
SRC Technical Note
1999 - 002
21 May 1999

Checking Java programs via guarded

commands

K. Rustan M. Leino, James B. Saxe, and Raymie Stata

Systems Research Center
130 Lytton Avenue

Palo Alto, California 94301

http://www.research.digital.com/SRC/

Copyright c©Compaq Computer Corporation 1999. All rights reserved

Abstract

This paper defines a simple guarded-command–like language and its semantics.
The language is used as an intermediate language in generating verification condi-
tions for Java. The paper discusses why it is a good idea to generate verification
conditions via an intermediate language, rather than directly.

Publication history. This paper appears inFormal Techniques for Java Programs,
workshop proceedings. Bart Jacobs, Gary T. Leavens, Peter M¨uller, and Arnd Poetzsch-
Heffter, editors. Technical Report 251, Fernuniversit¨at Hagen, 1999. Available from
www.informatik.fernuni-hagen.de/pi5/publications.html .

Checking Java programs via guarded commands

K. Rustan M. Leino, James B. Saxe, and Raymie Stata
Compaq Systems Research Center

{rustan,saxe,stata }@pa.dec.com

0 Introduction

It is well-known that the later a software error is detected, the more expensive it is
to correct. The Extended Static Checker for Java (ESC/Java) is a tool for finding, by
static analysis, common programming errors normally not detected until run-time, if
ever [3]. ESC/Java takes as input a Java program, possibly including user annotations,
and produces as output a list of warnings of potential errors. It does so by deriving a
verification conditionfor each routine (method or constructor), passing these verification
conditions to an automatic theorem-prover, and post-processing the prover’s output to
produce warnings from failed proofs.

Deriving verification conditions for a practical language, rather than for a toy lan-
guage, can be complex. Furthermore, in designing a tool for automatic checking, one
faces trade-offs involving the frequency of spurious warnings, the frequency of missed
errors, the efficiency of the tool, and the effort required to annotate programs. To explore
and exploit these trade-offs flexibly, it must be easy to change the verification conditions
generated by the tool.

To manage the complexity and achieve flexibility, we chose to derive verification
conditions by first translating the source language into a simple intermediateguarded-
commandlanguage, and then using the semantics of this guarded-command language to
produce verification conditions. In this paper, we describe our intermediate language,
give its semantics, and discuss how it is used in our tool.

1 Translation stages

Our translation from Java to verification conditions is broken into three stages. First, we
translate from Java to a sugared form of our guarded-command language that includes
high-level features such as iteration and method invocation. Second, we desugar the
sugared guarded commands into primitive guarded commands. Finally, we compute
verification conditions from these primitive guarded commands.

0

In the translation from Java into sugared guarded commands, we eliminate many
of the complexities found in Java, such asswitch statements and expressions with
side effects. This part of the translation is bulky and tedious. We have designed the
sugared guarded-command language to make the translation easy to understand and to
implement. At the same time, this part of the translation is relatively stable. We find it
nice to separate this bulky but stable part of the translation process from other parts that
change during experimentation.

The desugaring into primitive guarded commands is where we need a lot of flexibil-
ity. This is the principal stage of the translation where we make the kinds of trade-offs
mentioned in the introduction. In section 3, we give examples of how different desugar-
ings, possibly chosen under user control, result in different kinds of checking.

The semantics of the primitive guarded-command language is quite simple. Indeed,
a naive set of equations for deriving verification conditions from primitive guarded com-
mands fills less than half a page. However, by experimenting with different, but seman-
tically equivalent, equations, we have achieved significant performance gains. Because
this stage of the translation begins with such a simple language, we have been able to
perform these experiments easily.

2 Primitive guarded-command language

Our primitive guarded-command language is a form of Dijkstra’s guarded commands [2],
with several important distinguishing features: exceptions [0, 6], partial commands [8,
7], and going wrong (see,e.g., section 6.2 of [4]). (By including partial commands, we
no longer need the “guards” that originally gave the language its name.) The syntax of
commands in our guarded-command language is as follows:

cmd::=
variable= expr | skip | raise | assertexpr | assumeexpr
| var variable+ in cmdend | cmd; cmd | cmd! cmd | cmd cmd

where anexpr is an expression in untyped first-order predicate calculus extended with
labels. A labeled expression(label L : e) is semantically equivalent to the expression
e, but supplies the labelL to the theorem-prover in order to facilitate the production of
user-sensible warning messages (see section 6 of [1], which describes an extended static
checker for Modula-3).

