
Titan System Manual

Michael J. K. Nielsen

Digital Equipment Corporation

Western Research Laboratory

100 Hamilton Avenue

Palo Alto, CA 94031

2 August 1988

Copyright 1986
Digital Equipment Corporation

ACKNOWLEDGMENTS 1

Acknowledgments
David Goldberg wrote the original version of the architecture and instruction set verbal descriptions in this
document. Jud Leonard wrote the original coprocessor and Titan I/O bus specifications. Russell Kao wrote the
original memory and I/O system descriptions. David Boggs provided the TNA description. I merged these separate
documents into one system manual and provided the detailed description of the instruction set and its execution, as
well as updating, correcting, and enhancing the general description and Titan I/O bus description.

Mike Nielsen

PREFACE: TITAN HISTORY AND PLAYERS 2

Preface: Titan History and Players
The Titan project was begun as the initial project of the Western Research Laboratory in April of 1982. The most
obvious milestones were the following:

April 1982 Project begins
March 1983 CPU logic simulation
October 1984 CPU executing with toy memory system
May 1985 CPU executing with real memory system
June 1985 I/O starts working
December 1985 Complete system with all I/O running Unix

These are the major hardware milestones. These were accompanied by a much longer list of software milestones
that were very much in parallel with, sometimes slightly ahead, sometimes slightly behind, the hardware milestones.

The CPU is partitioned into four large boards. Neil Wilhelm designed the data path, instruction cache, and data
cache trio while Jud Leonard designed the floating point coprocessor board. Russell Kao designed the main
memory system and the two control boards and the array board for that memory system. Jud Leonard designed the
I/O bus that was also implemented by the memory controller boards. Earl Devenport designed the packaging and
was instrumental in debugging. Mike Nielsen debugged and redesigned so that everything eventually played
together.

There were a number of other contributors, especially in software, but the people above deserve special mention for
their hardware efforts.

Forest Baskett

INTRODUCTION 3

1. Introduction
This document describes the hardware architecture, software interface, instruction set, I/O bus, and I/O adaptors of
the Titan system. Chapter 2 provides an overview of the Titan system organization and a description of the function
of the various modules within a system. Chapter 3 presents the special registers in the processor and memory
controller that are available to the operating system to manage processes and the memory and I/O systems. The
Titan instruction set is described in Chapter 4 in sufficient detail for compiler writers. Chapter 5 presents the
logical, electrical, and physical specifications of the Titan I/O bus. Chapters 6, 7, 8, 9, and 10 briefly describe the
Clock/Scan Module, Titan Memory Adaptor, Titan Disk Adaptor, Titan Network Adaptor, and Titan Fiber Adaptor,
respectively.

The document corresponds to revision 3 of the processor, and revision 2 of the memory and I/O system.

HARDWARE ARCHITECTURE 4

2. Hardware Architecture
Titan is a high-performance, 32-bit scientific workstation, consisting of a central processor, memory, disk storage,
and network interface. The first implementation of Titan is in 100K ECL, with a 45 nanosecond cycle time and 13
cycle cache miss penalty. The central processor has a four-stage pipeline with a peak instruction issue rate of one
per cycle. Due to cache misses and pipeline stalls, a new instruction is typically issued every 1.5 cycles.

System organization and interconnection is shown in Figure 2-1. This logical partitioning of the system into
modules is also reflected in the physical partitioning of the system into boards. The following sections briefly
describe the function of each module within the system.

I/O Adaptor

Coprocessor

Memory Controller

Data CacheInstruction Cache

Memory Array

Data Path

Clock/Scan

Figure 2-1: Titan System Architecture

2.1 Data Path
The data path module implements the register file, operand fetch, execution units, memory controller interface, and
control logic portions of the processor.

2.1.1 Pipeline Stages

Stage Function
IF Instruction fetch
DO Instruction decode and operand fetch
EX Function unit execution
WR Result put away

Figure 2-2: Titan Pipeline Stages

The Titan processor implements a load/store architecture to access its data cache; all other instructions use register
operands. Figure 2-2 names the four stages of the Titan processor pipeline. The four stage pipeline allows a new
instruction to be issued every cycle, with every instruction proceeding sequentially through the pipeline. Cache hits
complete in one cycle, so every instruction completes in four cycles in the absence of stalls. If a cache miss occurs,

HARDWARE ARCHITECTURE 5

the entire pipeline is stalled until the cache miss is resolved. Pipeline stalls due to resource contention stall only the
earlier stages of the pipeline until the resource contention ends.

Execution of four instructions is shown in Figure 2-3, illustrating the overlapped execution of instructions. During
the DO stage of instruction 2, the value of R1 is in the WR stage, and the value of R2 is in the EX stage. Bypass
paths exist that allow the DO stage to obtain operands from these stages, so that instruction 2 is not stalled.
However, the address calculation during the DO stage of instruction 3 does not have a bypass path from the EX
stage and must stall for one cycle. Refer to Section 4.16 for further discussion of pipeline stalls.

0: r1 := (Base) IF DO EX WR
1: r2 := (Offset) IF DO EX WR
2: r3 := r1 + r2 IF DO EX WR
3: r4 := (0[r3]) IF DO DO EX WR

Figure 2-3: Overlapped Instruction Execution

Figure 2-4 shows a simplified representation of the data path pipeline along with the stage boundaries. The figure
omits the stage bypass paths, special registers and control logic.

The IF stage is primarily in the instruction cache. The data path provides new instruction cache address register
(ICAR) values in the case of branches, otherwise, the ICAR increments every cycle.

The DO stage contains the instruction decoder, register file, and operand fetch logic. The register file is organized as
4 banks of 64 registers. Normally, only one bank of registers is available to a given process; multiple banks allow
rapid context switches between processes. There are two identical sets of register files to allow parallel reads of two
different registers. The operand fetch logic selects operands from the register file, special registers, or pipeline
bypass busses and loads the A register and the B register.

The EX stage of the data path contains an ALU, a shifter, the coprocessor interface, and the data cache interface.
The ALU performs 32-bit integer add, subtract, and logical functions. The shifter can perform a 0- to 31-bit shift of
a 64-bit operand followed by a 1- to 32-bit masking operation, as well as byte extract functions. The functional
units get their operands from the A and B registers, and load their result into the R register.

The WR stage writes either the register file, special registers, or the data cache with the contents of the R register.
The register file is multiplexed between the DO and WR stages with the DO stage performing a read on the first half
of a cycle, and the WR stage performing a write on the second half of a cycle.

Note that each set of register file RAMs maintains byte parity. The register files are not initialized when the
processor is rebooted, so all registers must be written to initialize their parity before CPU parity checking is enabled.

2.1.2 Instruction Sequencing
When Titan executes a branch instruction the instruction pipeline is not stalled or flushed. Instead the next
instruction in line is executed normally, and if the branch condition is satisfied the branch takes effect on the
instruction following it. As an illustration, if (w x y z) is a sequence of instructions in memory, and if w is an
unconditional branch to instruction z, the actual execution sequence will be (w x z). If in addition x is a branch to w,
then it will be (w x z w). This behavior is common in microengine instruction sets, but not normally seen in
macrocode.

The delayed branch results because the IF stage will already have fetched the instruction after the branch before the
DO stage has determined that it is in fact a branch. Rather than stalling the pipeline when a branch is detected, the

HARDWARE ARCHITECTURE 6

WR

Files

Register

Shifter

ALU

PC Queue
Inst

Cache

IF

I Reg

DO EX

Adder
Address Data Cache

Coprocessor

R Reg

B Reg

A Reg

Figure 2-4: Simplified Data Path Pipeline

instruction after the branch is allowed to continue through the execution pipeline. Compilers can generally schedule
useful instructions in delayed-branch slots, avoiding any pipeline-induced branch penalty, or at worst, place a null

instruction in the delayed-branch slot.

To allow restarting the instruction stream after interrupts, there is a register containing the address of the instruction
in each pipeline stage as shown in Figure 2-5. The PC is mapped to register R0 for operand fetches, allowing
pc-relative addressing; writes to R0 are discarded. When an interrupt occurs, the WR stage completes, the addresses
of the instructions in the EX and DO stages are saved for the operating system, and the IF stage is aborted. Use of
this pc queue is discussed further in Sections 4.2.2, 4.3, 4.4, and 4.13.

Register Stage
ICAR IF
PC DO
PC1 EX
PC2 WR

Figure 2-5: Pipeline Instruction Address Registers

2.1.3 Memory Interface
The data path is connected to the memory controller via two uni-directional, 32-bit data busses. The data path
checks parity of the bus transferring data from the memory controller to the data path; the memory controller checks
parity of the bus transferring data from the data path to the memory controller. The control logic for the caches, and
thus the control signals to and from the memory controller, is implemented on the instruction cache module.

2.2 Caches
There are separate, independent data and instruction caches that operate in parallel. Each cache contains a
translation buffer (TB) and a real address cache (RAC). The Titan page size is 4K bytes; 256 lines of 4 32-bit
words.

The real address cache is 16K bytes in size, organized as 4 sets of 256 lines of 4 words, is write-back, and uses a
random replacement policy. The real address cache is managed by the hardware, with the exception of the privileged
flush instruction to force write-back and invalidation of the caches as required for process switches and DMA for

HARDWARE ARCHITECTURE 7

I/O.

The translation buffer contains 1024 virtual-to-real page-number translations, organized as 2 sets of 512 translations.
The translation buffer is managed by the operating system, via a translation fault register (TFR) that records the
virtual page number that caused the translation fault, and special instructions to read and write the translation buffer.
Each translation buffer tag contains a writable-bit that enable data pages to be marked read-only, causing store
instructions to those pages to generate traps.

Virtual Address

Translation Buffer

Real Address Cache

Data [32]Comparator

Data [4] [32]

D
i
r
t
y

I
n
v
a
l
i
d

Real Page [22]

Comparator

PID

Hash

High Page [11] Byte [2]Line [8] Word [2]Low Page [9]

Real Page [22]High Page [11]PID [8]

I
n
v
a
l
i
d

W
r
i
t
a
b
l
e

Figure 2-6: Titan Address Translation

HARDWARE ARCHITECTURE 8

2.2.1 Byte Versus Word Addressing
To facilitate use of software developed for byte-addressed machines, the Titan effective address calculation treats
the quantity in the address register as a byte address. However, internally, the Titan is implemented as a word-
addressed machine, i.e., the caches, memory controller, and I/O adaptors all deal with word addresses. During
effective address calculations, the processor shifts the address register contents right by two bits to convert it from a
byte address to a word address before adding the 16-bit, signed displacement. This implies that the two most
significant bits of the resulting effective address will always be zero (ignoring negative addresses). Furthermore,
since the hardware discards the two least significant bits of the address register, all instructions, and all data
referenced by a single load or store instruction, must be word aligned.

32 34This implies that the Titan has a 2 -byte virtual address space, and a 2 -byte real address space.

In this document, all addresses and discussions of addresses will be presented as byte addresses, unless otherwise
noted.

2.2.2 Address Translation
Memory addresses generated by most programs are virtual, and the behavior specified by an instruction referencing
memory occurs only if a valid translation exists in the appropriate translation buffer, and no protection violation
occurs. When a reference faults, the instruction is suppressed and a trap occurs so that kernel software can establish
a valid translation buffer entry and resume execution of the program.

Figure 2-6 show the virtual-to-real address translation and cache addressing. The Titan page size is 4K bytes, so the
low-order 12 bits of an address are the position within a page, and the high-order 20 bits are the page number. The

1low-page field is used to select a pair of page table entries. If the PSW pid field and the high-page field matches
one of these entries, and if the invalid bit of this entry is not set, a valid translation exists. If the translation buffer
has two valid translations for a virtual address, the result of referencing that address is undefined.

Meanwhile, the line field, is used to index into the cache. If one of the four selected entries has a tag field that
matches the 22-bit real page number obtained from the translation buffer, and if the invalid bit of that entry is not
set, then the desired data is in the cache. Each cache entry is 4 words long, so the word field is used to select the
appropriate word of the cache entry. The byte field is not used by the hardware.

This description is simplified in one respect. If mapping occured exactly as described, there is a potential problem,
since the translation buffer only has a set size of 2. If many processes reference the same virtual addresses, the
translation buffer would suffer a low hit rate. Consequently, the low-page field of an address is hashed with the pid

field of the PSW to compute the index into the translation buffer. Figure 2-7 shows the hashing function used.

low-page and 256 + (low-page + 4 * pid) mod 256

Figure 2-7: TB Hashing Function

2.2.3 Cache Parity
The translation buffer tag and data RAMs, and the real address cache tag and data RAMs, have byte parity. The
translation buffer entries are not initialized when the processor is rebooted, so all entries must be written before CPU
parity checking is enabled. The real address cache entries are automatically initialized as part of the processor
reboot sequence.

1Refer to Section 3.2.

HARDWARE ARCHITECTURE 9

2.3 Coprocessor
The Titan coprocessor performs integer multiply and divide, and floating point arithmetic operations. These
operations take place concurrently with normal instruction processing, except that the Titan processor stalls to wait
for the coprocessor to finish computing a result that it needs.

Coprocessor operations use as operands a pair of processor registers and an accumulator in the coprocessor itself.
The accumulator consists of a sign bit, a 16-bit exponent register, and a 64-bit fraction register. Integer operations
in the coprocessor manipulate the fraction register as an unsigned quantity. Floating point operations affect the
entire accumulator.

The coprocessor also contains a time-of-day clock and an interval timer. The time-of-day clock is incremented
every machine cycle. The interval timer generates an interrupt up to 20 milliseconds in the future. The operating
system can use these timers to maintain system clocks.

Refer to Section 4.12 for further discussion of floating point formats and coprocessor operations. Refer to Section
4.16 for coprocessor instruction timing.

2.4 Memory Controller
The memory controller maintains the memory arrays and serves as an interface between the processor and the I/O
adaptors. The memory controller supports from 1 to 4 memory modules of 32M bytes each, performing the ECC
generation and checking as well as RAM refresh functions. In the Titan, all memory transactions are in units of 4
word lines. Thus a single memory module is comprised of 4 memory array boards that operate in parallel.

The memory controller performs read, read/write, and write operations to service processor cache clean miss, dirty
miss, and flush operations, respectively. During a dirty miss, the write data is received from the processor during the
RAM read access to minimize cache miss overhead.

On the Titan I/O bus side, the memory controller performs DMA read or write operations for I/O adaptors. The
memory controller also performs reads or writes to I/O adaptor registers in response to processor I/O instructions.
The memory controller maintains several registers for this purpose, discussed further in Section 3.8. The Titan I/O
bus supports up to 7 I/O adaptors. Refer to Chapter 5 for detailed description of the I/O bus.

2.4.1 Memory configuration
The 32-bit real address space consists of 512 32MB modules, each of which may or may not be occupied by
physical memory. Vacant modules will always read zeros regardless of what is written to them, while occupied
slots behave as memory. The current memory controller implements a 25-bit physical word address space, i.e.,
modules [0..3].

Since the memory controller ignores the high-order 7 bits of real addresses, references to modules [4..511] map over
modules [0..3]. However, address parity included in the ECC computation causes single-bit ECC errors if memory
is written in one group of 4 modules and read in another group of 4 modules.

Figure 2-8 lists the module real address ranges.

In order to determine which module slots are populated, bootstrap code can write the module number into the first
word of each of the 4 module address ranges. When those words are then read in a second pass, those slots retaining
the correct slot number are backed up by physical memory. The data cache must be explicitly flushed via the flush

HARDWARE ARCHITECTURE 10

Module I/O Word Address CPU Byte Address
0 [0000000..07FFFFF] [0000000..1FFFFFF]
1 [0800000..0FFFFFF] [2000000..3FFFFFF]
2 [1000000..17FFFFF] [4000000..5FFFFFF]
3 [1800000..1FFFFFF] [6000000..7FFFFFF]

Figure 2-8: Memory Module Address Ranges

instruction before performing the second pass.

Note that double and single bit ECC error halts and interrupts should be disabled during the memory configuration
poll. After module population has been determined, those modules should be written in their entirety before
enabling ECC.

The process of reading a vacant slot will cause a single bit error to be detected. Writes to vacant slots cause no error
indication. Because the parity of the line address is included in the ECC code, if the same region of memory is
written using one address and read using a different address a single bit ECC error may be detected although the
data will be correct.

2.4.2 Bootstrap Prom
If the rom bit in the program status word is asserted, then the low 128K bytes of the address space are mapped into
the Boot-Prom for CPU and DMA read references. Writes are unaffected by the rom bit; they modify the main
memory shadowed by the Boot-Prom.

Accesses to the Boot-Prom are extremely restricted. The only permissible accesses are non-overlapped reads and
writes. IO and CPU activity must not overlap, and the CPU must not perform dirty misses in which the read
operation accesses the Boot-Prom.

The contents of the Boot-Prom should be transferred into memory in a loop that reads one page (4K bytes) into the
CPU data cache and then flushes that page of the data cache back out into memory. Flushing after each page is read
into the data cache will prevent dirty misses from occurring.

Note that the scan-chain built into all Titan modules allows diagnostic programs to boot directly from pre-loaded
main memory, bypassing the Boot-Prom.

2.4.3 I/O Configuration
Every I/O adaptor is required to respond with an adaptor type code when an I/O read is performed to it at address
FFFFFFFF. This allows the operating system to poll all seven I/O slots and determine the number and type of I/O
adaptors present. Figure 2-9 shows the data returned by currently implemented I/O adaptors.

Type Code I/O Adaptor
00000000 Empty slot
00000001 Reserved
00000002 Disk (MSCP/SDI)
00000003 Reserved
00000004 Network (Ethernet)
00000006 Fiber (100Mbs Manchester)

Figure 2-9: I/O Adaptor Types

Note that I/O bus parity error halts and interrupts should be disabled during the I/O configuration poll because
reading empty slots will cause I/O bus parity errors.

HARDWARE ARCHITECTURE 11

2.4.4 I/O Lock
A special case occurs when an I/O read operation is performed on nonexistent slot 0. Because the memory system
does not support atomic read-modify-write operations for I/O adaptor DMA, the I/O bus includes a lock signal in
order to implement mutual exclusion between entities on the I/O bus. When an I/O read to slot 0 is performed with
an odd value in the I/O write data register, the processor tests and attempts to acquire the lock in one atomic
operation. The old value of the lock is recorded in the LSB of the I/O read data register and the lock is acquired
only if it is free. When an I/O read to slot 0 is performed with an even value in the I/O data register, the processor
tests the lock and if it is in possession of the lock, releases it.

2.5 Clock/Scan
The clock/scan module distributes the system clock to all other modules in the system as well as providing test and
diagnostic access to processor, memory, and I/O modules via scan-chains and clock single-step functions. The
clock/scan module has a simple Ethernet interface to allow remote restart of a Titan, as well as manipulation of the
system’s internal state for diagnostic purposes.

In addition to the Ethernet interface, the clock/scan module supports maintenance panel reset and auto-boot
switches, as well as a halt led that is on if either the processor or memory controller is halted.

Other than clocks and diagnostic scan signals, the clock/scan module drives only the processor reset signal. There is
no direct processor or memory controller access to the clock/scan module.

Refer to Chapter 6 for detailed discussion of clock/scan module functions.

SOFTWARE INTERFACE 12

3. Software Interface

3.1 Kernel/User Mode
In many operating systems, there is a small subset of code that is responsible for managing especially critical
low-level hardware functions. We refer to this code as the kernel, and in Titan, it is responsible for many functions
which are performed by microcode sequences in conventional machines. In particular, it receives and dispatches
interrupts from I/O devices, handles the transitions between processes (including the user/operating system switch),
maintains the contents of the address translation buffers, and ensures the coherence of cache and main memory
contents when DMA I/O is performed. It is expected that the core of the operating system will run in kernel mode,
which is a state with traps disabled and privileged instructions enabled, while the bulk of the operating system will
run in user mode with privileged instructions enabled. A user program can change its state to kernel mode by
executing the trap instruction.

3.2 Processes
At any instant, there is only one process running. It has a 32-bit virtual memory address space and 64 registers. A
page of memory may be flagged as read-only, and this can only be modified by a privileged instruction. We expect
that there are a number of processes actively working on behalf of a user, and that the processor will be switched
frequently from one process to another. Therefore, the processor hardware incorporates 4 sets of registers which can
be assigned dynamically to active processes in order to avoid saving and restoring them on every context change.
Furthermore, each address translation stored in the translation buffers is tagged with an 8-bit process identification
code, so as to minimize the frequency that the translation buffers need to be flushed. The switching of register sets
and process identification is performed entirely under kernel software control.

3.3 Program Status Word

|1|1|1|1|1|< 8 >|<2>|<2>|1|1|1|1|1|1|1|1|1|< 6 >|
+-+-+-+-+-+----------+---+---+-+-+-+-+-+-+-+-+-+-----------+
r	p	k	p	p				i	d	e	i	i	d	w	c	u	
o	r	r	r	a	pid	ra	rb	m	m	x	l	t	t	p	o	s	literal
m	e	n	v	r				p	p	t	l	f	f	v	p	r	
+-+-+-+-+-+----------+---+---+-+-+-+-+-+-+-+-+-+-----------+

Figure 3-1: Program Status Word

The processor state is controlled by a 32-bit program status word as shown in Figure 3-1. It can be read and written
only with privileged instructions. The fields are:

rom If set, then the lowest physical addresses are mapped to the Boot-Prom. This is used
when booting the processor.

pre This is the pre-kernel bit. When written, the value will be taken on by the kernel bit on
the next cycle.

krn If set, the processor is in kernel mode; external and coprocessor interrupts are ignored
and privileged instructions are enabled. Writing into krn has no effect; its value is the
value that the pre-kernel bit had on the previous cycle.

prv If set, privileged instructions are enabled; they will not cause an illegal instruction trap.
Privileged instructions are always enabled in kernel mode, no matter what the state of
prv.

par If set, processor parity checking is not performed.

pid The current process id, used in the translation buffer address hashing for virtual-to-real

SOFTWARE INTERFACE 13

address translation.

ra This field indicates to which of the four register banks instruction fields ra and rc refer.

rb This field indicates to which of the four register banks instruction register field rb refers.
It is possible to transfer information from one bank to another with a register move
instruction if PSW ra and rb fields are different.

imp If set, virtual-to-real address translation is not performed for instruction references.

dmp If set, virtual-to-real address translation is not performed for data references.

ext If set, an external (memory controller) interrupt is pending.

ill If set, a special, set pc-queue, kernel exit, or flush instruction was executed in user mode
without privileged instructions enabled. The ill bit is also set if an abort, undef1, or
undef2 instruction is executed in user mode.

itf If set, an instruction translation fault occurred.

dtf If set, a data translation fault occurred.

wpv If set, a store to a read-only page occurred.

cop If set, a coprocessor arithmetic trap occurred and/or an interval timer interrupt is pending.

usr If set, a user trap instruction was executed.

literal If usr is set, the literal field contains the the literal field from the user trap instruction. If
the usr bit is clear, the value of the literal field is undefined.

Note that more than one of the ext, ill, itf, dtf, wpv, cop, or usr bit can be set, indicating that multiple trap conditions
occurred.

Note that only the rom, pre, prv, par, pid, ra, rb, imp, dmp fields can be written. The krn bit shadows the pre bit.
The ext, ill, itf, dtf, wpv, cop, usr, and literal fields are updated by the processor during every user mode cycle, and
held during every kernel mode cycle.

Note that all registers of all register banks and all translation buffer entries should be written to initialize their parity
before enabling processor parity checking. All real address cache entries are automatically written during the
processor reset sequence initializing their parity.

3.4 Processor Reset
When the processor is reset, the rom, krn, pre, par, imp, and dmp bits are set, the prv bit is cleared; other fields are
undefined. The startup code should write the PSW as its first operation after a processor reset to initialize the pid,
ra, and rb fields.

The ICAR is set to 00000000 and the processor executes a cache clear sequence that successively invalidates every
line of the RAC, writing both the tag and data entries for each line of all 4 RAC sets in parallel. The processor then
starts executing instructions at byte address 00001000 (I/O word address 00000400). Thus the startup code should
start at address 00001000.

During this cache clear sequence, the processor asserts a reset signal to the memory controller, causing it to reset
itself and the I/O adaptors. The cache clear sequence lasts a minimum of 1024 cycles.

