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Abstract

Many existing or potential programming tools require the program to be
completely recompiled with a special compiler option.  This is usually incon-
venient for the program developer, and may reduce the usefulness of the tool
or the frequency with which the tool is employed.  It may also require the
maintenance of different versions of standard libraries, each compiled with
the appropriate options for a different tool.

The difference between modules compiled with and without the special op-
tion is often simple and regular.  If so, we can effect this difference by
modifying the normally-compiled object code at link time, instead of recom-
piling. This reduces the overhead of using the tool by an order of magnitude,
making it much more convenient.
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1. Introduction

Recompiling an entire multi-module program from scratch is usually so expensive

o
that one does it only reluctantly. In spite of this, many useful tools for program
ptimization or performance analysis require the recompilation of the entire program.

w
The recompilation is done with a compiler option specifying that the resulting program

ill be used in connection with that tool.

A common example of this is the gprof [7] profiler. A gprof profile tells, among
l

w
other things, how many times and by whom each procedure was called. The norma

ay to use gprof is to recompile all of your source modules with the compiler option
s

p
–pg and then link the new object modules with standard libraries that have themselve
reviously been compiled with the same option. This results in an executable program

g
t
augmented with instrumentation code to keep track of the calls that occur. Runnin
his instrumented program produces a file of profile data, which the gprof program

uses to produce a formatted, readable profile.

The requirement that you recompile your source modules is a stringent one. Glo-
l

d
bal recompilation may take one or two orders of magnitude longer than the usua
evelopment cycle, and when you have obtained your profile you must then recompile

e
l
everything once more in order to remove the instrumentation. On top of that, th
ibrary of instrumented library routines must be maintained as well. This makes sys-

-
s
tem administration more complicated, and requires disk space for an instrumented ver
ion of every standard library. More subtly, the need for an instrumented library

-
t
makes it more awkward to allow several fundamentally different kinds of instrumenta
ion.

It turns out that the effect of compiling with –pg is quite small, hardly worth the
e

b
expense of recompilation. An alternative is to modify the object code itself. If w
uild a step into the linker to convert uninstrumented object modules into instrumented

e
n
ones, we can avoid the expense of recompiling altogether. Since the linker extracts th
ecessary library modules from the library, we can do the same transformation on

these, eliminating the need for a separate instrumented library.

We first developed this capability to enable certain very global optimization. As
l

r
part of the Mahler code generator for DECWRL’s Titan, we built an interprocedura
egister allocator and pipeline instruction scheduler, which have been described else-

c
where [20,21]. These optimizations required us to develop a technology of link-time
ode modification. Although we did not realize it immediately, it was an easy step to

s
w
use the same machinery, usually in a simpler form, for performance instrumentation a

ell.
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his paper is divided into two major sections. The first describes the technique
e

s
of link-time code modification, in more detail than previous reports have done. Th
econd describes a variety of different applications we have explored using this tech-

2

nique.

. Related work

The notion of modifying object code is not fundamentally new. Peephole optimi-
f

i
zation is the process of improving generated code by making local transformations o
t, and has been around for decades [15]. More recently, attempts have been made to

-
t
characterize some or all of the normal optimization process as ‘‘peephole’’ optimiza
ion, by generating naive code and then transforming it into better code [5,6]. These

-
p
techniques differ from ours in two ways. First, they have been used only for the pur
ose of optimization and not for performance analysis. More important, these tech-

f
l
niques have been applied as the last part of compilation rather than as the first part o
inking. This means that the compiler was free to keep the code in an internal or

o
incomplete form, more convenient for transformation, instead of producing standard
bject modules that could be linked normally.

At the other extreme is the pixie tool developed at MIPS Computer Systems [16].

e
This tool transforms a fully-linked executable program into an equivalent instrumented
xecutable. Thus it transforms the code after linking instead of before. Pixie was

o
developed independently from our system but the possible modifications overlap with
urs; the motivation for their system was quite similar to ours.

y
t

The pixie system works by transforming a finished executable instead of b
ransforming object files being linked. This has two consequences. First, their system

k
s
is easier to use than ours. In our system the user must know how to perform the lin
tep, so that the appropriate code modification option can be requested. On the other

,
c
hand, our approach is easier to implement. An isolated object file, prior to linking
ontains the relocation dictionary and loader symbol table, which make the transforma-

m
tion easier. For example, pixie must postpone some address translation until the

odified program is executed, because not enough is known about the meanings of

d
data items when pixie is performing the transformation [14]. In contrast, our system
oes all address translation as part of code modification. Because our approach is

t
a
easier to implement, we have (I believe) used it in a wider variety of ways. No doub
ny of our applications could be done within the framework of pixie, but the fact is

3

that many of them have not.

