
63

Heap Usage in the Topaz

Environment

John DeTreville

August 20, 1990

Systems Research Center

DEC's business and technology objectives require a strong research program.
The Systems Research Center (SRC) and three other research laboratories are
committed to �lling that need.

SRC began recruiting its �rst research scientists in l984|their charter, to ad-
vance the state of knowledge in all aspects of computer systems research. Our
current work includes exploring high-performance personal computing, distributed
computing, programming environments, system modelling techniques, speci�ca-
tion technology, and tightly-coupled multiprocessors.

Our approach to both hardware and software research is to create and use real
systems so that we can investigate their properties fully. Complex systems
cannot be evaluated solely in the abstract. Based on this belief, our strategy is
to demonstrate the technical and practical feasibility of our ideas by building
prototypes and using them as daily tools. The experience we gain is useful in
the short term in enabling us to re�ne our designs, and invaluable in the long
term in helping us to advance the state of knowledge about those systems. Most
of the major advances in information systems have come through this strategy,
including time-sharing, the ArpaNet, and distributed personal computing.

SRC also performs work of a more mathematical avor which complements
our systems research. Some of this work is in established �elds of theoretical
computer science, such as the analysis of algorithms, computational geometry,
and logics of programming. The rest of this work explores new ground motivated
by problems that arise in our systems research.

DEC has a strong commitment to communicating the results and experience
gained through pursuing these activities. The Company values the improved
understanding that comes with exposing and testing our ideas within the re-
search community. SRC will therefore report results in conferences, in profes-
sional journals, and in our research report series. We will seek users for our
prototype systems among those with whom we have common research interests,
and we will encourage collaboration with university researchers.

Robert W. Taylor, Director

Heap Usage in the Topaz Environment

John DeTreville

August 20, 1990

cDigital Equipment Corporation 1990

This work may not be copied or reproduced in whole or in part for any com-
mercial purpose. Permission to copy in part without payment of fee is granted
for nonpro�t educational and research purposes provided that all such whole or
partial copies include the following: a notice that such copying is by permission
of the Systems Research Center of Digital Equipment Corporation in Palo Alto,
California; an acknowledgment of the authors and individual contributors to the
work; and all applicable portions of the copyright notice. Copying, reproducing,
or republishing for any other purpose shall require a license with payment of fee
to the Systems Research Center. All rights reserved.

i

Abstract

Topaz, the experimental computing environment built and used at SRC, is
implemented in the Modula-2+ programming language, which provides garbage
collection. Garbage collection simpli�es the construction of complex systems,
and is tied to a number of other Topaz and Modula-2+ features, such as runtime
polymorphism, language safety, information-hiding, object cleanup, persistent
objects, and network objects.

Although there are costs to using garbage collection, these are avoided or
tolerated in Topaz. For example, because Topaz must avoid noticeable interrup-
tion of service due to garbage collection, it uses a concurrent garbage collector.

Measurements show that the use of the REF heap in Topaz is similar in many
ways to the use of heaps in Lisp-like environments, but di�erent in others. For
example, in typical large Topaz programs, the REF heap contains millions of
bytes, with tens of thousands of objects from among hundreds of statically-
declared types; objects of only a few types predominate. Although most objects
are small, most bytes are in relatively large objects. Cycles are rare; most cycles
are of size 2. Most objects are short-lived, but not as short-lived as in Lisp-like
environments that allocate large amounts of ephemeral data on the heap.

1 Introduction

1.1 Background

Garbage collection originated in the Lisp environment [9] and most applications
of garbage collection have been in Lisp or in Lisp-like environments such as
Smalltalk [6]. Garbage collection can greatly simplify the task of producing
correct programs by automating the process of storage reclamation. It thereby
permits the use of more complex data structures than might otherwise be prac-
tical, or allows the construction of larger or more complex programs.

Conversely, garbage collection is usually not found in systems implementa-
tion languages, such as C [7] or Modula-2 [19]. (Notable exceptions are CLU
[8], Cedar [17], and Oberon [20], as well as Lisp Machine Lisp [12].) However,
garbage collection's advantages do not come without associated costs, which
have tended to limit its use for systems programming.

� Garbage collection can cause momentary interruptions of service. With
most collectors, the program is stopped while a collection is in progress.

Imagine the design of a replicated �le server. If the primary server fails,
the secondary server should take over within one second. However, if a
collection could stop the server for close to one second, this might be
externally indistinguishable from a server crash.

� Garbage collection increases program overhead, increasing either running
time (if the collector runs frequently) or storage requirements (if it does
not).

� Primitive programoperations are often more expensive in garbage-collected
languages than in languages that do not use garbage collection. Garbage-
collected languages can also lack the ability to perform very low-level op-
erations (e.g., bit-manipulation or pointer arithmetic) easily or e�ciently.

1.2 Topaz

The Topaz environment at Digital Equipment Corporation's Systems Research
Center (SRC) supports garbage collection, which is used extensively by Topaz
programmers. Topaz is an experimental testbed for systems research at SRC
and is constantly being extended as researchers implement their ideas. Topaz
also serves as SRC's main computing environment. Work on Topaz began in
1984, and it has been used by about 50 researchers at SRC since 1986.

The principal language used in Topaz is Modula-2+ [14, 15], an extension
of Modula-2; Modula-2+ was derived from Modula-2 by adding support for
garbage collection, exceptions, and concurrency.1

Topaz addresses the drawbacks of garbage collection in the following ways.

1Some programmingat SRC is in Modula-3 [2], a recent re�nement of Modula-2+; Modula-

1

� Modula-2+ uses a concurrent garbage collector, which allows the program
to run while a collection is in progress. Since Topaz provides multiple
threads of control within each address space, providing a concurrent col-
lector is relatively simple.

� The increased overhead is typically ignored. Since Topaz is an experi-
mental system running on powerful workstations and servers, this is not
unreasonable. Moreover, as computers grow generally more powerful, it
becomes more attractive to trade o� ultimate performance against greater
functionality and ease of development.

� Garbage collection is an addition to Modula-2+, but all the Modula-2
low-level features have been retained in the process.

To support garbage collection, Modula-2+ adds the REF type constructor to
Modula-2. For any type T, a value of type REF T is either NIL or is a reference
to an object of type T on the heap. If x is a variable of a REF type, the statement
NEW(x) allocates a new heap object, and makes the variable x refer to it (i.e.,
it assigns a REF to the new object to x). The REF heap is garbage-collected.

In Topaz, each program runs in its own address space. Therefore, each
program has its own REF heap and its own instance of the garbage collector.
Taos, the Topaz operating system, also resides in its own address space, and also
uses garbage collection. Only the lowest level of the system (the Nub, which
implements address spaces, threads, etc.) does not use garbage collection.

1.3 Outline

Section 2 of this paper discusses the reasons for using REFs in the Topaz environ-
ment. Some motivations, such as data sharing, are typical of garbage-collected
systems; others, like the facilities for network REFs, are unique to Topaz.

Section 3 discusses the disadvantages of using REFs. Currently, the principal
disadvantage is poor performance.

Section 4 outlines the current implementation of the REF heap in Modula-2+.
Section 5 presents measurements of heap usage in Topaz. A pair of typical

large programs were instrumented and a great variety of measurements were
taken. The measurements included static measurements of program structure,
measurements based on snapshots of the programs' heaps, and measurements
based on logs of program activity.

Section 6 lists the minor non-REF heaps also present in Topaz.

3 also provides garbage collection. Some additional programming is in other garbage-collected
languages like CLU, or non-garbage-collected languages like C. Since none of these other
languages are used as extensively for programming in Topaz as Modula-2+, they are not
discussed here.

2

SAFE INTERFACE MODULE M;

TYPE

T = REF some type;

PROCEDURE P(x: T);

END M.

Figure 1: Example of Modula-2+ interface

2 Qualitative heap usage

This section outlines the reasons for using REFs, including some of the facilities
unique to REF values in Modula-2+ and Topaz.

2.1 Sharing

Like the Modula-2 POINTER values from which they were derived2 (and which
are retained in Modula-2+ for low-level programming), REF values allow data
structure sharing. Since REF objects are garbage-collected, this allows complex
data structures or complex uses of data structures to be programmed far more
easily than if objects had to be explicitly freed. This complexity can be in the
data structures themselves (where it may not be clear which parts are no longer
in use) or in the programs using the structures (where there may be no central
knowledge of which parts of the data structures may be used again).

To illustrate the second point, consider Figure 1, which shows an interface M
that exports a procedure P that takes a parameter x of REF type M.T. (Modula-
2+ separates interfaces from their implementations, to help in constructing large
systems.) Imagine that Modula-2+ abandoned garbage collection. To remain
equally useful, the de�nition of procedure P in this interface would also have to
state the conditions under which the caller could free the object after a call to
P, or the conditions under which P could retain the object, freeing it later, or
the conditions under which the two would cooperate to free the object.

With garbage-collection, however, no such annotation is necessary. This
simpli�es the construction and use of interfaces.

Additionally, a program that frees objects explicitly might fail to free objects
when they are no longer accessible (which is particularly a problem for long-
running programs, like servers), or might accidentally free objects when there are
still REFs outstanding (which is a problem for any program). Garbage collection

2Modula-2 POINTER values are like pointers in most modernAlgol-like languages. A POINTER

TO T is a pointer to an object of type T, which can be created by the POINTER version of NEW|
and explicitly freed by DISPOSE|or constructed by address arithmetic.