The startup code should then write all registers of all banks and invalidate all translation buffer entries to initialize
their parity. Processor parity checking should then be enabled.

The startup code should then determine the number and type of I/O adaptors present and enable CPU and I/O bus
parity checking.

SOFTWARE INTERFACE 14

After determining the amount of physical memory, the startup code should write all of the physical memory to
initialize ECC. ECC correction should then be enabled.

3.5 Traps
Upon any of a set of special circumstances, the processor interrupts the normal sequence of instruction execution,
and forces 00000000 as the new ICAR. Thus the operating system interrupt handler starts at real address 00000000.

The PSW krn, pre, imp, dmp bits are set, other fields are not changed. The ext, ill, itf, dtf, wpv, cop, and usr bits
should be used to determine appropriate trap and interrupt handling. The PSW may have more than one of these bits
set if multiple traps occurred.

Note that user programs can still start at virtual address 0 as mapping is automatically disabled when an interrupt or
trap occurs.

The pc-queue (PC2 and PC1) is frozen with the address of the two instructions that were aborted by the trap or
interrupt. The kernel exit instruction restarts the pipeline from these saved addresses. Two addresses are required in
case the instruction previous to the trap point was a branch instruction. Refer to Sections 2.1.2, 4.2.2, 4.3, 4.4, and
4.13 for further discussion of the pc-queue.

3.6 Processor Halt Conditions
If an instruction translation fault, data translation fault or write protection violation occurs when the processor is in
kernel mode, then the processor halts. Executing an abort, user trap, undef1 or undef2 instruction when the
processor is in kernel mode also causes the processor to halt. If the PSW par bit is cleared and a processor parity
error occurs, the processor halts regardless of kernel/user mode.

Once the processor halts, it must be externally reset.

3.7 Coprocessor Registers
Coprocessor registers are discussed in Section 4.12.

3.8 Memory Controller Registers
The memory controller is the only hardware component that interconnects the processor, main memory, and I/O
adaptors. Three classes of communication occur between these three:

• I/O adaptors access main memory via DMA reads and writes.

• The processor accesses main memory via clean miss, dirty miss, and flush cache events.

• The processor accesses control registers of the I/O adaptors via IoRead and IoWrite special instructions.
The memory controller contains a number of control registers related to the I/O and memory systems that are
described below. Special I/O instructions allow the processor to access the memory controller to manipulate the
memory and I/O systems. Refer to Sections 4.2.14, 4.2.15, 4.2.16, and 4.2.17 for discussion of instructions to
manipulate the memory controller registers. Figure 4-8 lists the memory controller register addresses.

SOFTWARE INTERFACE 15

3.8.1 I/O Address Register

|< 32 >|
+---+
| IoAddress |
+---+

Figure 3-2: I/O Address Register

The IoAddress register is for diagnostic purposes only. This register contains the address sent by the last IoWrite or
IoRead instruction. The IoAddress register is read only.

Note that I/O addresses are interpreted independently by each I/O adaptor to select internal registers or memory.
There is no relation between I/O addresses and memory addresses.

3.8.2 I/O Read Data Register

|< 32 >|
+---+
| IoReadData |
+---+

Figure 3-3: I/O Read Data Register

The IoReadData register contains the data received in response to the last IoRead instruction. The contents of this
register are destroyed by IoWrite instructions, and is typically read immediately after issuing an I/O read. This
register is read only.

3.8.3 I/O Write Data Register

|< 32 >|
+--+
| IoWriteData |
+--+

Figure 3-4: I/O Write Data Register

The IoWriteData register holds the data to be transmitted to an I/O adaptor by the IoWrite instruction, and is
typically written just before issuing the I/O write. This register is both readable and writable by the processor.

Note that when I/O device drivers specify addresses to I/O adaptors, they must be word addresses. Device driver
software must explicitly convert byte addresses to word addresses.

3.8.4 I/O Status Register

|1|< 28 >|< 3 >|
+-+--+-----+
|a| 0 | slot|
+-+--+-----+

Figure 3-5: I/O Status Register

The slot field of the IoStatus register specifies which of the 7 I/O slots (numbered 1 to 7) will be affected by
subsequent IoRead and IoWrite instructions. Refer to Figure 5-12 for the position of I/O slots in the backplane. This
field may be read or written by the processor.

The a (ack) field contains the value of the I/O bus ack signal at the end of the last IoRead or IoWrite instruction.

SOFTWARE INTERFACE 16

The act bit is set by an I/O adaptor as an indication that it has received and processed an I/O request. Certain
adaptors can enter a state in which they are busy and are temporarily unable to process new requests. In this case
these adaptors may ignore the request and return a zero ack bit. Programs driving these adaptors are responsible for
testing the ack bit after each IoRead or IoWrite operation and retrying the operation if the ack bit is zero. The a field
is read only.

3.8.5 Event Register

|1|< 7 >|< 20 >|< 4 >|
+-+-------------+------------------------------------+-------+
|0| ioInt | 0 | hErrs |
+-+-------------+------------------------------------+-------+

Figure 3-6: Event Register

The event register is used to report I/O interrupt requests and certain error conditions detected by the hardware. The
ioInt field contains the value of each of the 7 I/O adaptor interrupt request lines. Slot 1 is represented by leftmost
bit; slot 7, the rightmost. The ioInt field is read only. The hErrs field is used to report hardware errors as shown in
Figure 3-7. The hErrs bits may be cleared by writing a word containing ones in the corresponding bit positions.
Note that the hErrs bits are not automatically cleared when the machine is reset; the operating system should clear
them as part of its initialization by writing 0000000F to the event register.

Position Description
bit 3 Single bit memory error
bit 2 Double bit memory error
bit 1 CPU bus parity error
bit 0 I/O bus parity error

Figure 3-7: Hardware Error Bits

3.8.6 Enable Register

|1|< 7 >|< 15 >|1|< 4 >|< 4 >|
+-+-------------+-------------------------+-+-------+-------+
|0| ioIntEn | 0 |c|errHalt| errInt|
+-+-------------+-------------------------+-+-------+-------+

Figure 3-8: Enable Register

If a bit in the event register is set and the corresponding bit in the enable register errInt field is set then the CPU
receives an external interrupt request. If a hardware error occurs and the corresponding bit in the errHalt field of the
enable register is set then the memory controller will halt; this will cause the processor to stall indefinitely when the
next cache miss occurs. If the correctionEnable c bit is set then memory error correction is enabled. Note that ECC
generation and checking is always performed, the c bit only controls whether or not correction is applied to read
data. If an I/O adaptor generates an interrupt, and the corresponding slot has its ioIntEn bit set, the memory
controller generates an external interrupt in the processor. Note that the IoEvent register ioInt field always reflects
the state of I/O adaptor interrupts whether or not a given slot has interrupts enabled. The enable register is initialized
to all zeros during the hardware bootstrap sequence. The enable register may be read and written by the processor.

For example, to enable interrupts for I/O slots 1 and 2, enable ECC correction, halt on parity errors and double-bit
ECC errors, and interrupt on single-bit ECC errors, write C0000178 to the enable register.

SOFTWARE INTERFACE 17

3.8.7 Error Log Register

|< 8 >|< 8 >|< 16 >|
+---------------+---------------+---------------------------+
| ~hiSynd | ~loSynd | errCnt |
+-------------------------------+---------------------------+

Figure 3-9: Error Log Register

Main memory ECC is done on a half line basis. Main memory accesses are to a full line (4 words). If, during a
memory read access, a double- or single-bit error is detected in either of the half lines, the syndrome bits of the even
and odd address half lines are recorded in hiSynd and loSynd, respectively. The errCnt field contains the number of
memory errors which have occurred since it was last reset. The errorCount is reset when the single-bit-memory-
error bit in the event register is cleared. The ErrorLog register is read only.

\ Synd[2:0]
Synd[5:3] \

\ 0 1 2 3 4 5 6 7
+---------------------------------------

0 | C1 C2 0 C4 1 2
|

8 | C8 8 9 10 11 12 13
|

16 | C16 14 15 16 17 18 19
|

24 | 20 21 4 5
|

32 | C32 24 25 26 27 28 29
|

40 | 22 23 6 7
|

48 | 3 30 31
|

56 |

Figure 3-10: ECC Syndrome Decode

Figure 3-10 shows the decoding of the syndrome bits for a half-line. Note that the syndrome bits are complemented
in the ErrorLog register, and that this table applies to the uncomplemented syndrome. For single-bit ECC errors, the
least significant 6 bits of the syndrome indicate which bit is incorrect; the bits prefixed with a ’C’ are ECC check
bits. The Synd[6] bit is a parity bit over 32 data bits. It indicates which word of the half-line had the ECC error, and
corresponds to the address[1] bit. The Synd[7] bit is a parity bit over 64 data bits, 7 check bits and 30 address bits.
When a single bit error occurs and Synd[5:0] is equal to 000000, then one of three things happened: 1) a single-bit
error in check bit 7, 2) a single-bit error in check bit 6, or 3) an address error: a location responded to more than one
address. Synd[6] distinguishes between cases 1 and 2. Figure 3-11 tabulates the syndrome values for single-bit
errors in the check bits.

Check Bit Syndrome Use
0 0x81 C1
1 0x82 C2
2 0x84 C4
3 0x88 C8
4 0x90 C16
5 0xa0 C32
6 0xc0 Word
7 0x80 Parity

Figure 3-11: Check Bit Syndromes

SOFTWARE INTERFACE 18

3.8.8 Error Address Register

|< 30 >|1|1|
+---+-+-+
| lineAddr |0|w|
+---+-+-+

Figure 3-12: Error Address Register

LineAddr records the address of the last double- or single-bit memory error. W is 1 if an I/O adaptor made the
request and 0 if the processor made the request. This register is read only.

INSTRUCTIONS 19

4. Instructions
There are two instruction formats, as shown in Figures 4-1 and 4-2. The fields labeled ra, rb, and rc refer to
registers, where a, b, and c are integers in the range 0-63. Register r0 is special in that when it is read, it returns the
value of the program counter (the virtual address of the instruction referencing r0) and when it is written, the data
being written is discarded.

|< 4 >|< 6 >|< 6 >|< 16 >|
+-------+-----------+-----------+------------------------------+
|opcode | ra | rb | displacement |
+-------+-----------+-----------+------------------------------+

Figure 4-1: Load/Store/Branch Instruction Format

For the load/store/branch instruction format, an effective address is calculated as follows:

Effective-address := (rb >> 2) + displacement;

The value of register rb is right-shifted by two bits so that software can maintain addresses of byte quantities, where
the byte within a word is indicated by the least significant two bits of the address. Loads or stores of word data that
is not word-aligned must be handled in software with multiple loads or stores. Similarly, all instructions must be
word aligned in memory. The displacement is sign-extended to 32 bits. This results in a 30-bit virtual word
address.

|< 4 >|< 6 >|< 6 >|< 6 >|< 10 >|
+-------+-----------+-----------+------------+-----------------+
|opcode | ra | rb | rc | miscellaneous |
+-------+-----------+-----------+------------+-----------------+

Figure 4-2: Alu/Shifter/Coprocessor Instruction Format

For the alu/shifter/coprocessor instruction format, the result is calculated as follows:

rc := ra miscellaneous rb

Register rc can be the same as either ra or rb, as ra and rb are read before rc is modified. The function units decode
miscellaneous to determine the function to apply on ra and rb.

For each of the following instruction descriptions, we list its name, its Titan assembly language (tasm) form, its
memory format, a brief description of its operation, any restrictions that apply to the use of the instruction, and an
indication of what occurs during each pipeline stage.

Mnemonic Stage Register
PSW - Program status word
ICAR IF Instruction cache address register
ITFR IF Instruction translation fault register
PC DO Program counter
PC1 EX Program counter
PC2 WR Program counter
AR DO/EX A operand register
BR DO/EX B operand register
RR EX/WR Result operand register
DCAR EX Data cache address register
DTFR EX Data translation fault register
AC EX Coprocessor accumulator

Figure 4-3: Pipeline Register Mnemonics

In the instruction descriptions, various processor pipeline registers will be used to explain the execution of the
instruction. Figure 4-3 lists the mnenomics and register descriptions. Refer to Section 2.1 for further description of

INSTRUCTIONS 20

the pipeline registers.

Notation Operation
a := b Assign value of b to a
a + b Arithmetic sum of a,b
a >> b Shift a right by b bits
a << b Shift a left by b bits
a | b Logical OR of a,b
a & b Logical AND of a,b
(e) Evaluate e first

Figure 4-4: Arithmetic Notation

Unless otherwise noted, all numeric values are in hexadecimal in the instruction descriptions. In some figures,
C-style arithmetic notation is used, as shown in Figure 4-4.

When addresses are shown in examples or text, they will be byte addresses as specified by programs. Note that
addresses specified to I/O adaptors must be word addresses; e.g., in I/O write instructions. Device driver software
must explicitly convert byte addresses to word addresses.

In examples of TASM code, unconditional branches (gotos) are shorthand notations for subroutine jumps with
register ra equal to r0; discarding the current instruction address. Similarly, the null instruction is a shorthand for an
alu instruction that assigns to r0; discarding the alu result. The <number> (and <!number> notation indicates that
the instruction must (or must not) reside in word number of a memory line.

INSTRUCTIONS 21

4.1 Abort

TASM Format

abort [ra, rb];

Memory Format

|< 4 >|< 6 >|< 6 >|< 16 >|
+-------+-----------+-----------+------------------------------+
0	ra	rb	0
+-------+-----------+-----------+------------------------------+

Description

If the abort instruction is executed in user mode, the illegal instruction trap bit will be set in the PSW,
PC2 will contain the address of the abort instruction, PC1 will contain the address of the instruction in
execution sequence after the abort instruction.

If abort is executed in kernel mode, then the processor halts with the PC containing the address of the
instruction in execution sequence after the abort instruction, and AR, BR with the contents of ra, rb.

Execution

DO AR := ra, BR := rb
EX trap
WR -

INSTRUCTIONS 22

4.2 Special Instructions

TASM Format

ra := special opCode[rb];

Memory Format

|< 4 >|< 6 >|< 6 >|< 6 >|1|< 3 >|< 6 >|
+-------+-----------+-----------+----------+-+-----+-----------+
				w		
1	ra	rb	0	r	op	misc
				t		
+-------+-----------+-----------+----------+-+-----+-----------+

Description

Special instructions allow manipulation of the PSW, pc-queue, cache translation buffers, and I/O system.
The wrt bit specifies whether it is a read-class or write-class special operation. The op field specifies the
hardware resource to be manipulated as shown in Figure 4-5. The misc field specifies resource specific
operations as shown in Figure 4-6 to select a resource for reading, and Figure 4-7 to enable resource
writes. The I/O special instructions obtain the I/O register from the rb field as shown in Figure 4-8.

Op wrt=0 wrt=1
0 PSW Inst Cache
1 PC-Queue Data Cache
2 GetCtl PSW
3 Inst Cache SetCtl
4 Data Cache IoRead
5 - IoWrite
6 - -
7 - -

Figure 4-5: Special Instruction Resource Encoding

The following sections present specific encodings for the commonly used special instructions. Most other
encodings are redundant or only useful in conjunction with scan-chain-based diagnosis of the processor.

|<1>|< 1 >|< 2 >|< 2 >| Value Tag Data CAM
+---+-----+------+-----+ 0 TLB Col[0] TLB Col[0] TLB Data
| | | | | 1 TLB Col[1] TLB Col[1] TLB Tag
| 0 | tag | data | cam | 2 - ICAR RAC Tag
| | | | | 3 - ICAR TFR
+---+-----+------+-----+

Figure 4-6: Cache Read Misc Field Encoding

|< 2 >|< 1 >|< 1 >|< 1 >|< 1 >|
+-----+-------+--------+-------+--------+
0	~tag0	~data0	~tag1	~data1
+-----+-------+--------+-------+--------+

Figure 4-7: Cache Write Misc Field Encoding

INSTRUCTIONS 23

Rb I/O Register Access Function
01 IoAddress R I/O address
10 IoReadData R I/O read data
20 IoWriteData RW I/O write data
30 IoStatus RW I/O status
08 Event RW Hardware errors and I/O interrupts
28 Enable RW Halt, ECC, and interrupt enables
18 ErrorLog R ECC syndrome, memory error count
38 ErrorAddress R Memory error address

Figure 4-8: I/O Special Instruction Rb Field Encoding

Restrictions

The special instructions all effect operation of the PC register causing it to be invalid two instructions
after the special instruction. For this reason, load, store, branch, pseudo call, and flush instructions with
register rb equal to r0 must not reside in this instruction slot.

Special instruction don’t have the hardware resource interlocks provided for most other instructions, and
consequently must not have pipeline stalls during some stages of their execution. Specific constraints are
listed for each instruction.

Special instructions should only be executed with interrupts disabled, i.e., in kernel mode.

Executing a special instruction in user mode causes an illegal instruction trap.

INSTRUCTIONS 24

4.2.1 Read Program Status Word

TASM Format

ra := special ReadStatus[r0];

Memory Format

|< 4 >|< 6 >|< 6 >|< 16 >|
+-------+-----------+-----------+-----------+
1	ra	0	0
+-------+-----------+-----------+-----------+

Description

ReadStatus loads the program status word into register ra.

Restrictions

The instruction following this one must not be a conditional branch that tests register ra.

The instruction executed two cycles later must not read r0.

Figure 4-9 shows the recommended instruction sequence.

r1 := special ReadStatus[r0];
null;
null;

Figure 4-9: Read PSW Instruction Sequence

Execution

DO AR := PSW
EX RR := AR
WR ra := RR

INSTRUCTIONS 25

4.2.2 Read PC-Queue

TASM Format

ra := special ReadPcQ[r0];

Memory Format

|< 4 >|< 6 >|< 6 >|< 16 >|
+-------+-----------+-----------+-----------+
1	ra	0	43
+-------+-----------+-----------+-----------+

Description

ReadPcQ loads PC2 into register ra. The pc-queue is advanced so that executing the instruction again
will read PC1. The values loaded into PC of the pc-queue are undefined.

Restrictions

The instruction following this one must not be a conditional branch that tests register ra.

The instruction executed two cycles later must not read r0.

Figure 4-10 shows the recommended instruction sequence.

r1 := special ReadPcQ[r0];
null;
null;

Figure 4-10: Read PC-Queue Instruction Sequence

Execution

DO BR := PC2, PC2 := PC1
EX RR := BR
WR ra := RR

INSTRUCTIONS 26

4.2.3 Write Program Status Word

TASM Format

ra := special WriteStatus[r0];

Memory Format

|< 4 >|< 6 >|< 6 >|< 16 >|
+-------+-----------+-----------+-----------+
1	ra	0	280
+-------+-----------+-----------+-----------+

Description

Writes the program status word with the contents of register ra. The effect of changing the PSW
doesn’t take effect until 3 cycles after the instruction is issued, with the exception of the kernel bit,
which doesn’t change value until 4 cycles after the instruction is issued. In particular, reading the PSW
immediately after changing it returns the old value.

Restrictions

Due to pipeline constraints, the write PSW instruction must not have an instruction cache miss during its
WR stage or the PSW will not be written. Therefore is is recommended that the instruction always be
aligned at word 0 of a memory line and be followed by either 3 null instructions, or the kernel exit
sequence.

Note that the trap bits and literal field of the PSW cannot be written.

@1000x;
r1 := (KernelStatus);

<0> r1 : special WriteStatus[r0];
null;
null;
null;

Next: ...

KernelStatus: !68006000x;

Figure 4-11: Initialization of the PSW

It is possible to change from kernel mode to user mode by writing a value with the pre-kernel bit
deasserted to the PSW. Instruction execution continues in sequence in this case, at Next in Figure 4-11.
The operating system may enable interrupts in this fashion. As with the normal kernel sequence, if
instruction mapping is enabled, the first user mode instruction (at Next) must not generate an instruction
page fault. Refer to Section 4.3 for discussion of the normal kernel exit sequence.

When the processor is reset, the pid and register bank fields are not initialized. Operating system startup
code should write the PSW before executing any other instructions as shown in Figure 4-11.

Execution

DO AR := ra
EX RR := AR
WR PSW := RR

INSTRUCTIONS 27

4.2.4 Read Instruction Translation Fault Register

TASM Format

ra := special ReadInstTFR[r0];

Memory Format

|< 4 >|< 6 >|< 6 >|< 16 >|
+-------+-----------+-----------+-----------+
1	ra	0	C3
+-------+-----------+-----------+-----------+

Description

When a virtual address is referenced that does not have a valid translation, a trap is caused and the page
number of the offending virtual address is saved until kernel mode is exited. ReadInstTFR writes the
contents of the ITFR into register ra. The format of the ITFR is shown in Figure 4-12.

|< 22 >|< 10 >|
+-------------------------+------------------+
page number	undefined
+-------------------------+------------------+

Figure 4-12: Translation Fault Register Format

Restrictions

Reading the ITFR modifies the ICAR, so the instruction must be followed by a goto. The instruction
sequence shown in Figure 4-13 is recommended.

r1 := special ReadInstTFR[r0];
goto 1[r0];
null;

Figure 4-13: Read Instruction TFR Sequence

Execution

DO ICAR := undefined
EX RR := ITFR
WR ra := RR

INSTRUCTIONS 28

4.2.5 Read Data Translation Fault Register

TASM Format

ra := special ReadDataTFR[r0];

Memory Format

|< 4 >|< 6 >|< 6 >|< 16 >|
+-------+-----------+-----------+-----------+
1	ra	0	103
+-------+-----------+-----------+-----------+

Description

When a virtual address is referenced that does not have a valid translation, or a store instruction to a page
that is not writable is executed, a trap is caused and the page number of the offending virtual address
is saved until kernel mode is exited. Read data TFR writes the contents of the DTFR into register ra.
The format of the DTFR is shown in Figure 4-12.

Restrictions

The instruction following this one must not be a conditional branch that tests register ra.

The instruction executed two cycles later must not read r0.

The instruction sequence shown in Figure 4-14 is recommended.

r1 := special ReadDataTFR[r0];
null;
null;

Figure 4-14: Read Data TFR Sequence

Execution

DO -
EX RR := DTFR
WR ra := RR

INSTRUCTIONS 29

4.2.6 Read Instruction Translation Buffer Tag Entry

TASM Format

ra := special ReadInstTlbTag0/1[rb];

Memory Format

|< 4 >|< 6 >|< 6 >|< 16 >|
+-------+-----------+-----------+-----------+
1	ra	rb	C1/D1
+-------+-----------+-----------+-----------+

Description

These instructions read the instruction cache TLB tag for columns 0 or 1 into register ra. Register rb
contains the address that selects one of the 512 rows of the TLB. The row is hashed and extracted from
the address in the normal fashion, i.e., addresses [0..FFF] reference row 0, addresses [1000..1FFF]
reference row 1, etc. Note that the TLB hashing discussed in Section 2.2.2 is in effect at all times, so the
PSW pid field should be set to the process of interest before manipulating the TLB.

|< 8 >| 13 >|1 |1|< 3 >|<2>|< 4 >|
+------------+----------------------+--+-+------+---+-----+
| pid | tag |~v|w|parity| m | 0 |
+------------+----------------------+--+-+------+---+-----+

Figure 4-15: TLB Tag Entry Read Data

The format of the data read from the TLB tag is shown in Figure 4-15; the pid field corresponds to the
PSW pid field, the tag field is the high order 13 bits of the virtual word address, the v field is 0 if the

2translation is valid, the w field is 1 if the page is writable , the parity field is the odd parity of the high
order 23 bits of the data, and the m field is encoded as shown in Figure 4-16.

m Columns Matched
0 None
1 Col[0]
2 Col[1]
3 Col[0] and Col[1]

Figure 4-16: TLB Tag Match Bits Encoding

Restrictions

The instruction preceding this one must not modify register rb.

The ICAR is modified, so the instruction must be followed by a branch.

Figure 4-17 shows the recommended instruction sequence.

Execution

DO ICAR := (rb >> 2)
EX RR := TlbTag[ICAR]
WR ra := RR

2This applies only to the data cache.

