
EK-RB730-TD-OO l

VAX-11/730 IDC
Technical Description

Prepared by Educational Services
of

Digital Equipment Corporation

First Edition, September 1982

Copyright ~ 1982 by Digital Equipment Corporation

All Rights Reserved

The material in this manual is for informafional purposes and is
subject to change without notice.

Digital Equipment Corporation assumes no responsibility for any
errors which may appear in this manual.

Printed in U.S.A.

This document was set on DIGIT AL ·s DECset-8000 computerized
typesetting system.

The following are trademarks of Digital Equipment Corporation,
Maynard, Massachusetts:

mamaomn
DEC
PDP
DEC US
UNIBUS

DEC system- I 0
DECSYSTEM-20
DIBOL
EDU SYSTEM
VAX
VMS

MASS BUS
OMNIBUS
OS/8
RSTS
RSX
IAS

CHAPTER 1

I. I
1.2
1.3
1.4
1.4. l
1.4.2
1.4.3
1.4.4
1.4.5
1.4.6
1.4.7

CHAPTER 2

2.1
2.2
2.2.l
2.2. l. I
2.2. l.2
2.2. l.3
2.2.1.4

. 2.2.1.5
2.2. l.6
2.2. l. 7
2.2.2
2.2.3
2.2.3. I
2.2.3.2
2.2.3.3
2.2.4
2.2.5
2.2.6
2.2.7
2.2.8
2.3
2.3.1
2.3.2
2.3.3
2.3.4
2.3.5

2.3.6
2.3.7
2.3.8

CONTENTS

INTRODUCTION

GENERAL DESCRIPTION .. 1-1
PHYSICAL DESCRIPTION .. 1-1
POWER REQUIREMENTS .. 1-3
FUNCTIONAL DESCRIPTION .. 1-4

Disk Drive Select and Drive Status Monitor .. 1-4
Asserting Disk Drive Commands .. 1-4
Synchronization of IDC Operation ... 1-4
Address Location .. 1-4
Data Transfers .. 1-5
Verifying Data Integrity .. 1-5
Status Word Generation .. 1-5

INTERFACES

IDC INTERFACES ... 2-1
IDC/PORT BUS AND UNIBUS INTERFACES ... 2-1

Control Words .. : 2-3
IDC Control Word .. 2-3
Disk Drive Control Words .. 2-3
RL02 Get Status Command ... 2-3
RL02 Seek Command ... 2-3
R80 Seek Command .. 2-3
R80 Head Select Command ... 2-8
R80 Recalibrate Command .. 2-8

Address Information .. ~.2-8
Status Information .. 2-8

IDC Status Word .. 2-8
RL02 Status .. 2-8
R80 Status .. 2-8

Error Detection Information .. 2-8
Port Microinstruction Inputs .. 2-16
PORT INSTR Input ... 2-16
READ PORT and SEL ACC IN Inputs ... 2-16
CPU P2 and PORT CLOCK Inputs ... 2-16

IDC/R80 INTERFACE .. 2-16
R80 TAG 3:1 and R80 TAG BUS 9:0 .. 2-16
ACLO, GND, and R80 INITIALIZE .. 2-21
R80 WRITE DAT A and R80 WRITE CLOCK ... 2-21
R80 SECTOR COUNT I, 2, 4, 8, and 16 ... 2-21
R80 FAULT, R80 PLUG VALID, R80 SEEK ERROR,
R80 ON CYLINDER, R80 DRIVE READY, and R80
WRITE PROTECT ... 2-21
R80 SELECT ADDRESS 1 and 2 ... 2-21
R80 INDEX PULSE and R80 SECTOR PULSE ... 2-23
R80 READ DAT A and R80 READ CLOCK ... 2-23

Ill

2.4
2.4. I
2.4.2
2.4.3
2.4.4
2.4.5
2.4.6
2.4.7
2.4.8
2.4.9

CHAPTER 3

3.1
3.2
3.2.l
3.2.1.1
3.2. l.2
3.2.2
3.2.3.

3.2.3.1

3.2.3.2

3.2.3.3

3.2.3.4

3.2.3.5
3.3
3.3.1
3.3.2
3.3.3
3.3.4
3.3.5

3.3.6
3.3.7
3.3.8
3.3.9
3.3.10
3.3.11
3.3.12
3.3.13
3.3.14
3.3.15
3.3.16
3.3.17
3.3.18
3.3.19

IDC/RL02 INTERFACE ... 2-23
RL DRIVE COMMAND and RL SYSTEM CLOCK 2-23
RL DRIVE SELECT 0 and I .. 2-25
POWER FAIL (ACL0) .. 2-25
RL WRITE GATE and RL WRITE DATA ... 2-25
RL DRIVE READY ... 2-26
RL DRIVE ERROR .. 2-26
RL STATUS and RL STATUS CLOCK ... 2-26
RL SECTOR PULSE ... 2-26
RL READ DATA ... 2-26

THEORY OF OPERATION

IOC FUNCTIONS ... 3-1
OVERALL IDC OPERATION .. 3-3

Initiating IDC Functions .. 3-3
Loading Required Inputs .. 3-3
Loading the IDC Control Word .. 3-3

IOC Operation .. 3-4
Transfer of Information and Data
from IDC to CPU ... 3-4

JDC Status Information Transfer
(IDC to CPU) ... 3-4
Disk Drive Status Information Transfer
(IDC to CPU) .. 3-4
ECC/CRC Error Detection Information Transfer
(IDC to CPU) ... 3-5
Current Address Information Transfer
(IDC to CPU) ... 3-5
Data Transfer (IDC to CPU) .. 3-5

OVERALL IDC LOGIC FAMILIARIZATION .. 3-5
IDC Port Control Logic ... 3-5
Microcontroller ... 3-6
Y-Bus Transceivers .. 3-6
Disk Address Register ... 3-6
Data Input Register, Data Buffer, and Data
Register Control Logic, Data Output Register,
Read Data Tristate Drivers, and R80 Multiplexer .. 3-6
Control Status Register .. 3-6
Clock Control ... 3-9
TAG Bus Control .. 3-9
Serializer .. 3-9
Header/Data Comparator .. 3-9
Data Shift Register .. 3-9
NRZ Data Formatter .. 3-10
MFM Encoder ... 3-10
ECC/CRC Logic .. 3-10
Read Data Separator ... 3-10
Status/Data Gate .. 3-10
Disk Data Multiplexer ... 3-10
Data Synchronizer .. 3-10
Sector and Index Pulse Multiplexer and Synchronizer. 3-10

IV

3.4
3.4.1
3.4.1.1
3.4.1.2
3.4.2
3.4.3
3.4.4
3.4.4.1
3.4.4.2
3.4.5
3.4.5.1

3.4.5.2

3.4.6
3.4.6.1
3.4.6.2
3.4.7
3.4.8
3.5
3.5.1

3.5.1.1
3.5.1.2
3.5.1.3
3.5.1.4
3.5.2
3.5.2.1

3.5.2.2
3.5.2.3
3.5.3
3.5.3.1
3.5.3.2
3.5.3.3
3.5.4
3.5.5
3.5.6

3.5.6. l
3.5.6.2
3.5.7
3.5.8
3.5.9
3.5.9.1
3.5.9.2
3.5. l 0

3.5.10.1
3.5. l 0.2
3.5.11

3.5.12

JDC FUNCTIONAL THEORY OF OPERATION · 3-11
Seek Functions .. 3-12

RL02 Seek .. 3-12
R80 Seek ... 3-12

RL02 Get Status ... 3-13
R80 Get Status ... 3-14
Read Header ... 3-14

RL02 Read Header ... : 3-14
R80 Read Header ... 3-15

Write Data, Read Data, and Write Check Data ... 3-16
RL02 Write Data, Read Data, and Write
Check ... 3-17
R80 Write Data. Read Data, and Write
Check ... 3-24

Read Data Without Header Check ... 3-32
RL02 Read Data Without Header Check .. 3-32
R80 Read Data Without Header Check .. 3-34

Write Format .. 3-37
Idle Mode ... 3-38

DETAILED FUNCTIONAL DESCRIPTIONS .. 3-38
Disk Drive Selection and Drive
Status Monitor ... 3-38

Generation of DRIVE SEL 0 and 1 ... 3-39
Generation of RL02 and R80 ... 3-39
Gating DRIVE ROY ... 3-39
Gating DRIVE ERR ... 3-39

TAG Bus Control Logic .. 3-39
Asserting R80 Seek, Head Select,
and Recalibrate Commands ... 3-41
Asserting Read Gate .. 3-41
Asserting Write Gate ... 3-41

Clock Control Logic ... 3-41
Enable SYS CLOCK .. 3-46
Enable RL STATUS CLOCK or CPU CLOCK 3-46
Enable DISK CLOCK ... 3-4 7

Sync Byte Recognition Logic ... 3-4 7
RL02 Header Comparison Logic .. 3-50
R80 Header Comparison and Skip Sector
Monitor Logic .. 3-52

R80 Header Comparison Logic .. 3-55
Skip Sector Monitor Logic ... 3-57

SKIP SECTOR CONTROL LOGIC ... 3-57
Write Check Data Comparison Logic ... 3-58
Interrupt Control Logic ... 3-62

UBUS BR5 ... 3-62
PORT XFER REQ ... 3-63

JDC Control Register, Timeout Logic,
and Status Logic .. 3-63

I DC Control Register ... 3-63
Timeout and Status Logic .. 3-67

Serializing Data from Data Buffer ,
and Sync Byte Tristate Drivers ... 3-69
Formatting and Loading Disk Drive Read Data
in Data Buffers .. 3-73

v

3.5.13
3.5.13.1
3.5.13.2
3.5.13.3
3.5.13.4
3.5.13.5
3.5.13.6
3.5.13.7
3.5.13.8

3.5.14

3.5.14.1
3.5.14.2
3.5.14.3
3.5.15
3.5.15.1
3.5.15.2
3.5.16
3.5.16.1
3.5.16.2

CHAPTER4

4.1
4.1.1
4.1.2
4.1.3
4.1.4

CHAPTERS

5.1
5.2
5.2.1
5.2.1.1
5.2.1.2
5.2.1.3
5.2.1.4
5.2.1.5
5.2.1.6
5.2.1.7
5.2.1.8
5.3
5.3.1
5.3.1.1
5.3.2
5.3.2.1
5.3.2.2
5.3.2.3
5.3.2.4

I DC/CPU Interface Logic ... 3-76
Loading CSR .. 3-78
Reading CSR ... 3-79
Loading Disk Address Register ... 3-80
Read Disk Address Register ... 3-8 l
Reading ECC/CRC Logic ... 3-82
Loading IDC Data Buffers ... 3-83
Reading JDC Data Buffers ... 3-86
Initializing/Clearing IDC and R80
Disk Drive ... 3-90

Microcontroller Branching, Loops,
and Stalls .. 3-92

Microcontroller Branching ... 3-93
Microcontroller Loops .. 3-93
Microcontroller Stalls .. 3-93

Read Data Separator Operation .. 3-93
Phase Lock Loop (PLL) ... 3-95
Data Separator .. 3-97

MFM Encoding and Write Precompensation ... 3-98
MFM Encoding .. 3-98
Write Precompensation•.. 3- l 00

MAINTAINABILITY FEATURES

MAINTAINABILITY FEATURES .. .4-l
Maintenance Mode .. 4-1
Data Loopback .. 4-1
Write Inhibit and Timeout Inhibit4-1
Defeatable Enables .. 4-1

PROGRAM INTERFACE

BASIC SYSTEM OPERATION... 5-1
PROGRAMMING OVERVIEW.. 5-1

I DC Registers... 5-1
Control Status Register (CSR).. 5-1
Bus Address Register (BAR) 5-6
Byte Count Register (BCR) 5-6
Disk Address Register (DAR).. 5-7
Multipurpose Register (MPR) ... 5-7
ECC Position Register.. 5-8
ECC Pattern Register .. 5-8
IDC Initialization Register... 5-8

