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Abstract

This paper investigates several methods for reducing cache miss rates. Longer
cache lines can be advantageously used to decrease cache miss rates when used in
conjunction with miss caches.  Prefetch techniques can also be used to reduce
cache miss rates.  However, stream buffers are better than either of these two ap-
proaches. They are shown to have lower miss rates than an optimal line size for
each program, and have better or near equal performance to traditional prefetch
techniques even when single instruction-issue latency is assumed for prefetches.
Stream buffers in conjunction with victim caches can often provide a reduction in
miss rate equivalent to a doubling or quadupling of cache size.  In some cases the
reduction in miss rate provided by stream buffers and victim caches is larger than
that of any size cache.  Finally, the potential for compiler optimizations to in-
crease the performance of stream buffers is investigated.

This tech note is a copy of a paper that was submitted to but did not appear in ASPLOS-4.  It has
not been changed since its submission or submitted for publication in any other forum.
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Abstract

This paper investigates several methods for reducing cache miss rates.  Longer cache lines can
be advantageously used to decrease cache miss rates when used in conjunction with miss caches.
Prefetch techniques can also be used to reduce cache miss rates.  However, stream buffers are
better than either of these two approaches.  They are shown to have lower miss rates than an
optimal line size for each program, and have better or near equal performance to traditional
prefetch techniques even when single instruction-issue latency is assumed for prefetches.  Stream
buffers in conjunction with victim caches can often provide a reduction in miss rate equivalent to
a doubling or quadupling of cache size.  In some cases the reduction in miss rate provided by
stream buffers and victim caches is larger than that of any size cache.  Finally, the potential for
compiler optimizations to increase the performance of stream buffers is investigated.
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1. Introduction

Cache misses can be classified into four categories: conflict, compulsory, capacity [3], and
coherence. Conflict misses are misses that would not occur if the cache was fully-associative
and had LRU replacement.  Compulsory misses are misses required in any cache organization
because they are the first references to an instruction or piece of data.  Capacity misses occur
when the cache size is not sufficient to hold data between references.  Coherence misses are
misses that occur as a result of invalidation to preserve multiprocessor cache consistency.

One way of reducing the number of capacity and compulsory misses is to use prefetch tech-
niques such as longer cache line sizes or prefetching methods [9, 1]. However, line sizes can not
be made arbitrarily large without increasing the miss rate and greatly increasing the amount of
data to be transferred.  In this paper we investigate techniques to reduce capacity and compulsory
misses while mitigating traditional problems with long lines and excessive prefetching.

The characteristics of the test programs used in this study are given in Table 1.  These
benchmarks are reasonably long in comparison with most traces in use today, however the ef-
fects of multiprocessing have not been modeled in this work.  The default cache parameters are
4KB direct-mapped instruction and 4KB direct-mapped data caches each with 16B lines unless
specified otherwise.  A large off-chip second-level cache is implicitly assumed, however second-
level cache performance is beyond the scope of this paper.

program dynamic data total program
name instr. refs. refs. type
-----------------------------------------------------------
ccom 31.5M 14.0M 45.5M C compiler
grr 134.2M 59.2M 193.4M PC board CAD tool
yacc 51.0M 16.7M 67.7M Unix utility
met 99.4M 50.3M 149.7M PC board CAD tool
linpack 144.8M 40.7M 185.5M numeric, 100x100
liver 23.6M 7.4M 31.0M LFK (numeric loops)
-----------------------------------------------------------
total 484.5M 188.3M 672.8M

Table 1: Test program characteristics

2. Reducing Capacity and Compulsory Misses with Long Lines

One way to reduce the number of capacity and compulsory misses is to choose a line size that
maximizes processor performance [10, 5]. If conflict misses did not exist, caches with larger
line sizes would be appropriate, even after accounting for transfer costs.  Figure 1 shows the
reduction in compulsory and capacity misses with increasing line size, compared to a baseline
design with 8B lines.  (The other cache parameters are the default: 4KB size for both instruction
and data and direct-mapping.) In general, all benchmarks have reduced miss rates as the line
size is increased, although yacc has anomalous instruction cache behavior at 64B line sizes.