INSTRUCTIONS 30

{r1 has address, r2 gets tag}
null;
r2 := special ReadInstTlbTag0[r1];
goto 1[r0];
null;

Figure 4-17: Read Instruction TLB Tag Entry Instruction Sequence

INSTRUCTIONS 31

4.2.7 Read Data Translation Buffer Tag Entry

TASM Format

ra := special ReadDataTlbTag0/1[rb];

Memory Format

|< 4 >|< 6 >|< 6 >|< 16 >|
+-------+-----------+-----------+-----------+
1	ra	rb	101/111
+-------+-----------+-----------+-----------+

Description

These instructions read the data cache TLB tag for columns 0 or 1 into register ra. Register rb contains
the address that selects one of the 512 rows of the TLB. The row is hashed and extracted from the
address in the normal fashion, i.e., addresses [0..FFF] reference row 0, addresses [1000..1FFF] reference
row 1, etc. Note that the TLB hashing discussed in Section 2.2.2 is in effect at all times, so the PSW pid
field should be set to the process of interest before manipulating the TLB.

The format of the data read from the TLB tag is as shown in Figure 4-15 and discussed in Section 4.2.6.

Restrictions

The instruction preceding this one must not be a store or modify register rb.

The instructions following this one must not be a conditional branch that tests register ra.

The instruction executed two cycles later must not read r0.

Figure 4-18 shows the recommended instruction sequence.

{r1 has address, r2 gets tag}
null;
r2 := special ReadDataTlbTag1[r1];
null;
null;

Figure 4-18: Read Data TLB Tag Entry Instruction Sequence

Execution

DO DCAR := (rb >> 2)
EX RR := TlbTag[DCAR]
WR ra := RR

INSTRUCTIONS 32

4.2.8 Read Instruction Translation Buffer Data Entry

TASM Format

ra := special ReadInstTlbData0/1[rb];

Memory Format

|< 4 >|< 6 >|< 6 >|< 16 >|
+-------+-----------+-----------+-----------+
1	ra	rb	C0/C4
+-------+-----------+-----------+-----------+

Description

These instructions read the instruction cache TLB tag for columns 0 or 1 into register ra. Register rb
contains the address that selects one of the 512 rows of the TLB. The row is hashed and extracted from
the address in the normal fashion, i.e., addresses [0..FFF] reference row 0, addresses [1000..1FFF]
reference row 1, etc. Note that the TLB hashing discussed in Section 2.2.2 is in effect at all times, so the
PSW pid field should be set to the process of interest before manipulating the TLB.

|< 22 >|< 3 >|< 7 >|
+--------------------+--------------------+
| real page number | parity | 0 |
+--------------------+--------------------+

Figure 4-19: TLB Data Entry Read Data

The format of the data read from the TLB tag is shown in Figure 4-19; the real page number field is the
real page number that will be presented to the memory controller, and the parity field is the odd parity of
the real page number.

Restrictions

The instruction preceding this one must not modify register rb.

The ICAR is modified, so the instruction must be followed by a branch.

Figure 4-20 shows the recommended instruction sequence.

{r1 has address, r2 gets data entry}
null;
r2 := special ReadInstTlbData1[r1];
goto 1[r0];
null;

Figure 4-20: Read Instruction TLB Data Entry Instruction Sequence

Execution

DO ICAR := (rb >> 2)
EX RR := TlbData[ICAR]
WR ra := RR

INSTRUCTIONS 33

4.2.9 Read Data Translation Buffer Data Entry

TASM Format

ra := special ReadDataTlbData0/1[rb];

Memory Format

|< 4 >|< 6 >|< 6 >|< 16 >|
+-------+-----------+-----------+-----------+
1	ra	rb	100/104
+-------+-----------+-----------+-----------+

Description

These instructions read the data cache TLB tag for columns 0 or 1 into register ra. Register rb contains
the address that selects one of the 512 rows of the TLB. The row is hashed and extracted from the
address in the normal fashion, i.e., addresses [0..FFF] reference row 0, addresses [1000..1FFF] reference
row 1, etc. Note that the TLB hashing discussed in Section 2.2.2 is in effect at all times, so the PSW pid
field should be set to the process of interest before manipulating the TLB.

The format of the data read from the TLB tag is shown in Figure 4-19 and discussed in Section 4.2.8.

Restrictions

The instruction preceding this one must not be a store or modify register rb.

The instruction following this one must not be a conditional branch that tests register ra.

The instruction executed two cycles later must not read r0.

Figure 4-21 shows the recommended instruction sequence.

{r1 has address, r2 gets data entry}
null;
r2 := special ReadDataTlbData0[r1];
null;
null;

Figure 4-21: Read Data TLB Data Entry Instruction Sequence

Execution

DO DCAR := (rb >> 2)
EX RR := TlbData[DCAR]
WR ra := RR

INSTRUCTIONS 34

4.2.10 Write Instruction Translation Buffer Tag Entry

TASM Format

r0 := special WriteInstTlbTag0/1[rb];

Memory Format

|< 4 >|< 6 >|< 6 >|< 16 >|
+-------+-----------+-----------+-----------+
1	0	rb	207/20D
+-------+-----------+-----------+-----------+

Description

These instructions write the instruction cache TLB tag for columns 0 or 1 with the contents of RR.
Register rb contains the address that selects one of the 512 rows of the TLB. The row is hashed and
extracted from the address in the normal fashion, i.e., addresses [0..FFF] reference row 0, addresses
[1000..1FFF] reference row 1, etc. Note that the TLB hashing discussed in Section 2.2.2 is in effect at all
times, so the PSW pid field should be set to the process of interest before manipulating the TLB.

|< 8 >| 13 >|1 |1|< 9 >|
+------------+----------------------+--+-+-------------+
| pid | tag |~v|w| 0 |
+------------+----------------------+--+-+-------------+

Figure 4-22: TLB Tag Entry Write Data

Figure 4-22 shows the format of the data written into the tag entry; the pid field is the process id of the
virtual address space being mapped and it must be the same as the current PSW pid field, or the TLB
hashing will produce incorrect translations, the tag field is the high 13 bits of the virtual word address
(i.e., high 11 bits of rb), the ~v bit is 0 to create a valid translation or 1 to invalidate the entry, and the w

3bit is 1 to make the page writable or 0 to make it read-only . The least significant 9 bits must be zero, or
processor parity checking will not work correctly.

Restrictions

The TLB uses the value of RR to write the tag entry, so an ALU or load instruction must immediately
precede this instruction to load RR properly.

For the instruction cache only, the tag entry must be complemented before writing.

The ICAR is modified, so the instruction must be followed by a branch.

Figure 4-23 shows an instruction sequence for writing the TLB tag for column 0.

{r1 has tag entry, r2 has virtual address}
r0 := not r1;
r0 := special WriteInstTlbTag0[r2];
goto 1[r0];
null;

Figure 4-23: Instruction TLB Tag Entry Write Sequence

3The w bit applies only to the data cache.

INSTRUCTIONS 35

Execution

DO ICAR := (rb >> 2)
EX TlbTag[ICAR] := RR
WR -

INSTRUCTIONS 36

4.2.11 Write Data Translation Buffer Tag Entry

TASM Format

r0 := special WriteDataTlbTag0/1[rb];

Memory Format

|< 4 >|< 6 >|< 6 >|< 16 >|
+-------+-----------+-----------+-----------+
1	0	rb	247/24D
+-------+-----------+-----------+-----------+

Description

These instructions write the data cache TLB tag for columns 0 or 1 with the contents of RR. Register rb
contains the address that selects one of the 512 rows of the TLB. The row is hashed and extracted from
the address in the normal fashion, i.e., addresses [0..FFF] reference row 0, addresses [1000..1FFF]
reference row 1, etc. Note that the TLB hashing discussed in Section 2.2.2 is in effect at all times, so the
PSW pid field should be set to the process of interest before manipulating the TLB.

Figure 4-22 shows the format of the data written into the tag entry, and Section 4.2.10 discusses the
fields.

Restrictions

The TLB uses the value of RR to write the tag entry, so an ALU or load instruction must immediately
precede this instruction to load RR properly.

The write TLB tag instruction must not have an instruction cache miss during its EX stage or the tag entry
will not be written correctly.

The instruction executed two cycles later must not read r0.

Figure 4-24 shows an instruction sequence for writing the TLB tag for column 1.

{r1 has tag entry, r2 has virtual address}
<!1>r0 := r1;

r0 := special WriteDataTlbTag1[r2];
null;
null;

Figure 4-24: Data TLB Tag Entry Write Sequence

Execution

DO DCAR := (rb >> 2)
EX TlbTag[DCAR] := RR
WR -

INSTRUCTIONS 37

4.2.12 Write Instruction Translation Buffer Data Entry

TASM Format

r0 := special WriteInstTlbData0/1[rb];

Memory Format

|< 4 >|< 6 >|< 6 >|< 16 >|
+-------+-----------+-----------+-----------+
1	0	rb	20B/20E
+-------+-----------+-----------+-----------+

Description

These instructions write the instruction cache TLB data for columns 0 or 1 with the contents of RR.
Register rb contains the address that selects one of the 512 rows of the TLB. The row is hashed and
extracted from the address in the normal fashion, i.e., addresses [0..FFF] reference row 0, addresses
[1000..1FFF] reference row 1, etc. Note that the TLB hashing discussed in Section 2.2.2 is in effect at all
times, so the PSW pid field should be set to the process of interest before manipulating the TLB.

|< 22 >|< 10 >|
+--------------------+--------------------+
| real page number | 0 |
+--------------------+--------------------+

Figure 4-25: TLB Data Entry Write Data

Figure 4-25 shows the format of the data written into the tag entry; the real page number field is the real
page to be used for this virtual page. The least significant 10 bits must be zero, or processor parity
checking will not work correctly.

Restrictions

The TLB uses the value of RR to write the tag entry, so an ALU or load instruction must immediately
precede this instruction to load RR properly.

For the instruction cache only, the data entry must be complemented before writing.

The ICAR is modified, so the instruction must be followed by a branch.

Figure 4-26 shows an instruction sequence for writing the TLB data entry for column 0.

{r1 has tag entry, r2 has virtual address}
r0 := not r1;
r0 := special WriteInstTlbData0[r2];
goto 1[r0];
null;

Figure 4-26: Instruction TLB Data Entry Write Sequence

Execution

DO ICAR := (rb >> 2)
EX TlbData[ICAR] := RR
WR -

INSTRUCTIONS 38

4.2.13 Write Data Translation Buffer Data Entry

TASM Format

r0 := special WriteDataTlbData0/1[rb];

Memory Format

|< 4 >|< 6 >|< 6 >|< 16 >|
+-------+-----------+-----------+-----------+
1	0	rb	24B/24E
+-------+-----------+-----------+-----------+

Description

These instructions write the data cache TLB data for columns 0 or 1 with the contents of RR. Register rb
contains the address that selects one of the 512 rows of the TLB. The row is hashed and extracted from
the address in the normal fashion, i.e., addresses [0..FFF] reference row 0, addresses [1000..1FFF]
reference row 1, etc. Note that the TLB hashing discussed in Section 2.2.2 is in effect at all times, so the
PSW pid field should be set to the process of interest before manipulating the TLB.

Figure 4-25 shows the format of the data written into the tag entry; Section 4.2.12 discusses the field
values.

Restrictions

The TLB uses the value of RR to write the tag entry, so an ALU or load instruction must immediately
precede this instruction to load RR properly.

The write TLB tag instruction must not have an instruction cache miss during its EX stage or the data
entry will not be written correctly.

The instruction executed two cycles later must not read r0.

Figure 4-27 shows an instruction sequence for writing the TLB data for column 1.

{r1 has tag entry, r2 has virtual address}
<!1>r0 := not r1;

r0 := special WriteInstTlbData1[r2];
null;
null;

Figure 4-27: Data TLB Data Entry Write Sequence

Execution

DO DCAR := (rb >> 2)
EX TlbData[DCAR] := RR
WR -

INSTRUCTIONS 39

4.2.14 Read I/O Control Register

TASM Format

ra := special GetCtl[ioReg];

Memory Format

|< 4 >|< 6 >|< 6 >|< 16 >|
+-------+-----------+-----------+-----------+
1	ra	ioReg	80
+-------+-----------+-----------+-----------+

Description

This instruction reads the contents of the I/O control register specified by the previous I/O instruction
into register ra. The ioReg field specifies the I/O control register to be used for the next I/O instruction.
Figure 4-8 lists the encodings for the ioReg field.

Note that all special instructions update the I/O control register address in the memory controller; a
dummy GetCtl instruction is typically used before the actual GetCtl instruction as shown in Figure 4-28.

r0 := special GetCtl[Event]; {select event register}
null; {can’t have adjacent I/O insts.}
r1 := special GetCtl[Event]; {read event register into r1}
null; {no cond. branch on r1 here}
null; {no pc-relative addressing here}

Figure 4-28: I/O Control Register Read Sequence

Restrictions

I/O instructions may not be adjacent to other I/O instructions.

Interrupts should be disabled during I/O instruction sequences.

If a GetCtl is used to read a register written by a SetCtl instruction, the GetCtl and SetCtl instructions
must be separated by at least two instructions.

The instruction following a GetCtl may not be a conditional branch that tests register ra.

The GetCtl must select the same I/O control register as it is reading, or the preceding instruction must not
be a load, store, or special instruction and the GetCtl must not reside in word 3 of a memory line.

Execution

DO BR := (I/O Control Address), I/O Control Address := rb
EX RR := BR
WR ra := RR

INSTRUCTIONS 40

4.2.15 Write I/O Control Register

TASM Format

ra := special SetCtl[ioReg];

Memory Format

|< 4 >|< 6 >|< 6 >|< 16 >|
+-------+-----------+-----------+-----------+
1	0	ioReg	2C0
+-------+-----------+-----------+-----------+

Description

This instruction writes the contents of the I/O control register specified by the previous I/O instruction
with the contents of RR. The ioReg field specifies the I/O control register to be used for the next I/O
instruction. Figure 4-8 lists the encodings for the ioReg field.

Note that all special instructions update the I/O control register address in the memory controller; a
dummy GetCtl instruction is typically used before the SetCtl instruction as shown in Figure 4-29.

r0 := special GetCtl[Enable];{select enable register}
r0 := r1; {load RR}
r0 := special SetCtl[Enable];{write r1 into enable register}
null;
null; {no pc-relative addressing here}

Figure 4-29: I/O Control Register Write Sequence

Restrictions

Section 4.2.14 lists additional restrictions on the use of I/O instructions.

Execution

DO I/O Control Address := rb
EX (I/O Control Address) := RR
WR -

INSTRUCTIONS 41

4.2.16 Read I/O Adaptor Register

TASM Format

ra := special IoRead[ioReg];

Memory Format

|< 4 >|< 6 >|< 6 >|< 16 >|
+-------+-----------+-----------+-----------+
1	0	ioReg	300
+-------+-----------+-----------+-----------+

Description

This instruction reads the contents of the I/O adaptor register specified by the value of RR into register
ra. The ioReg field specifies the I/O control register to be used for the next I/O instruction. Figure 4-8
lists the encodings for the ioReg field. The read is applied to the I/O adaptor in the slot specified by the
IoStatus register.

{r1 has slot, r2 has I/O adaptor register address}
r0 := special GetCtl[Status]; {select status register}
r0 := r1; {select I/O slot}
r0 := special SetCtl[Status]; {write r1 into status}
r0 := r2; {select adaptor register}
r0 := special IoRead[Status]; {read adaptor register}
null;

<!3>r3 := special GetCtl[IoReadData];{get status}
null;
r4 := special GetCtl[IoReadData];{get read data}
null;
null; {no pc-relative here}

Figure 4-30: Read I/O Adaptor Register Sequence

Figure 4-30 shows a typical instruction sequence for reading an I/O adaptor register. The sequence
selects the I/O slot, issues an IoRead and gets the operation status and read data. Note the alignment
restriction on the GetCtl to read the status register as discussed in Section 4.2.14. Also note that this
GetCtl will stall the processor until the memory controller completes the IoRead operation.

Restrictions

Section 4.2.14 lists additional restrictions on the use of I/O instructions.

Execution

DO I/O Control Address := rb
EX (I/O Address Register) := RR
WR -

INSTRUCTIONS 42

4.2.17 Write I/O Adaptor Register

TASM Format

ra := special IoWrite[ioReg];

Memory Format

|< 4 >|< 6 >|< 6 >|< 16 >|
+-------+-----------+-----------+-----------+
1	0	ioReg	340
+-------+-----------+-----------+-----------+

Description

This instruction write the contents of the I/O adaptor register specified by the value of RR. The ioReg
field specifies the I/O control register to be used for the next I/O instruction. Figure 4-8 lists the
encodings for the ioReg field. The write is applied to the I/O adaptor in the slot specified by the IoStatus
register.

{r1 has slot, r2 has address, r3 has data}
r0 := special GetCtl[Status]; {select status register}
r0 := r1; {select I/O slot}
r0 := special SetCtl[IoWriteData];{write r1 into status}
r0 := r3; {set write data}
r0 := special SetCtl[IoWriteData];{write r3 into wdata}
r0 := r2; {select I/O register}
r0 := special IoWrite[Status]; {write adaptor register}
null;
r3 := special GetCtl[Status]; {get status}
null;
null; {no pc-relative here}

Figure 4-31: Write I/O Adaptor Register Sequence

Figure 4-31 shows a typical instruction sequence for writing an I/O adaptor register. The sequence selects
the I/O slot, sets the write data, issues an IoWrite, and gets the operation status. Note that the GetCtl to
get the operation status will stall the processor until the memory controller completes the IoWrite
operation.

Restrictions

Section 4.2.14 lists additional restrictions on the use of I/O instructions.

Execution

DO I/O Control Address := rb
EX (I/O Address Register) := RR
WR -

INSTRUCTIONS 43

4.3 Kernel Exit

TASM Format

r0 := kernelExit disp[r0];

Memory Format

|< 4 >|< 6 >|< 6 >|< 16 >|
+-------+-----------+-----------+------------------------------+
2	0	0	displacement
+-------+-----------+-----------+------------------------------+

Description

The kernel exit instruction loads the ICAR with the contents of PC2, plus the sign-extended displacement,
advances PC1 into PC2, and advances the address of the kernel exit into PC1. Like all branch-class
instructions, the instruction following the kernel exit is executed before the branch takes effect.

{r1 contains user PSW, pc-queue previously loaded}
100:<0>r1 := special writeStatus[r0]; DO EX WR
104: r1 := (UserR1[r0]); DO EX WR
108: r0 := kernelExit 0[r0]; DO EX WR
10C: r0 := kernelExit 0[r0]; DO EX WR
PC2: - DO EX WR

4Figure 4-32: Return From Kernel Instruction Sequence

The typical return-from-kernel instruction sequence is shown in Figure 4-32. The PSW is written with
the user status, generally turning mapping on and kernel mode off. Due to pipelining, the PSW does not
reflect the new status until the D0 stage of instruction 10C, and the kernel bit of the PSW does not clear
until the D0 stage of the first user instruction. Refer to Section 4.2.3 for further discussion of the write
PSW instruction. The two kernel exit instructions reload the processor pipeline with the address of the
user instructions aborted when the user process trapped or was interrupted. The user instructions will be
fetched with mapping enabled, and executed in user mode.

Note that it is possible to exit kernel mode without manipulating the pc-queue; refer to Section 4.2.3.

Restrictions

The user instruction referenced by PC2 at the start of the return from kernel sequence must have a valid
instruction translation. Due to pipeline constraints, if this instruction doesn’t have a translation, the
resulting translation trap would happen before reloading of the PSW trap bits can occur, and before the
pc-queue returns to a stable state. Therefore, the operating system must insure that there is a valid
translation for the address in PC2. The address in PC1 can cause a translation fault, and need not be
checked.

The kernel exit instruction will cause an illegal instruction trap if executed in user mode.

4The <0> notation indicates that the instruction must be aligned at word 0 of a memory line. This is a constraint of the write PSW instruction;
refer to Section 4.2.3.

INSTRUCTIONS 44

Execution

DO ICAR := (PC2 >> 2) + disp, PC2 := PC1
EX -
WR -

INSTRUCTIONS 45

4.4 Set PC-Queue

TASM Format

r0 := pseudoCall disp[rb];

Memory Format

|< 4 >|< 6 >|< 6 >|< 16 >|
+-------+-----------+-----------+------------------------------+
3	0	rb	displacement
+-------+-----------+-----------+------------------------------+

Description

The effective address is loaded into the pc-queue. Since the address must pass through the ICAR to reach
the pc-queue, the pseudo call instruction must be followed by a branch instruction as shown in Figure
4-33.

{ r10 is the address of the user process’ pc-queue }
<!2>r0 := pseudoCall 0[r10];

goto 1[r0];
null;

<!2>r0 := pseudoCall 1[r10];
goto 1[r0];
null;

Figure 4-33: PC-Queue Load Instruction Sequence

Restrictions

Due to pipeline constraints, the pseudo call instruction must not have an instruction cache miss during its
EX stage or the pc-queue will not be written properly. For the code sequence shown in Figure 4-33 this
means that the pseudo call instructions must not reside in word 2 of a memory line.

If the pseudo call instruction is executed in user mode, an illegal instruction trap occurs.

Execution

DO ICAR := (rb >> 2) + disp
EX PC := ICAR
WR PC2 := PC1, PC1 := PC

INSTRUCTIONS 46

4.5 Flush Cache

TASM Format

flush disp[rb];

Memory Format

|< 4 >|< 6 >|< 6 >|< 16 >|
+-------+-----------+-----------+------------------------------+
4	0	rb	displacement
+-------+-----------+-----------+------------------------------+

Description

The flush instruction invalidates lines in the instruction and data caches starting at the effective address
through the end of the page containing the effective address. If matching data cache lines are dirty, they
are written out to memory before being invalidated.

{ r1 contains the address to start flush }
r1 := r1,r1.[3,29]; {clear least significant 3 bits}
r1 := r1,r1.[29,32];
null; {no hardware address interlock}
flush 1[r1];
goto 1[r0]; {ICAR modified, reload}
null;

Figure 4-34: Flush Instruction Sequence

Restrictions

Due to an implementation constraint, the effective address should be a multiple of 8 plus 1, or the
processor may never exit the flush instruction.

The flush instruction modifies the ICAR, and must be followed by a branch instruction.

The preceding instruction must not be a store or modify register rb as there is no hardware resource
interlock.

If executed in user mode, flush causes an illegal instruction trap.

Execution

DO ICAR := (rb >> 2) + disp
EX flush (ICAR), ICAR := ICAR + 4
WR -

INSTRUCTIONS 47

4.6 Load

TASM Format

ra := (disp[rb]);

Memory Format

|< 4 >|< 6 >|< 6 >|< 16 >|
+-------+-----------+-----------+------------------------------+
5	ra	rb	displacement
+-------+-----------+-----------+------------------------------+

Description

The word at the effective address is written into register ra.

If data mapping is enabled and no data translation buffer entry exists, a data translation trap occurs. PC2
will contain the address of the load instruction, PC1 will contain the address of the instruction following
the load instruction in execution sequence. Destructive loads of the form:

r1 := (0[r1]);

will not modify register r1 and can be reexecuted after resolving the page fault.

If the load is immediately after a store, the processor will stall one cycle. If register rb is modified by the
immediately preceding instruction, the processor will stall one cycle. When possible, compilers should
reorder instructions to minimize such stalls.

Execution

DO DCAR := (rb >> 2) + disp
EX RR := (DCAR)
WR ra := RR

INSTRUCTIONS 48

4.7 Store

TASM Format

(disp[rb]) := ra;

Memory Format

|< 4 >|< 6 >|< 6 >|< 16 >|
+-------+-----------+-----------+------------------------------+
6	ra	rb	displacement
+-------+-----------+-----------+------------------------------+

Description

The contents of register ra is written to the effective address.

If data mapping is enabled and no data translation buffer entry exists, a data translation trap occurs. PC2
will contain the address of the store instruction, PC1 will contain the address of the instruction following
the store instruction in execution sequence.

If data mapping is enabled, a valid data translation buffer entry exists, but writes are not enabled to the
page, a write protection trap occurs. PC2 will contain the address of the store instruction, PC1 will
contain the address of the instruction following the store instruction in execution sequence.

If either of the above traps occur, the store into the cache is suppressed.