COMMANDS.. 5-8
Positioning Commands 5-8

Seek Function... 5-8
Data Transfer Commands.. 5-9

Read Header Function 5-9
Write Data Function... 5-9
Read Data Function... 5-9
Read Data Without Header Check Function... 5-9

VI

5.3.2.5
5.3.2.6
5.3.3
5.3.3. l
5.4
5.5
5.6
5.7
5.7. l
5.7.2
5.7.2. l
5.7.3

5.8
5.9
5.9. l
5.9.2

APPENDIX

Figure No.

l-l

2-l
2-2

2-3

2-4

2-5

2-6

2-7

2-8

2-9

2-10

2-l l

2-12

Write Check Function ... ;.......... 5-9
Get Status Function.. 5-9

Housekeeping Commands ... 5-12
NOP Function .. 5-12

R80 ECC HANDLING ... 5-12
HARDWARE ERROR RECOVERY .. 5-12
SOFTWARE ERROR CORRECTION ... 5-12
R80 SKIP SECTOR OPERATION .. 5-13

R80 Bad Spot Problem ... 5-13
The Concept of Skip Sectoring ... 5-13

Software Handling of Skip Sector Errors ~ 5-13
Skip Sectoring (with the Automatic Inhibit
Bit Set) .. 5-13

R80 FORMATTING ... 5-13
EXAMPLES OF SYSTEM OPERATION ... 5-14

Seek Operation... 5-14
Data Transfer Operation (Read/Write) ... 5-15

PROGRAMMED ARRAY LOGIC DEVICES (PALS) A-1

FIGURES

Title Page

Interconnections for Possible Configuration
of RB730 Disk Subsystem.. l-2

I DC Signal Interfaces .. _... 2-2
IDC Control Word Data Format and
Bit Significance... 2-4
RL02 Get Status Command Data Format and
Bit Significance... 2-5
RL02 Seek Command Data Format and
Bit Significance... 2-6
R80 Seek Command Data Format and
Bit Significance... 2-7
R80 Head Select Command Data Format and
Bit Significance... 2-9
R80 Recalibrate Command Data Format and
Bit Significance... 2-10
RL02 Read/Write Data Address Data Format and
Bit Significance... 2-11
R80 Read/Write Data Address Data Format and
Bit Significance... 2-12
IDC Status Word Data Format and
Bit Significance ... 2-13
RL02 Status Information Data Format and
Bit Significance .. _....... 2-14
R80 Status Information Data Format and
Bit Significance... 2-15

vii

2-13

2-14

2-15

2-16
2-17

2-18

2-19

2-20

3-1
3-2
3-3
3-4
3-5
3-6

3-7
3-8

3-9
3-10

3-11

3-12

3-13
3-14

3-15

3-16

3-17
3-18

3-19

3-20

3-21

3-22

Port Microinstructions Format and
Bit Significance... 2-17
Timing Rclaiionship of PORT CLOCK and CPU P2
Inputs to I DC .. 2-20
R80 Write Data Format and Data Transfer Timing:
I DC to R80 2-22
R80 Sector Pulse and Index Pulse Timing .. 2-23
R80 Read Data Format and Data Transfer Timing:
R80 to JDC ... 2-24
RL Write Data Format and Data Transfer Timing:
JDC to RL02 ... 2-25
Format and Bit Significance of RL02 Status
Information Transfer: RL02 to IDC ... 2-26
RL Read Data Format and Data Transfer Timing:
RL02 to I DC... 2-27

I DC Functional Block Diagram.. 3-7
Disk Drive Selection and Drive Status Monitor ... 3-38
TAG Bus Control Logic Functional Diagram ... 3-40
Clock Control Logic Functional Block Diagram .. 3-41
Clock Control Logic Timing Diagram _ ... 3-42
Sync Byte Recognition Logic Functional
Block Diagram 3-46
Sync Byte Recognition Logic Timing Diagram .. 3-4 7
RL02 Header Comparison Logic Functional
Block Diagram 3-49
RL02 Header Comparison Logic Timing Diagram .. 3-51
R80 Header Comparison and Skip Sector Monitor
Logic Functional Block Diagram .. 3-5 2
R80 Header Data Modification and Comparison
Data Control Timing... 3-54
Skip Sector Control Logic Functional Block
Diagram .. 3-55
Skip Sector Example ... 3-56
Write Check Data Comparison Logic Functional
Block Diagram.. 3-57
Write Check Data Comparison Logic Timing
Diagram.. 3-59
UBUS BR5 Interrupt Control Logic Functional
Block Diagram 3-60
PORT XFER REQ Logic Functional Block Diagram ... 3-61
IDC Control Register Timeout Logic and Status
Logic Functional Block Diagram.. 3-62
Data and Sync Byte Serialization Control Logic
Functional Block Diagram.. 3-68
Data and Sync Byte Serialization Control Logic
Timing.Diagram .. 3-70
Read Data Formatting and Storage Control Logic
Function-al Block Diagram.. 3-7 2
Formatting and Loading Read Data Input to FIFO:
Timing Diagram.. 3-7 3

Vlll

3-23

3-24

3-25
3-26
3-27

3-28

3-29

3-30
3-31
3-32
3-33

3-34

3-35
3-36
3-37
3-38a

3-38b

3-38c

3-39
3-40
3-41
3-42

3-43

3-44

5-1

A-1
A-2
A-3
A-4
A-5
A-6
A-9
A-IO

I DC Register Source and Destination for
Data and Information Transferred between I DC
and CPU via CPU Y-Bus .. 3-74
I DC/CPU Interface Logic Functional
Block Diagran1 .. 3-75
IDC Control Word Transfer Timing (CPU to IDC) ... 3-76
I DC Status Word Transfer Timing (I DC to CPU) ... 3-77
Disk Drive Control Word and Read/Write Address
Transfer Timing (CPU to IDC) .. 3-78
Current Read/Write Address Transfer Timing .
(IDCtoCPU) ... 3-79
Data Error Information Transfer Timing
(I DC to CPU) ... 3-80
Data Byte Transfer Timing (CPU to IDC) ... 3-82
Data Longword Transfer Timing (CPU to I DC) .. 3-83
Data Byte Transfer Timing (I DC to CPU) ... 3-86
Single Data Longword Transfer Timing
(I DC to CPU) ... 3-87
Automode Data Longword Transfer Timing
(I DC to CPU) ... 3-88
Initialize/Clear Logic Diagram .. 3-89
Microcontrollcr Functional Block Diagram .. 3-90
Read Data Separator Block Diagram ... 3-92
VCO Output at Twice Data Rate (Frequency Lock)
Ti1ning Diagram .. 3-93
VCO Output Less Than Twice Data Rate
Timing Diagram .. 3-93
VCO Output More Than Twice Data Rate
Tin1ing Diagram .. 3-94
Loop Lock Settling Time .. 3-94
Data Separator Detailed Diagram .. 3-95
Data Separator Timing Diagram .. 3-95
MFM Encoding and Write Precompensation
Logic Functional Block Diagram .. 3~97
M FM Encoding and Write Precompensation
Timing Diagram :··· 3-98
Write Precompensation Early /Late Bit
Combinations.. 3-99

Disk Address Register... 5-7

Basic PAL Logic Configuration .. A-1
XOR Logic Function Using PAL Logic ... A-2
Typical PAL Symbology ... A-3
PAL Plot Listing... A-5
Logic Diagram: PAL I 6L8 ... A-7
Logic Diagram: PAL I 6R4... A-8
Logic Diagram: PAL I 6R6... A-9
Logic Diagram: PALI6R8 ... A-10

IX

Table No.

1-1
1-2

2-1

3-1

5-1
5-2
5-3
5-4
5-5

A-I

TABLES

Title Page

Related Documentation.. 1-1
CPU-Initiated IDC Functions... 1-3

Port Microinstruction Functions ... 2-18

I DC Functions... 3-1

I DC Registers 5-2
Control Status Register Bit Assignments.. 5-3
MPR Bit Assignments... 5-7
RL02 Get Status ... 5-10
R80 Get Status.. 5-1 I

PAL Device Types Used in the VAX- I I /7 30... A-3

x

1.1 GENERAL DESCRIPTION

CHAPTER 1
INTRODUCTION

The Integrated Disk Controller (IDC) is part of the RB730 disk subsystem, a hardware option of the
VAX-I I /730. The RB730 disk subsystem includes the IDC and up to four RL02 disk drives or the
IDC, one R80 disk drive, and up to three RL02 disk drives. The IDC provides the interface between
the VAX-I I /730 CPU and the associated disk drives of the RB730 disk subsystem for the purpose of
data storage and retrieval. This manual presents the IDC technical description. Other documents re­
lated to the RB730 disk subsystem of the VAX-11 /730 are listed in Table 1-1.

1.2 PHYSICAL DESCRIPTION
The IDC is a single hex-size module (M8388) that plugs into the VAX-11 /730 backplane. All electrical
connections for interfacing the IDC with the CPU are provided via the VAX-11/730 backplane. The
electrical connections for interfacing the IDC with an R80 disk drive are provided via connectors J2
and J 3. Connector JI provides the electrical connections for interfacing the IDC with the RL02 disk
drive(s) in a daisy chain fashion. Figure 1-1 shows the electrical connections for one possible con­
figuration of the RB730 disk subsystem.

Table 1-1 Related Documentation

Document

IDC Field Maintenance Print Set
R80 Disk Drive Field Maintenance Print Set
RL02 Disk Drive Field Maintenance Print Set
RLOl /RL02 Disk Drive Technical Manual
R80 Disk Drive Technical Description
V AX-l l /730 Central Processing Unit
Technical Description

I - I

Document Number

MP-01278
MP-01419
MP-01332
EK-RL012-TM
EK-OOR80-TD

EK-KA730-TD

-I N

TO
VAX·ll/730
BACKPLANE

IDC

J3

RL02
DISK DRIVE

RBO
DISK
DRIVE:

RL02
DISK DRIVE

Figure 1-1 Interconnections for Possible Configuration
of RB7 30 Disk Subsystem

TERMINATOR

RL02
DISK DRIVE

1.3 POWER REQUIREMENTS
The I DC requires approximately 55 watts of de power. The de power requirements are as follows:

+5 Vat 8.0 A
+ 15 Vat 0.5 A
-15 Vat 0.5 A

1.4 FUNCTIONAL DESCRIPTION
The I DC controls the operation of the associated disk drives of the RB730 disk subsystem to store and
retrieve data. IDC operation is initiated by the CPU. The CPU loads the IDC with the information
required to initiate and perform each of the functions necessary in storing and retrieving data from a
specific address location of the selected disk drive. Once a function is specified by the CPU, the IDC
controls the operation of the disk drive to perform the function. After the function has been completed,
the I DC, if enabled, generates and asserts an interrupt to the CPU. Table 1-2 lists the functions that
can be specified by the CPU and describes the purpose of each one.

Function Specified by CPU

Seek

Get status

Read header

Write data

Read data

Read data without
header check

Write check

Write format
(Used only with R80
disk drive)

Maintenance

Table 1-2 CPU-Initiated IDC Functions

Purpose

Position the specified disk drive read/write head over the specified
cylinder and enable it.

Retrieve the status information from the specified disk drive and
store it in the IDC data buffer.

Read from the specified disk drive the header information from the
first se.ctor encountered and store it in the IDC data buffer.

Write the data contained in the IDC data buffer at the specified
read/write data address of the specified disk drive.

Read from the specified disk drive the data from the specified
read/write data address and store the data in the IDC data buffer.

Read from the specified disk drive the data from the first sector en­
countered and store the data in the IDC data buffer.

