6=? (otherwise it would not be a witness), so c = hf; T!Ui for some f ,

T, and U. By the analogue of Proposition 4 of [22], f =
F
(ai) bi) for some ai; bi 2 V,

with r(f) > max(r(ai); r(bi)) (here ai) bi denotes the step function which returns bi
for arguments larger than ai and ? otherwise). Since c 62 I'!!J', f is not in I'T!J'U.

Hence there must be an x 2 I'T such that f(x) 62 J'U. Let a =
F
fai j ai v xg and

b =
F
fbi j ai v xg = f(x). Then a 2 I'T (since a v x) but b 62 J'U. Moreover, by the

analogue of Proposition 4 of [22], r(a) � maxfr(ai) j ai v xg < r(f) and r(b) < r(f).

Similarly, r(a) + 1 < r(c) and r(b) + 1 < r(c).

There are two cases. If a 62 IT then ha; Ti is a witness for I and I' of rank less than

r(c). (For all v, r(hv; Ti) � r(v) + 1.) Otherwise, a 2 IT and so b = f(a) 2 JU since

5 DENOTATIONAL SEMANTICS 24

f 2 IT!JU. Thus hb; Ui is a witness for J and J' of rank less than r(c). In either case, we

have c(I!!J; I'!!J') = r(c) > min(c(I; I'); c(J; J')): End of Proof.

Immediately, the general result about the existence of �xed points yields the desired

theorem.

Theorem 5.1.6 The equation

D = N � fNatg
[D !! D

[D � fDynamicg

has a unique solution in Idl.

Let us call this solution Dynamic.

[[]] : TypeCode!Idl

[[Nat]] = N

[[Dynamic]] = Dynamic

[[T!U]] = fc j c([[T]]) � [[U]]g

Figure 4: The Meaning Function for Typecodes

Finally, we are in a position to associate an ideal [[T]] with each typecode T (see �gure 4).

The semantics �ts our original intuition of what dynamic values are, as the following lemma

shows.

Lemma 5.1.7 For all values v and typecodes T, hv; Ti 2 Dynamic if and only if v 2 [[T]]:

Proof: The proof is by induction on the structure of T.

For T = Nat, we need to check that hv; Nati 2 Dynamic if and only if v 2 [[Nat]]. This

follows immediately from the equation, since all and only natural numbers are tagged with

Nat.

Similarly, for T = Dynamic, we need to check that hv; Dynamici 2 Dynamic if and only

if v 2 [[Dynamic]]. This follows immediately from the equation, since all and only dynamic

values are tagged with Dynamic.

Finally, for T = U!V, we need to check that hv; U!Vi 2 Dynamic if and only if

v 2 [[U!V]]. By induction hypothesis, we have DynamicU = [[U]] and DynamicV =

[[V]]. We derive the following chain of equivalences: hv; U!Vi 2 Dynamic if and only if

v(DynamicU) � DynamicV (according to the equation), if and only if v([[U]]) � [[V]] (by

induction hypothesis), if and only if v 2 [[U!V]] (according to the de�nition of [[]]). End

of Proof.

We can also prove the soundness of typechecking:

5 DENOTATIONAL SEMANTICS 25

De�nition 5.1.8 The environment � is consistent with the type environment TE on the

expression e if TE (x) is de�ned and �(x) 2 [[TE (x)]] for all x 2 FV (e).

Theorem 5.1.9 For all type environments TE, expressions e, environments � consistent

with TE on e, and typecodes T, if TE ` e : T then [[e]]� 2 [[T]].

Proof: We argue by induction on the derivation of TE ` e : T. There is one case for

each typing rule. We give only a few typical ones.

