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Abstract. Energy is a critical resource in many computing systems, motivat-
ing the need for energy-efficient software design. This work proposes a new ap-
proach, energy-driven statistical sampling, to help software developers reason
about the energy impact of software design decisions. We describe a prototype
implementation of this approach built on the Itsy pocket computing platform.
Our experimental results of 14 benchmark programs show that when multiple
power states are exercised, energy-driven statistical sampling provides greater ac-
curacy than existing time-driven statistical sampling approaches. Furthermore, if
instruction-level energy attribution is desired, energy-driven statistical sampling
may provide better resolution. On simple handheld systems, however, many ap-
plications may exercise only a single power state other than idle mode. In this
case, time profiling may sufficiently approximate energy profiling for the purpose
of assisting programmers, without requiring any hardware support.

1 Introduction

Energy is a critical resource for many computing systems, spurring the desire for energy-
efficient software. Unfortunately, most current systems expose only coarse-grained in-
formation about energy consumption. Therefore, when programmers reason about the
energy impact of their design decisions, they tend to rely on intuition. This intuition
may be misleading if programmers have not internalized an accurate model of the en-
ergy cost of different operations or properly accounted for the relative frequency of the
operations that take place.

Researchers have proposed a variety of tools that, by exposing more information
about a system's energy consumption, could help programmers develop software that is
more energy-efficient. Many of these tools estimate energy consumption by multiplying
activation counts for various activities (e.g. executing a particular type of instruction)
with estimates of the energy consumed to perform each activity [3, 4, 10]. One advant-
age of this approach is that it can leverage activation counts for background activities
to more easily attribute energy consumed asynchronously. However, the approach has
the disadvantage of requiring system-specific knowledge about what activities should
be counted, and system-specific estimates of the energy consumed to perform each such
activity.



5

In this paper, we describe and assess a new tool for helping programmers evaluate
the energy impact of their design decisions. Our tool relies on statistical sampling, an
alternative approach that does not require any system-specific information. Statistical
sampling tools introduce a periodic source of interrupts. When each such interrupt is
serviced by the system, the tool records a sample, which contains information about the
system's state, such as the program counter of the interrupted instruction. The samples
gathered during a given time period can then be analyzed to produce estimates of the
system's behavior during that time period. In particular, our tool enables programmers
to quickly determine the energy required to execute some software and the energy hot
spots within that software. With this information, programmers may then employ tech-
niques, such as those described by Simunic et al. [11], to improve energy efficiency.

Previous statistical sampling tools use sampling interrupts that are separated by a
fixed amount of time (possibly with some small variation to diminish the risk of syn-
chronization) [1, 6, 7]. In one approach used by these tools [1, 6], the distribution of the
samples recorded by the tool constitute a time profile (an estimate of the proportion
of time spent executing each instruction in the program). Previous work has demon-
strated that time profiles can greatly assist programmers in reducing execution times [1].
However, since duration and energy consumption are not always proportional, time pro-
files can mislead programmers that are trying to reduce energy consumption.

An alternate time-driven sampling approach, PowerScope [7], adjusts for incongru-
ities between duration and energy consumption by including in each sample an estimate
of the system's instantaneous power consumption. This feature allows PowerScope to
weight each sample by its instantaneous power measurement in order to produce an en-
ergy profile (an estimate of the proportion of energy spent executing each instruction).

In contrast, our tool uses sampling interrupts that are separated by a fixed amount
of energy consumption (which we refer to as the energy quanta). Thus, the distribution
of samples recorded by our energy-driven sampling tool directly constitutes an energy
profile. Conceptually, with a sufficiently small energy quanta for our tool and a suf-
ficiently high sampling rate for PowerScope, both of these tools should produce the
same energy profile. However, because the sampling rate of our tool varies with the
system's power consumption, our tool can deliver more accurate energy profiles for a
given amount of overhead. Moreover, PowerScope' s weighting scheme for generating
energy profiles assumes that instantaneous power consumption approximates the aver-
age power consumption since the last sample. Measurements of our test system reveal
large and rapid variations in power consumption, suggesting that this assumption may
introduce significant inaccuracies. Finally, since PowerScope will continue to collect
samples at the same rate even when the system is consuming relatively little energy,
such as when the processor is in a light sleep mode, PowerScope' s sample collection
can significantly affect the actual energy profile of the system.

The key contributions of this paper are three fold.