3

TYPE

T = REF Pair;

Pair =

RECORD

first: REFANY;

tail: T;

END;

Figure 2: De�nition of List.T

supports Modula-2+ in its purpose of building large, robust systems with no
unchecked runtime errors.

2.2 Polymorphism

In addition to REF types, Modula-2+ also provides the REFANY type, which is
the superset of all REF types. A REFANY variable can hold any REF value. Since
all REF objects on the heap contain a typecode, naming their REF type, a REFANY
value can be disambiguated at runtime.3

For example, the standard List interface de�nes a List.T as shown in Fig-
ure 2. The elements of a List.T are REFANY values. Clients of the interface can
build lists of any REF type or mixture of types, disambiguating them at runtime.

One use of List.Ts that uses a mixture of element types is in the Sx (\S-
expression", as in Lisp) package. The Sx package exports procedures to read
and write S-expressions, so that the external syntax

("Hello" 'a' 0 #False (x))

would correspond to a list of �ve elements: a Text.T (which is like a character
string); a Ref.Char (which is a REF CHAR); a Ref.Integer (a REF INTEGER); a
Ref.Boolean (a REF BOOLEAN); and a List.T containing a single SxSymbol.T,
which represents a Lisp-style symbol.

Another use of REFANY is to pass arguments to procedure variables. When
clients of an interface provide procedure arguments for later callback, it is con-
venient to provide an argument also to be passed at that time to provide some
context for the operation. (This combination of procedure and context argu-
ment is sometimes called a \closure," although of course it is not as general as
full closures.) If this argument is de�ned as a REFANY, the client procedure can
NARROW it to the expected REF type before use.

3A NIL REFANY value has no underlying type; its \typecode" is a distinguished value.

4

2.3 Open arrays

Modula-2+ allows open arrays (arrays of an indeterminate number of elements)
in only a few contexts: as the type of formal arguments to a procedure, and as
the referent type of a REF type constructor. (This second use is an extension over
Modula-2.) For example, a variable may have the type REF ARRAY OF CHAR,
although only a formal argument may have the type ARRAY OF CHAR.

When NEW is applied to a variable of type REF-to-open-array, the number of
elements must be speci�ed; the number of elements may be any non-negative
integer. At runtime, it is possible to determine the number of elements of such
an open array value.

2.4 Safety

Most Modula-2+ modules (i.e., interfaces and implementations) are \safe," ex-
plicitly noted by the keyword SAFE. In a safe module, no program errors can
cause the language abstractions to be violated. For example, array accesses are
checked for bounds violations.

Many POINTER operations must be disallowed in safe modules. For example,
it is common to create a POINTER using address arithmetic, but such POINTERs
cannot in general be validated.

REF operations, on the other hand, are all safe; new REFs can be created
only using NEW. Although REFs can be forged using POINTER operations (e.g.,
dereferencing a bogus POINTER TO REFANY), or using LOOPHOLE (which treats
a value's bit-pattern as though it were of another type), such operations are
disallowed in safe modules.

2.5 Opaque REFs

Modula-2+ allows a type to be opaque in an interface, and concrete in an
implementation module. For example, Figure 3 shows an interface with an
opaque REF type M.T. The only operations that clients can perform on objects
of type M.T are M.Create and M.Manipulate, plus assignment and comparison
for equality.

As illustrated in Figure 4, the concrete de�nition can appear in the cor-
responding implementation module, and the concrete de�nition can be used
there. This allows the implementation procedures to manipulate the concrete
representation of the type.

Alternatively, the opaque de�nition can be given in a public interface and
its concrete de�nition can be given in a second, private interface. The public
interface is available to ordinary clients of the type, while the private interface
can be used by multiple implementation modules that are allowed access to the
concrete representation. For example, abstract operations on a type could be
de�ned in multiple interface modules, dividing the operations on the type among

5

SAFE INTERFACE MODULE M;

TYPE

T = REF;

PROCEDURE Create(): T;

PROCEDURE Manipulate(x: T);

END M;

Figure 3: Example of opaque REF

a set of interfaces; or a type could be implemented in one implementation mod-
ule but its concrete representation could be available in other implementation
modules, for e�ciency or convenience.

In any case, there can be only one textual occurrence of a type's concrete
de�nition in a program, as Modula-2+ uses name equivalence, not structural
equivalence.

The binding of concrete types to opaque types is conceptually done at link
time.4 Because the bindings between opaque types and concrete types is not
known at compile time, types that are considered di�erent at compile time may
become identical at link time (i.e., they may be bound to the same concrete
type).

This feature causes some problems. For example, in Modula-2+'s TYPECASE
statement, which is like a CASE statement based on the type of a REFANY argu-
ment, two arms may be labeled with types that seem di�erent at compile time
(and that might seem di�erent to the programmer) but that become the same
at link time; the e�ect of executing the TYPECASE can depend on which arm
occurs �rst, which might be unexpected.

2.6 Object cleanup

When an object is freed, object cleanup allows cleanup activities to be per-
formed. For example, imagine a REF-based abstraction for an open �le. If all
references to the open �le are dropped, the �le should be closed. Object cleanup
allows a type-speci�c cleanup routine to take such an action before the object
is freed.

As a more complicated example, imagine that open �les are also stored in
a hash table. Just as the previous example involved applying a type-speci�c
operation when zero REFs remained to the object, object cleanup can also be

4Because of linker limitations, however, the current Modula-2+ system does the binding
at program startup.

6

SAFE IMPLEMENTATION MODULE M;

TYPE

T =

REF

RECORD

record elements

END;

PROCEDURE Create(): T;

BEGIN

implementation of Create

using the concrete de�nition

END Create;

...

END M;

Figure 4: Example of opaque REF implementation

invoked when only one REF (the one in the hash table) remains.
Object cleanup is established for a type by the ObjectCleanUp.Establish-

CleanUp routine. Its parameters are the REF type (given as the typecode, such
as TYPECODE(T)); the threshold reference count at which cleanup should occur;
and a queue into which REFs to the object will be placed.

Object cleanup is enabled for a particular object by ObjectCleanUp.Enable-
CleanUp. When cleanup is enabled for an object and its reference count drops
to the per-type threshold, cleanup is disabled and a REF for the object is placed
on the type's queue.

Usually, a concurrent thread reads REFs from the queue, and performs any
necessary �nalization operations. If desired, cleanup can be enabled on an object
over and over.

2.7 Pickles

A pickle is an external copy of a heap structure. Heap structures can be \pick-
led" into a byte-stream, and the byte-stream can be \unpickled" back into a
copy of the original structure. Pickles are fast to write, and very fast to read.

Pickles can therefore serve as a standard structure for long-term data storage.
For example, window system fonts are stored as pickles. A font is represented
as a REF to the font information, and the pickles are stored in �les. On startup,
programs may read these pickles to de�ne fonts.

7

Many programs write out their internal state as a pickle, then read it back
in later. Pickles can also serve to communicate structured information across a
communication channel connecting two programs.

Some restrictions apply in the use of pickles. They are not human-readable
or human-editable, although special editing programs can be written. Although
REFs in the data structures are followed and reconstructed correctly during
pickling and unpickling, POINTERs are not; the result of unpickling a pickled
pointer is the original bit-pattern, which may not be useful. Similarly, procedure
values cannot usefully be pickled, and data structures based on the addresses of
REF objects (e.g., a hash table based on REF bit-patterns) will not work.

To circumvent these problems in some cases, special type-speci�c procedures
can be de�ned for pickling and unpickling. For example, a hash table might be
pickled by listing the elements, and unpickled by building a new hash table.5

An SxSymbol.T value, which represents a Lisp-style symbol, can be pickled by
simply outputting its name; this avoids pickling secondary information associ-
ated with the symbol. Upon re-pickling, the REF to the \same" symbol can be
reconstructed.

A �nal restriction is that a value can be unpickled only if the REF types it
contains also exist in the program doing the unpickling. Types are represented
in pickles as �ngerprints of the de�nitions;6 these are translated into typecodes
during unpickling. Therefore, if a programmer changes the de�nition of a type,
old pickles using the old de�nitions can become unreadable. Fortunately, trans-
lation programs are simple to write.

2.8 Network REFs

Network REFs are opaque REFs that stand for objects in other address spaces.
(Although they are called \network" REFs, they may also stand for objects in
other address spaces on the same machine, as well as on machines across a
network.)

As an example of the uses of network REFs, consider an open �le (i.e., an
OS.File). Inside Taos, the operating system, the object representing an open
�le has signi�cant internal structure; it holds state for its clients, and it points
o� to lower-level abstractions. There are procedures that return �les (e.g.,
OS.Open), and other procedures that operate on �les (e.g., OS.Read).

Taos runs in an address space separate from its client address spaces. Even
so, its clients can access Taos procedures via Remote Procedure Call (RPC) [1].
Automatically-generated or programmer-customized stub procedures on each
side of the address space boundary provide the illusion that the services and the
clients are in the same address space.

