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Abstract

This paper describes the architectural and organizational tradeoffs made
during the design of the MultiTitan, and provides data supporting the deci-
sions made.  These decisions covered the entire space of processor design,
from the instruction set and virtual memory architecture through the
pipeline and organization of the machine.  In particular, some of the
tradeoffs involved the use of an on-chip instruction cache with off-chip TLB
and floating-point unit, the use of direct-mapped instead of associative
caches, the use of a 64-bit vs. 32-bit data bus, and the implementation of
hardware pipeline interlocks.
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1. Introduction
The MultiTitan is a high-performance general-purpose 32-bit microprocessor developed at

Digital Equipment Corporation’s Western Research Lab (DECWRL).  Each processor consists
of three custom chips: the CPU, floating point coprocessor (FPU), and external cache controller
(CCU). The CPU has been implemented in a 1.5u CMOS technology with 179,390 transistors
and runs with a 40ns cycle time [6]. In this paper we will discuss architectural and organiza-
tional tradeoffs made in the design of the system.

Each processor of MultiTitan is similar in some respects to the DECWRL Titan [10]. The
Titan was built from 100K ECL MSI parts, and was developed at the lab from 1982 to 1986.
Like the ECL Titan, the MultiTitan is a very simple RISC machine with a branch delay of one.
However, the MultiTitan is not object-code-compatible with the ECL Titan.  Unlike the ECL
Titan, the MultiTitan has hardware support for fine-grain parallel processing, unified
vector/scalar floating point registers and operations, and a different pipeline and method for han-
dling exceptions.  Figure 1 is an overview of one MultiTitan processor.

The MultiTitan instruction set is very simple and has a regular encoding. The machine has a
4-stage pipeline: instruction fetch (IF), execute (EX), memory access (MEM), and write back
(WB). The resources and timing of the pipeline are shown in Figure 2.  The primary principle
followed in the design of the the machine is:

Sustained performance must be maximized while the ratio of peak performance to sustained
performance must be minimized.  This is best accomplished by minimizing the latency of all
operations as much as possible within a simple and regular framework.

Obviously sustained performance must be maximized, because that is what is delivered to the
user. Peak performance should be minimized, since

Peak performance is meaningless except as an indicator of machine cost.

In other words, high peak performance requires high hardware cost.  Thus to utilize the
hardware most efficiently, the ratio of sustained performance to peak performance must be as
close to 1 as possible.

In general, the lowest possible latency provides the best possible performance. The latency of
an operation is the time from its initiation until its completion.  In contrast, bandwidth cor-
responds to the peak rate at which operations may be issued or retired but says nothing about
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Figure 1: One MultiTitan processor

how long each operation takes.  Bandwidth is quoted when peak MFLOPS or the clock fre-
quency of a microprocessor is given.  By heavily pipelining a machine, the bandwidth of the
pipeline is increased, but the latency of operations when measured in cycles is also increased.
Latency is important because instruction-level parallelism is limited and data dependencies exist
between instructions. If a large bandwidth is provided at high latency, data dependencies and
limited parallelism will force the machine to stall waiting for the results of operations.

Finally, the latency must be minimized within a simple and regular framework.  If the machine
is made complex and irregular, the global machine control and overall machine organization can
be adversely affected.  This can slow down the basic cycle time or other operations in the
machine, outweighing the result of the original speedup.

This paper follows the structure of the MultiTitan pipeline.  Section 2 discusses issues related
to the IF pipestage such as the large on-chip instruction cache and hardware interlocks. The
implementation of integer multiply and divide by the coprocessor and the use of a single adder in
the CPU are discussed with other EX pipestage issues in Section 3.  MEM pipestage issues such
as the TLB and cache organization are the subject of Section 4.  Issues involving the WB pipes-
tage are presented in Section 5.  Section 6 summarizes the major tradeoffs presented in the paper.

2. IF Pipestage Tradeoffs
In this section we describe how the primary design principle was applied to the IF pipestage.

Excess latency before the execute stage is visible in stalls when branches are taken.  Since about
1 in every 15 instructions are taken branches in our benchmarks, each extra cycle required to
fetch an instruction can slow the machine down by 1/15, or about 7%.
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2.1. What should be put on-chip?
At the level of integration available for the MultiTitan, several options are possible for what to

place on the CPU chip.  Along with the datapath and instruction decode, other recent machines
have placed either the TLB on-chip [8, 11], the floating-point unit on-chip [3, 12], or an instruc-
tion cache on-chip [1, 5]. The choice of what to put on-chip in the MultiTitan was based on
minimizing the average latency.  The average latency of a particular operation must be weighted
by the frequency of execution of that operation to obtain its effect on the overall machine perfor-
mance. For example, in a RISC machine running at one cycle per instruction, an instruction
must be fetched every cycle.  Loads and stores usually account for around 30% of all instruc-
tions. Floating-point operations rarely account for more than 25% of all operations even in
numeric applications.

If the instruction cache is placed on-chip and is a virtual instruction cache, then instruction
accesses do not require address translation on a hit.  Then the most frequent operation
(instruction fetch every cycle) is on-chip, and the less frequent operations (load or store and their
associated address translation) incur the increased latency of going off-chip.  If a separate FPU
chip has its own set of registers, then loads and stores to the FPU chip can take place directly
from the data cache, with the same latency as an FPU on the CPU chip.  Only when transfers
between the floating-point registers and CPU registers are required is additional latency incurred.
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Luckily, transfers between CPU and FPU registers are rare, occurring only for conversions be-
tween integer and floating-point values and implicitly or explicitly when branches must be made
on the result of floating-point compares.  Our simulations showed transfers between CPU and
FPU register sets or vice versa to be less than 3% of the instructions executed on the Livermore
Loops (1-12), Whetstones, and other floating-point intensive benchmarks.

