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How Useful is Old Information?
EXTENDED ABSTRACT

Michael Mitzenmacher∗

Abstract

We consider the problem of load balancing in dynamic distributed systems in cases where new incoming tasks can
make use of old information. For example, consider a multi-processor system where incoming tasks with exponen-
tially distributed service requirements arrive as a Poisson process, the tasks must choose a processor for service, and a
task knows when making this choice the processor loads fromT seconds ago. What is a good strategy for choosing a
processor, in order for tasks to minimize their expected time in the system? Such models can also be used to describe
settings where there is a transfer delay between the time a task enters a system and the time it reaches a processor for
service.

Our models are based on considering the behavior of limiting systems where the number of processors goes to
infinity. The limiting systems can be shown to accurately describe the behavior of sufficiently large systems, and
simulations demonstrate that they are reasonably accurate even for systems with a small number of processors. Our
studies of specific models demonstrate the importance of using randomness to break symmetry in these systems and
yield important rules of thumb for system design. The most significant result is that only small amounts of load
information can be extremely useful in these settings; for example, having incoming tasks choose the least loaded of
two randomly chosen processors is extremely effective over a large range of possible system parameters. In contrast,
using global information can actually degrade performance unless used correctly; for example, unlike most settings
where the load information is current, having tasks go to the least loaded server can significantly hurt performance.

1 Introduction

Distributed computing systems, such as networks of workstations or mirrored sites on the World Wide Web, face the
problem of using their resources effectively. If some hosts lie idle while others are heavily loaded, system performance
can fall significantly. To prevent this,load balancingis used to distribute the workload, improving performance
measures such as the expected time a task spends in the system. Although determining an effective load balancing
strategy depends strongly on the details of the underlying system, general models from both queueing theory and
computer science often provide valuable insight and general rules of thumb.

In this paper, we develop analytical models for the realistic setting where old load information is available. For
example, suppose we have a system ofn servers, and incoming tasks must choose a server and wait for service. If the
incoming tasks know the current number of tasks already queued at each server, it is often best for the task to go to the
server with the shortest queue [18]. In many actual systems, however, it is unrealistic to assume that tasks will have
access to up to date load information; global load information may be updated only periodically, or the time delay for
a task to move to a server may be long enough that the load information is out of date by the time the task arrives. In
this case, it is not clear what the best load balancing strategy is.

Our models yield surprising results. Unlike similar systems in which up to date information is available, the
strategy of going to the shortest queue can lead to extremely bad behavior when load information is out of date;
however, the strategy of going to the shortest of two randomly chosen queues performs well under a large range of
system parameters. This result suggests that systems which attempt to exploit global information to balance load too
aggressively may suffer in performance, either by misusing it or by adding significant complexity.

∗email: michaelm@pa.dec.com This work originally appeared in theProceedings of the Sixteenth Annual ACM Symposium on Principles of
Distributed Computing, 1997.
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1.1 Previous Work

The problem of how to use old information is generally neglected in theoretical work, even though balancing workload
from distributed clients based on incomplete or possibly out of date server load information may be an increasingly
common system requirement. A recent work by Awerbuch, Azar, Fiat, and Leighton [2] covers a similar theme,
although their models are substantially different from ours.

The idea of each task choosing from a small number of processors in order to balance the load has been studied
before, both in theoretical and practical contexts. In many models, using just two choices per task can lead to an
exponential improvement over one choice in the maximum load on a processor. In the static setting, this improvement
appears to have first been noted by Karp, Luby, and Meyer auf der Heide [7]. A more complete analysis was given by
Azar, Broder, Karlin, and Upfal [3]. In the dynamic setting, this work was extended in [12, 13]; similar results were
independently reported in [22].

In the queuing theory community, similar previous work includes that of Towsley and Mirchandaney [17] and
that of Mirchandaney, Towsley, and Stankovic [9, 10]. These authors examine how some simple load sharing policies
are affected by communication delay, extending a similar study of load balancing policies by Eager, Lazowska, and
Zahorjan [5]. Their analyses are based on Markov chains associated with the load sharing policies they propose and
simulations.