If register rb is modified by the immediately preceding instruction, the processor will stall one cycle. If
the store is immediately followed by a load or store, the processor will stall one cycle. When possible,
compilers should reorder instructions to minimize such stalls.

Execution

DO DCAR := (rb >> 2) + disp
EX (DCAR) {Probe}
WR (DCAR) := ra

INSTRUCTIONS 49

4.8 Subroutine Jump

TASM Format

ra := goto disp[rb];

Memory Format

|< 4 >|< 6 >|< 6 >|< 16 >|
+-------+-----------+-----------+------------------------------+
7	ra	rb	displacement
+-------+-----------+-----------+------------------------------+

Description

The ICAR is loaded with the effective address. PC is written into register ra. Due to the delayed branch,
the next instruction in execution sequence, e.g., the instruction after the branch, is executed before
execution commences at the effective address.

1FFC: r62 := goto 0[r1]; {r1 = 4000}
2000: null;

Figure 4-35: Branch Destination Translation Trap

If the instruction in execution succession of the branch instruction causes an instruction translation trap,
PC2 will contain the address of the branch instruction, PC1 will contain the address of the instruction
causing the trap. In Figure 4-35, if address 2000 causes a translation trap, PC2 will contain 1FFC and
PC1 will contain 2000.

If the branch destination causes an instruction translation trap, PC2 will contain the address of the
instruction in execution succession of the branch instruction, PC1 will contain the branch destination. In
Figure 4-35, if address 4000 causes a translation trap, PC2 will contain 2000, and PC1 will contain 4000.

In both cases, the instruction stream can be restarted with the existing pc-queue after resolving the
translation fault.

If register rb is modified by the immediately preceding instruction, the processor will stall one cycle.
When possible, compilers should reorder instructions to minimize such stalls.

Execution

DO ICAR := (rb >> 2) + disp, BR := PC

EX RR := BR

WR ra := RR

INSTRUCTIONS 50

4.9 Conditional Jump

TASM Format

if ra <cond> goto disp[pc];

Memory Format

|< 4 >|< 6 >|< 6 >|< 16 >|
+-------+-----------+-----------+------------------------------+
8	ra	cond	displacement
+-------+-----------+-----------+------------------------------+

Description

The branch destination is computed by sign-extending displacement to 32 bits, and adding the value of
PC (the address of the conditional jump instruction). This address is loaded into the ICAR if register ra
meets the condition specified by cond, otherwise the ICAR increments normally. Due to the delayed
branch, the next instruction in line is always executed.

The cond field encoding is shown in Figure 4-36. Register ra is tested for the specified relation to zero.

Relation Encoding
= 00
<> 08
< 10
>= 18
> 20
<= 28
odd 30
even 38

Figure 4-36: Conditional Jump Condition Encoding

The state of the pc-queue after instruction translation traps is analogous to subroutine jump translation
traps described in Section 4.8.

Restrictions

The immediately preceding instruction must not be a special instruction that modifies register ra.

The instruction two cycles earlier must not be a special instruction or PC will be invalid.

Execution

DO if ra <cond> ICAR := (PC >> 2) + disp
EX -
WR -

INSTRUCTIONS 51

4.10 Extract Field

TASM Format

rc := ra,rb.[shift:mask];

Memory Format

|< 4 >|< 6 >|< 6 >|< 6 >|< 5 >|< 5 >|
+-------+-----------+----------+-----------+---------+---------+
9	ra	rb	rc	mask-1	~shift
+-------+-----------+----------+-----------+---------+---------+

Description

Registers ra and rb are concatenated to form a 64-bit word, with ra as the most significant 32 bits. Field
extraction is accomplished by right shifting the double word quantity (ra,rb) shift bits and retaining the
rightmost mask bits of the result in register rc; shift is in the range [0..31], mask is in the range [1..32].

Execution

DO AR := ra, BR := rb
EX RR := ((ra<<32 | rb) >> shift) & ((1<<mask)-1)
WR rc := RR

INSTRUCTIONS 52

4.11 Alu

TASM Format

rc := ra <op> rb;

Memory Format

|< 4 >|< 6 >|< 6 >|< 6 >|< 7 >|1|1|1|
+-------+-----------+-----------+-----------+-------------+-+-+-+
					s	s	l
A	ra	rb	rc	function	h	b	i
							t
+-------+-----------+-----------+-----------+-------------+-+-+-+

Description

The ALU performs boolean or arithmetic operations on the AR and BR operands, storing the result in
register rc. The BR operand is register rb. The AR operand is register ra if the literal bit is zero,
otherwise it is the ra field of the instruction zero-extended to 32 bits.

|< 4 >|<1>|<1>|<1>|
+-------------+---+---+---+
	~	c	u
select	c	m	n
	i	p	s
+-------------+---+---+---+

Figure 4-37: ALU Function Fields

When both the sh and the sb bits are zero, the 7-bit function field has the encoding shown in Figure 4-37.
The select field determines the ALU function as shown in Figure 4-38, the ~ci bit is the inverted carry-in
for arithmetic ALU functions, the cmp bit enables the ALU sign corrector for performing comparisons,
and the uns bit enables unsigned comparisons.

Select Operation
0 <unsupported>
1 <unsupported>
2 <unsupported>
3 <unsupported>
4 ra + rb + ~ci
5 rb - ra + ~ci
6 ra - rb + ~ci
7 -ra + ~ci
8 ra eqv rb
9 ra xor rb
A ra or rb
B rb
C not ra
D ra
E ra and rb
F 0

Figure 4-38: ALU Select Codes

While many combinations are possible for the 7-bit function field, most are redundant or uninteresting.
Figure 4-39 lists the encodings for commonly encountered operations. Subtraction and unary negation

INSTRUCTIONS 53

are two’s complement. The comparison instructions set the sign bit of rc to 1 if the relation is true, 0
otherwise. The value of the other bits of rc is undefined. The compares denoted with a trailing u are
unsigned compares, the others are signed compares. Note that there is no equality or inequality
comparison, but xor can be used instead. Appendix I discusses operation of the ALU sign corrector in
more detail.

Function Operation
24 ra + rb
30 ra - rb
38 -ra

2A ra > rb
2B ra >u rb
2E ra >= rb
2F ra >=u rb
32 ra < rb
33 ra <u rb
34 ra <= rb
35 ra <=u rb

40 ra eqv rb
48 ra xor rb
50 ra or rb
58 rb
60 not ra
68 ra
70 ra and rb

Figure 4-39: ALU Function Encodings

If sh is set then the ALU instruction is transformed into a field extract instruction, in which a fixed-size
field is extracted from a variable location within a word. The TASM format is shown in Figure 4-40.

rc := ra,rb.(size:b); {bit-field extract}
rc := ra,rb.(size:o); {byte extract}

Figure 4-40: TASM Variable/Byte Extract Format

The encoding of the field size in the 7-bit function field of the instruction is shown in Figure 4-41. The
extract size is in the range [1..32]. The shift count for the 64-bit (ra,rb) pair is specified by the least
significant 5 bits of ra, which can be a literal. As with the extract instruction, the complement of the
desired shift count should be specified. The shift count is in the range [0..31].

|< 5 >|<1>|<1>|
+-------------+---+---+
		i
size-1	0	n
		v
+-------------+---+---+

Figure 4-41: Extract Size Encoding

If the sb bit is set, the field extract is forced to a byte boundary. The byte position within the word is

INSTRUCTIONS 54

specified by the least significant 2 bits of ra, which can be a literal. The inv bit controls the order of
bytes within a word as shown in Figure 4-42.

|< 8 >|< 8 >|< 8 >|< 8 >| ra inv | byte ra inv | byte
+-----+-----+-----+-----+ -- --- | ---- -- --- | ----
| | | | | 0 0 | A 0 1 | D
| A | B | C | D | 1 0 | B 1 1 | C
| | | | | 2 0 | C 2 1 | B
+-----+-----+-----+-----+ 3 0 | D 3 1 | A

Figure 4-42: Byte Extract Position

Execution

DO AR := ra, BR := rb
EX RR := function(ra, rb)
WR ra := RR

INSTRUCTIONS 55

4.12 Coprocessor Instructions

TASM Format

rc := ra,rb(<result>,<func>,<op>)

Memory Format

|< 4 >|< 6 >|< 6 >|< 6 >|< 3 >|< 3 >|< 3 >|1|
+-------+---------+---------+---------+-------+-------+--------+-+
B	ra	rb	rc	result	op	func	0
+-------+---------+---------+---------+-------+-------+--------+-+

Description

The coprocessor instruction writes the value of the coprocessor accumulator (AC) register into register rc
in the format specified by result. The instruction uses the 64-bit (ra,rb) pair as the coprocessor operand
and starts the operation specified by func, interpreting the operand in format op.

The coprocessor supports integer, single-precision floating point, double-precision floating point, and
miscellaneous status and system clock functions. The integer functions provide 32-bit multiply and
divide and 64-bit add and subtract support for the processor. The floating point functions provide add,
subtract, multiply, and divide support for the processor. The miscellaneous functions provide time-of-day
clock and interval timer support for the processor.

|1|< 8 >|< 23 >|
+-+-------+---------------------+
|s| exp | fraction |
+-+-------+---------------------+

Figure 4-43: 32-Bit, Single-Precision Floating Point F Format

Figure 4-43 shows the memory format for a single-precision floating point number. The s bit is the sign
of the fraction field. The exp field is the 128-biased exponent. Figure 4-44 shows the memory format for
a double-precision floating point number. The s bit is the sign of the fraction field. The exp field is the
1024-biased exponent.

|1|< 11 >|< 52 >|
+------------+---+
|s| exp | fraction |
+-+----------+---+

Figure 4-44: 64-Bit, Double-Precision Floating Point G Format

In both of the floating point formats, the actual fraction is always assumed to be normalized, but the
normalizing bit is not present in the physical representation; there is a hidden bit. An exponent field
of 0 does not signify the most negative exponent, but instead means that the number is assumed to be
the value zero if the sign and fraction fields are 0, and a reserved operand if the sign bit is 1.

|1|< 16 >|<2 >| 62 >|
+--------------+---+
|s| exp | 01 | fraction |
+-+------------+---+

Figure 4-45: Internal Coprocessor Floating Point Format

INSTRUCTIONS 56

Figure 4-45 shows the internal coprocessor format for floating point numbers. The fraction register has
its binary point between the most significant and the second most significant bits. The bit that was
hidden in the external representation is present in the second most significant position of the fraction
register. The exponent register holds an unbiased two’s complement exponent.

Loading a non-zero single-precision floating point number from register ra to the AC sets the most
significant bit of the fraction register to 0, the next bit to 1, and copies the succeeding bits from the
fraction field of register ra. The exponent register will hold the value of the exponent field of ra minus
128, sign extended to 16 bits.

Loading a non-zero double-precision floating point number from registers (ra,rb) to the AC sets the most
significant bit of the fraction register to 0, the next bit to 1, and copies the succeeding bits from the
fraction field of registers (ra,rb). The exponent register will hold the value of the exponent field of
(ra,rb) minus 1024, sign extended to 16 bits.

Loading a zero single- or double-precision floating point number sets the sign bit, exponent register, and
all bits of the fraction register to zero.

Loading a double fixed number from registers (ra,rb) causes all 64 bits to be placed into the fraction
register without change. The exponent register is unaffected. The sign bit is set from the most
significant bit of register ra.

Value Result Format
0 sign ac sign and various status bits
1 exp exponent, sign extended to 32 bits
2 inth most significant word of the fraction
3 intl least significant word of the fraction
4 dph most significant word of a double value
5 dpl least significant word of a double value
6 sp single precision value
7 null zero

Figure 4-46: Result Field Encoding

The coprocessor instruction waits for completion of the previous coprocessor operation, if it is not
already complete. A portion of the result in the coprocessor AC is stored in register rc, as selected by the
result format field as shown in Figure 4-46. In the same cycle that a result is written to register rc,
registers ra and rb are passed to the coprocessor for use in an operation selected by the func field as
shown in Figure 4-47. The op field specifies the format of the (ra,rb) operand as shown in Figure 4-48.
Register rc is written after reading ra and rb, so even if ra or rb selects the same register as rc, the old
value of the register will be passed to the coprocessor before the coprocessor’s previous result is written.

Value Function Action
0 load ac <- operand
1 add ac <- ac + operand
2 subtract ac <- ac - operand
3 rsubtract ac <- operand - ac
4 misc miscellaneous
5 multiply ac <- ac * operand
6 divide ac <- ac / operand
7 rdivide ac <- operand / ac

Figure 4-47: Function Field Encoding

INSTRUCTIONS 57

Value Operand Format
0 i integer
1 - reserved
2 - reserved
3 - reserved
4 f f input, f result rounding
5 fg f input, g result rounding
6 gf g input, f result rounding
7 g g input, g result rounding

Figure 4-48: Operand Field Encoding

In Figure 4-48 the result rounding refers to rounding after calculations; f rounding is into a 23-bit
fraction, g rounding is into a 52-bit fraction. The input format applies to the operand. Figure 4-49 show
conversion of a g-format number to f-format using this feature. Note that for the load function, the fg
operand type is mapped to a miscellaneous function as discussed below.

{g-number in r1,r2}
r0 := r1,r2(null,load,gf);
r3 := r0,r0(sp,nop);

Figure 4-49: Conversion of G-Format to F-Format

For i operands, the operand and the AC fractions are 64-bit, two’s complement integers for the add,
subtract, and rsubtract functions. For the multiply function, the contents of register ra and inth of the AC
fraction are two’s complement integers generating a 64-bit product into the AC fraction. For the divide
function, ra is an unsigned divisor, and the AC fraction is an unsigned dividend; register rb must be zero
to get a quotient in AC fraction intl bits, and remainder in AC fraction inth bits. For the rdivide function,
the operand is an unsigned dividend, and inth of the AC fraction is an unsigned divisor; intl of the AC
fraction must contain zero to get a quotient in intl of the AC fraction and remainder in inth of the AC
fraction.

Integer multiplication is signed and generates a 64-bit product. If one is interested only in the low-order
word of product, signed and unsigned multiplication are equivalent, and overflow can be detected by
examination of the high-order word; in unsigned arithmetic the high word must be zero, in signed
arithmetic the high word must be copies of the sign of the low word. If the program requires the full
signed product, it should use the result returned. If the unsigned product is required, it can be obtained
by adding the multiplier to the high word of product if the multiplicand msb is set, and adding the
multiplicand to the high word of product if the multiplier msb is set.

Integer division is unsigned; the hardware computes 32-bit quotient and remainder from a 64-bit
dividend (numerator) and 31-bit divisor (denominator), subject to the following restrictions:

• Software must check for division by zero.

• Software must check for overflow; the high word of dividend is greater than or equal to the divisor.

• Software must ensure that the low-order word of the divisor is zero.

• The remainder may need correction. If the quotient is even (least significant bit is zero) and the
remainder returned is not zero, then the divisor must be added to the remainder to obtain the
correct result.

Integer division leaves the quotient in the low-order word of the AC, and the remainder in the high-order
word. Signed division may be obtained by taking the absolute values of both divisor and dividend,
then negating the quotient if the divisor and dividend signs were different and negating the (corrected)
remainder if the dividend was negative.

INSTRUCTIONS 58

Value Function Action
50 fix AC fraction is shifted to place the

binary point at the right of bit 63.
If AC sign is set, the fraction is
negated.

48 floatf Ra and Rb are interpreted as a two’s
complement, fixed-point number with
the binary point between Ra and Rb.
Their value is converted to floating
point, loaded into AC, and rounded to
single precision.

58 floatg Ra and Rb are interpreted as a two’s
complement, fixed-point number with
the binary point between Ra and Rb.
Their value is converted to floating
point, loaded into AC, and rounded to
double precision.

68 scale Ra is interpreted as an integer and
added to the exponent of AC.

78 ldExp Ra is interpreted as an integer and
is assigned to the exponent of AC.

08 wrSign The sign bit of AC is loaded from bit
0 of Ra.

18 rdTod The current time of day value is
placed in the AC fraction.

30 wrInt In kernel mode, Ra and Rb are
interpreted as the time of day when
the next interval timer interrupt
should occur. Ignored in user mode.

38 wrTod In kernel mode, Ra and Rb are
interpreted as the current time of day.
The interval timer value is lost, and
it requests an interrupt immediately.
Ignored in user mode.

28 nop The coprocessor state is not changed.

Figure 4-50: Miscellaneous Coprocessor Functions

Figure 4-50 shows the miscellaneous coprocessor functions that provide floating point to fixed point
conversion, direct loading of the AC fields, and maintenance of the time-of-day clock and interval timer.

The time-of-day register is a 64-bit register that counts time in machines cycles. When the interval timer
is loaded with a time between 1 and 2^19 - 1 cycles more than the current value in the time-of-day
register, an interrupt occurs when the time-of-day reaches that time. An interrupt also occurs whenever

5the time-of-day register is written. Note that the interval timer must be serviced within 2^19 cycles

5If the processor is in kernel mode at the time, this interrupt is suppressed as are all interrupts. Writing the interval timer after writing the
time-of-day register will clear the interrupt.

INSTRUCTIONS 59

(approximately 20 milliseconds) after it generates an interrupt, or the time-of-day register will not
operate properly.

There are three kinds of floating exceptions:
1. Division by zero is detected at the time a floating point divide instruction is requested, and causes

a trap immediately. The requested operation does not occur.

2. Reserved operand is detected at the time such an operand is presented to the coprocessor, and
causes a trap immediately. The requested operation does not occur.

3. Range error (overflow and underflow) is detected at the time an out-of-range result is requested
by the processor, which will often be the next coprocessor instruction following that which
generated such a result. However, range error occurs when the exponent value is not in the range
that can be represented in the requested result format, and so depends on what is requested.
Range error cannot occur except on instructions which obtain results in floating point formats.

|< 1 >|<1 >|< 25 >|< 1 >|< 1 >|< 1 >|< 1 >|< 1 >|<1>|
+-----+----+------+-----+------+------+-----+-----+---+
neg	nz	0	abort	gRange	fRange	rsvOp	noDiv	int
+-----+----+------+-----+------+------+-----+-----+---+

Figure 4-51: Coprocessor Status Register

The exact type of exception that occurred can be obtained by reading the coprocessor status register.
Figure 4-51 shows the format of the status register, where the fields are:

neg AC is negative
nz AC fraction is non-zero
abort Coprocessor instruction was aborted
gRange AC can’t be represented in G format
fRange AC can’t be represented in F format
rsvOp Operand was reserved operand
noDiv Divide by zero attempted
int Interval timer interrupt pending

Note that the gRange and fRange bits are status bits that are set any time the AC can’t be represented in
the corresponding format. Therefore, occurrence of a range error requires that the abort bit is set and the
coprocessor instruction requested a sp result and the fRange bit is set, or the coprocessor instruction
requested a dph or dpl result and the gRange bit is set.

Note that the abort bit is cleared by all coprocessor instructions; reading the coprocessor status after traps
should be the first coprocessor instruction executed in the trap handler. Writing the status register sets the
values of the acNeg, rsvOp, and noDiv bits, and clears the abort bit.

The int bit continually reflects the state of the interval timer and may change at any time.

The double fix operations never cause any exceptions. To do integer addition with overflow detection,
do a double fix addition and then test the least significant bit of the high half of the fraction register.

When servicing coprocessor interrupts/traps the following procedure is suggested:
1. If int bit set, update interval timer and restart process.

2. If abort bit set and any of the fRange, gRange, rsvOp, or noDiv bits are set, then cause an
arithmetic exception.

Note that if floating point underflows are being coerced to zero, then in step 2 above, the fRange/gRange
bit should be checked against the exponent to see of the AC should be loaded with zero and the process

INSTRUCTIONS 60

restarted.

Restrictions

Coprocessor instructions that require multiple cycles to complete must not be immediately followed by
another coprocessor instruction, or erroneous results may occur. Refer to Section 4.16 for coprocessor
instruction timing.

INSTRUCTIONS 61

4.13 User Trap

TASM Format

trap literal;

Memory Format

|< 4 >|< 22 >|< 6 >|
+-------+---+----------+
C	0	literal
+-------+---+----------+

Description

This instruction causes a user trap. The user trap bit and literal are set in the program status word.
The processor enters kernel mode and jumps to address 00000000. PC2 will contain the address of the
trap instruction. PC1 will contain the address of the instruction in execution sequence after the trap
instruction. To restart the user instruction stream, the pc-queue must be manually advanced (or the trap
instruction would be reexecuted). To advance the pc-queue, reload it so that PC2’ = PC1, and PC1’ =
PC1 + 1.

Restrictions

The processor halts if a trap instruction is executed in kernel mode.

Execution

DO PSW := literal
EX trap
WR -

INSTRUCTIONS 62

4.14 Load Address

TASM Format

ra := disp[rb];

Memory Format

|< 4 >|< 6 >|< 6 >|< 16 >|
+-------+-----------+-----------+------------------------------+
D	ra	rb	disp
+-------+-----------+-----------+------------------------------+

Description

The effective address is written into register ra. Note that effective addesses are word addresses ((rb >>
2) + disp).

If register rb is modified by the immediately preceding instruction, the processor will stall one cycle.
When possible, compilers should reorder instructions to minimize such stalls.

Execution

DO DCAR := (rb >> 2) + disp
EX RR := DCAR
WR ra := RR

INSTRUCTIONS 63

4.15 Undefined Instruction

TASM Format

undef1/2 [ra, rb];

Memory Format

|< 4 >|< 6 >|< 6 >|< 16 >|
+-------+-----------+-----------+------------------------------+
E/F	ra	rb	0
+-------+-----------+-----------+------------------------------+

Description

If the undefined instructions are executed in user mode, the illegal instruction trap bit will be set in the
PSW, PC2 will contain the address of the undefined instruction, PC1 will contain the address of the
instruction in execution sequence after the undefined instruction.

If one of the undefined instructions is executed in kernel mode, then the processor halts with the PC
containing the address of the instruction in execution sequence after the undefined instruction, and AR,
BR with the contents of ra, rb.

Execution

DO AR := ra, BR := rb
EX trap
WR -

INSTRUCTIONS 64

4.16 Instruction Timing
A new instruction is issued every cycle unless one of the following conditions occurs:

Address interlock If a register is written by some instruction, and used in an address calculation by the next,
one additional cycle is lost. However, this does not apply to register r0 (the program
counter).

Store cycle If the instruction following a store is a load or store, one additional cycle is lost.

Trap/interrupt Any trap condition costs a three cycle delay until the instruction at location 00000000 is
executed.

Cache miss Any instruction fetch, operand load or store which misses the cache results in a delay of
about 13 cycles.

Coprocessor Wait for completion of coprocessor operations can cost up to 58 cycles, depending on the
operation in progress. Figure 4-52 shows the number of cycles required to deposit a
result in the accumulator, including issuing the coprocessor instruction itself.

I/O instruction Variable number of cycles if an I/O read or write is in progress when a new I/O
instruction is issued. Subject to undefined number of I/O bus and I/O adaptor select stall
delays.

Flush instruction Every clean line requires 3 cycles, every dirty line requires about 13 cycles.

single float double float double fix
addition 4* 4* 1
multiplication 8 18 6
division 29 58 34
float 3 3 -

* In special cases these may take either 3 or 5 cycles.

Figure 4-52: Coprocessor Timing

To the extent possible, compiliers should try and reorder instructions to minimize address interlock, store cycle, and
coprocessor stalls.

TITAN I/O BUS 65

5. Titan I/O Bus
The Titan I/O bus provides a high-speed connection between the I/O adaptors and main memory. It carries control
and status information during the execution of CPU I/O instructions, and otherwise is available for DMA traffic
initiated by the I/O adaptors.

The I/O bus exists only on the backplane in the Titan system cabinet. It cannot be extended off the backplane, and
only one can be provided per processor.

The remainder of this chapter uses the following terminology:

Word refers to a unit containing 32 bits of data and 4 bits of parity.

Transfer identifies the movement of one word in one cycle between an I/O adaptor and the
memory controller.

Transaction describes a sequence of cycles, including arbitration, address and data transfers.

Input refers to transfers from an I/O adaptor to the memory controller.

Output refers to transfers to an I/O adaptor from the memory control.