Of course this level of analysis is an oversimplification.  Second-order effects, such as
whether the instruction cache can be made large enough to have a good hit rate (and hence a low
average latency) often dominate. Also, care must be taken to count additional latency only when
it really affects the machine, such as counting instruction-fetch latency only during branches.
Similar questions must be raised for the other possibilities as well.  For example, could an on-
chip TLB be made large enough to have a low average latency (i.e., high hit rate)?  Similarly,
would an on-chip FPU have enough transistors available to exploit potential parallelism in
floating-point operations, such as a full multiplier array instead of an n-bit at a time algorithm?

Next the simplicity and regularity of the system must be considered.  For example, if the TLB
is put on-chip, will an off-chip backup TLB still be necessary?  If so, then the on-chip TLB does
not reduce the parts count on the board.  If the instruction cache is on-chip, this will reduce the
I/O requirements of the chip.  If the instruction cache and data cache are both off-chip, then the
data and address busses will either have to be time multiplexed (which is likely to add latency
and impose an upper bound on performance), or separate busses must be provided (which im-
plies a very high pin count).  The signal integrity of high pin count packages is worse than that of
low pincount packages, which further increases the latency of going off-chip.  If the instruction
cache is placed on-chip, and the external cache is a mixed cache, then an entire set of cache
RAMs chips can be eliminated over the case where both the instruction and data caches are
off-chip and are accessed with time-multiplexed busses.  Finally, care must be taken not to add
all sorts of mechanisms (e.g., branch target buffers) to decrease latency without verifying that
they don’t increase the latency of global control or other operations more than they have saved.

In the case of the MultiTitan, the chip area we had available was enough to build a TLB with a
reasonable hit rate.  However, this area was not enough for very high performance floating-point
support. We decided to put the instruction cache on-chip instead of the TLB primarily to reduce
chip pin I/O bandwidth requirements.  By also reducing the requirement for two independent
external caches to a single external cache, putting the instruction cache on chip eliminated more
parts from the board than moving a TLB from a custom CCU chip on-chip or by eliminating the
custom FPU chip.  Thus, for the MultiTitan, we found that placing the instruction cache on the
CPU chip would have a better effect on performance and simplify the system more than placing
anything else on-chip.

2.2. Organization of the Instruction Cache
The decision to put an instruction cache on-chip is based on its hit rate which depends on its

size and organization, so these decisions must be made concurrently.  But given that an instruc-
tion cache was the best thing to put on-chip, what is the best organization of the cache?  This was
decided according to the primary design principle.  In other words, we want to minimize the
average instruction fetch latency.  This is given by the sum of its hit latency and its miss latency
times its miss rate (i.e., Equation 1).
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τ = τ + ρ * τ (1)average hit miss miss

There are many contributors to latency in an instruction cache access.  Three of these are
extensively discussed in the literature: the hit rate, the cache line refill time, and the access time
of the cache memory arrays.  The hit rate of the cache itself depends on the overall size as well
as the line size.  The overall size of the cache was fixed by the space available on the die to 2K
bytes. If the cache was made larger than this not only would the die size become prohibitively
large, but the access time of a memory array twice as large is also longer than that of the smaller
array. The line size is an important factor in determining the miss rate of an instruction cache.
Since taken branches are about 1 in every 15 instructions, if we have just branched to a location
the chances are very good that we will execute at least the next four instructions.  Therefore,
making the instruction cache refill fewer than 4 words on a miss is a bad idea since the machine
will execute more instructions than that in a row on average.  For example, a machine that
fetched only one word on a miss would have four cache misses to execute 4 consecutive instruc-
tions, while a machine that fetched back four words on a miss would have only one or at most
two misses.  Although for a 2K byte cache an 8-word line would provide a better hit rate than a
4-word line, in the MultiTitan we chose a line size of four words.  This brings up another obser-
vation:

Real caches are determined by the RAM sizes available and the system context and are inten-
tionally non-optimal from the viewpoint of simulation studies.

In particular, three aspects of the MultiTitan system dictated the decision for a four-word line.
First, the MultiTitan was targeted to run on the Titan memory and I/O system, and the Titan
memory system returns four words on all accesses. If the off-chip mixed cache had a four-word
line to match the memory system, then it would also be simpler and more regular for the on-chip
cache to have a four-word line as well.  Second, if the off-chip cache had an access time of one
cycle, then the time lost on a miss to get the required instruction would be 2 cycles (IF fails from
miss, fetch instruction, and IF succeeds). During this time 4 words could be fetched over a
64-bit data bus. Third, based on the aspect ratio of the available on-chip space and the RAM cell
itself, 160 cells could be easily driven on one word line.  This corresponds to four words plus a
tag.

The cache associativity also affects latency.  For example, by increasing the associativity the
average access latency may be reduced a few percent due to a higher hit rate.  However, a much
more important effect is present in a direct mapped cache (see case b of Figure 3).  In a direct-
mapped cache where the data and tag stores are made of the same memory, the data is available
at the same time as the tag.  In many cases the tag comparison is a significant fraction of the
cache access time.  In a direct-mapped cache the processor can start using the data before hit or
miss is computed.  This reduces the latency of the cache access in the case of a hit to that of the
RAM access time.  In an associative organization (see case a in Figure 3), the machine does not
know which data to use until the tag comparison and the multiplex between the sets is complete.
The reduced latency provided by the direct-mapped cache organization far outweighs the small
increase in average latency from its lower hit rate for the cache size of interest.