. Modifying code

Our system works as follows. The compiler always compiles code the same way
t

m
(neglecting options that are irrelevant to this paper). The linker reads the objec

odules into memory one at a time, from object files or from libraries. If the user

m
asks the linker for a transformation, then each module is modified in memory; no

odified object file is written. The module rewriter is essentially independent of the
tlinker proper. It accepts a module that the linker proper has read from a file, and i

2
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eturns a changed module that could just as well have been read from a file. The
,

w
linker combines the object modules, modified or not, into a single executable image

hich it writes to an executable file.

The linker has two obstacles it must overcome for our system to work. First, it
t

i
must determine what transformations must be applied. These transformations migh
nclude changing, adding, or deleting instructions at various points in the module.

a
Second, it must actually make the transformations, and convert the object module into
n equivalent module that is internally consistent, so that it can then be linked

correctly.

The problem of determining the changes to make can be easy or hard, depending
k

c
on the transformation that is desired. For some applications, the compiler must mar
ertain points in the code so that the linker will know what to do there. Such a mark

e
c
can be made by including a loader symbol whose value is the address marked. Th
ompiler routinely includes all these marks, for all different kinds of instrumentation.

m
A mark is irrelevant unless the user asks the linker for a transformation with which the

ark is associated. Other important points can be determined from information that is
s

b
in the normal object format. For example, the linker can determine the boundarie
etween basic blocks by looking for all text addresses in the loader symbol table and

by looking at the destinations of all pc-relative branches.

This leaves the question of making the modifications correctly.

-
t

Changing an instruction is easy, and in fact all linkers do that routinely. Reloca
ion is the process of filling in part of an instruction with address or offset information

n
d
that is not known until link time. Normally this is done with the aid of a relocatio
ictionary that contains the addresses of instructions and data items that must be relo-

-
c
cated, together with a reference to the loader symbol whose value determines the relo
ation to be done. The reason it is easy is that it is essentially context-independent.

a
Once we know what change to make to the instruction, it can be made without
ffecting any other instructions.

Adding or deleting instructions is somewhat harder. When instructions are added,

m
others must slide down to make room for them. When instructions are deleted, others

ust slide up to fill in the gap. Sliding an instruction up or down changes its address,

t
and we must correct for this change if the module is to remain self-consistent. To do
his, we must know all the places in code or data where the address appears, explicitly

s
i
or implicitly, and we must modify these places so that the correct new address appear
nstead.

This turns out to be easy to do, because most such places are marked for reloca-

o
tion. For example, if the address of a procedure appears literally in some instruction
r data word, it must be marked for relocation, because the address of the procedure

l
l
may change as a result of the normal linking process. To put it another way, a norma
inker already moves code up and down, because every module except the first must

b
be positioned after all previous modules. Addresses that were correct relative to the
eginning of the separately compiled module must be relocated when that module is

3
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Addresses can also appear implicitly, in pc-relative operations. These may also
n

t
be marked for relocation. But they might not; a pc-relative jump to a destination i
he same module can normally be completely resolved at compile time, so link-time

f
relocation would be unnecessary. Fortunately, pc-relative references can be recognized
rom their own appearance. Either the instruction is one that always makes an implicit

o
pc-relative reference, like some branch instructions, or it explicitly uses the pc as an
perand. In either case we can compute the effective address by combining the

address of the instruction with the offset in the instruction.

Once we have found the places where addresses appear, we must know how to
r

t
convert them into the correct new addresses. This requires us to make two passes ove
he module; one to plan the changes, so that we know how much correction is needed

t
i
at each point, and one to commit the changes and correct the addresses that appear. (I
s actually a little cleaner to go ahead and commit the changes in the first pass, but we

t
must be careful not to lose the information that tells us where the addresses that need
o be corrected appear.) After the first pass we can build a mapping from old addresses

into new addresses, and use it to translate addresses in the second pass.

In constructing this mapping we must remember that when we insert code
r

b
between two instructions we will think of it as being either after the first instruction o

efore the second. This makes a difference. If there is a branch to the second
,

o
instruction, we need to know whether that branch should still jump to that instruction
r instead should jump to the inserted code. If we want to go on jumping to the origi-

t
nal instruction, we must translate the destination address of the old branch by adding
he length of the inserted code; if we want to jump to the inserted code then we leave

the destination address unchanged.