� For abstractions: Assume that [[e]]� 2 T for all TE and all � consistent with

TE [x U] on e, to prove that [[�x:U.e]]� 2 (U!T) for all TE and all � consis-

tent with TE on �x:U.e. Consider some v 2 [[U]]. According to the de�nition

of [[]], we need to show that ([[�x:U.e]]�)v 2 [[T]]. We may assume that v 6=?
(the ? case is trivial), and v 6= wrong ([[U]] cannot contain wrong). Thus, we have

[[�x:U.e]]�v = [[e]]�fx vg. The hypothesis immediately yields that this value is a

member of [[T]].

� For function applications: Assume that [[efun]]� 2 [[U!T]] and that [[earg]]� 2 [[U]], to

prove that [[efun(earg)]]� 2 [[T]]. By the de�nition of function types, [[efun]]� must be a

function from V to V, and [[earg]]� cannot be wrong, since [[U]] cannot contain wrong.

In addition, we may assume that [[earg]]� 6=? (the ? case is trivial). Immediately,

[[efun(earg)]]� = ([[efun]]�)[[earg]]�, and the de�nition of [[U!T]] yields that this value

must be a member of [[T]].

� For construction of dynamic values: Assume that [[ebody]]� 2 [[T]], to prove that

[[dynamic ebody:T]]� 2 [[Dynamic]]. Since [[T]] cannot contain wrong, [[ebody]]� 6= wrong,

and hence [[dynamic ebody:T]]� = h[[ebody]]�; Ti. The desired result then follows from

Lemma 5.1.7.

� For typecase operations: Assume that [[esel]]� 2 Dynamic for all TE and all �

consistent with TE on esel; [[ei�]]� 2 [[T]] for all i, for all � 2 Subst ~Xi ; and for all

TE and all � consistent with TE [xi Ti�] on ei�, and [[eelse]]� 2 [[T]] for all TE and

all � consistent with TE on eelse. We prove that [[typecase esel of : : :(~Xi) (xi:Ti)

ei: : :else eelse end]]� 2 [[T]] for all TE and all � consistent with TE on (typecase

esel of : : :(~Xi)(xi:Ti)ei: : :else eelse end). Similarly to the other cases, [[esel]]� must

be the pair of a value and a typecode, and we may assume that it is not ?. Hence,
[[typecase esel of : : :(~Xi) (xi:Ti) ei: : :else eelse end]]� is either [[ei�]]�fxi dg for

some i and with d equal to the �rst component of the selector, or simply [[eelse]]�. In

the former case, Lemma 5.1.7 guarantees that d 2 [[Ti�]], and hence the hypotheses

guarantee that [[ei�]]�fxi dg 2 [[T]]. In the latter case, the hypotheses guarantee that

[[eelse]]� 2 [[T]]. In either case, we derive [[typecase esel of : : :(~Xi) (xi:Ti) ei: : :else

eelse end]]� 2 [[T]].

End of Proof.

It follows from Theorem 5.1.2, Theorem 5.1.9, and the fact that no [[T]] can contain

(w in V) that no well-typed expression evaluates to wrong. This gives us a new proof of

Corollary 4.4.3.

6 EXTENSIONS 26

5.2 Typed Semantics

The semantics [[]] is, essentially, a semantics for the untyped lambda-calculus, as in its

de�nition type information is ignored. This seems very appropriate for languages with

implicit typing, where some or all of the type information is omitted in programs. But for

an explicitly typed language it seems natural to look for a semantics that assigns elements

of domains VT to expressions of type T. One idea to �nd these domains is to solve the

in�nite set of simultaneous equations

VNat = N

VT!U = VT!VU

VDynamic =
X

T

VT

A similar use of sums appears in Mycroft's work [28].

6 Extensions

In this section we present some preliminary thoughts on extending the ideas in the rest of

the paper to languages with implicit or explicit polymorphism, abstract data types, and

more expressive type patterns.

6.1 Polymorphism

For most of the section, we assume an explicitly typed polymorphic lambda calculus along

the lines of Reynolds' system [32]. The type abstraction operator is written as �. Type ap-

plication is written with square brackets. The types of polymorphic functions begin with 8.
For example, 8T.T!T is the type of the polymorphic identity function, �T.�x:T. x.