– First, we introduce a new approach – energy-driven statistical sampling – for eval-
uating the energy impact of software design decisions.
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– Second, we describe a prototype implementation of this approach for the Itsy pocket
computing platform [9], and present experimental data that validates this imple-
mentation.

– Third, we present the results of an energy-consumption study of 14 benchmarks
that compares energy-driven statistical sampling to existing time-driven statistical
sampling approaches (both simple time profiling and the PowerScope approach).
Our results show that, for a given sampling rate, energy-driven statistical sampling
provides better resolution at an instruction level. It also provides greater accuracy
when there are multiple power states, such as would exist in a system with dynamic
voltage/frequency scaling. On the other hand, when there is only a single power
state other than idle mode (which was the case for most of our benchmarks on
our test system), time profiles may sufficiently approximate energy profiles for the
purpose of assisting programmers.

The rest of this paper is organized as follows. In Section 2, we describe our pro-
totype implementation of energy-driven statistical sampling and an error analysis of
this prototype. Then, in Section 3, we describe our prototype implementation of the
time-driven statistical sampling approaches, the methodology we used in our empir-
ical comparison, and its results. In Section 4, we expand on the differences between
sampling-based approaches and activation-model approaches. Finally, in Section 5, we
conclude and discuss ongoing and future work.

2 Energy-driven Statistical Sampling Prototype

We have built a prototype implementation of energy-driven statistical sampling for the
Itsy version 2.0 pocket computing platform [9]. In this section, we describe the hard-
ware and software components of our prototype and the experimental results validating
this prototype.

2.1 Hardware

As illustrated in Figure 1, we replaced the Itsy' s battery with a power supply, and in-
terposed an energy counter between the power supply and the Itsy electronics. We used
a power supply rather than the battery to simplify our experimental procedure and to
ensure that the Itsy' s power efficiency stays constant during experiments; this issue is
discussed further in Section 2.3. The purpose of the energy counter is to generate an
interrupt whenever a predetermined amount of energy has been consumed. The energy
counter operates as follows.

As current is is drawn from the power supply by the Itsy, a current mirror compris-
ing a resistor and a current-sense amplifier generates a current im = � � is (where
� = 1:5� 10

�3 in our implementation). This current im deposits charge on the posit-
ive plate of a capacitor, which acts as a current integrator. When the voltage across the
capacitor plates reaches 2

3
of the supply voltage of the monostable multivibrator (Vx),

the multivibrator generates an output pulse P , and then discharges the capacitor to a
voltage of Vx

3
. The capacitor then begins to accumulate charge again via im.
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Fig. 1. The Itsy energy-driven statistical sampling prototype. The energy counter is interposed
between the power supply and the Itsy pocket computer. Voltage Vx is generated by the Itsy and
equals 3.04 V.

Thus, each pulse P indicates that the capacitor (with capacitance C Farads) has ac-
cumulatedQc = C� Vx

3
Coloumbs, during which time the Itsy has consumed Qi =

Qc

�

Coloumbs. Since the voltage powering the Itsy stays constant at Vs, and the voltage drop
across the resistor is small (as further discussed in Section 2.3), the energy consumed by
the Itsy during this time is approximately Vs�Qi. In our implementation, this quantity,
which we refer to as the minimum energy quanta, is approximately 450�J.

Each pulse decrements the value of the count-down counter. When this counter' s
value reaches zero, the counter generates an interrupt request by asserting a signal that
is connected to one of the Itsy' s general purpose I/O lines (GPIOs). The value of the
counter is reset by software, as described in the next section. Thus, the energy counter
allows the amount of energy consumption that will generate an interrupt to be varied
dynamically. For the experiments reported in this paper, we set the counter value to 1,
and hence, our energy quanta is approximately 900�J.

2.2 Software

The software for energy-driven statistical sampling is divided into three components –
(i) a kernel-level device driver, which includes an interrupt service routine, (ii) a user-
level data-collection daemon, and (iii) user-level data-processing tools. This software
has been written to run on top of Linux (version 2.0.30), the operating system run by
the Itsy. Calls to the device driver control profiling (e.g. turn it on or off). When profiling
is turned on, the interrupt service routine handles interrupts raised via the above noted
GPIO line. On each interrupt, this routine performs two tasks. First, it records a sample
in a circular buffer. A sample consists of the identity of the process, the software module
(executable or dynamically linked library), and the instruction within that module that
was interrupted. Second, before the routine ends, it resets the value of the count-down
counter discussed above. (Calls to the device driver can designate a single reset value,
or a small range of values from which the interrupt service routine can randomly select
a value.)
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The user-level data-collection daemon issues calls to the device driver to obtain
sample data, and writes the sample data to the sample data files. At any subsequent
time, these files can be processed using the user-level data-processing tools to produce
human-readable energy profiles.