However, when the effects of conflict misses are included, the picture changes dramatically
(see Figure 2).  As can be seen, the instruction cache performance still increases with increasing
line size but the data cache performance peaks at a modest line size and decreases for further
increases in line size beyond that.  This is a well known effect and is due to differences in spatial
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Figure 1: Effect of increasing line size on capacity and compulsory misses

locality between instruction and data references.  For example, when a procedure is called, many
instructions within a given extent will be executed.  However, data references tend to be much
more scattered, especially in programs that are not based on unit-stride array access.  Thus the
long line sizes are much more beneficial to quasi-sequential instruction access patterns than the
more highly distributed data references.

Although curves of average performance such as Figure 2 appear to roll off fairly smoothly,
the performance for individual programs can be quite different.  Figure 3 shows that the data
cache line size providing the best performance actually varies from 16B to 128B, depending on
the program. Moreover, within this range programs can have dramatically different perfor-
mance. For example, liver has about half the number of data cache misses at a line size of 128B
as compared to 16B, but met has about three times the number of misses at 128B as compared to
16B. Similarly the performance of yacc degrades precipitously at line sizes above 16B.  This
shows one problem with large line sizes: different programs have dramatically different perfor-
mance. For programs with long sequential reference patterns, relatively long lines would be
useful, but for programs with more diffuse references shorter lines would be best.  Taking it a
step further, even within a given program the optimal line size is different for the different
references that a program makes.

Since the performance in Figure 1 increases fairly monotonically with increasing line size, we
know the steep drops in performance in Figure 3 are due to increasing numbers of conflict mis-
ses. Since miss caches [4] tend to remove a higher percentage of conflict misses when conflicts
are frequent, miss caches should allow us to take better advantage of longer cache line sizes.
Figure 4 shows the average effectiveness over all the benchmarks of increasing line size in con-
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Figure 2: Effect of increasing line size on overall miss rate
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Figure 3: Effect of increasing data cache line size on each benchmark

figurations with and without miss caches.  By adding a miss cache more benefits can be derived
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from a given increase in line size, as well increasing the line size at which the minimum miss
rate occurs.  This effect can be quite significant:  increasing the line size from 16B to 32B with a
4-entry miss cache decreases the miss rate by 36.3%, but only decreases it by 0.5% on average
when increasing the line size without a miss cache. Table 2 shows the minimum miss rate for
each benchmark with and without miss caches.  Benchmarks with minimum miss rate line sizes
that are not powers of two have equal miss rates at the next larger and smaller powers of two.
The geometric mean over the six benchmarks of the line size giving the lowest miss rate in-
creases from 46B to 92B with the addition of a 4-entry miss cache.  The minimum line size
giving the best performance on any of the six benchmarks also increases from 16B to 32B with
the addition of a 4-entry miss cache.
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Figure 4: Effect of increasing data cache line size with miss caches

miss cache | line size with minimum miss rate | geom | |
entries | ccom grr yacc met liver | mean | min |
-----------+----------------------------------+------+-----+

4 | 256 96 64 32 128 | 92 | 32 |
2 | 128 64 128 32 128 | 84 | 32 |
0 | 128 48 16 32 64 | 46 | 16 |

-----------+----------------------------------+------+-----+

Table 2: Line sizes with minimum miss rates by program

Systems with miss caching continue to obtain benefits from longer line sizes where systems
without miss caches have flat or decreasing performance.  Figure 5 shows the detailed behavior
of most of the programs.  Figure 6 shows the effects of longer cache line sizes on yacc and met
with varying miss cache sizes.  The performance of yacc is affected most dramatically - the sharp
drop at line sizes above 16B is completely eliminated even with miss caches with as few as two
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entries. Similarly, adding a miss cache with four entries can turn a 100% increase in miss rate
for met at 128B lines into only a 14% increase in miss rate, although a two entry miss cache has
little effect.  This benchmark is the primary reason why the average performance of two-entry
and four-entry miss caches in Figure 4 diverge at a line size of 128B.
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Cache Line Size = 2**n B
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Figure 5: Benchmark-specific performance with increasing data cache line size

Miss caches for very large lines or with more than four entries at moderate line sizes were not
simulated. Besides prohibitive transfer costs, as line sizes become larger the amount of storage
required by the miss cache increases dramatically.  For example, with a 4KB cache an 8-entry
miss cache with 128B lines requires an amount of storage equal to 1/4 the total cache size!  An
interesting area of future research for systems with very long lines is the possibility of miss cach-
ing on subblocks.  Much of the benefit of full-line miss caches might then be obtained with a
fraction of the storage requirements.