It is important to remember that the transformation we are making is from one

a
object module into another. We are not doing any of the operations one normally
ssociates with the linking process; that will come later. All addresses in the old

e
m
module are relative to the beginning of the module, and the same will be true of th

odified module that we end up with.

We want to produce an object module in the usual form, just like those the linker
-

a
might read from object files. So we must make sure it has a correct relocation diction
ry and a correct loader symbol table. Addresses that appear in these must be

corrected just as addresses in code or data are.

The symbol table is easy. Entries in it are tagged with types that tell us whether
t

a
or not they are addresses. We modify them by looking them up in the mapping, jus
s if they had appeared in the code.

The relocation dictionary is easy, too. Each entry applies to one instruction or
t

c
data item, designated by an address relative to the beginning of the module. We mus
orrect the address, and also add or delete relocation entries that apply to instructions

t
f
that are added or deleted. Correcting the addresses in relocation entries is differen
rom the other address correction we have done, however. An address here specifies a

4
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articular instruction rather than a location in the code. If we insert another instruction
e

n
before a relocated instruction, we do not want the relocation suddenly to apply to th
ew instruction instead! The easiest way to accomplish this is to build a new reloca-

r
tion dictionary as we build the new version of its associated code segment, adding new
elocation entries whenever we add an old or new instruction that requires relocation.

The new address is then manifest because we just finished putting the instruction there.

To summarize, then, the general algorithm for modifying an object module is this.
.

S
Based on the transformation requested, the linker determines the changes to be made

ome of these changes may be triggered by marks left by the compiler. In one pass it

f
plans (and possibly makes) the individual changes. As it does this, it builds a mapping
rom old addresses to new addresses, in each case relative to the beginning of the

c
module under consideration. On a second pass it commits the planned changes and
orrects the addresses that appear in the changed code. During this second pass it also

t
t
produces a new version of the code’s relocation dictionary. It then goes on to correc
he addresses that appear in the data segment and in the loader symbol table. The

t
a
result is a new version of the object module, which can then be linked with others jus
s if it had been read from the object file.

4. Applications

We have developed a wide range of applications for our code modification tech-

a
nology. Some were for very special purposes, used to investigate a particular question
nd then essentially discarded. Others were for production program development tools

4

that we continue to use routinely.

.1. Interprocedural register allocation

The first application was Mahler’s interprocedural register allocator. This system
has been described previously [20] so only an overview will be given here.

At link time, the register allocator builds a call graph for the entire program and
e

a
uses it to combine scalar variables into ‘‘pseudo-registers.’’ Two variables can b
ssigned to the same pseudo-register if they are local to procedures that are never

d
simultaneously active, or if they are local to the same procedure and the compiler has
etermined that the two are never simultaneously live. Global variables and constants

o
are assigned to singleton pseudo-registers. The pseudo-registers are then sorted in
rder of frequency of use, computed from estimates of variable reference frequency

l
r
produced by the compiler. The most frequently-used pseudo-registers become rea
egisters. The advantages of doing this at link-time instead of compile time are that

s
globals can be safely included and that locals in different modules can be given the
ame registers or different registers depending on whether they interfere with each

other.

Once the register allocator has decided which variables and constants should be
t

d
kept in registers instead of in memory, the linker must rewrite the code to reflect tha
ecision. It must remove loads and stores of these variables, and it must change the

soperands of other instructions so that they are the registers allocated to these variable

5
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nstead of temporary registers generated by the compiler. It must also deal with calls

i
that are recursive or indirect through procedure variables, both of which require us to
nsert saves and restores at certain points.

To make all these changes correctly, the linker relies on very extensive marking
,

c
by the compiler. Essentially every point where the value of a variable is loaded, used
omputed, or stored is marked so that the linker can recognize it and know which vari-

t
able is relevant. This information requires a lot of space; about half the space in a
ypical object module is register allocation marks. However, the pervasiveness of

t
these marks made it easy for us to see other applications of the technique, even when
he information required by the application was much less.