2.3 Error Analysis and Validation

In this section, we discuss the sources of error inherent in our energy-driven sampling
prototype. Broadly, the sources of error can be classified into two categories: (i) energy
measurement related, and (ii) attribution and analysis related. The rest of this section
discusses each of these in detail.

Measurement-related Errors

Energy-driven sampling operates on the assumption that each interrupt signifies that
the Itsy has consumed a fixed amount of energy. Since our energy counter integrates
only the current being drawn by the Itsy, an equivalent assumption is that each interrupt
signifies that a fixed amount of charge has been consumed.

The degree to which this assumption holds depends on the degree to which the
Itsy' s battery-terminal voltage varies. As this voltage drops, the Itsy' s power consump-
tion also drops owing to improved voltage-regulation efficiency. This decrease in power
consumption is not sufficient, however, to offset the decrease in voltage, and thus, the
current drawn by the Itsy increases. Yet, in our implementation, which uses a bench
power supply, this supply-voltage dependence problem contributes no significant er-
ror. First, we use a well-regulated bench supply, and second, for our benchmarks, the
maximum voltage drop across the sense resistor was 52 mV, a value too small to sig-
nificantly change the current-power relationship for the Itsy. If, on the other hand, the
Itsy were powered by its battery, our tool would require an additional mechanism that
accounts for the current-power relationship. One possibility would be to characterize
this relationship, and, using periodic sampling of the battery voltage, increase the value
written into the count-down counter as the battery voltage decreases.

A second source of measurement-related error is the inherent non-ideal character-
istics of electrical components. Of particular note is the time required for the multivi-
brator to discharge the capacitor, which we determined empirically to be approximately
290 ns. For our benchmarks, the total time spent during such discharges of the capacitor
represents less than 0.1% of the total time. The other component-related errors are also
negligible due to careful selection of components and operating ranges.

A third source of measurement-related error is the impact of the power consumed
by the energy counter on the resulting sample distribution. This error is dominated
by the heat dissipated by the 0.15 Ohm resistor, which, for our benchmarks, was at
most 17 nW. To put this number in perspective, the maximum power consumed by our
benchmarks is 1.4W.

Finally, a fourth source of error is the degree to which the sampling software per-
turbs the resulting energy profiles. All the sampling software except the interrupt ser-
vice routine is profiled. Therefore, the percentage of samples attributed to this software
serves as an estimate of the error it induces. For each of our benchmarks, this percentage
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Table 1. Estimates of the impact of sampling software on energy profiles.

Benchmark ISR overhead (est.) daemon & driver overhead
(1) (2)

cpu-bound-1 0.35% 0.25%
cpu-bound-2 0.49% 0.20%
idle 0.66% 0.01%
mpeg 1.32% 0.50%
synth 1.62% 0.11%
voice 0.77% 0.15%
midi 1.08% 0.02%
wave 0.74% 0.01%
zip 1.13% 0.29%
ftp 0.92% 1.49%
qpe1 1.54% 0.14%
qpe2 1.58% 0.17%
qpe3 1.48% 0.20%
edemo 1.45% 0.17%

is given in column 2 of Table 1. (The benchmarks are described later in Table 2.) Al-
though the interrupt service routine cannot be profiled, we can measure the time spent
in the routine. We then estimate the number of samples that would have been attrib-
uted to the routine by assuming that the routine' s power consumption is approximately
the same as our zip benchmark, which (like the interrupt service routine) is memory-
intensive, does not include any idling, and does not use any devices. This estimate, as
a percentage of the total number of samples collected, is given in column 1. That the
percentages in columns 1 and 2 are so low indicates that the profiling software did not
incur significant error.

