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Abstract

We investigate the relative performance impact of non-blocking loads,
stream buffers, and speculative execution both used individually and in con-
junction with each other.  We have simulated the SPEC92 benchmarks on a
statically scheduled quad-issue processor model, running code from the Mul-
tiflow compiler.  Non-blocking loads and stream buffers both provide a sig-
nificant performance advantage, and their combination performs sig-
nificantly better than either alone.  For example, with a 64-byte, 2-way set
associative cache with 32 cycle fetch latency, non-blocking loads reduce the
run-time by 21% while stream-buffers reduce it by 26%, and the combined
use of the two yields a 47% reduction.  The addition of speculative execution
further improves the performance of the systems that we have simulated,
with or without non-blocking loads and stream buffers, by an additional
20% to 40%.  We expect that the use of all three of these techniques will be
important in future generations of microprocessors.
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1 Introduction

A continuing trend in the design of computer systems is the widening gap between microproces-
sor and memory speeds. This speed discrepancy can have a significant impact on the performance
of a system since it increases the time cost of servicing data cache misses. The performance impact
can be lessened through the use of techniques that reduce the amount of time the processor is
stalled for cache misses. In this paper, we consider non-blocking loads, stream buffers, and spec-
ulative loads. We investigate the relative merits of these three techniques when used individually
and in conjunction with each other, in the context of an advanced quad-issue statically scheduled
microprocessor.

Non-blocking loads reduce the time stalled due to cache misses by allowing the processor to
overlap the servicing of a miss with the execution of other instructions. The amount of overlap
depends on the number of instructions that are available for execution that do not use the register
being targeted by the load instruction. When an instruction is encountered that depends on the
value being loaded and the load is still in-progress, the processor must stall until the load completes;
a true-data dependency is said to exist between these two instructions. With a lockup cache, a
stall will also occur if during the processing of a cache miss, other load or store instructions are
executed. Such stalls can be avoided by using a lockup-free cache. A lockup-free cache allows
multiple concurrent cache hits, misses, or both. By overlapping the processing of cache misses,
the average time to service a miss decreases because the processor will be stalled for less time and
more loads will complete in this time.

Prefetching also can reduce the time stalled due to cache misses. The goal of prefetching is
to bring data closer to the processor before the processor requires it, rather than, as is the case
with non-blocking loads, waiting for a cache miss to occur before initiating a fetch for missing
data. The prefetch is initiated by some triggering event. With software prefetching, the trigger is
prefetch instructions that are inserted into the code by a sophisticated compiler or user [1, 2]. With
hardware prefetching, hardware is used to determine when a prefetch might be useful. Software
prefetching has been most successful on numeric codes, while hardware prefetching can be used
with all types of applications (including the operating system).

Examples of hardware prefetch techniques include Chen and Baer’s lookahead PC reference
prediction method [3] and stream buffers [4, 5]. We study stream buffers as we believe them to be
simpler and less-invasive than the lookahead scheme. The lookahead scheme is complicated by
the need for additional ports into the data-cache tags when used in a superscalar processor. In such
a processor, the cache-tag ports are one of the most critical resources, and increasing their number
may result in a physically larger cache and/or a slower cache, or may be infeasible. Stream buffers,
on the other hand, sit on the memory side of the data cache and while they must be probed on
every data reference, they do not need access to the cache tags. Stream buffers trigger a prefetch
based on previous cache misses. Also, they avoid polluting the cache by placing prefetched data
in special buffers.

Unlike non-blocking loads and stream buffers, speculative execution is a software-based tech-
nique. It involves moving code beyond branches (see [6] for more details). Speculative execution
of load instructions is not the same as software prefetching using non-blocking loads; the former
involves the movement of existing load instructions while the latter involves the insertion of ad-
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L2 subi r1, 1, r1 ; r1 r1-1
bnz r1, L1 ; branch if r1 is non zero (1)
ld r6, 700(sp) ; r6 [sp+700] (2)
ld r8, 732(sp) ; r8 [sp+732] (3)
addi sp, 8, sp ; sp sp+8 (4)
mult r8, r8, r4 ; r8 r8 � r4 (5)
br L2 ; branch always

Figure 1: Code segment for a RISC single-issue processor.

ditional load instructions. Speculative execution can increase the performance of a program in
a number of ways. In superscalar designs, the instruction-level parallelism can be increased if
there is a sufficient amount of hardware parallelism available. This increase can also provide more
flexibility when scheduling load instructions for a machine with extensive support for non-blocking
loads. The result of this flexibility is a better tolerance of the cache-miss latency and a reduction in
the average per-miss penalty due to allowing more misses to be simultaneously outstanding.

The three techniques we consider can be used alone or together. To illustrate their use, consider
the code segment in Figure 1 which, for simplicity, corresponds to a single-issue machine. Assume
that both loads miss in the cache and that the miss penalty is 10 cycles. With none of the three
techniques in use, the processor has to stall twice and each time for the full length of the miss
penalty. If, however, non-blocking loads are used with a lockup-free cache, the processor will
have to stall only once, that is, when it tries to execute instruction 5 (due to a true-data dependency
between instructions 5 and 3). If instead stream buffers are used, there will still be two stalls but
the cache miss caused by the first load will initiate the prefetch for the data required by the next
load (see Section 2.2 for details on how a stream buffer works). Hence, the time to service the
second load is reduced. Finally, if both non-blocking loads and stream buffers are used together,
there will be only one stall and the stall time will be smaller than it was with only non-blocking
loads. Stream buffers used alone or together with non-blocking loads also reduce the stall time for
subsequent iterations of the loop because the prefetch for the required data will have been initiated
in a previous iteration.

Speculative execution is useful for increasing the instruction-level parallelism and for improving
the effectiveness of non-blocking loads. The first of these effects cannot be applied to this example
because we are assuming a single-issue machine. To show the second one, assume we are using
non-blocking loads. With speculative execution, the compiler can move the two load instructions
above the branch and thus execute them earlier. The end result is that the processor will stall for
less time when it executes instruction 5. The use of stream buffers reduces the stall time further
because a prefetch of the data for instruction 3 will be issued before this load is executed.

Previous Work

Other researchers have investigated non-blocking loads, prefetching, or speculative loads, but
not their combination. Rogers and Li [7] investigated software support for speculative loads with
non-blocking caches using many of the Livermore loop kernels; they compared the results to
blocking caches. Sohi and Franklin, on the other hand, studied non-blocking loads [8], while
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Callahan and Mowry have studied software prefetching for scientific codes [1, 2]. Chen and Baer
[3] investigated a combination of non-blocking loads and prefetching, but used a lookahead-PC
reference prediction method with a production compiler, instrumented with Pixie, and rescheduled
only at a basic block level. Comparing the effectiveness of the different techniques used in these
studies is difficult because of different assumptions used by each group of researchers, and the fact
that no group looked at all three techniques.

In this paper we look at the relative memory-system performance improvement available
from non-blocking loads, hardware prefetching, and speculative execution used individually and
in combination. We do this investigation in the context of an advanced quad-issue superscalar
machine, and a pipelined memory system made with recent RAM techniques such as synchronous
DRAMs. An important part of this study was the advanced Multiflow Compiler technology [9],
which provided trace scheduling and support for speculative loads.

2 Simulation Methodology
We investigated the relative performance of non-blocking loads and stream buffers by examining

how their use would affect the performance of current state-of-the art microprocessor systems. This
investigation was carried out by simulating a number of machine configurations using a processor
model that resembles a number of commercial processors including the PowerPC 604 [10], the
DEC EV5 [11], the MIPS T5 [12] and the SUN Ultrasparc [13]. All configurations used the same
hardware for servicing instruction requests and executing instructions. As a result, the contribution
to the execution time of a benchmark from instructions was constant for all configurations. The
machine configurations differ in the hardware that is available for servicing the processor’s requests
for data. This fact allows us to better estimate the impact of stream buffers and non-blocking loads.