Our works expands on this work in several directions. We apply a fluid-limit approach, in which we develop a
deterministic model corresponding to the limiting system asn → ∞. We call this system theinfinite system, and
also refer to the method as the infinite system approach. This approach has successfully been applied previously to
study load balancing problems in [1, 12, 13, 14, 15, 22] (see also [1] for more references, or [21] for the use of this
approach in a different setting), and it can be seen as a generalization of the previous Markov chain analysis. Using
this technique, we examine several new models of load balancing in the presence of old information. In conjunction
with simulations, our models demonstrate several basic but powerful rules of thumb for load balancing systems, most
notably the effectiveness of using just two choices.

The remainder of this paper is organized as follows: in Section 2, we describe a general queueing model for
the problems we consider. In Sections 3, 4, and 5, we consider different models of old information. For each such
model, we present a corresponding infinite system, and using the infinite systems and simulations we determine im-
portant behavioral properties of these models. We conclude with a section on open problems and further directions for
research.

2 The Bulletin Board Model

Our work will focus on the following natural dynamic model: tasks arrive as a Poisson stream of rateλn, whereλ < 1,
at a collection ofn servers. Each task chooses one of the servers for service and joins that server’s queue; we shall
specify the policy used to make this choice subsequently. Tasks are served according to the First In First Out (FIFO)
protocol, and the service time for a task is exponentially distributed with mean 1. We are interested in the expected
time a task spends in the system in equilibrium, which is a natural measure of system performance, and more generally
in the distribution of the time a customer spends in the queue. Note that the average arrival rate per queue isλ < 1,
and that the average service rate is 1; hence, assuming the tasks choose servers according to a reasonable strategy, we
expect the system to bestable, in the sense that the expected number of tasks per queue remains finite in equilibrium.
In particular, if each task chooses a server independently and uniformly at random, then each server acts as an M/M/1
queue (Poisson arrivals, exponentially distributed service times) and is clearly stable. We will examine the behavior
of this system under a variety of methods that tasks may use to choose their server.

We will allow the tasks choice of server to be determined by load information from the servers. It will be convenient
if we picture the load information as being located at abulletin board. We strongly emphasize that the bulletin board
is a purelytheoreticalconstruct used to help us describe various possible load balancing strategies and need not exist
in reality. The load information contained in the bulletin board neednotcorrespond exactly to the actual current loads;
the information may be erroneous or approximate. Here, we focus on the problem of what to do when the bulletin
board contains old information (where what we mean by old information will be specified in future sections).

We shall focus ondistributedsystems, by which we mean that the tasks cannot directly communicate in order
to coordinate where they go for service. The decisions made by the tasks are thus based only on whatever load
information they obtain and their entry time. Although our modeling technique can be used for a large class of
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strategies, in this paper we shall concentrate on the following natural, intuitive strategies:

• Choose a server independently and uniformly at random.

• Choosed servers independently and uniformly at random, check their load information from the bulletin board,
and go to the one with the smallest load.1

• Check all load information from the bulletin board, and go to the server with the smallest load.

The strategy of choosing a random server has several advantages: it is easy to implement, it has low overhead,
it works naturally in a distributed setting, and it is known that the expected lengths of the queues remain finite over
time. However, the strategy of choosing a small number of servers and queueing at the least loaded has been shown
to perform significantly better in the case where the load information is up to date [5, 12, 13, 22]. It has also proved
effective in other similar models [3, 7, 13]. Moreover, the strategy also appears to be practical and have a low overhead
in distributed settings, where global information may not be available, but polling a small number of processors may
be possible. Going to the server with the smallest load appears natural in more centralized systems where global
information is maintained. Indeed, going to the shortest queue has been shown to be optimal in a variety of situations
in a series of papers, starting for example with [18, 20]. Hence it makes an excellent point of comparison in this
setting.

We develop analytical results for the limiting case asn → ∞, for which the system can be accurately modeled
by an infinite system. The infinite system consists of a set of differential equations, which we shall describe below,
that describe the expected behavior of the system. This corresponds to the exact behavior of the system asn → ∞.
More information on this approach can be found in [6, 8, 12, 13, 14, 15, 22]. (We note, however, that this approach
works only because the systems for finiten have an appropriate form as a Markov chain; indeed, we initially require
exponential service times and Poisson arrivals to ensure this form.) Previous experience suggests that using the infinite
system to estimate performance metrics such as the expected time in the system proves accurate, even for relatively
small values ofn [5, 12, 13, 14]. We shall verify this for the models we consider by comparing our analytical results
with simulations.