Attribution and Analysis Errors

The other major class of errors is attribution and analysis errors. To accurately attribute
a sample to an instruction, it is important to minimize the delay between the following
two events: the monostable multivibrator generating a pulse P that will decrement the
counter to zero (see Section 2.1), and the interruption of the program in execution so
that the interrupt can be serviced. This delay is composed of the time required for the
interrupt to be conveyed to the processor core, and the time required for the processor
to begin servicing the interrupt. For our prototype, the first component is on the order
of nano-seconds, and is thus a small fraction of the time between interrupts, which is
on the order of milli-seconds. Given that the power consumed during such small time
intervals does not vary significantly, the first component' s impact is a marginal variation
in the energy quanta.

Regarding the second component, deferred interrupt handling could incur delay in
some specific situations (because the processor is handling a higher priority interrupt,
for example), but such situations occur infrequently. In addition, the Itsy pocket com-
puter uses a StrongARM SA1100 processor. One characteristic of this processor is that,
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before servicing a trap or exception, the processor first completes execution of all in-
structions in the decode and later pipeline stages. Thus, when the energy-counter in-
terrupt is processed, the sample will be attributed to the instruction that was fetched
after the instruction that was in execution at the time that the interrupt was delivered
to the core. Detailed information about instruction delays, pipeline scheduling rules
and interrupt handling on the SA1100 processor could be leveraged to adjust for this
processor-induced skew in attribution. Without this information, however, this skew will
be common to all interrupt-driven statistical sampling tools for the SA1100 processor
(including the ones discussed in this paper).

A second source of error arises if phases of the application being profiled are syn-
chronized exactly with the discharging of the capacitor. Although none of our bench-
marks exposed this error, our prototype allows synchronization errors to be avoided by
dynamically varying the energy quanta after which an interrupt will be generated (as
described in Section 2.2).

Finally, a third source of error concerns sensitivity to the sampling rate. The accur-
acy with which a sample distribution reflects the true allocation of energy consump-
tion for an application is proportional to the square root of the number of samples [5].
However, larger number of samples can lead to greater processing overhead and in-
creased profiler intrusiveness. For our benchmarks, our default parameters resulted in
the collection of 12,000 to 125,000 samples at 130Hz-1100Hz sampling frequencies.
Sensitivity experiments with longer execution times and higher sampling frequencies
indicated that this setup did not have appreciable errors.

3 Comparison of Sampling Approaches

This section presents a study comparing energy-driven statistical sampling to existing
time-driven statistical sampling approaches. We begin by describing our experimental
methodology, with Section 3.1 describing our time-driven statistical sampling proto-
types, and Section 3.2 describing our 14 benchmarks. Section 3.3 then presents the
results of our comparison study.

3.1 Time-driven Statistical Sampling Prototypes

We compared our energy-driven statistical sampling tool with two versions of time-
driven statistical sampling, a simple time profiler and our implementation of the Power-
Scope approach [7]. The simple time profiler requires no hardware support and is the ex-
isting tool available with the Itsy public distribution [9]. Both our energy-driven sampler
and our PowerScope implementation use the same software, with minimal modifica-
tions.

Figure 2 depicts our PowerScope prototype. Our prototype differs from the ori-
ginal PowerScope implementation in that we use a data acquisition system rather than
a digital meter to measure the instantaneous current of the system. The data acquis-
ition system generates a clock that drives both time-driven sampling on the Itsy and
the collection of instantaneous current measurements. The current measurements are
correlated off-line with the samples recorded by the interrupt service routine. Since the
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battery-terminal voltage of the Itsy varied by approximately 2%, the current measure-
ments were directly proportional to the Itsy' s instantaneous power consumption. Energy
profiles were generated by weighting each sample by its correlated current measure-
ment, under the assumption that the instantaneous power consumption of the system
sufficiently approximates the average power consumption since the last sample.

Error Analysis for Prototypes

For the PowerScope prototype, calibration experiments indicate that the current meas-
urement error introduced by the data acquisition system is significantly lower than 1%.
The data acquisition system is powered by a separate power supply to minimize other
perturbances.3 To avoid sample-collection and application synchronization, our simple
time profiler jitters the time between successive interrupts (by 1/16 of the base fre-
quency). Note that the instruction-level sample-attribution skew discussed in the Sec-
tion 2.3 is intrinsic to the SA1100 processor, and therefore common across all our pro-
totypes.

3.2 Benchmarks

Table 2 describes the fourteen benchmarks we studied, their execution times, and their
average sampling frequencies for our energy-driven sampler. The benchmarks were
chosen to cover a wide range of activities. They include two contrived CPU-intensive
benchmarks (cpu-bound1 and cpu-bound2), a variety of media processing bench-
marks (mpeg, synth, voice, midi, and wave), file handling and file transfer bench-
marks (zip and ftp), and a few complex benchmarks (qpe and edemo) that include
a combination of the functionality of several of the other benchmarks.