5In addition to solving the previous problemwith REF bit-patterns, this can also save space.
6In Topaz, a �ngerprint is a 64-bit quantity derived from a string. Two strings can be

expected to have about a 2�64 chance of being mapped to the same �ngerprint, even if they
have similar structure.

8

REFs normally do not have meaning across address spaces. For example,
when RPC passes a REF as an argument or a result, it normally passes a copy of
the structure referenced. This obviously will not work for the OS.File example.
Remote operations on open �les must therefore use network REFs instead.

To provide network REFs, the RPC machinery inside Taos automatically
maintains a table of REFs in Taos that are referenced from outside; in client
address spaces, an OS.File is de�ned simply as an index into that table.

When the result of an OS.Open is to be passed back to the client address
space, the stubs register the REF in the table at a new index, and return the
index for the calling address space to construct the network REF. When this
network REF is used for a future operation, the operation is reversed: the index
is passed to Taos and the real REF is looked up. These transformations are
performed automatically by the network REF machinery in RPC.

Although this discussion was in terms of operating system objects and ser-
vices, it generalizes to any client-server relationship, across address spaces on
the machines or across machines. It obviously requires that the network REF

type be opaque in the clients.
The network REFs in client spaces have object cleanup enabled. When the

client drops all references to a network REF, the server is noti�ed, and the table
entry is deleted; this may cause the object to be deleted or cleaned up on the
server side. The server is also noti�ed when a client address space terminates,
and deletes that space's entries.7

3 Disadvantages

In addition to the advantages of using REFs, there are some disadvantages.

� The biggest disadvantage is performance. In the current system, allocat-
ing an object currently executes about 30 VAX instructions in the most
common case; this includes assignment to a local variable. Assigning a
REF value to a local variable requires 1 VAX instruction, but assigning to
a REF variable that might be shared (a global, or a REF element of a heap
object) takes about 18 VAX instructions.

Moreover, two of the instructions executed for allocation or non-local as-
signment are interlocked instructions, to acquire and release a lock. (Cur-
rently, no programmer-supplied synchronization is required when sharing
REFs between mutator threads, or between the mutator and the collector.
As a result, some synchronization must be provided automatically for REF
assignment.) Interlocked instructions are especially slow to execute.

Assignment to potentially shared REFs is performed in a library routine,
so the cost of procedure call and return must also be added.

7Since a network REF is considered to belong to a single client space, this limits the extent
to which network REFs may be passed around freely among clients.

9

As a result, measurements show that global REF assignment takes an av-
erage of 13.5 �s on SRC's current workstations, while integer assignment
takes only 0.5 �s. Allocating a one-word object takes an average of 45 �s.

(The instruction counts could be reduced by 5-10 instructions if the code
sequences were inlined and special-cased. Further, some locking could
be eliminated by the use of per-thread state. Some such improvement is
planned for the future.)

� Another disadvantage is that the collector can be a bottleneck. Although
the collector runs concurrently, which usually does not slow down normal
program activities on a multiprocessor, the collector can fall behind a
rapidly-allocating program (especially if multiple threads are allocating).
At some point, the collector suspends the program until it can catch up.

Also, if a program is run on a uniprocessor, the collector competes directly
with the program for processor cycles. The current design optimizes the
speed of allocation at the cost of extra time in collection.

� The �nal performance disadvantage is that the space required using col-
lection can be greater than that required using explicit deallocation, since
the collector lags behind the program. The heap always contains some
objects that, although inaccessible, have not yet been collected; the space
for these objects counts as overhead.

There are also a few problems of functionality. For example, the collector
will never free an object referenced from a thread state (i.e., from its registers
and its stack frames), but, in the current system, there is no information as to
which words in the thread state are REFs and which are not. Therefore, some
objects might never be freed because of non-REFs in thread states that have
the same bit-pattern as an old REF.8 This can cause a small space problem,
but larger problems when object cleanup performs a complex operation. For
instance, there is a slight chance that if the last REF to an open �le is dropped,
the cleanup action (closing the �le) will not be performed.

Also, language safety reduces functionality, as it places some restrictions on
the programmer. For instance, there are several restrictions in the use of REF
�elds in variant records, to keep the programmer from changing the variant
record's tag and treating a formerly non-REF bit-pattern as if it were a REF.
Finally, although REF use in safe programs can never crash the runtime system,
this is not the case with the additional operations available in unsafe programs;
this can make it hard to cheat the system to gain extra speed (which can be
viewed as an advantage or a disadvantage).

8A similar problem can happen when a REF variable is dead, but still appears in the thread
state, and no extra information is available to the collector.

10

4 Heap implementation

4.1 Type representation

Types are represented at runtime by numeric typecodes. Typecodes are unique
only with a particular program; they are small integers assigned during program
initialization. A typecode acts as an index into a table of runtime type de�ni-
tions. The de�nition includes a list of which object �elds contain REF values, so
that facilities like the collector and the pickler can follow references. For speed,
a small interpreted language is used to walk over the objects' REF �elds.

4.2 Object representation

Each heap object is an integral number of 4-byte words long, due to memory
atomicity constraints. Topaz runs on shared-memory multiprocessors; on the
machines it may soon run on, the memory coherence unit is no more than 4
bytes. If no two objects share the same word, concurrent accesses to these
objects from di�erent threads on di�erent processors will not interfere.

Each heap object has a header of at least one word. This word contains
a 2-byte typecode and 2 bytes of allocator and collector state. The typecode
is assigned when the object is allocated, and although the collector runs con-
currently and changes the state asynchronously, this does not a�ect concurrent
program fetches of the typecode.

Large objects (de�ned in section 4.3) have an extra word of header.
If the referent type of a REF object is an open array, an additional one-word

open array count is added to the header.
Each object, then, has a possible large-object header word, followed by the

normal header word, followed by a possible open array count word. A REF to
the object is represented as the address following the normal header; this puts
the typecode at a constant o�set from the REF. The value of NIL is zero.

4.3 Memory layout

Memory in the heap is divided into 8192-byte \pages," which is an integral
multiple of the VM page sizes of all machines that Topaz may soon run on.
New pages are allocated from VM as necessary, and allocated using a binary-
buddy system.

Heap objects are either \small" or \large". Small objects occupy up to 4096
bytes, including header; large objects occupy over 4096 bytes.

There are 40 possible sizes of small object.9 Intermediate sizes are rounded

9The possible sizes are 8, 12, 16, 20, 24, 28, 32, 40, 48, 56, 64, 72, 80, 96, 112, 128, 144,
160, 192, 224, 256, 320, 384, 448, 512, 576, 640, 768, 896, 1024, 1152, 1280, 1536, 1792, 2048,

2304, 2560, 3072, 3584, and 4096 bytes, including headers. These sizes were chosen to reduce
proportional breakage; the spacing is �ner for small sizes than for large sizes. It is perhaps

unfortunate that this list includes powers of 2, since powers of 2 are popular sizes for objects,

11

up; the proportional breakage is less than 20% for small object sizes over 12
bytes. Small objects are packed into pages; for simplicity, all small objects on a
page are the same size. Small object headers contain a 5-bit \block size index"
that de�nes their size.

Large objects occupy their own run of pages. Their size in pages is a power
of 2, and the breakage is not used for other objects. The block size index in
their headers holds a distinguished \large" value; the extra word of header holds
the actual size. Breakage can be up to 50% for large objects.

Objects created by reading a pickle have a special memory layout, corre-
sponding to the layout in the pickle's byte stream. The objects are laid out
contiguously, regardless of their sizes. Small pickles are packed into small pickle
pages; large pickles occupy their own run of pages.

Text.T (character string) constants are stored in the program's read-only
text section. Their layout is the same as if they were on the heap.

4.4 Collector operation

The collector runs concurrently, triggered by program activity. The collector
combines reference-counting (following [5] and [13]) and mark-and-sweep collec-
tion; the collector is described in detail in [4]. Objects that are not referenced
are reclaimed and returned to free lists.

There is one free list per size of small object. Free entries for the same page
are kept adjacent, to concentrate allocations on some pages while allowing others
to be freed. When all objects on a small page are free, the page is returned to
the page allocator.

When a large object is freed, its pages are returned to the page allocator.
When individual objects in a pickle are freed, they are not returned to a free

list. When all the pickle objects on a whole page or run of pages are free, the
page or pages are returned to the page allocator. The goal of this policy is to
reclaim pickle space as quickly as possible when an entire pickle is freed at once.

Text.T constants are not collected.

5 Quantitative heap usage

This section outlines the results of measurements on two programs at SRC,
performed to measure the heap usage of real Modula-2+ programs in Topaz.
The programs measured were Taos, the Topaz operating system, and the Ivy text
editor. Each program has been developed and used for some while. Each has
multiple authors, and each includes signi�cant amounts of library code written
by others. Therefore, each program can be expected to represent a microcosm
of SRC software; their measurements can be expected to be representative of
Topaz as a whole.

not including header.

12

Referent type REF types Percentage

Records 290 67.3%

Open array 104 24.1%

Scalara 23 5.3%

Array 9 2.1%

Set 4 0.1%

REF 1 0.0%

a\Scalar" includes BOOLEAN, INTEGER, CARDINAL, UNSIGNED, REAL, LONGREAL, enumerations, and
subranges.