Read from the specified disk drive the data from the specified
read/write data address and compare this data with data contained
in the data buffers.

Write new header data to each of the 32 sectors of the applicable
R80 cylinder.

Place the IDC in the maintenance mode so that the IDC logic may
be exercised by microdiagnostic routines.

1-3

When the JDC is not performing a CPU-specified function, it operates in the idle mode. In this mode,
the IDC selects and monitors the status of each associated disk drive. If an operational status change is
detected, the IDC alerts the CPU.

The I DC contains the control and monitoring circuitry for:

• Selecting the CPU-specified disk drive, monitoring disk drive operational status, and en­
abling the appropriate JDC data paths for interfacing to the selected disk drive

• Asserting the CPU-specified disk drive commands to control selection and positioning of the
disk drive read/write heads

• Synchronizing JDC operation with the selected disk drive or the CPU

• Locating the address (sector) to or from which data is to be stored or retrieved

• Performing single or successive block data transfers between the CPU and the disk drives

• Verifying the integrity of the data through the storage and retrieval cycle

. • Generating a status word that can be used by the CPU to identify data error detection, the
reason the JDC could not complete a CPU-specified function, or disk drive status changes

1.4.1 Disk Drive Select and Drive Status Monitor
The JDC uses the disk drive select information specified by the CPU to select the desired disk drive.
The JDC also monitors the operational status of the selected disk drive to make certain that the drive is
operational and not busy before issuing further commands. The disk drive select information is also
used within the JDC to select the proper data paths, specify the data buffer storage capacity, and gate
the proper clocks for synchronization.

During the idle mode of operation, the JDC selects and monitors the operational status of the associated
disk drives and records any detected operational status change. If a change is detected, the JDC alerts
the CPU.

1.4.2 Asserting Disk Drive Commands
The JDC controls assertion of the CPU-specified disk drive commands in the format that is compatible
with the selected disk drive. The RL02 disk drive commands are converted to a serial format and as­
~erted to the RL02 disk drives; the R80 disk drive commands are gated to the R80 disk drive in a
parallel format.

1.4.3 Synchronization of IDC Operation
Any one of six clocks may be selected by the JDC as the basic timing clock to ensure synchronous
operation between the selected disk drive or CPU and the IDC.

1.4.4 Address Location
The JDC compares the read/write address specified by the CPU with the address information read
from the selected disk drive to locate the address (sector) to or from which data is to be stored or re­
trieved.

1-4

1.4.5 Data Transfers
The I DC provides for single or successive block data transfers between the CPU and the disk drives. A
block of data is defined as the data storage capacity of the disk for each addressable storage location
(sector). Each sector of an RL02 disk drive provides the storage capacity for 256 bytes of data (one
block). Each sector of the R80 disk drive provides the storage capacity for 512 bytes of data (one
block).

The JDC provides buffering for all data to be written to or read from the disk. The IDC contains two
data buffers: each data buff er provides storage for up to 512 bytes of data. Control of each of the data
buffers is shared by the IDC and the CPU.

The CPU controls the data buffers to load the JDC with data to be written to the disk drives. The CPU
also controls the data buffers to transfer the data contained in the data buffers from the IDC to the
CPU.

The JDC controls the data buffers to store the data read from the disk drives until it is transferred to
the CPU under CPU control. This dual IDC data buffer arrangement provides the capability for read­
ing or writing successive sectors of data. While the IDC is reading or writing one sector of data using
one of the JDC data buffers, the CPU can be using the other data buffer to transfer the data read from
the previous sector or to load the data to be written in the next sector.

1.4.6 Verifying Data Integrity
The JDC verifies the integrity of the data throughout the storage and retrieval cycle. When data are
being written to the disk, the IDC generates a coded word based on the configuration of data written to
the disk. This coded word is also written on the disk during the write data cycle. When data are being
read from the disk, the IDC generates a coded word based on the configuration of data read from the
disk. After the data have been read, the coded word stored on the disk is compared with the coded word
generated from the configuration of the data read from the disk. If the coded words are identical, data
integrity has been maintained throughout the storage and retrieval cycle (the data read are identical to
the data written).

1.4. 7 Status Word Generation
During the performance of each CPU-specified function, the IDC tests the results of conditions and
operations required to execute the function. The results of these tests are recorded and formatted to
produce an IDC status word. During the idle mode, the IDC records any detected drive status change.
Any recorded drive status change is provided as part of the IDC status word. The IDC status word can
be read by the CPU.

1-5

2.1 IDC INTERFACES

CHAPTER 2
INTERFACES

The electrical connections between the IDC and the VAX-11 /730 CPU (port bus and UNIBUS inter­
faces), the IDC and the R80 disk drive (R80 interface), and the JDC and the RL02 disk drive (RL02
interface) are shown in Figure 2-1.

All connections for the port bus and UNIBUS interfaces are provided via the VAX-I I /730 backplane.
The R80 interface is provided via two ribbon cables. A 60-wire ribbon cable connects J3 of the JDC
with J 20 I of the R80 disk drive. A 26-wire ribbon cable connects 12 of the JDC with 1202 of the R80
disk drive. The RL02 interface is provided via a 40-wire ribbon cable that connects JI of the JDC with
J 12 of the RL02 disk drive.

All of the signal lines (except ACLO) at the R80 and RL02 interfaces are dual signal lines (indicated in
Figure 2-1 by the dual listing of pin numbers at the interface connectors). The first pin number listed
refers to the low level signal line; the second number refers to the high level signal line. These signal
lines are driven or detected by differential line drivers or receivers.

The port bus interface BUS Y D3 I :DOO signal lines form a common bidirectional bus that inter­
connects the IDC and floating-point accelerator (FPA) with the Y-bus of the CPU data path module.
These signal lines are driven/detected by octal transceivers on the JDC and the FPA. The rest of the
signal lines at the port bus and UNIBUS interfaces are dedicated signal lines.

All of the input/output signals at the IDC/port bus, UNIBUS, R80, and RL02 interfaces are also
shown in Figure 2-1. The following paragraphs discuss the characteristics and significance of the in­
put/ output signals at each of the interfaces.

2.2 IDC/PORT BUS AND UNIBUS INTERFACES
The input/output signals at the JDC/port bus and UNIBUS interfaces include BUS Y D3 l :DOO,
CSR17 and CSR14:10, PORT INSTR, READ PORT, SEL ACC IN, CPU P2, PORT CLOCK,
PORT XFER REQ, XFER GRANT, BR5, ACLO, and DCLO.

The BUS Y D3 l :DOO signal lines are used to transfer control words, address information, and data
from the CPU to the IDC, and to transfer JDC and disk drive status information, current address infor­
mation, error detection information, and data from the IDC to the CPU. The CPU initiates and con­
trols the transfer of all control words, information, and data between the IDC and the CPU via port
microinstruction inputs to the IDC. The port microinstruction inputs are asserted via the CSRI 7 and
CSR I 4:CSR I 0 signal lines.

The port microinstruction inputs to the JDC, together with the PORT INSTR input, are used to preset
the I DC and to cause the transfer of control words, address information, and data from the CPU to the
I DC. The port microinstruction inputs to the IDC together with the PORT INSTR, READ PORT, and
SEL ACC IN inputs are used to cause the transfer of the JDC and disk drive status information, cur­
rent address information, error detection information, and data from the JDC to the CPU. (The state of
the SEL ACC IN input identifies the READ PORT signal as being applicable to the FPA or the JDC:
a low SEL ACC IN signal indicates READ PORT is IDC specific.)

2-1

N
I

N

TO/FROM
CPU DATA
PATH MODULE
(M8390)

TO/FROM CPU
WRITE CONTROL
STORE (M8394)

TO/FROM CPU
DATA PATH
MODULE
(M8390)

UNIBUS
INTERFACE

VAX-11/730
BACKPL ANE

BUSY 000
BUSY 001
BUSY 002
BUSY 003
BUSY 004
BUSY 005
BUSY 006
BUSY 007
BUSY 008
BUSY 009
BUSY 010

~ ~~ 2
1
2 (CK

< CJ 1

~ g~ 1
2

n~
1
1
1
2

BUSY 011 >
BUSY 012
BUS Y 013
BUSY 014 >

CL
CK
CE
CD
cc

1
1
1
1
1

SY 016 CA
;;-BU.;;.;S;;..,;.Y...:D:...:1~7--'(EC

BUSY 015 >
BU

1
1

BUSY 018 (EB
BUSY 019 (EA

1
1

BUSY 020 ~ g~
BUS Y 021 (DT2

2
2

BUSY 022 (
BUS Y 023 < g~2
BUSY 024 OM

2

=~~ ~ g~~ DL2
BUS Y 027 OFl

2

BUSY 028 DEl
BUS Y D29 ((DDl
BUSY 030 DCl
BUS Y 031 (DBl

(DA1
CSR 17
CSR 14
CSR 13

~~: ~~ <
CSR 10 (
CPU P2 (

PORT CLOCK ((
SEL ACC IN

XFER GRANT ~
PORT INSTR (
READ PORT

PORT XFER REO~
UBUS BR5

UBUS ACLO ~
UBUS DCLO (

EN1
EU1
FA1
FB1
FC1
FD1
DE2
DF2
DM1
DJ2
DL1
DH2
DK2

EF2

002
CM2

>

L

~ ;-
'

~

~ .. -
-
~

~

~

~

- ~

= ~

- --
~
~

- --
~

-
....

....
--
..al ...

--

J3

INTEGRATED
DISK CONTROLLER --
(MB388)

.....
~

..
~

L-.

~

J2

Jl

--
~

....
~

Figure 2-1

~

-t
7'

1,2
3,4
5,6
7,8
9,10
11,12
13,14
15,16
17, 1B
19,20
21,22
23,24
25,26
53,54
27,28
39,40
41,42
59,60
29,30
43,44
31,32
33,34
37,38
55,56
45,46
47,48
~5.36
49,50
57
58
3,2
9,8
5,6

11,12
15, 14
26,25

21,22
4,3
6,5
16,15
12,11
8,7

20,19
25,26
33,34
29,30
3
3
3

7,38
5,36
9

<

<
<

<

<
<

2
RSO TAG BU~3
RBO TAG BUS 4
RBO TAG BUS 5
R80 TAG BUS 6
RSO TAG BUS 7
RBO TAG SUS 8
RBO TAG BU::i 9
RBO SECTOR COUNT 1
RBO SECTOR COUNT 2
RBU SECTOR COUNT 4
R80 SECTOR COUNT 8
R80 SECTOR COUNT 16
RSO FAULT
RBO PLUG VALID

R80 WRITE DATA
R80 INITIALIZE .

RL DRIVE COMMAND

IDC Signal Interfaces

...
T)
I)

'} -.)

I > -..- >
I >
! s
I >
_l)
......_ >
T >
T

J12

RL02
DISK
DRIVE

I TERMINATOR
(PART OF
RL02)

The CPU P2 and PORT CLOCK inputs to the JDC are the basic timing pulses that synchronize the
operation of the IDC with the CPU.

The PORT XFER REQ and UBUS BR5 signals are the interrupt signals generated by the JDC. The
PORT XFER REQ output is the fast interrupt output of the JDC. The PORT XFER REQ signal is
asserted by the JDC to signal the CPU that the read data, write data, or write check function requested
by the previous I DC control word input has been completed on the specified sector of data and that the
IDC is waiting for further instructions. The CPU uses the XFER GRANT input to acknowledge the
interrupt. The UBUS BR5 output is the slow interrupt and is asserted to the CPU via the UNIBUS.
The UBUS BR5 signal specifies to the CPU that the IDC function requested by the JDC control word
input has been completed, that one of the disk drives has changed operational status, or that the JDC
operation has been halted due to an error.