3 We also implemented an online version of PowerScope using the hardware provided by the
Itsy for measuring its own instantaneous current consumption. However, the power consumed
by these components was sufficiently large to cause significant perturbances in the profiles.
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Table 2. Benchmarks studied.

Benchmark Description Time Avg samp
(sec) freq (Hz)

cpu-bound-1 Two interleaved loop-based compute-intensive (i.e., addition)
procedures

193 441

cpu-bound-2 Six instances of a loop-based compute-intensive procedure
interleaved with sleep periods

444 282

idle Itsy in idle mode 299 130
mpeg Two MPEG movies (bigtoy.mpg and swars2.mpg) played se-

quentially for six iterations
171 1113

synth Speech synthesis of a 6KB text document (samples scaled by
0.25)

375 592

voice Recording dictation of two paragraphs 41 297
midi MIDI file (3-spain.mid) played to completion using Timidity

player
342 411

wave Itsy.wav sound file played four times 141 298
zip Three instances of tarring, zipping, and removing a 573KB

directory
30 782

ftp FTP' ing of a 573KB file 55 291
qpe1 Windowing environment trace involving operations on the

calculator program, the tux toy program, and the window can-
vas program

245 493

qpe2 Windowing environment trace involving operations on the
datebook program (read, edit, delete, add)

240 570

qpe3 Windowing environment trace involving typing a few para-
graphs on the keyboard

259 668

edemo Itsy E-mail demo, which uses command-and-control speech
recognition to process e-mail. Test included voice-directed
and button-based navigation, speech synthesis of several
messages, and recording audio of a response.

344 524

To ensure repeatability, the experiments with qpe – the only benchmark that needed
a lot of user input through the touch screen – were automated by modifying the touch-
screen driver to play back pre-recorded traces. In addition, most of the benchmarks were
chosen to include multiple instances of an application, or to take enough time to ensure a
large number of samples. To ensure consistency, we used a single Itsy for all our exper-
iments. In addition, for each benchmark, we set the sampling frequency of the time-
driven approaches to the average sampling frequency with energy-driven sampling,
thereby ensuring that all approaches obtain a similar number of samples. However, for
two benchmarks (mpeg and qpe), matching frequencies caused the PowerScope pro-
totype to generate trace files that exceeded the available storage on the Itsy. Therefore,
in these two cases, we used the highest frequency possible that did not exceed the avail-
able storage – 500 Hz for mpeg and 100 Hz for qpe. The running time and periodicity
of these benchmarks was sufficient to ensure that the lower sampling rate did not have
a significant impact on our results.
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Fig. 3. Module-level comparison of time and energy profiles.

3.3 Experimental Results

Figure 3 summarizes the profiles for the fourteen benchmarks. For each benchmark, the
bar on the left (Time) summarizes the profile generated by the simple time profiler, the
bar in the middle (PowerScope) summarizes the profile generated by the PowerScope
prototype, and the bar on the right (Energy) summarizes the profile generated by the
energy-driven sampling tool. Each profile is divided into four components – the applic-
ation modules (Application), the kernel-idle loop (Kernel-idle), other kernel modules
(Kernel-misc), and miscellaneous library modules (Misc).

Prodfile Differences

Figure 3 shows that the different tools often produce significantly different results. Eight
of the fourteen benchmarks in our study show substantial differences between the time
and energy profiles. While the differences between the energy profiles generated by our
PowerScope prototype and our energy-driven sampling tool are smaller, there are still
substantial differences for six of the fourteen benchmarks.

The differences between profiles are particularly evident for benchmarks that cycle
through multiple power states. In our benchmarks, the most dominant example of such
multiple power states is the difference between the power consumed while executing
the kernel-idle loop and any other code. For example, the synthetic cpu-bound-2
benchmark consumes about 100mW when in the idle loop, but about 400mW when in
the cpu-intensive portions of the benchmark. Figure 4 illustrates this difference. This
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figure plots the time since the last sample for the sequence of samples obtained by our
energy-driven sampler. Since one energy quanta was consumed during each sampling
interval, larger time values correspond to periods of lower power consumption.4 Notice
that the time values while the processor is idle are about four times those of when the
processor is busy.