Another common organization of caches is a set of buffers with a set of corresponding as-
sociative tags, as in the CRAY-1 [2] or MIPS-X [1] (see case c and d of Figure 3 respectively).
These organizations are just extreme cases of caches with very long lines and associativity equal
to the number of lines in the cache.  There are two cases to consider for this organization.  These
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Figure 3: Effective latency of cache organizations

two cases differ based on the relationship between the buffer size and the size of the basic RAM
building block used to construct the buffer.  If the size of each buffer is greater than or equal to
the basic building block used to build the buffer (e.g., 16-entry buffers made from 16x4 bit
RAMs as in the case in the CRAY-1), the different buffers may be indexed immediately in paral-
lel based on the low order bits of the instruction address.  This is because each chip stores data
from at most one buffer, and all of the chips can be cycled in parallel. The tag comparison is
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also performed at the same time and can set up the multiplexors while the buffer access is still in
progress. This method gives an access time for hits that is not much larger than that of the
memory building block.  However, the total number of tags available is limited to the total cache
size divided by the size of each buffer. This limit on the number of tags (e.g., 4 in the CRAY-1)
can have a significant negative impact on the hit rate.  For example, three small code fragments
that each cross a buffer address boundary would require two buffers each, for a total of six tags.
In situations like this thrashing would result between the code fragments, and each of the large
buffers would be poorly utilized.  To circumvent this problem, the number of tags can be in-
creased beyond the number of memory building blocks. Hence, data from several buffers will be
stored in each RAM block.  This was done in MIPS-X, where the cache is organized as 32 buf-
fers of 16 words each. However, since the RAM itself only accesses four words in parallel, the
tag comparison must be performed in order to generate the address of the block within the RAM
to be accessed. This puts the tag comparison in series with the RAM access, and yields a latency
about equal to that of the conventional associative case for a hit.

In summary, we have discussed four basic ways to organize a cache.  Two methods put the
latency of a tag comparison in series with the RAM access, while two put the tag comparison in
parallel with the RAM access.  Of the two parallel methods, one has a poorer hit rate than the
other due to the limited number of tags available. For this reason, we chose a direct-mapped
organization (method b) in the MultiTitan because its average latency is the lowest.

2.3. 64-bit Data Busses
As was mentioned in the previous section, the MultiTitan has a 64-bit data bus.  This improves

the performance of both double-precision floating-point benchmarks and machine performance
during instruction cache misses.  The costs and benefits of a 64-bit data bus for instruction cache
refill will be quantified in this section.

The cost of a single 64-bit data bus and a 32-bit address bus shared by instructions and data is
fairly low.  It requires only 50% more pins than a 32-bit address and 32-bit data bus shared by
instructions and data, and 25% fewer pins than separate 32-bit address and 32-bit data busses for
both instruction and data references.  The MultiTitan CPU is in a package with 140 signal pins
and 36 power pins.  Not all pins on the package are used since the die size is limited by the
required perimeter of the bonding pads.  The data bus also has byte parity, so together with the
address bus they account for 102 of the 136 pins used.  The remaining 34 pins are easily suf-
ficient to handle all other I/O requirements of the chip.

Another cost of extra pins is increased power supply noise from simultaneously driving large
numbers of outputs.  In the case of the CPU chip, however, at most 32 outputs are driven at a
time. (The CPU does not perform double-word stores.)  When the CPU executes a store instruc-
tion, it places the data to be stored on the proper place on the 64-bit external data bus, so no
external multiplexors are required in the path of the data.

Combined with the external 1-cycle cache, the 64-bit refill path reduces the time to refill a
16-byte line to 2 cycles.  To get a better understanding of the implications of a two-cycle miss,
consider the case where the CPU executes straight-line code with each instruction executed once
and only once.  Then the CPU will incur a 2-cycle miss on every line of code executed. The
resulting performance of the CPU will only be degraded by 50% over the case where the CPU
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hits on every access to the instruction cache.  For realistic code sequences that do not miss on
every line, the cost is much lower.  Table 1 gives the miss rate of six programs, and the time
required to execute them with 32-bit refill and with 64-bit refill of the 16-byte line.  The first
three programs are large applications that are in use daily at our lab.  The second three are
popular benchmark programs.  For the real programs, the ability to fetch instructions at a rate of
two per cycle reduces the CPI (cycles per instruction) burden of the on-chip instruction cache
from 0.168 CPI to 0.084 CPI. A reduction of this magnitude would be insignificant for a
complex-instruction-set machine that took 10 cycles to execute an instruction on the average.
However, on a machine that executes an instruction every 1.25 cycles on the average, a 0.084
CPI improvement is fairly important.  Since the maximum issue rate of the machine is 1 instruc-
tion per cycle, an improvement of 0.084 CPI is a reduction of the stall cycles by 30%.  Unlike
the real programs, the three benchmark programs spend almost all of their time in small loops.
This gives them miss rates that are two orders of magnitude better than the real programs.