The format and bit significance of the control words, address information, status information, and error
detection information are discussed in Paragraphs 2.2.1 through 2.2.4. The data words transferred be­
tween the I DC and the CPU via the BUS Y D3 l :DOO signal lines may be in either byte (8-bit) or
longword (32-bit) format. The format and bit decoding of the port microinstruction inputs applied via
the CSR 17 and CSR 14: I 0 signal lines are discussed in Paragraph 2.2.5. The significance of the PORT
INSTR input, READ PORT and SEL ACC IN inputs, and CPU P2 and PORT CLOCK inputs to the
IDC are discussed in Paragraphs 2.2.6, 2.2.7, and 2.2.8, respectively.

2.2.1 Control Words
The control words input to the IDC via the BUSY D3 l :DOO signal lines include the JDC control word
and the disk drive control words.

2.2.1. t IDC Control Word - The I DC control word specifies to the JDC the function to be performed,
identifies the disk drive to be used, indicates whether R80 disk drive skip sectoring will be enabled,
starts the specified function, and indicates if the JDC is to generate an interrupt (UBUS BR5) at com­
pletion. An IDC control word input must be applied to the JDC to initiate each of the JDC functions.
The format and bit sighificance of the JDC control word are shown in· Figure 2-2.

2.2.1.2 Disk Drive Control Words - The disk drive control words input to the JDC include the RL02
get status command, the RL02 seek command, the R80 seek command, the R80 head select command,
and the R80 recalibrate command. The purpose of each of these commands is discussed in the following
paragraphs.

RL02 Get Status Command
The RL02 get status command is used to cause the transfer of the RL02 status word (Paragraph 2.4. 7)
from the RL02 to the CPU via the IDC. The format and bit significance of the RL02 get status com ..
mand are shown in Figure 2-3.

RL02 Seek Command
The RL02 seek command is used to reposition the RL02 read/write heads over another cylinder. The
RL02 seek command specifies the direction and number of cylinders that the read/write heads are to
move and which of the two heads is to be used. The format and bit significance of the RL02 seek com­
mand are shown in Figure 2-4.

R80 Seek Command
The R80 seek command is used to position the R80 read/write heads over the desired cylinder. The
R80 seek command specifies the cylinder address over which the read/write heads are to be positioned.
The format and bit significance of the R80 seek command is shown in Figure 2-5.

2-3

Data Format
(BUSY Data Bits) Bit Significance•

BUSY 000
BUSY DOI (FO)}
BUSY 002 (fl)
BUSY 003 (f2)
BUSY 004
BUSY 005
BUSY 006 (IE)
BUSY 007 (CROY)
BUSY 008 (DSO) l
BUSY 009 (DSI)
BUSY DIO
BUSY Dll
BUSY 012
BUSY 013
BUSY 014
BUSY 015
BUSY 016 (ATTNO) l
BUSY 017 (ATTN!)
BUSY 018 (ATTN2) j

N BUSY 019 (ATIN3)
I BUSY 020

+;:. BUSY 021
BUSY 022 (SSEI)
BUSY 023 (SSE FLAG)
BUSY D24
BUSY D25 (MTN)

BUSY 026
BUSY D27 (ASS!)
BUSY D28 (WRT INH)

BUSY 029 (R80
FORMAT)

BUSY D30
BUSY DJI

•·Not used as part of IDC control word.

Function Select. These bits specify one of eight functions to be performed by the IDC. These
bits are decoded as shown in the table in the figure.

Interrupt Enable. When set. enables IDC to generate UBUS DRS interrupt when applicable.
Controller Ready. When reset, enables IDC to start function specified. Drive Select. These
bits specify the address of the disk drive to be used to perform the function specified.

Attention bits. These bits are used to reset the attention bits asserted to the CPU via the I DC
status word (see Figure 2-10).

Skip Sector Error Inhibit. When set. inhibits R80 skip sectoring.
Skip Sector Error Flag. This bit is used to reset the SSE nag asserted to the CPU via the IDC
status word (see Figure 2-10).
Maintenance. Used with Function Select bits FO. FI. and F2 to select maintenance function
(see the table in this figure).

Automatic Skip Sector Inhibit. When cleared. allows automatic skip sectoring.
Write Inhibit. When set. inhibits writing to the disk drives and disables timeout from
occurring. Used during maintenance function.
R80 Format. Used with Function Select bits FO. FI. and F2 to specify R80 write format
function (see the table in this figure).

R80 MTN

0 I
I 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0

Figure 2-2 IDC Control Word Data Format and Bit Significance

Function Select IOC
Function

F2 Fl FO Specified

0 0 0 Maintenance
0 0 0 R80 Write Format
0 0 0 No Operation
0 0 I Write Check
0 I 0 Get Status
0 I I Seek
I 0 0 Read Header
I 0 I Write Data
I I 0 Read Data

Read Data Without
Header Check

Data Format
(BUSY Data Bits)

BUSY DOO
BUSY DOI
BUSY D02
BUSY D03

BUSY D04

t
BUSY D31

Bit Significance*

(M)
(GS)

(RST)

t

Marker. Used at RL02 disk drive to indicate a new command word. (This bit must be set.)
Get Status. When set, commands RL02 disk drive to gate RL02 status word to IDC.

Reset. When set, commands RL02 disk drive to clear its error register before gating RL02
status word to IDC. (BUSY 003 must be a I.)

* -Not used as part of RL02 Get Status Word

Figure 2-3 RL02 Get Status Command Data Format
and Bit Significance

Data Format
(BUS Y Data Bits)

BUSY DOO
BUSY DOI
BUSY D02

BUSY D03

BUSY D04

BUSY D05
BUSY D06
BUSY D07
BUSY D08
BUSY D09
BUSY 010
BUSY Dl 1
BUSY D12
BUSY D13
BUSY D14
BUSY D15
BUSY D16

i
BUSY D31

Bit Significance*

(M)
(GS)
(DIR)

(RST)

(HS)

(DFO)
(DFl)
(DF2)
(DF3)
(DF4)
(DF5)
(DF6)
(DF7)
(DF8)

t

Marker. Used at RL02 disk drive to indicate a new command word. {This bit must be a I.)
Get Status. This bit must be cleared for RL02 seek instruction.
Direction. Indicates direction of movement of RL02 read/write heads. When cleared,
indicates movement toward higher addresses; when set, movement toward lower addresses.
Reset. When cleared, used at RL02 to indicate that a cylinder difference word is being
applied.
Head Select. Used at RL02 to identify read/write head to be used. When set, selects upper
head; when cleared, selects lower head.

Difference. These bits are used at the RL02 disk drive to specify the number of cylinders the
read/write heads are to move.

* -Not used as part of RL02 seek command.

Figure 2-4 RL02 Seek Command Data Format
and Bit Significance

Data Format
(BUS Y Data Bits)

BUSY 000
BUSY DOI
BUSY 002
BUSY 003
BUSY 004
BUSY 005
BUSY 006
BUSY 007
BUSY 008
BUSY 009
BUSY 010
BUSY 011
BUSY 012
BUSY 013
BUSY 014
BUSY 015
BUSY 016

t
BUSY 031

Bit Significance*

(CAO)
(CAI)
(CA2)
(CA3)
(CA4)
(CA5)
(CA6)
(CA7)
(CA8)
(CA9)

(CA)
(HS)
(CS)

l

Cylinder Address Bits. These bits are used at the R80 disk drive to identify the cylinder
address over which the read/write heads are to be located.

Cylinder Address. When set, specifies that this word is a cylinder address word.
Head Select. This bit must be cleared for R80 seek command.
Control Select. This bit must be cleared for R80 seek command.

* -Not used as part of R80 seek instruction.

Figure 2-5 R80 Seek Command Data Format
and Bit Significance

R80 Head Select Command
The R80 head select command specifies which one of the fourteen read/write heads of the R80 disk
drive is to be enabled. The format and bit significance of the R80 head select command are shown in
Figure 2-6.

R80 Recalibrate Command
This command is used to position the R80 disk drive read/write heads over cylinder 0. The format and
bit significance of the R80 recalibrate command are shown in Figure 2-7.

2.2.2 Address Information
The read/write data address information input to the IDC is used to locate the initial sector of the disk
drive cylinder to or from which data are to be written or read. The current address information output
from the IDC is used to specify to the CPU the complete address of the last sector of data that was
written or read. The format and bit significance of the RL02 and R80 read/write data address informa­
tion are shown in Figures 2-8 and 2-9, respectively. The format and bit significance of the current ad­
dress information are the same as the read/write data address input to the IDC.

2.2.3 Status Information
There are three status information outputs of the IDC; these include the IDC status, the RL02 status,
and the R80 status.

2.2.3.1 IDC Status Word - The IDC status word specifies to the CPU the contents of the previous
control word input (Figure 2-2), specifies whether the function selected by the previous control word
input was executed successfully and completed within the time allowed by the IDC (approximately 150
milliseconds), informs the CPU about changes in the operational status of the disk drives, provides in­
formation that identifies the type of fault detected (if any), and indicates if the IDC had generated a
slow interrupt request (asserted UBUS BR5). The format and bit significance of the JDC status word
are shown in Figure 2-10.

2.2.3.2 RL02 Status - The RL02 status information specifies to the CPU the current operational state
of the RL02 disk drive, the position of the disk brushes (over the disk or home), whether the read/write
heads are over the disk, whether a fault condition has been detected, and if a new disk cartridge has
been loaded. The RL02 status information is transferred to the CPU in byte format. The format and bit
significance of the RL02 status informatior1 contained in each byte transferred to the CPU are shown in
Figure 2-11.

2.2.3.3 R80 Status - The R80 status information specifies to the CPU the sector over which the
read/write heads were located when the status data were output from the R80 to the IDC, if an address
plug is installed, whether the drive is operational or has a fault, and the operational condition of the
drive. The R80 status information is transferred to the CPU in byte format. The format and bit signifi­
cance of the R80 status information contained in each byte transferred to the CPU are shown in Figure
2-12.

2.2.4 Error Detection Information
Error detection information (error position and error pattern) can be provided to the CPU following a
detected error in the data read from the disk. The error position data are transferred to the CPU via the
BUSY 012:000 signal lines. These data specify to the CPU the position (location within the sector of
data being read) of the first data bit of the data burst in which the read error was detected. The error
pattern data are transferred to the CPU via the BUS Y 010:000 signal lines. The error pattern data
specifies to the CPU the correction pattern for the 11-bit data burst in which the read error was de­
tected. During the error pattern data transfer, the BUS Y 012:011 signal lines are set to a low.

2-8

N
I

"°

Data Format
(BUS Y Data Bits)

BUSY 000
BUSY 001
BUSY 002
BUSY 003
BUSY 004
BUSY 005
BUSY 006
BUSY 007
BUSY 008
BUSY 009
BUSY 010
BUSY 011
BUSY 012
BUSY 013
BUSY 014
BUSY 015
BUSY 016

i
BUSY 031

Bit Significance*

(HSO))
(HS 1) (.
(HS2) (
(HS3) J

(CA)
(HS)
(CS)
.

t

Head Select bits. These bits are used at the R80 disk drive to select one of the fourteen
read/write heads.

Cylinder Address. This bit must be cleared for R80 head select command.
Head Select. When set, specifies that this word is a R80 head select command.
Control Select. This bit must be cleared for R80 head select command.

* -Not used as part of R80 head select instruction.

Figure 2-6 R80 Head Select Command Data Format
and Bit Significance

N
I

0

Data Format
(BUSY Data Bits)

BUSY DOO
BUSY DOI
BUSY 002
BUSY 003
BUSY 004
BUSY 005
BUSY 006

BUSY 007
BUSY 008
BUSY 009
BUSY 010
BUSY DI I
BUSY 012
BUSY 013
BUSY 014
BUSY 015

BUSY 016

i
BUSY 031

Bit Significance*

(RTZ)

(CA)
(HS)
(CS)

-

t

Return to Zero. When set, used at R80 disk drive to initiate positioning read/write heads
over cylinder 0.