The simple time profiler consistently over-estimates the energy consumption of the
kernel-idle loop. PowerScope detects some of the difference between the idle and non-
idle modes, but still attributes too much energy to the kernel-idle loop. This discrepancy
arises because the current drawn by the Itsy while idle is not constant. Rather, due
to background system activity (e.g. real-time clock updates and daemon activations),
there are occasional pronounced current peaks of short duration. This is illustrated in
Figure 4 by the multiple bands of sampling intervals associated with the idle periods.

4 Thus, since the average power consumption during each sampling interval can be determ-
ined by dividing the energy quanta by the time between successive samples, energy-driven
sampling may also be used to obtain a time-sequenced set of power measurements. Similarly,
with energy-driven sampling, the relative power consumption between two tasks can be com-
pared simply by comparing the average sampling rate during the two tasks. Of course, such
information could also be obtained using other means (e.g. digital meters or a data acquisition
system).
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Since PowerScope only samples instantaneous power, it would require a much higher
sampling rate to capture such transient effects accurately.

To investigate the impact of power states other than idle mode, Figure 5 shows
profiles for the fourteen benchmarks that were generated by ignoring samples in the
kernel-idle loop. As in Figure 3, for each benchmark, the bars on the left, middle and
right summarize the profile generated by our simple time profiler, our PowerScope pro-
totype and our energy-driven sampling tool, respectively. In addition, to compare the
profiles generated by the different approaches at a finer granularity, each profile is now
divided into seven categories. The profiles for each benchmark distinguish the four ap-
plication procedures (App-1 to App-4) and the (non-idle) kernel procedure (Kernel-1)
that received the greatest number of samples using our energy-driven sampler.

Figure 5 reveals that there continue to be differences between the profiles even after
idle time is factored out. However, the differences are both smaller and less common.
Indeed, aside from the qpe1 and qpe3 benchmarks, it is not apparent whether the
differences between time and energy profiles at this granularity would be significant to
a programmer who would use a profile to steer development effort focused on reducing
energy consumption. Note that the profiles for the idle, wave, and ftp benchmarks
also show variations, but the significance of these variations is questionable since 80%
or more of the samples for these benchmarks were attributed to the kernel-idle loop, as
shown in Figure 3.
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Profile Resolution

Considering the variations we observed in instantaneous power measurements, we were
surprised by the absence of more significant differences in the profiles obtained by our
energy-driven sampler and our PowerScope prototype. For example, Figure 6 shows
instantaneous current readings obtained by sampling at three different frequencies (100
Hz, 800Hz, and 12.5 KHz) during thempeg benchmark. Recall that the PowerScope ap-
proach assumes that the instantaneous power consumption associated with each sample
approximates average power consumption since the prior sample. Comparing each sample
value at 100 or 800 Hz with the average across 12.5 KHz sample values since the
prior 100 or 800 Hz sample reveals more than a few instances in which this assump-
tion does not hold. This observation suggests that the profile generated by the Power-
Scope approach could contain substantial inaccuracies, a hypothesis that explains the
approach' s over-attribution of energy to the kernel-idle loop. Interestingly, however,
when the samples attributed to this loop are ignored (Figure 5), the profiles generated
by the two approaches do not differ substantially.

To help understand this somewhat surprising result, we compared the instruction-
level profiles produced by our energy-driven sampler and our PowerScope prototype.
Figure 7 illustrates this comparison for the mpeg benchmark. Each point on this graph
corresponds to a single instruction. The location of a point is determined by the percent-



17

0.0 0.6 1.1 1.7 2.2 2.8 3.4
% contribution for energy−driven sampling

0.0

0.6

1.1

1.7

2.2

2.8

3.4

%
 c

on
tr

ib
ut

io
n 

fo
r 

P
ow

er
S

co
pe

data point for one instruction

Fig. 7. Differences in instruction-level profiles for the mpeg benchmark.

age of samples attributed to that instruction by energy-driven sampling (X-axis value)
and the PowerScope approach (Y-axis value). Hence, if the instruction-level profiles of
the two approaches were nearly identical, all data points would lie on or near the x=y
diagonal. The presence, in Figure 7, of a significant number of outliers indicates that
there are indeed substantial differences in where the two approaches attribute energy
consumption at an instruction level.