Refill CPI burden
benchmark miss rate  64-bit 32-bit
ccom 5.4% .108 .216
PCBroute 5.1% .103 .206
TimingVerify 2.1% .042 .083
real programs 4.2% .084 .168

Linpack 0.03% .0006 .0012
Livermore 0.05% .0009 .0019
Stanford 0.01% .0002 .0003
benchmark avg. 0.03% .0006 .0011

Table 1: Performance improvement with 64-bit refill

One other possibility for reducing the CPI burden of instruction cache misses is a prefetch
mechanism. For example, a machine that refilled cache misses over a 32-bit data bus might
continue prefetching beyond the missed instruction until another miss occurred or the end of a
very long cache line was reached.  However, if the prefetcher only fetches 32 bits per cycle, the
instruction fetch stage can easily becomed starved for instructions. This is because 30% of the
instructions typically executed are loads or stores, and stores use the bus for two cycles (i.e.,
probe then write). Moreover, coprocessor ALU instructions (of which floating-point coprocessor
arithmetic is the most important member) also use the address bus for one cycle when they are
transferred between the CPU and the FPU.  Thus, it is not uncommon for 50% of the bus cycles
to be already occupied by instruction execution.  Therefore even if the MultiTitan had a prefetch
mechanism, a 64-bit bus would be necessary to allow the prefetcher to keep up with the instruc-
tion fetch stage, at least on the average.

2.4. Where did the Instruction Decode Stage Go?
In Section 2.2 a direct-mapped cache organization was chosen because it provided the data (at

least provisionally, subject to the tag comparison registering a hit) faster than any other method.
In the MultiTitan CPU many useful operations are overlapped with the instruction cache tag
comparison. In fact, the entire contents of the instruction decode and register operand fetch
stages of some machines are performed in parallel with the instruction cache tag comparison in
the MultiTitan.  This is possible because of the simplicity of the MultiTitan instruction set and
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the simplicity of the CPU organization.  All control signals can be generated by the instruction
decode using at most two levels of four-input logic and an inverter.  A total of 74 gates are
required in all of the instruction decode logic.

The MultiTitan instruction set consists of two instruction formats (see Figure 4).  Registers to
be fetched in the instruction fetch stage appear in the same place in both formats, so decoding of
the format is not required before the access of the register file begins.  For example, the register
file always fetches the registers specified by the bits in the ra and rb positions, even if the in-
struction is in the immediate format.  Similarly rr is always accessed in the WB pipestage,
whether written for ALU operations and loads or read for stores.  The encoding of the instruction
fields was chosen to simplify decoding as much as possible.  Although the opcode is four bits,
many control functions can be determined by examining only a subset of the opcode bits.  For
example, all instructions in the immediate format have the most significant bit of their opcode
equal to 1, while those in the register format have 0 as their most significant bit.  All control
information is decoded in the instruction fetch stage.  Control bits that are used in later
pipestages are delayed by shift registers until they are needed.

Register format:

|< 4 >|<  6  >|<  6  >|<  6  >|< 10 >|
+------+-------+-------+-------+-------------+
|opcode| rr | ra | rb |miscellaneous|
+------+-------+-------+-------+-------------+

Immediate format:

|< 4 >|<  6  >|<  6  >|< 16 >|
+------+-------+-------+---------------------+
|opcode| rr | ra | displacement |
+------+-------+-------+---------------------+

Figure 4: MultiTitan instruction formats

Table 2 shows the branch frequency for a number of programs.  Since there is no instruction
decode pipestage, one cycle is saved on every taken branch, or about 7% of the instructions.
Assuming there is only one branch delay slot in the architecture, this improves the performance
of the machine by approximately 7%.  The improvements as a result of second-order factors,
such as simpler resulting control logic or fewer PC queue entries are harder to quantify, but can
be as significant.  Although some machines have more than one branch delay slot, the second
slot is not usually usefully filled without the use of branch "squashing" techniques [9], which add
to the complexity of the machine.

2.5. A Machine with Interlocked Pipeline Stages
In the Stanford MIPS project [4], it was decided to implement all interlocks in software by

inserting NOPs in the code.  Interlocks were implemented in software because hardware inter-
locks were thought to adversely affect machine performance due to added control complexity.
As an experiment in the MultiTitan, all interlocks were put in hardware.
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percent of instr. executed | percent
uncond- cond- total |  cond.

benchmark itional itional taken |  taken
ccom 3.2 9.5 8.9 | 60%
PCBroute 3.7 9.7 8.2 | 46%
TimingVerify 3.5 7.7 7.3 | 50%
Linpack 0.1 2.3 1.7 | 69%
Livermore 0.0 4.7 4.4 | 94%
Stanford 2.6 13.1 12.9 | 79%
average 2.2 7.8 7.2 | 66%

Table 2: Frequency of branches

The four interlocks present in the CPU pipeline and detected by the MultiTitan are described
below. In the following discussions, store class instruction will be used generically to refer to
CPU->coprocessor transfer, coprocessor store, and CPU store, which all use an external bus in
the WB stage. Load class instruction will be used to refer to CPU load, coprocessor load,
coprocessor->CPU transfer, and coprocessor ALU instructions, which all use an external bus in
the MEM pipestage.  The FPU is responsible for stalling the machine if the result of a floating-
point computation is requested before it is ready.

Load Interlock
If a CPU register is written by a load instruction, and used as a source in the next instruc-
tion, one cycle is lost.  There is no delay required between a coprocessor load and the use
of the load data by a coprocessor.

Store Interlock
If the instruction following a store class instruction is a load class or store class instruc-
tion, one cycle is lost.

Coprocessor->CPU Transfer Interlock
If a Coprocessor->CPU transfer instruction follows a coprocessor load or store, one cycle
is lost.

CPU->Coprocessor Transfer Interlock
If a Coprocessor->CPU transfer instruction attempts to issue two cycles after a
CPU->Coprocessor transfer, one cycle is lost.  Note that if a CPU->Coprocessor transfer
is followed immediately by a Coprocessor->CPU transfer, a store interlock will occur on
the first attempted issue of the Coprocessor->CPU transfer, and then the
CPU->Coprocessor transfer interlock will occur, increasing the spacing between the two
transfers to three.

