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Abstract

Processor speeds are improving faster than memory access speeds.  The current
generation of RISC processors can perform many 2-dimensional graphics opera-
tions at memory bandwidth speeds, rendering specialized hardware unnecessary.
This paper describes the DECStation 3100 color frame buffer hardware and
several of the graphics algorithms used in the X server implementation.
Measured performance numbers are presented and compared to memory
bandwidth speed, and possible frame buffer improvements are discussed.
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1. Introduction

Color workstations have typically had a screen size of 1024 columns by 768 to 1024 rows, 8
bits per pixel, and a 1 to 3 MIPS processor.  Except at the very low end, color workstations are
traditionally equipped with special-purpose graphics accelerators in order to achieve reasonable
performance.

The DECStation 3100 supports a 1024x864x8 color display, but uses no special graphics
1hardware. The 14 MIPS R2000 processor paints directly into a simple frame buffer.  We

originally hoped to obtain graphics performance equivalent to the 3 MIPS VAXStation 3100,
which has two specialized graphics chips built using fairly old technology.  We ultimately found
that the frame buffer offers graphics performance roughly 2 to 4 times better than the chip set.

This paper discusses the video memory system and some useful characteristics of the R2000
instruction set.  Graphics algorithms for painting lines and text and for copying data are shown to
illustrate how the server exploits the capabilities of the R2000, and to show the memory
bandwidths these algorithms are capable of using.  Finally, comparing the relative performance
impact of processor speed and memory bandwidth suggests that increasing bandwidth is more
important than using special-purpose hardware to improve rendering computations. Complex
2-dimensional graphics accelerators can still outperform a frame buffer, but for most applications
this is costly overkill: smart code talking to stupid memory is sufficient.

2. Frame Buffer Hardware

The DECStation 3100 color frame buffer is arranged as 1024 rows of 1024 8-bit pixels.  The
display hardware uses each pixel as an index into a 256-entry colormap, which delivers 24 bits of
RGB data to the digital-to-analog video converter.  The smallest address in a scanline (last ten
bits are all 0) displays at the leftmost edge of the screen; the largest address in a scanline (last ten
bits are all 1) displays at the rightmost edge of the screen.

Only the first 864 rows are actually displayed.  In systems with hardware graphics ac-
celerators, the extra 160 rows would be used as an off-screen cache for font information or pix-
maps. We don’t bother using this memory: it offers no performance advantage over main
memory, and would only add to the complexity of memory management.

The processor can read or write any contiguous group of 1 to 4 pixels in a frame buffer word
with one memory access.  Read and write times are nominally 6 cycles each, where a cycle is 60
nanoseconds. Measured times are 400 nanoseconds for a write, 410 for a read, and 760 for a
read followed by a write. Sustained write bandwidth is about 10 megabytes per second; sus-
tained copy bandwidth is about 5.3 megabytes per second.

The frame buffer has an 8-bit planemask, which is replicated 4 times across the word.  A 1 in
the planemask allows the corresponding destination bit to be overwritten, a 0 in the planemask

1Throughout this paper MIPS refers to millions of instructions per second.  R2000 refers specifically to the RISC
chip designed by MIPS Computer Systems, and more generally to the associated support software.  Statements
about the R2000 usually apply to the R3000, R4000, and R6000 architectures as well.
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leaves the destination bit unchanged.  This allows the server to avoid a read/modify/write cycle
when a graphics request specifies a planemask with one or more 0 bits.

3. CPU Hardware

The DECStation 3100 uses a MIPS Computer System R2000 processor [5] with a 60
nanosecond clock.  This processor is generally rated at 12-14 times the speed of a VAX 11/780
on integer operations.

The processor has a 64 kilobyte direct-mapped instruction cache, and a 64 kilobyte write-
through direct-mapped data cache.  We assume that small amounts of code and small data tables
are cached if they have been accessed recently.  Information from the data cache is not available
to the instruction immediately following a load, but the R2000 instruction scheduler usually fills
this load-delay slot with useful work.

Writes to both cached and uncached memory go through a 4-word deep write buffer.  The
buffer is generally good for unrolling loops: the processor executes several store instructions,
then performs loop overhead ‘‘for free’’ while the write buffer drains to memory.  The write
buffer also coalesces sequential writes to contiguous bytes, but the algorithms described below
usually write contiguous bytes in one memory access anyway.