Table 1: Distribution of referent types of REF types in Taos

5.1 Taos

The �rst Topaz program measured was Taos, the Topaz operating system [10,
11]. Taos packages a large number of facilities (e.g., process management, the
�le system, the window system, networking protocols, and a large number of
libraries) that were written by a number of di�erent people over a long period
of time. Taos includes an emulation of the Unix10 kernel.

5.1.1 Static measurements

Taos version 88.1, the current release at the time of the measurements, had 431
di�erent REF types.11

Table 1 breaks down the referent types of the 431 REF types. Most referent
types are records; almost all are records or open arrays.

Table 2 breaks down the sizes of the referent types of the 327 REF types
whose referent types were not open arrays. The �rst column shows the object
size on the heap, including header and breakage; the second column shows the
number of REF types having this size; the third column lists the sizes of the
referent types ignoring overhead. The median size of the referent types is 20
bytes, corresponding to a 24-byte object including header.

Similarly, Table 3 lists the sizes of elements of the 104 open array types that
were the referents of REF types. The median element size is 8 bytes, as for a
linked list of one-word values.

Object cleanup was established on 14 REF types. The threshold reference
count was 0 for two types, and 1 for the other twelve.

There were 375 global variables that contained REF values (e.g., a global
REF, or a global record containing REFs). In all, these global variables contained

10Unix is a registered trademark of AT&T Technologies.
11Modula-2+ uses name equivalence, not structural equivalence, to de�ne type equivalence,

and some of these 431 REF types were structurally equivalent; there were only 367 structurally
di�erent referent types.

13

Object REF Object REF

bytes types Referent type bytes bytes types Referent type bytes

8 41 3 bits, 1 (3), 1.5, 4 (36)a 512 1 500
12 40 5 (2), 8 (38) 576 2 512, 568
16 39 9, 9.5, 12 (37) 640 2 576, 612
20 31 13 (2), 13.5, 14 (3), 16 (25) 768 0
24 25 17 (2), 18 (2), 20 (21) 896 2 812 (2)
28 17 22 (2), 23, 24 (14) 1,024 0
32 9 25 (2), 26, 28 (6) 1,152 4 1036, 1048, 1108, 1144
40 18 29 (2), 32 (11), 36 (5) 1,280 1 1244
48 12 40 (6), 42, 44 (5) 1,536 1 1512

56 10 48 (6), 50, 52 (3) 1,792 1 1600
64 15 56 (6), 57, 58 (2), 60 (6) 2,048 2 1796, 1812

72 8 64 (3), 66 (2), 68 (3) 2,304 0
80 3 69, 73, 76 2,560 1 2461

96 6 80, 81, 84 (2), 88, 92 3,072 1 2816
112 3 96, 104, 108 3,584 0
128 0 4,096 3 4084 (3)

144 1 136
160 4 144 (2), 156 (2) 8,192 8 4108, 4112, 4116 (2), 4128,

192 2 164, 184 4368, 4648, 5128
224 2 196, 212 16,384 1 8236

256 1 228 32,768 2 16392, 18040
320 4 256 65,536 0

384 1 370, 281, 296, 300 131,072 0
448 1 404 262,144 1 158928

aThat is, one REF type with a 3-bit referent, three with 1 byte, one with 1.5 bytes, and 36 with
4 bytes.

Table 2: Sizes of referent types of REF types in Taos

Elt. # of REF Elt. # of REF Elt. # of REF Elt. # of REF

bytes types bytes types bytes types bytes types

1 bit 1 3 2 9 1 20 2
3 bits 1 4 30 12 10 21 1

1 24 6 1 13 1 24 1
2 2 8 20 16 4 32 2

Table 3: Element sizes of open array REF referent types in Taos

14

REF # of REF # of REF # of REF # of

slots globals slots globals slots globals slots globals

1 298 11 1 45 1 256 10
2 20 12 1 52 1 257 3
3 2 13 1 64 2 768 1
4 3 18 2 100 1 1024 1
5 6 20 2 101 2 1025 1
6 1 23 1 127 1 1029 1
7 2 31 1 128 2 2043 1
8 1 32 1 201 1 2048 1
10 1

Table 4: Number of REF slots in REF-containing global variables in Taos

23,002 REFs, or an average of 61 REFs per global. However, the distribution is
quite skewed, as shown in Table 4; there are a few large structures that contain
a great number of REF slots.

5.1.2 Heap count measurements

For the following measurements, a total of 40 instances of Taos running at SRC
were examined; each instance was running on a personal workstation.12 The
statistics were averaged over the 40 cases.

There was a mean of 8,983 objects on the Taos heap. On the 40 Taoses
examined (all of which were in a quiescent state), only 264 types had objects
allocated at that time. Almost half the objects were of just 5 types, as listed in
Table 5 along with the distribution of number of objects by deciles.

There was an average of 1,081,969 bytes of objects on the heap (including
headers and breakage.) Almost half the bytes were in objects of just 6 types,
listed in Table 6 with the distribution.

The mean object size is 120 bytes, including headers and breakage. Figure 5
shows the distribution of object sizes in Taos, by number of objects. The median
object size is 20 bytes, including headers and breakage.

Figure 6 shows the same distribution, but by number of bytes instead of by
number of objects. The median of this graph is 576 bytes; about half of the
bytes are allocated to objects of less than 576 bytes, and half of more.

12The instances of Taos chosen to be examined were those personal workstations that had
been used since they were booted, but that had not been used in the last hour, since the
examination was intrusive. The examination was performed using Loupe, the Modula-2+
teledebugger. A Loupe running remotely was attached to each Taos, and a full garbage
collection was initiated before measurements were taken. The actual measurements were
performed using debugger-callable routines built into the Modula-2+ runtime that report on
heap usage; these routines are usually used by programmers to diagnose heaps that grow too
large. Finally, each workstation was released.

15

Objects Type

2050 Ref.Integer
a

1344 Text.T
b

402 Thread.T
c

357 TEmDpy.RowRef
d

329 ActiveFile.T
e

Number of Types Cum. Count

1 22.8%
2 37.8%
3 42.3%
5 49.9%
9 60.9%
14 70.5%
25 79.9%
55 90.0%
264 100.0%

aA Ref.Integer is a REF INTEGER. Taos contains a static table of 2048 Ref.Integers; each Taos
examined contained 2 more.

bA Text.T is an immutable text string. A Text.T may share internal structure with other
Text.Ts. Many operations in the Modula-2+ libraries operate on Text.Ts.

cA Thread.T is a handle for a thread of control in this address space.
dA TEmDpy.RowRef represents a row in a terminal emulator window.
eA ActiveFile.T represents an open �le. (ActiveFile.Ts can be cached after they are closed.)

Table 5: Top 5 REF types in Taos, by number of objects, and distribution

Objects Bytes Type

357 114,248 TEmDpy.RowRef

329 105,368 ActiveFile.T

176 101,376 Dir.BufferRefa

118 75,680 LocalFile.Fileb

402 64,332 Thread.T

7 60,211 REF ActivePipe.Bufferc

Number of Types Cum. Bytes

1 10.6%
2 20.3%

3 29.7%
5 42.6%

6 48.2%
9 60.7%

12 70.2%
18 80.4%
34 89.9%
264 100.0%

aA Dir.BufferRef is a REF to a bu�er holding a directory block.
bA LocalFile.File represents an open �le on the local �le system. (LocalFile.Files can be

cached after they are closed.)
cA REF ActivePipe.Buffer is a REF to a bu�er for a pipe.

Table 6: Top 6 REF types in Taos, by number of bytes, and distribution

16

object size

ob
je

ct
s

500

1000

1500

2000

2500
8 12 16 20 24 28 32 40 48 56 64 72 80 96 11
2

12
8

14
4

16
0

19
2

22
4

25
6

32
0

38
4

44
8

51
2

57
6

64
0

76
8

89
6

10
24

11
52

12
80

15
36

17
92

20
48

23
04

25
60

30
72

35
84

40
96

>
40

96

Figure 5: Distribution of objects in Taos, by object size

object size

ob
je

ct
 b

yt
es

50KB

100KB

150KB

200KB

250KB

8 12 16 20 24 28 32 40 48 56 64 72 80 96 11
2

12
8

14
4

16
0

19
2

22
4

25
6

32
0

38
4

44
8

51
2

57
6

64
0

76
8

89
6

10
24

11
52

12
80

15
36

17
92

20
48

23
04

25
60

30
72

35
84

40
96

>
40

96

Figure 6: Distribution of object bytes in Taos, by object size

17

REF slots Count REF slots Count REF slots Count REF slots Count

0 7207.4 10 344.8 32 1.0 103 2.0
1 434.6 12 2.8 34 466.2 129 39.0
2 634.8 13 0.6 40 1.0 130 10.8
3 967.6 16 2.8 48 0.8 199 1.0
4 248.6 17 4.8 62 10.8 200 1.0
5 236.6 18 11.2 64 2.0 201 1.0
6 23.8 20 58.4 67 1.0 257 4.6
7 56.0 22 8.6 80 0.8 258 2.0
8 63.2 31 0.8 101 1.0 512 0.2
9 171.4

Table 7: Distribution of number of REF slots in Taos objects

The breakage on the Taos heap was not measured, but can be inferred to
be between 0 and 247,223 bytes. The actual value can be expected to be about
half the maximum, or 123,611 bytes. This is 13.8 bytes per object, or 11%.