3. Reducing Capacity and Compulsory Misses with Prefetch Techniques

Longer line sizes suffer from the disadvantage of providing a fixed transfer size for different
programs and access patterns.  Prefetch techniques [8, 2, 6, 7] are interesting because they can be
more adaptive to the actual access patterns of the program.  This is especially important for im-
proving the performance on long quasi-sequential access patterns such as instruction streams or
unit-stride array accesses.

A detailed analysis of three prefetch algorithms has appeared in [9]. Prefetch always
prefetches after every reference.  Needless to say this is impractical in most systems since many
level-one cache accesses can take place in the time required to initiate a single level-two cache or
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Figure 6: yacc and met performance with increasing data cache line size

main memory reference.  This is especially true in machines that fetch multiple instructions per
cycle from an instruction cache and can concurrently perform a load or store per cycle to a data
cache. Clearly prefetch always provides an upper bound on prefetch performance. Prefetch on
miss and tagged prefetch are more practical techniques.  On a miss prefetch on miss always
fetches the next line as well.  It can cut the number of misses for a purely sequential reference
stream in half. Tagged prefetch can do even better.  In this technique each block has a tag bit
associated with it.  When a block is prefetched, its tag bit is set to zero.  Each time a block is
used its tag bit is set to one.  When a block undergoes a zero to one transition its successor block
is prefetched.  This can reduce the number of misses in a purely sequential reference stream to
zero, if fetching is fast enough.  Unfortunately the large latencies in the base system can make
this impossible.  Consider Figure 7, which gives the amount of time (in instruction issues) until a
prefetched line is required during the execution of ccom. Not surprisingly, since the line size is
four instructions, prefetched lines must be received within four instruction-times to keep up with
the machine on uncached straight-line code.  Because the base system second-level cache takes
many cycles to access, and the machine may actually issue many instructions per cycle, tagged
prefetch may only have a one-cycle-out-of-many head start on providing the required instruc-
tions.

3.1. Stream Buffers

What we really need to do is to start the prefetch before a tag transition can take place.  We
can do this with a mechanism called a stream buffer [4] (Figure 8).  A stream buffer consists of a
series of entries, each consisting of a tag, an available bit, and a data line.
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When a miss occurs, the stream buffer begins prefetching successive lines starting at the miss
target. As each prefetch request is sent out, the tag for the address is entered into the stream
buffer, and the available bit is set to false.  When the prefetch data returns it is placed in the entry
with its tag and the available bit is set to true.  Note that lines after the line requested on the miss
are placed in the buffer and not in the cache.  This avoids polluting the cache with data that may
never be needed.

Subsequent accesses to the cache also compare their address against the first item stored in the
buffer. If a reference misses in the cache but hits in the buffer the cache can be reloaded in a
single cycle from the stream buffer.  This is much faster than the off-chip miss penalty.  The
stream buffers considered in [4] are simple FIFO queues, where only the head of the queue has a
tag comparator and elements removed from the buffer must be removed strictly in sequence
without skipping any lines. In this simple model non-sequential line misses will cause a stream
buffer to be flushed and restarted at the miss address even if the requested line is already present
further down in the queue.  More complicated stream buffers that can provide already-fetched
lines out of sequence are discussed in following sections.

When a line is moved from a stream buffer to the cache, the entries in the stream buffer can
shift up by one and a new successive address is fetched.  The pipelined interface to the second
level allows the buffer to be filled at the maximum bandwidth of the second level cache, and
many cache lines can be in the process of being fetched simultaneously.  For example, assume
the latency to refill a 16B line on a instruction cache miss is 12 cycles.  Consider a memory
interface that is pipelined and can accept a new line request every 4 cycles.  A four-entry stream
buffer can provide 4B instructions at a rate of one per cycle by having three requests outstanding
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at all times. Thus during sequential instruction execution long latency cache misses will not oc-
cur. This is in contrast to the performance of tagged prefetch on purely sequential reference
streams where only one line is being prefetched at a time.  In that case sequential instructions
will only be supplied at a bandwidth equal to one instruction every three cycles (i.e., 12 cycle
latency / 4 instructions per line).

+1

Tail entry

Head entry

tags data Direct mapped cache

From next lower cache

From processor To processor

To next lower cache

tag and
comparator

tag

tag

Stream buffer
(FIFO Queue version)

one cache line of data

one cache line of data

one cache line of data

one cache line of data

tag a

a

a

a

Figure 8: Sequential stream buffer design

Figure 9 shows the performance of a four-entry instruction stream buffer backing a 4KB in-
struction cache and a data stream buffer backing a 4KB data cache, each with 16B lines.  The
graph gives the cumulative number of misses removed based on the number of lines that the
buffer is allowed to prefetch after the original miss.  (In practice the stream buffer would prob-
ably be allowed to fetch until the end of a virtual memory page or a second-level cache line.  The
major reason for plotting stream buffer performance as a function of prefetch length is to get a
better idea of how far streams continue on average.)