The R2000 chip can be configured for ‘‘big-endian’’ or ‘‘little-endian’’ byte order. For com-
patibility with the VAX architecture, the DECStation 3100 is little-endian, which means that
byte 0 of a word is the least significant 8 bits, and that byte 3 of a word is the most significant 8
bits. All algorithms are described in little-endian terms; with minor modifications they would
work equally well on a big-endian R2000.

4. Addressing the Frame Buffer

In theory, the R2000 memory addressing architecture offers four possibilities for accessing the
frame buffer: addresses can be physical or virtual, and the referenced data can be cached or un-
cached.

In reality, physical addressing is available only in the protected kernel mode; the processor
traps a user program attempting to use a physical address.  The X server can use physical ad-
dresses only if the server is incorporated into the operating system kernel, but putting the server
into the kernel makes it hard to debug and update the server, and reduces the reliability of the
kernel. Instead, the server runs in user mode, and uses virtual addresses to access the frame
buffer; this causes some performance degradation that is discussed later.

We don’t cache accesses to frame buffer memory for several reasons.  First, the displayed
portion of the screen is 864 kilobytes, but the data cache is only 64 kilobytes.  Painting the
contents of even a small window would saturate the cache with screen data, pushing aside large
amounts of useful data already in the cache.  Second, nearly all accesses to the color frame buffer
are write instructions.  Finally, we measured performance of cached and uncached access to the
monochrome frame buffer, which uses 108 kilobytes; due to the configuration of video RAMs
used, this memory is mapped onto only 32 kilobytes of the data cache.  The monochrome paint-
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ing code often performs several read/modify/write cycles on the same word, so we expected the
cache to help some operations substantially.  Benchmarks showed that caching improved paint-
ing at most 10%, and often degraded performance.

5. Useful R2000 Instructions

The R2000 supports several instructions, particularly loads and stores for data smaller than a
32-bit word, that are not found in all RISC architectures.  This section describes the semantics of
these instructions; later sections show how the server uses them to avoid various
read/modify/write idioms, and thus increase performance.

This section describes only the store instructions; there are corresponding load instructions in
each case.  Also note that all load and store instructions contain a 16-bit signed byte offset,
which makes unrolled loops quite efficient.  The server uses a small constant offset for each
unrolled source and destination reference, then increments both pointers by the total number of
bytes processed at the end of the loop.

Store Byte (sb) stores the least significant byte of a register into the specified destination.
Store Halfword (sh) stores the least significant two bytes of a register into the specified
destination, which must be halfword-aligned (the lowest bit of the address must be 0). Store
Word (sw) stores all four bytes into the specified destination, which must be word-aligned (the
low two bits of the address must be 00).

Store Word Right (swr) writes the least significant bytes of the source register to the
most significant bytes of the destination word.  It writes one to four bytes, depending upon the
alignment of the destination address.  Conceptually, it starts at the lowest byte in the source
register, copying byte by byte until it reaches the highest byte of the destination word.  If the
destination address is word-aligned, swr writes all four bytes, and acts just like a Store Word
instruction. If the destination address points to the highest byte of a word (the low two bits of
the address are 11), swr writes the lowest byte of the register into the highest byte of the word.
Figure 1 shows an example of Store Word Right in action.

Store Word Left (swl) writes the most significant bytes of the source register to the
least significant bytes of the destination word. It writes one to four bytes, conceptually starting
at the highest byte in the source register, copying byte by byte until it reaches the lowest byte of
the destination word.  If the destination address points to the highest byte of a word, swl writes
all four bytes of the register to the destination word.  If the destination address points to the
lowest byte of a word, swr writes the highest byte of the register to the lowest byte of the word.
Figure 2 shows an example of Store Word Left in action.

6. X Imaging Modes

X imaging can be broken into two independent problems: computing the shape of the image to
paint, and then filling the interior.  Conceptually, the shape of an image is broken down into a list
of ‘‘spans,’’ where each span is a contiguous sequence of pixels on a scanline.  Then each span is
painted according to the specified fill style.  (For increased speed, many algorithms fill each span
immediately, and may also precompute information common to all spans in an object.)
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swr src, 0(pdst)

source register

Before

After

33 22 11 00

DD CC BB AA

destination pointer

22 11 00 AA

aligned memory word

aligned memory word

Figure 1: The Store Word Right instruction

swl src, 0(pdst)

source register

Before

After

33 22 11 00

DD CC BB AA

destination pointer

DD CC 33 22

aligned memory word

aligned memory word

Figure 2: The Store Word Left instruction

There are four fill styles in X: solid, transparent stipple, opaque stipple, and pixel copy.  The
following sections describe these fill styles, and sketch ways to deal with the ragged left and
right edges of a span.  Most of the actual implementation techniques for painting these fill styles
are described later.