4.2. Pipeline instruction scheduling

The Mahler system also includes a pipeline instruction scheduler [21]. The
s

b
scheduler rearranges instructions so that there are fewer places where dependencie
etween instructions cause hardware pipeline stalls. In contrast to the register alloca-

m
tion, the pipeline scheduler needs little global information. It simply breaks the

odule into basic blocks and re-orders each basic block independently. (In fact the

o
basic blocks are not quite independent, as the scheduler may try to fill a branch slot in
ne block with an instruction from a block executed immediately after the first block.)

t
i
It must also tolerate the presence of certain tricky idioms, such as a variable left shif
mplemented as an indexed jump into a table of constant left shifts, which it would be

e
wrong to re-order. These idioms are marked by the compiler so that the scheduler can
asily recognize them.

Thus the scheduler makes use of no intermodule information. This means that

l
the scheduling could be done in the compiler instead of in the linker. It is done in the
inker for the simple reason that it works much better if done after register allocation,

d
because the transformations done in register allocation make large changes in the
ependency structure of the basic block.

This is unfortunate in a production sense, because the scheduling is relatively
t

h
expensive; when invoked, it slows down the linker by a large fraction. However, i
as also allowed us to experiment with different pipeline structures. We created an

e
l
interface that described a pipeline structure, and attached the interface both to th
inker and to a fast instruction-level simulator. We could thereby schedule code

.
T
according to the specified pipeline, and then simulate it according to the same pipeline

his gave us a more realistic estimate of the consequences of adopting a particular

f
pipeline structure than we would have gotten had we merely simulated code produced
or a different pipeline structure, or no particular pipeline at all.

s
a

The interface assumes that instructions fall into disjoint classes, such a
dd/subtract, logical operations, singleword load, and so on. The classes are hardwired

o
i
into the interface, but are intentionally quite specific. It is quite unlikely that tw
nstructions in the same class will ever have substantially different pipeline properties.

f
The user can combine the classes into groups called units. If the architecture has a
unctional unit that does add/subtract and also logical operations, the user would group

6
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hese into the same unit. The user can then specify five properties of the pipeline.

b
First, each class has a result latency, which is the span between the time an operation
egins and the time its result can be used in a later instruction, including bypass.

p
Next, each unit has an issue latency, which is based on how intensively the unit is

ipelined; it is the span between the time this unit issues one operation and the time
s

o
when it can issue a second operation. This may be independent of the result latencie
f these operations. Third, each unit has a multiplicity. There may be several

b
instances of a given functional unit, so as to exploit parallelism beyond that provided
y the degree of pipelining. Some pipelines impose an address latency because a

-
t
memory reference needs its address operand earlier in the pipeline than other opera
ions. An address latency means essentially that an operation has a slightly longer

,
a
result latency if its result is being used as the address in a memory reference. Finally
n architecture may allow several consecutive instructions to be issued in the same

-
i
cycle, if they are mutually independent. This multiple issue is limited by the availabil
ty of the necessary functional units, and also by the maximum multiple issue. This is a

f
w
limit on the maximum number of instructions that can issue in one cycle, regardless o

hether more instructions and functional units are available.

,
i

The interface has been extended to specify other machine properties as well
ncluding the number of registers and the detailed structure of its caches and cache

l
a
buffers. We have used it for a variety of architectural studies [9,10,11,12,13] as wel
s to estimate the performances of machines proposed both within DECWRL and by

4

product groups elsewhere in DEC.

.3. Instruction-level instrumentation

When the pipeline scheduler was finished, the question naturally arose of how
d

w
well it did. Code modification provided a convenient way to answer this question, an

as DECWRL’s first use of this technique for performance analysis rather than perfor-
mance enhancement.

The idea behind the instruction-level instrumentation is that we create a set of
-

p
global counters in the instrumented program, one for each event of interest. For exam
le, we may be interested in the number of load instructions that are executed. Then

-
a
we analyze each basic block, and insert code in it to increment all the counters associ
ted with events that occur in that block. If we execute the resulting instrumented pro-

gram, and then output the counters, we get dynamic counts of all the events.

It is easy to use this technique to count any kind of event that is apparent from a
r

s
static analysis of the basic block. For instance, we can count the executed loads o
tores or coprocessor instructions. We can also count events like the execution of

-
t
delayed branches whose branch slots were not filled. We can even count the execu
ions of various multi-instruction idioms such as byte load or store, or procedure call

or return.

To a first approximation, we can also count pipeline stalls with this method. We
e

T
examine the basic block for sequences that will cause a pipeline stall, such as (on th

itan) a store immediately followed by a load. We insert code to increment the

7
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‘store-load-stall’’ counter by the number that we find in this block. This analysis is
the same analysis that the scheduler itself must do.