Table 3 gives the frequency of occurrence of these interlocks in several programs.  Our three
production programs are quite similar in their behavior, perhaps because they primarily use
linked data structures.  The numeric benchmarks in general make heavy use of array structures.
The behavior of Linpack and Livermore are quite similar except for store and transfer interlocks.
The inner loop of this version of Linpack has two integer multiplies used for array addressing
calculations. Each multiply requires two transfers to the coprocessor and one to return the result
of the multiply.  These transfers are a bottleneck and cause transfer interlocks between them-
selves. The Stanford benchmark suite contains a wide range of programs, and so the frequency
of interlocks in it is between that of the numeric benchmarks and our production programs.
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frequency of interlocks as a per-
cent of all instructions executed

benchmark load store & transfer total
ccom 10.4 6.7 17.1
PCBroute 11.6 8.8 20.4
TimingVerify 12.7 8.6 21.3
Linpack 0.2 10.7 10.9
Livermore 0.6 1.0 1.6
Stanford 8.2 4.0 12.2
average 7.3 6.6 13.9

Table 3: Frequency of MultiTitan CPU interlocks

In the MultiTitan all interlocks are checked concurrently with the cache tag comparison.
Since the instruction formats are so simple, the logic to detect interlocks is also very simple and
fast. Like the instruction decode logic, at most two levels of logic and an inverter are required
for interlock detection, with the exception of load interlocks which also require a pair of 6-bit
register specifier comparators.  Besides the comparators, there are only 22 gates and 5 latches
required for detecting all interlocks in the CPU. This is about 18% of the total gate count of the
control logic, which itself uses only 1.0% of the chip’s transistors.

Based on the results from the MultiTitan, full hardware interlocks in a simple and regular
machine provide a 14% improvement in code density for low cost.  In particular, since interlock
detection was performed in parallel with instruction decode, register fetch, cache parity check-
ing, and cache tag comparison, interlock detection did not increase the cycle time of the
machine. As a second-order effect, since the MultiTitan loses 8.4% of its cycles to instruction
buffer refills, a code density improvement of 14% should result in approximately 1.2% fewer
instruction cache miss refill cycles.

2.6. IF Pipestage Summary
During the design of the IF pipestage, we tried to follow our design principle as closely as

possible. The timing of the resulting pipestage is summarized in Figure 5.  It is hard to imagine
an IF pipestage with an organization that results in lower latency.

3. EX Pipestage Tradeoffs
Several tradeoffs were made during the design of the MultiTitan regarding the execute pipes-

tage. The two most important tradeoffs were the placement of EX operations in the pipeline, and
the support provided for integer multiplication and division.

3.1. Where should the EX pipestage be?
To support memory refenences, after the instruction fetch pipestage we need a pipestage for

address calculation and after that another to access the cache for loads or stores.  Given this
structure, the next decision to be made is where to execute ALU operations.  Two reasonable
choices exist.

11
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Figure 5: IF pipestage timing summary

The first option is that ALU operations could be performed in the same stage as addressing
calculations (see Figure 6).  If ALU operations are performed immediately after IF, the results of
load instructions will not be available in time for an ALU operation that immediately follows the
load. This results in a one cycle interlock in cases where another instruction can not be found to
fill the load delay slot.  This delay slot is not present for stores, since stores do not have a "result"
accessible by ALU operations in a register-to-register machine.  Similarly there is not an inter-
lock for coprocessor loads and stores (e.g., floating-point loads and stores).  This is because in
the MultiTitan coprocessor ALU instructions are transferred to the coprocessor in the MEM
pipestage over the address bus, and coprocessor operations begin execution in the CPU’s WB
pipestage. Coprocessor loads returning data at the end of the MEM pipestage then complete in
time to begin a coprocessor ALU instruction in the WB pipestage.  Thus if ALU operations are
executed at the same time as address calculations, a 1 cycle interlock would occur between CPU
load instructions and ALU operations that use the result of the load, but not for any other com-
binations of operations.

Load: IF Ad/EX MEM -+ WB
|

IF Ad/EX | MEM WB
|

ALU: IF +>Ad/EX MEM WB

Figure 6: ALU operations in the address pipestage

As a second option ALU operations could be performed at the same time as memory
references (see Figure 7).  This has the advantage that there is no load delay cycle after CPU
loads. However, the extra latency of addition and cache access (i.e., of memory reference
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instructions) versus that of an addition alone (i.e., for ALU instructions) appears in another
place. If ALU operations are performed at the same time as cache accesses, then ALU opera-
tions that compute values used in a later address calculation cannot execute as the instruction
before the instruction with the address calculation without a one cycle interlock.  Note that un-
like the first option, this restriction applies to all memory references, whether loads or stores, and
whether for the CPU or coprocessor.

ALU: IF Addr MEM/EX+ WB
|

IF Addr | MEM/EX  WB
|

Load: IF +>Addr MEM/EX WB

Figure 7: ALU operations in the MEM pipestage

These two pipeline organizations are quite close in performance.  Although the second option
applies to all memory references, many address calculations are based on relatively constant
values (e.g., the stack pointer is fixed for the execution of a procedure).  For base addresses that
have not been recently calculated this interlock does not occur.  The first option, however, causes
an interlock in a higher percentage of the cases where it applies.  This is because when a load is
issued the data is usually required for another operation within a few cycles at most.  To quantify
the performance implications of both options, we ran a series of simulations of machines based
on the two pipeline organizations (see Table 4).

frequency of interlocks
benchmark load address
ccom 11.6 13.1
PCBroute 10.4 7.4
TimingVerify 12.7 9.9
Linpack 0.19 0.34
Livermore 0.58 1.01
Stanford 8.2 7.9
average 7.3 6.6

Table 4: Load interlocks vs. address interlocks

Based on this table, it appears either executing ALU operations concurrent with addressing
calculations or with memory references results in performance within 1% of each other.  The
next tradeoff to quantify are their relative implementation costs.