All fill styles are described in terms of a single span, but in reality a shape consists of an
arbitrary number of spans.  And the word ‘‘overwrite’’ should really be interpreted as ‘‘the cur-
rent graphics function is applied to the source pixel and the destination pixel.’’  Only the most
common graphics function, GXcopy, actually overwrites the destination with the source pixel.
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6.1. Solid fill

A solid fill style is the simplest possible.  The server paints the foreground pixel into the span.
Figure 3 shows the first three pixels of a solid fill.

Solid Fill

foreground register

Before

After

fg fg fg fg

DD CC BB AA

destination pointer

fg fg fg AA

aligned memory word

aligned memory word

Figure 3: Solid fill style

Whenever possible, the server uses 32-bit writes to the frame buffer for maximum speed.  For
solid fill, the server replicates the foreground pixel across all four bytes of the source register,
and fills the interior of the span using Store Word.

Spans are aligned only to pixel boundaries, and not word boundaries, so the server must treat
the left and right edge of a span specially.  These ‘‘ragged’’ edges may not fill an entire word: at
the left edge of a span the server might have to paint one to three bytes into the highest bytes of a
word; at the right edge it might have to paint one to three bytes into the lowest bytes of a word.

On most architectures, the server could paint the ragged left edge in one of two ways.  The
server could perform shifting and masking operations based on the bottom two bits of the des-
tination address, or it could use these two bits to branch into four separate pieces of code.  At the
right edge, the server could use the same technique, but use the bottom two bits of the number of
pixels still left to paint.

On the R2000, the Store Word Left and Store Word Right instructions, which
were originally intended for writing unaligned 32-bit words, prove unexpectedly useful for paint-
ing ragged edges.

To paint the ragged left edge, the server writes the source data using swr, then increments the
destination pointer and decrements the width count by the number of bytes written.  Since swr
writes one to four bytes, the server doesn’t bother special-casing a pointer that is already word-
aligned, but unconditionally uses swr at the left edge of a span.  (If the span is so short that it is
completely contained within a single word, then the server just executes the proper store instruc-
tions.)
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Painting the ragged bytes at the right edge of a span is slightly more complex.  When the
server exits the word painting loop, there are four or fewer bytes remaining to paint. The server
then uses swl with the address of the last byte to be painted.  (In non-solid fill styles, where the
source data does not contain the same pixel in all four bytes, the server has to shift the source
data up into the most significant bytes of the source register.)  Again, since swl writes one to
four bytes, the server unconditionally uses swl at the right edge of a span.

Figure 4 shows a prototype of the solid fill painting code.  This fragment is used only if the
span is wide enough to touch two words in the frame buffer.

Pixel8 *pdst;
int width, raggedLeftBytes;
Pixel32 foreground;

/* Paint ragged left edge */
StoreWordRight(foreground, pdst[0]);
raggedLeftBytes = 4 - (pdst & 3);
width -= raggedLeftBytes;
pdst += raggedLeftBytes;

/* Paint full words until 1-4 pixels left */
while (width > 4) do {

StoreWord(foreground, pdst[0]);
width -= 4;
pdst += 4;

}

/* Paint ragged right edge */
pdst += width;
StoreWordLeft(foreground, pdst[-1]);

Figure 4: Solid fill painting code

6.2. Transparent stipple

Transparent stipple maps a bitmap into pixels. For each 0 in the bitmap, the server leaves the
corresponding destination pixel unmodified.  For each 1 in the bitmap, the server overwrites the
corresponding destination pixel with the foreground pixel.  Figure 5 shows the first three pixels
of a transparent stipple fill.

All techniques for painting transparent stipples are fairly big and ugly.  Rather than repeat this
ugliness several times---at least once for narrow spans, and three more times for the left edge,
middle, and right edge of wider spans---the server exploits the ‘‘nop’’ behavior of 0 to handle
ragged edges.

At the left edge of a span, the server always aligns the destination pointer to a word boundary.
It does this by logically shifting the stipple bits left, using the bottom two bits of the destination
pointer to determine the length of the shift.  If the bottom bits are 00, the server shifts the stipple
left 0 bits; if the bottom bits are 11, the server shifts the stipple left 3 bits.  The server then
compensates for the extra 0 bits shifted in by setting the bottom two bits of the pointer to 00,
which backs up the destination pointer to the beginning of the word.
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Transparent stipple

Stipple bits

Before

After

DD CC BB AA

destination pointer

fg CC fg AA

. . . 1 0 1

aligned memory word

aligned memory word

Figure 5: Transparent stipple fill style

At the right edge, the server just masks off any stipple bits past the end of the span.  These
adjustments to the stipple data effectively make all transparent stipple spans word-aligned at both
the left and right edge.