Counting stalls in this way is only approximate, however, because a stall can hap-

s
pen at the boundary between two basic blocks. To make the counts precise, we create
ome auxiliary globals in the instrumented program, to record certain state information

t
c
about the currently executing block. We check each block for instructions that migh
ause a stall, depending on what happens in the next block executed. When we find

s
w
such instructions, we insert code to record the fact. For instance, if a basic block end

ith a store instruction, we insert code that sets the ‘‘ends-with-store’’ bit. If a basic

i
block begins with a load, we insert code that looks at the ‘‘ends-with-store’’ bit and
ncrements the ‘‘store-load-stall’’ counter if it is set (and clears the bit in any case).

This lets us exactly count events that depend on inter-block information.

Instruction-level instrumentation provides us with statistics that one normally
s

e
acquires by instruction-level simulation. Inserting the instrumentation at link-time i
xpensive, but it is an order of magnitude cheaper than inserting it at compile-time

c
would be. Executing the instrumented program is expensive, too; the instrumentation
an slow the program by an order of magnitude. But simulating the program instead

,
l
would be slower by two to four orders of magnitude. For this kind of application
ink-time instrumentation seems to be the best approach by far.

4.4. Procedure-level profiling

The example of gprof was mentioned earlier in this paper. This profiler usually
n

–
requires the recompilation of all the source modules in the program, with the optio
pg. However, the only effect of this option is to insert, at the beginning of each pro-

-
i
cedure, a call to a special routine named mcount. This routine is responsible for keep
ng track of the calls that occur. In our approach, the compiler always marks the place

r
g
where the call to mcount would be inserted. If the user tells the linker to link fo
prof, then the linker inserts a call to mcount at each such point.

m
s

The advantages are obvious. We can use gprof without recompiling fro
cratch. We do not need to maintain a separate instrumented version of each library.

The world is now easier and faster for both the user and the system administrator.

Others at DECWRL are experimenting with some extensions to this approach.

r
Normally, gprof obtains execution times by ‘‘pc-sampling.’’ The profiled program is
un in parallel with another process that periodically looks at the pc of the profiled

-
v
program, to determine which procedure is executing. This approach has a few disad
antages. First, it means that assignments of expense are only statistical; if A calls P

e
s
90 times and B calls P 10 times, then gprof can only assume that 90% of the tim
pent in P was for the benefit of A rather than B. This may be just plain wrong; A

y
m
may call P only for easy cases. (Maybe that’s why it calls so much.) Second, it ma

ake it difficult to profile the kernel of the operating system. Some machines may not

i
allow the kernel to be interrupted. Even if the kernel can be interrupted, the timer
nterrupts themselves trigger certain events in the kernel, which means that pc-

sampling based on the same timer interrupts may cause a skewed picture of where the

8
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ernel spends its time. Third, call overhead itself may account for a significant frac-
r

a
tion of a program’s execution time, and the pc-sampling technique charges the calle
nd callee for the amount of overhead that occurs in each. Different calling conven-

tions might result in a much different profile.

The Titan has a time-of-day clock that is visible to the user. We are experiment-

t
ing with an alternative gprof that depends on the linker’s ability to insert code noting
he current time at key points. This will allow us to assign charges based on the

,
m
actual current context. It will allow us to dispense with a parallel pc-sampling process

aking kernel-profiling easier. And it will allow us to determine the expense of each

4

call, charging whichever routine we wish, or reporting the time in some new way.

.5. Block-level profiling

Just as we can insert code to keep track of the number of times we execute each
.

B
procedure, we can insert code to count the executions of each individual basic block

asic blocks are shorter than procedures, so we want to minimize the overhead of this

c
counting. We therefore insert the counting code in-line rather than insert a call to a
ounting procedure. The linker allocates a long vector of counts, one for each basic

-
a
block in the program, and the inserted code for a block increments the count associ
ted with that block.

There are many applications of this information, most of which we have not yet

v
explored. Our main use of the basic block execution counts is the construction of a
ariable-reference profile. Our intermodule register allocator normally selects the

e
p
important variables by looking at estimates of variable reference frequency that ar
roduced by the compiler. Often these estimates are not very good, and the allocation

-
r
can be improved by using actual reference counts instead of estimates. A variable
eference profile tells us how many times each variable or constant was referenced dur-

b
ing the program execution; if we feed it to the register allocator and relink, we get a
etter allocation and a faster executable. To build the variable-reference profile, we

e
r
combine the basic block counts with static information that can be produced by th
egister allocator. This static information tells, for each basic block, how many vari-

r
a
able references it contains, and which variables they are. This is easy for the registe
llocator to determine, because the references it counts are marked for removal in the

event that the variable loaded or stored is assigned to a register.