Cylinder Address. This bit must be cleared for a R80 recalibrate command.
Head Select. This bit must be cleared for a R80 recalibrate command.
Control Select. When set, specifies that this word is a control function word. This bit must be
set for R80 recalibrate command.

* -Not used as part of R80 recalibrate instruction.

Figure 2-7 R80 Recalibrate Command Data
Format and Bit Significance

~

Data Format
(BUSY Data Bits)

BUSY 000
BUSY DOI
BUSY 002
BUSY 003
BUSY 004
BUSY 005
BUSY 006

BUSY 007
BUSY 008
BUSY 009
BUSY 010
BUSY DII
BUSY 012
BUSY 013
BUSY 014
BUSY 015
BUSY 016

t
BUSY 031

Bit Significance*

(SAO)
(SAI)
(SA2)
(SA3)
(SA4)
(SAS)
(HS)

(CAO)
(CAI)
(CA2)
(CA3)
(CA4)
(CA5)
(CA6)
(CA7)
(CA8)
-

t

Sector Address. These bits specify the address of one of the 40 sectors of the RL02 cylinder
to/from which data are to be written/read.

Head Select. This bit specifies which of the two RL02 read/write heads is selected; when set,
indicates lower head; when cleared, upper head.

Cylinder Address. These bits specify the address of the RL02 cylinder (one of 512) over
which the read/write heads are located.

* -Not used as part of RL02 read/write data address.

Figure 2-8 RL02 Read/Write Data Address Data
Format and Bit Significance

N
I

N

Data L.rmat
(BUSY Data Bits)

BUSY 000
BUSY 001
BUSY 002
BUSY 003
BUSY 004
BUSY 005
BUSY 006
BUSY 007
BUSY 008
BUSY 009
BUSY DIO
BUSY 01 I
BUSY 012
BUSY 013
BUSY 014
BUSY 015
BUSY 016
BUSY 017
BUSY 018
BUSY 019

:
BUSY 031

Bit Significance*

(SAO)

l (SAl)
(SA2)
(SA3)
(SA4)
(HSO) l (HSI)
(HS2) \ (HS3)
(CAO)
(CAI)
(CA2)
(CA3)
(CA4)
(CAS)
(CA6)
(CA7)
(CA8)
(CA9)
-

t

Sector Address. The bits specify the address of one of the 32 sectors of the R80 cylinder (one
of 561) over which the read/write heads are located.

Head Select. These bits specify which one of the 14 R80 read/write heads is selected.

Cylinder Address. These bits specify the address of the R80 cylinder (one of 561) over which
the read/write heads are located.

* -Not used as part of R80 read/write data address.

Figure 2-9 R80 Read/Write Data Address Data
Format and Bit Significance

Data Format
(BUSY Data Bits) Bit Significance•

BUSY DOO (DRDY)

BUSY DOI (FO) } BUSY 002 (Fl)
BUSY DOJ (F2)
BUSY 004
BUSY DOS
BUSY 006 (IE)
BUSY 007 (CROY)
BUSY DOS (DSO) }
BUSY 009 (OSI)
BUSY 010 (OPI)
BUSY Dll (DCK)
BUSY 012 (DTL)
BUSY DIJ
BUSY 014 (DE)
BUSY DIS (ERR)
BUSY 016 (ATTNO) l
BUSY 017 (ATTN!)

~ BUSY DIS (A1TN2) j
BUSY 019 (ATTN3)

w BUSY 020 (ECSO)}
BUSY 021 (ECSI)
BUSY 022 (SSEI)

BUSY D23 (SSE FLAG)

BUSY 024 (IR)
BUSY D2S (MTN)

BUSY 026 (RSO)
BUSY D27 (ASSI)

BUSY D2S (WRTINH)

BUSY D29 (RSO FORMAT)

BUSY DJO
BUSY D31

• • Not used as part of IDC status word.

Drive Ready. When set. indicates that the presently selected drive is operational and ready to
receive further commands.
Function Select. These bits specify the function selected by the previous IDC control word
input (See Figure 2-2).

Interrupt Enable. Indicates state of IE bit of previous IDC control word input.
Controller Ready. When set. indicates controller is ready to perform a function.
Drive Select. These bits indicate disk drive address specified by the previous I DC control
word input.
Operation Incomplete l
Data Check Error
Data Late Error

Drive Error
Composite Error

Error Bits. These bits are encoded as shown in
the table at right to specify the type of error
detected.

Attention Bits. When set. indicates associated disk drive has completed a previously specified
function and is asserting drive ready or that the associated disk drive is reporting an error.

ECC status. These bits define the status of the ECC comparison as shown in table at right.

Skip Sector Error Inhibit. Indicates state of SSEI bit of previous IDC control word input.
When set, indicates R80 skip sectoring was inhibited.
Skip Sector Error Flag. When set. indicates that the sector read contains a skip sector flag
because it or a previous sector was a bad sector.
Interrupt Request. When set. indicates that the I DC asserted an interrupt request.
Maintenance. When set, indicates maintenance function was specified by previous IDC
control word input.
RSO. When set, indicates RSO disk drive selected by previous I DC control word input.
Automatic Skip Sector Inhibit. When set, indicates automatic skip sectoring was inhibited by
previous IDC control word input.
Write Inhibit. When set, indicates that timeout was disabled and writing to disk drives was
inhibited by previous I DC control word input.
RSO Format. When set, indicates that the previous I DC control word input specified an RSO
write format function.

Figure 2-10 IDC Status Word Data Format
and Bit Significance

OPI OCK DTL DE. E.RR Indicated Error

0 0 0 ECC/CRC error in disk
data field

0 0 ECC /CRC error in disk
header field

1 0 0 0 Timeout error
1 0 1 0 Header not found
0 0 1 0 Data buffer empty during

write or full during read
0 0 0 Disk drive reporting an error

E.CSO ECS I Status

0 0 No Error
0 1 Data Error
1 0 Noncorrectable Error
1 1 Correctable Error

N
I

~

Data Format
(BUS Y Data Bits) Bit Significance•

BUSY DOO (STA)
BUSY DOI (STB)
BUSY D02 (STC)
BUSY D03 (BH)
BUSY D04 (HO)
BUSY DOS (CO)

BUSY D06 (HS)

BUSY 007

BUSY DOO (DSE)
BUSY DOI (VC)

BUSY D02 (WGE)

BUSY D03 (SPE)

BUSY 004 (SKTO)

BUSY D05 (WL)

BUSY 006 (CHE)

BUSY D07 (WDE)

State. These bits define the operational state of the applicable RL02 disk drive.
State is encoded as shown in table at right.

Brush Home. When set, indicates that brushes are not over the disk recording area.
Heads Out. When set, indicates that the read/write heads are over the disk recording area.
Cover Open. When set. indicates cartridge access cover open or cartridge dust cover is not in
place.
Head Select. Indicates currently selected head. When set, indicates lower head; when
cleared. indicates upper head.

Drive Select Error. When set. indicates multiple drives responding to one address.
Volume Check. When set, indicates a new cartridge may have been mounted since the last
time the drive was selected.
Write Gate Error. When set. indicates that during RL02 write data mode, drive not ready to
read/write, drive write protected. sector pulse occurred, and/or drive was reporting an error.
Spin Error. When set, indicates spindle speed not reached within required time or spindle
speed is too high.
Seek Time Out. When set. indicates read/write heads not located over specified cylinder
within required time during seek state or read/write signal lost when disk drive was in lock­
on state.
Write Lock. When set. indicates write protect condition selected by disk drive WRITE
PROT switch.
Current in Head Error. When set, indicates write current detected in read/write heads when
disk drive is not in write data mode.
Write Data Error. When set. indicates disk drive in write data mode. but no write data is
asserted within the required time.

• - Not used as part of RL02 status information.

Figure 2-11 RL02 Status Information Data
Format and Bit Significance

ST A STB STC State

0 0 0 Load Cartridge
0 0 I Spin-Up
0 I 0 Brush Cycle
O I I Load Heads
I 0 0 Seek
I 0 I Lock-On
I 0 Unload Heads
I I Spin-Down

N
I

Vl

Data Format
(BUSY Data Bits) Bit Significance*

BUSY 000 (SECO) l BUSY 001 (SECl)
BUSY 002 (SEC2)
BUSY 003 (SEC3)
BUSY 004 (SEC4)
BUSY DOS
BUSY 006
BUSY 007

BUSY 000 (FLT)

BUSY 001 (PLGV)

BUSY 002 (SKE)

BUSY 003 BYTE 2 (ONCY)
BUSY D04 (DROY)

BUSY 005 (WTP)

BUSY 006
BUSY 007

Sector Count. These bits specify the sector address over which the R80 read/write heads
were located when the status information was output from the R80 disk drive to the IOC.

Fault. When set, indicates de power fault, head select fault, write fault, write or read while
off cylinder, or write attempted during read function.
Plug Valid. When-set, indicates a logic plug installed in the R80 disk drive operation control
panel.
Seek Error. When set, indicates R80 unable to complete seek within 500 microseconds,
read/write heads outside recording area, or illegal address detected.
On Cylinder. When set, indicates disk drive read/write heads are located over a cylinder.
Drive Ready. When set, indicates disk drive is up to speed, read/write heads are loaded, and
no fault exists in disk drive.
Write Protect. When set, indicates R80 is in write protect mode (write protect mode selected
using WRITE PROT switch on R80 disk drive).

* - Not used as part of R80 status information.

Figure 2-12 R80 Status Information Data Format
and Bit Significance

2.2.5 Port Microinstruction Inputs
The port microinstruction inputs to the IDC are used to preset the IDC logic and to cause the transfer
of data and information between the IDC and the CPU. The port microinstructions reside in the writ­
able control store (WCS) module in the CPU. The CSR 17 and CSR 14: I 0 signal lines contain the port
microinstruction applicable to the IDC. The format and bit significance of the port microinstruction
inputs are shown in Figure 2-13. Table 2-1 lists the port microinstruction functions.

2.2.6 PORT INSTR Input
The CPU outputs a PORT INSTR signal to indicate that a valid port command is being applied on the
CSR signal lines. The PORT INSTR signal and the port command remain active for an entire CPU
microcycle (270 nanoseconds). A high PORT INSTR input with CSRl 7 of the port microinstruction
set to a high (CSRl 7 high indicates that the port microinstruction is IDC specific) enables the JDC to
decode the port microinstruction input and to preset the JDC logic, or to cause data transfers between
the CPU and the IDC.

2.2. 7 READ PORT and SEL ACC IN Inputs
The READ PORT and SEL ACC IN signals are used to cause the transfer of information and data
from the JDC or FPA to the CPU. The SEL ACC IN signal indicates if the READ PORT input is IDC
or FPA specific. (If SEL ACC IN is low, READ PORT is IDC specific.)

2.2.8 CPU P2 and PORT CLOCK Inputs
The CPU P2 and PORT CLOCK inputs provide the basic timing pulses for synchronizing the IDC
operation with CPU operation. The PORT CLOCK input is the basic 90-nanosecond CPU clock. The
CPU P2 input is the gated CPU clock phase 2 output of the CPU. The CPU P2 signal is normally high
during the last 90 nanoseconds of the 270-nanosecond CPU microcycle. Figure 2-14 shows the timing
relationship of the PORT CLOCK and CPU P2 inputs relative to the CPU microcycle.