In the simplest case, the typechecking and operational semantics of dynamic and

typecase carry over nearly unchanged from the language described in Section 4. We

simply rede�ne match as follows:

If there is a substitution � such that T and U� are identical up to renaming

of bound type variables, then match(T, U) returns some such substitution.

Otherwise, match(T, U) fails.

We can now write typecase expressions that match polymorphic type tags. For ex-

ample, the following function checks that f is a polymorphic function taking elements of

any type into Nat. It then instantiates f at W, the type tag of its second argument, and

applies the result to the value part of the second argument.

�df:Dynamic. �de:Dynamic.

typecase df of

(f: 8Z. Z ! Nat)

typecase de of

(W) (e: W) f[W](e)

else 0

6 EXTENSIONS 27

end

else 0

end

6.2 Abstract Data Types

In a similar vein, we can imagine extending the language of type tags to include existentially

quanti�ed variables. Following Mitchell and Plotkin [27], we can think of a Dynamic whose

tag is an existential type as being a module with hidden implementation, or alternatively

as an encapsulated element of an abstract data type. Our notation for existential types

and labeled products follows that of Cardelli and Wegner [11]. For example,

�s: 9Rep. fpush: Rep ! Nat ! Rep,

pop: Rep ! (Nat � Rep),

top: Rep ! Nat,

empty: Repg.
open s as stk[Rep]

in stk.top(stk.push stk.empty 5)

is a function that takes a stack package (a tuple containing a hidden representation type

Rep, three functions, and a constant value), opens the package (making its components

accessible in the body of the open expression), and performs the trivial computation of

pushing the number 5 onto an empty stack and returning the top element of the resulting

stack.

The following function takes a Dynamic containing a stack package (with hidden rep-

resentation) and another Dynamic of the same type as the elements of the stack. It pushes

its second argument onto the empty stack from the stack package, and returns the top of

the resulting stack, appropriately repackaged as a dynamic value.

�ds:Dynamic. �de:Dynamic.

typecase ds of

(X) (s: 9Rep.
fpush: Rep ! X ! Rep,

pop: Rep ! (X � Rep),

top: Rep ! X,

empty: Repg)
typecase de of

(e: X) open s as stk[Rep]

in dynamic stk.top(stk.push stk.empty e) : X

else e

end

else e

end

In order to preserve the integrity of existentially quanti�ed values in a language that

also has Dynamic, it seems necessary to place some restrictions on the types that may

appear in dynamic expressions to prevent their being used to expose the witness type

of an existentially quanti�ed value beyond the scope of an open (or abstype) block. In

6 EXTENSIONS 28

particular, the type tag in a dynamic constructor must not be allowed to mention the

representation types of any currently open abstract data types, as in the following:

�ds:Dynamic. �de:Dynamic.

typecase ds of

(X) (s: 9Rep.
fpush: Rep ! X ! Rep,

pop: Rep ! (X � Rep),

top: Rep ! X,

empty: Repg)
open s as stk[Rep]

in (* Wrong: *) dynamic stk.empty : Rep

else de

end

It would be wrong here to create a Dynamic whose type tag is the representation

type of the stack (assuming such type is available at run-time), because this would violate

the abstraction. It is also unclear how to generate a type tag that does not violate the

abstraction. Hence we choose to forbid this situation.

6.3 Restrictions

In a language with both explicit polymorphism and Dynamic, it is possible to write pro-

grams where types must actually be passed to functions at run time:

�X. �x:X. dynamic x:X

The extra cost of actually performing type abstractions and applications at run time (rather

than just checking them during compilation and then discarding them) should not be

prohibitive. Still, we might also want to consider how the dynamic construct might be

restricted so that types need not be passed around during execution. A suitable restriction

is that an expression dynamic e:T is well-formed only if T is closed.