3.1.1. Stream Buffer Bandwidth Requirements

Figure 10 gives the bandwidth requirements in three typical stream buffer applications.  I-
stream references for ccom are quite regular (when measured in instructions).  On average a new
16B line must be fetched every 4.2 instructions.  The spacing between references to the stream
buffer increases when the program enters short loops and decreases when the program takes
small forward jumps, such as when skipping an else clause.  Nevertheless the fetch frequency is
quite regular.  This data is for a machine with short functional unit latencies, such as the MIPS
R2000 or the MultiTitan CPU, so the CPI is quite close to 1 without cache misses.
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Figure 9: Sequential stream buffer performance
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Data stream buffer reference timings for linpack and ccom are also given in Figure 10.  The
reference rate for new 16B lines for linpack averages one every 27 instructions.  Since this ver-
sion of linpack is double-precision, this works out to a new iteration of the inner loop every 13.5
instructions. This is larger than one would hope.  This version of linpack is rather loose in that it
does an integer multiply for addressing calculations for each array element, and the loop is not
unrolled. If the loop were unrolled and extensive optimizations were performed the rate of
references would increase, but the rate should still be less than that of the instruction stream.
ccom has interesting trimodal performance.  If the next successive line is used next after a miss it
is required on average only 5 cycles after the miss.  For the next two lines after a miss, succes-
sive data lines (16B) are required every 10 instructions on average.  The first three lines provide
most (82%) of the benefit of the stream buffer.  After that successive lines are required at a rate
closer to that of linpack, about every 24 instructions on average.

In general, if the backing store can produce data at an average bandwidth of a new word (4B)
every cycle, the stream buffer will be able to keep up with successive references.  This should
suffice for instruction streams, as well as for block copies that are heavily unrolled and use
double-precision loads and stores. If this bandwidth is not available, the benefit of instruction
stream buffers will be reduced and block copies and other similar operations will be negatively
impacted. However, bandwidths equaling a new word every 1.5 to 2 cycles will still suffice for
many of the data references. Note that these values are for bandwidths, which are much easier to
achieve than total latencies such as required by the prefetch schemes in Figure 7.

3.1.2. Quasi-Sequential Stream Buffers

In the previous section only one address comparator was provided for the stream buffer.  This
means that even if the requested line was in the stream buffer, but not in the first location with
the comparator, the stream buffer will miss on the reference and its contents will be flushed.
One obvious improvement to this scheme is to place a comparator at each location in the stream
buffer. Then if a cache line is skipped in a quasi-sequential reference pattern, the stream buffer
will still be able to supply the cache line if it has already been fetched.

Figure 12 shows the performance of a stream buffer with three comparators.  The quasi-stream
buffer is able to remove 76% of the instruction-cache misses, an improvement of 4% over a
purely sequential stream buffer, giving a 14% reduction in the number of misses remaining.  This
is probably due to the quasi-stream buffer’s ability to continue useful fetching when code is
skipped, such as when then or else clauses are skipped in if statements. The version simulated
had three comparators, so it could skip at most 2 cache lines plus up to 3/4 of a cache line on
either side depending on alignment, for a total of 16 to 22 instructions maximum.  This compares
with only 0 to 6 instructions that may be skipped in a sequential stream buffer (depending on
branch alignment) without causing the stream buffer to be flushed.

The extra comparators of a quasi-stream buffer also improve the performance of a four-way
data stream buffer.  (A multi-way stream buffer consists of several stream buffers in parallel.
When a miss occurs in the data cache that does not hit in any stream buffer, the stream buffer hit
least recently is cleared (i.e., LRU replacement) and it is started fetching at the miss address.)
Figure 13 shows the performance of a 4-way quasi-stream buffer with three comparators.  Over-
all, a four-way quasi-stream buffer can remove 47% of all misses, which is 4% more than the
purely sequential four-way stream buffer.
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Figure 11: Four-way stream buffer design

In reality, the extra comparators required to convert a data stream buffer into a quasi-stream
buffer are usually required anyway to maintain data consistency.  Otherwise stores that hit in the
data cache and also match an item in the stream buffer will not update or invalidate the stream
buffer entry.  If the cache line written by the store is replaced by another line and then read from
the stream buffer, the old data will be read.