2.3 IDC/R80 INTERFACE
The interface signals at the IDC/R80 interface are shown in Figure 2-1. The IDC/R80 interface sig­
nals input to the R80 disk drive from the JDC include R80 TAG 3: 1, R80 TAG BUS 9:0, ACLO
(POWER SEQUENCE PICK), GND (POWER SEQUENCE HOLD), R80 WRITE CLOCK, R80
WRITE DATA, and R80 INITIALIZE. The IDC/R80 interface signals output from the R80 disk
drive to the IDC include R80 SECTOR COUNT 1, 2, 4, 8, and 16, R80 FAULT, R80 PLUG VALID,
R80 SEEK ERROR, R80 ON CYLINDER, R80 DRIVE READY, R80 WRITE PROTECT, R80
SELECT ADRS 1 and 2, R80 INDEX PULSE, R80 SECTOR PULSE, R80 SERVO CLOCK, R80
READ CLOCK, and R80 READ DATA. All of the signals at the IDC/R80 interface are discussed in
detail in Paragraphs 2.3.1 through 2.3.8.

2.3.1 R80 TAG 3:1 and R80 TAG BUS 9:0
The R80 TAG 3: I and R80 TAG BUS 9:0 signal lines are used to transmit disk drive control signals
from the JDC to the R80 disk drive. These signal lines are used to position the read/write heads over
the desired cylinder, to select one of the fourteen read/write heads, and to initiate a disk drive read,
write, or recalibrate function.

The R80 TAG 3: I inputs to the R80 disk drive are used to identify the parallel inputs applied via the
R80 TAG BUS 9:0 inputs (see Table 2-2). When the R80 TAG 1 signal is asserted, it identifies to the
R80 disk drive that the R80 TAG BUS 9:0 inputs contain a binary-coded cylinder address and initiates
the R80 disk drive seek function (repositions the R80 read/write heads over the cylinder having the
address specified by the R80 TAG BUS 9:0 inputs).

When the R80 TAG 2 signal is asserted, it identifies to the R80 disk drive that the R80 TAG BUS 4:0
inputs contain binary coded R80 read/write head selection information and initiates selection of one of
the fourteen· read/write heads based on the state of the R80 TAG BUS 4:0 inputs.

2-16

N
I

Port Microinstruction
Bits

CSR17

CSR14

CSR 13

CSR12
CSR 11
CSRlO

Bit Significance

Port Device Select. This bit contains the address of the port device for which the port microinstruction is
intended. The address for the IDC is CSR 17 = 1.
Command Identity. These bits specify the function of the command bits (CSRl 2:CSRIO): read (transfer
information or data from IDC to CPU), write (transfer information or data from CPU to IDC), or control
(preset the IDC logic). These bits are encoded as follows:

CSR 14

0
0
I

CSR 13

0
I
0

Function

Read
Write
Control

Command Bits. These bits enable the IDC data paths that cause the transfer of information
or data between the IDC and CPU, or preset the IDC logic. The command bits are decoded in
the IDC to initiate the function(s) specified in Table 2-1.

Figure 2-13 Port Microinstructions Format
and Bit Significance

Table 2-1 Port Microinstruction Functions

Command
Identity CSR CSR CSR Function
(See CSR 13:14) 12 11 10 Decode Function Description

Write 0 0 0 WRITE CSR Load JDC control word
(Figure 2-2) from the CPU
into the JDC.

Write 0 0 WRITE DAR Load one of the following
disk drive control words
from the CPU into the JDC:
RL02 get status command
(Figure 2-3), RL02 seek
command (Figure 2-4),
RL02 read/write data ad-
dress (Figure 2-8), R80 seek
command (Figure 2-5), R80
head select command (Fig-
ure 2-6), R80 recalibrate
command (Figure 2-7), or
R80 read/write data ad-
dress (Figure 2-9).

Write 0 0 WRITE DATA Load one data byte (BUS Y
BYTE bits DOO through D07) from

the CPU into the JDC.

Write 0 WRITE DATA Load one data word (BUS
WORD Y bits DOO through 031)

from the CPU into the IDC.

Read 0 0 0 READ CSR Output to CPU the IDC sta-
tus word (Figure 2-1 O).

Read 0 0 READ DAR Output to CPU the current
RL02 read/write data ad-
dress (Figure 2-8) or the
current R80 read/write
data address (Figure 2-9).

Read 0 0 READ DATA Output to CPU one data
BYTE byte (BUS y bits DOO

through D07) from JDC to
CPU. Usually two succes-
sive read data byte com-
mands are used to output to
the CPU the RL02 status
information or the R80 sta-
tus information (Figure 2-11
or 2-12, respectively).

2-18

Table 2-1 Port Microinstruction Functions (Cont)

Command
Identity CSR CSR CSR Function
(See CSR 13: 14) 12 11 10 Decode Function Description

Read 0 READ DATA Output to CPU one data
WORD word (BUS y bits 000

through D31).

Read 0 0 READ PATTERN Output to CPU a 13-bit
word (BUS y bits DOO
through D 12) that contains
the 11-bit data burst m
which a read error occurred.

Read 0 READ POSITION Output to CPU a 13-bit
word (BUS y bits DOO
through D12) that contains
the address of the first bit of
the data burst within which
a read error occurred.

Control 0 0 0 CLEAR FIFO Resets the counter that con-
CNTR trols sequential loading and

unloading of data from the
IDC data buffers.

Control 0 0 RESET BR Resets the UBUS BR5 in-
terrupt request output of the
IDC.

Control 0 CLEARIDC Presets the IDC and R80
disk drive. This function is
also initiated by the ACLO
input.

Control 0 0 SET AUTOMODE Presets the conditions that
allow successive data words
to be gated to the CPU
without issuing a READ
DATA WORD port micro-
instruction for each data
longword to be gated. How-
ever, a READ PORT signal
is required for gating each
data longword to the CPU.

Control 0 CLEAR Deselects the automode
AUTO MODE function.

2-19

Command
Identity

Table 2-1 Port Microinstruction Functions (Cont)

(See CSR 13:14)
CSR
12

CSR
11

CSR
to

Function
Decode Function Description

Control

Control

RSO
TAG
Bus Bit

0
1
2
3
4
5
6
7
8
9

PORT CLOCK
I

0 SELECT FIFO A

SELECT FIFO B

CPU MICROCYCLE I
(270 nsec)

PO I Pl I P2 I
CPU MICROCYCLE
(270 nsec)

PO I Pl P2

CPU P2 i-1._ ____ _

Selects one of the two IDC
data buffers to be used in
the transfer of data between
the IDC and the CPU.

Selects one of the two IDC
data buffers to be used in
the transfer of data between
the IDCand the CPU

Figure 2-14 Timing Relationship of PORT CLOCK and
CPU P2 Inputs to IDC

Table 2-2 RSO TAG Bus Bit Decoding

RSOTAG 1 R80TAG2 RSOTAG 3
Asserted Asserted Asserted

Cylinder Read/Write
Address Head Select Control
(Binary Coded) (Binary Coded) Select*

I 1 Write gate
2 2 Read gate
4 4 Not used
8 8 Not used
16 Not used Not used
32 Not used Not used
64 Not used Recalibrate
128 Not used Not used
256 Not used Not used
512 Not used Not used

* Only one of the ten TAG bus bits may be asserted at a time when R80 TAG 3 is asserted.

2-20

When the R80 TAG 3 signal is asserted, it identifies to the R80 disk drive that the TAG BUS 9:0
inputs specify a control select signal. The control select signals input to the R80 disk from the IDC
include the R80 recalibrate write gate and read gate commands. Assertion of the R80 TAG 3 and R80
TAG BUS 6 inputs initiates the R80 recalibrate function (positions the R80 read/write heads over the
cylinder having the address of 0). Assertion of the R80 TAG 3 and R80 TAG BUS 0 inputs enables the
R80 write gate function. Assertion of the R80 TAG 3 and R80 TAG BUS 1 inputs enables the R80
read gate function.

2.3.2 ACLO, GND, and R80 INITIALIZE
The ACLO (POWER SEQUENCE PICK) input to the R80 disk drive is low when the VAX-11/730
system is operating normally. However, when the V AX-1 l /730 system experiences a low ac line level con­
dition, the ACLO input to the IDC is asserted. The ACLO input is buffered by the IDC and asserted to the
R80 disk drive as a high ACLO (POWER SEQUENCE PICK) signal. A high POWER SEQUENCE
PICK signal input to the R80 disk drive causes the disk drive to spin down and inhibits any read/write
operations. The POWER SEQUENCE HOLD input to the R80 disk drive is used to inhibit spinup of the
drive while another R80 disk drive is in the spinup state. Since only one R80 disk drive is connected to the
IDC, the POWER SEQUENCE HOLD input is clamped at ground in the IDC.

The R80 INITIALIZE input to the R80 disk drive is initiated by the IDC either in response to a
CLEAR IDC port microinstruction input from the CPU or in response to the DCLO input during in­
itial powerup or powerup following an input power interruption to the VAX-11 /730. The R80 IN­
ITIALIZE input to the R80 disk drive causes the read/write heads to be deselected and to be posi­
tioned over cylinder 0.

2.3.3 R80 WRITE DAT A and R80 WRITE CLOCK
The R80 WRITE DATA input to the R80 disk drive is used to apply serially the data to be written on
the disk. The R80 WRITE CLOCK signal is generated by the IDC from the R80 SERVO CLOCK
input to the IDC. The R80 WRITE CLOCK signal strobes each data bit applied via the R80 WRITE
DAT A input into the R80 disk drive.

The R80 WRITE DAT A applied to the disk drive is in the format illustrated in Figure 2-15. Figure 2-
15 also shows the timing relationship of the R80 WRITE DATA and R80 WRITE CLOCK outputs
from the IDC during the transfer of one sector of data from the IDC to the R80 disk drive.

2.3.4 R80 SECTOR COUNT 1, 2, 4, 8, and 16
The R80 SECTOR COUNT 1, 2, 4, 8, and 16 inputs to the IDC from the R80 disk drive provide
binary codet'sector add,ress information. The SECTOR COUNT inputs identify the correct sector
from the Ji sectors of ·th~selected cylinder over which the read/write heads are located. The SECTOR
COUNT inputs change state at the leading edge of each R80 SECTOR or R80 INDEX PULSE. The
SECTOR COUNT inputs to the IDC are reset to zero by the R80 INDEX PULSE and incremented
by each R80 SECTOR PULSE.

2.3.5 R80 FAULT, R80 PLUG VALID, R80 SEEK ERROR, R80 ON CYLINDER, R80 DRIVE
READY, and R80 WRITE PROTECT
These signal inputs to the IDC are used to indicate the operational or fault status of the R80 disk drive. The
significance of each signal is detailed in Figure 2-12, which illustrates and discusses the makeup and bit
significance of the R80 status information transferred to the CPU. The R80 FAULT, R80 PLUG VALID,
R80 ON CYLINDER, and R80 DRIVE READY inputs to the IDC from the R80 disk drive are used to
specify to the IDC any changes in R80 disk drive status (that the operational function requested of the disk
drive was completed successfully or that a fault condition has developed).

2.3.6 R80 SELECT ADDRESS 1 and 2
These signal lines specify to the IDC the binary-coded unit number of the disk drive. This number is
selectable by selection of the logic plug installed on the R80 operator panel.