3 Periodic Updates

The previous section has described possible ways that the bulletin board can be used. We now turn our attention to how
a bulletin a board can be updated. Perhaps the most obvious model is one where the information is updated at periodic
intervals. In a client-server model, this could correspond to an occasional broadcast of load information from all the
servers to all the clients. Because such a broadcast is likely to be expensive (for example, in terms of communication
resources), it may only be practical to do such a broadcast at infrequent intervals. Alternatively, in a system without
such centralization, servers may occasionally store load information in a readable location, in which case tasks may
be able to obtain old load information from a small set of servers quickly with low overhead.

We therefore suggest theperiodic updatemodel, in which the bulletin board is updated with accurate information
everyT seconds. Without loss of generality, we shall take the update times to be 0, T,2T, . . .. The time between
updates shall be called aphase, and phasei will be the phase that ends at timei T . The time that the last phase began
will be denoted byTt , wheret is the current time.

The infinite system we consider will utilize a two-dimensional family of variables to represent the state space. We
let Pi, j (t) be the fraction of queues at timet that have true loadj but have loadi posted on the bulletin board. We
let qi (t) be the rate of arrivals at a queue of sizei at timet; note that, for time-independent strategies, the ratesqi (t)
depend only on the load information at the bulletin boards and the strategy used by the tasks, and hence is the same as
qi (Tt). In this case, the ratesqi change whenever the bulletin board is updated.

We first consider the behavior of the system during a phase, or at all timest 6= kT for integersk ≥ 0. Consider
a server showingi customers on the bulletin board, but havingj customers: we say such a server is in state(i , j ).
Let i , j > 1. What is the rate at which a server leaves state(i , j )? A server leaves this state when customer departs,
which happens at rateµ = 1, or a customer arrives, which happens at rateqi (t). Similarly, we may ask the rate at
which customers enter such a state. This can happen if a customer arrives at a server with loadi posted on the bulletin

1In this and other strategies, we assume that ties are broken randomly. Also, thed choices are made without replacement in our simulations; in
the infinite system setting, the difference between choosing with and without replacement is negligible.
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board but havingj − 1 customers, or a customer departs from a server with loadi posted on the bulletin board but
having j + 1 customers. This description naturally leads us to model the behavior of the system by the following set
of differential equations:

d Pi,0(t)

dt
= Pi,1(t)− Pi,0(t)qi (t) ; (1)

d Pi, j (t)

dt
= (Pi, j−1(t)qi (t)+ Pi, j+1(t)) (2)

− (Pi, j (t)qi (t)+ Pi, j (t)) , j ≥ 1.

These equations simply measure the rate at which servers enter and leave each state. (Note that the casej = 0 is a
special case.) While the queueing process is random, however, these differential equations are deterministic, yielding
a fixed trajectory once the initial conditions are given. In fact, these equations describe the limiting behavior of the
process asn→∞, as can be proven with standard (albeit complex) methods [6, 8, 13, 14, 15, 21, 22]. Here we take
these equations as the appropriate limiting system and focus on using the differential equations to study load balancing
strategies.

For integersk ≥ 0, att = kT there is a state jump as the bulletin board is updated. At sucht, necessarilyPi, j (t) = 0
for all i 6= j , as the load of all servers is correctly portrayed by the bulletin board. If we letPi, j (t−) = limz→t− Pi, j (z),
so that thePi, j (t−) represent the state just before an update, then

Pi,i (t) =
∑

j

Pj ,i (t
−).

3.1 Specific Strategies

We consider what the proper form of the ratesqi are for the strategies we examine. It will be convenient to define the
load variablesbi (t) be the fraction of servers with loadi posted on the bulletin board; that is,bi (t) =

∑∞
j=0 Pi, j (t).

In the case where a task choosesd servers randomly, and goes to the one with the smallest load on the bulletin
board, we have the arrival rate

qi (t) = λ
(∑

j≥i bj (t)
)d
−
(∑

j>i bj (t)
)d

bi (t)
.

The numerator is just the probability that the shortest posted queue length of thed choices on the bulletin board is size
i . To get the arrival rate per queue, we scale byλ, the arrival rate per queue, andbi (t), the total fraction of queues
showingi on the board. In the case whered = 1, the above expression reduces toqi (t) = λ, and all servers have the
same arrival rate, as one would expect.