If quasi-stream buffer operation is allowed, the bandwidth required by the stream buffer will
increase. Since lines can be skipped over in a quasi-stream buffer, the bandwidth requirements
of a quasi-stream buffer are potentially as many times larger than a sequential stream buffer as
the ratio in the number of tag comparators between them.  However, to the extent that quasi-
stream buffers show little marginal improvement over sequential stream buffers, the actual
bandwidth increase required should be small.
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Figure 12: Quasi-sequential stream buffer performance
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Figure 13: Quasi-sequential 4-way stream buffer performance
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3.2. Stream Buffer vs. Classical Prefetch Performance

In order to put the performance of stream buffers in perspective, in this section we compare
the performance of stream buffers to some prefetch techniques previously studied in the litera-
ture. The performance of prefetch on miss, tagged prefetch, and always prefetch on our six
benchmarks is presented in Table 3.  This data shows the reduction in misses assuming the use of
these prefetch techniques with a second-level cache latency of one instruction-issue.  Note that
this is quite unrealistic since one-instruction issue latency may be less than a machine cycle, and
second-level caches typically have a latency of many CPU cycles.  Nevertheless, these figures
give an upper bound of the performance of these prefetch techniques.  The performance of the
prefetch algorithms in this study is consistent with data earlier presented in the literature.  For
example, in [9] reductions in miss rate for a PDP-11 trace on a 8KB mixed cache (only mixed
caches were studied) with 16B lines and 8-way set associativity was found to be 27.8% for
prefetch on miss, 50.2% for tagged prefetch, and 51.8% for prefetch always.

fetch ccom yacc met grr liver linpack avg
----------------------------------------------------------------------
4KB instr. cache, direct-mapped, 16B lines, 1-instr prefetch latency:
on miss 44.1 42.4 45.2 55.8 47.3 42.8 46.3
tagged 78.6 74.3 65.7 76.1 89.0 77.2 76.8
always 82.0 80.3 62.5 81.8 89.5 84.4 80.1
----------------------------------------------------------------------
4KB data cache, direct-mapped, 16B lines, 1-instr prefetch latency:
on miss 38.2 10.7 14.1 14.5 49.8 75.7 33.8
tagged 39.7 18.0 21.0 14.8 63.1 83.1 40.0
always 39.3 37.2 18.6 11.7 63.1 83.8 42.3
----------------------------------------------------------------------

Table 3: Upper bound on prefetch performance: percent reduction in misses

Table 4 compares the prefetch performance from Table 3 with the stream buffer performance
presented earlier.  On the instruction side, a simple single stream buffer outperforms prefetch on
miss by a wide margin.  This is not surprising since for a purely sequential reference stream
prefetch on miss will only reduce the number of misses by a factor of two.  Both the simple
single stream buffer and the quasi-stream buffer perform almost as well as tagged prefetch.  As
far as traffic is concerned, the stream buffer will fetch more after a miss than tagged prefetch, but
it will not start fetching on a tag transition, so a comparison of traffic ratios would be interesting
future research.  The performance of the stream buffers on the instruction stream is slightly less
than prefetch always.  This is not surprising, since the performance of prefetch always ap-
proximates the percentage of instructions that are not taken branches, and is an upper bound on
the reduction of instruction cache misses by sequential prefetching.  However, the traffic ratio of
the stream buffer approaches should be much closer to that of prefetch on miss or tagged
prefetch than to prefetch always.

Table 5 compares the performance of stream buffers to other prefetch techniques for data
references. Here both types of 4-way stream buffers outperform the other prefetch strategies.
This is primarily because the prefetch strategies always put the prefetched item in the cache,
even if it is not needed.  The stream buffer approaches only move an item into to the cache if it is
requested, resulting in less pollution than always placing the prefetched data in the cache.  This
is especially important for data references since the spatial locality of data references is less than
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technique misses eliminated
-----------------------------------------------------------
for 4KB direct-mapped instruction cache w/ 16B lines:
prefetch on miss (with 1-instr latency) 46.3%
single stream buffer 72.0%
quasi-stream buffer (3 comparator) 76.0%
tagged prefetch (with 1-instr latency) 76.8%
always prefetch (with 1-instr latency) 80.1%
-----------------------------------------------------------