The server exploits the nop property of 0 for speed, too: it stops painting the span when all
remaining stipple bits are 0, rather than processing all stipple bits for the width of the span.

6.3. Opaque stipple

Opaque stipple also maps a bitmap into pixels.  For each 0 in the bitmap it overwrites the
corresponding destination pixel with the background pixel; for each 1 it writes the foreground
pixel. Figure 6 shows the first three pixels of an opaque stipple fill.

Opaque stipple

Stipple bits

Before

After

DD CC BB AA

destination pointer

fg bg fg AA

. . . 1 0 1

aligned memory word

aligned memory word

Figure 6: Opaque stipple fill style
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The server uses Store Word Right at the left edge, and Store Word Left at the
right edge.  At the right edge it must shift data to the most significant bytes of the source register
before writing with swl.

6.4. Pixel copy

The pixel copy fill style copies pixels from the specified source to the destination. Source and
destination can be in any alignment with respect to one another.  To maximize throughput, the
server usually reads and writes aligned words, making alignment adjustments by shifting the data
in intermediate registers.  Figure 7 shows the first two pixels of a pixel copy fill.

The source data for the ragged right edge may span two words, so the server doesn’t use swl,
but copies byte-by-byte for the final one to three pixels.  The source data for the ragged left edge
may span two words as well, but setup for the word painting loop makes it easy to use swr.

Pixel Copy

source pointer

Before

After

33 22 11 00

DD CC BB AA

destination pointer

22 11 BB AA

aligned memory word

aligned memory word

aligned memory word

Figure 7: PixelCopy fill style

7. X Graphics Requests

The X protocol contains several types of drawing requests.  This paper discusses only a hand-
ful of them, in order to illustrate how to efficiently implement the various fill styles in realistic
settings. PolyText and ImageText show implementation techniques for transparent and
opaque stipples, respectively. CopyArea shows techniques for pixel copies. Finally, the sec-
tion on line drawing shows how published algorithms are often expressed in a form that is non-
optimal, and how these algorithms can be rewritten into more efficient forms using simple math-
ematical transformations.

The X protocol permits drawing with any of 16 graphics functions, which correspond to the 16
possible Boolean functions of two arguments. The source pixels form the first argument, the
pixels already residing at the destination address form the second argument.  In all cases the
algorithms described are designed to work best with a graphics function of GXcopy, which
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overwrites the destination pixels with the computed source pixels.  The other 15 graphics func-
tions are used much less frequently---less than 1% of the graphics requests in most applications.
There are a small class of applications that allocate several planes of the colormap and use
graphics functions like GXxor, GXand, and GXor much more frequently.  In some cases, dif-
ferent implementation techniques would result in slightly faster algorithms for these graphics
functions.

All performance numbers shown are from the x11perf X server evaluation program, which
measures elapsed time for the server to execute various graphics and window management re-
quests. We used this program extensively in order to time and tune our code.

7.1. PolyText

Applications often use the PolyText request to paint a string of characters onto the screen.
The server first looks up the font-specific glyph for each character, which is simply a bitmap
picture. The server then paints one glyph at a time using transparent stipple semantics: it paints
the foreground pixel where there is a corresponding 1 in the glyph, and leaves the destination
unmodified where there is a 0 in the glyph. Figure 8 shows how the character code for ‘‘Z’’ is
painted.

 1  1  1  1

 0  0  1  0

 0  1  0  0

 1  1  1  1

‘‘Z’’

Foreground

Existing pixels

Character Glyph bitmap Screen

Figure 8: PolyText paints a ‘‘Z’’

PolyText is most often used by WYSIWYG editors; such editors paint a line of characters
by painting a background rectangle as high as the tallest font in the line, then painting characters
with PolyText. This avoids problems with mixing fonts of different heights on the same line.

The traditional way to implement transparent stipple is to read the destination word, mask out
the pixels to be overwritten, merge in the new pixels, and finally write the modified word back
out to memory.  Figure 9 shows this process graphically, as well as the C code to implement it.