The processor model implements a RISC processor that can issue four instructions per cycle
and uses a conventional, statically scheduled, pipeline. Static scheduling is assumed since the
performance benefits of dynamic scheduling are not sufficiently clear in view of the impact the
more complex pipeline will have on the cycle time of the processor. For example, the statically
scheduled DEC Alpha 21064A achieves a clock frequency of 275MHz in a 0.5um technology,
while the dynamically scheduled PowerPC 604 achieves a clock frequency of 100MHz in a 0.5um
technology. (There are many other differences between these machines, but in general dynamically
scheduled machines announced to date have had significantly slower cycle times than statically
scheduled machines in the same technology generation.)

The processor we model supports non-blocking stores and can be configured to support non-
blocking loads. There are separate instruction and data caches with the instruction cache having
a fixed miss penalty. The data cache is always lockup-free irrespective of whether the processor
uses blocking or non-blocking loads1.

The model also can include one or more stream buffers and these are used to prefetch data. The
stream buffers may use either unit strides or dynamically calculated strides. Finally, data is fetched

1The only difference between these two modes of operation is that with blocking loads, no subsequent instruction
can execute until the load is resolved. This restriction allows us to use the same cache model for both modes.
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Figure 2: Overview of machine model.

from the next lower level in the memory hierarchy through a bandwidth limited interface. Figure 2
presents an overview of the above machine model. Some of the model details are described further
below.

2.1 Processor and Memory Models
Of the four instructions issued per cycle by the processor, each instruction word can contain at

most: four integer operations, one floating-point division operation, two floating-point operations,
two memory operations (i.e., two loads, two stores, or one of each), and one control flow operation
(i.e., branch, subroutine call or return). All integer functional units have single-cycle latencies
except for the multiply unit, which is fully pipelined and has a six-cycle latency. All floating point
units have three-cycle latencies and are also fully pipelined, with the exception of the floating-point
divider. The floating-point divider is not pipelined and has an eight-cycle latency for 32-bit divides,
and a 16-cycle latency for 64-bit divides. Finally, stores take one cycle to be resolved and there is
a single load-delay slot.

The instruction cache is 32K-byte, 2-way set associative with a 1-cycle cache-hit latency and a
16-cycle cache-miss latency. In addition to cache-miss induced stalls, branch instructions may also
introduce stalls if the branch-delay slot(s) cannot be filled by the compiler or if the branch direction
is mispredicted. In view of the high correct prediction rates reported by McFarling [14] and Yeh
and Patt [15], we assume that all branches are correctly predicted dynamically with the exception
of 5% of conditional branches. For conditional branches, the model associates a two cycle stall
with each mispredict. We implement this penalty during the simulation of a benchmark by adding
a single-cycle stall for every 10th conditional branch that is executed.

Stores are assumed to be implemented using write-around (i.e., no-write-allocate) and write-
through policies with a write buffer situated between the data cache and lower levels in the memory
hierarchy. Since our goal is to compare the effectiveness of stream buffers and non-blocking
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loads while keeping constant other contributions to the execution time, we assume that no memory
bandwidth is required to retire stores in the write buffer. This assumption prevents any stalls due to
a full write buffer and prevents stores from delaying the servicing of stream buffer or cache fetches.

The lockup-free data cache can resolve cache hits in a single cycle and employs an inverted
MSHR (Miss Status Holding Register) organization [16] to process cache misses. An inverted
MSHR organization can support as many in-flight cache misses as there are registers and other
destinations for data in the processor. Hence, there can be a cache miss outstanding to each of
the processor’s 32 integer and 32 floating-point registers. The register file has eight read ports
and sufficient write ports to prevent any write-port conflicts arising when registers are filled on the
resolution of a cache miss.

Requests for blocks of data are sent via the memory interface to the next level in the memory
hierarchy. The memory interface returns the requested block in a constant number of cycles, called
the fetch latency. The bandwidth of the interface is constrained by controlling the number of cycles
between the launching of fetch requests. A fetch spacing of one allows the memory interface
pipeline to be full whereas a spacing equal to the fetch latency allows at most one in-flight fetch.
Thus, the time required to resolve a cache miss is not deterministic but has a lower bound equal to
the fetch latency. When a block is returned to the cache, the cache line is written simultaneous with
the writing of the appropriate words into all registers with loads outstanding to this block (updating
all pending registers requires the multiple write ports mentioned above). This simultaneous writing
is represented in Figure 2 by the arrows that bypass the data cache. Writing a register or a cache
line is assumed to take one cycle.

2.2 Stream Buffers
Our stream buffer model is based on the model originally proposed by Jouppi [4] with the four

enhancements described below; Appendix A describes our stream buffer implementation in detail.
In the original model, stream buffers consist of a number of entries that are managed as a FIFO
queue. Each entry in the queue can store a block of data and the corresponding address. All entries
at the head of the stream-buffer queues are probed at the same time as the data cache probe is done.
If the data cache probe results in a hit, the stream buffers are not touched. However, if a data cache
miss occurs, and the desired block is in a head entry, the cache block is read out and it is written into
the cache. The stream buffer then issues a prefetch request to the next lower level in the memory
hierarchy to fill the empty entry with subsequent blocks.

When a miss occurs to both the cache and the stream buffers, a request for the block containing
the miss address is issued. Then, a stream buffer is allocated and told to begin fetching blocks
subsequent to the missing block. Because each block that is fetched has a block-address one greater
than the last, the stream buffers are said to use a unit stride. Once the request for the first block to
be prefetched is launched into the memory subsystem, the stream buffer can issue another prefetch
request if there remain empty entries in the queue.
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Enhancements to the Original Model

In this study we have made four enhancements to the original stream buffer model:

1. allocation filters

2. hardware support for dynamic strides

3. the enforcement of non-overlapping prefetch paths

4. direct access to the stream buffer entries.

These enhancements are described below.

First, in the original stream buffer proposal, a stream buffer is allocated whenever a data
reference misses in the cache and in the entries at the head of the stream buffer queues. This
allocation policy can result in prefetching down a subsequently unused stream should the data
reference be isolated. Prefetching down such a stream will generate excess traffic to the memory
system as well as potentially discarding useful data from a previously allocated stream buffer. To
prevent this situation from occurring, an allocation filter can be used. We implement the filter
proposed by Palacharla and Kessler [5]. This filter prevents a stream buffer from being allocated
until two misses occur for the same stream. On the second miss, a stream buffer is allocated and it
begins prefetching the block subsequent to the one corresponding to the second miss.

Second, instead of limiting prefetch strides to the unit stride of the original proposal, the stride
can be determined dynamically based on previous miss addresses. We implemented a scheme
based based on the minimum delta scheme proposed by Palacharla and Kessler [5]. With this
scheme, on a stream buffer miss, the allocation filter is applied to determine whether a unit-stride
should be used. If there is a filter miss, then the minimum signed difference between the miss
address and the last N miss addresses is determined; this minimum delta, which may be positive
or negative, is the stride. In our model, a stream buffer is allocated if the miss is the third miss in a
series to blocks that are separated by this stride. Our stream buffer model with the filter and stride
predictor is shown in Figure 3.

Third, when there are multiple stream buffers, we ensure that a given block of data resides in at
most one stream buffer. In other words, the stream buffers always prefetch down non-overlapping
paths. Non-overlapping paths prevent duplication and thus ensure that the maximum benefit is
obtained from the available stream buffers. To achieve non-overlapping paths, a comparator
must be associated with each stream buffer entry. While these comparators increase the design
complexity, in practical systems, they need to be included for enforcement of multiprocessor cache
consistency anyway.