DMA describes transactions initiated by an I/O adaptor.
From the perspective of an I/O adaptor, the terms "CPU", "memory", and "memory controller" are equivalent. The
adaptor communicates with them over bus wires that actually connect only to the memory controller, which switches
data between the I/O bus lines and the CPU’s cache data lines or the memory data lines.

The Titan I/O bus carries four types of transaction:

CPU input The CPU sends a word, called address, to the adaptor, which responds with a word called
data.

CPU output Two words, called address and data, are sent to an I/O adaptor by the CPU.

DMA input The I/O adaptor sends a word containing a real address to the memory controller,
followed by four words to be stored at the given address and succeeding locations. The

6address should contain zeros in the least significant two bits.

DMA output The I/O adaptor sends a word containing a real address to the memory controller, which
responds with the four words at the given address and succeeding locations. The address

7should contain zeros in the least significant two bits.
The I/O bus is comprised of five logical groups of signals as shown in Figure 5-1. The five groups provide DMA
bus arbitration, control of CPU input and output cycles, transfer of data, diagnostic scan, and clocks.

DMA Control I/O Control Data Scan Clocks
dmaRequest select inWord diagStop sysClk
dmaWr cmdWr outWord diagScan we422
noArb cmdStall scanIn we474
dmaTransfer ack scanOut reset
lock interrupt scanMode

Figure 5-1: Titan I/O Bus Signal Groups

Figure 5-2 lists the number of each signal in the bus, their direction, their impedence, the number of pins to a given

6The memory controller accepts addresses with the least significant two bit non-zero. However, only one line of main memory is written; the
least significant two bits specify the modulo order of that the four words are presented to the memory controller, e.g., word 1, word 2, word 3, and
then word 0.

7The memory controller accepts addresses with the least significant two bit non-zero. However, only one line of main memory is read; the least
significant two bits specify the modulo order of that the four words are presented to the I/O adaptor, e.g., word 2, word 3, word 0, and then word
1.

TITAN I/O BUS 66

adaptor, and their function. As stated above in is from the I/O adaptor to the memory controller.

Signal Bits Dir Ohms Pins Function
------ ---- --- ---- ---- --------
dmaRequest 7 in 50 7 Bus arbitration
dmaWr 1 in 25 1 DMA data is to memory
noArb 1 out 50 1 Suppress arbitration
dmaTransfer 7 out 50 1 DMA data control
lock 1 both 25 1 Mutual exclusion

select 7 out 50 1 Adaptor selection by CPU
cmdWr 1 out 50 1 Command data is to adaptor
cmdStall 1 in 25 1 CPU must wait for adaptor data
ack 1 in 25 1 Adaptor accepts command
interrupt 7 in 50 1 Interrupt request by adaptor

inWord.data 32 in 25 32 Data from adaptor
inWord.parity 4 in 25 4 Byte parities
outWord.data 32 out 50 32 Data to adaptor
outWord.parity 4 out 50 4 Byte parities

reset 1 out 50 1 Boot time initialization

diagStop 1* out 50 1 Adaptor diagnostic mode select
diagScan 7* out 50 1 Scan adaptor in diagnostic mode
scanMode 1* out 50 1 Scan in progress
scanIn 1* out 50 1 Input to adaptor’s scan chain
scanOut 7* in 50 1 Output of adaptor’s scan chain

clk 7* out 50 1 System clock
we422, we474 14* out 50 2 RAM write pulses

--- --
145 bus wires 97 per slot

* To/from clock/scan board, not memory controller

Figure 5-2: Titan I/O Bus Signals

5.1 Arbitration
Bus arbitration is on a strict priority basis, with distributed arbitration. Each adaptor asserts the dmaRequest signal
assigned to it when it needs a transaction, and monitors noArb and the dmaRequest signals for higher priorities. If
no higher priority request is asserted, and noArb is not asserted, the adaptor wins the arbitration. NoArb is asserted
by the memory controller from the cycle following arbitration until it is ready to begin another transaction. In the
first cycle of a DMA transaction, the adaptor sends an address, and dmaWr if this is to be a write transaction. The
memory controller accepts the address in this cycle, and asserts the adaptor’s dmaTransfer line to begin the
movement of data between the adaptor and controller.

For a memory write, the adaptor puts the first word of data onto the inWord lines immediately after sending the
address, and sends the second word in the cycle following that in which it sees dmaTransfer; the third and fourth
words are transfered in the immediately succeeding cycles.

For a memory read, the memory controller puts the first word of data on the bus in the same cycle as it asserts
dmaTransfer, and sends the second, third, and fourth words in the following cycles. This definition is intended to
allow the memory controller to begin another operation while waiting for read data from the array; each adaptor

TITAN I/O BUS 67

generally waits for completion of one of its own transactions before requesting another.

It is possible to partially overlap some DMA cycles after the memory controller has asserted dmaTransfer. For
example, while an I/O adaptor is writing the last word of a DMA write transaction onto the bus, it can start bus
arbitration for a pending DMA transaction. Similarly, once an I/O adaptor receives dmaTransfer for a DMA read
transaction (and starts reading data off the outWord bus), it can start a pending DMA transaction because the inWord

bus is idle.

The connections from dmaRequest signals to I/O adaptor logic are made through backplane wiring, so the adaptor
need not include logic to decide which dmaRequest line to assert or which ones to monitor; the adaptor asserts a
standard pin, and monitors 6 others.

5.2 CPU Commands
To perform a CPU operation, the memory controller asserts noArb and one of the select lines (and cmdWr if this is a
write to the adaptor) during a cycle immediately following one in which none of the dmaRequests were asserted.
The adaptor selected must accept the address in that cycle, but may (generally will) assert cmdStall in the following
cycle to indicate that it is either not ready to accept CPU write data or not ready to return CPU read data. The actual
data transfer occurs in the first cycle in which cmdStall is not asserted; thus, if the transaction is a CPU write, the
memory controller must hold the data on the bus until the end of a cycle in which cmdStall is not asserted. If it is a
CPU read transaction, the controller must use the data on the bus in that cycle in which cmdStall is not asserted.

In a CPU operation, the memory controller asserts select for one cycle, but holds noArb asserted until the cycle
following deassertion of cmdStall.

5.3 Retry
Ordinarily, the I/O adaptor acknowledges each CPU transaction by raising ack in the data transfer cycle (that is,
when it is not asserting cmdStall).

In some cases, an I/O adaptor may be in a state in which it is unable to respond to CPU commands for an extended
period of time (more than 1 microsecond -- this limit is chosen to prevent overruns on DMA activity), or in which
acceptance of a CPU command would create a deadlock. In such a case, the adaptor does not raise ack in response
to select, and the CPU aborts the transaction as if there were no adaptor present. The adaptor may assert cmdStall

while deciding whether to ack. The memory controller records ack after each CPU transaction. It is up to software
to test this bit after any transaction with a adaptor whose design permits this case, and retry the command if
necessary.

5.4 Locking
Certain I/O adaptors may require mutual exclusion from other adaptors and/or the CPU during short sequences of
memory operations. Such a adaptor may arbitrate (assert its dmaRequest) for a mutually exclusive access only
during a cycle immediately following one in which lock was not asserted. When it wins arbitration, it asserts lock

until its need for exclusion is passed. This allows non-mutex transactions to proceed, but excludes other contenders
for the lock. Adaptors are expected to use this primitive mechanism to control access to higher-level interlocks in
memory whenever the period of exclusion might exceed 5 microseconds. Adaptors which do not require mutual
exclusion need not implement this signal.

When the memory controller receives the IoRead instruction which tests and sets the lock, it waits for a cycle in

TITAN I/O BUS 68

which no dmaRequest is set. If lock is asserted on the bus in that cycle, the controller returns that fact to the
requesting instruction. Otherwise, it asserts noArb followed by lock on the bus, and returns the fact that lock was not
set, keeping lock on the bus until cleared by software. Programmers are urged to ensure that interrupts are disabled
before the lock set, and not re-enabled until after it is cleared. Refer to Sections 2.4.4, 3.8, and 4.2.16 for further
disussion of locking and IoRead instructions.

t4 t5..t39

t4 t5..t39

Mutex IO DMA Inhibited

CPU Lock IO Lock

t0 t1 t46t45t44t43t42t41t3t2

tio.lock

tio.noArb

tio.dmaRequest

t0 t1 t46t45t44t43t42t41t3t2

ctrl.startRead

Figure 5-3: I/O Lock Example

Figure 5-3 shows an example of the use of the lock signal. ctrl.startRead is an internal I/O adaptor signal that
indicates that the adaptor is ready to perform a DMA read transaction. tio.dmaRequest is the adaptor’s I/O bus
DMA request signal. tio.noArb and tio.lock and the I/O bus signals.

t1 The CPU performs an IoRead instruction on the lock slot to set the lock.

t2 tio.lock was deasserted so the CPU acquires the lock.

t3 The IoRead instruction ends and the memory controller asserts the acquired CPU lock on
the bus.

t4 The adaptor is ready to perform a DMA read transaction. The CPU continues to hold the
lock.

t5..t40 The adaptor honors the lock and suppresses its DMA request. The CPU continues to hold
the lock.

t41 The CPU performs an IoRead instruction on the lock slot to clear the lock.

t42 The CPU held the lock, so the memory controller clears the lock.

t43 The IoRead instruction ends and the memory controller deasserts the tio.lock signal.

t44 The adaptor observes that the lock has ended and asserts its DMA request signal.

t45 The adaptor wins the bus arbitration.

t46 The adaptor asserts the tio.lock signals to inhibit the CPU from gaining the lock until the
adaptor has finished a sequence of DMA transactions (not shown).

TITAN I/O BUS 69

5.5 Addresses
In DMA transactions, the address presented by the adaptor to the memory controller is a real memory address which
identifies the first of a block of four 32-bit words to be transferred. In CPU transactions, the address presented to the
adaptor by the memory controller is a 32-bit value generated by the software (specifically, it has not been translated
or otherwise modified by hardware). Its interpretation is entirely at the discretion of the adaptor, and independent of
the interpretation of addresses by other adaptors. Simple adaptors, for example, may use a few bits to select the
adaptor control registers and other bits as a command, ignoring most of the address; a frame buffer might use a large
portion of the address to indicate a particular pixel.

5.6 Identification
To simplify the problem of software initialization, each adaptor on the Titan I/O bus responds with a unique
identification pattern when it is read by a CPU transaction at its address of all ones (FFFFFFFF). These patterns are
listed in Figure 5-4. See also Section 2.4.3.

Type Code I/O Adaptor
00000000 Empty slot
00000001 Reserved
00000002 TDA (MCSP/SDI Disks)
00000003 Reserved
00000004 TNA (Ethernet)
00000006 TFA (Fiber optic)

Figure 5-4: Titan I/O Adaptor Identifiers

5.7 Parity
All transfers carry odd byte parity on the inWord or outWord lines; there is no checking on the remaining signals.
The memory controller is responsible for asserting correct parity on the outWord lines whenever it is sending an
address or data to an adaptor, and the adaptor is expected to check received parity and report any errors detected
when it is selected. Adaptors are responsible for asserting correct parity on the inWord lines whenever they are
driving data onto the bus (parity need not be correct while the adaptor asserts cmdStall, or if it does not assert ack).
The memory controller checks parity of data and addresses received from the adaptors.

These rules imply:

• Bus parity is incorrect when no driver is enabled.

• No adaptor should report a bus error except as a result of a transfer it thought was directed to it.

• Adaptors and the memory controller are permitted to drive incorrect parity onto the bus while they have
stall asserted.

5.8 Interrupts
An adaptor requests an interrupt by (synchronously) asserting its interrupt line; it deasserts the line when software in
the CPU issues I/O instructions to the adaptor that clear the condition which caused the interrupt.

5.9 Scan
Each adaptor must connect its bus registers in a scan chain, with scanIn as the shift input and scanOut as the output.
When diagStop is asserted without diagScan, these registers should be forced into hold, and when both diagStop and
diagScan are asserted, shifting should occur synchronous to the system clock. It is desireable for the scan chain to
include as much as possible of the adaptor state, but probably excludes that portion of the adaptor which is not on

TITAN I/O BUS 70

the system clock and/or not 100k ECL.

Note that when diagStop is asserted, reset and RAM write pulses should be suppressed by I/O adaptors. The I/O bus
reset signal is generated by the memory controller and is part of its internal, scannable state. Therefore, during a
scan of the memory controller, the I/O bus reset signal will pulse. This should not reset I/O adaptors. Similarly,
during scan of an I/O adaptor, its internal control signals will temporarily take on random values, possibly causing
spurious writes of internal RAMs if those control signals are directly gated with the backplane write enable signals.

Figure 5-5 shows a typical diagnostic stop and scan of an I/O adaptor. When diagStop is asserted, the I/O adaptor
should hold its internal state. Every clock cycle that both diagStop and diagScan are asserted the I/O adaptor should
shift its internal state by one bit. Scan of the entire internal state occurs in a sequence of 8-bit scans, terminated by a
final length-mod-8-bit scan if the total scan chain length is not an integral multiple of 8 bits. The external host
controlling the scan operation knows the length of a given adaptor’s scan chain and instructs the clock/scan module
accordingly.

If adaptors wish to include logic in their scan chain that require a clock cycle to convert between normal and scan

modes, the scanMode signal should be used to put such logic in its scan mode on the rising edge of scanMode and
back to its normal mode on the falling edge of scanMode.

Normal State

sysClk

diagScan

Scan BitsScan ByteScan Byte

diagStop

scanMode

Hold State

Figure 5-5: Diagnostic Stop and Scan of Adaptor

5.10 Conventions
The Titan I/O bus uses ECL 100k devices for all its signals, which are received directly by the parallel data inputs of
100141’s clocked by the system clock. Bus discipline does not permit logic between backplane signals and the
register, nor more than one receiver per signal, but does permit a small amount of logic before the drivers.

Bus stubs may be no more than 1.5 inches, which implies that bus driver and receiver chips must be along the
connector edge of the board. All bus signals use 50 ohm transmission lines, but those which have multiple drivers
must be terminated at both ends, so they require 25 ohm drivers, obtained by 100123, (preferred) or by paralleling
the outputs of a 100113 (where inversion is required). Other signals may be driven by any ECL 100k output.

Bus interfaces are required to provide at least 2.0 ns minimum propagation and wire delay from system clock to bus
pins, and no more than 15.0 ns maximum delay. Select and dmaTransfer signals are radially distributed (a separate
signal goes to each adaptor), and therefore have less stringent timing constraints: the memory controller must assert

TITAN I/O BUS 71

them to the bus no later than 20 ns, and the adaptor can expect them to stabilize by 25 ns, allowing a small amount
of logic before a register.

5.11 Clocks
The system clock is distributed by a common 100113 driver to all adaptors on the I/O bus through individual
equal-length traces in the backplane. Adaptors are expected to buffer the clock with a 100113 before distribution on
the board; this provides 8 copies in each polarity, and when considered with the minimum propagation delay spec
above, avoids the need for deskew adjustments.

Nominal clock net length on an I/O adaptor is 22.0 inches. Note that this is total clock net length on the adaptor,
e.g., if the backplane connector to a 100113 input net is 2.0 inches in length, the 100113 output to load lengths
would be 20.0 inches.

If a TTL clock is needed, it should be derived from the clock pin by a 100125.

In addition to the system clock, each I/O slot receives signals from the clock module designated as ~we422 and
~we474, suitable for buffering and use as write pulses for 100422 (256x4) and 100474 (1024x4) rams, respectively.
The system clock is symmetric, with 20 ns high and 20 ns low. The write pulses are timed with respect to the falling
edge (middle) of the cycle as shown in Figure 5-6.

+16.4 ns-0.2 ns

22.5 ns22.5 ns

0.0 ns

+8.8 ns +17.4 ns

sysClk

~we474

~we422

Figure 5-6: Write Pulse Timing

5.12 Termination
Each adaptor must provide 50-ohm termination for its own copy of the select, dmaTransfer, and clk signals. In
addition, each single-slot adaptor must provide 83 uncommitted terminators on backplane pins (specified in Figures
5-15, 5-16, and 5-17) so that if it is plugged into the last slot, they can terminate the bus. The backplane jumpers I/O
bus signals needing termination to nearby pins of slot 26 (IO1) that are assigned to be terminator pins. This implies
that slot 26 (IO1) must always be populated.

The memory controller terminates the inWord, interrupt, dmaRequest, cmdStall, dmaWr, ack, and lock signals.

To facilitate implementation of two-slot I/O adaptors, slots 20 (IO7) and 21 (IO6), slots 22 (IO5) and 23 (IO4), and
slots 24 (IO3) and 25 (IO2) have their terminator pins connected between the two slots of each pair by the

TITAN I/O BUS 72

backplane. Furthermore, the 108 pins not assigned as bus signals, terminators, or grounds in connector blocks 1 and
2 are jumpered between these slot pairs. This provides up to 191 connections between the two boards of the I/O
adaptor without using external cables. This also implies that such adaptors can only be positioned in one of these
three slot pairs.

5.13 Cpu Write Transactions
A CPU write transaction is shown in Figure 5-7. Signal names with a tio prefix are backplane signals; signal names
with a state prefix are adaptor internal FSM outputs; signal names with a ctrl prefix are adaptor internal control
signals.

In this example, the I/O bus and the adaptor are idle before the memory controller starts the CPU write.

t1 The memory controller selects the adaptor for a CPU write by asserting tio.select and
tio.cmdWr. It also asserts tio.noArb to inhibit DMA activity. The adaptor’s bus interface
then generates the ctrl.ioWriteAddr internal signal and prepares to latch the address that
the memory controller is driving onto the outWord bus.

t2 The memory controller deasserts tio.select and tio.cmdWr, and drives the contents of its
IoWriteData register onto the outWord bus. The adaptor’s bus interface latches the
address and checks its parity. The adaptor’s bus FSM enters state.ioWrite, and asserts
tio.cmdStall because it cannot complete the write in one cycle.

t3 The memory controller continues to drive the write data onto the outWord bus. The
adaptor continues processing the CPU write transaction.

t4 The memory controller continues to drive the write data onto the outWord bus. The
adaptors completes processing the CPU write transaction and deasserts tio.cmdStall. It
also asserts tio.ack to indicate that the transaction was successfully completed.

t5 The memory controller sees tio.cmdStall deasserted and completes the CPU write
transaction, latching the value of tio.ack in its IoStatus register. It also deasserts
tio.noArb to allow DMA activity to resume. The adaptor’s bus interface leaves
state.ioWrite.

If the bus had not been idle, extra cycles would have occurred before tio.select was asserted in t1. The memory
controller only asserts tio.select if the previous cycle has tio.noArb deasserted, and all of the DMA request signals
deasserted.

If the adaptor can complete the CPU write in one cycle, tio.ack would be asserted in t2, and tio.cmdStall would
never have been asserted.

The adaptor should check parity of the write data on the cycle that it latches it off the bus.

5.14 Cpu Read Transactions
A CPU read transaction is shown in Figure 5-8. Signal names with a tio prefix are backplane signals; signal names
with a state prefix are adaptor internal FSM outputs; signal names with a ctrl prefix are adaptor internal control
signals.

In this example, the I/O bus and the adaptor are idle before the memory controller starts the CPU read.

t1 The memory controller selects the adaptor for a CPU read by asserting tio.select and
deasserting tio.cmdWr. It also asserts tio.noArb to inhibit DMA activity. The adaptor’s
bus interface then generates the ctrl.ioReadAddr internal signal and prepares to latch the
address that the memory controller is driving onto the outWord bus.

t2 The memory controller deasserts tio.select. The adaptor’s bus interface latches the

TITAN I/O BUS 73

datadatadataaddresstio.outWord

t0 t1 t9t8t7t6t5t4t3t2

t4

state.ioWrite

ctrl.ioWriteAddr

tio.ack

tio.cmdStall

t0 t1 t9t8t7t6t5t3t2

tio.select

tio.noArb

tio.cmdWr

Figure 5-7: Cpu Write Timing

address and checks its parity. The adaptor’s bus FSM enters state.ioRead, and asserts
tio.cmdStall because it cannot complete the read in one cycle.

t3 The adaptor continues processing the CPU read transaction.

t4 The adaptors completes processing the CPU read transaction, drives the read data onto
the inWord bus, and deasserts tio.cmdStall. It also asserts tio.ack to indicate that the
transaction was successfully completed.

t5 The memory controllers sees tio.cmdStall deasserted and completes the CPU read
transaction, latching the value of tio.ack in its IoStatus register. It also deasserts
tio.noArb to allow DMA activity to resume. The adaptor’s bus interface leaves
state.ioRead.

If the bus had not been idle, extra cycles would have occurred before tio.select was asserted in t1. The memory
controller only asserts tio.select if the previous cycle has tio.noArb deasserted, and all of the DMA request signals
deasserted.

If the adaptor can complete the CPU read in one cycle, tio.ack would be asserted in t2, and tio.cmdStall would never
have been asserted.

5.15 DMA Read Transactions
A DMA read transaction is shown in Figure 5-9. Signal names with a tio prefix are backplane signals; signal names
with a state prefix are adaptor internal FSM outputs; signal names with a ctrl prefix are adaptor internal control
signals.

In this example, the I/O bus and the memory controller are idle before this adaptor starts the DMA read.

t1 The adaptor requests a DMA read of its bus interface by asserting ctrl.startRead.

TITAN I/O BUS 74

tio.outWord

tio.inWord data

address

t0 t1 t9t8t7t6t5t4t3t2

t4

state.ioRead

ctrl.ioReadAddr

tio.ack

tio.cmdStall

t0 t1 t9t8t7t6t5t3t2

tio.select

tio.noArb

tio.cmdWr

Figure 5-8: Cpu Read Timing

t2 The adaptor’s bus FSM enters state.readAddress and asserts tio.dmaRequest. The
adaptor’s bus interface also asserts ctrl.readBusy to inhibit other internal bus requests.

t3 In the previous cycle, tio.dmaRequest was asserted (and no higher priority DMA requests
are asserted since the bus is idle) and tio.noArb was deasserted. Therefore, the bus
interface generates ctrl.dmaAck, which enables driving the read address onto the inWord
bus.

t4 The adaptor’s bus FSM leaves state.readAddress and enters state.readWait. It also stops
asserting tio.dmaRequest. The memory controller latches the read address from the
inWord bus and starts processing the read cycle.

t5 The memory controller continues processing the read cycle.

t6 The memory controller continues processing the read cycle.

t7 The memory controller continues processing the read cycle.

t8 The memory controller deasserts tio.noArb to allow other adaptors to start bus arbitration.

t9 The memory controller continues processing the read cycle.

t10 The memory controller continues processing the read cycle.

t11 The memory controller continues processing the read cycle.

t12 The memory controller drives word 0 of the line onto the outWord bus and asserts
tio.dmaTransfer. The bus interface deasserts ctrl.readBusy, allowing pending DMA
requests from the adaptor to start.

t13 The bus interface leaves state.readWait and enters state.readData0. The bus interface
latches word 0 off the bus, checks parity, and provides it to the adaptor. The memory
controller drives word 1 of the line onto the bus.

t14 The bus interface leaves state.readData0 and enters state.readData1. The bus interface
latches word 1 off the bus, checks parity, and provides it to the adaptor. The memory

TITAN I/O BUS 75

controller drives word 2 of the line onto the bus.

t15 The bus interface leaves state.readData1 and enters state.readData2. The bus interface
latches word 2 off the bus, checks parity, and provides it to the adaptor. The memory
controller drives word 3 of the line onto the bus.

t16 The bus interface leaves state.readData2 and enters state.readData3. The bus interface
latches word 3 off the bus, checks parity, and provides it to the adaptor.

If the bus had not been idle, extra cycles would have occurred before ctrl.dmaAck was asserted in t3. If the memory
controller had not been idle (CPU activity or DMA write completing), extra cycles would have occurred before
tio.dmaTransfer is asserted in t12.

5.16 DMA Write Transactions
A DMA write transaction is shown in Figure 5-10. Signal names with a tio prefix are backplane signals; signal
names with a state prefix are adaptor internal FSM outputs; signal names with a ctrl prefix are adaptor internal
control signals.