We model Java instance fields as maps from objects to values. Thus, we translate
the Java expressiono.f into select(f , o) , where theselect function extracts from map
f the component indexed byo .

1

Unlike Dijkstra’s guarded commands, our commands can terminate not onlynor-
mally, but alsoexceptionallyanderroneously. We use exceptional termination to model
Java’s exceptions and also Java’s control-transfer statementsbreak , continue , and
return . We use erroneous termination (“going wrong”) to model violations of the
programming discipline that ESC/Java checks.

The semantics of our primitive guarded commands is given by theirweakest liberal
preconditions. For any commandC and predicates (on the post-state ofC) N , X ,
and W , the predicatewlp.C.(N, X, W) holds in exactly those initial states from which
each execution ofC either terminates normally in a state satisfyingN , terminates ex-
ceptionally in a state satisfyingX , or terminates erroneously in a state satisfyingW (or
doesn’t terminate at all, but all of our primitive commands do terminate). We definewlp
by the following equations:

wlp.(v= e).(N, X, W) ≡ N[v← e]
wlp.skip.(N, X, W) ≡ N
wlp.raise.(N, X, W) ≡ X

wlp.(asserte).(N, X, W) ≡ (e ∧ N) ∨ (¬e ∧ W)

wlp.(assumee).(N, X, W) ≡ e ⇒ N
wlp.(var v1 . . . vn in C end).(N, X, W) ≡ 〈 ∀ v1 . . . vn F wlp.C.(N, X, W) 〉

wlp.(C0 ; C1).(N, X, W) ≡ wlp.C0.(wlp.C1.(N, X, W), X, W)

wlp.(C0 ! C1).(N, X, W) ≡ wlp.C0.(N, wlp.C1.(N, X, W), W)

wlp.(C0 C1).(N, X, W) ≡ wlp.C0.(N, X, W) ∧ wlp.C1.(N, X, W)

where in the equation for thevar command,v1 . . . vn are distinct variables not occur-
ring free in N , X , or W .

The verification condition for a routiner has the form

BP ⇒ wlp.C.(true, true, false)

where C is the translation ofr and BP is thebackground predicate. The background
predicate is a set of axioms, derived in part from declarations in the user’s program,
that encode various properties guaranteed by Java, such as properties of the type system
(see [5] for the background predicate of a simple object-oriented language).

3 Sugared guarded-command language

At the outset of our project, we considered it fairly obvious that trying to expand Java
directly into verification conditions would result in a software engineering disaster. In-
troducing a desugaring stage was a less obvious design decision, but one that has turned

2

out to be valuable in managing complexity and maximizing flexibility. In this section,
we give examples of constructs in our sugared language.

Checks. To achieve a flexible treatment of conditions such a null dereferences, we
use a command calledcheck. For example, a Java statementv = o.f; on line 27
translates into the sugared commands

checkNull, 27, o != null ;
v= select(f , o)

We have several choices in the desugaring of thecheck command. If we want treat null
dereferences as errors, then we desugar thecheck command into

assert(label Null@27 : o != null)

ESC/Java lets users suppress null dereference warnings, either selectively or globally. If
null dereference warnings are suppressed on line 27, then thecheck command desugars
into

assumeo != null

Introducing this assumption (instead of, say, desugaring thecheck command intoskip)
prevents ESC/Java from, for example, generating a warning on line 28 if that line con-
tains the dereferenceo.g . (But there are other cases where we do desugar acheck into
skip .)

ESC/Java enforces a programming discipline in which null dereferences are consid-
ered to be errors. If we wanted to support a programming style in which the programmer
might intentionally dereference null and then handle the resulting Java exception, we
would desugar thecheck command into something like

(assumeo== null ; . . . ; raise) assumeo != null

where the “. . . ” elides the commands that make the subsequentraise model the raising
of a newNullPointerException.