Fourth, we have extended the original stream buffer proposal to include direct access to non-
head entries in the queues (this extension is not shown in the figure). This extension reduces the
time required to load the cache with data not in the entry at the head of the queue since there is no
need to first shift out the blocks closer to the head. We assume that it takes one cycle to extract a
block of data from a stream buffer.
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Figure 3: The stream buffer model: an example with 4 stream buffers each with 3 entries.

2.3 Simulation Framework
To perform the simulations for this study, we used an object-code translation and instrumenta-

tion system. This system emulates the execution of a benchmark as it would run on a target machine
by running the benchmark on an existing machine. As a result both the functional behavior and
the memory behavior of the application are simulated. The first step in performing a simulation is
to compile the benchmark using instruction scheduling rules pertaining to the architecture of the
processor to be modeled. We use a modified version of the Multiflow VLIW Compiler [9] for this
purpose2. Next, the resulting assembly language (i.e., object code) is translated into the assembly
language of the machine on which the simulations are run, namely, Alpha AXP workstations. In-
strumentation and modeling code is then inserted into the translated code. Finally, the augmented,
translated binary is linked with similarly compiled and instrumented run-time libraries and support
routines.

The instrumentation code is inserted to record the emulated run-time behavior of the bench-
mark. This code records various statistics including cache miss rates, the number of (simulated)
instructions executed, and the number of (simulated) clock cycles. The modeling code is inserted
to allow the factoring in of the time required to resolve memory and register accesses. This
modeling is accomplished by inserting before every emulated load and store instruction a call to a
procedure that models the memory. These calls pass to the procedure the address of the item being
loaded or stored and the procedure returns the amount of time required to process the access. For
example, for non-blocking loads, this time will be the time required to launch the load whereas
for a blocking-load it will be the time required to load the data into the cache if it is missing. A
mechanism in the simulator adjusts these addresses so that they do not reflect the presence of the
simulation infrastructure. Calls to a scoreboard procedure are also inserted before every emulated
instruction that uses the result of a load. This procedure factors in the time required to validate the
source registers of the instruction.

2The compiler was modified to produce RISC-like object code for a processor with 32-bit addresses, 32-bit integers
and 64-bit floating-point numbers. The compiler uses a common backend for both C and Fortran code.
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Processor Details
Abbrev. blocking stream

loads buffers

un none
sb yes unit stride
sb+fds filter & dynamic stride
nbl none
nbl+sb no unit stride
nbl+sb+fds filter & dynamic stride

(a) Processor Designs

Memory System Details
Abbrev. cache fetch

spacing latency

ideal assume 100% data cache hit rate
8DM 8 KB direct 1 8

mapped 8 32
64SA 64 KB 2-way 1 8

associative 8 32

(b) Memory Configurations

Table 1: System details with associated abbreviations.

3 Performance Trends
We investigated four processor designs: one with blocking loads and no stream buffers, known

as the unenhanced design (“un”), one with non-blocking loads (“nbl”), one with stream buffers
(“sb”), and one with both stream buffers and non-blocking loads (“nbl+sb”). For the designs
including stream buffers, we considered two types of stream buffers: those that used a unit stride
and those that also included an allocation filter and dynamic stride calculator (“+fds”). These
six processor design cases are listed in Table 1(a). For those designs including a stream buffer,
we assume eight stream buffers each with four entries. The allocation filters and dynamic stride
calculators use a table that stores the 16 last addresses that were found neither in the cache nor in
the stream buffers. Since we used 32B cache lines throughout our study, the total data storage of
the stream buffers was 1KB.

We studied the relative performance of each of the six processor designs under five memory
systems configurations. A memory system configuration comprises a cache and an interface to
the next lower level in the memory hierarchy. The organizations we considered are given in
Table 1(b). The fetch spacing and latency numbers chosen correspond to a pipelined memory
system. These systems are becoming more common with the use of new DRAM technologies such
as synchronous DRAMs and pipelined SRAMs. The fetch latency of 8 and spacing of 1 is meant
to be representative of microprocessors with two-level on chip caches. Having the backing store
for the primary cache on-chip allows a relatively low latency and a very high bandwidth. The fetch
latency of 32 and spacing of 8 is intended to be more representative of a system with a single-
level of on-chip caching and an optional cache off-chip. For processors with clock frequencies of
200MHz, these latencies and spacings correspond to latencies of 40ns and 160ns and bandwidths
of 6.4GB/sec and 800MB/sec. 6.4GB/sec should be achievable on-chip, while 800MB/sec could
be easily obtained to an off-chip interface using synchronous DRAMs.

The ideal configuration assumes all data cache references hit in the cache and hence the six
processor designs will all achieve the same performance. The other configurations are non-ideal
and thus cache misses occur. It is the number of such misses and the time that the processor is
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Bench- Instructions Ideal Ideal Non-ideal data memory system
mark (in millions) IPC CPI 8K DM 64K 2-way

total loads cbranch CPI MCPI% ld miss% CPI MCPI% ld miss%
alvinn 3208 942 460 1.85 1.12 1.37 22 10.5 1.72 53 6.4
compress 173 29 16 1.76 0.66 0.96 45 22.3 1.15 74 9.0
dnasa 6858 1644 422 2.16 0.76 1.70 124 49.1 2.21 190 18.9
doduc 1042 238 74 1.90 1.17 1.35 15 10.3 1.20 3 0.5
ear 9506 203 5 890 1.76 1.03 1.08 5 2.8 1.03 0 �1
eqntott 1774 220 189 1.92 0.59 0.64 5 5.5 0.73 14 3.5
espresso 2707 550 402 1.54 0.74 0.91 23 6.5 0.83 12 0.4
fpppp 4294 1131 83 2.45 0.54 1.98 267 11.9 1.74 222 0.1
hydro 5834 1355 328 1.84 0.92 1.28 36 19.1 1.90 107 13.1
mdljdp2 3228 381 313 1.61 1.18 1.34 14 16.7 1.27 8 2.6
mdljsp2 4953 656 88 2.23 0.69 0.76 10 7.2 0.73 5 0.9
ora 4551 90 33 1.68 1.08 1.10 2 1.8 1.08 0 �0
spice 23504 5297 1909 1.33 1.01 1.54 53 29.6 1.65 63 9.0
su2cor 5144 1100 147 2.48 0.50 1.13 56 36.3 1.19 138 10.0
swm 11172 2144 240 2.59 0.47 0.62 32 9.7 1.04 121 9.2
tomcatv 1084 307 14 2.50 0.54 1.10 56 24.9 1.36 152 9.0
wave 3673 694 221 2.14 0.67 0.82 15 8.9 0.77 15 1.4
xlisp 5869 1444 745 1.47 0.83 1.27 53 4.0 1.20 35 0.1

Table 2: Dynamic statistics for each benchmark simulated using an unenhanced processor and
three memory system configurations: (1) ideal, all data references hit in the cache, (2) an 8K
direct mapped cache with a fetch spacing of 1 cycle and a latency of 8, and (3) a 64 KB 2-way set
associative cache with a fetch spacing of 8 cycles and a latency of 32. MCPI%, the memory CPI,
is the difference between the ideal and non-ideal CPI values as a percent of the ideal CPI.

stalled that differentiates the six processor designs.

We have simulated the eighteen SPEC92 benchmarks which are listed in Table 2 along with
some run-time characteristics. In the table, the columns under the heading “Instructions (millions)”
give the dynamic instruction, load and conditional branch counts. Because the same object code
and the same input-data sets were used for all simulations of a given benchmark, these numbers
remain constant. Thus, we use the average number of cycles per instruction (CPI) as our primary
performance measure.