Table 4: Upper bound of prefetch performance vs. instruction stream buffer performance

that of instruction references, and prefetched data is more likely to be pollution than are
prefetched instructions.

technique misses eliminated
-----------------------------------------------------------
for 4KB direct-mapped data cache w/ 16B lines:
single stream buffer 25.0%
prefetch on miss (with 1-instr latency) 33.8%
tagged prefetch (with 1-instr latency) 40.0%
always prefetch (with 1-instr latency) 42.3%
4-way stream buffer 43.0%
4-way quasi-stream buffer 47.0%
-----------------------------------------------------------

Table 5: Upper bound of prefetch performance vs. data stream buffer performance

Independent of the relative performance of stream buffers and ideal prefetch techniques, the
stream buffer approaches are much more feasible to implement. This is because they can take
advantage of pipelined memory systems (unlike prefetch on miss or tagged prefetch for sequen-
tial reference patterns).  They also have lower latency requirements on prefetched data than the
other prefetching techniques, since they can start fetching a block before the previous block is
used. Finally, at least for instruction stream buffers, the extra hardware required by a stream
buffer is often comparable to the additional tag storage required by tagged prefetch.

4. Combining Long Lines and Stream Buffers

Long cache lines and stream buffers can be used advantageously together, since the strengths
and weaknesses of long lines and stream buffers are complimentary.  For example, long lines
fetch data that, even if not used immediately, will be around for later use.  However, the other
side of this advantage is that excessively long lines can pollute a cache.  On the other hand,
stream buffers do not unnecessarily pollute a cache since they only enter data when it is re-
quested on a miss.  However, at least one reference to successive data must be made relatively
soon, otherwise it will pass out of the stream buffer without being used.

Table 6 gives the performance of various long-line and stream-buffer alternatives for a 4KB
instruction cache.  The first thing to notice is that all the stream buffer approaches, independent
of their line size, outperform all of the longer line size approaches.  In fact, the stream buffer
approaches outperform a hypothetical machine with a line size that can be set to the best value
for each benchmark. The fact that the stream buffers are doing better than this shows that they
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are actually providing an effective line size that varies on a per reference basis within each
program. Also note that the line size used in the stream buffer approaches is not that significant,
although it is very significant if a stream buffer is not used.  Finally, the quasi-stream buffer
capability approximates the performance of purely sequential stream buffers with longer line
sizes. Consider for example a quasi-stream buffer than can skip two 16B lines.  It will have a
"prefetch reach" of between 16 and 22 four-byte instructions depending on alignment.  This is a
little longer span than a sequential 32B line stream buffer (8 to 15 instructions depending on
alignment) and a little shorter than a sequential 64B line stream buffer (16 to 31 instructions).
Thus it is not surprising that the performance of the 16B three-comparator quasi-stream buffer is
between that of a 32B and a 64B line sequential stream buffer.  Given that it is usually easier to
make the cache line size equal to the transfer size, and that transfer sizes larger than 16B seem
unlikely in the near future (at least for microprocessor-based machines), it seems that the use of
quasi-sequential stream buffers with smaller line sizes such as 16B would be the most promising
approach for the instruction cache.  In particular if a quasi-sequential stream buffer is used, line
sizes of greater than 32B have little benefit for 4KB instruction caches.

instr cache configuration misses
(default does not include a miss cache) eliminated
----------------------------------------------------------
32B lines 38.0%
64B lines 55.4%
128B lines 69.7%
optimal line size per program 70.0%
16B lines w/ single stream buffer 72.0%
32B lines w/ single stream buffer 75.2%
16B lines w/ quasi-stream buffer 76.0%
64B lines w/ single stream buffer 77.6%
32B lines w/ quasi-stream buffer 80.0%
64B lines w/ quasi-stream buffer 80.2%
----------------------------------------------------------

Table 6: Improvements relative to a 16B instruction line size without miss caching

Table 7 gives the results for data stream buffers in comparison with longer line sizes, assum-
ing there is no miss cache.  Here the superiority of stream buffers over longer data cache line
sizes is much more pronounced than with long instruction cache lines.  For example, a four-way
quasi-sequential data stream buffer can eliminate twice as many misses as the optimal line size
per program, in comparison to only about 14% better performance for an instruction stream buff-
er over an optimal per-program instruction cache line size.  This is due to the wider range of
localities present in data references.  For example, some data reference patterns consist of
references that are widely separated from previous data references (e.g., manipulation of com-
plex linked data structures), while other reference patterns are sequential for long distances (e.g.,
unit stride array manipulation).  Different instruction reference streams are quite similar by com-
parison. Thus it is not surprising that the ability of stream buffers to provide an effective line
size that varies on a reference-by-reference basis is more important for data caches than for in-
struction caches.