The mean number of objects enabled for cleanup is 182.

5.1.3 Heap shape measurements

The following measurements are based on 5 snapshot instances of Taos, fewer
then before; these measurements required modi�cation of Taos to collect statistics.13

In these measurements, there were 11,025 objects per Taos heap. (Unless oth-
erwise stated, results given are means.)

Of the 23,002 REF slots in global variables, only 4,303 (18.7%) were non-NIL;
these slots held 4,179 di�erent REF values. Most of the NIL global REF slots were
in large tables.

The mean number of REF slots in heap objects was 3.7. The mean number
of REF slots in objects with at least one REF slot was 10.6. Table 7 shows the
distribution of the number of REF slots.

The mean in-degree of objects in the heap is 1.3; this is the number of REF
values in globals or in objects that reference the object.14 The mean in-degree
of objects with non-zero in-degree is 1.44. The mode of the in-degrees (i.e., the
most common in-degree) is 1. Table 8 shows the distribution of in-degrees.

The mean out-degree of objects was 0.9; this is the number of non-NIL REFs
in the object. (The mean out-degree is greater than the mean in-degree because

13The mark-and-sweep collector was modi�ed to log all objects and REFs found during the
sweep phase, and to store the log in memory; each collection overwrote the results of the
previous. After an instance of Taos had been put through a representative workload, a Loupe
was attached to the Taos, and the contents of the array were dumped.

14References from REF variables that are local to procedure activations are not considered
here; doing so would be di�cult with the current Modula-2+ system. Considering these
references would increase the in-degrees.

18

In-degree Count In-degree Count In-degree Count In-degree Count

0a 1226.0 14 5.0 29 0.2 91 0.2
1 8053.6 15 2.6 30 1.0 92 0.2
2 773.8 16 0.2 32 0.8 108 0.2
3 727.0 17 0.8 34 0.6 146 0.2
4 110.8 18 0.6 35 0.2 156 0.2
5 39.2 19 0.8 39 0.2 174 0.2
6 16.8 20 0.4 41 0.2 236 0.2
7 14.6 21 1.6 47 0.2 335 0.2
8 10.8 22 1.8 50 0.2 370 0.2
9 9.4 23 0.2 59 1.0 379 0.2
10 7.2 24 0.4 70 0.6 393 0.2
11 3.6 25 0.8 84 0.2
12 4.6 26 0.2 87 0.2
13 3.2 27 0.4 89 0.4

aThe objects listed with 0 in-degree are those that were nevertheless accessible from outside
the heap. Thread states referenced an average of 443 additional heap objects|according to a

conservative scan|and the rest became inaccessible during statistics-gathering.

Table 8: Distribution of in-degrees of Taos objects

the in-degree includes global REFs.) The mean out-degree for nodes containing
at least one non-NIL REF is 2.7. Table 9 shows the distribution of out-degrees.

Most objects on the heap are a short distance from a root.15 Table 10 shows
the frequencies of the minimum distances from a root. There are relatively few
long chains; most objects on the heap are accessible in a few REFs from a root.

There are relatively few cycles on the Taos heap. (Until 1989, the Modula-
2+ collector used reference-counting alone, and did not collect cyclic structures.
Therefore, programmer action was necessary either to avoid cycles, or, more typ-

15Here, a root includes not only global REFs and REFs in thread states, but also some of the

REFs referenced during the data collection.

Out-degree Count Out-degree Count Out-degree Count Out-degree Count

0 7413.0 9 7.4 25 0.2 40 0.2
1 1198.6 10 6.2 26 0.2 44 1.0
2 1231.8 11 1.4 27 0.2 47 0.2
3 449.2 13 1.0 29 1.4 48 1.0

4 233.4 14 1.0 31 0.2 49 0.2
5 271.4 15 1.0 33 0.2 50 0.6
6 114.6 16 1.4 36 0.4 58 10.8

7 59.2 17 0.8 37 1.0 70 0.2
8 13.6 20 1.2 39 0.6 476 0.2

Table 9: Distribution of out-degrees of Taos objects

19

Depth Count Depth Count Depth Count Depth Count

0 5690.6 12 32.2 32 5.6 63 2.4
1 1821.4 13 21.8 33 5.0 64{66 2.0
2 1186.6 14 17.2 34 4.2 67{69 1.8
3 1013.0 15 13.0 35{41 4.0 70{71 1.6
4 351.2 16 10.0 42 3.8 72 1.4
5 194.2 17 7.8 43 4.0 73{74 1.2
6 99.0 18{21 7.6 44{53 3.8 75{80 1.0
7 66.6 22 7.4 54{59 3.4 81{90 0.8
8 51.0 23 6.4 60 3.2 91{143 0.6
9 56.6 24{28 5.4 61 3.0 144{152 0.4
10 65.8 29 5.2 62 2.6 153{170 0.2
11 48.2 30{31 5.4

Table 10: Distribution of depths of Taos objects

Size Count Size Count Size Count Size Count

1a 10127.4 12 0.2 70 0.2 114 0.2
2 13.4 14 0.2 74 0.2 119 0.2

3 1.4 15 0.2 82 0.2 166 0.2
4 0.8 16 1.0 91 0.2 198 0.4
5 0.8 26 0.2 92 0.2 199 0.2

6 3.0 30 0.4 94 0.2 332 0.2
7 1.0 31 1.0 98 0.2 424 0.2

8 1.0 32 0.2 100 0.2 429 0.2
9 0.8 35 0.6 106 0.2 431 0.2

10 0.4 40 0.8

aNone of the objects in these singleton components contained REFs to themselves. Overall, only

8.6 objects (0.08%) contain REFs to themselves.

Table 11: Numbers of strongly connected components in Taos

ically, to allow collection by explicitly breaking cycles when a structure should
be freed.) Table 11 shows the frequencies of the sizes of strongly connected com-
ponents. Only 8.1% of the objects belonged to strongly connected components
of size greater than 1 (i.e., belonged to cycles). Moreover, only 11.2% of the
objects either belonged to cycles or were reachable from cycles. (These are the
objects that a purely reference-counting collector would fail to reclaim without
programmer intervention. Over time, of course, they would accumulate to a
larger fraction.)

20

5.1.4 Running measurements

The following measurements were made using a specially instrumented version
of Taos that logged allocator and collector events.16 A single instance of this
Taos ran for approximately 6 hours of interactive use.

During this time, there were 1,422,626 objects allocated in Taos. At the
end of the measurement, only 9,884 (0.7%) of these remained allocated; the
remaining 1,412,742 (99.3%) had been freed. Since the trace did not end with
a full collection, we can expect that some of the remaining 9,884 objects were
in fact inaccessible.

Counting bytes, there were 172,851,756 bytes allocated (including headers
and breakage); 1,353,292 (0.8%) remained allocated at the end, while 171,498,464
(99.2%) had been freed. The average object allocated was 122 bytes in size, in-
cluding headers and breakage.

Figure 7 shows the size of the Taos heap, in bytes, as a function of time.
After initialization, the heap size remained relatively constant; Taos had entered
a steady state.

There were 9,661,068 assignments to global REFs or to REFs on the heap.
This is an average of 6.8 such assignments per object allocated.

There were 3,306 reference-counting collections during the measurement.
This is an average of one collection every 430 objects allocated, or every 52,284
bytes. (The collection interval was made smaller than usual during these mea-
surements to reduce the interval between when an object becomes free and when
it is collected, since only the point of collection can be measured.) There was a
mark-and-sweep collection approximately every 10,000,000 bytes allocated.

In the discussion below, time is measured arbitrarily, by number of bytes al-
located by the program. This metric most directly drives the collector's actions;
it can also be assumed to be highly correlated with program CPU time, espe-
cially since Taos's actions are roughly the same at all points in time. The time
of an object's allocation is considered to be at the end of the allocation (i.e., an
object could be considered to be allocated and freed at the same \time," if no
other objects were allocated in between).

Figure 8 is a scatter-graph showing object allocations and deallocations.
Each axis represents time, measured in bytes allocated. Each dot represents one
or more objects; the x-coordinate is the time of allocation, and the y-coordinate
is the time of collection. All points in the scatter-graph naturally have x � y,
since objects are allocated before they are freed.

16The allocator and the collectors were modi�ed to log all events, such as allocations and
assignments. (Because of the implementation of REF assignment in Modula-2+, it was possible

to log only assignments to global REFs and to REFs in heap objects; assignments to REF variables
local to a procedure were not logged. Also, pickle allocations and deallocations were not
logged, but Taos allocates few pickles, and only at initialization.) The log was bu�ered in
memory, and asynchronously ushed to the �le system by a separate thread. Care was taken
that ushing the log would have minimal impact on the measurements.