While the numbers of instructions executed are significant, the instruction-word miss rate for
each benchmark is usually less than 1%; the exceptions are doduc and xlisp with a 3% miss rate,
and fpppp with a 19% miss rate. The next column in the table gives the ideal instructions per cycle,
that is, the number of instructions issued per cycle when all stalls are ignored. Observe that the
averages are significantly smaller than the maximum of four, a reflection of the scheduling rules
and functional unit latencies.

The rest of the columns in the table give statistics for three different memory systems. The
first system corresponds to the ideal system and the CPI values for this system are given in the
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column marked “ideal CPI”. In the ideal system, the number of cycles executed for a benchmark
is a function of the number of: (1) instruction words executed, (2) stalls caused by functional-unit
conflicts, (3) instruction cache misses, and (4) conditional branches. These factors remain constant
for all memory configurations and processor designs.

The remaining columns in the figure give statistics for an unenhanced processor using the two
memory configurations noted in the caption. For a given benchmark, the portion of the CPI value
due to accessing data, the memory CPI, can be found by taking the difference between its ideal
CPI and the CPI values measured with a non-ideal memory system. This difference is given in
the column with heading “MCPI%” as a percent of the ideal CPI. Observe that for many of the
benchmarks the MCPI% value is greater than 20%. Hence, the performance of these application is
significantly affected by having to access data, and therefore, it is desirable to reduce the data-access
cost.

Note that this way of calculating the MCPI is valid only if the processor uses blocking loads.
If non-blocking loads are used, a true-data dependency induced stall might be avoided because
an instruction cache miss will delay the issuing of the first instruction to use the data. In other
words, an instruction cache stall may allow any of the outstanding data cache misses to be resolved,
resulting in fewer stall cycles being directly attributable to data references. Thus, for systems
with non-blocking loads, it is not possible to determine exactly what portion of the CPI is due to
accessing data. It is always true, however, that it is better to have a smaller ratio of the non-ideal
to ideal CPI values.

We begin by presenting performance data for wave to introduce our methodology and to point
out key characteristics. We then present data for all benchmarks and discuss common trends.

3.1 Common Trends
Figure 4(a) presents the CPI for wave measured using a memory system with an 8-Kbyte direct-

mapped cache, a fetch spacing of 8 and a fetch latency of 32. In this figure, each bar corresponds to
one of the six processor designs and its height reflects the measured CPI; the numbers above each
bar give the actual CPI value. The figure also includes a bar representing the CPI obtained using
the ideal memory system. The table in the figure gives the improvement factor for each design in
relation to the unenhanced design. These factors are calculated by dividing the unenhanced CPI
value by the enhanced CPI value. Note that the CPI factors for the non-blocking load and stream
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design miss penalty
large small

CPI un 1.233 0.819

sb 1.18 1.06
times sb+fds 1.31 1.09
better nbl 1.17 1.09

nbl+sb 1.35 1.14
nbl+sb+fds 1.43 1.15

(a) 8K DM cache CPI improvement
factors

design miss penalty
large small

CPI un 0.767 0.705

sb 1.06 1.01
times sb+fds 1.08 1.02
better nbl 1.01 1.01

nbl+sb 1.07 1.02
nbl+sb+fds 1.09 1.02

(b) 64K 2-way SA cache CPI im-
provement factors

Table 3: CPI values and ratios for wave for the large miss penalty (fetch spacing 8 cycles, latency 32
cycles) and the small miss penalty (fetch spacing 1 cycle, latency 8 cycles) memory configurations.

buffer designs cannot be obtained by multiplying together the CPI factor for non-blocking loads
and for stream buffers; the combined use of these techniques changes the run-time dynamics of a
program.

From the table, we see that the use of unit-stride stream buffers (the “sb” design) results in a
CPI improvement of 18%. When allocation filters and dynamic strides are used, this improvement
increases to 31%. Non-blocking loads, on the other hand, improve the CPI by 17%, but when used
with dynamic strides and allocation filters, the CPI is reduced by 43%. From these percentages,
we observe that (1) both non-blocking loads and stream buffers reduce the CPI by a minimum of
17%, (2) non-unit-stride stream buffers give better performance than either non-blocking loads or
unit-stride stream buffers, and (3) non-blocking loads and non-unit-stride stream buffers together
yield significantly better performance than either technique used alone.

When the miss penalty is reduced, the performance of non-blocking loads gets better with
respect to the stream-buffer-only designs. This improvement is illustrated by the data presented
in Table 3(a). This table gives the unenhanced CPI and the improvement factors for the memory
configuration used in Figure 4 and for a memory configuration with a smaller miss penalty. The
smaller miss penalty is achieved by decreasing the fetch latency to 8 cycles and increasing the
memory bandwidth (by decreasing the fetch spacing to 1 cycle). Observe that the improvement
factor for non-blocking loads (“nbl” design) is equal to that for the non-unit-stride stream buffer
design (“sb+fds” design) when the miss penalty is smaller. This relative improvement for non-
blocking loads occurs with smaller miss penalties because it is more probable that the time required
to service a cache miss will be overlapped with the execution of unrelated instructions. Observe
also that the improvement factors are smaller. This fact is due to each cache miss requiring less
time to be resolved and hence the miss contributes less to the number of cycles executed.

The unenhanced CPI values and improvement factors are given in Table 3(b) for a 64 Kbyte,
2-way set-associative cache and for the same two memory interface configurations. With the larger
cache, we see that all the improvement factors have dropped as have the unenhanced CPI values.
However, observe that same performance relationships between designs mentioned above also
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Figure 5: The CPI improvement factors for all benchmarks shown graphically; dotted lines connect
points associated with the same benchmark. The “small penalty” points correspond to a fetch
spacing of 1 cycle and a fetch latency of 8 while the “large penalty” points correspond to a fetch
spacing of 8 and a fetch latency of 32.

apply here.

The performance relationships just discussed in the context of wave occur for many of the
other benchmarks. The improvement factors for all 18 benchmarks for the same four memory
configurations are presented graphically in Figure 53. In this graph, there is an unfilled circle for
each benchmark for each of the 24 machine configurations, and the filled circles give the geometric
average of the improvement factors. Observe the following:

� For each memory configuration, there are a number of benchmarks that incur essentially the
same CPI for all processor designs. For these benchmarks, data cache accesses contribute
little towards the run-time of the benchmark. However, for other benchmarks, the choice of
memory system can make a significant impact.

� Though the improvement factors for all benchmarks are quite different for a particular
memory configuration, they vary in similar ways with the different processor designs. These
variations are reflected in the geometric averages (the filled circles).

� Stream buffers with dynamic strides and allocation filters have somewhat larger improve-
ment factors (i.e., better performance) than unit-stride stream buffers, although for many
benchmarks the additional hardware may not be cost-effective.

3The data from which this graph was prepared is given in Tables 7 and 8 in Appendix B.
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Figure 6: Run-time speedup for each processor design and memory configuration brought about by
compiling the code with speculative execution. The “small penalty” points correspond to a fetch
spacing of 1 cycle and a fetch latency of 8 while the “large penalty” points correspond to a fetch
spacing of 8 and a fetch latency of 32.

� The combined use of stream buffers and non-blocking loads gives a significantly larger
performance increase than either technique alone.

� Non-blocking loads have smaller improvement factors (i.e., are less effective) than stream
buffers for the large miss penalty. With smaller miss penalties, non-blocking loads are
relatively more effective.

� Non-blocking loads are relatively more effective in smaller caches than in larger ones.

Speculative Execution
The effectiveness of non-blocking loads can be increased if more unrelated instructions can be

scheduled between the load and first-use instructions. Loop unrolling, and the more general notion
of trace scheduling, are techniques that aid in this task by increasing the size of the basic block and
hence the pool of unrelated instructions. The results we have presented so far correspond to the use
of both of these techniques. Another technique is to allow the compiler to move safe instructions
past branch points and thereby allow the instruction to be executed earlier. The Multiflow compiler
can implement such code movements by using speculative execution.