Table 8 presents results assuming that longer data cache line sizes are used in conjunction with
a four-entry miss cache.  The addition of a miss cache improves the performance of the longer
data cache line sizes, but they still underperform the stream buffers.  This is still true even for a
system with a different line size per program.
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data cache configuration misses
(default does not include a miss cache) eliminated
----------------------------------------------------------
64B lines 0.5%
32B lines 1.0%
optimal line size per program 19.2%
16B lines w/ single stream buffer 25.0%
16B lines w/ 4-way stream buffer 43.0%
16B lines w/ 4-way quasi-stream buffer 47.0%
----------------------------------------------------------

Table 7: Improvements relative to a 16B data line size without miss caching

data cache configuration misses
(default includes 4-entry miss cache) eliminated
----------------------------------------------------------
32B lines 24.0%
16B lines w/ single stream buffer 25.0%
64B lines 31.0%
optimal line size per program 38.0%
16B lines w/ 4-way stream buffer 43.0%
16B lines w/ 4-way quasi-stream buffer 47.0%
64B lines w/ 4-way quasi-stream buffer 48.7%
32B lines w/ 4-way quasi-stream buffer 52.1%
----------------------------------------------------------

Table 8: Improvements relative to a 16B data line size and 4-entry miss cache

One obvious way to combine longer lines and stream buffers is to increase the line size up to
the smallest line size that gives a minimum miss rate for some program. In our previous ex-
amples with a four-line miss cache this is a 32B line since this provides a minimum miss rate for
met. Then stream buffers can be used to effectively provide what amounts to a variable line size
extension. With 32B lines and a stream buffer a 68.6% further decrease in misses can be ob-
tained. This does in fact yield the configuration with the best performance. Further increasing
the line size to 64B with a stream buffer is ineffective even though it reduces the average number
of misses in configurations without a stream buffer.  This is because the stream buffer will
provide the same effect as longer cache lines for those references that need it, but will not have
the extra conflict misses associated with longer cache line sizes.

5. Effective Increase in Cache Size

One way of looking at the performance of systems with stream buffers is to consider the effec-
tive increase in cache size provided by using them. Table 9 gives the increase in cache size
required to give the same instruction miss rate as a smaller cache plus a stream buffer.  It is
possible that by adding a stream buffer the compulsory misses are reduced to an extent that
reduces the overall miss rate to a rate lower than that achieved by any cache with a 16B line size.
Asterisks in Table 9 denotes situations where this occurs, or at least the miss rate is reduced
beyond that of a 128KB cache, the largest size simulated. ccom has a particularly bad instruction
cache miss rate, and it has a very large working set, so it benefits the most from instruction
stream buffering.
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program multiple increase in effective cache size
name 1K 2K 4K 8K 16K 32K 64K
-----------------------------------------------------------
ccom 26.3X 16.1X 7.0X 6.1X 4.1X 3.5X *
grr 6.0X 3.5X 4.3X 3.4X 1.8X 2.7X 1.7X
yacc 7.5X 4.1X 3.0X 2.8X 1.9X 1.7X *
met 3.2X 1.8X 2.1X 2.9X 1.9X 3.0X 1.9X
linpack 1.7X 1.9X 3.6X *  *  *  *
liver 4.0X 2.0X *  *  *  *  *
-----------------------------------------------------------

* denotes no cache size below 256KB attains as low a miss rate
as cache with streambuffer

Table 9: Effective increase in instruction cache size provided by streambuffer with 16B lines

Corresponding equivalent increases in effective data cache size provided by the addition of a
4-way stream buffer and a 4-entry victim cache with 16B lines are given in Table 10. linpack
and liver sequentially access very large arrays from one end to the other before returning. Thus
they have very large effective cache size increases since with stream buffering they have equiv-
alent cache sizes equal to their array sizes.

program multiple increase in effective cache size
name 1K 2K 4K 8K 16K 32K 64K
-----------------------------------------------------------
ccom 6.3X 5.0X 3.9X 3.1X 2.3X 1.8X 1.8X
grr 1.6X 1.5X 1.4X 1.2X 3.8X *  *
yacc 1.6X 2.5X 1.7X 1.6X 1.7X 2.1X *
met 1.4X 3.3X 1.2X 1.6X 3.3X 1.8X *
linpack 98.3X 53.6X 30.4X 15.8X *  *  *
liver 26.0X 16.0X 9.5X 8.4X 6.3X 3.4X 1.9X
-----------------------------------------------------------