In this example, the I/O bus and the memory controller are idle before this adaptor starts the DMA read.

t1 The adaptor requests a DMA write of its bus interface by asserting ctrl.startWrite.

t2 The adaptor’s bus FSM enters state.writeAddress and asserts tio.dmaRequest. The
adaptor’s bus interface also asserts ctrl.writeBusy to inhibit other internal bus requests.

t3 In the previous cycle, tio.dmaRequest was asserted (and no higher priority DMA requests
are asserted since the bus is idle) and tio.noArb was deasserted. Therefore, the bus
interface generates ctrl.dmaAck, which enables driving the write address onto the inWord
bus.

t4 The adaptor’s bus FSM leaves state.writeAddress and enters state.writeData0. It also
stops asserting tio.dmaRequest. The memory controller latches the write address from
the inWord bus. The bus interface drives word 0 of the line onto the inWord bus.

t5 The memory controller asserts tio.dmaTransfer to indicate that its ready for the write
data. The bus interface continues to drive word 0 onto the inWord bus. The bus interface
deasserts ctrl.writeBusy, allowing pending DMA requests from the adaptor to start
(though they would not gain access to the bus as tio.noArb is still asserted).

t6 The memory controller latches word 0 off the inWord bus. The bus interface leaves
state.WriteData0 and enters state.WriteData1. The bus interface drives word 1 onto the
inWord bus.

t7 The memory controller latches word 1 off the inWord bus. The bus interface leaves
state.WriteData1 and enters state.WriteData2. The bus interface drives word 2 onto the
inWord bus.

t8 The memory controller latches word 2 off the inWord bus. The memory controller
deasserts tio.noArb so that a new DMA arbitration can occur on the following cycle. The
bus interface leaves state.WriteData2 and enters state.WriteData3. The bus interface
drives word 3 onto the inWord bus.

t9 The memory controller latches word 3 off the inWord bus and starts processing the write
cycle. The bus interface leaves state.WriteData3.

If the bus had not been idle, extra cycles would have occurred before ctrl.dmaAck was asserted in t3. If the memory
controller had not been idle (CPU activity or DMA write completing), extra cycles would have occurred before
tio.dmaTransfer was asserted in t5.

TITAN I/O BUS 76

tio.noArb

tio.inWord

tio.outWord

t8..t11t4..t7

data 3
input

data 2
input

data 1
input

data 0
input

address
output

t0 t1 t17t16t15t14t13t12t3t2

ctrl.readBusy

state.readData3

state.readData2

state.readData1

state.readData0

tio.dmaTransfer

state.readWait

ctrl.dmaAck

tio.dmaWr

t4..t7 t8..t11t0 t1 t17t16t15t14t13t12t3t2

ctrl.startRead

tio.dmaRequest

state.readAddress

Figure 5-9: DMA Read Transaction

5.17 Physical Dimensions
Figure 5-11 shows a component-side view of an I/O adaptor. The board size is approximately the same as a DEC
extended-hex board. Using a 600 mil by 1300 mil grid of 24-pin ECL parts and termination SIPs, this provides 200
IC/SIP positions. I/O adaptor boards are 12 layer printed circuit boards, generally comprised of 6 signal layers and 6
supply/ground planes.

TITAN I/O BUS 77

ctrl.dmaAck

tio.dmaWr

load
toIo

load
toIo

load
toIo

data 3
output

data 2
output

data 1
output

data 0
output

tio.noArb

tio.inWord

load
toIo

load
toIo

data 0
output

address
output

t0 t1 t9t8t7t6t5t4t3t2

ctrl.writeBusy

state.writeData3

state.writeData2

state.writeData1

tio.dmaTransfer

state.writeData0

t4t0 t1 t9t8t7t6t5t3t2

ctrl.startWrite

tio.dmaRequest

state.writeAddress

Figure 5-10: Dma Write Timing

5.18 Backplane
Figure 5-12 shows a pin-side view of the 26-slot Titan backplane with the processor connectors, P3..P7 and
P10..P14, the three connector blocks for each backplane slot, and the DC power rails. Above the drawing of the
backplane, the slots numbers and module types are listed for each backplane slot. The backplane is a 10 layer
printed circuit board, comprised of 6 signal layers and 4 ground planes.

Figure 5-13 lists the mnemonics used for the module types. For the memory array modules, the numeric suffix

TITAN I/O BUS 78

Airflow

B
A
C
K
P
L
A
N
E

15.7"

11.9"

Figure 5-11: I/O Adaptor [Component-Side View]

indicates the memory module number [0..3] and the word of the memory line within that module [0..3]. For
example, the 32-bit word at physical address 00000002 is in MA02, and the word at physical address 00100003 is in
MA23. However, all memory array boards are identical, the backplane slot implicitly specifies the memory module
and line word. For the I/O adaptor modules, the numeric suffix idicates the bus arbitration priority of the slot [1..7];
with slot IO1 having the highest priority, and slot IO7 having the lowest priority.

Pins of a given backplane slot’s connectors are identified by a four digit number of the form BRRC. The most
significant digit is the connector block [1..3]. The middle two digits are the connector row number, [01..40] for
blocks 1 and 3, and [01..50] for block 2. The least significant digit is the connector column, [1..3] for memory array
modules, [1..4] for all other modules. Figure 5-14 shows the number of the four corner pins of a four column, block
1 connector as viewed from the pin side of the backplane. As another example, referring to Figure 5-12, the lower,
right-hand corner pin of slot 19’s (MA00) block 2 connector is 2503.

The power rails are positioned to give distributed grounds, for signal integrity, and to move ECL circuitry near
connector block 1 and TTL circuitry near connector block 3. The supply return rails (0 V) are not attached to the
backplane ground planes, to decrease noise coupling between supply- and signal-ground systems. The ground
systems are connected via the ground and supply-return planes of memory and I/O boards.

Cooling air moves from bottom to top, from block 3 to block 1. Because of its temperature compensation, ECL

TITAN I/O BUS 79

 0.0

 0.0

+5.0
 0.0

-4.5
-2.0

3

M
R

1

C
S

2

M
W

Slot:

Type:

2
6

I
O
1

2
5

I
O
2

2
4

I
O
3

2
3

I
O
4

2
2

I
O
5

2
1

I
O
6

2
0

I
O
7

1
9

M
A
0
0

1
8

M
A
1
0

1
7

M
A
2
0

1
6

M
A
3
0

1
5

M
A
0
1

1
4

M
A
1
1

1
3

M
A
2
1

1
2

M
A
3
1

1
1

M
A
0
2

1
0

M
A
1
2

9

M
A
2
2

8

M
A
3
2

7

M
A
0
3

6

M
A
1
3

5

M
A
2
3

4

M
A
3
3

B
L
O
C
K

2

B
L
O
C
K

3

B
L
O
C
K

1

P
1
1

P
6

P
7

P
5

P
4

P
1
4

P
1
3

P
1
2

P
1
0

P
3

Figure 5-12: Backplane Pin-Side View

Number Type Description
1 CS Clock/Scan
1 MW Memory Write Controller
1 MR Memory Read Controller
16 MAMW Memory Array For Module ’M’, Word ’W’
7 IOP I/O Adaptor At Priority ’P’
--
26 Total Slots

Figure 5-13: Backplane Module Quantity and Types

should be more tolerant of elevated temperatures than TTL.

Figure 5-1 show the groups of signals that form the Titan I/O bus. Assignment of these signals to connector blocks
1, 2, and 3 is shown in Figures 5-15, 5-16, and 5-17.

For the outWord.data and inWord.data busses, bit 31 is the most significant, and bit 0 is the least significant. E.g., if
outWord.data has the value 80000000 then outWord.data[31] is 1 and all other bits are 0. outWord.parity[3] is for
bits outWord.data[31..24]; outWord.parity[2] is for bits outWord.data[23..16]; etc.

TITAN I/O BUS 80

C C C C
o o o o

Pin 1011 l l l l Pin 1014
\ /
\ 1 2 3 4 /
\ /
. . . . Row 01

. . . . Row 02

. . . . Row 03

Block 1

. . . . Row 38

. . . . Row 39

. . . . Row 40
/ \
/ \
/ \

Pin 1401 Pin 1404

Figure 5-14: Backplane Connector Pin Numbering [Pin Side]

Signals are all assigned in columns 3 and 4, where the air loop of the connector pin is shortest. This minimizes
inductance at the bus interface.

Terminators which will be used only in slot 26 (IO1) are assigned the remaining pins near signals which will need
termination. Note that slot 26 (IO1) must be populated, or the bus will not be properly terminated. Adaptors which
need two slots, and therefore cannot use slot 26, may use these pins for communication between even and odd slots.

Pins are aligned with appropriate package pins subject to the constraint to columns 3 and 4, and minimizing the
length of the longest stubs. No interface chip pin is more than 1.8 inches from the via at which the backplane pin is
connected. (There is an additional half inch or so through the connector block to the backplane.)

Grounds assigned in columns 1 and 3 have pin numbers equal to 4 mod 6, and in columns 2 and 4 have pin numbers
equal to 1 mod 6. This places grounds no farther than 0.2" from any signal, and gives one ground for every five
signals.

Most of connector block 3 is unused by the Titan I/O bus, and unconnected on the backplane, making it available for
use with push-on headers to ribbon cables for bulkhead connections. Pins 340X to 335X have low-current auxilliary
voltages that may be needed for special interfaces as shown in Figure 5-18. The supply return (0 V) pins are tied to
the backplane supply return (0 V) rails. The GND pins are tied to the backplane ground planes; for use by I/O
cables that need a logic signal ground. The FRAME pins are tied to the cabinet; for use by I/O cables that need a
drain wire.

The backplane connections for DMA request signals are performed as shown in Figure 5-19, to provide the
fixed-priority bus arbitration of the I/O slots.

TITAN I/O BUS 81

Pin Col 1 Col 2 Col 3 Col 4
--- ----- ----- ----- -----
101 jump01 gnd scanIn gnd
102 jump02 term01 outWord.data[30] outWord.data[31]
103 jump03 term02 outWord.data[28] outWord.data[29]
104 gnd term03 gnd outWord.data[27]
105 jump04 term04 outWord.data[26] inWord.data[31]
106 jump05 term05 outWord.data[24] outWord.data[25]
107 jump06 gnd term06 gnd
108 jump07 term09 term08 term07
109 jump08 term10 inWord.data[29] inWord.data[30]
110 gnd term11 gnd inWord.data[28]
111 jump09 term12 inWord.data[27] inWord.data[25]
112 jump10 term14 term13 inWord.data[26]
113 jump11 gnd term15 gnd
114 jump12 term18 term17 term16
115 jump13 term19 inWord.data[23] inWord.data[24]
116 gnd term20 gnd inWord.data[22]
117 jump14 term21 inWord.data[21] inWord.data[20]
118 jump15 term24 term23 term22
119 jump16 gnd term25 gnd
120 jump17 term26 outWord.data[22] outWord.data[23]
121 jump18 term27 outWord.data[20] outWord.data[21]
122 gnd term28 gnd outWord.data[19]
123 jump19 term29 outWord.data[18] inWord.data[19]
124 jump20 term30 outWord.data[16] outWord.data[17]
125 jump21 gnd term31 gnd
126 jump22 term34 term33 term32
127 jump23 term35 inWord.data[17] inWord.data[18]
128 gnd term36 gnd inWord.data[16]
129 jump24 term37 inWord.data[14] inWord.data[15]
130 jump25 term40 term39 term38
131 jump26 gnd term41 gnd
132 jump27 term43 term42 outWord.data[15]
133 jump28 term44 outWord.data[13] outWord.data[14]
134 gnd term45 gnd outWord.data[12]
135 jump29 term46 outWord.data[11] inWord.data[13]
136 jump30 term47 outWord.data[09] outWord.data[10]
137 jump31 gnd outWord.data[08] gnd
138 jump32 term48 inWord.data[11] inWord.data[12]
139 jump33 term49 inWord.data[09] inWord.data[10]
140 gnd term50 gnd inWord.data[08]

Figure 5-15: Block 1 Signal Assignments

TITAN I/O BUS 82

Pin Col 1 Col 2 Col 3 Col 4
--- ----- ----- ----- -----
201 jump34 gnd reserved gnd
202 jump35 term51 reserved reserved
203 jump36 term52 outWord.data[06] outWord.data[07]
204 gnd term53 gnd outWord.data[05]
205 jump37 term54 outWord.data[03] outWord.data[04]
206 jump38 term55 outWord.data[02] inWord.data[07]
207 jump39 gnd outWord.data[01] gnd
208 jump40 term56 term81 outWord.data[00]
209 jump41 term57 term82 reserved
210 gnd term58 gnd inWord.data[06]
211 jump42 term59 inWord.data[04] inWord.data[05]
212 jump43 term60 inWord.data[03] inWord.data[01]
213 jump44 gnd inWord.data[02] gnd
214 jump45 term61 reserved reserved
215 jump46 term62 reserved reserved
216 gnd term63 gnd inWord.data[00]
217 jump47 term64 inWord.parity[2] inWord.parity[3]
218 jump48 term65 inWord.parity[0] inWord.parity[1]
219 jump49 gnd reserved gnd
220 jump50 term66 reserved scanMode
221 jump51 term67 outWord.parity[2] outWord.parity[3]
222 gnd term68 gnd outWord.parity[1]
223 jump52 term69 outWord.parity[0] cmdWr
224 jump53 term70 dmaTransfer[dev] select[dev]
225 jump54 gnd we422[dev] gnd
226 jump55 term71 we474[dev] sysClk[dev]
227 jump56 term72 dmaReq[4] dmaReq[5]
228 gnd term73 gnd dmaReq[3]
229 jump57 term74 dmaReq[2] dmaReq[1]
230 jump58 term75 dmaReq[0] cmdStall
231 jump59 gnd noArb gnd
232 jump60 term76 diagStop diagScan[dev]
233 jump61 term77 scanOut[dev] reset
234 gnd term78 gnd ack
235 jump62 term79 interrupt[dev] dmaWr
236 jump63 term80 lock dmaRequest[dev]
237 jump64 gnd term83 gnd
238 jump65 jump76 jump87 jump98
239 jump66 jump77 jump88 jump99
240 gnd jump78 gnd jump100
241 jump67 jump79 jump89 jump101
242 jump68 jump80 jump90 jump102
243 jump69 gnd jump91 gnd
244 jump70 jump81 jump92 jump103
245 jump71 jump82 jump93 jump104
246 gnd jump83 gnd jump105
247 jump72 jump84 jump94 jump106
248 jump73 jump85 jump95 jump107
249 jump74 gnd jump96 gnd
250 jump75 jump86 jump97 jump108

Figure 5-16: Block 2 Signal Assignments

TITAN I/O BUS 83

Pin Col 1 Col 2 Col 3 Col 4
--- ----- ----- ----- -----
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335 gnd gnd gnd gnd
336 +15 V +15 V +15 V +15 V
337 0 V 0 V 0 V 0 V
338 Frame Frame Frame Frame
339 -15 V -15 V -15 V -15 V
340 -5.2 V -5.2 V -5.2 V -5.2 V

Figure 5-17: Block 3 Signal Assignments

Pin Voltage Max Current
340X -5.2 V 10 A
336X +15 V 10 A
339X -15 V 10 A
337X 0 V -
335X GND -
338X FRAME -

Figure 5-18: Auxilliary Low-Current Power

TITAN I/O BUS 84

Memory controller request lines
1 2 3 4 5 6 7
| | | | | | |
| | | | | | |

Slot 20 x x x x x x IO7 dmaRequest
low priority | | | | | _

| | | | | \
Slot 21 x x x x x nc IO6 dmaRequest

| | | | _____
| | | | \

Slot 22 x x x x nc nc IO5 dmaRequest
| | | _________
| | | \

Slot 23 x x x nc nc nc IO4 dmaRequest
| | _____________
| | \

Slot 24 x x nc nc nc nc IO3 dmaRequest
| _________________
| \

Slot 25 x nc nc nc nc nc IO2 dmaRequest

\
Slot 26 nc nc nc nc nc nc IO1 dmaRequest
high priority

Figure 5-19: DMA Request Connections

CLOCK/SCAN MODULE (CSM) 85

6. Clock/Scan Module (CSM)
The clock/scan module (CSM) provides remote boot/halt and diagnostic scan facilities for the Titan via the Ethernet.
It also monitors boot switches and drives a halt LED on the local maintenance panel .

6.1 Packet Format
The CSM packet format is shown in Figure 6-1. This format applies to both received and transmitted packets. The
protocol has been designed to require the minimum amount of microcode, and to leave as many decisions as
possible to higher level software. The host computer initiates transactions; the CSM never initiates
communications. Once the CSM receives a packet it will execute the command and acknowledge with a reply
packet.

+---------------+
0000 | DestAddress |

+---------------+
0006 | SrcAddress |

+---------------+
000C | Type |

+---------------+
000E | SeqNumber |

+---------------+
000F | |

| Header |
001F | |

+---------------+
0020 | Version |

+---------------+
0021 | ScanInModeA |

+---------------+
0022 | ScanInBytes |

+---------------+
0023 | ScanInBits |

+---------------+
0024 | Go |

+---------------+
0028 | ScanOutModeA |

+---------------+
0029 | ScanOutBytes |

+---------------+
002A | ScanOutBits |

+---------------+
002B | EndModeB |

+---------------+
002C | EndModeA |

+---------------+
002D | SystemStatus |

+---------------+
002E | Reserved |

+---------------+
0030 | |

| ScanData |
007F | |

+---------------+

Figure 6-1: CSM Packet Format

CLOCK/SCAN MODULE (CSM) 86

The packet fields are:

Dest Address Ethernet destination address.

Src Address Ethernet source address.

Type Ethernet packet type; must be 803A.

SeqNumber Sequence number.

Header Header for higher-level protocols.

Version CSM microcode version, currently 3.

ScanInModeA Value for ModeA register during scan-in.

ScanInBytes Number of bytes to scan-in from packet.

ScanInBits Number of bits to scan-in from packet (after ScanInBytes).

Go Bit vectors for number of single-step cycles.

ScanOutModeA Value for ModeA register during scan-out.

ScanOutBytes Number of bytes to scan-out from packet.

ScanOutBits Number of bits to scan-out from packet (after ScanOutBytes).

EndModeB Value for ModeB register after scan operations.

EndModeA Value for ModeA register after scan operations.

SystemStatus Value of CPU and memory controller halt signals.

ScanData Up to 80 bytes of scan data.
The CSM microcode implements the following algorithm:

1. Discard the packet if its a broadcast.

2. Check the Type field and discard the packet if the type is incorrect.

3. If the sequence number and the Ethernet source address are the same as that of the last request packet,
discard this request and retransmit the last reply.

4. Copy the request SrcAddress into the reply DestAddress field.

5. Copy the request DestAddress into the reply SrcAddress field.

6. Copy the request Header into the reply Header field.

7. Write the reply Version field.

8. If the ScanInModeA field is equal to 0F, then skip the scan-in phase. Otherwise, assert the Titan I/O
bus scanMode signal, write ScanInModeA into the ModeA register, scan-in 8*ScanInBytes+ScanInBits
bits, and deassert the scanMode signal.

9. Write the 4 bytes of the Go field into the clock single-step register.

10. If the ScanOutModeA field is equal to 0F, then skip the scan-out phase. Otherwise, assert the
scanMode signal, write ScanOutModeA into the ModeA register, non-destrutively scan-out
8*ScanOutBytes+ScanOutBits bits, and deassert the scanMode signal.

11. Write the ModeB register with EndModeB.

12. Write the ModeA register with EndModeA.

13. Write the value of the system halt signals into the reply packet SystemStatus field.

14. Transmit the reply packet.

Figure 6-2 shows the format of the ModeA register. The select field determines the Titan module to use for scan
operations as listed in Figure 6-3. The EndModeB field must have the Select field of the register set to the Null
module (F), or spurious scanning of other modules will result. The ~StopCPU, ~StopMC ~StopNS, and ~StopIO bits

CLOCK/SCAN MODULE (CSM) 87

control the diagnostic stop signal to the CPU modules, memory controller, non-stop (RAM refresh) memory
controller, and IO modules, respectively. The ~StopNS bit should not be asserted (set to 0) for more than a few
milliseconds, or main memory contents will be lost due to the absense of RAM refresh cycles.

|< 4 >|< 1 >|< 1 >|< 1 >|< 1 >|
+--------+----------+---------+---------+---------+
Select	~StopCPU	~StopMC	~StopNS	~StopIO
+--------+----------+---------+---------+---------+

Figure 6-2: CSM Mode A Register

Select Module
0 Data Path
1 Inst Cache
2 Data Cache
3 Coprocessor
4 Memory Controller
5 Non-stop Memory Controller
6 I/O Slot 7
7 I/O Slot 6
8 I/O Slot 5
9 I/O Slot 4
A I/O Slot 3
B I/O Slot 2
C I/O Slot 1
D Reserved
E Reserved
F Null Module

Figure 6-3: CSM Mode A Register Select Encoding

The ModeB register, shown in Figure 6-4, controls scanning and the Boot signal. The ScanMode bit controls the
state of the Titan I/O bus scanMode signal. The Boot bit controls the state of the boot signal sent to the CPU. The
ScanCount field specifies the number of clock cycles to assert the diagScan signal to the selected module. The
encoding of the ScanCount field is shown in Figure 6-5.

|< 1 >|< 1 >|<2>|< 4 >|
+----------+------+---+-----------+
ScanMode	Boot	0	ScanCount
+----------+------+---+-----------+

Figure 6-4: CSM Mode B Register

ScanCount DiagScan Cycles
0 1
1 2
2 3
3 4
4 5
5 6
6 7
7 8
8..F 0

Figure 6-5: CSM Mode B Register ScanCount Encoding

CLOCK/SCAN MODULE (CSM) 88

The Go register, shown in Figure 6-6, allows single- and burst-stepping of the clock. In reality, for every set bit of
the SingleStep field of the register, the diagnostic stop signals are deasserted for one cycle, effectively single-
stepping the clock. For example, the value 01 would single-step the clock, the value 0F would deassert the
diagnostic stop signals for 4 contiguous cycles.

|<1>|< 7 >|
+---+------------+
0	SingleStep
+---+------------+

Figure 6-6: CSM Go Register

Figure 6-7 shows the format of the SystemStatus field of the reply packet.

|< 1 >|< 1 >|<6>|
+----------+------------+---+
McHalted	~CpuHalted	0
+----------+------------+---+

Figure 6-7: CSM System Status Format

TITAN MEMORY ADAPTOR (TMA) 89

7. Titan Memory Adaptor (TMA)
The Titan Memory Adaptor (TMA) allows Titan main memory to be read and written via the Ethernet. All
transactions are initiated from the Ethernet end. The Titan cannot interact with this board except to acknowledge
and clear interrupts generated by the board.

7.1 Packet Format
TMA request packet format is shown in Figure 7-1. The fields are:

Dest Address Ethernet destination address.

Src Address Ethernet source address.

Type Ethernet packet type.

Header Higher-level protocol header, e.g., sequence number, etc.

Null Unused padding bytes.

Command TMA command.

DMA Address DMA transaction base address; should be quadword aligned (least significant two bits
zero).

Write Data Variable-length write data. The length is truncated to a multiple of 4 bytes. There must
always be at least 1 word of write data, even if it is a read command.

+--------------+
0.| Dest Address |
+--------------+

6.| Src Address |
+--------------+

12.| Type |
+--------------+

14.| Header |
+--------------+

32.| Null |
+--------------+

35.| Command |
+--------------+

36.| DMA Address |
+--------------+

40.| |
| Write Data |

551.| |
+--------------+

Figure 7-1: TMA Request Packet Format

The command byte format is shown in Figure 7-2. If the interrupt bit is set, the TMA will assert its Titan I/O bus
interrupt signal. If the Write bit is set, the following packet will provide up to 128 words of write data to be written
at DMA Address plus 128.

|<6>|< 1 >|< 1 >|
+---+-----------+-------+
0	Interrupt	Write
+---+-----------+-------+

Figure 7-2: TMA Command Byte Format

TITAN MEMORY ADAPTOR (TMA) 90

The TMA always sends a reply packet with the 128 words of data read from memory starting at the DMA Address.
The reply packet format is shown in Figure 7-3. The TMA exchanges the Ethernet source and destination address
fields, and copies the type and header fields from the request packet.