To investigate the effect of speculative execution, we re-compiled the benchmarks with spec-
ulative execution enabled and simulated their execution on the 24 machine configurations (six
processor designs times four memory configurations); speculative execution was allowed for all
instructions with the exception of stores and floating-point divides. The two main observations
from this investigation are that speculative execution (1) improves by 20 to 40% the run time of
about half the benchmarks on all processor designs, and (2) increases the effectiveness of non-
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blocking loads. Data supporting the first of these observations is shown graphically in Figure 64;
Section 4.2 presents data for the second. This graph presents the speedup in the run-time due to
speculative execution. The speedup is calculated on a per-processor-design basis by taking the
run-time without speculative execution and dividing it by the run-time with speculative execution.
The run-time is used here rather than CPI because speculative execution results in an increase in
the number of instructions executed; this increase is discussed further in Section 4.2.

4 Understanding Performance
In the preceding section, we presented data showing that stream buffers and non-blocking loads

are effective in improving the performance of a quad-issue processor. We have also seen that
speculative execution increases the performance of all six processor designs. In this section, we
explore further the causes for the performance gains and explain why these causes are not tied to
the specific architecture we simulated.

4.1 Without Speculative Execution
We have seen that non-blocking loads, when acting alone, tend to be more effective when

used with caches that have higher miss rates (e.g., smaller caches with less associativity). This is
because when the miss density is higher there is a higher probability of being able to overlap more
than one miss at a time.

We have also seen that stream buffers, when acting alone, tend to be more effective than
non-blocking loads. For non-blocking loads, the fetching of missing data is initiated by the
instruction that loads the data into a register. For stream buffers, however, the fetch can be
initiated by a previous cache miss with the subsequently executed load instruction loading the
register. These fetch-initiating events in effect implement the prefetching of the source operands
for a dependent instruction. Non-blocking loads can be viewed as implementing after-the-load,
or explicit prefetching whereas stream buffers can be viewed as implementing before-the-load, or
predictive prefetching. The goal for after-the-load prefetching is to have the data needed by an
instruction loaded into registers before the instruction is executed. The goal for before-the-load
prefetching is to have the data nearby so that it can be quickly loaded into the registers when the
load is executed.

These two types of prefetching are complementary when used together as our results have
shown. When used together, the goal is the same as for after-the-load prefetching but the fetch
trigger can be the load or can be a previously detected miss.

Stream buffers work well as a before-the-load prefetcher if there is a reasonable correlation
between the block addresses of cache misses since stream buffers must guess what to fetch. If
a correct guess is made, the reduction in the stall time is a function of the temporal separation
between the fetch trigger and the execution of the load instruction for the data. In our simulations
of the SPEC benchmarks with single-, dual- and quad-issue machines, we have observed two trends
among the benchmarks that explain why stream buffers work. First, the cache miss addresses are

4The data from which this graph was prepared is given in Tables 9 and 10 in Appendix B.
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bench- s-buffer most 2nd 3rd
mark refs hit% stride % stride % stride

alvinn 6 98 32 99 128 1 124
compress 9 11 32 21 160 1 128
dnasa 24 50 32 47 1024 26 2048
doduc 0.7 5 32 91 -48 1 -8
ear �1 71 32 99 -384 0 -192
eqntott 4 45 32 57 -192 9 384
espresso 0.4 59 32 95 64 2 -64
fpppp 0.2 8 32 50 -3200 24 -6400
hydro 13 82 32 96 832 1 1632
mdljdp2 3 57 32 94 -4000 <1 -8
mdljsp2 1 66 32 99 64 <1 -16
ora 0 51 124 59 32 40 400
spice 9 22 32 84 192 3 272
su2cor 13 67 32 89 64 1 128
swm 9 88 32 97 1160 3 1152
tomcatv 10 82 32 88 80 8 160
wave 2 69 32 81 10016 18 -210336
xlisp 0.1 67 32 95 -96 2 -88

Table 4: The most effective strides (in bytes) for each benchmark and the percent of stream buffer
hits (%) corresponding to that stride. The table also gives the number of stream buffer probes as
a percent of the number of loads executed (refs), and the percent of these probes that resulted in
a stream buffer hit (hit%). The system configuration included non-blocking loads, a 64 Kbyte,
2-way set associative cache with 32 byte lines, and a memory interface with a fetch spacing of 8
cycles and a latency of 32 cycles.

highly predictable and thus it is likely that the correct data will be prefetched. And second, with
larger caches, cache misses tend to occur at uneven intervals and in groups. This grouping results
in there being time spans when no cache misses occur thereby allowing the stream buffers to fill
all their entries. As a result, when a cache miss does occur, it is more likely that the needed data is
already resident in a stream buffer. Hence, the stall time is much shorter.

In our simulations of the quad-issue processor, we have observed that most of the SPEC92
benchmarks achieve over a 50% hit rate in the stream buffers, an indication of the sequential nature
of the miss addresses. Some of the data on which this observation is based is shown in Table 4.
This table gives the stream buffer hit rates (“s-buffer hit%”) along with the percent of the executed
loads that lead to stream buffer probes (“s-buffer refs”). This latter percentage is the cache miss
rate; note that the miss rates given in this table are larger than those given in Table 2 due to the
use of non-blocking loads here. The remaining columns in the table give the three dynamically
calculated strides that accounted for most of the stream buffer hits. Notice that the unit-stride (32
bytes) is by far the most popular stride.

The preference for the unit stride suggests that the allocation filter is more important than the
dynamic stride calculator. This result differs from the results reported by Palacharla and Kessler
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[5] in their study of the NAS and PERFECT benchmarks. They found that some of the benchmarks
obtain noteworthy improvement with the use of dynamic strides. That we do not see the same trend
in our results is perhaps an artifact of the compiler we are using, or more likely, an artifact of the
SPEC92 benchmarks.

The allocation filter prevents a stream buffer from being allocated when a miss occurs to a
rarely used part of the address space. By preventing such allocations, prefetched data is likely to
remain longer in a stream buffer and thus it is more likely to be used to satisfy a cache miss. For the
machine configuration discussed above, the average percent of stream buffer prefetches that are used
to resolve a cache miss increases from 22% to 47% when allocation filters are employed. Allocation
filters also help by reducing the bandwidth consumed by stream buffer prefetches and thus reduce
the time required to fetch data missing from the cache. For some benchmarks (e.g, alvinn and
tomcatv), there is very little change in the bandwidth utilization because these benchmarks rarely
access infrequently-used parts of their address space. For other benchmarks (e.g., compress and
dnasa), there are many such references and the allocation filters can dramatically decrease the
bandwidth utilization. The most dramatic drop occurs for compress where the average number of
in-progress memory fetches drops from 2 to 0.5.