It appears that instruction-level differences simply average out with increasing pro-
file granularity. To validate this hypothesis, we estimated how the difference between
the profiles produced by these two approaches changes as the granularity of the profiles
increases. In particular, within each instruction-level profile, we distributed the samples
attributed to each instruction I uniformly across the instructions with PC addresses
within n of I. Then, for different values of n, we calculated the difference between
(redistributed) profiles as the sum of the absolute differences between the number of
samples attributed to each instruction. This method ignores control flow, but provides
a first order estimate of the impact of granularity. In support of our hypothesis, we ob-
served that, for increasing values of n between 0 and 16, the difference between the
profiles decreased. Furthermore, for most of the benchmarks, there was a 55% to 75%
drop in this difference between n = 0 and n = 16.
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Impact of Other Power States

As noted already, in our experiments, the most significant variations in the profiles were
due to multiple power states caused by the kernel-idle component. In this section, we
examine two other important power states: those due to cache misses, and those due to
frequency/voltage scaling.

Empirical data [12] indicates that the SA1100 may not exhibit multiple power states
at the processor level for most instructions. However, cache misses and the resulting
memory accesses may produce another power state that may lead to dominant differ-
ences between the different tools.

The experiments reported in this paper were obtained with the StrongARM SA1100
run at 133 MHz with clock switching enabled. Clock switching allows the core clock
frequency to drop to the bus speed until the required data is read from memory. The
reduction in the core power offsets the increased power for the memory access lead-
ing to comparable power consumption for cache hits and cache misses (less than 10%
variation [8]). However, we performed several experiments with a synthetic cache-miss
workload at a higher frequency (206 MHz) where cache misses took twice as much
power as cache hits [8]. Our results showed marked differences between time and en-
ergy profiles, with the differences proportional to the cache miss ratios.

Additionally, the SA1100 is a fairly simple processor with a limited number of
power states [12]. More complex processors are likely to have more instructions that
produce additional power states, which would increase the differences between profiling
approaches.

Frequency and voltage scaling, like cache misses, also offer the potential for addi-
tional power states that can be cycled through rapidly. The impact that frequency and
voltage scaling may have is suggested by the following two experiments. In the first ex-
periment, we obtained time and energy profiles for a workload comprised of running a
long benchmark twice, first at a clock frequency of 206 MHz, then at a clock frequency
of 59 MHz. In the second experiment, we obtained time and energy profiles for a work-
load comprised of running a short benchmark six times, each time with a different clock
frequency (206 MHz, 176 MHz, 148 MHz, 118 MHz, 89 MHz and 59 MHz). In both
cases, the energy profile was obtained using our energy-driven sampler (rather than
our PowerScope prototype). Table 3 summarizes the results of these two experiments.
While these workloads are synthetic, the results indicate the inappropriateness of time
profiles for estimating the energy consumption of applications that exploit frequency
scaling. Moreover, since PowerScope assumes that instantaneous power consumption
approximates the average power consumption between successive samples, rapid cyc-
ling through multiple energy states may increase the difference between energy-driven
sampling and the PowerScope approach.

3.4 Observations

Based on our results, we can make several observations.

– Simple time profiles do not accurately reflect energy consumption in many cases.
Such inaccuracies are particularly pronounced when software cycles through mul-
tiple power states (e.g., idle mode versus CPU-busy).
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Table 3. Impact of frequency scaling.

Module Time (%) Energy (%)
App-206 22.01 41.13
App-59 77.44 57.50
Other 0.56 1.37

Module Time (%) Energy (%)
App-59 31.36 20.52
App-89 20.84 17.56
App-118 15.67 16.32
App-148 12.47 15.57
App-176 10.33 14.92
App-206 8.85 14.56
Other 0.46 0.54

– Energy-driven profiles give better instruction-level resolution than previously pro-
posed time-driven power sampling approaches (e.g., our PowerScope prototype) at
the same sampling frequency. Furthermore, when multiple power states are exer-
cised, they may provide greater accuracy with lower sampling frequencies.

– However, on simple handheld systems which do not exercise multiple power states
other than idle mode, time-based profiling approaches may sufficiently approximate
energy profiling for the purposes of assisting programmers – without requiring any
additional hardware support.