2-21

N
I

N
N

ONE SECTOR OF RBO WRITE DATA: IDC TO RBO DISK DRIVE
14288 BIT CHARACTER STRING)

HEADER GAP

~}F ZEROS lsYNC BYTE l

--- TIME

-j j--103.3 nsec

RBO SERVO CLOCK~

RBO WRITE CLOCK Inn n n n n n n n n.
'-l'i'1~'1'1'1'1'1'1L.f I

I I I I I I I I I I I
I I I I I I I I I I I

RBO WRITE DATA I I I I I I I I I I " I
INRZ FORMAT) I I I I I I I I fl

BIT 1 I I I I I I I I I I I
I I

INTERVAL IN WHICH --I
EACH DATA BIT IS
APPLIED TO RBO
WRITE DAT A OUTPUT
OF IDC

I- BIT 136 j
I

BIT 137

DATA BURST ECC

512 BYTE~~OF DATA

DATA
GAP

I 2 BYTES ~~F ZEROS I

I I I I I I I
9 1 1 o o 1 I

!~~l~~~~~~~~~~,~\...._~~~~~--...1-,-1~~~~~-l----.1__,1~~~~~~l~~~,-
I I II I I I I l : : :

I I I BIT 4241 BIT 4272 I BIT 4288
BIT 144

I I BIT 4273

BIT 145 BIT 4240
(FIRST BIT OF (LAST BIT OF
DATA FROM IDC DATA FROM
DAl A BUFFER) IDC DATA BUFFER)

Figure 2-15 R80 Write Data Format and Data
Transfer Timing: IDC to R80

2.3.7 R80 INDEX PULSE and R80 SECTOR PULSE
The R80 INDEX PULSE and R80 SECTOR PULSE inputs to the IDC are used to indicate the begin­
ning of each sector of the R80 cylinder track. The R80 INDEX PULSE occurs once per R80 cylinder
revolution with the leading edge of the pulse indicating the beginning of sector 0. An R80 SECTOR
PULSE marks the beginning of each of the remaining 31 sectors for each R80 cylinder revolution.
Figure 2-16 shows the timing relationship of the R80 SECTOR and R80 INDEX PULSES.

--1 j--- 2.5 µsec --1 j.- 2.5 µsec 1--520 µsec* --j

R80 INDEX PULSE ,-> --~"~----n _ ___,,,n;o------',,.'----~' lt tt tt t

RBO SECTOR PULSE~~>------~
I I I
..--SECTOR 32 SECTOR 0 SECTOR 1--t--SECTOR 2
I I

* BASED ON A DISK ROTATIONAL RATE OF 3600 RPM.

Tt<-7363

Figure 2- I 6 R80 Sector Pulse and Index Pulse Timing

2.3.8 R80 READ DAT A and R80 READ CLOCK
The R80 READ DAT A output is used to apply to the IDC the data read from the disk. The R80
READ CLOCK output is synchronized with the R80 READ DAT A output to provide a timing pulse
that defines the beginning of each interval in which each bit of the read data is applied.

The R80 READ DAT A applied to the JDC is in the format illustrated in Figure 2-17. Figure 2-17 also
shows the timing relationship of the R80 READ DAT A and R80 READ CLOCK outputs of the R80
disk drive.

2.4 IDC/RL02 INTERFACE
The signals at the IDC/RL02 interface are shown in Figure 2-1. The IDC/RL02 interface signals input
to the RL02 disk drive include RL DRIVE COMMAND, RL DRIVE DATA, and RL SYSTEM
CLOCK. The IDC/RL02 interface signals output from the RL02 disk drive include RL DRIVE ER­
ROR, RL DRIVE READY, RL STATUS, RL STATUS CLOCK, RL SECTOR PULSE and RL
READ DATA. All of the signals at the IDC/RL02 interface are discussed in Paragraphs 2.4.1 through
2.4.9.

2.4.1 RL DRIVE COMMAND and RL SYSTEM CLOCK
The RL DRIVE COMMAND signal line is used to transfer serially a RL02 get status command or a
RL02 cylinder difference word. from the IDC to the RL02 disk drive. The RL02 get status command
initiates the transfer of RL02 status data from the RL02 to the IDC. The RL02 cylinder difference
word specifies to the RL02 the data required to reposition the read/write heads over the desired cylin­
der and selects the read/write head to be used. The RL02 get status command and RL02 cylinder
difference word inputs are in a 16-bit serial data format and are transferred to the RL02 by the RL
SYSTEM CLOCK. The RL SYSTEM CLOCK, a 4.1 megahertz clock signal generated by the JDC,
transfers the RL02 cylinder difference word to the RL02 at a rate of 243.9 nanoseconds per bit. The
RL SYSTEM CLOCK signal input to the RL02 disk drive is used also to synchronize the operation of
the RL02 disk drive with the IDC.

2-23

N
I

N
~

HEADER

CYLINDER SECTOR CRC

ONE SECTOR OF R80 READ DATA: ABO TO IDC
(5360 BIT CHARACTER STRING)

DATA FIELD

SECTOR GAP ADDRESS ADDRESS WORD HEADER GAP DATA BURST ECC DATA GAP -------J'------...... r--""---"\~r---"'---.-------""'------___ ___......_ _____ ___...___,,... _______ ,,.._ ______ _

128 BYTE} OF ZEROS SYNC BYTE 2 BYTES 2 BYTES 2 BYTES 17 BYTES OF ZEROS SYNC BYTE 512 BYTES OF DATA 4 BYTES ECC 2 BYTES OF ZEROS 59 BYTES !UNDEFINED!

----TIME
1
L

I -----,
-el l-103.3 nsec I

RBO READ CLOCK~ n n n n n n n rl
~ !JI ~I ~ i.q i .. q ,-)\ ,-1! i.J 8°
I I I I I I I
11:1--1--i!~

RBO READ DATA ..f..-1--.LJ L.LJ Y
(NRZ FORMAT) I 0 I 0 I 0 I 1 I 1 I 0 I 0 I 1 I

Figure 2-17 R80 Read Data Format and Data Transfer
Timing: R80 to IDC

TK·7370

The structure and bit significance of the get status and cylinder difference word inputs to the RL02
disk drive are discussed in Figures 2-3 and 2-4, respectively. The data words shown in Figures 2-3 and 2-
4 are serialized in the IDC and applied to the RL02 disk drive via the RL DRIVE COMMAND signal
line. The bit identified as DOO in Figures 2-3 and 2-4 corresponds to the first bit of the 16 bits trans­
ferred to the RL02.

2.4.2 RL DRIVE SELECT 0 and 1
The RL DRIVE SELECT 0 and 1 inputs enable selection of one of the four RL02 disk drives that may
be connected to the IDC. The RL DRIVE SELECT 0 and 1 inputs to the RL02 disk drives are gener­
ated by the IDC in response to the Drive Select bits of the JDC control word (Figure 2-2) input to the
IDC from the CPU. Assertion of the Drive Select bits enables the selected drive to generate/respond to
the signals at the IDC/RL02 interface.

2.4.3 POWER FAIL (ACLO)
This signal input to the RL02 disk drives is asserted low whenever a low line level or loss of the primary
facility power input is detected. Assertion of the POWER FAIL signal ·causes all of the RL02 disk
drives connected to the IDC to cycle down. When the POWER FAIL signal is deasserted (returns to a
high), the RL02 disk drives spin up and the read/write heads are loaded and positioned over cylinder 0.

2.4.4 RL WRITE GATE and RL WRITE DATA
The RL WRITE GATE signal enables the write circuits in the selected RL02 disk drive. The data to
be written on the selected RL02 disk are applied in a serial format via the RL WRITE DAT A signal
line. The data to be written are encoded in Modified Frequency Modulation (MFM) form. The RL
WRITE DAT A applied to the RL02 disk drive are in the format shown in Figure 2-18. Figure 2-18 also
illustrates the timing relationship of the RL WRITE DATA and RL WRITE GATE outputs of the
IDC during the transfer of one sector of data from the IDC to the RL02 disk drive.

MFM ENCODED
RL WRITE DATA

ONE SECTOR OF WRITE DATA TO RL02 DISK DRIVE
(2128 BIT CHARACTER STRING)

DATA PREAMBLE DATA BURST CRC DATA POSTAMBLE ~--------..__ ______________________ .-----_,--~__.'--~--..

5 BYTES OF ZEROS SYNC BYTE 256 BYTES OF DATA 2 BYTES 2 BYTES OF ZEROS

I
-TIME I

I

--l
I
L-------------.

L 243.9 nsec I
o 1 o o 1 o 1 o 1 o 1 0

1
1 I

INTERVAL __J 1-RL WRITE GATE ASSERTED
= 0 TO 256 nsec I BEFORE DATA PREAMBLE

RL WRITE GATE
INTERVAL --l L_DEASSERTED AFTER
= 0 TO 256 nsec ,-----DATA POSTAMBLE

RL WRITE GATE

Figure 2-18 RL Write Data Format and Data
Transfer Timing: JDC to RL02

2-25

TK-7366

2.4.S RL DRIVE READY
The RL DRIVE READY input to the IDC is asserted high to indicate that the disk drive has success­
fully executed the previously asserted drive command (the read/write heads are located over the de­
sired cylinder and loaded) and is ready to receive further drive commands or to write or read data to or
from the disk. The RL DRIVE READY signal is deasserted after receiving a RL DRIVE command. on
detection of an operational error within the disk drive, or when RL WRITE GATE is asserted (when
data are being written on the disk).

2.4.6 RL DRIVE ERROR
The RL DRIVE ERROR input to the IDC is asserted high to indicate that the selected RL02 disk
drive.has developed an error condition. When the RL DRIVE ERROR output of the RL02 disk drive is
asserted, the DRIVE READY output is deasserted. The type of error causing the assertion of RL
DRIVE ERROR may be determined by examining the RL STATUS output of the applicable RL02
disk drive (Paragraph 2.4. 7).

2.4.7 RL STATUS and RL STATUS CLOCK
The RL ST A TUS and RL ST A TUS CLOCK outputs of the RL02 disk drive are enabled by asserting
an RL02 get status command to the disk drive via the RL drive command signal line. On receipt of the
get status command, the selected disk drive transfers serially 16 bits of status information to the I DC
via the RL ST A TUS signal lines. The format and bit encoding of the 16-bit RL status word input to the
JDC are illustrated in Figure 2-19. The significance of each bit is as specified in Figure 2-11. The RL
ST A TUS CLOCK output of the disk drive is derived from the 4.1 megahertz RL SYSTEM CLOCK
input to the disk drive. The RL STATUS CLOCK output of the disk drive (a 4.1 megahertz clock) is
asserted to the IDC in synchronization with each bit of the status information. The RL ST A TUS
CLOCK output remains enabled until a new RL drive command is asserted or the disk drive is dese­
lected.

2.4.8 RL SECTOR PULSE
The RL SECTOR PULSE signal input to the IDC is used to indicate the beginning of each of the 40
sectors of each RL02 cylinder track. The selected RL02 disk drive asserts a high 45 + 10 microsecond
pulse once every 625 microseconds. The leading edge of the pulse indicates the beginning of a sector.

2.4.9 RL READ DAT A
The data recorded on the disk are applied serially to the IDC via the RL READ DAT A signal line.
This signal line applies the recorded data to the IDC whenever the disk drive is selected (Paragraph
2.4.2) and the disk drive asserting a high RL DRIVE READY output (the drive is not performing a
seek function, and does not have a detected error). The read data transferred via the RL READ DA TA
signal line are encoded in MFM form as shown in Figure 2-20. The data are transferred from the RL02
to the IDC at a 4.1 megahertz rate (243.9 nanoseconds per bit).