To model when tasks choose the shortest queue on the bulletin board, we develop an interesting approximation.
We assume that there always exists servers posting load 0 on the bulletin board, and we use a model where tasks go
to a random server with posted load 0. As long as we start with some servers showing 0 on the bulletin board in the
infinite system (for instance, if we start with an empty system), then we will always have servers showing load 0, and
hence this strategy is valid. In the case where the number of queues is finite, of course, at some time all servers will
show load at least one on the billboard; however, for a large enough number of servers the time between such events
is large, and hence this model will be a good approximation. So for the shortest queue policy, we set the rate

q0(t) = λ

b0(t)
,

and all other ratesqi (t) are 0.

3.2 The Fixed Cycle

In a standard deterministic dynamical system, a natural hope is that the system converges to afixed point, which
is a state at which the system remains forever once it gets there; that is, a fixed point would correspond to a point
P = (Pi, j ) such thatd Pi, j

dt = 0. The above system clearly cannot reach a fixed point, since the updating of the bulletin
board at timet = kT causes a jump in the state; specifically, allPi, j with i 6= j become 0. It is, however, possible
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to find afixed cyclefor the system. We find a pointP such that ifP = (Pi, j (k0T)) for some integerk0 ≥ 0, then
P = (Pi, j (kT)) for all k ≥ k0. In other words, we find a state such that if the infinite system begins a phase in that
state, then it ends the phase in the same state, and hence repeats the same cycle for every subsequent phase. (Note that
it also may be possible for the process to cycle only after multiple phases, instead of just a single phase. We have not
seen this happen in practice, and we conjecture that it is not possible for this system.)

To find a fixed cycle, we note that this is equivalent to finding a vectorEπ = (πi ) such that ifπi is the fraction of
queues with loadi at the beginning of the phase, the same distribution occurs at the end of a phase. Given an initialEπ ,
the arrival rate at a queue withi tasks from time 0 toT can be determined. By our assumptions of Poisson arrivals and
exponential service times, during each phase each server acts as an independent M/M/1 queue that runs forT seconds,
with some initial number of tasks awaiting service. We use this fact to find theπi .

Formulae for the distribution of the number of tasks at timeT for an M/M/1 queue with arrival rateλ andi tasks
initially have long been known (for example, see [4, pp. 60-64]); the probability of finishing withj tasks afterT
seconds, which we denote bymi, j , is

mi, j (T) = λ
1
2 ( j−i )e−(1+λ)T [Bj−i (2T

√
λ)+ λ− 1

2 Bi+ j+1(2T
√
λ)

+ (1− λ)
∞∑

k=1

λ−
1
2 (1+k)Bi+ j+k+1(2T

√
λ)],

where hereBz(x) is the modified Bessel function of the first kind. IfEπ gives the distribution at the beginning and end
of a phase, then theπi must satisfyπi =

∑
j π j mj ,i (T), and this can be used to determine theπi .

It seems unlikely that we can use the above characterization to find a closed form for the state at the beginning
of the phase of for the fixed cycle in terms ofT . In practice we find the fixed cycle easily by running a truncated
version of the system of differential equations (bounding the maximum values ofi and j ) above until reaching a point
where the change in the state between two consecutive updates is sufficiently small. This procedure works under the
assumption that the trajectory always converges to the fixed cycle rapidly. (We discuss this more in the next section.)
Alternatively, from a starting state we can apply the above formulae formi, j to successively find the states at the
beginning of each phase, until we find two consecutive states in which the difference is sufficiently small. Simulating
the differential equations has the advantage of allowing us to see the behavior of the system over time, as well as to
compute system measurements such as the expected time a task spends in the system.

3.3 Convergence Issues

Given that we have found a fixed cycle for the relevant infinite system, important questions remain regarding conver-
gence. One question stems from the approximation of a finite system with the corresponding infinite system: how
good is this approximation? The second question is whether the trajectory of the infinite system always converges to
its fixed cycle, and if so, how quickly?

For the first question, we note that the standard methods referred to previously provide only very weak bounds on
the convergence rate between infinite and finite systems. By focusing on a specific problem, proving tighter bounds
may be possible (see, for example, the discussion in [21]). In practice, however, as we shall see in Section 3.4, the
infinite system approach proves extremely accurate even for small systems, and hence it is a useful technique for
gauging system behavior.