21

time

he
ap

 s
iz

e

0 50MB 100MB 150MB
 0

500KB

1MB

1.5MB

Figure 7: Heap size in Taos over time

The closely-spaced horizontal stripes in Figure 8 are reference-counting col-
lections, where many objects are freed at about the same time. These stripes
are usually indistinguishable in this �gure, but sometimes are visible when the
program is allocating at a high rate.17

We see in Figure 8 that most objects are freed shortly after they are allocated,
since most objects' dots are near the x = y diagonal. This repeats the Smalltalk
experience reported by Ungar [18], in which most objects in Smalltalk programs
were found to be short-lived. (Similar results were reported for Lisp systems
by Shaw [16] and Zorn [21].) Modula-2+ is di�erent from Smalltalk, though,
in that all Smalltalk data structures are stored on the heap. Modula-2+ also
provides non-heap data structures, which are used for most program operations:
for instance, Modula-2+ does not use the heap for procedure activations and
local variables, which are usually ephemeral. Still, even though the heap in

17The coarser horizontal patterns are mark-and-sweep collections, which collect cyclic struc-
tures, as well as some non-cyclic structures probabilistically missed by earlier reference-
counting collections. Since the mark-and-sweep collection interval is relatively large, these

objects' lifetimes may be signi�cantly overcounted.
The coarse vertical patterns are due to many objects being allocated at about the same time

and freed at di�erent times. These patterns are synchronized to the horizontal patterns by
object cleanup; the mark-and-sweep collections trigger object cleanup, and the type-speci�c
routines in Taos for some of these objects cause new data structures to be allocated.

22

time of allocation

ti
m

e
of

 d
ea

ll
oc

at
io

n

Figure 8: Object allocation time vs. deallocation time in Taos

23

object lifetime

cu
m

. f
ra

ct
io

n
of

 o
bj

ec
ts

1B 10B 100B 1KB 10KB 100KB 1MB 10MB 100MB
 0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Figure 9: Object lifetimes in Taos, by cumulative objects

Modula-2+ is less biased toward holding temporaries, most objects in Taos are
still relatively short-lived.

Figure 9 shows the cumulative distribution of object lifetimes in Taos. The
horizontal axis is logarithmic, and shows lifetime, in bytes allocated. The ver-
tical axis is cumulative, and counts the fraction of objects with that lifetime
or less. (This curve does not reect the lifetimes of objects that had not been
freed at the end of the measurements.) The mean object lifetime measured was
58,745 bytes of allocation. Note that about 90% of the objects are freed within
3 reference-counting collections; the quantization of reference-counting collec-
tions has added an average of about 1/2 of a collection interval, or 26K bytes,
to measured lifetimes.

Similarly, Figure 10 also shows the cumulative distribution of objects' life-
times, but where the vertical axis counts the fraction of bytes allocated that
were in objects with that lifetime or less. The curve is shifted downward in
this �gure relative to Figure 9, showing that large objects are longer-lived than
small objects, as would be expected.

Figure 11 presents the lifetime distributions di�erently, showing the e�ect
of the object lifetime distribution on a generational garbage collector. The
horizontal axis is generation size, from 0 to 1MB; the vertical axis shows the
amount of storage in the most recent generation that would not be reclaimed. As
the generation size increases, the amount of storage unreclaimed also increases,

24

object lifetime

cu
m

. f
ra

ct
io

n
of

 b
yt

es

1B 10B 100B 1KB 10KB 100KB 1MB 10MB 100MB
 0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Figure 10: Object lifetimes in Taos, by cumulative bytes

generation size

by
te

s
un

re
cl

ai
m

ed
 p

er
 c

ol
le

ct
io

n

0 100KB 200KB 300KB 400KB 500KB 600KB 700KB 800KB 900KB 1MB
 0

50KB

100KB

150KB

200KB

Figure 11: Storage retention in Taos with a generational GC

25

object age

li
fe

 e
xp

ec
ta

nc
y

0 50MB 100MB 150MB
 0

50MB

Figure 12: Remaining life expectancy for Taos objects

RHS Count Percentage

NIL 1,446,285 31.5%

Text.T constants 5,388 0.1%

into pickles 126 0.0%

backward 1,965,623 42.8%

to self 99 0.0%

forward 1,173,170 25.6%

Table 12: Distribution of RHS's in assignments to REF slots in Taos objects

but the fraction unreclaimed decreases. If the generation size were 1MB, then
about 21% would not be reclaimed per collection of the most recent generation.

Ungar also noted that in Smalltalk, the longer an object has already lived
(i.e., the longer since it has been allocated), the longer it can be expected to live
yet. Figure 12 shows the corresponding relation for Taos. The horizontal axis
is the age of an object; the vertical axis shows the expected remaining lifetime
for an object of that age. The curve has positive slope for small to medium
lifetimes; the behavior after about 15MB of allocation is presumably due to the
�nite duration of the trace.

Finally, Ungar noted that by far most references between objects on the
Smalltalk heap went from newer objects to older objects, facilitating genera-
tional garbage collection. Taos does not directly share this characteristic, as
shown in Table 12, which classi�es the right-hand sides of the 4,590,691 assign-
ments to REF slots in heap objects. \Backward" references are from newer to
older objects; \forward" pointers are from older to newer objects. Taos's as-
signments establish almost as many forward references as backward references,
suggesting that Taos is not programmed in an applicative style.18 The great

18For example, an object may be created and initialized by code such as

26

(backward) age difference (forward)

cu
m

. f
ra

ct
io

n
of

 o
bj

ec
ts

-150MB -100MB -50MB 0 50MB 100MB 150MB
 0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Figure 13: Cumulative distribution of age di�erences in Taos assignments

number of forward references might be expected to complicate the use of a gen-
erational collector with Taos because there would be so many forward references
into the recently-allocated part of the heap.

However, most forward assignments do not point very far forward. Fig-
ure 13 shows the cumulative distribution of the di�erence in Taos's assignments
between the age of the target of a REF and the age of the source. Negative di�er-
ences denote backward references; positive di�erences are for forward references.
Since few REF assignments point very far forward, there should be relatively few
references from old generations to new generations. Figure 14 shows an approx-
imation of the expected number of forward references into the new generation
as a function of the generation size.19 For example, if generations were 1MB in
size, there might be an expected 600 references from older generations into the
new generation at the time of a collection.

NEW(object);

object.̂a := NewA();

object.̂b := NewB();

Here, the �elds of \object" will hold forward references.
19Figure 13 is based on a simple model derived from the trace measurements. It assumes

that object in-degree is independent of size and lifetime, which seems unlikely.

27

generation size

fw
d.

 r
ef

er
en

ce
s

in
to

 n
ew

 g
en

er
at

io
n

0 100KB 200KB 300KB 400KB 500KB 600KB 700KB 800KB 900KB 1MB
0

100

200

300

400

500

600

Figure 14: Expected number of forward references into new generation

5.2 The Ivy text editor

The second Topaz program measured was Ivy, a text editor; the measurements
are a subset of those for Taos. Ivy is packaged as a single multithreaded server
per user; it provides any number of concurrent editing windows on �les. Its
extension language is Tinylisp, a dialect of Lisp; it is simple to provide Tinylisp
bindings for Modula-2+ procedures, such as the editing primitives.

Ivy version 28.3, the current release at the time, had 348 di�erent REF types.
Object cleanup was established on 13 REF types. The threshold reference count
was 0 for one type, 1 for eleven, and 6 for one.

The static measurements performed for Taos are not repeated here; Ivy's
static measurements are similar to Taos's, presumably due to the large amount
of library code in both.

5.2.1 Heap count measurements

For the following measurements, a total of 33 users' instances of Ivy running at
SRC were examined. As with Taos, all Ivies were quiescent.

There was a mean of 60,681 objects on the Ivy heap. Of the 33 Ivies exam-
ined, only 216 types had objects allocated at that time. Over half the objects
were of just 7 types, as listed in Table 13 along with the distribution of the
number of objects by deciles.

28

Objects Type

11329 List.Ta

4051 Text.T

3336 TextTable.Entry
b

3114 RefTable.Entry
c

3058 SxSymbol.Td

2928 IntTable.Entry
e

2928 IvyCmd.BnToCmdRef
f

Number of Types Cum. Count

1 18.7%
2 25.3%
3 30.8%
5 41.0%
7 50.7%
9 58.7%
14 71.1%
20 79.7%
42 90.1%
216 100.0%

aAs mentioned earlier, a List.T is a linear list of REFANYs
bA TextTable.Entry is an entry in a TextTable.T, a table with Text.T keys and REFANY values.
cA RefTable.Entry is an entry in a RefTable.T, a table with REFANY keys and values.
dAs mentioned before, an SxSymbol.T represents a Lisp-style symbol, as used by Tinylisp.
eA IntTable.Entry is an entry in a IntTable.T, a table with integer keys and REFANY values.
fAn IvyCmd.BnToCmdRef represents a command with a key-binding.

Table 13: Top 7 REF types in Ivy, by number of objects, and distribution

There was an average of 3,581,585 bytes of objects on the heap (including
headers and internal fragmentation.) Almost half the bytes were in objects of
just 4 types, listed in Table 14 with the distribution.

The mean object size is 57 bytes, including headers and breakage. Figure 15
shows the distribution of object sizes in Ivy, by number of objects. The median
object size is 12 bytes, including headers and breakage.

Figure 16 shows the same distribution, but by number of bytes instead of
by number of objects. The median of this graph is 384 bytes; about half of the
bytes are allocated to objects of less than 384 bytes, and half to objects of more.