This restriction was proposed by Mycroft [28] in the context of an extension of ML,

which uses implicit rather than explicit polymorphism. The appropriate analogue of

\closed type expressions" in ML is \type expressions with only generic type variables"|

expressions whose type variables are either instantiated to some known type or else totally

undetermined (that is, not dependent on any type variable whose value is unknown at

compile time).

In fact, in languages with implicit polymorphism, Mycroft's restriction on dynamic

is required : there is no natural way to determine where the type applications should be

performed at run time. Dynamics with non-generic variables can be used to break the ML

type system. (The problem is analogous to that of \updateable refs" [37].)

6.4 Higher-order Pattern Variables

By enriching the language of type patterns, it is possible to express a much broader range

of computations on Dynamics, including some interesting ones involving polymorphic func-

tions. Our motivating example here is a generalization of the dynamic application function

from Section 3. The problem there is to take two dynamic values, make sure that the �rst

6 EXTENSIONS 29

is a function and the second an argument belonging to the function's domain, and apply

the function. Here we want to allow the �rst argument to be a polymorphic function and

narrow it to an appropriate monomorphic instance automatically, before applying it to the

supplied parameter. We call this \polymorphic dynamic application."

To express this example, we need to extend the typecase construct with \functional"

pattern variables. Whereas ordinary pattern variables range over type expressions, func-

tional pattern variables (named F, G, etc., to distinguish them from ordinary pattern

variables) range over functions from type expressions to type expressions.

Using functional pattern variables, polymorphic dynamic application can be expressed

as follows:

�df:Dynamic. �de:Dynamic.

typecase df of

(F,G) (f: 8Z. (F Z) ! (G Z))

typecase de of

(W) (e: (F W))

dynamic f[W](e):(G W)

else

dynamic "Error":String

end

else

dynamic "Error":String

end

For instance, when we apply the function to the arguments

df = dynamic (�Z.�x:Z.x): (8Z. Z!Z)

de = dynamic 3:Nat

the �rst branch of the outer typecase succeeds, binding F and G to the identity function

on type expressions. The �rst branch of the inner typecase succeeds, binding W to Nat so

that (F W) = Nat and (G W) = Nat. Now f(F W) reduces to �x:(F W).x and f(G W)(e)

reduces to 3, which has type (G W) = Nat as claimed.

Another intriguing example is polymorphic dynamic composition:

�df:Dynamic. �dg:Dynamic.

typecase df of

(F,G) (f: 8W. (F W)!(G W))

typecase dg of

(H) (g: 8V. (G V)!(H V))

dynamic (�W. g[W] � f[W])

: 8V.(F V)!(G V)

else ...

end

else ...

end

This function checks that its two arguments are both polymorphic functions and that

their composition is well-typed, returning the composition if so.

7 IMPLEMENTATION ISSUES 30

6.5 Open Issues

This preliminary treatment of polymorphism and higher-order pattern variables leaves a

number of questions unanswered: What is the appropriate speci�cation for the match

operation? How di�cult is it to compute? Is there a sensible notion of \most general

substitution" when pattern variables can range over things like functions from type ex-

pressions to type expressions? Should pattern variables range over all functions from type

expressions to type expressions, or only over some more restricted class of functions? What

are the implications (for both operational and denotational semantics) of implicit vs. ex-

plicit polymorphism? We hope that our examples may stimulate the creativity of others

in helping to answer these questions.

7 Implementation Issues

This section discusses some of the issues that arise in implementations of languages with

dynamic values and a typecase construct: methods for e�cient transfer of dynamic values

to and from persistent storage, implementation of the match function, and representation

of type tags for e�cient matching.

7.1 Persistent Storage

One of the most important purposes of dynamic values is as a safe and uniform format

for persistent data. This facility may be heavily exploited in large software environments,

so it is important that it be implemented e�ciently. Large data structures, possibly with

circularities and shared substructures, need to be represented externally so that they can

be quickly rebuilt in the heap of a running program. (The type tags present no special

di�culties: they are ordinary run-time data structures.)