The main problem with this technique is its poor performance.  The best possible code takes
16 cycles for each 4 bits of glyph, including loop overhead. Even if all computation could be
hidden, the reading and writing would still cost nearly 13 cycles.
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. . . 1 0 0 1

00

00 FF FF 00

Glyph bits

Foreground

00 00

Destination

00

index = glyphbits & 0xf;  /* Get 4 bits of glyph */
mask = masktable[index]; /* Get mask */
dstm = *pdst & mask; /* Mask destination */
srcm = fgword & ~mask; /* Reverse mask foreground */
*pdst = dstm | srcm; /* Merge the two */

Figure 9: PolyText implemented with read/modify/write

Another problem arises when this technique is applied to graphics functions other than
GXcopy. The server cannot simply zero out the destination pixels and merge in the foreground
pixels, but must perform equivalent operations appropriate to the graphics function. For ex-
ample, GXxor shouldn’t mask anything from the destination, while GXinvert must invert the
appropriate destination bits and ignore the foreground completely.

The server avoids both problems entirely.  By using the store instructions judiciously, the
server can write almost any group of one to four contiguous bytes of a word in one memory
cycle. The only exception is the middle two bytes, which require two separate writes.  Thus, out
of the 16 possible pixel patterns represented by 4 glyph bits, 1 case needs 0 write instructions, 9
cases need 1 write instruction, and the remaining 6 cases need 2 write instructions, as shown in
figure 10.  (The fg register has the foreground pixel replicated across all four bytes.)

Figure 10 shows a total of 21 write instructions, so if all 16 cases are equally likely, each four
bits of the glyph requires an average of 1 5/16 writes, or 8 3/4 cycles.  In reality, character glyphs
are composed of contiguous groups of bits more often than random chance, and the painting
code stops as soon as all remining glyph bits are zero, so these numbers are somewhat conser-
vative. Even the worst case of two writes for each four bits is better than the read/modify/write
strategy.

How quickly can the R2000 examine four bits of the glyph and branch to the right sequence of
writes? The R2000 C compiler is quite good overall, but the front end does not work well in this
case, nor does the instruction scheduler.  The C front end generates excessive code to dispatch a
switch statement---evidently the compiler designers assumed that the code in each branch
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sb fg, 0(pdst)

sb 1(pdst)

sh fg, 0(pdst)

sb fg, 2(pdst)

swl fg, 2(pdst)

sb fg, 3(pdst)

sh fg, 2(pdst)

swr fg, 1(pdst)

sw fg, 0(pdst)

(no writes)

sb fg, 0(pdst); sb fg, 2(pdst)

sb fg, 1(pdst); sb fg, 2(pdst)

 3  2  1  0

sb fg, 0(pdst); sb fg, 3(pdst)

sb fg, 1(pdst); sb fg, 3(pdst)

sh fg, 0(pdst); sb fg, 3(pst)

sb fg, 0(pdst); sh fg, 2(pdst)

Bytes writtenWrites required Write instructions

0

1

1

1

2

1

2

2

2

1

1

2

2

1

1

1

Figure 10: PolyText using only write instructions

would be relatively large.  The instruction scheduler does not move code up through the case
branches in order to fill load-delay and jump-delay slots, nor does it copy tiny (one or two in-
struction) basic blocks up to blocks that unconditionally jump to them.  The resulting code has
tests that needn’t be executed, unfilled delay slots, and a high branching frequency.

The result?  The compiler generates 16 instructions of branch and loop overhead. Assuming
an average of 1 5/16 write instructions, this totals 17 5/16 instructions.  The C code paints the
variable-pitch font Times Roman 10 (75 dpi) at about 45,000 characters per second, and the
fixed width and height font 6x13 at about 32,000 characters per second.  These are respectable
numbers, but don’t approach what is possible.
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The color server uses assembly code to implement the above algorithm.  Coding in assembler
allows optimizations that even a very good compiler and code scheduler would probably miss.
In the assembly language version, all 16 case branches are exactly 8 instructions long.  Rather
than using the bottom 4 glyph bits to index into a case branch table, the assembly code computes
an offset from a known instruction, and branches directly to the computed location.  Each case
contains loop termination code for all three nested loops in which the painting code is
embedded---the inner ‘‘loop’’ executes only one to three times per glyph scanline for commonly
used fonts, so minimizing all loop overhead is important.  And in the assembly version, all delay
slots are filled with useful work.