The breakage on the Ivy heap can be inferred to be between 0 and 913,215
bytes. The actual value can be expected to be about half the maximum, or
456,608 bytes. This is 7.5 bytes per object, or 13%.

The mean number of objects enabled for cleanup is 2809, of which 2555 are
for Tinylisp TLProcedure.Ts, which represent compiled Tinylisp procedures.

5.2.2 Heap shape measurements

As for Taos, the following measurements are based on 5 snapshots of Ivy, fewer
than before. In these measurements, there were 68,727.6 objects per Ivy heap.
(Unless otherwise stated, results given are means.)

Ivy's 1,810 global REF-containing variables contained 19,003 REF slots, only
4,977.8 (26.2%) of which were non-NIL; these slots held 4,755.4 di�erent REF

values. There were fewer large tables of REF values than in Taos.
The mean number of REF slots in heap objects was 2.7. The mean number

of REF slots in objects with at least one REF slot was 3.6. Table 15 shows the

29

Objects Bytes Type

4,051 1,259,676 Text.Ta

169 199,904 IvyB.PTableb

1,440 138,284 VBT.Tc

11,329 135,951 List.Td

Number of Types Cum. Bytes

1 36.2%
2 42.0%
4 49.9%
8 59.7%
15 70.5%
24 79.9%
41 90.2%
216 100.0%

aText.Ts, immutable text strings, are used as the leaves in the representation of editing bu�ers.
bAn IvyB.PTable is a \partition table;" it divides bu�ers (e.g., typescripts) into partitions (e.g.,

the history, any queued typeahead, and the line(s) currently being typed).
cA VBT.T (a \virtual bitmap terminal") is a display system window or subwindow.
dMost List.Ts in Ivy are presumablyused for Tinylisp source, which is kept in Ivy for debugging

purposes; the Tinylisp source appears in its original form and macro-expanded.

Table 14: Top 4 REF types in Ivy, by number of bytes, and distribution

object size

ob
je

ct
s

1K

2K

3K

4K

5K

6K

7K

8K

9K

10K

11K

12K

13K

14K

15K

16K

17K

8 12 16 20 24 28 32 40 48 56 64 72 80 96 11
2

12
8

14
4

16
0

19
2

22
4

25
6

32
0

38
4

44
8

51
2

57
6

64
0

76
8

89
6

10
24

11
52

12
80

15
36

17
92

20
48

23
04

25
60

30
72

35
84

40
96

>
40

96

Figure 15: Distribution of objects in Ivy, by object size

30

object size

ob
je

ct
 b

yt
es

100KB

200KB

300KB

400KB

500KB

600KB

700KB

800KB

900KB

1MB
8 12 16 20 24 28 32 40 48 56 64 72 80 96 11
2

12
8

14
4

16
0

19
2

22
4

25
6

32
0

38
4

44
8

51
2

57
6

64
0

76
8

89
6

10
24

11
52

12
80

15
36

17
92

20
48

23
04

25
60

30
72

35
84

40
96

>
40

96

Figure 16: Distribution of object bytes in Ivy, by object size

distribution of the number of REF slots.
The mean in-degree of objects in the heap is 1.8. The mean in-degree of

objects with non-zero in-degree is 1.9. The mode of the in-degrees is 1. Table 16
shows the distribution of in-degrees.

The mean out-degree of objects was 1.7; this is the number of non-NIL REFs
in the object. The mean out-degree for nodes containing at least one non-NIL
REF is 2.3. Table 17 shows the distribution of out-degrees.

Most objects on the heap are a short distance from a root. Table 18 shows
the frequencies of the minimum distances from a root. There are relatively few
long chains; most objects are accessible in a few REFs from a root.

There are far more cycles on the Ivy heap than on the Taos heap. Table 19
shows the frequencies of the sizes of strongly connected components. Overall,
31.6% of the objects belonged to strongly connected components of size greater
than 1 (i.e., belonged to cycles). Moreover, a full 22,716.4 (33.1%) of the objects
either belonged to cycles or were reachable from cycles.

6 Other heaps

In addition to the REF heap, there are three less commonly used heaps in Topaz:
the POINTER heap, the malloc heap, and the Nub heap. None provides garbage
collection; clients are responsible for explicitly freeing storage when it is no

31

REF slots Count REF slots Count REF slots Count REF slots Count

0 16669.4 9 1303.2 20 26.0 88 5.0
1 5480.2 10 2.2 29 113.4 114 8.0
2 27583.8 11 121.2 32 54.0 128 29.0
3 12757.8 12 2.0 34 160.4 240 78.2
4 2933.8 16 445.6 45 1.0 256 25.0
5 217.2 17 1.0 49 2.0 512 5.0
6 44.8 18 2.0 60 15.0 514 5.0
7 46.8 19 24.8 64 95.6 1024 1.0
8 468.2

Table 15: Distribution of number of REF slots in Ivy objects

longer needed.

6.1 The POINTER heap

The POINTER heap coexists with the REF heap. When the POINTER heap needs
to expand, it allocates new pages from VM, the same as the REF heap. As a
result, POINTER heap pages and REF heap pages may be interspersed in memory.

Fortunately, allocations in the POINTER heap are rare, so that the REF heap
remains largely contiguous, making it more likely that large objects can be al-
located. The main use of the POINTER heap is in storage management below
the level of the REF heap, such as maintaining internal data structures for the
allocator and the collector. For example, the collector maintains various un-
bounded lists of objects; it allocates space as needed for these objects from the
POINTER heap.

6.2 The malloc heap

The malloc heap is used by programs calling the C library function malloc. It
coexists with the POINTER heap and the REF heap, but is little-used in Topaz.
Part of the reason is that the implementation of malloc used was designed for
single-threaded clients; it therefore requires multithreaded Modula-2+ clients
to perform their own serialization.

6.3 The Nub heap

The Nub heap is used inside the Nub, the lowest level of the Topaz system. It
provides functionality similar to the POINTER heap, but its implementation is
customized for the more impoverished environment of the Nub. For example,
the Nub heap cannot call VM to allocate more space when needed, because the
Nub heap lies structurally below VM.

32

In- In- In- In- In-

degree Count degree Count degree Count degree Count degree Count

0 3824.0 43 3.6 88 1.0 156 0.6 315 0.4
1 50919.0 44 2.6 89 0.6 158 1.0 316 0.2
2 6491.4 45 3.2 91 0.2 161 0.2 317 0.2
3 3926.4 46 2.6 92 1.4 162 1.0 318 0.2
4 1190.6 47 5.0 95 0.8 165 0.4 319 0.2
5 624.4 48 2.0 96 1.2 167 1.2 320 0.4
6 410.4 49 0.6 97 1.4 169 0.4 327 0.2
7 228.8 50 1.6 98 0.2 170 0.2 333 0.2

8 163.8 51 0.8 100 0.2 174 0.2 342 0.2
9 181.6 52 4.4 101 1.2 176 0.2 345 0.2
10 55.2 53 4.2 103 0.4 177 1.0 351 0.2

11 61.0 54 1.2 104 1.0 178 1.2 374 0.2
12 47.8 55 2.2 108 1.0 179 0.2 379 0.2

13 33.6 56 1.2 109 0.2 180 1.0 421 0.2
14 26.4 57 3.2 110 1.6 181 0.2 422 0.2

15 50.8 58 4.2 111 1.0 182 0.2 453 0.4
16 27.0 59 0.6 112 0.2 183 0.2 454 0.2

17 23.8 60 2.4 113 0.2 192 1.0 457 0.2
18 24.0 61 1.4 114 1.0 193 0.2 458 0.2
19 14.8 62 4.2 116 1.0 199 0.2 476 0.2

20 16.6 63 1.4 117 0.4 202 1.0 479 0.2
21 13.4 64 1.0 119 1.0 208 0.2 480 0.2

22 15.0 65 4.2 121 1.2 210 0.4 495 0.2
23 8.6 66 1.0 122 0.2 211 0.2 496 0.2

24 8.8 67 1.6 123 1.4 214 0.2 627 0.2
25 7.8 68 1.2 125 0.2 215 0.2 636 0.2
26 18.6 69 2.6 126 1.2 217 1.2 641 0.2

27 10.6 70 0.8 127 0.2 222 0.4 646 0.2
28 8.2 71 0.2 128 0.2 228 1.0 658 0.2

29 80.8 72 2.4 130 0.2 232 0.2 666 0.2
30 14.8 73 1.2 136 1.0 240 0.6 669 0.2

31 3.8 74 1.4 138 0.2 241 0.2 679 0.2
32 5.2 75 2.4 140 1.2 244 0.2 690 0.2
33 5.2 76 1.8 141 0.2 245 0.2 695 0.2
34 2.8 77 1.2 142 0.4 249 1.0 708 0.2
35 7.0 78 1.4 143 0.6 251 1.0 713 0.2
36 5.2 79 0.6 144 0.4 252 2.0 765 0.2
37 2.8 80 0.4 145 0.2 258 0.2 860 0.4

38 5.8 81 0.4 146 0.4 274 1.0 861 0.6
39 7.4 83 0.2 147 0.2 286 0.2 863 0.2

40 4.2 84 0.4 151 0.4 304 0.2 1052 0.2
41 3.4 85 1.2 152 0.2 313 0.4 1436 1.0
42 5.0 86 0.2 153 0.2 314 0.2 1902 0.2