4.2 With Speculative Execution

With speculative execution we observed that its use (1) improves by 20 to 40% the run time
of about half the benchmarks on all processor designs, and (2) increases the effectiveness of non-
blocking loads. There are a number of effects that give rise to this behavior. First, the use of
speculative execution gives rise to an increase in the average number of instructions issued per
cycle (ideal IPC). This fact is shown in Table 5 for each benchmark by the data in the columns
headed “ideal IPC”. Note that these average values apply to all 24 machine configurations because
the number of instructions issued per cycle is determined at compile time. A second effect is
that a given benchmark spends less time stalled due to functional-unit conflicts. This reduction
occurs because with speculative execution, the compiler can schedule potentially useful instructions
between the two that caused the stall rather than scheduling the stall. A third effect is that the
compiler can schedule load instructions earlier. This effect is shown in the table by the increase
in the weighted average number of instruction issue cycles between the load instruction and the
first instruction to use the loaded value (see the columns headed “UAL distance”). Observe that
while some benchmarks show greater than a 100% increase, many do not. This lack of change is
in part due to our scheduling the code for cache-hit penalty rather than a larger value. The benefits
of scheduling for larger values have been demonstrated by Farkas and Jouppi [16] though without
the use of speculative execution. However, in quad issue machines scheduling for significantly
larger latencies than the cache hit latency becomes infeasible due to a lack of sufficient registers.
Due to the small change in the load-use separation, the only configurations that show a significant
performance improvement when enhancing speculative execution with non-blocking loads are
those using the smaller cache. This result is due to smaller caches being more sensitive to the small
changes in non-blocking load dynamics.
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benchmark UAL distance ideal IPC benchmark UAL distance ideal IPC
without with without with without with without with

alvinn 1.4 3.1 1.8 3.6 compress 1.9 1.9 1.8 2.1
dnasa 4.0 4.5 2.2 3.0 doduc 6.8 6.5 1.9 2.4
ear 2.0 9.7 1.8 3.2 eqntott 1.5 2.2 1.9 3.4
espresso 1.8 2.3 1.5 2.4 fpppp 5.1 4.9 2.4 2.6
hydro 3.3 4.2 1.8 2.5 mdljdp2 4.7 7.6 1.6 2.5
mdljsp2 5.9 6.9 2.2 2.9 ora 5.8 5.2 1.7 1.8
spice 3.0 3.0 1.3 2.1 su2cor 4.8 4.7 2.5 2.9
swm 3.2 5.4 2.6 3.7 tomcatv 5.0 5.1 2.5 2.7
wave 3.2 4.0 2.1 2.7 xlisp 1.8 2.1 1.5 1.9

average 3.2 4.2 1.9 2.6

Table 5: The effects of with and without speculative execution. The first set of columns (UAL
distance) gives the weighted average number of instruction issue cycles between a load instruction
and the first instruction to use the target register. The second set of columns (ideal IPC) gives the
average number of instructions issued per cycle in a machine without stall cycles.

5 Conclusions

We have investigated the relative performance impact of non-blocking loads, stream buffers,
and speculative loads used individually and in conjunction with each other. We used a quad-issue
microprocessor that resembles a number of state-of-the art commercial microprocessors. We have
simulated 18 of the SPEC92 benchmarks and evaluated the three techniques by their ability to
reduce the number of clock cycles required to execute each benchmark. An important part of
this study was the use of the Multiflow Compiler Technology to compile the benchmarks. Using
the compiler, we were able to generate object code that was optimized for the microprocessor
architecture that we modeled, and to employ trace scheduling and speculative execution, both of
which are important for wider-issue machines.

The combined use of stream buffers and non-blocking loads yields significantly better perfor-
mance than is achieved with either technique acting alone. This complementary behavior is a
result of stream buffers being good at reducing the cost of servicing a miss when one occurs, while
non-blocking loads are good at hiding the cost of servicing a miss.

Speculative execution was found to improve the performance by 20% to 40% of processors
using neither non-blocking loads nor stream buffers as well as those using one or both of these
techniques. The performance gains were found to be fairly constant across all processor designs
for a given cache configuration and miss penalty. This performance gain occurred because the
compiler was able to schedule approximately 37% more instructions per instruction word and to
reduce the number of stalls caused by functional unit conflicts. With speculative execution, the
non-blocking load effectiveness increased but this increase was noticeable only with the smaller
cache configuration. The non-blocking load improvement occurred because speculative execution
resulted in a small increase (from 3.2 instruction issue cycles to 4.2 instruction issue cycles) in the
distance between a load instruction and the first instruction to use the loaded value. This increase
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is nevertheless significant in view of the issue width of the processor we modeled.

The primary benefit from the use of allocation filters and dynamic strides is a reduction in
the memory bandwidth consumed by prefetching. In our simulations of the SPEC92 benchmarks,
we found that the SPEC92 benchmarks are dominated by unit-stride memory accesses. This
observation is in contrast to the conclusion reached by Palacharla and Kessler that some of the
NAS and PERFECT benchmarks favor dynamic strides.

Finally, consistent with previous studies, we have found that stream buffers are better able to
tolerate larger cache miss penalties, and that the effectiveness of non-blocking loads is improved
with smaller caches. This improvement appears to be caused by the higher miss rate and the higher
frequency of misses.

Based on our results, the combination of speculative non-blocking loads and stream buffers
can reduce the CPI incurred in a blocking system without stream buffers by an average 37% for a
64-Kbyte cache when used with a memory system that can service one request every 8 cycles and
has a 32 cycle latency; with an 8-Kbyte cache, the improvement jumps to 61%. We expect that
the combination of these techniques will be crucial in removing memory system bottlenecks for
processors that attempt to aggressively exploit instruction-level parallelism.
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A Stream Buffer Detail
In this appendix, we describe our implementation of the stream buffer model and the scheme

we implemented for dynamically calculating stream buffer strides.

A.1 Stream Buffer Implementation
A stream buffer consists of a number of entries that are managed as a FIFO queue[4]. As

illustrated in Figure 3 (page 7), each entry can store a block of data and the corresponding address
(the tag). For each entry there is a comparator and thus all the tags can be searched at the same
time. There are also a number of status flags associated with each entry whose purposes will be
described below.

When a data cache reference is issued, the tags of all entries in all the stream buffers are probed
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at the same time as the data cache tags (although if there is a hit in the stream buffers the data is
not available until the next cycle). If a data cache hit occurs, the stream buffers are left alone. If a
miss should occur, one of four sequences of events can occur depending on the result of the stream
buffer probe. These sequences are described below.

Data is Present

One outcome of the stream buffer probe is that the tag matched and the data is present. In this
case, in the next cycle, both the cache line to which the miss address maps and the target register of
the load are written; if this line is required by another load access occurring in the same next cycle,
the data can be bypassed. When a hit occurs, the matching entry is shifted out of the corresponding
stream buffer. Since the stream buffer is a FIFO queue, this shifting results in the invalidation of
the matching entry and all entries from the entry at the head of the queue to the matching entry;
invalidating an entry entails clearing the valid bit associated with the tag. This invalidation occurs
whenever an entry’s tag matches and the valid bit is set.

Because this stream buffer now has at least one invalid entry, it can begin prefetching again
along the same path. The first step in initiating a prefetch is to determine the address of the next
block to be fetched into the buffer. If the buffer contains no valid entries, the block address of the
next block to be fetched will be one more than the tag of the matching entry. If, on the other hand,
the buffer contains some valid entries, then the block address of the next block is one more than
the tag contained in the bottom-most entry in the buffer.

Once a block address is determined, the next step is to check to see if the block to be prefetched
is present in another stream buffer or is being prefetched. This step is necessary to ensure that
the stream buffers are prefetching down non-overlapping paths. This check is performed by doing
an associative search of all valid stream buffer entries. If a match is found, the stream buffer is
prevented from fetching further down the present path and it is flagged to be used next when a
stream buffer is needed to follow a new path (see below for a discussion on what happens when
there is a stream buffer miss). As a result of ensuring non-overlapping paths, it is possible for a
stream buffer to remain empty until it is reallocated on a stream buffer miss.

If the tag of the to be prefetched block is not already in another stream buffer, the tag is written
into the bottom-most entry in the buffer, the valid bit for the tag is set, and a fetch request is issued
to the memory. The memory assigns highest priority to fetch requests from the cache and uses
round-robin arbitration to select among simultaneous requests from the stream buffers. When the
memory launches a fetch request from a stream buffer, the launched bit for the entry is set. After
launching a fetch request, if the stream buffer contains some invalid entries, the just described steps
for initiating another prefetch are applied.