For the second question, we have found in our experiments that the system does always converge to its fixed cycle,
although we have no proof of this. The situation is generally easier when the trajectory converges to a fixed point,
instead of a fixed cycle, as we shall mention in subsequent sections. (See also [13].) Proving this convergence hence
remains an interesting open theoretical question.

3.4 Simulations

We present some simulation results, with two main purposes in mind: first, we wish to show that the infinite system
approach does in fact yield a good approximation for the finite case; second, we wish to gain insight into the problem
load balancing using old information. We choose to emphasize the second goal. As such, we plot data from simulations
of the actual queueing process (except in the case where one server is chosen at random; in this case we apply standard
formulae from queueing theory). We shall note the deviation of the values obtained from the infinite system and these
simulations where appropriate.
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Figure 1: Strategy comparison atλ = 0.50.

Update every T seconds

Update interval T

A
ve

ra
g

e 
T

im
e

0

5

1 0

1 5

2 0

2 5

0 1 0 2 0 3 0 4 0 5 0

1 Choice

2 Choices

3 Choices

Shortest

λ=0.9, µ= 1.0
n = 100

Figure 2: Strategy comparison atλ = 0.90.

This methodology may raise the question of why the infinite system models are useful at all. There are several
reasons: first, simulating the differential equations is often much faster than simulating the corresponding queueing
system; this issue will be explored further in the final version of the paper. Second, the infinite systems provide
a theoretical framework for examining these problems that can lead to formal theorems. Third, the infinite system
provides good insight into and accurate approximations of how the system behaves, independent of the number of
servers. This information should prove extremely useful in practice.

In Figures 1 and 2, the results for various strategies are given for arrival ratesλ = 0.5 andλ = 0.9 for n = 100
servers. In all cases, the average time a task spends in the system for the simulations withn = 100 are higher than the
expected time in the corresponding infinite system. Whenλ = 0.5, the deviation between the two results are smaller
than 1% for all strategies. Whenλ = 0.9, for the strategy of choosing from two or three servers, the simulations are
within 1-2% of the results obtained from the infinite system. In the case of choosing the shortest queue, the simulations
are within 8-17% of the infinite system, again with the average time from simulations being larger. We expect that this
larger discrepancy is due to the inaccuracy of our model for the shortest queue system, as mentioned in Section 3.1;
however, this is suitably accurate to gauge system behavior. These results demonstrate the accuracy of the infinite
system approach.

Several surprising behaviors manifest in the figures. First, although choosing the shortest queue is best when
information is current (T = 0), for even very small values ofT the strategy performs worse than randomly selecting a
queue, especially under high loads (that is, largeλ). Although choosing the shortest queue is known to be suboptimal
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Figure 3: Strategy comparison atλ = 0.90.

in certain systems with current information [19], its failure in the presence of old information is dramatic. Also,
choosing from just two servers is the best of our proposed strategies over a wide range ofT , although for sufficiently
largeT making a single random choice performs better.

We suggest some helpful intuition for these behaviors. If the update intervalT is sufficiently small, so that only
a few new tasks arrive everyT seconds, then choosing a shortest queue performs very well, as tasks tend to wait at
servers with short queues. AsT grows larger, however, a problem arises; all the tasks that arrive over thoseT seconds
will go only to the small set of servers that appear lightly loaded on the board, overloading them while other servers
empty. The system demonstrates what we callherd behavior: herds of tasks all move together to the same locations.
(As a real-life example of this phenomenon, consider what happens at a supermarket when it is announced that “Aisle
7 is now open.” Very often Aisle 7 quickly becomes the longest queue.) As the update intervalT →∞, the utility of
the bulletin board becomes negligible (and, in fact, it can actually be misleading!), and the best strategy approaches
choosing a server at random. Although this intuition is helpful, it remains surprising that making just two choices
performs substantially better than even three choices over a large interval of values ofT that seem likely to arise in
practice.

The same behavior is also apparent even with a much smaller number of servers. In Figure 3 we examine simula-
tions of the same strategies with only eight servers, which is a realistic number for a current multi-processor machine.
In this case the approximations given by the infinite system are less accurate, although forT > 1 they are still within
20% of the simulations. Other simulations of small systems demonstrate similar behavior, and as the number of servers
n grows the infinite system grows more accurate. Hence, even for small systems, the infinite system approach provides
reasonable estimates of system behavior and demonstrates the trends as the update intervalT grows.