Fortunately, a large amount of energy has already been devoted to this problem, par-

ticularly in the Lisp community. Many Lisp systems support \fasl" �les, which can be

used to store arbitrary heap structures. (See [24] for a description of a typical fasl format.

The idea goes back to 1974, at least.)

A mechanism for \pickling" heap structures in Cedar/Mesa was designed and imple-

mented by Rovner and Maxwell, probably in 1982 or 1983. A variant of their algorithm,

due to Lampson, is heavily used in the Modula-2+ programming environment at the DEC

Systems Research Center. Another scheme was implemented as part of Tartan Labs' In-

terface Description Language [29]. This scheme was based on earlier work by Newcomer

and Dill on the \Production Quality Compiler-Compiler" project at CMU.

7.2 Type Matching

Although the particular language constructs described in this paper have not been im-

plemented, various schemes for dynamic typing in statically typed languages have existed

for some time (see Section 2). Figure 5 gives a rough classi�cation of several languages

according to the amount of work involved in comparing types and the presence or absence

of subtyping.

7 IMPLEMENTATION ISSUES 31

Without subtyping With subtyping

Name equivalence Modula-2+, CLU, etc. Simula-67

Rigid Structural Equivalence Modula-3, Cedar

Structural Equivalence Amber

Pattern variables Our language ?

Figure 5: Taxonomy of languages with dynamic values

Type matching is simplest in languages like CLU [20] and Modula-2+ [33], where the

construct corresponding to our typecase allows only exact matches (no pattern variables),

and where equivalence of types is \by name." In Modula-2+, for example, the type tags

of dynamic values are just unique identi�ers and type matching is a check for equality.

When subtyping is involved, matching becomes more complicated. For example,

Simula-67 uses name equivalence for type matching so type tags can again be represented

as atoms. But to �nd out whether a given object's type tag matches an arm of a when

clause (which dynamically checks whether an object's actual type is in a given subclass of

its statically apparent type), it is necessary to scan the superclasses of the object's actual

class. This is reasonably e�cient, since the subclass hierarchy tends to be shallow and

only a few instructions are required to check each level.

It is also possible to have a language with structural equivalence where type matching

is still based on simple comparison of atoms. Modula-3, for example, includes a type

similar to Dynamic, a typecase construct that allows only matching of complete type

expressions (no pattern variables), and a notion of subtyping [8, 9]. (We do not know of

a language with structural equivalence, Dynamic, and exact type matching, but without

subtyping.) E�cient implementation of typecase is possible in Modula-3 because the

rules for structural matching of subtypes are \rigid"|subtyping is based on an explicit

hierarchy. Thus, a unique identi�er can still be associated with each equivalence class of

types, and, as in Simula-67, match can check that a given tag is a subtype of a typecase

guard by quickly scanning a precompiled list of superclasses of the tag.

Amber's notion of \structural subtyping" [7] requires a more sophisticated represen-

tation of type tags. The subtype hierarchy is not based on explicit declarations, but on

structural similarities that allow one type to be safely used wherever another is expected.

(For example, a record type with two �elds a and b is a subtype of another with just the

�eld a, as long as the type of a in the �rst is a subtype of the type of a in the second.)

This means that the set of supertypes of a given type cannot be precomputed by the com-

piler. Instead, Dynamic values must be tagged with the entire structural representation of

their types|the same representation that the compiler uses internally for typechecking.

(In fact, because the Amber compiler is bootstrapped, the representations are exactly the

same.) The match function must compare the structure of the type tag with that of each

type pattern.

The language described in this paper also requires a structural representation of types|

not because of subtyping, but because of the pattern variables in typecase guards. In order

8 CONCLUSIONS 32

to determine whether there is a substitution of type expressions for pattern variables that

makes a given pattern equal to a given type tag, it is necessary to actually match the two

structurally, �lling in bindings for pattern variables from the corresponding subterms in

the type tag. This is exactly the \�rst-order matching" problem. We can imagine speeding

up this structural matching of type expressions by precompiling code to match an unknown

expression against a given known expression, using techniques familiar from compilers for

ML [21].