Table 16: Distribution of in-degrees of Ivy objects

33

Out-degree Count Out-degree Count Out-degree Count Out-degree Count

0 18017.8 24 2.0 60 25.6 116 1.0
1 15598.6 25 6.2 61 1.0 118 1.0
2 24773.4 26 2.2 62 2.0 125 1.0
3 7496.2 27 3.0 64 1.0 128 1.0
4 972.2 29 1.0 65 0.2 135 1.0
5 877.8 30 1.0 70 1.0 136 1.0
6 158.4 31 0.4 71 2.0 137 1.0
7 230.6 32 3.0 75 0.2 145 1.0
8 74.8 33 3.0 76 1.0 160 1.0
9 69.4 34 1.0 79 1.0 163 1.0
10 34.2 35 1.0 80 3.0 167 12.0
11 40.2 36 3.0 81 2.0 168 1.0

12 21.2 37 2.0 82 2.0 188 1.0
13 14.0 39 2.0 83 1.0 208 1.0
14 18.0 40 2.2 85 1.0 209 1.0

15 34.0 41 3.2 86 1.0 221 1.0
16 10.6 42 1.6 88 1.0 238 1.0

17 6.0 44 2.0 89 1.0 260 1.0
18 6.0 45 2.0 91 1.0 261 1.0

19 3.4 47 0.2 94 1.0 299 1.0
20 28.8 48 1.2 98 1.0 320 1.0
21 65.0 50 2.0 100 0.2 373 1.0

22 20.4 55 1.0 106 1.0 695 1.0
23 11.2 57 12.0 110 2.0

Table 17: Distribution of out-degrees of Ivy objects

Depth Count Depth Count Depth Count Depth Count

0 8736.8 13 927.8 26 202.4 39 17.8

1 3865.2 14 875.4 27 170.2 40 12.4
2 3247.0 15 846.2 28 143.2 41 11.2

3 3954.2 16 779.8 29 125.8 42 11.0
4 6041.8 17 694.6 30 114.8 43 6.0
5 5970.6 18 631.6 31 103.2 44{46 3.0
6 5919.8 19 579.2 32 92.8 47{56 2.8

7 5131.2 20 565.4 33 80.0 57{65 1.8
8 6120.8 21 523.4 34 62.8 66{78 1.6
9 4858.8 22 385.4 35 48.8 79{123 1.4

10 1996.6 23 329.8 36 37.2 124{255 1.2
11 1112.8 24 279.4 37 26.4 256{1804 1.0
12 976.0 25 244.8 38 22.4 1805 0.4

Table 18: Distribution of depths of Ivy objects

34

Size Count Size Count Size Count Size Count

1a 47026.2 17 2.8 66 0.2 181 1.0
2 614.2 18 0.2 68 1.0 187 0.2
3 3.0 19 0.4 74 0.2 188 0.2
4 50.2 20 1.6 76 1.0 189 0.8
5 0.2 22 1.0 97 1.0 237 1.0
6 13.8 26 0.2 101 1.0 293 1.0
7 1.2 28 0.2 103 1.0 310 1.0
8 31.4 29 0.2 126 1.0 670 0.2
9 0.2 30 0.2 148 0.2 691 0.2
10 17.8 31 1.0 162 0.2 692 0.2
11 1.0 34 1.0 164 0.6 13347 0.4
12 0.2 35 1.0 165 19.4 13502 0.4
14 1.2 37 1.0 166 0.4 13519 0.2

15 1.6 43 1.2 167 1.4

aA total of 52 of the objects in these singleton components contained REFs to themselves.
Overall, 157.2 (0.23%) of the objects on the Ivy heap contained REFs to themselves.

Table 19: Numbers of strongly connected components in Ivy

7 Summary

Garbage collection is used extensively in the Topaz computing environment.
Automatic storage management simpli�es the construction of large software
systems, and Topaz provides a number of additional useful facilities tied to
garbage collection.

The challenges of providing appropriate garbage collection are di�erent in
Topaz than in most Lisp-like environments. In particular, noticeable interrup-
tions of service are not allowed, so concurrent collection must be used.

It seems plausible that improvements in technology will eventually make
garbage collection widespread in general-purpose languages, and in systems im-
plementation languages as well. The Topaz experience illustrates how it is
possible to extend a systems implementation language with garbage collection,
and successfully use it to build a large software environment. Could garbage
collection work better for systems programming? Almost certainly, and the
measurements listed here, along with the discussion in the companion report [4],
should help de�ne the problem. For example, the added overhead of garbage
collection can be annoying in Topaz, but it is uncertain how well traditional
approaches from Lisp-like environments, such as generational collection, would
improve matters. New approaches may be needed.

8 Acknowledgments

Many people have contributed to the Topaz system over several years. The
Modula-2+ garbage collector was initially designed by Paul Rovner and Butler

35

Lampson and was implemented by Paul Rovner; it was redesigned and reimple-
mented by John DeTreville. Pickles were designed by Butler Lampson and Paul
Rovner, and implemented by Violetta Cavalli-Sforza and Bill Kalsow. Network
REFs are due to Ted Wobber and Andrew Birrell. Ivy was designed and imple-
mented principally by Mark Brown, Patrick Chan, and Mary-Claire van Leunen.
Tinylisp and related packages like List and Sx were designed and implemented
by John Ellis.

Many thanks to Sue Owicki for reviewing this paper, John Ellis for his many
valuable comments on earlier drafts, and Cynthia Hibbard for many editing
passes.

36

37

References

[1] A. D. Birrell, and B. J. Nelson. Implementing remote procedure calls. ACM
Transactions on Computer Systems 2, 1 (February 1984), 39-59.

[2] Luca Cardelli, James Donahue, Lucille Glassman, Mick Jordan, Bill
Kalsow, and Greg Nelson. Modula-3 Report (revised). Research Report 52,
Digital Equipment Corporation Systems Research Center, November 1989.

[3] Douglas W. Clark, and C. Cordell Green. An empirical study of list struc-
ture in Lisp. Communications of the ACM 20, 2 (Feb. 1977), 78-87.

[4] John DeTreville. Experience with Concurrent Garbage Collectors for

Modula-2+. Research Report 64, Digital Equipment Corporation Systems
Research Center, August 1990.

[5] L. Peter Deutsch, and Daniel G. Bobrow. An e�cient, incremental, auto-
matic garbage collector. Communications of the ACM 19, 9 (Sept. 1976),
522-526.

[6] Adele Goldberg, and David Robson. Smalltalk-80: The Language and Its

Implementation. Addison-Wesley, 1983.

[7] Brian W. Kernighan, and Dennis M. Ritchie. The C Programming Lan-

guage. Prentice-Hall, 1978.

[8] B. Liskov, R. Atkinson, T. Bloom, E. Moss, J. C. Scha�ert, R. Scheier,
and A. Snyder. CLU Reference Manual. Springer-Verlag, 1984.

[9] John McCarthy, Paul W. Abrahams, Daniel J. Edwards, Timothy P. Hart,
and Michael I. Levin. LISP 1.5 Programmer's Manual. MIT Press, second
edition, 1965.

[10] Paul R. McJones and Garret F. Swart. \Evolving the UNIX System In-
terface to Support Multithreaded Programs." Research Report 21, Digital
Equipment Corporation Systems Research Center, September 1987.

[11] Paul R. McJones and Garret F. Swart. Evolving the UNIX System Interface
to Support Multithreaded Programs. Proceedings, 1989 Winter USENIX
Technical Conference.

[12] David Moon, Richard Stallman, and Daniel Weinreb. LISP Machine Man-

ual. MIT Arti�cial Intelligence Laboratory, �fth edition, 1983.

[13] Paul Rovner. On Adding Garbage Collection and Runtime Types to a

Strongly-Typed, Statically-Checked, Concurrent Language. Xerox Palo Alto
Research Center, CRL-84-7, July 1985.

38

[14] Paul Rovner, Roy Levin, and John Wick. On Extending Modula-2 For

Building Large, Integrated Systems. Research Report 3, Digital Equipment
Corporation Systems Research Center, January 1985.

[15] Paul Rovner. Extending Modula-2 to build large, integrated systems. IEEE
Software, 3(6), November 1986.

[16] Robert A. Shaw. Improving Garbage Collector Performance in Virtual
Memory. Technical Report CSL-TR-87-323, Stanford University, March
1987.

[17] Daniel Swinehart, Polle Zellweger, Richard Beach, and Robert Hagmann.
A Structural View of the Cedar Programming Environment. ACM Trans-

actions on Programming Languages and Systems 8, 4 (October 1986), 419-
490.

[18] David Michael Ungar. The Design and Evaluation of a High Performance

Smalltalk System. MIT Press, 1987.

[19] Niklaus Wirth. Programming in MODULA-2. Springer-Verlag, third edi-
tion, 1985.

[20] N. Wirth, and J. Gutknecht. The Oberon System. Software|Practice and

Experience 19, 9 (September 1989), 857-893.

[21] Benjamin G. Zorn, Comparative Performance Evaluation of Garbage Col-

lection Algorithms. Technical Report UCB/CSD 89/544, Computer Science
Division (EECS), University of California, Berkeley, December 1989.

39