The big advantage of performing ALU operations at the same time as addressing calculations
is that it allows the use of a single adder/subtractor for both.  This is because in a load/store
architecture ALU operations and addressing calculations are mutually exclusive.  Besides per-
forming address calculations and ALU operations, branch addresses can also be calculated in the
same adder as well.  This means that the machine only requires one adder/subtractor (and an
incrementer for the program counter). Besides cutting down on the number of transistors and
area required, the use of a single adder reduces the number of operand busses, bypass mul-
tiplexors, and control required in comparison to a machine with multiple adders.  By reducing
the area and complexity of the machine, we reduce the latency of communication across the
machine for many different signals, both data and control.  This means that the single adder
machine should have a faster cycle time than a machine with multiple adders.

13
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3.2. Where should integer multiplication and division be performed?
There are many different ways to provide support for integer multiplication and division.

Some of the options we considered are listed in Figure 8.  The most major choice is between
performing the operations in the CPU itself versus in the FPU.

Integer multiplication: cycles
In the CPU, 2 bits per cycle: 16
In the CPU, 4 bits per cycle: 8
In the CPU, 8 bits per cycle + 1 cycle: 5

In the FPU, transfer interlocks: 9
In the FPU, no transfer interlocks: 6
In the FPU, one constant operand,

and no interlocks: 5

Integer division: cycles
In the CPU, 1 bit per cycle: 32
In the CPU, 2 bits per cycle: 16

In the FPU, via reciprocal approx: 21

Figure 8: Integer multiplication & division tradeoffs

Performing integer operations in the FPU has the advantage that integer operations can use
high-performance structures (e.g., a full multiplier array) already in place for the support of high-
performance floating-point operations. These structures will have much better performance than
any structure we could afford to place on the CPU.  Although the FPU structures have lower
latency, if integer operations are to be performed in another chip the time required to transfer
operands and results between the chips must be added to the latency of the basic operations.  If
we perform these operations in the FPU with already-existing transfer and coprocessor ALU in-
structions, they add no hardware to the CPU.  In contrast, if integer operations are performed in
the CPU, the CPU datapath must be augmented with special hardware to support multiplication
and division.  Besides making the data path larger and slowing other operations down, this in-
creases the design time of the CPU.

For these reasons in the MultiTitan we decided to support integer multiplication only in the
coprocessor. The coprocessor provides an integer multiplication operation that returns the 64-bit
product of two 32-bit integers in 3 cycles.  Table 8 shows that the resulting integer multiplication
times are equivalent to those available when performed in the CPU with a significant amount of
hardware support (i.e., 4-8 bits per cycle).  In many code situations the transfers to and from the
coprocessor can be scheduled in order to avoid interlocks, resulting in an integer multiplication
time of 6 cycles.

There is even less support for integer division in the MultiTitan than for integer multiplication.
There is no integer division operation in the coprocessor, and no floating-point division opera-
tion either.  Instead floating-point division is supported by a reciprocal approximation instruction
followed by a series of Newton-step iteration instructions and floating-point multiplies.  Integer
division is performed by transferring the operands over to the coprocessor, converting them to
floating-point values, performing a floating-point division via reciprocal approximation, convert-

14



ARCHITECTURAL AND ORGANIZATIONAL TRADEOFFS IN THE DESIGN OF THE MULTITITAN CPU

ing the floating-point result back to an integer, and then transferring the result back to the CPU.
Even with this long series of operations, performance between that of 1 bit per cycle and 2 bit
per cycle CPU hardware is provided by the coprocessor.  This performance is provided at no
additional hardware cost over that required for floating-point operations.

4. MEM Pipestage Tradeoffs
In the MEM pipestage the MultiTitan performs a cache access for memory reference instruc-

tions. Two interesting tradeoffs made in the MEM pipestage during the design of the MultiTitan
were the size of the external data bus and the size and organization of the external cache.

4.1. 64-bit external data busses
A 64-bit external data bus can dramatically improve the performance of double-precision

floating-point applications at relatively low cost. (The implementation cost of 64-bit data busses
was discussed in Section 2.3.)  Table 5 shows the performance improvement in four programs
derived simply from the ability to perform 64-bit coprocessor loads and stores.  The four
programs were chosen to cover a wide range of floating-point intensive applications.  For each
benchmark the percentage improvement obtained was estimated by increasing the execution time
of the benchmarks on a MultiTitan with a 64-bit data bus by an additional cycle for each
coprocessor load and by two additional cycles for each coprocessor store.  This assumes that the
two coprocessor stores required to store a 64-bit quantity will have a store interlock between
them.

benchmark %loads %stores %improved
vector Linpack 38.1 20.3 61.9
Livermore loops:

unrolled scalar 23.2 19.6 46.1
rolled scalar 12.4 8.4 24.7

Whetstones 9.4 6.0 14.3
average 20.8 13.6 36.8

Table 5: Improvement from 64-bit loads and stores

The MultiTitan FPU provides a simple vector capability [7]. Programs that use the vector
hardware have increased needs for load/store bandwidth because computations can be effectively
overlapped with loads and stores. The availability of vector operations reduces the inner loop of
Linpack to not much else besides loads and stores.  For the vector Linpack benchmark, the per-
formance obtainable with 64-bit data busses is over 60% greater than that given 32-bit data
busses. Scalar benchmarks vary in their load/store bandwidth requirements depending on
whether their loops are unrolled by the compiler.  For example, an unrolled version of the Liver-
more loops improves 46% when moving from 32-bit to 64-bit data busses, but the non-unrolled
benchmark only improves by about 25%.  Finally, some floating-point benchmarks such as
Whetstones have a smaller percentage of floating-point loads and stores and benefit correspond-
ingly less.
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4.2. Choosing the external cache size and organization
Just as was the case for the on-chip instruction cache in Section 2.2, the size and organization

of the external cache was dictated primarily by the RAM sizes available and by the system con-
text.