The last box in �gure 5 represents an open question: Is there a sensible way to combine

some notion of subtyping with a typecase construct that includes pattern variables? The

problems here are quite similar to those that arise in combining subtyping with polymor-

phism (for example, the di�culties in �nding principal types).

8 Conclusions

Dynamic typing is necessary for embedding a statically typed language into a dynamically

typed environment, while preserving strong typing. We have explored the syntax, oper-

ational semantics, and denotational semantics of a typed lambda-calculus with the type

Dynamic. We hope that after a long but rather obscure existence, Dynamic may become a

standard programming language feature.

Acknowledgements

We are grateful for the insightful comments of Cynthia Hibbard, Jim Horning, Bill Kalsow,

Greg Nelson, and Ed Satterthwaite on earlier versions of this paper, and for Jeanette Wing's

clari�cation of CLU's dynamically typed values.

References

[1] Malcolm P. Atkinson and O. Peter Buneman. Types and persistence in database

programming languages. Computing Surveys, 19(2):105{190, June 1987.

[2] Malcolm P. Atkinson and Ronald Morrison. Polymorphic names and iterations. Draft

article, September 1987.

[3] H. P. Barendregt. The Lambda Calculus. North Holland, revised edition, 1984.

[4] Andrew D. Birrell and Bruce Jay Nelson. Implementing remote procedure calls. ACM

Transactions on Computer Systems, 2(1):39{59, February 1984.

[5] Graham M. Birtwistle, Ole-Johan Dahl, Bjorn Myhrhaug, and Kristen Nygaard. Sim-

ula Begin. Studentlitteratur (Lund, Sweden), Bratt Institute Fuer Neues Lerned

(Goch, FRG), Chartwell-Bratt Ltd (Kent, England), 1979.

[6] P. Borras, D. Clement, T. Despeyroux, J. Incerpi, G. Kahn, B. Lang, and V. Pascual.

CENTAUR: the system. In Proceedings of the Third Annual Symposium on Software

Development Environments (SIGSOFT'88), Boston, November 1988.

REFERENCES 33

[7] Luca Cardelli. Amber. In Guy Cousineau, Pierre-Louis Curien, and Bernard Robinet,

editors, Combinators and Functional Programming Languages. Springer-Verlag, 1986.

Lecture Notes in Computer Science No. 242.

[8] Luca Cardelli, James Donahue, Lucille Glassman, Mick Jordan, Bill Kalsow, and

Greg Nelson. Modula-3 report (revised). Research report 52, DEC Systems Research

Center, November 1989.

[9] Luca Cardelli, James Donahue, Mick Jordan, Bill Kalsow, and Greg Nelson. The

Modula-3 type system. In Proceedings of the Sixteenth Annual ACM Symposium on

Principles of Programming Languages, pages 202{212, January 1989.

[10] Luca Cardelli and David MacQueen. Persistence and type abstraction. In Proceed-

ings of the Persistence and Datatypes Workshop, August 1985. Proceedings published

as University of St. Andrews, Department of Computational Science, Persistent Pro-

gramming Research Report 16.

[11] Luca Cardelli and Peter Wegner. On understanding types, data abstraction, and

polymorphism. Computing Surveys, 17(4), December 1985.

[12] Alonzo Church. A formulation of the simple theory of types. Journal of Symbolic

Logic, 5:56{68, 1940.

[13] Dominique Cl�ement, Jo�elle Despeyroux, Thierry Despeyroux, Laurent Hascoet, and

Gilles Kahn. Natural semantics on the computer. Technical Report RR 416, INRIA,

June 1985.

[14] Thierry Despeyroux. Typol: a formalism to implement natural semantics. Technical

Report 94, INRIA, March 1988.