Finally, we note again that in all of our simulations of the differential equations, the infinite system rapidly reaches
the fixed cycle suggested in Section 3.2.

4 Continuous Update

The periodic update system is just one possible model for old information; we now consider another natural model
for distributed environments. In acontinuous updatesystem, the bulletin board is updated continuously, but the board
remainsT seconds behind the true state at all times. Hence every incoming task may use load information fromT
seconds ago in making their destination decision. This model corresponds to a situation where there is a transfer delay
between the time incoming jobs determine which processor to join and the time they join.

We will begin by modeling a similar scenario. Suppose that each task, upon entry, sees a billboard with information
with some timeX ago, whereX is an exponentially distributed random variable with meanT , and these random
variables are independent for each task. We examine this model, and later consider what changes are necessary to
replace the random variableX by a constantT .

Modeling this system appears difficult, because it seems that we have to keep track of the past. Instead, we shall
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think of the system as working as follows: tasks first enter a waiting room, where they obtain current load information
about queue lengths, and immediately decide upon their destination according to the appropriate strategy. They then
wait for a timeX that is exponentially distributed with meanT and independent among tasks. Note that tasks have
no information about other tasks in the waiting room, including how many there are and their destinations. After their
wait period is finished, they proceed to their chosen destination; their time in the waiting room is not counted as time
in the system. We claim that this system is equivalent to a system where tasks arrive at the servers and choose a server
based on information from a timeX ago as described. The key to this observation is to note that if the arrival process to
the waiting room is Poisson, then the exit process from the waiting room is also Poisson, as is easily shown by standard
arguments. Interestingly, another interpretation of the waiting room is as a communication delay, corresponding to the
time it takes a task from a client to move to a server. This model is thus related to similar models in [9].

The state of the system will again be represented by a collection of numbers for a set of ordered pairs. In this case,
Pi, j will be the fraction of servers withj current tasks andi tasks sitting in the waiting room; similarly, we shall say
that a server is in state(i , j ) if it has j tasks enqueued andi tasks in the waiting room. In this model we letqj (t) be the
arrival rate of tasks into the waiting room that choose servers with current loadj as their destination. The expression
for qj will depend on the strategy for choosing a queue, and can easily be determined, as in Section 3.1.

To formulate the differential equations, consider first a server with in state(i , j ), wherei , j ≥ 1. The queue can
leave this state in one of three ways: a task can complete service, which occurs at rateµ = 1; a new task can enter the
waiting room, which occurs at rateqj (t); or a message can move from the waiting room to the server, which (because
of our assumption of exponentially distributed waiting times) occurs at ratei

T . Similarly one can determine three ways
in which a server can enter(i , j ). The following equations include the boundary cases:

d P0,0(t)

dt
= P0,1(t)− q0(t)P0,0(t) ;

d P0, j (t)

dt
= P0, j+1(t)+ P1, j−1(t)

T
− qj (t)P0, j (t)

− P0, j (t) , j ≥ 1;
d Pi,0(t)

dt
= q0(t)Pi−1,0(t)+ Pi,1(t)− q0(t)Pi,0(t)

− i Pi,0(t)

T
, i ≥ 1;

d Pi, j (t)

dt
= Pi, j+1(t)+ (i + 1)Pi+1, j−1(t)

T
+ qj (t)Pi−1, j (t)

− qj (t)Pi, j (t)− Pi, j (t)− i Pi, j (t)

T
, i , j ≥ 1.

4.1 The Fixed Point

Just as in the periodic update model the system converges to a fixed cycle, simulations demonstrate that the continuous
update model quickly converges to a fixed point, whered Pi, j (t)

dt = 0 for all i , j . We therefore expect that in a suitably
large finite system, in equilibrium the distribution of server states is concentrated near the distribution given by the
fixed point. Hence, by solving for the fixed point, one can the estimate system metrics such as the expected time
in the queue (using, for example, Little’s Law). The fixed point can be approximated numerically by simulating the
differential equations, or it can be solved for using the family of equationsd Pi, j (t)

dt = 0. In fact, this approach leads to
predictions of system behavior that match simulations quite accurately, as we will detail in Section 4.3.