There are two ways to structure a cache with regard to writes: write-through and write-back.
A write-through cache sends all writes on to the memory system.  A write-back cache only
writes to main memory when a dirty line is replaced or flushed.  The external cache of the Mul-
tiTitan is a write-back cache. A write-back cache was chosen over a write-through cache for
several reasons:

• A write-back cache is a simpler design than a write-through cache of similar perfor-
mance. A write-through cache requires a write buffer and its associated control
logic if good performance is to be maintained, while a write-back cache does not
need a write buffer.

• A write-back cache generates less bus traffic than a write-through cache, which was
important since the MultiTitan was targeted to be an 8-processor multiprocessor.

• We planned to use the Titan memory system.  A write-back cache was used in the
Titan, so the Titan memory system was tailored for operation with a write-back
cache. Also, software to manage the write-back cache (e.g., flush I/O buffers to
main memory) was already in place.

Since the external cache is a write-back cache, the cache must be probed (i.e., checked for a hit)
before it can be written.  This is because the cache contains a unique copy of some data, so we
must probe it before we write the cache so that no unique data is lost.  This read (i.e., probe) of
the cache takes place in the MEM pipestage for stores, just as load instructions read the cache in
the MEM pipestage.  If the probe of a store is successful, then the write of the store is performed
in the WB pipestage.

The external cache of the MultiTitan is a physically addressed cache. Since it appeared that a
physically addressed cache was not any harder to implement in a system than a virtually ad-
dressed cache, we chose a physically addressed cache to make the software easier.  In order to
obtain the fastest possible cache access, the address mapping was performed in parallel with the
cache access by a TLB.  To allow pages to be placed in any page frame in main memory, we
restricted ourselves to a cache organization that only indexed the cache with unmapped address
bits (i.e., page offset bits).  This allows the TLB map to proceed in parallel with the cache access
(see Figure 9), but requires the page size to be as large as the cache.

The TLB is implemented on the cache controller chip (CCU). The TLB has 512 entries, or-
ganized four-way-set associatively.  With 64K byte pages this allows 32M bytes to be mapped at
one time, which is much larger than most machines.  For example, the WRL Titan TLB can map
4M bytes, and the R2000 [8, 11] TLB can map 256K bytes at one time.  Unlike the direct-
mapped nature of the caches, the TLB was made associative for several reasons.  First, the TLB
miss refill is performed in software.  With our current software on the WRL Titan, this takes
over 2,000 cycles, which is more than two orders of magnitude larger than a cache miss.  Thus,
while a program that uses two arrays of data that map to the same direct-mapped cache location
might miss on every data reference and run up to 14 times slower, similar behavior with the TLB
could result in programs running 2,000 times slower.  A 4-way set associative organization al-
lows the executing code fragment and three operands (e.g., A[i] := B[i] + C[i]) to overlap with-
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Figure 9: MEM pipestage timing summary

out thrashing in the TLB. Second, since the TLB and its comparators are on the same chip, and
the custom TLB RAM access is faster than that of the external RAM parts, a four-way set-
associative TLB can be built that operates in time for the comparison with the cache tag.

The MultiTitan external cache is a direct-mapped cache.  Just as with the on-chip instruction
cache, a direct-mapped organization was chosen because it has the shortest latency.  In the exter-
nal cache, the RAM access is performed in the MEM pipestage, but the tag comparison is not
complete until well into to WB pipestage.  By this time the data returned from a load instruction
will have been written into the register file and possibly bypassed into an ALU operation which
is almost complete. This allows the cycle time of the machine to be much closer to that of the
fundamental RAM access time than if an associative organization was employed.  Reduced cycle
time is a very significant factor since it results in increased performance for all instructions, not
just loads and stores.

In order for the cache latency to be as low as possible, we decided that only one row of 4-bit-
wide RAM chips would be used for the cache.  This minimized the capacitance of the address
bus and improved the performance of the data bus relative to implementations with multiple
chips per bit.  The capacitance of the address bus can also account for a significant fraction of the
cache access latency.  By using 4-bit-wide chips, the loading on the address lines was cut to 1/4
that present if one-bit-wide memory chips were used.  Since the largest fast static RAMs avail-
able when the MultiTitan was being designed were 16Kx4 20ns CMOS parts, this resulted in a
128K byte cache.  (64 bits of data bus / 4 bits per chip = 16 chips for data, 16 chips x 8K bytes
per chip = 128K bytes).

If the external cache were a mixed instruction and data cache, the resulting system would have
128K byte pages since the TLB map was in parallel with the cache indexing.  This was judged to
be a little too large, so the external cache was partitioned into a 64K byte instruction and a 64K
byte data section.  This partition required no extra chips: the high order address bit of the chips
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was merely connected to a pin on the CPU which specified whether an access was an on-chip
instruction cache miss access or a data reference.