[15] Mike Gordon. Adding Eval to ML. Personal communication, circa 1980.

[16] Robert Harper. Introduction to Standard ML. Technical Report ECS{LFCS{86{14,

Laboratory for the Foundations of Computer Science, Edinburgh University, Septem-

ber 1986.

[17] J. Roger Hindley and Jonathan P. Seldin. Introduction to Combinators and �-

Calculus, volume 1 of London Mathematical Society Student Texts. Cambridge Uni-

versity Press, 1986.

[18] Gilles Kahn. Natural semantics. In Proceedings of the Symposium on Theoretical As-

pects of Computer Science, Passau, Germany, February 1987. Proceedings published

as Springer-Verlag Lecture Notes in Computer Science 247. The paper is also available

as INRIA Report 601, February, 1987.

[19] Butler Lampson. A description of the cedar language. Technical Report CSL-83-15,

Xerox Palo Alto Research Center, 1983.

REFERENCES 34

[20] B. Liskov, R. Atkinson, T. Bloom, E. Moss, J.C. Scha�ert, R. Scheier, and A. Snyder.

CLU Reference Manual. Springer-Verlag, 1981.

[21] David MacQueen. Private communication.

[22] David MacQueen, Gordon Plotkin, and Ravi Sethi. An ideal model for recursive

polymorphic types. Information and Control, 71:95{130, 1986.

[23] Per Martin-L�of. Intuitionistic Type Theory. Bibliopolis, 1984.

[24] David B. McDonald, Scott E. Fahlman, and Skef Wholey. Internal design of cmu

common lisp on the IBM RT PC. Technical Report CMU-CS-87-157, Carnegie Mellon

University, April 1988.

[25] Robin Milner. A theory of type polymorphism in programming. Journal of Computer

and System Sciences, 17:348{375, August 1978.

[26] Robin Milner, Mads Tofte, and Robert Harper. The De�nition of Standard ML. The

MIT Press, 1990.

[27] John Mitchell and Gordon Plotkin. Abstract types have existential type. ACM Trans-

actions on Programming Languages and Systems, 10(3), July 1988.

[28] Alan Mycroft. Dynamic types in ML. Draft article, 1983.

[29] Joseph M. Newcomer. E�cient binary I/O of IDL objects. SIGPLAN Notices,

22(11):35{42, November 1987.

[30] Gordon Plotkin. Call-by-name, call-by-value, and the �-calculus. Theoretical Com-

puter Science, 1:125{159, 1975.

[31] Gordon D. Plotkin. A structural approach to operational semantics. Technical Report

DAIMI FN-19, Computer Science Department, Aarhus University, Aarhus, Denmark,

1981.

[32] John Reynolds. Three approaches to type structure. In Mathematical Foundations

of Software Development. Springer-Verlag, 1985. Lecture Notes in Computer Science

No. 185.

[33] Paul Rovner. On extending Modula-2 to build large, integrated systems. IEEE Soft-

ware, 3(6):46{57, November 1986.

[34] Justin Craig Scha�ert. A formal de�nition of CLU. Master's thesis, MIT, January

1978. MIT/LCS/TR-193.

[35] Robert William Scheier. A denotational semantics of CLU. Master's thesis, MIT,

May 1978. MIT/LCS/TR-201.

[36] Satish R. Thatte. Quasi-static typing (preliminary report). In Proceedings of the

Seventeenth ACM Symposium on Principles of Programming Languages, pages 367{

381, 1990.

REFERENCES 35

[37] Mads Tofte. Operational Semantics and Polymorphic Type Inference. PhD thesis,

Computer Science Department, Edinburgh University, 1988. CST-52-88.

[38] Pierre Weis, Mar��a-Virginia Aponte, Alain Laville, Michel Mauny, and Asc�ander

Su�arez. The CAML reference manual, Version 2.6. Technical report, Projet Formel,

INRIA-ENS, 1989.