Loops. The translation of Javawhile , do , andfor loops produces commands that
contain a sugared command of the form

loop { invariant J } C end

In contrast to exiting the loop whenC can no longer be executed [8], control exits this
loop whenC raises an exception. The usual way of definingwlp for loops involves a

3

strongest fixed point. We approximate this fixed point by considering only executions
that iterate at most once. That is, we desugar theloop command into

checkLoopInvInit, loc, J ;
C ;
checkLoopInvMaintained, loc, J ;
assumefalse

where loc is the source code location of the Java loop statement. While this approx-
imation is coarse, we have found that it still allows the checker to find many program
errors, even whenJ is the trivial invariant true (see section 9 of [1]). By translating
Java loops into commands that containloop commands, we retain the flexibility to try
different desugarings. For example, we could unroll aloop two or more times. Or, we
could produce a conservative desugaring of the form

checkLoopInvInit, loc, J ; assumefalse

. . . ; assumeJ ; C ; checkLoopInvMaintained, loc, J ; assumefalse

where the “. . . ” assigns arbitrary values to the assignment targets of the loop. Lastly,
note that our translation retains the flexibility of strengthening any programmer-declared
invariant with any kind of inferred invariants, for which the literature offers numerous
techniques.

Calls. Our sugared language also contains acall command, whose desugaring de-
pends on the specification of the routine being called. Roughly speaking,call r(e0, e1) ,
where routiner is allowed to modifyx , desugars into a command of the form

var p0 p1 in
p0= e0 ; p1= e1 ; check . . . preconditions. . . ;
var x0 in x0= x ; modify x ; assume. . . postconditions. . . end ; . . .

end

wheremodify x is a sugared command that desugars into

var x′ in x= x′ end

The actual desugaring ofcall is more complicated. For example, result values and
exceptions must be treated, and postconditions include both user-declared conditions
and conditions guaranteed by Java.

4

The modify command uses the nondeterminism inherent in the primitivevar com-
mand. In the desugaring ofcall (and also elsewhere in our translation), we useassume
commands to restrict that nondeterminism. (Our translation uses the nondeterminism
only of the var command, never of the command. Whenever our translation gen-
erates a command, the enabling conditions of the subcommands are mutually exclu-
sive.)

4 Conclusions

Generating verification conditions for a real-world language like Java is a significant
engineering challenge. Such languages provide many programmer conveniences that
make the derivation bulky and tedious. Also, finding the right derivation is as much an
art as a science, an art involving much trial-and-error. Thus, it is important to appro-
priately separate concerns both to manage complexity and to maximize flexibility. In
building the ESC/Java verification condition generator, we have applied this principle in
decomposing the verification condition generation into a three-stage process that seems
to have served us well.

History and acknowledgements. ESC/Java was built by Cormac Flanagan, Mark Lil-
libridge, Greg Nelson, and the authors. Greg Nelson first suggested verification condi-
tion generation via guarded commands, almost a decade ago. Subsequently, this be-
came the basis for the ESC/Modula-3 verification condition generator, written initially
by Damien Doligez and then mainly by Dave Detlefs.

References

[0] Flaviu Cristian. Correct and robust programs.IEEE Transactions on Software En-
gineering, 10:163–174, 1984.

[1] David L. Detlefs, K. Rustan M. Leino, Greg Nelson, and James B. Saxe. Ex-
tended static checking. Research Report 159, Compaq Systems Research Cen-
ter, 130 Lytton Ave., Palo Alto, CA 94301, December 1998. Available from
www.research.digital.com/SRC/publications/src-rr.html .

[2] Edsger W. Dijkstra.A Discipline of Programming. Prentice Hall, Englewood Cliffs,
NJ, 1976.

5

[3] Extended Static Checking home page, Compaq Systems Research Center. On the
Web atwww.research.digital.com/SRC/esc/Esc.html .

[4] K. Rustan M. Leino. Toward Reliable Modular Programs. PhD thesis, Califor-
nia Institute of Technology, Pasadena, CA 91125, January 1995. Technical Report
Caltech-CS-TR-95-03.

[5] K. Rustan M. Leino. Ecstatic: An object-oriented programming language with
an axiomatic semantics. InThe Fourth International Workshop on Founda-
tions of Object-Oriented Languages, January 1997. Proceedings available from
www.cs.williams.edu/ ∼kim/FOOL/FOOL4.html .

[6] M. S. Manasse and C. G. Nelson. Correct compilation of control structures. Tech-
nical report, AT&T Bell Laboratories, September 1984.

[7] Carroll Morgan. The specification statement.ACM Transactions on Programming
Languages and Systems, 10(3):403–419, July 1988.

[8] Greg Nelson. A generalization of Dijkstra’s calculus.ACM Transactions on Pro-
gramming Languages and Systems, 11(4):517–561, 1989.

6