Table 6 gives the results of simulations of a split cache consisting of two 64K byte segments,
versus a mixed 128K byte cache.  The conventional wisdom on mixed versus split resources is
that a single shared resource of a given size is always better than two private resources each of
1/2 size.  This is the observed behavior for most programs, but the PC board router had better
performance with a split cache than a mixed cache.  This is because the external cache is a direct
mapped cache, and providing separate instruction and data sections provides a measure of added
associativity in the cache.  In other words, with a split cache data references and instruction
references that map onto each other can coexist in the cache, whereas they can thrash between
each other in a mixed cache.  However, for most programs, the mixed cache performed better
than the split cache.  This was especially true for the numeric benchmarks.  These have large
data sets and spend most of their time in small loops.  For example, a 100x100 Linpack has an
80K byte array. This fits in a 128K byte mixed cache but does not fit in the 64K byte data side
of a split cache, so its split performance is much worse than its mixed performance.  Since the
numeric programs spend much of their time in small loops, the external instruction cache is
rarely used by the numeric benchmarks.

Miss cost for all configurations is 14 cycles
split: two 64KB mixed split/

benchmark instr data total 128KB mixed
ccom .208 .045 .253 .229 1.10
PCBroute .039 .114 .153 .209 0.73
TimingVerify .013 .020 .033 .020 1.65
Linpack .0001 .192 .192 .031 6.19
Livermore .0004 .095 .095 .020 4.75
Stanford .001 .001 .002 .002 1.00
average .044 .078 .121 .085 1.42

Table 6: Split vs. mixed external cache CPI burden

Although the mixed cache clearly performs better than the split cache, in the MultiTitan we
implemented the split cache.  This is because the overall difference between the two methods
averaged over the six benchmarks above is only .036 CPI.  At our design target of 25 Mhz, this
means that the split cache machine is less than 1 MIP slower (i.e., 3.6%) than the machine with a
mixed cache.  It was felt that the reduction in page sizes would result in better net overall system
performance even though the cache performance was somewhat lower.

5. WB Pipestage Tradeoffs
All MultiTitan instructions commit in the WB pipestage. For example, even though ALU

operations are computed two pipestages before WB, they are not written into the register file
until WB.  By having all instructions commit in WB, the pipeline control of the machine be-
comes very regular and is simplified. Another implication of the uniform commit of instructions
in WB is that instructions that enter the WB pipestage will write their result registers, even if the
result is incorrect.  For example, load instructions write the register file in the WB pipestage
before it is known whether or not they will have a page fault.  This means that in order to recover
from page faults, the base register for a load cannot be the same as its target.  If it is and a page
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fault occurs, the ability to calculate the address of the page fault will be lost. Floating-point
operations also commit in the WB pipestage, even though they only begin execution the WB
pipestage. Thus once a floating-point operation begins, it is guaranteed to complete no matter
what types of interrupts may occur in the machine.  Because the latency of all floating-point
operations is three cycles, floating-point operations that abort will abort precisely relative to all
other floating-point operations.  Details of other floating-point tradeoffs are beyond the scope of
this paper.

6. Conclusions
In this paper we presented some of the tradeoffs made during the design of the MultiTitan

CPU. These tradeoffs were made to achieve the highest sustained performance with the lowest
peak performance.  In particular, many of the tradeoffs involved minimizing the latency of
operations while simplifying the organization of the machine.  Moreover, these tradeoffs were
primarily driven by the available technology and system context.

The first IF pipestage tradeoff considered was the basic system partitioning of the design with
regards to the CPU chip.  By putting the instruction cache on-chip instead of the FPU or the
TLB, we were able to maximize system performance while simplifying the system design.
Second, a direct-mapped on-chip instruction cache organization was chosen because it had the
lowest average latency when hit and miss latencies are combined with the probability of a miss.
Third, by using a 64-bit bit data bus the refill latency was reduced by two cycles, improving the
performance of the machine on our production programs by 8% at low cost.  Fourth, by placing
interlock detection, instruction decode, register fetch, and cache parity checking in parallel with
the instruction cache tag comparison, the pipestage normally used for instruction decode in most
machines could be eliminated.  By eliminating this pipestage, the latency of branches is reduced,
and hence the machine performance directly improves by 7% in machines with a single branch
delay slot.  The improvements as a result of second-order factors, such as simpler resulting con-
trol logic or fewer PC queue entries, are harder to quantify, but can be as significant.

The first tradeoff about the EX pipestage was where it should be in the machine.  Based on
simulations, placing it in the same pipestage as memory reference address calculations generates
about the same number of interlock cycles as placing it concurrent with cache access.  However,
by combining the EX pipestage with the address calculation pipestage, the machine hardware
was reduced by an adder and the bus, bypass, and control structure of the machine was
simplified. Finally, in the MultiTitan we relied on high-performance hardware in the FPU chip
for support of integer multiplication and division.  This resulted in similar or better performance
than methods with augmented CPU hardware but at negligible additional hardware cost.

Two MEM pipestage tradeoffs were discussed.  First, the use of 64-bit busses were shown to
dramatically improve double-precision floating-point performance by up to 60%.  Second, the
external cache was designed as a 128K byte direct-mapped cache, partitioned with 64K bytes for
instructions and 64K bytes for data.  This decision was driven primarily by the available static
RAM technology and for the system desire to avoid 128K byte pages.

The most important feature of the WB pipestage is that it is when all instructions commit.
This has implications for CPU load instructions (i.e., rr <> ra) and for floating-point operations.
This regular commit framework helped permit a small, fast, and regular pipeline control structure
to be designed.
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