The assembly code paints four glyph bits in an average of 8 5/16 instructions, which is slightly
below the (pessimistic) average memory write time of 8 3/4 cycles. The assembly code paints
Times Roman 10 at 58,000 characters per second.  With one more improvement described in the
section below, the assembly code paints 6x13 at 65,000 characters per second, which works out
to 5 megabytes per second (though only the foreground pixels are actually painted, of course).

7.2. ImageText

The ImageText request is similar to PolyText, but paints each glyph using opaque stipple
semantics. Since different glyphs in the font may have different heights and widths---the charac-
ter ‘‘:’’ might map to a 2x7 glyph, while the character ‘‘H’’ might map to a 5x9 glyph---each
glyph is conceptually extended up and down with 0 bits to the overall font height.  The space
between glyphs is also conceptually filled with 0 bits.

ImageText is intended mainly for use in terminal emulators, which use fonts in which every
glyph has the same width and height (for example, every glyph in 6x13 is 6 bits wide by 13 bits
high). Some text windows that allow only one (possibly variable-pitch) font also use
ImageText, since all glyphs in the font are extended to the same height.

The easiest way to implement ImageText is to clear the background rectangle, then use the
PolyText code to paint in the foreground pixels.  This simple technique works surprisingly
well, and the color server paints all variable-pitch fonts this way.  Trying to paint background
and foreground simultaneously is hard: each glyph must be extended up and down, the space
between glyphs must be filled in, and in some fonts information from two adjacent glyphs can
overlap (as with an overstrike character).  Rather than deal with these complications, we ul-
timately settled for an ImageText rate of 43,000 characters per second for the Times Roman
10 font.

The server painted the 6x13 font at only about 35,000 characters per second using this tech-
nique. Since fixed-metric fonts contain glyphs that are all the same size and which never overlap,
it is easy to paint the background and foreground simultaneously.  We thought it would be much
faster to map each four bits of the glyph into 4 pixels, as shown in table 1, then write the derived
word to memory.

The results were disappointing.  Assembly language ImageText code painted 6x13 only 3%
faster than the simple code that let PolyText do most of the work.  The problem lies in the
narrowness of the glyphs.  The PolyText technique clears a large rectangle, and deals with
alignment effects only at the left and right edges.  It then dabs the foreground onto this area by
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Glyph bits fg/bg pixels
0000 bg bg bg bg
0001 bg bg bg  fg
0010 bg bg  fg bg

. . . . . .
1111 fg fg fg fg

Table 1: Foreground/background mapping table for opaque stipple

painting a few pixels here and there.  The ImageText code deals with alignment on every
glyph; averaging over the four possible alignments of a 6-bit wide glyph gives us 1.5 writes per
four bits of glyph.  And overhead is quite high, as the inner ‘‘loop’’ is executed at most once.

Several people had suggested that all text painting might be done a scanline at a time, rather
than glyph by glyph.  That is, the server should paint the entire top line of a string, then the next
line, etc. Sketch implementations suggested that a general scanline algorithm would shuffle
overhead around without improving painting rates, as the write-through cache can’t be used to
assemble data very efficiently.

However, this technique works well on a smaller scale, using registers to hold one row of
information from a small number of glyphs.  The assembly-language implementation of
ImageText for fixed-width fonts of width 8 or less processes four glyphs at a time.  All four
glyph rows fit into a single 32-bit word, and assembling the word is easy.  The 6x13

2ImageText rate is now 60,000 characters per second, or about 4.7 megabytes per second. At
this speed, it is faster to regenerate text windows from scratch than it is copy them to and from
backing storage.

The server should be extended to use the same technique to paint three glyphs at a time for
fonts of width 9 or 10, and to paint two glyphs at a time for fonts of width 11 to 16.  Though
these fonts are used infrequently today, users will switch to larger fonts as screen densities in-
crease.

7.3. CopyArea

The CopyArea request copies pixels from one rectangle to another rectangle of the same
size. If the origins of the source and destination rectangles are assumed to be random, they are
aligned (have the same two low-order bits) 1/4 of the time.  In reality, many applications scroll
data vertically, so the aligned case occurs much more frequently.

It would seem an easy matter to optimize the scrolling case, but experience proved otherwise.
The server does a bit of work at the left and right edges, but copies all words in between directly
from source to destination, with no data massaging necessary.  The hardware designers claimed
that turning around the memory controller chip from read to write mode took two cycles; in
order to reduce this cost, the server read in four words from the source, then wrote four words to
the destination.  This code should have achieved just over 5 megabytes per second, but only hit
4.7 megabytes.