Using techniques discussed in [13, 14], one can prove that, for all the strategies we consider here, the fixed point
is stable, which informally means that the trajectory remains close to its fixed point (once it gets close). We omit the
straightforward argument in this extended abstract. Our simulations suggest that in fact the infinite systemconverges
exponentiallyto its fixed point; that is, that the distance between the fixed point and the trajectory decreases geomet-
rically quickly over time. (See [13, 14].) Although we can prove this for some special cases, proving exponential
convergence for these systems in general remains an open question.
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Figure 4: Each task sees the loads fromT seconds ago.

4.2 Continuous Update, Constant Time

In theory, it is possible to extend the continuous update model to approximate the behavior of a system where the
bulletin board shows load information fromT seconds ago; that is, whereX is a constant random variable of valueT .
The customer’s time in the waiting room must be made (approximately) constant; this can be done effectively using
Erlang’smethod of stages. The essential idea is that we replace our single waiting room with a series ofr consecutive
waiting rooms, such that the time a task spends in each waiting room is exponentially distributed with meanT/r . The
expected time waiting is thenT , and the variance decreases withr ; in the limit asr →∞, it is as though the waiting
time is constant. Taking a reasonable sizedr can lead to a good approximation for constant time. Other distributions
can be handled similarly. (See, e.g., [14].)

In practice, this model is difficult to use, as the state of a server must now be represented by anr + 1-dimensional
vector that keeps track of the queue length and number of customers at each of ther waiting rooms. Hence the number
of states to keep track of grows exponentially inr . It may still be possible to use this approach in some cases, by
truncating the state space appropriately; however, for the remainder, we will consider this model only in simulations.

4.3 Simulations

As in Section 3.4, we present results from simulating the actual queueing systems. We have chosen the case ofn = 100
queues andλ = 0.9 as a representative case for illustrative purposes. As one might expect, the infinite system proves
more accurate asn increases, and the differences among the strategies grow more pronounced with the arrival rate.

We first examine the behavior of the system whenX, the waiting room time, is a fixed constantT . In this case the
system demonstrates behavior remarkably similar to the periodic update model, as shown in Figure 4. For example,
choosing the shortest server performs poorly even for small values ofT , while two choices performs well over a broad
range forT .

When we consider the case whenX is an exponentially distributed random variable with meanT , however, the
system behaves radically differently (Figure 5). All three of the strategies we consider do extremely well, much better
than whenX is the fixed constantT . We found that the deviation between the results from the simulations and the
infinite system are very small; they are within 1-2% when two or three choices are used, and 5-20% when tasks choose
the shortest queue, just as in the case of periodic updates (Section 3.4).

We suggest an interpretation of this surprising behavior, beginning by considering when customers choose the
shortest queue. In the periodic update model, we saw that this strategy led to “herd behavior”, with all tasks going to
the same small set of servers. The same behavior is evident in this model, whenX is a fixed constant; it takes some
time before entering customers become aware that the system loads have changed. In the case whereX is randomly
distributed, however, customers that enter at almost the same time may have different views of the system, and thus
make different choices. Hence the “herd behavior” is mitigated, improving the load balancing. Similarly, performance
improves with the other strategies as well.
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Board Z seconds behind, Z exponential with mean T
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Figure 5: Each task sees the loads fromX seconds ago, where theX are independent exponential random variables
with meanT .

Board Z seconds behind, Z uniform on [T/2,3T/2]
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Figure 6: Each task sees the loads fromX seconds ago, where theX are independent uniform random variables from
[T/2,3T/2].

We justify this interpretation by considering other distributions forX; the cases whereX is uniformly distributed
on [T/2,3T/2] and on [0,2T] are given in Figures 6 and Figures 7. Both perform noticeably better than the case
whereX is fixed atT . That the larger interval performs dramatically better suggests that it is useful to have some
tasks that get very accurate load information (i.e, whereX is close to 0); this also explains the behavior whenX is
exponentially distributed.

This setting demonstrates how randomness can be used for symmetry breaking. In the periodic update case, by
having each task choose from just two servers, one introduces asymmetry. In the continuous update case, one can also
introduce asymmetry by randomizing the age of the load information.