+--------------+
0.| Src Address |
+--------------+

6.| Dest Address |
+--------------+

12.| Type |
+--------------+

14.| Header |
+--------------+

32.| |
| Read Data |

543.| |
+--------------+

Figure 7-3: TMA Reply Packet Format

7.2 Byte Order
The board was designed to place low address bytes in the most significant part of a word. This is the byte ordering
convention adopted by the Titan project. The VAX places low address bytes in the least significant part of a word.
Hence, care must be exercised in formating the address and data fields of a packet if that program runs on a VAX (as
opposed to a Titan).

For example, if the program communicating with the TMA is executing on a VAX, and the DMA addresses are
manipulated as 32-bit integers in the program, they must be byte-swapped before insertion into a request packet.

7.3 I/O Registers
The TMA does not have any I/O registers. Consequently, performing I/O reads or I/O writes will always have the
ack field of the IoStatus register deasserted. However, I/O operations do have the side-effect of deasserting the
TMA interrupt signal.

7.4 I/O Adaptor Identifier
The TMA does not support an I/O adaptor identifier register.

7.5 Interrupts
If the command byte of a request packet has the interrupt bit set, the TMA asserts interrupt. Any I/O read or write
of the TMA deasserts the interrupt.

TITAN DISK ADAPTOR (TDA) 91

8. Titan Disk Adaptor (TDA)
The Titan Disk Adaptor (TDA) implements a DEC Mass Storage Control Protocol (MSCP) server for Serial Disk
Interface (SDI) storage devices. The TDA supports multiple, asynchronous MSCP commands and responses for one
to four SDI devices.

8.1 I/O Registers
The interface between the device driver and the TDA consists of 256 32-bit words physically located on the TDA
board. The layout of these registers is shown in Figure 8-1.

31 0
+-------------------------------------+

0.| |
| |
\ MSCP Command Ring \
\ \
| 8, 12-word segments |

95.| |
+-------------------------------------+

96.| Command Put Pointer |
+-------------------------------------+

97.| Response Get Pointer |
+-------------------------------------+

98.| |
| Unused |

127.| |
+-------------------------------------+

128.| |
| MSCP Response Ring |
\ \
\ 12, 8-word segments \
| |

223.| |
+-------------------------------------+

224.| Command Get Pointer |
+-------------------------------------+

225.| Response Put Pointer |
+-------------------------------------+

226.| |
| Unused |

248.| |
+-------------------------------------+

249.| |
| |
| DMA registers |
| |

254.| |
+-------------------------------------+

255.| Adaptor Identifier |
+-------------------------------------+

Figure 8-1: TDA I/O Registers

8The instruction set of the TDA is a subset of the Mass Storage Control Protocol.

8Version 1.2 , 8 April 1982, Edward A Gardner et. al.

TITAN DISK ADAPTOR (TDA) 92

Instructions accepted are Set Controller Characteristics, Online, Get Unit Status, Read, Write, and Replace . These
are placed by the device driver into the MSCP command ring. Responses to I/O commands (Read, Write) are 8
words long. Responses from non-I/O commands and error logs or attention packets take up two 8-word segments.

Refer to the MSCP manual for further description of these commands.

A Put pointer equal to the Get pointer indicates that a ring is empty. Bit 15 of the Put pointer being asserted
indicates that the ring is full. The bit is set when a packet is placed in the ring which fills the ring, and is cleared by
the receiver when it takes a packet from a full ring. When the bit is asserted, it locks out the party putting entries into
the ring.

The values in the Put and Get pointers for both command and response rings are addresses of 16-bit words ([0..511])
due to the 16-bit address/data paths in the TDA.

8.2 I/O Adaptor Identifier
The value of the TDA I/O adaptor identifier register is 00000002.

8.3 Interrupts
The TDA generates an interrupt whenever the response ring is non-empty. Writing any register clears the interrupt.

TITAN NETWORK ADAPTOR (TNA) 93

9. Titan Network Adaptor (TNA)
The Titan Network Adaptor (TNA) provides an Ethernet interface and 8 asynchronous RS-232 serial lines.

The Ethernet interface uses the Seeq 8023/8003 chip set. The interface is full duplex: it can receive its own packets
without any special handling. The receiver can handle 15 back-to-back packets without software intervention. The
transceiver interface is compatible with Ethernet version 2 and IEEE 802.3.

The serial line interface uses the Dec DC349 Octart chip. The Octart provides 8 independent full-duplex
asynchronous serial lines with programmable bit rate, character length, stop bits, and parity. It senses transitions on
two input wires and an external register provides one output wire per line for modem control.

9.1 Further Reading
The TNA is essentially two DMA channels fronting the Seeq chip set, and a simple read/write interface to the Octart
and Seeq chips. For details on the operation of these chips, consult the Seeq 8003/8023 and Dec DC349 data sheets.
The Ethernet is specified in Dec Standard 134.

9.2 Ethernet
To operate the transmitter or the receiver, first set up the corresponding command register in the Seeq chip, then
load a packet buffer descriptor (address and length) into the DMA registers, then set the enable bit and wait for an
interrupt signalling completion.

The transceiver connects to the printed circuit board via pins in section 3 of the backplane. An internal cable plugs
onto these pins and goes to a connector on the Titan’s rear bulkhead. Jumper R1, in the lower left corner of the
board selects whether the transceiver interface is compatible with Ethernet version 1 (jumper installed) or IEEE
803.3 (jumper removed).

Three LEDs mounted on the edge of the PC board monitor Ethernet activity. One LED lights when carrier is
present, another lights when the transmitter is active, and the third one lights when a collision is detected.

This Ethernet interface was designed for a system clock period of 40 ns. It will work correctly with a clock period
as slow as 80 ns; slower clocks will cause DMA under- and overrun errors.

9.2.1 Ethernet Transmitter
To transmit a packet, first load the Seeq transmitter command register, then load the beginning address and length of
the packet, then set the transmitter enable bit in the TNA control register. Transmission is complete when the
transmitter interrupt bit is set in the TNA status register. To send another packet, clear transmit enable, reload the
address and length registers, and then set transmit enable again; it is not be necessary to reload the Seeq transmitter
command register. When the transmitter interrupt bit in the TNA status register sets, the TxStatus field contains the
ending status for the transmission (ok, collision, underflow). Collision detection, binary exponential backoff, and
retransmission are handled automatically (it can be manually overridden).

The transmitter packet buffer address is a word address and the low two bits are ignored. The first two bytes of the
first quadword are skipped, aligning the data field of the packet in the second quadword. The transmitter packet
buffer length is a 16-bit byte count, making the maximum packet length 64K bytes.

If the result of logically anding the contents of the Seeq transmitter command register with the contents of the Seeq

TITAN NETWORK ADAPTOR (TNA) 94

transmitter status register is nonzero, then DMA transfers are stopped and the transmitter interrupt bit in the TNA
status register is set. Normally the value 0xD is loaded into the Seeq transmitter command register. This causes the
DMA machine to shutdown and generate an interrupt when the Seeq chip signals the end of a successful
transmission, or 16 consecutive collisions, or a data underflow; garden-variety collisions cause the Seeq chip to
backoff and the DMA machine to restart.

The transmitter may be stopped at any time by clearing the transmitter enable bit in the TNA control register. No
further DMA reads will start and no ending interrupt will be generated. If the Seeq chips were transmitting at the
time, a malformed (but harmless) Ethernet packet will be generated. The enable bit is cleared by a hardware reset.

9.2.2 Ethernet Receiver
To receive packets, first load the the Seeq Ethernet address and receiver command registers, then load up to 15
packet buffer descriptors (address and length pairs), then set the receiver enable bit in the TNA control register.
Each time the interface finishes copying a packet from the Ether into memory, it stores the ending status in the first
quadword of the buffer, sets the receiver interrupt bit in the TNA status register, and prepares to copy a subsequent
packet into the next buffer.

The receiver packet buffer address is a word address and the low two bits are ignored. The first quadword is
skipped initially, and eventually filled with four copies of the ending status. The first two bytes of the second
quadword are skipped, aligning the packet data field in the third quadword. The format of the ending status word is
shown in figure 9-1.

|<4>|< 4 >|< 8 >|< 12 >|< 4 >|
+---+------+--------+-----------+--------+
1	Rx	Rx	Ending	Ending
	Read	Status	QuadWords	Bytes
+---+------+--------+-----------+--------+

Figure 9-1: TNA Receiver Ending Status

The receiver packet buffer length is the maximum number of quadwords into which the interface may write. The
register is 12 bits wide, making the maximum packet length 64K bytes. It is loaded from bits 15-4, skipping the low
four bits, to align it with its ending status value. The ending status contains the number of unused quadwords and
the number of used bytes in the last used quadword. The ending status written at the front of the packet buffer
counts as one of the used quadwords. The length in bytes of a packet is

(beginning quadwords - ending quadwords)*16 - 32 + ending bytes.

This counts the Ethernet destination and source addresses, the type field, and the data field, but not the ending status.
The Ethernet preamble and cyclic redundancy checksum are never seen by software. If the ending quadword count
is all ones, then the packet overflowed the buffer. A packet of less than 60 bytes is forbidden by the Ethernet spec
and flagged by the Seeq chip as a ’short frame’, but the data is correct.

If the result of logically anding the contents of the Seeq receiver command register with the contents of the Seeq
receiver status register is nonzero, then DMA transfers are stopped, status is stored in the front of the buffer, and the
receiver interrupt bit in the TNA status register is set. Normally the value 0xA0 is loaded into the Seeq receiver
command register. This causes the DMA machine to shutdown and generate an interrupt when the Seeq chip signals
completion of a good unicast or broadcast packet; the wrong address or any error causes the DMA machine to flush
the packet and reuse the memory buffer. Setting the overflow error, crc error, dribble error, short frame, or end of

TITAN NETWORK ADAPTOR (TNA) 95

frame bits in the Seeq receiver command register causes a packet with these attributes to consume a buffer and
generate an interrupt, rather than being flushed.

Receiver packet buffer descriptors are stored in a ring buffer with 4-bit read and write pointers (called RxRead and
RxWrite hereafter). The hardware and software cooperate to manage it as a fifo queue. When RxRead equals
RxWrite, the fifo is empty, and when ((RxWrite+1) mod 16) equals RxRead the fifo is full. RxRead increments
(mod 16) after the hardware finishes with a packet buffer and before it generates an interrupt signalling completion
of a reception. RxWrite increments (mod 16) after the software writes into the receiver packet buffer length register,
so load the address part of a descriptor first, then the length.

A hardware reset clears both pointers to zero. The fifo can be initialized to empty by clearing the receiver enable bit
in the TNA control register and then repeatedly writing the receiver length register until RxRead equals RxWrite.
RxRead and RxWrite appear as fields in the TNA status register. RxRead is also included in the receiver ending
status.

To determine how many packet buffers (and which ones) contain completed packets when a receiver interrupt
occurs, keep a list of the buffers in the order that they were loaded into the fifo, and remember the previous value of
RxRead. The number of completed buffers is

(current RxRead - previous RxRead) mod 16,

and they are at the front of the list. Set previous RxRead to current RxRead before enabling the receiver and recopy
it after each interrupt.

Another way to decide if a buffer is full is to zero the first word and wait for it to go non-zero when the ending status
is written. The problem with this approach is the high cost of flushing the cache between each read reference while
waiting for the ending status to go nonzero.

When the receiver enable bit in the TNA control register is set, each Ethernet packet that passes the address filter in
the Seeq chips is copied into a memory buffer specified by the descriptor pairs stored in the fifo. If the descriptor
fifo goes empty, the receiver flushes packets as they emerge from the Seeq chips. Software may add more
descriptors at any time, up to a maximum of 15. If the receiver is enabled but flushing packets because the fifo is
empty, simply adding some descriptors restarts things.

The receiver may be stopped at any time by clearing the receiver enable bit in the TNA control register. No further
DMA writes will start and no interrupt will be generated. The enable bit is cleared by a hardware reset.

9.2.3 Ethernet Address Rom
Each TNA has a 32-byte read-only memory containing a guaranteed-unique Ethernet address. This quantity is
usually copied into the Seeq receiver and used as the hardware address. Note well that this number will change if
the TNA board is changed.

Rom bytes 0 to 5 contain the Ethernet address ready to be loaded into bytes 0 to 5 of the Seeq chip. Bytes 6 and 7
contain a checksum over the preceding six address bytes. Bytes 8 to 15 contain the checksum and address in reverse
order. Bytes 16 to 23 are the same as bytes 0 to 7. Bytes 24 to 31 contain the test pattern FF, 00, 55, AA, FF, 00,
55, AA. This rom is Dec part number 23-000A1-09; the address checksum algorithm is specified in Appendix B of
Dec Std 134.

TITAN NETWORK ADAPTOR (TNA) 96

9.3 Octart
The serial lines connect to the PC board via 50 pins in section 3 of the backplane. The pinout is compatible with a
DZ11 ribbon cable and connector panel. An internal cable plugs onto these pins and goes to a small PC board
containing eight telephone modular jacks in the Titan rear bulkhead. Each of the eight lines has six wires: transmit
data, receive data, data set ready, data terminal ready, data carrier detect, and ground. Lines 0-3 are wired as data
communication devices (DCEs) to which terminals such as VT102s can connect directly. Lines 4-7 are wired as
data terminal devices (DTEs) to which VAXs can connect directly.

The Octart contains 64 8-bit registers which are read and written by software to control the serial lines and to move
data. The TNA maps these registers into 64 words in its I/O address space. The most significant 24 bits of each
word are zero when read and ignored when written. When the Octart asserts its interrupt line, the Octart interrupt bit
in the TNA status register is set. The bit is cleared when the TNA status register is read and the Octart is not
asserting its interrupt pin.

The Octart monitors two RS-232 control wires (data set ready and carrier detect) and can be programmed to
generate interrupts when these lines transition. Software can write an 8-bit register in the TNA which drives one
RS-232 control wire (data terminal ready) per line for modem control.

References to Octart registers should not occur closer together than 450 ns.

9.4 I/O Registers
The TNA decodes the least significant nine bits of an address presented to it during an IO read or write operation.
Address bits 8-6 select a register or group of registers, and bits 5-0 are decoded by the selected group. The Octart
decodes all six low order bits; the boardID ignores them all.

Bits 8-6 I/O Read I/O Write
7 Board ID -
6 Ethernet Adr -
5 Status Control
4 Octart Octart
3 - -
2 Seeq Seeq
1 DMA Regs DMA Regs
0 - Data Term Rdy

Figure 9-2: TNA I/O Registers

9.4.1 Board ID
An IO read with address bits 8-6 equal to 7 returns the value 4, the registered TNA identifier value. IO Writes to
this range of addresses are acknowledged but ignored.

9.4.2 Ethernet Address Rom
IO reads with address bits 8-6 equal to 6 select the Ethernet address rom; writes to this range of addresses are
acknowledged but ignored. Address bits 4-0 are decoded by the rom to select one of 32 bytes. The rom contains a
test pattern and 3 copies of a 48-bit Ethernet address protected by a checksum. The least significant bit of byte 0 of
the rom is the multicast bit. Rom bytes 0-5 are usually loaded into Seeq address registers 0-5.

TITAN NETWORK ADAPTOR (TNA) 97

9.4.3 Status and Control
IO reads with address bits 8-6 equal to 5 reference the TNA status register. Writes to the same address reference the
TNA control register. The control register is the control field of the status register; all other status register fields are
read-only.

|< 8 >|< 8 >|< 4 >|< 4 >|< 4 >|< 4 >|
+--------+--------+------+-------+------+------+
Tx	Rx	Rx	Rx	TNA	TNA
Status	Status	Read	Write	Ctrl	Ints
+--------+--------+------+-------+------+------+

Figure 9-3: TNA Status Register

TxStatus and RxStatus are the Seeq transmitter and receiver status registers. Each time the Seeq chip asserts its
interrupt pin, and whenever the CPU reads a Seeq status register, the internal Seeq status registers are copied into
external registers on the TNA board. These are the values returned in the TNA status register and stored as ending
status at the front of receiver buffers.

RxRead and RxWrite are the receiver packet buffer descriptor fifo read and write pointers. RxRead is incremented
by the hardware after ending status has been stored in the buffer and before the interrupt bit is set. RxWrite is
incremented after the software writes the receiver DMA length register. When RxRead equals RxWrite the
descriptor fifo is empty, and when ((RxWrite+1) mod 16) equals RxRead the fifo is full.

9.4.4 Control Bits
The format of the TNA control bits is shown in figure 9-4. These bits are read/write and are cleared by a hardware
reset.

Bit 7 Bit 6 Bit 5 Bit 4
+-------+------+------+------+
Byte	Xcvr	Tx	Rx
Order	Enbl	Enbl	Enbl
+-------+------+------+------+

Figure 9-4: TNA Status.ctrl field

ByteOrder controls the order in which bytes are referenced within a 32-bit word. If this bit is zero, the order is
left-to-right. This bit affects both the Ethernet transmitter and receiver.

XcvrEnbl enables the Ethernet transceiver. If this bit is zero, the transmitter is looped to the receiver, collisions are
impossible, and the only packets that will be received are those sent by the local transmitter. This bit must be set to
communicate with other stations on the Ethernet.

TxEnbl enables the transmitter. If this bit is set, the transmitter will attempt to send the packet described by the
transmitter DMA address and length, and then it will generate an interrupt and wait for TxEnbl to drop.

RxEnbl enables the receiver. If this bit is set and the descriptor fifo is not empty, then packets passing the address
filter in the Seeq chip will be copied to memory, and receiver interrupts will be generated.

TITAN NETWORK ADAPTOR (TNA) 98

9.4.5 Interrupt Bits
The format of the TNA interrupt bits is shown in figure 9-5. There is one bit for each source of interrupts on the
board. If any of these bits is set, the TNA asserts its interrupt line. These bits are cleared by reading them, and by a
hardware reset. If the status register is read with address bit zero equal to one then the interrupt bits aren’t cleared
by the read.

Bit 3 Bit 2 Bit 1 Bit 0
+-----+-----+--------+--------+
Tx	Rx	Parity	Octart
Int	Int	Int	Int
+-----+-----+--------+--------+

Figure 9-5: TNA Status.ints field

TxInt is set after a packet has been entirely transmitted or aborted by an unrecoverable error. It is good practice for
software to start a 3-second watchdog timer each time the transmitter is enabled. If the timer expires, the transmitter
is hung up and should be reset by clearing its enable bit.

RxInt is set each time the receiver finishes copying a packet into memory. Several packets may arrive before
software clears the interrupt bit by reading the status register. Don’t expect one distinct interrupt per packet, rather
treat a receiver interrupt as a signal to inspect the receiver buffer queue looking for newly arrived packets, and to top
off the descriptor fifo with more buffers.

ParityInt is set if the TNA detects bad parity on the IO bus during a cycle when it is reading the bus. This can
happen during a DMA read or an IO read or write operation. The TNA can cause the memory controller to detect an
IO bus parity error if it generates bad parity during a DMA read or write, or an IO read operation.

OctartInt is set whenever the Octart asserts its interrupt pin. After servicing an Octart interrupt and causing the
Octart to deassert its interrupt pin, the TNA status register must be read one more time to clear the Octart interrupt
bit. The other three interrupt bits may set between the first and second read of the TNA status register, and they
must be handled by software after the second read or they will be lost.

9.4.6 Octart Chip
IO reads and writes with address bits 8-6 equal to 4 reference the Octart. Address bits 5-0 are decoded by the
Octart, and reference one of its 64 byte-wide registers. See the Octart data sheet for details. Octart references
should occur no closer together than 450 ns.

9.4.7 Seeq Ethernet Chips
IO reads and writes with address bits 8-6 equal to 2 reference the Seeq 8003. Address bits 2-0 are decoded by the
Seeq chip and reference one of its 8 byte-wide registers.

The EtherAdr registers should be loaded with a physical Ethernet address before enabling the receiver. Normally
bytes 0-5 of the Ethernet Address Rom are loaded into EtherAdr0-5. The least significant bit of byte 0 is the
multicast bit.

The transmitter command register, figure 9-7, is an interrupt bit mask. If an error event occurs and its command
register bit is set then a transmitter interrupt is generated and DMA transfers stop. If an error event occurs and its
command register bit is clear, then no transmitter interrupt is generated and DMA transfers restart, retransmitting the

TITAN NETWORK ADAPTOR (TNA) 99

Bits(2-0 I/O Read I/O Write
0 - EtherAdr0
1 - EtherAdr1
2 - EtherAdr2
3 - EtherAdr3
4 - EtherAdr4
5 - EtherAdr5
6 RxStatus RxCommand
7 TxStatus TxCommand

Figure 9-6: Seeq chip registers

packet. Error events are 16Coll, Coll, and Underflow. Normally the value 0xD is loaded into this register.
Hardware reset clears this register.

The transmitter status register is updated at the conclusion of each transmission attempt. It has the same format as
the command register.

7 6 5 4 3 2 1 0
+---+---+---+---+------+------+------+-------+
				Good	16		Under
0	0	0	0	Pkt	Coll	Coll	flow
+---+---+---+---+------+------+------+-------+

Figure 9-7: Seeq transmitter command and status registers

If the ’good pkt’ bit of the Seeq transmitter command register is not set and no error occurs, then the transmission
will succeed, but no interrupt will be generated. If the ’underflow’ bit is not set then data underflows cause the
transmission attempt to restart. This is not recommended since data starvation on a Titan is an indication of serious
problems which retrying probably won’t fix, but retrying probably will pollute the Ether with lots of aborted packet
fragments. If the ’16Coll’ bit is not set then the transmitter retries forever at maximum backoff in the face of
continuous collisions. This too is not recommended. Setting the ’coll’ bit causes the transmitter to give up if it gets
a collision, permitting manual control over the retransmission algorithm.

The most significant bits of the receiver command register (figure 9-8) set the address filter mode and its remaining
bits are an interrupt mask. If an error event occurs and its command register bit is set, then a receiver interrupt is
generated and DMA transfers stop. If an error event occurs and its command register bit is clear, then no receiver
interrupt is generated and DMA transfers restart on arrival of the next packet, overwriting the bad one. Error events
are ShortPkt, CRCerr, and Overflow. Normally the value 0xA0 is loaded into this register. Hardware reset clears
this register.

The receiver status register is updated after receiving a good packet and when reception is aborted by an error. It
has the same format as the receiver command register except that bits 7-6 are undefined.

7 - 6 5 4 3 2 1 0
+--------+------+-----+-------+------+-----+------+
Addr	Good	Any	Short	Drib	CRC	Over
Filter	Pkt	Pkt	Pkt	Err	Err	flow
+--------+------+-----+-------+------+-----+------+

Figure 9-8: Seeq receiver command and status registers

TITAN NETWORK ADAPTOR (TNA) 100

Only packets passing the address filter are copied into memory. The normal mode is 2, receiving broadcast packets
and packets whose destination address matches that loaded into EtherAdr0-5. Mode 3 also receives packets whose
destination address has the multicast bit set. Further filtering of multicast packets must be done by software.

Bits 7-6 Filter
0 no packets
1 all packets
2 EtherAdr+broadcast
3 EtherAdr+multicast+broadcast

Figure 9-9: Seeq receiver address filter modes

A ’good packet’ is one that is not short, did not overflow, and had a good cyclic redundancy checksum (CRC). ’any
packet’ means any kind of packet, good or bad, addressed to us or not, except packets aborted by an overflow. A
packet with less than 60 bytes is too short according to the Ethernet spec. A ’dribble error’ is said to have happened
when carrier does not drop on a byte boundary. ’overflow’ means that the DMA machine didn’t take bytes from the
Seeq chip fast enough.

9.4.8 DMA Registers
IO reads and writes with address bits 8-6 equal to 1 reference the DMA registers. Address bits 1-0 are decoded as
shown in figure 9-10. TxAddress and RxAddress load from bits 31-2. TxLength loads from bits 15-0; RxLength
loads from bits 15-4.

Bits 1-0 I/O Read I/O Write
3 - RxLength
2 RxAddress RxAddress
1 - TxLength
0 TxAddress TxAddress

Figure 9-10: TNA DMA registers

When the transmitter starts, it copies TxAddress and TxLength into counters used by the DMA machinery. If a
collision occurs, the counters are reloaded from the saved original values and the DMA transfer is restarted. Writing
TxAddress or TxLength loads the saved original values. Reading TxAddress returns the current value of the DMA
counter; this is only useful for diagnostic purposes. Reading TxLength returns undefined data.