Fetch Request for Data Issued

The second outcome of the stream buffer probe is that a stream buffer has issued a fetch request
for the desired block and this fetch has yet to be completed. As described above, on a hit, the
matching entry is shifted out of the stream buffer. To ensure that the register is loaded when the
block is returned by the memory, an MSHR is allocated. Allocating an MSHR is also necessary in
order to keep track of any secondary misses that might occur before the block is written into the
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cache.

When a block is returned from the memory, its return may be due to either a cache-miss initiated
fetch or a stream buffer initiated prefetch. In order to determine which component is awaiting its
return, an associative search is done of all the valid MSHRs and all the valid stream buffer entries.
If there is at least one matching MSHR, the block is written into the cache and all waiting registers
are filled. Regardless of there being a matching MSHR, there may be at most one matching stream
buffer entry. If there is a match, then the data is written into the entry and its present is set. Note
that it is impossible for both searches to result in no matches.

Matched to an Unlaunched Entry

The third outcome of the stream buffer probe is that there is an entry with a matching tag but
the memory request for this block has yet to be launched. As in the above two cases, the matching
entry is shifted out of the stream buffer. And, as in the previous case, an MSHR is allocated.
However, unlike the previous case, here a fetch request is issued to the memory.

Stream buffer miss

The final outcome of the probe is that there was no valid match. In this case, an MSHR is
allocated and a fetch request is issued to the memory. In addition, the address of the subsequent
block is calculated ( as in the first outcome when there was no remaining valid entries) and a probe
is done of all valid stream buffer entries. If a match is not found, a stream buffer is chosen to
begin prefetching down this new path. A stream buffer is chosen from among those which were
prevented from following a path (because the same path was being followed by another buffer),
or if there are no such stream buffers, then we select the stream buffer with the oldest access-time
stamp. The access-time stamp is set whenever a stream buffer probe results in a hit and when the
stream buffer is allocated.

A.2 Allocation Filters and Non-unit Strides
A stream buffer is allocated to begin fetching a block every time a stream buffer miss occurs

and the corresponding tag is not found in a stream buffer. With this allocation strategy, an isolated
data reference that is not part of any address stream can cause a stream buffer to be allocated. In so
doing, blocks of data will be discarded which might soon be needed in favor of prefetching down
a fictions path. To prevent the first miss from allocating a stream buffer, an allocation filter can be
used. We implement the filter proposed by Palacharla and Kessler [5]. This filter prevents a stream
buffer from being allocated until two misses occur for the same stream. On the second miss, a
stream buffer is allocated and it begins prefetching the block subsequent to the one corresponding
to the second miss.

In the above discussion, we have assumed that the next block fetched will be the one following
directly after the previous one that was fetched, that is, the block addresses of the two blocks will
differ by one. Non unit-stride prefetching is more complicated as it requires first determining a
stride and then determining whether to allocate a stream buffer. We implemented a scheme based
on the minimum delta scheme proposed by Palacharla and Kessler [5]. On a stream buffer miss,
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Processor Details
Abbrev. blocking stream

loads buffers

un none
sb yes unit stride
sb+fds filter & dynamic stride
nbl none
nbl+sb no unit stride
nbl+sb+fds filter & dynamic stride

Table 6: Processor Designs

the allocation filter is applied to determine whether a unit-stride should be used. If there is a filter
miss, then the minimum signed difference between the miss address and the lastN miss addresses
is determined; this minimum which may be positive or negative is the stride. In the simulations for
this paper, we used N = 16. The allocation filter is then applied again but this time to determine
whether the miss address corresponds to the third miss in a stream with a non-unit stride. If there is
a filter hit, then a stream buffer might be allocated. We wait for the third miss in a non-unit stride
stream to give preference to unit strides. Likewise, we check the allocation filter for a unit stride
to ensure that we don’t start prefetching down the same path with two different strides.

B Results for average CPI and Run-times
This appendix presents the data from which the CPI improvement factor graph (see Figure 5,

page 12) and the run-time speedup graph (see Figure 6, page 13) were prepared. In presenting this
data, abbreviations are used to represent each of the six processor designs. These abbreviations are
given in Table 1(a) and are repeated below in Table 6.

The CPI improvement factors are given in Tables 7 and 8 for the six processor designs and
the two cache miss penalties. The data in these tables corresponds to compiling the benchmarks
without speculative execution.

Tables 9 and 10 present the data used to prepare the run-time speedup graph. This graph gives
the run-time speedup for each processor design for and memory configuration that is brought about
by compiling the code with speculative execution.
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fetch spacing of 1, latency of 8 fetch spacing of 8, latency of 32
benchmark unen Times Better unen Times Better

CPI sb +fds nbl +sb +fds CPI sb +fds nbl +sb +fds
alvinn 1.366 1.17 1.17 1.08 1.21 1.21 2.106 1.73 1.72 1.08 1.82 1.82
compress 0.963 1.01 1.03 1.12 1.13 1.15 1.875 1.01 1.06 1.11 1.16 1.19
dnasa 1.699 1.20 1.32 1.57 1.74 1.83 4.522 1.25 1.61 1.70 1.99 2.34
doduc 1.353 1.03 1.02 1.10 1.11 1.11 1.917 1.08 1.05 1.22 1.27 1.25
ear 1.077 1.03 1.03 1.02 1.04 1.04 1.223 1.14 1.11 1.03 1.15 1.13
eqntott 0.641 1.03 1.03 1.03 1.05 1.05 0.804 1.11 1.12 1.03 1.14 1.15
espresso 0.912 1.06 1.06 1.04 1.09 1.09 1.227 1.24 1.22 1.04 1.28 1.26
fpppp 1.983 1.05 1.04 1.12 1.13 1.13 2.737 1.14 1.12 1.30 1.35 1.36
hydro2d 1.279 1.22 1.20 1.19 1.33 1.32 2.345 1.71 1.63 1.30 2.01 1.92
mdljdp2 1.336 1.06 1.04 1.06 1.10 1.09 1.810 1.18 1.14 1.11 1.31 1.26
mdljsp2 0.762 1.04 1.03 1.05 1.08 1.07 0.989 1.15 1.10 1.08 1.22 1.17
ora 1.104 1.01 1.00 1.02 1.02 1.02 1.191 1.04 1.00 1.04 1.06 1.04
spice 1.538 1.09 1.05 1.12 1.21 1.17 3.137 1.16 1.10 1.09 1.23 1.19
su2cor 1.132 1.18 1.19 1.73 1.82 1.83 2.996 1.25 1.32 2.12 2.33 2.41
swm 0.621 1.13 1.23 1.15 1.24 1.29 1.066 1.36 1.88 1.21 1.60 1.99
tomcatv 1.105 1.32 1.31 1.55 1.68 1.69 2.799 1.66 1.66 1.70 2.04 2.09
wave 0.819 1.06 1.09 1.09 1.14 1.15 1.223 1.18 1.31 1.17 1.35 1.43
xlisp 1.275 1.02 1.02 1.02 1.04 1.04 1.512 1.08 1.07 1.03 1.10 1.09
geometric avg 1.112 1.09 1.10 1.15 1.21 1.21 1.771 1.23 1.26 1.21 1.42 1.45

Table 7: CPI improvement factors for 8K direct mapped cache.

fetch spacing of 1, latency of 8 fetch spacing of 8, latency of 32
benchmark unen Times Better unen Times Better