2Keith Packard at MIT has implemented this technique in C, and gets 46,000 characters per second.
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Some time later, we measured performance of the X11 version 3 color frame buffer code from
MIT. The MIT code scrolled large areas at 4.95 megabytes per second.  Investigation showed
that the R2000 instruction scheduler had pessimized rather than optimized our code:  it had
moved all loop overhead code before the stores, so the overhead code no longer executed in the
write buffer’s shadow.

Rescheduling the compiler-generated assembly sources by hand didn’t improve performance.
The faster MIT code copied four words at a time in an unwound loop, but always wrote each
word as soon as it read it.  An even simpler loop resulted in even better performance: the current
loop copies a single word per iteration, and achieves a scrolling rate of 5.3 megabytes per
second.

No one has adequately explained this oddity.  The fastest memory writing loop takes about
400-410 nanoseconds per word.  The fastest memory reading loop is about 10 nanoseconds
slower. The fastest read/write loop is only about 760 nanoseconds per word. The moral of the
story: tuning based on measured performance gets better results than tuning based on theoretical
calculations.

For unaligned source and destination pointers, the server reads each source word once, and
writes each destination word once, which requires the processor to rotate and merge words. On
the R2000, this operation takes three instructions: shift one data word left, shift the other data
word right, and merge the shifted words.  The server uses logical shifts that bring in 0 bits in
order to avoid masking operations.  (Some RISC machines, such as the WRL Titan [7], offer a
register extract instruction.  This instruction gets a 32-bit word from any position in the con-
catenation of two registers, allowing the rotate and merge operation to execute in one cycle.)

Loop overhead plus merging words is slower than the available memory bandwidth, so the
server unrolls the loop four times.  Copying large areas when source and destination are evenly
distributed among all four alignments executes at 4.9 megabytes per second.

7.4. Lines

The X protocol precisely specifies which pixels are affected for line widths of 1 or greater.
The protocol attaches much looser constraints to a line width of 0; servers still paint a line ap-
proximately 1 pixel in width, but use much faster software algorithms or existing graphics
hardware. This section deals only with painting 0-width lines.

Bresenham’s line drawing algorithm [3] uses integer arithmetic to keep track of a line’s dis-
tance from the nearest pixel, and paints one pixel in each iteration.  For a line with a slope be-
tween 0 and 1, the algorithm always steps right one pixel.  If the vertical distance to the line from
this new position is less than 1/2 pixel, the algorithm stays on the same scanline; otherwise, it
steps up one pixel as well.

In the literature, Bresenham code for lines is almost always non-optimal for a software im-
plementation. For example, References [4], [6], [8] all show algorithms akin to the following:
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*pdst = fg;
if (e > 0) {

pdst += scanlineWidth;
e += e2;

} else {
e += e1;

}
pdst++;

The variable e represents the distance of the pixel from the line.  The adjustment e1
represents the incremental distance to add for a horizontal step, while e2 is the incremental dis-
tance to add for a diagonal step.

The derivation of integer algorithms for lines and conic sections in Reference [8] have a clear
advantage over the other works.  The resulting algorithms show how the derivations were ach-
ieved, and also keep terms broken into pieces that are easy to rearrange into more efficient
forms.

For example, the else part can be removed entirely by unconditionally adding e1 to e, and
compensating for this by using e2’ = e2 - e1. Though not an issue on RISC machines, the
if usually generates a test instruction to set condition codes on CISC machines.  This test is
unnecessary if the new value of e is computed immediately before the test.  We can move the
computation if we offset e’ = e - e1. The improved algorithm is:

*pdst = fg;
e’ += e1;
if (e’ > 0) {

e’ += e2’;
pdst += scanlineWidth;

}
pdst++;

The color server unrolls the loop surrounding this code four times. Each point takes 5 3/4
instructions on average for lines with slope less than 1, and 6 3/4 instructions on average for
lines with greater slopes.

Early benchmarks of line drawing speed on the DECStation 3100 showed performance at least
five times slower than projected.  A program that measures the time it takes to handle Trans-
lation Lookaside Buffer (TLB) traps showed that the kernel was taking about 38 microseconds
every time it accessed a page of frame buffer memory not currently in the TLB.  On the R2000,
the TLB effectively contains 56 4-kilobyte pages.  Each scanline of the color frame buffer is 1
kilobyte, so a page spans 4 scanlines.  The entire screen is 216 pages, or almost four times the
size of the TLB.  Any line that covered much vertical distance spent most of its time faulting, not
painting.