When the receiver starts, it copies RxAddress and RxLength into counters which are used by the DMA machinery.
If the packet is discarded for any reason (address mismatch, bad checksum, etc.), the counters are reloaded from the
original values and the next arriving packet reuses the current buffer. Instead of simple registers as in the
transmitter, RxAddress and RxLength are a fifo queue written by software and read by hardware. When a packet is
successfully received, RxRead is incremented (mod 16), and the next buffer descriptor pair is loaded into the DMA
registers. Writing RxAddress writes into the address part of the fifo slot pointed to by RxWrite. Writing RxLength
writes into the length part of the fifo slot pointed to by RxWrite and then increments (mod 16) RxWrite. Reading
RxAddress returns the current value of the DMA counter; this is only useful for diagnostic purposes. Reading
RxLength returns undefined data.

9.4.9 Data Terminal Ready Register
An IO write with address bits 8-6 equal to 0 loads the DTR register. This is an 8-bit write-only register which drives
8 RS-232 wires, one per Octart line. Reading the DTR register returns undefined data. Software must maintain a
shadow copy.

TITAN FIBER ADAPTOR (TFA) 101

10. Titan Fiber Adaptor (TFA)
The Titan Fiber Adaptor (TFA) implements a 100 megabit per second, fiber optic, full-duplex, point-to-point
communication link that transfers data in variable-length packets. It contains an independent receiver and
transmitter that share a Titan I/O bus interface.

Packet buffers are specified via an address and length register. The address is the base address of the buffer, which
must be line-aligned in memory (least two significant bits zero). For the transmitter, the length register is the
number of lines (quadwords) in the packet; for the receiver, the length register is the maximum number of lines that
can be written to the buffer. The receiver and transmitter each have one (1) set of packet descriptor registers.

Both the receiver and transmitter have 255-word FIFOs to mask temporary increases in DMA latency. The
transmitter fills its FIFO before starting transmission on the fiber optic cable. The receiver performs a DMA write
whenever its FIFO has a line available. The FIFOs can be written (pushed) and read (popped) via I/O register
operations.

10.1 Packet Format
The basic transmission unit is a packet comprised of a sequence of 32-bit words as shown in Figure 10-1. The
preamble is the binary value 10101010101010101010101010101011. The CRC is the 32-bit Ethernet polynomial,
shown in Figure 10-2, over the data words. The preamble and CRC are added during transmission, and removed
during reception, by the TFA. Packets are Manchester-encoded on the fiber optic cable.

+------------+
| Preamble |
+------------+
| |
| Data |
| |
+------------+
| Data CRC |
+------------+

Figure 10-1: TFA Packet Format

The only limitation upon the number of data words present in a packet is the 20-bit length register, which supports
at most 16M bytes of data.

32 26 23 22 16 12 11X + X + X + X + X + X + X +
10 8 7 5 4 2X + X + X + X + X + X + X + 1

Figure 10-2: TFA CRC Polynomial

10.2 I/O Registers
The TFA registers are shown in Figure 10-3. For the transmitter (Tx) and the receiver (Rx), the address and length

registers define the main memory packet buffer, while the data register provides access to the TFA’s FIFO buffer.

All registers are 32 bits wide, except for the TxLength and RxLength registers which are 20 bits wide.

TITAN FIBER ADAPTOR (TFA) 102

Address I/O Read I/O Write
XXXXXXX0 Tx Address Tx Address
XXXXXXX1 Tx Length Tx Length
XXXXXXX2 Tx Data Tx Data
XXXXXXX3 Status Control
XXXXXXX4 Rx Address Rx Address
XXXXXXX5 Rx Length Rx Length
XXXXXXX6 Rx Data Rx Data
XXXXXXX7 I/O Identifier -

Figure 10-3: TFA I/O Registers

10.3 I/O Adaptor Identifier
The value of the TFA I/O adaptor identifier register is 00000006.

10.4 Status Register

|<8>|<1 >|<1 >|<1 >|< 8 >|<1 >|<1 >|<1 >|< 8 >|< 1 >|<1>|
+---+----+----+----+-----+----+----+----+-----+-----+---+
0	TxEn	TxPX	TxFE	TxCnt	RxEn	RxPX	RxFE	RxCnt	RxCRC	BPE
+---+----+----+----+-----+----+----+----+-----+-----+---+

Figure 10-4: TFA Status Register

The format of the TFA status register is shown in Figure 10-4. The fields are:

TxEn Transmitter enable. This bit indicates that the transmitter is sending the packet defined
by the TxAddress and TxLength registers. When the packet has been sent, the TFA clears
the TxEn bit. The TxEn bit is also cleared when a TxReset command is issued.

TxPX Transmitter packet transferred. When the transmitter has successfully completed
transmission of a packet, it sets the TxPX bit. The TxPX bit is cleared by a TxReset
command.

TxFE Transmitter FIFO error. If during packet transmission, the transmitter FIFO is empty
when the TxLength register is non-zero, the TxFE bit is set; an underflow has occurred.
The TxFE bit is cleared by a TxReset command.

TxCnt Transmitter FIFO count. TxCnt is the number of words currently in the transmitter FIFO.
Issuing a TxReset command flushes the transmitter FIFO, which zeros TxCnt.

RxEn Receiver enable. This bit indicates that the receiver will(is) copy(copying) the next
incomming packet to the buffer defined by the RxAddress and RxLength registers. If
there is an incomming packet at the time that a RxStart command is issued, it is ignored.
After a packet has been received (successfully or not), the RxEn bit is cleared. The RxEn
bit may also be cleared by issuing a RxReset command.

RxPX Receiver packet transferred. When the receiver has successfully received a packet, it sets
the RxPX bit. The RxPX bit is cleared when a RxReset command is issued.

RxFE Receiver FIFO error. If during packet reception, the receiver FIFO is full when a word
should be written to it, the RxFE bit is set; an overflow has occurred. The RxFE bit is
cleared by a RxReset command.

RxCnt Receiver FIFO count. RxCnt is the number of words currently in the transmitter FIFO.
Issuing a RxReset command flushes the receiver FIFO, which zeros RxCnt.

RxCRC Receiver CRC error. If a packet is received, but the transmitted CRC does not match the
locally computed CRC, the RxCRC bit is set. The RxCRC bit is cleared by a RxReset
command.

TITAN FIBER ADAPTOR (TFA) 103

BPE Bus parity error. If during a CPU I/O register access of the TFA, or a TFA originated
DMA transaction, the TFA detects a bus parity error, then the BPE bit is set. The BPE
bit is cleared whenever the TFA control register is written.

10.5 Control

|<27>|< 1 >|< 1 >|< 1 >|< 1 >|< 1 >|
+----+------+---------+---------+---------+---------+
0	Loop	RxStart	RxReset	TxStart	TxReset
+----+------+---------+---------+---------+---------+

Figure 10-5: TFA Control Register

The TFA control register format is shown in Figure 10-5. The function of the field is:

Loop Receiver loopback. The receiver takes is serial input from the transmitter output rather
than the fiber optic input (rx) cable whenever the Loop bit is set. The transmitter output
is still present on the fiber optic output (tx) cable.

RxStart Receiver start. Setting the RxStart bit enables the receiver to copy the next incomming
packet into the buffer defined by RxAddress and RxLength. Clearing the RxStart bit has
no effect.

RxReset Receiver reset. Setting the RxReset bit clears the RxEn, RxPX, RxFE, and RxCRC bits in
the status register, and flushes the receiver FIFO. If a reception is in progess, it is
aborted. Clearing the RxReset bit has no effect.

TxStart Transmitter start. Setting the TxStart bit starts transmission of the packet defined by the
TxAddress and TxLength registers. Clearing the TxEnable bit has no effect.

TxReset Transmitter reset. Setting the TxReset bit clears the TxEn, TxPX, and TxFE bits in the
status register, and flushes the transmitter FIFO. If a transmission is in progress, it is
aborted.

Clearing the TxReset bit has no effect.

10.6 Interrupts
The TFA generates an interrupt whenever any of the TxPX, TxFE, RxPX, RxFE, or BPE bits of the TFA status
register are asserted.

10.7 Transmitting A Packet
To transmit a packet, the follow actions should be performed:

1. Issue a TxReset command via the control register to initialize the transmitter.

2. Write the TxAddress and TxLength registers.

3. Write any header words into the transmitter FIFO via the TxData register.

4. Issue a TxStart command via the control register.

5. Wait (via interrupt or busy-wait) for the TxEn bit to clear in the status register.

6. If the TxPX bit is set in the status register, the packet was successfully transmitter. Otherwise, the
TxFE bit should be set, indicating that a DMA underrun occurred.

7. Issue a TxReset command via the control register to clear the TxPX or TxFE bit, and deassert the
transmitter interrupt.

TITAN FIBER ADAPTOR (TFA) 104

10.8 Receiving A Packet
To receive a packet, the follow actions should be performed:

1. Issue a RxReset command via the control register to initialize the receiver.

2. Write the RxAddress and RxLength registers.

3. Issue a RxStart command via the control register.

4. Wait (via interrupt or busy-wait) for the RxEn bit to clear in the status register.

5. If the RxPX bit is set in the status register, a packet was successfully received. Otherwise, the RxFE
bit should be set, indicating that a DMA overrun occurred.

6. If the RxPX bit is set, and the RxCRC bit is set, the received packet had an incorrect CRC.

7. If the RxPX bit is set, and the RxCRC bit is clear, check if the packet was not an integral number of
quadwords, indicated by a non-zero RxCnt field of the status register. If so, the trailer words must be
manually read from the receiver FIFO via the RxData register and appended to the packet buffer
starting at the address indicated by the RxAddress register.

8. Determine the length of the received packet by subtracting the original packet base address from the
current value of the RxAddress register, plus the value of the RxCnt field.

9. Issue a RxReset command via the control register to clear the RxPX or RxFE bit, and deassert the
receiver interrupt.

ALU SIGN CORRECTOR 105

I. ALU Sign Corrector
For signed comparisons, the sign corrector works as follows. It examines the signs of the two operands, A and
B. Then

(1) sign(A) = sign(B) => true sign := sign(A - B)

(2) sign(A) <> sign(B) => true sign := carry(A - B)

Case (1) follows from the fact that if the signs of the two operands are equal, then their difference has a two’s
complement representation. For case (2), observe that A - B = A + (-B) so the operation performed is

vs s vs s
1 | 1aaaaaa...aa or 0 | 0aaaaaa...aa

+ 1 | 1yyyyyy...yy + 0 | 0yyyyyy...yy

where ’s’ denotes the sign bit, and ’vs’ is the ’virtual’ sign bit carrying the true sign, regardless of overflow (I use
’y’ to represent the two’s complement of ’b’). Because 1 + 1 = 0, the true sign bit is the carry (out of the sign
position).

Unsigned comparisons are simpler, since both operands are by definition positive. Therefore there is only one case
to consider,

vs
0 | aaaaaaa...aa

+ 1 | yyyyyyy...yy

and, since 1 + x = x’, the true sign is the complement of the carry (out of the sign position).

Since it is possible for the overflow correction to leave an erroneous zero result, the sign corrector recomputes bit 0
(the least significant bit) as well, according to the rule

lsb := lsb(A - B) or sign(A - B)

This is a problem only when A - B = 2**31, which one cannot represent.

Now suppose that no carry is forced into the ALU. Then the operation it performs is A - B - 1 instead of A - B. This
by itself is no problem, but the sign corrector decides what to do by looking at the signs of A and B! We have four
cases to consider, based on the signs of A and B. Two of them are easy to dispatch, when A, B >= 0 and when A, B
< 0; in these situations overflow is not possible, and the sign corrector will compute true sign := sign(A - B - 1).

When A >= 0 and B < 0, we must be more careful, since the sign corrector will use the carry as the true sign. Since
we may write

A - B - 1 = A + B’

the computation would take the form

vs s
0 | 0aaaaaa...aa

+ 0 | 0xxxxxx...xx

where the ’x’s represent the one’s complement of the ’b’s. With both sign bits being zero, the carry is always 0, and
we get the proper sign. Likewise, when A < 0 and B >= 0 we have

vs s
1 | 1aaaaaa...aa

+ 1 | 1xxxxxx...xx

ALU SIGN CORRECTOR 106

in which a carry is guaranteed, matching the ’true sign’.

We should also consider what happens if no carry is supplied when doing unsigned comparisons. In this mode, the
’true sign’ of the result is assumed to be the complement of the carry. The only interesting case is when the
minuend is the largest number (it is all ones), since by not forcing a carry in we are computing A - B - 1 = A - (B +
1), and B + 1 is not representable. Its negation is represented correctly with the implicit sign bit (always one),
however, so that we once again get the right answer.

TABLE OF CONTENTS i

Table of Contents
1. Introduction 3
2. Hardware Architecture 4

2.1 Data Path 4
2.1.1 Pipeline Stages 4
2.1.2 Instruction Sequencing 5
2.1.3 Memory Interface 6

2.2 Caches 6
2.2.1 Byte Versus Word Addressing 8
2.2.2 Address Translation 8
2.2.3 Cache Parity 8

2.3 Coprocessor 9
2.4 Memory Controller 9

2.4.1 Memory configuration 9
2.4.2 Bootstrap Prom 10
2.4.3 I/O Configuration 10
2.4.4 I/O Lock 11

2.5 Clock/Scan 11
3. Software Interface 12

3.1 Kernel/User Mode 12
3.2 Processes 12
3.3 Program Status Word 12
3.4 Processor Reset 13
3.5 Traps 14
3.6 Processor Halt Conditions 14
3.7 Coprocessor Registers 14
3.8 Memory Controller Registers 14

3.8.1 I/O Address Register 15
3.8.2 I/O Read Data Register 15
3.8.3 I/O Write Data Register 15
3.8.4 I/O Status Register 15
3.8.5 Event Register 16
3.8.6 Enable Register 16
3.8.7 Error Log Register 17
3.8.8 Error Address Register 18

4. Instructions 19
4.1 Abort 21
4.2 Special Instructions 22

4.2.1 Read Program Status Word 24
4.2.2 Read PC-Queue 25
4.2.3 Write Program Status Word 26
4.2.4 Read Instruction Translation Fault Register 27
4.2.5 Read Data Translation Fault Register 28
4.2.6 Read Instruction Translation Buffer Tag Entry 29
4.2.7 Read Data Translation Buffer Tag Entry 31
4.2.8 Read Instruction Translation Buffer Data Entry 32
4.2.9 Read Data Translation Buffer Data Entry 33
4.2.10 Write Instruction Translation Buffer Tag Entry 34
4.2.11 Write Data Translation Buffer Tag Entry 36
4.2.12 Write Instruction Translation Buffer Data Entry 37
4.2.13 Write Data Translation Buffer Data Entry 38
4.2.14 Read I/O Control Register 39
4.2.15 Write I/O Control Register 40
4.2.16 Read I/O Adaptor Register 41
4.2.17 Write I/O Adaptor Register 42

4.3 Kernel Exit 43
4.4 Set PC-Queue 45
4.5 Flush Cache 46

TABLE OF CONTENTS ii

4.6 Load 47
4.7 Store 48
4.8 Subroutine Jump 49
4.9 Conditional Jump 50
4.10 Extract Field 51
4.11 Alu 52
4.12 Coprocessor Instructions 55
4.13 User Trap 61
4.14 Load Address 62
4.15 Undefined Instruction 63
4.16 Instruction Timing 64

5. Titan I/O Bus 65
5.1 Arbitration 66
5.2 CPU Commands 67
5.3 Retry 67
5.4 Locking 67
5.5 Addresses 69
5.6 Identification 69
5.7 Parity 69
5.8 Interrupts 69
5.9 Scan 69
5.10 Conventions 70
5.11 Clocks 71
5.12 Termination 71
5.13 Cpu Write Transactions 72
5.14 Cpu Read Transactions 72
5.15 DMA Read Transactions 73
5.16 DMA Write Transactions 75
5.17 Physical Dimensions 76
5.18 Backplane 77

6. Clock/Scan Module (CSM) 85
6.1 Packet Format 85

7. Titan Memory Adaptor (TMA) 89
7.1 Packet Format 89
7.2 Byte Order 90
7.3 I/O Registers 90
7.4 I/O Adaptor Identifier 90
7.5 Interrupts 90

8. Titan Disk Adaptor (TDA) 91
8.1 I/O Registers 91
8.2 I/O Adaptor Identifier 92
8.3 Interrupts 92

9. Titan Network Adaptor (TNA) 93
9.1 Further Reading 93
9.2 Ethernet 93

9.2.1 Ethernet Transmitter 93
9.2.2 Ethernet Receiver 94
9.2.3 Ethernet Address Rom 95

9.3 Octart 96
9.4 I/O Registers 96

9.4.1 Board ID 96
9.4.2 Ethernet Address Rom 96
9.4.3 Status and Control 97
9.4.4 Control Bits 97
9.4.5 Interrupt Bits 98
9.4.6 Octart Chip 98

TABLE OF CONTENTS iii

9.4.7 Seeq Ethernet Chips 98
9.4.8 DMA Registers 100
9.4.9 Data Terminal Ready Register 100

10. Titan Fiber Adaptor (TFA) 101
10.1 Packet Format 101
10.2 I/O Registers 101
10.3 I/O Adaptor Identifier 102
10.4 Status Register 102
10.5 Control 103
10.6 Interrupts 103
10.7 Transmitting A Packet 103
10.8 Receiving A Packet 104

I. ALU Sign Corrector 105

LIST OF FIGURES iv

List of Figures
Figure 2-1: Titan System Architecture 4
Figure 2-2: Titan Pipeline Stages 4
Figure 2-3: Overlapped Instruction Execution 5
Figure 2-4: Simplified Data Path Pipeline 6
Figure 2-5: Pipeline Instruction Address Registers 6
Figure 2-6: Titan Address Translation 7
Figure 2-7: TB Hashing Function 8
Figure 2-8: Memory Module Address Ranges 10
Figure 2-9: I/O Adaptor Types 10
Figure 3-1: Program Status Word 12
Figure 3-2: I/O Address Register 15
Figure 3-3: I/O Read Data Register 15
Figure 3-4: I/O Write Data Register 15
Figure 3-5: I/O Status Register 15
Figure 3-6: Event Register 16
Figure 3-7: Hardware Error Bits 16
Figure 3-8: Enable Register 16
Figure 3-9: Error Log Register 17
Figure 3-10: ECC Syndrome Decode 17
Figure 3-11: Check Bit Syndromes 17
Figure 3-12: Error Address Register 18
Figure 4-1: Load/Store/Branch Instruction Format 19
Figure 4-2: Alu/Shifter/Coprocessor Instruction Format 19
Figure 4-3: Pipeline Register Mnemonics 19
Figure 4-4: Arithmetic Notation 20
Figure 4-5: Special Instruction Resource Encoding 22
Figure 4-6: Cache Read Misc Field Encoding 22
Figure 4-7: Cache Write Misc Field Encoding 22
Figure 4-8: I/O Special Instruction Rb Field Encoding 23
Figure 4-9: Read PSW Instruction Sequence 24
Figure 4-10: Read PC-Queue Instruction Sequence 25
Figure 4-11: Initialization of the PSW 26
Figure 4-12: Translation Fault Register Format 27
Figure 4-13: Read Instruction TFR Sequence 27
Figure 4-14: Read Data TFR Sequence 28
Figure 4-15: TLB Tag Entry Read Data 29
Figure 4-16: TLB Tag Match Bits Encoding 29
Figure 4-17: Read Instruction TLB Tag Entry Instruction Sequence 30
Figure 4-18: Read Data TLB Tag Entry Instruction Sequence 31
Figure 4-19: TLB Data Entry Read Data 32
Figure 4-20: Read Instruction TLB Data Entry Instruction Sequence 32
Figure 4-21: Read Data TLB Data Entry Instruction Sequence 33
Figure 4-22: TLB Tag Entry Write Data 34
Figure 4-23: Instruction TLB Tag Entry Write Sequence 34
Figure 4-24: Data TLB Tag Entry Write Sequence 36
Figure 4-25: TLB Data Entry Write Data 37
Figure 4-26: Instruction TLB Data Entry Write Sequence 37
Figure 4-27: Data TLB Data Entry Write Sequence 38
Figure 4-28: I/O Control Register Read Sequence 39
Figure 4-29: I/O Control Register Write Sequence 40
Figure 4-30: Read I/O Adaptor Register Sequence 41
Figure 4-31: Write I/O Adaptor Register Sequence 42
Figure 4-32: Return From Kernel Instruction Sequence 43
Figure 4-33: PC-Queue Load Instruction Sequence 45

LIST OF FIGURES v

Figure 4-34: Flush Instruction Sequence 46
Figure 4-35: Branch Destination Translation Trap 49
Figure 4-36: Conditional Jump Condition Encoding 50
Figure 4-37: ALU Function Fields 52
Figure 4-38: ALU Select Codes 52
Figure 4-39: ALU Function Encodings 53
Figure 4-40: TASM Variable/Byte Extract Format 53
Figure 4-41: Extract Size Encoding 53
Figure 4-42: Byte Extract Position 54
Figure 4-43: 32-Bit, Single-Precision Floating Point F Format 55
Figure 4-44: 64-Bit, Double-Precision Floating Point G Format 55
Figure 4-45: Internal Coprocessor Floating Point Format 55
Figure 4-46: Result Field Encoding 56
Figure 4-47: Function Field Encoding 56
Figure 4-48: Operand Field Encoding 57
Figure 4-49: Conversion of G-Format to F-Format 57
Figure 4-50: Miscellaneous Coprocessor Functions 58
Figure 4-51: Coprocessor Status Register 59
Figure 4-52: Coprocessor Timing 64
Figure 5-1: Titan I/O Bus Signal Groups 65
Figure 5-2: Titan I/O Bus Signals 66
Figure 5-3: I/O Lock Example 68
Figure 5-4: Titan I/O Adaptor Identifiers 69
Figure 5-5: Diagnostic Stop and Scan of Adaptor 70
Figure 5-6: Write Pulse Timing 71
Figure 5-7: Cpu Write Timing 73
Figure 5-8: Cpu Read Timing 74
Figure 5-9: DMA Read Transaction 76
Figure 5-10: Dma Write Timing 77
Figure 5-11: I/O Adaptor [Component-Side View] 78
Figure 5-12: Backplane Pin-Side View 79
Figure 5-13: Backplane Module Quantity and Types 79
Figure 5-14: Backplane Connector Pin Numbering [Pin Side] 80
Figure 5-15: Block 1 Signal Assignments 81
Figure 5-16: Block 2 Signal Assignments 82
Figure 5-17: Block 3 Signal Assignments 83
Figure 5-18: Auxilliary Low-Current Power 83
Figure 5-19: DMA Request Connections 84
Figure 6-1: CSM Packet Format 85
Figure 6-2: CSM Mode A Register 87
Figure 6-3: CSM Mode A Register Select Encoding 87
Figure 6-4: CSM Mode B Register 87
Figure 6-5: CSM Mode B Register ScanCount Encoding 87
Figure 6-6: CSM Go Register 88
Figure 6-7: CSM System Status Format 88
Figure 7-1: TMA Request Packet Format 89
Figure 7-2: TMA Command Byte Format 89
Figure 7-3: TMA Reply Packet Format 90
Figure 8-1: TDA I/O Registers 91
Figure 9-1: TNA Receiver Ending Status 94
Figure 9-2: TNA I/O Registers 96
Figure 9-3: TNA Status Register 97
Figure 9-4: TNA Status.ctrl field 97
Figure 9-5: TNA Status.ints field 98
Figure 9-6: Seeq chip registers 99

LIST OF FIGURES vi

Figure 9-7: Seeq transmitter command and status registers 99
Figure 9-8: Seeq receiver command and status registers 99
Figure 9-9: Seeq receiver address filter modes 100
Figure 9-10: TNA DMA registers 100
Figure 10-1: TFA Packet Format 101
Figure 10-2: TFA CRC Polynomial 101
Figure 10-3: TFA I/O Registers 102
Figure 10-4: TFA Status Register 102
Figure 10-5: TFA Control Register 103