CPI sb +fds nbl +sb +fds CPI sb +fds nbl +sb +fds
alvinn 1.268 1.11 1.11 1.05 1.13 1.13 1.717 1.50 1.50 1.04 1.53 1.53
compress 0.781 1.00 1.01 1.04 1.04 1.05 1.148 1.00 1.04 1.03 1.09 1.08
dnasa 1.121 1.12 1.23 1.25 1.33 1.38 2.211 1.22 1.66 1.36 1.63 1.98
doduc 1.173 1.00 1.00 1.00 1.01 1.01 1.199 1.01 1.00 1.01 1.02 1.01
ear 1.028 1.00 1.00 1.00 1.00 1.00 1.028 1.00 1.00 1.00 1.00 1.00
eqntott 0.622 1.02 1.02 1.01 1.03 1.03 0.726 1.09 1.09 1.01 1.10 1.10
espresso 0.814 1.00 1.00 1.00 1.01 1.01 0.831 1.02 1.02 1.00 1.02 1.02
fpppp 1.734 1.00 1.00 1.00 1.00 1.00 1.743 1.00 1.00 1.00 1.00 1.00
hydro2d 1.166 1.20 1.18 1.12 1.25 1.24 1.895 1.80 1.68 1.20 1.92 1.81
mdljdp2 1.203 1.01 1.01 1.01 1.02 1.02 1.278 1.04 1.04 1.03 1.07 1.07
mdljsp2 0.696 1.01 1.01 1.01 1.01 1.01 0.725 1.04 1.04 1.01 1.05 1.05
ora 1.075 1.00 1.00 1.00 1.00 1.00 1.075 1.00 1.00 1.00 1.00 1.00
spice 1.167 1.04 1.03 1.05 1.08 1.07 1.651 1.11 1.09 1.06 1.15 1.14
su2cor 0.681 1.19 1.21 1.20 1.28 1.28 1.192 1.63 1.77 1.37 1.77 1.83
swm 0.614 1.12 1.22 1.13 1.23 1.28 1.035 1.33 1.85 1.18 1.56 1.95
tomcatv 0.744 1.29 1.28 1.21 1.35 1.35 1.357 2.15 2.04 1.26 2.23 2.16
wave 0.705 1.01 1.02 1.01 1.02 1.02 0.767 1.06 1.08 1.01 1.07 1.09
xlisp 1.197 1.00 1.00 1.00 1.00 1.00 1.200 1.00 1.00 1.00 1.00 1.00
geometric avg 0.947 1.06 1.07 1.06 1.09 1.10 1.201 1.19 1.23 1.08 1.24 1.27

Table 8: CPI improvement factors for 64K 2-way set-associative cache.
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run-time speedup ratio due to using speculative execution
benchmark fetch spacing of 1, fetch latency of 8 fetch spacing of 8, fetch latency of 32

unen sb +fds nbl +sb +fds unen sb +fds nbl +sb +fds
alvinn 2.413 3.196 3.190 2.864 3.446 3.317 1.608 2.896 2.883 1.833 3.100 2.621
compress 1.186 1.182 1.187 1.222 1.218 1.224 1.166 1.135 1.168 1.227 1.211 1.238
dnasa 1.231 1.296 1.318 1.548 1.608 1.621 1.065 1.036 1.011 1.314 1.268 1.226
doduc 0.948 0.941 0.946 0.955 0.951 0.954 0.954 0.930 0.950 0.978 0.956 0.973
ear 2.622 2.677 2.669 2.729 2.723 2.727 2.360 2.522 2.494 2.560 2.599 2.608
eqntott 1.690 1.757 1.756 1.764 1.798 1.800 1.416 1.570 1.574 1.501 1.616 1.627
espresso 1.206 1.224 1.223 1.225 1.237 1.236 1.139 1.181 1.179 1.165 1.203 1.204
fpppp 1.028 1.019 1.020 1.015 1.013 1.011 1.065 1.045 1.046 1.046 1.036 1.036
hydro2d 1.259 1.335 1.326 1.349 1.382 1.377 1.131 1.239 1.216 1.217 1.279 1.283
mdljdp2 1.341 1.376 1.368 1.423 1.431 1.428 1.176 1.230 1.225 1.320 1.347 1.327
mdljsp2 1.387 1.445 1.421 1.525 1.533 1.530 1.140 1.249 1.199 1.372 1.420 1.404
ora 1.019 1.022 1.021 1.025 1.031 1.028 0.923 0.937 0.929 0.907 0.929 0.920
spice 1.219 1.247 1.232 1.373 1.370 1.370 1.073 1.032 1.071 1.274 1.160 1.249
su2cor 1.042 1.054 1.051 1.092 1.092 1.092 1.007 1.014 1.009 1.040 1.038 1.033
swm 1.449 1.539 1.617 1.622 1.628 1.677 1.219 1.349 1.529 1.284 1.291 1.567
tomcatv 1.047 1.068 1.068 1.106 1.085 1.095 1.019 1.043 1.046 1.097 1.052 1.083
wave 1.279 1.302 1.313 1.320 1.322 1.330 1.186 1.220 1.257 1.244 1.235 1.265
xlisp 1.234 1.239 1.239 1.237 1.228 1.228 1.199 1.213 1.213 1.199 1.152 1.156
geometric avg 1.312 1.361 1.363 1.400 1.417 1.418 1.183 1.256 1.264 1.271 1.308 1.318

Table 9: Ratios of the run-time with speculative execution to the run-time without speculative
execution for the 8K direct mapped cache.

run-time speedup ratio due to using speculative execution
benchmark fetch spacing of 1, fetch latency of 8 fetch spacing of 8, fetch latency of 32
benchmark unen sb +fds nbl +sb +fds unen sb +fds nbl +sb +fds
alvinn 2.713 3.367 3.367 3.044 3.472 3.388 1.874 3.315 3.326 1.970 3.270 2.898
compress 1.150 1.151 1.154 1.191 1.191 1.195 1.065 1.049 1.071 1.138 1.115 1.150
dnasa 1.408 1.489 1.497 1.621 1.664 1.681 1.159 1.178 1.153 1.335 1.369 1.322
doduc 0.941 0.943 0.942 0.944 0.945 0.944 0.937 0.937 0.933 0.945 0.942 0.940
ear 2.743 2.743 2.743 2.744 2.744 2.744 2.742 2.744 2.744 2.743 2.744 2.744
eqntott 1.733 1.794 1.791 1.786 1.816 1.816 1.497 1.669 1.663 1.549 1.683 1.684
espresso 1.241 1.243 1.242 1.242 1.243 1.243 1.232 1.239 1.239 1.234 1.240 1.239
fpppp 1.009 1.009 1.009 1.009 1.009 1.009 1.010 1.010 1.010 1.009 1.009 1.009
hydro2d 1.286 1.363 1.356 1.361 1.386 1.384 1.157 1.310 1.288 1.239 1.308 1.300
mdljdp2 1.428 1.436 1.437 1.439 1.444 1.444 1.382 1.409 1.416 1.409 1.433 1.436
mdljsp2 1.535 1.542 1.542 1.547 1.547 1.548 1.500 1.528 1.527 1.527 1.545 1.545
ora 1.060 1.060 1.060 1.060 1.060 1.060 1.060 1.060 1.060 1.060 1.060 1.060
spice 1.333 1.350 1.346 1.393 1.396 1.396 1.198 1.200 1.216 1.313 1.279 1.311
su2cor 1.086 1.106 1.108 1.107 1.113 1.114 1.044 1.076 1.088 1.068 1.083 1.084
swm 1.458 1.542 1.620 1.639 1.628 1.678 1.228 1.354 1.534 1.311 1.296 1.557
tomcatv 1.071 1.094 1.094 1.106 1.099 1.099 1.038 1.084 1.079 1.118 1.083 1.082
wave 1.328 1.334 1.336 1.335 1.330 1.330 1.292 1.312 1.324 1.305 1.270 1.275
xlisp 1.249 1.249 1.249 1.249 1.249 1.249 1.248 1.248 1.248 1.248 1.245 1.246
geometric avg 1.366 1.404 1.408 1.414 1.429 1.430 1.269 1.343 1.354 1.317 1.361 1.367

Table 10: Ratios of the run-time with speculative execution to the run-time without speculative
execution for the 64K 2-way set-associative cache.
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