The R2000 kernel is capable of handling most TLB faults in 17 instructions, which is a tad
longer than a microsecond.  But the kernel had incorrectly set up the virtual memory interface to
the frame buffer, which caused every frame buffer TLB fault to take a very slow path.  Once this
problem was remedied, line drawing sped up about 9 times, and many other operations sped up 2
to 3 times.
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Even so, any line with a sloper greater than 1 hits a new page every four pixels.  While it is
theoretically possible to paint long lines (500 pixels) at about 2.5 megabytes per second, TLB
filling reduces this rate to 2.0 megabytes per second. Lines that are 10 pixels long and evenly
distributed among all orientations paint at 47,000 lines per second, or about 1/4 available
bandwidth.

The trend toward larger page sizes will reduce TLB faulting on frame buffer accesses some-
what, but frame buffers are getting larger at the same time.  The best solution is to include a
special TLB entry dedicated to mapping a frame buffer into virtual memory; if this entry points
to an 8 or 16 megabyte page, accesses to even a very large frame buffer never cause a TLB fault.

8. Building a Better Frame Buffer

The R2000 can saturate or nearly saturate memory bandwidth for a large number of graphics
operations. The R3000 chip has been available for several months, and runs about 50% faster
than the R2000.  Faster processors are on the drawing board.  As processors get faster, more and
more operations will fall into the bandwidth-limited domain.  Obviously, memory bandwidth
needs to be increased.

Graphics processors from Sun Microsystems and Silicon Graphics have memory bandwidths
in the range of 80 to 110 megabytes per second, which is about 10 times faster than the DECSta-
tion 3100. High-speed graphics processors get bandwidth in several ways: they use memory
interleaving, they don’t communicate with memory over a general-purpose bus, and they often
use a 64-bit (or wider) path to memory. Note that this bandwidth is very asymmetric: though
wide objects paint at 80 megabytes per second, vertical lines usually paint at less than 4
megabytes per second.

By definition, a frame buffer shares the bus with the processor, which leaves only memory
interleaving for increasing bandwidth.  But as memory densities increase, interleaving pos-
sibilities decrease.  The DECStation 3100 uses 8 256x4 bit video RAMs to provide 1 megabyte
of memory.  At this density, the only way to interleave is to double or quadruple memory, and let
the server use the extra memory as it sees fit.  Note, however, that video RAMs cost about twice
as much as ordinary dynamic RAMs.

Fortunately, video RAMs are now providing ‘‘page-mode’’ or ‘‘static-column’’ addressing.
The first access to a memory location requires a complete memory cycle, but subsequent read or
write accesses to the same internal page are much faster.  If the bus is designed carefully, it
should be possible to get data rates of about 32 to 40 megabytes per second without much ad-
ditional expense.  The internal page size of a 256x8 video RAM translates into two 1024-byte
scanlines, so page-mode access improves vertical line drawing to 4 to 5 megabytes per second.

9. Frame Buffers vs. Graphics Processors

Frame buffers are simple and cheap to build.  Better yet, you don’t have to get everything right
to ship a machine.  Each release of the DECStation 3100 color server has incorporated sig-
nificant performance enhancements.  Even so, some graphics requests are still slow; as we work
out improved algorithms for these requests, we can offer better performance with no hardware
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changes. And page-mode access could increase performance substantially with only minimal
code changes.

On the other hand, a frame buffer offers no parallelism between setting up paint requests, and
performing the actual painting.  The color frame buffer paints short lines at only 1/4 of currently
available bandwidth, and this ratio will get worse with faster memory.  A server might paint
short lines two to ten times faster if some of this work were offloaded to a specialized graphics
processor. This parallelism seems to be the greatest advantage of hardware accelerators.  Ironi-
cally, preliminary performance numbers for the Silicon Graphics and Sun GX X implemen-
tations show that the dumb frame buffer code outperforms these implementations on small ob-
jects, and only falls behind on large objects.  (These early implementations should improve sub-
stantially, as applications that write directly to the graphics controllers obtain much better perfor-
mance.)

Even though specialized graphics hardware can offer better 2-dimensional performance than a
frame buffer, this advantage will soon be inconsequential for most applications.  Like nuclear
arsenals, at some point enough is enough. Users don’t care if they can paint text at 200,000
characters per second using a graphics accelerator, but only 150,000 characters per second on a
frame buffer: both devices paint a page of text instantaneously for all practical purposes.  The
frame buffer, once a poor man’s graphic device, is sufficient for all but the most demanding
applications.
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