4 Comparison with Activation-model Approaches

Prior work has also explored approaches to exposing more information about a system's
energy consumption that are not based on statistical sampling. These approaches, which
we refer to as activation-model approaches, require two components: (1) energy-use es-
timates for specific system activities, such as executing a specific type of instruction, id-
ling the processor, accessing memory or a disk, and sending or receiving messages over
a network; and (2) activation counts for each activity, which are obtained by counting
the number of times each activity occurs when an application runs. Energy consump-
tion for the application can then be obtained by multiplying the activation counts by the
energy cost per activation.

Activation-model approaches differ widely in how they obtain activation counts.
They can be classified as counting-based, sampling-based, or simulation-based approaches.
With counting-based approaches, activation counts are obtained by either running in-
strumented versions of applications (e.g., Millywatt [4]), or running (unmodified) ap-
plications on an operating system that is modified to leverage hardware event coun-
ters (e.g., Joule Watcher [2]). A sampling-based approach is put forth by PowerMeas-
ure/StateProfiler [10], which periodically samples the system's state to estimate some
activation counts. Finally, with simulation-based approaches (e.g., SimplePower [13]
and Wattch [3]), a specially-designed simulator is used to collect the activations of in-
terest for an application.

One advantage of activation-model approaches is that they can leverage activation
counts for background activities to more easily attribute energy consumed asynchron-
ously. In contrast, both the PowerScope and energy-driven samplers we evaluate in
this paper attribute the energy consumed by all system activity to the software mod-
ules that are executing while this activity is on-going. For example, should a software
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module initiate DMA, the samplers would attribute the energy consumed by the DMA
engine to all the software modules that execute while the engine is busy. Thus, while
this approach to attributing energy consumption gives programmers insight into system-
level energy consumption, it does not identify the modules that are actually responsible
for such background activity. We are currently exploring ways to augment statistical
sampling to enable more sophisticated attribution. Section 5 briefly describes one of the
approaches we are considering.

The main disadvantage of activation-model approaches is the difficulty of ensuring
their accuracy. In particular, the accuracy of these approaches depends on tracking all
important activation counts, and on obtaining accurate energy-use estimates for all im-
portant system states - often through detailed simulation or application instrumentation.
Obtaining such estimates is non-trivial for a single platform, let alone many platforms.
In contrast, our tool requires neither prior intuition about what activities may be of
interest nor energy-use estimates for specific activities.

5 Summary and Future Work

While the issues with designing applications to reduce execution time are fairly well
understood, a similar understanding about how to design applications to reduce their en-
ergy consumption is lacking. This paper presented a new approach, energy-driven stat-
istical sampling, to exposing information about energy consumption. Tools developed
with this approach can help the software designer both reason about the energy impact
of software design decisions and identify application energy hot spots.

Energy-driven statistical sampling uses a small amount of hardware to trigger an
interrupt at pre-defined quanta of energy consumption. The interrupt is used to collect
information about the program currently executing, and the information thus collected
is processed off-line to generate an energy profile of where energy was spent during
the program's execution. We have developed a prototype of this approach for the Itsy
mobile computing platform and our studies on the prototype indicate that energy-driven
statistical sampling can provide an accurate system-level software energy profile with
very little overhead.

We compare energy-driven statistical sampling to two time-driven statistical sampling
approaches by comparing the profiles generated by these approaches for 14 benchmarks
programs. Our results show that energy-driven statistical sampling can provide better
instruction-level resolution and greater accuracy than existing time-driven statistical
sampling approaches. In particular, there are often significant differences between the
profiles generated by energy- and time-driven statistical sampling when the workload
cycles through multiple power states. On simple handheld systems, many applications
may exercise only a single power state other than idle mode, in which case time profiling
may sufficiently approximate energy profiling for the purpose of assisting programmers.
However, preliminary investigations indicate that emerging functionality, like frequency
and voltage scaling, will increase the differences between time and energy profiles, and
therefore the benefit of energy-driven statistical sampling.

As part of our ongoing efforts, we plan to extend our work to account for back-
ground power usage. One solution we are exploring is to augment the energy-counting
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hardware of a system to include software-readable counters that track the amount of en-
ergy consumed by background energy consumers (e.g., the backlight, a wireless radio).
These counters could then be used by our interrupt service routine to assign fractions
of the sample (based on energy usage) to system energy-use categories (e.g., backlight
on, wireless active). In this way, a programmer may identify major energy consumers
at the hardware level and, with further investigation, the software modules responsible.

We are also repeating this comparison study in the PocketPC environment on the
iPAQ pocket computer, and are considering doing so on systems that support frequency
and voltage scaling.
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