We hope to use procedure profiles and basic block profiles more extensively, to
-

g
guide other aspects of the optimization process. If the optimizer knows where the pro
ram spends its time, it should be able to spend more effort optimizing those parts.

4.6. Register management strategies

In 1988, we reported the results of a study comparing register allocation tech-
f

r
niques and hardware register windows [22]. A modern processor probably has a lot o
egisters, and exploits them by keeping variables in them. Different techniques exist

a
for accomplishing this. Some machines [8,9,17,19] treat the register set as a flat space
nd rely on the language system to allocate the registers to variables. Other machines

9
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2,3,18] include hardware to divide the register set into circular buffer of windows.

n
When a procedure is called, the tail of the buffer is advanced in order to allocate a
ew window of registers, which the procedure can use for its locals.

-
e

Both techniques allow us to dispense with many loads and stores that would oth
rwise be needed. Both techniques also require us to include new loads and stores that

s
would not otherwise be needed. In the case of register windows, the new loads and
tores are needed when we run out of buffers after a long series of calls or returns. In

-
c
the case of register allocation, the new loads and stores are needed when we make pro
edure calls that would otherwise harm registers in use. In a naive allocation this

r
might be every procedure call; our more sophisticated allocation inserts saves and
estores only for recursive or indirect calls.

Thus we can imagine evaluating a hardware or software register management

s
technique, by counting the loads and stores saved and then subtracting the loads and
tores inserted. Our study did this via link-time code modification. Register allocation

d
s
techniques were measured by inserting code to count the different kinds of loads an
tores. Register window techniques were measured by inserting code to maintain a

e
o
simple data structure describing what the current state of the window buffer would b
n a window machine with specified parameters. The results showed that hardware

4

windows did not have a significant advantage over register allocation.

.7. Address traces

An address trace is the sequence of instruction and/or data addresses referenced
g

t
by a program during the course of its execution. Such a trace is useful in simulatin
he performance of different cache configurations. Previous techniques for acquiring

-
c
address traces fall into two general categories. One approach involves adding micro
ode to the machine [1]. The microcode watches the address bus and logs those it

m
sees. This approach slows execution by an order of magnitude, and is not suitable for

achines without microcode, like most modern RISC processors. The other approach
e

m
is simulation. We can build an instruction-level machine simulator that also logs th

emory references made by the simulated program. Unfortunately, simulation is very
n

e
slow; simulating a program typically takes two to four orders of magnitude longer tha
xecuting it. With the advent of machines with very large caches, we must use very

s
e
long address traces to get realistic and useful results. Simulation is too slow to do thi
asily.

Our approach was to use link-time code modification to instrument the code.

t
Wherever a data memory reference appears, the linker inserts a very short, stylized call
o a routine that logs the reference in a large buffer. The same thing is done at the

s
u
beginning of each basic block, to record instruction references. When the buffer fill
p, something is done to process it; either it is dumped to an output device, or a cache

simulation is resumed to process it.

It is important that we not consider single programs in isolation, because the
t

D
cache is shared by all user processes and also by the system kernel. Others a

ECWRL [4] are extending this technique by making the system kernel allocate a

10
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hared buffer that everybody can use; this allows the traces of kernel and user activity
-

s
to be correctly interleaved. Some interesting work in the operating system is neces
ary, to synchronize things properly and to correct for the effect of the execution slow-

5

down on the behavior of of time-triggered events in the kernel.

. Conclusions

Link-time code modification is easy to do. The format of object modules and the
-

t
structure of the linker provide a convenient interface for applying various transforma
ions on each module being linked. Where necessary, the compiler can routinely pro-

vide hints that are ignored unless a relevant transformation is requested.

Link-time code modification is flexible. We have used it for a wide variety of

t
one-shot and production applications. We have used it as a vehicle for optimization
echniques that can make impressive differences in the speed of programs. It has

l
enabled performance instrumentation from the level of individual instructions up to the
evel of user procedures; almost by accident it has changed the standard tool gprof

t
from something one might use a few times a year into something one might use a few
imes a month or week. We expect to be able to add to its uses for some time to

6

come.
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