This setting also demonstrates the danger of assuming that a model’s behavior does not vary strongly if one changes
underlying distributions. For example, in many cases in queueing theory, results are proven for models where service
times are exponentially distributed (as these results are often easier to obtain), and it is assumed that the behavior
when service times are constant (with the same mean) is similar. In some cases there are even provable relationships
between the two models (see, for example, [11, 16]). In this case, however, changing the distribution of the random
variableX causes a dramatic change in behavior.
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Board Z seconds behind, Z uniform on [0,2T]

Update interval T

A
ve

ra
g

e 
T

im
e

0

2

4

6

8

1 0

1 2

1 4

0 5 1 0 1 5 2 0 2 5

1 Choice

2 Choices

3 Choices

Shortest

λ=0.9, µ= 1.0
n = 100

Figure 7: Each task sees the loads fromX seconds ago, where theX are independent uniform random variables from
[0,2T ].

5 Individual updates

In the models we have considered thus far, the bulletin board contains load information from the same timet for
all the servers. It is natural to ask what happens when servers update their load information at different times, as
may be the case in systems where servers individually broadcast load information to clients. In anindividual update
system, the servers update the load information at the bulletin board individually. For convenience we shall assume
the time between each update for every server is independent and exponentially distributed with meanT . Note that,
in this model, the bulletin board contains only the load information and does not keep track of when the updates have
occurred.

The state of the system will again be represented by a collection of ordered pairs. In this case,Pi, j will be the
fraction of servers with true loadj but loadi posted on the bulletin board. We letqi (t) be the arrival rate of tasks to
servers with loadi posted on the bulletin board; the expression forqi will depend on the strategy for choosing a queue.
We let Si (t) be the total fraction of servers with true loadi at timet, regardless of the load displayed on the bulletin
board; noteSi (t) =

∑
j Pj ,i (t).

The true load of a server and its displayed load on the bulletin board match when an update occurs. Hence when
considering howPi,i changes, there will a term corresponding to when one of the fractionSi of servers with loadi
generates an update. The following equations are readily derived in a similar fashion as in previous sections.

d Pi,0(t)

dt
= Pi,1(t)− Pi,0(t)qi (t)− Pi,0(t)/T ;

d Pi, j (t)

dt
= Pi, j−1(t)qi (t)+ Pi, j+1(t)− Pi, j (t)qi (t)

− Pi, j (t)− Pi, j (t)/T, j ≥ 1 , i 6= j ;
d P0,0(t)

dt
= Pi,1(t)− Pi,0(t)qi (t)− P0,0(t)/T + S0(t)/T ;

d Pi,i (t)

dt
= Pi,i−1(t)qi (t)+ Pi,i+1(t)− Pi,i (t)qi (t)

− Pi,i (t)− Pi,i (t)/T + Si (t)/T , i ≥ 1.

As with the continuous update model, in simulations this model converges to a fixed point, and one can prove that
this fixed point is stable. Qualitatively, the behavior appears similar to the periodic update model, as can be seen in
Figure 8.
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Individual updates every Z seconds, Z
exponentially distributed with mean T
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Figure 8: Each server updates the board everyX seconds, whereX is exponentially distributed with meanT .

6 Open Questions and Conclusions

We have considered the question of how useful old information is in the context of load balancing. In examining
various models, we have found a surprising rule of thumb: choosing the least loaded of two random choices according
to the old load information performs well over a large range of system parameters and is generally better than similar
strategies, in terms of the expected time a task spends in the system. We have also seen the importance of using some
randomness in order to prevent customers from adopting the same behavior, as demonstrated by the poor performance
of the strategy of choosing the least loaded server in this setting.

We believe that there is a great deal more to be done in this area. Generally, we would like to see these models
extended and applied to more realistic situations. For example, it would be interesting to consider this question with
regard to other load balancing scenarios, such as in virtual circuit routing, or with regard to metrics other than the
expected time in the system, such as in a system where tasks have deadlines. A different theoretical framework for
these problems, other than the infinite system approach, might be of use as well. In particular, it would be convenient
to have a method that yields tighter bounds in the case wheren, the number of servers, is small. Finally, the problem
of handling more realistic arrival and service patterns appears quite difficult. In particular, it is well known that when
service distributions are heavy-tailed, the behavior of a load balancing system can be quite different than when service
distribution are exponential; however, we expect our rule of thumb performs well in this scenario as well.
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