* denotes no cache size below 256KB attains as low a miss rate
as cache with 4-way streambuffer and 4-entry victim cache

Table 10: Effective increase in data cache size provided with stream buffers and victim caches

6. Compiler Optimizations for Stream Buffers

An interesting area for research is the ability of compilers to reorganize code and data layouts
to maximize the utility of stream buffers.  If techniques to optimize sequentiality of references
are successful, the performance improvement from all types of stream buffers will increase while
the need for more complex stream buffers may be lessened.

In order to estimate the potential value of compiler optimizations for stream buffers, several
experiments were performed. A number of the benchmarks, particularly met and grr receive
little benefit from data stream buffers (e.g., less than a 25% reduction in misses). These
programs perform extensive manipulation of small linked record structures.  In one experiment,
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record accesses and record layouts were rearranged to increase the degree of sequential access,
either by changing the record layout, the code sequences accessing them, or both depending on
the conflicting requirements of different pieces of code.  This resulted in a only very small fur-
ther reduction in miss rate (about 1%).  This poor improvement is probably due to a number of
reasons. First, the records involved were quite small to begin with, only one or two 16B cache
lines long.  Therefore, the number of misses that would be removed by making their access se-
quential ranged from small to zero (depending on their starting address when allocated on the
heap). Second, often programs access record elements sequentially as a mater of programming
style, since it is much easier to make sure that operations on one element are not neglected if
operations on a record are performed in element order.

Another potential optimization is to rearrange loops to process arrays in increasing storage
order. Here again this seems to already be the case in most programs except when the data
structure must be accessed in the opposite order as part of the algorithm.

Thus, except to prevent degenerative cases, compiler optimizations to increase the sequen-
tiality of data access may have little additional benefit for stream buffer operation.

7. Conclusions

One way to reduce the number of compulsory and capacity cache misses is to increase the line
size used in a cache.  Increasing the line size will also increase the number of conflict misses that
occur. This results in the traditional rather shallow minima on curves of miss rate versus line
size. By using miss caches (or victim caches) to ameliorate the increased numbers of conflict
cache misses due to longer cache line sizes, lower overall miss rates can be attained at larger line
sizes than would normally be useful.  Of course, the transfer cost is also a crucial factor when
selecting a cache line size.  However, even after accounting for transfer costs, miss caches (and
presumably victim caches) can make longer cache lines more attractive.

Another way to reduce compulsory and capacity cache misses is with a stream buffer.  Stream
buffers perform strictly better than any fixed line size for a cache by effectively providing a
variable-sized cache line on a per-reference basis.  Stream buffers avoid polluting the cache with
prefetched data since they only load lines into the cache as they are requested.  This yields sig-
nificantly better performance than even the optimal line size per program.

Stream buffers have also been shown to be more effective than ideal (i.e., have 1-instruction
issue latency) implementations of prefetch always, prefetch on miss, and tagged prefetch for data
caches. For instruction caches stream buffers are almost as good as ideal implementations of
tagged prefetch or prefetch always, and better than prefetch on miss. However, since stream
buffers can take advantage of pipelined memory systems by having multiple outstanding re-
quests, the performance of systems with stream buffers in practice can be much higher than these
prefetch techniques.

Stream buffers in conjunction with victim caches can often provide a reduction in miss rate
equivalent to a doubling or quadrupling of cache size.  In some cases the effective increase in
cache size provided by stream buffers and victim caches is larger than that of any size cache.
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Finally, the potential for compiler optimizations to increase the performance of stream buffers
was investigated. Preliminary results suggest that most of the potential cache miss sequentiality
in a program is already present independent of additional optimizations.

This study has concentrated on applying stream buffers to first-level caches.  An interesting
area for future work is the application of these techniques to second-level caches.  Also, the
numeric programs used in this study used unit stride access patterns.  Numeric programs with
non-unit stride and mixed stride access patterns also need to be simulated. Finally, the perfor-
mance of stream buffers needs to be investigated for operating system execution and for mul-
tiprogramming workloads.  To the extent that stream buffers can quickly supply blocks of in-
structions and data, they may be able to reduce the cost of cache misses due to context switches.
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