-----TIME

LSB MSB
BIT NO. 00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15

ST A STB STC BH HO CO HS DSE VC WGE SPE SKTO WL CHE WDE

STATE

BRUSH
HOME

HEADS
OUT

COVER
OPEN

VOLUME
CHECK

SPIN
ERROR

HEAD DRIVE
SELECT SELECT

ERROR

WRITE
GATE
ERROR

SEEK
TIME
OUT

Figure 2-19 Format and Bit Significance of RL02
Status Information Transfer: RL02 to IDC

2-26

WRITE
LOCK

WRITE
DATA
ERROR

CURRENT
IN HEAD
ERROR

TK·7358

N
l~
-.....J

HEADER PREAMBLE

ADDRESS
(SECTOR

HEADER

HEADER
CYLINDER)

,--~~~~~~~~~~ ~

ONE SECTOR OF READ DATA FROM RL02 DISK TO IDC
(2240 BIT CHARACTER STRING)

CRC
HEADER
POST AMBLE

DATA
PREAMBLE

DATA FIELD

DATA
DATA BURST CRC POST AMBLE

~OF ZEROS SYNC BYTE 2 BYTES 2 BYTES OF ZEROS 2 BYTES 2 BYTES OF ZEROS 5 BYTES OF ZEROS SYNC BYTE 256 BYTES OF DATA 2 BYTES 2 BYTES OF ZEROS

I I
I I
I ~------------,

243.9 nsec__J
0

f-
0 0 1

I
MFM ENCODED I I I 0 I 0 I 0 I 0 I I
RL READ DATA------ ------------------------------

----TIME

Figure 2-20 RL Read Data Format and Data
Transfer Timing: RL02 to IDC

3.1 IDC FUNCTIONS

CHAPTER 3
THEORY OF OPERATION

The IDC and associated disk drive(s) make up the RB730 disk subsystem. The IDC interfaces the
VAX-11 /730 CPU with up to four RL02 disk drives or one R80 disk drive and up to three RL02 disk
drives. The IDC executes the functions specified by the CPU to cause storage and retrieval of data
from the disk drives of the RB730 disk subsystem. Table 3-1 lists the functions that can be specified
with the IDC control words and describes the purpose of each function. It also lists the required inputs
(disk drive control words, address information, and data) for each function.

Function Specified by
IDC Control Word
from CPU*

Seek (RL02)

Seek (R80)

Seek (R80)

Seek (R80)

Get Status (for RL02)

Get Status (For R80)

Table 3-1 IDC Functions

Required Inputs
from CPU*

RL02 Seek Command

R80 Seek Command

R80 Head Select Command

R80 Recalibrate Command

RL02 Get Status Command

None. (Information for selecting
R80 status information is contain­
ed in IDC control word.)

Purpose

Controls positioning of the selected
RL02 disk drive read/write heads
over the desired cylinder track and
enables the desired read/write
head.

Controls positioning of the R80 disk
drive read/write heads over the de­
sired cylinder.

Enables one of the fourteen
read/write heads in the R80 disk
drive.

Controls positioning of the R80
read/write heads over cylinder 0.

Controls gating the status informa­
tion from the selected RL02 disk
drive and storing it in the IDC data
buffer.

Controls gating the status informa­
tion from the R80 disk drive and
storing the status information in the
IDC data buffer.

* The format and bit significance of the IOC control word and the specified required inputs to the IOC are discussed in Chapter 2.

3-1

Function Specified by
IDC Control Word
from CPU*

Read Header

Write Data

Read Data

Read Data Without
Header Check

Write Check

Write Format
(Used only with R80
disk drive)

Maintenance

Table 3-1 IOC Functions (Cont)

Required Inputs
from CPU*

None. (Information for selecting
disk drive from which header is to
be read is contained in IDC con­
trol word.)

Read/Write Data Address.
(CPU must load JDC data buffer
with data to be written)

Read/Write Data Address

None. (Information for selecting
disk drive from which data are to
be re trieved is specified as part of
the IDC control word.)

Read/Write Data Address.
(CPU must load IDC data buffer
with comparison data.)

Header Data. Performed after
read/write heads of the selected
disk drive have been positioned
over the cylinder (CPU must load
IDC data buffer with the header
information for all 32 sectors of
the cylinder.)

As specified in microdiagnostic
routines.

Purpose

Controls reading from the selected
disk drive the header information
from the first sector encountered
and storing it in the IDC data buf­
fer.

Controls writing of the data contain­
ed in the IDC data buffer at the

~'·specified read/ write data address
~af'the selected disk drive.
~ ··,.

· · L·Controls reading from the selected
disk drive the data from the speci­
fied read/write data address and
storing of the data in the IDC data
buffer.

Controls reading from the selected
disk drive the data from the first
sector encountered and storing the
data in the IDC data buff er.

Controls reading from the selected
disk drive the data from the speci­
fieq read/write data address and
comparison of data read from mem­
ory with data contained in the data
buffers.

Controls writing of new header data
from the IDC data buffer into each
of the 32 sectors of the applicable
R80 cylinder.

Places the IDC in the maintenance
mode such that the JDC logic may
be exercised by microdiagnostic
routines designed to detect faults or
verify operational status of the IOC
hardware.

* The format and bit significance of the IOC control word and the specified required inputs to the IOC are discussed in Chapter 2.

3-2

3.2 OVERALL IDC OPERATION
The I DC operates under CPU control. The CPU loads the required inputs (disk drive control word,
address information, and/or data) and IDC control word needed to initiate each function of the IDC.
Once an I DC function is initiated (when the I DC control word is loaded), the I DC operation is con­
trolled by a microcontroller on the I DC. After the function has been completed or an error is detected,
the I DC generates and asserts an interrupt signal to the CPU. The CPU then takes control of the I DC
operation to transfer the desired information or data from the I DC to the CPU, or to load the I DC with
the required input(s) and I DC control word needed to initiate another I DC function. When the IDC is
not performing a function specified by the CPU, it operates in the idle mode. In this mode, the oper­
ation of the I DC is controlled by the microcontrollcr, which samples the operational status of the disk
drivc(s) and generates and asserts an interrupt to the CPU if an operational status change. is detected.

3.2.1 · Initiating I DC Functions
Each of the I DC functions listed in Table 3-1 is initiated under CPU control. The required inputs and
IDC control word needed to initiate each IDC function arc asserted to the IDC via the CPU Y BUS
and arc loaded into the IDC by the port microinstructions asserted to the IDC. The IDC decodes the
port microinstructions and generates the control signals used to preset the I DC logic or to load the I DC
registers and data buffers.

3.2.1.1 Loading Required Inputs

a. Disk Drive Control Word and Address Information - The required disk drive control word
(RL02 seek command, RL02 get status command. R80 seek command, R80 head select com­
mand, or R80 recalibrate command) or address information (RL02 read/write address or
R80 read/write address) is loaded into the IDC by asserting the applicable disk drive control
word or address information to the I DC via the CPU Y BUS and simultaneously asserting a
WRITE DAR port microinstruction (sec Table 2-1) and a PORT INSTR input to the IDC.
(A detailed discussion of how the disk drive control word and address information are loaded
into the I DC is provided in Paragraph 3.5.13.3.)

b. Data - The required data input to the I DC is loaded into one of the two data buffers. Each
data buffer has the capacity to store one full sector of data (512 bytes of R80 data or 256
bytes of RL02 data). When data arc a required input, the CPU must load a full sector of
data. If a partial sector is to be loaded, the CPU must load the rest of the sector with zeros.
The data to be loaded into the data buffer(s) may be in either byte or longword format.

Before the required data are loaded into the I DC, the CPU must assert a FIFO SEL port
microinstruction (sec Table 2-1) to select the data buffer to which the data are to be loaded.
The CPU causes loading of each data byte or data longword into the selected data buffer by
asserting the correct WRITE DATA BYTE or WRITE DATA WORD port micro­
instruction (sec Table 2-1) and PORT INSTR input signal to the IDC and simultaneously
asserting the data byte or data longword to be loaded via the CPU Y BUS. (A detailed dis­
cussion of how the data are loaded into the IDC is provided in Paragraph 3.5.13.6.)

3.2.1.2 Loading the IDC Control Word - The IDC control word is loaded into the IDC by asserting
the I DC control word onto the CPU Y BUS and simultaneously asserting a WRITE CSR port micro­
instruction (see Table 2-1) and PORT INSTR input signal to the I DC. (A detailed discussion of how
the I DC control word is loaded into the I DC is provided in Paragraph 3.5.13.1.)

3-3

3.2.2 IOC Operation
Each of the IDC functions listed in Table 3-1 is initiated when the CPU loads the applicable IDC con­
trol word into the IDC. The IDC control word input specifies the function to be executed, the address
of the disk drive to be used, and whether an interrupt is to be generated at the completion of the speci­
fied function. If the R80 disk drive is to be used, the IDC control word also indicates if skip sectoring is
to be enabled.

When the IDC control word is loaded into the IDC, the address bits are used to enable the appropriate
RL02 disk drive (if an RL02 disk drive is specified) and to condition the I DC for operation with an
RL02 or the R80 disk drive. The function bits of the IDC control word indicate to the IDC the function
to be performed and are used to preset the IDC microcontroller. The operational sequence performed
by the IDC is initiated by the CROY bit of the IDC control word. (A detailed discussion of JDC oper­
ation during each function is presented in Paragraph 3.4.)

After the IDC has completed the function specified by the IDC control wonl, the IDC generates and
asserts the applicable interrupt to the CPU. Then, if applicable, the IDC enters the idle mode of oper­
ation.

After the IDC has asserted the proper interrupt to the CPU, the CPU may specify another IDC func­
tion or, if data or information was requested by the previously specified IDC function, assert the appli­
cable port microinstructions to transfer the requested information or data from the IDC to the CPU.

3.2.3 Transfer of Information and Data from IOC to CPU
The trans{ er of information (IDC status information, disk drive information,· CRC /ECC error detec­
tion information, and current address information) and data from the IDC to the CPU is controlled by
the CPU. To transfer information and data from the IDC to the CPU requires that the CPU assert the
proper port microinstruction input(s) followed during a later CPU microcycle by a READ PORT sig­
nal. The IDC decodes the port microinstruction input(s) and generates the enable signals that make
available to the CPU the requested information or data. The following READ PORT signal is used to
enable the requested information or data to be asserted to the CPU via the CPU Y BUS.

3.2.3.1 IOC Status Information Transfer (IDC to CPU) -The CPU causes transfer of the IDC status
word (Figure 2-10) from the IDC to the CPU by asserting a READ CSR port microinstruction (see
Table 2-1), followed during a later CPU. microcycle by a READ PORT signal. The IDC decodes the
port microinstruction and generates the control signals required to make the IDC status word available
for transfer to the CPU. The READ PORT input to the IDC port control logic is used to assert the IDC
status word to the CPU via the CPU Y BUS. (A detailed discussion of how the IDC status information
is transferred from the IDC to the CPU is provided in Paragraph 3.5.13.2.)

3.2.3.2 Disk Drive Status Information Transfer (IDC to CPU) - The two bytes of disk drive status
information (Figure 2-11, RL02; Figure 2-12, R80) read from the disk drives by the IDC during a get
status function are stored in the IDC data buffer. The CPU causes the transfer of the disk drive status
information by asserting two READ DAT A BYTE port microinstructions. Following each READ
DATA BYTE port microinstruction, the CPU asserts a READ PORT signal. The IDC decodes each of
the READ DA TA BYTE port microinstructions and generates the control signals to cause the transfer
of a single byte of data from the data buffer to the data output register, where it is available for transfer
to the CPU.

Each of the READ PORT inputs to the IDC control logic is used to assert the byte of disk drive status
information to the CPU via the CPU Y BUS. (A detailed discussion of how the disk drive status infor­
mation is transferred from the IDC to the CPU is provided in Paragraph 3.5.13.7.)

3-4

3.2.3.3 ECC/CRC Error Detection Information Transfer (IDC to CPU) - The CPU causes the trans­
fer of the ECC POSITION or ECC PATTERN from the IDC to the CPU by asserting the applicable
READ POSITION or READ PATTERN port microinstruction (see Table 2-1), followed during a later
CPU microcycle by a READ PORT signal. The IDC port control logic decodes the port micro­
instruction and generates the control signal required to make the ECC POSITION or ECC PATTERN
information available for transfer to the CPU. The READ PORT input is used to assert the ECC POS­
ITION or ECC PATTERN information to the CPU via the CPU Y BUS. (A detailed discussion of
how the error detection information is transferred from the IDC to the CPU is provided in Paragraph
3.5.13.5.)

3.2.3.4 Current Address Information Transfer (IDC to CPU) - The CPU causes the transfer of the
current address information to the CPU by asserting a READ DAR port microinstruction (see Table 2-
1) followed during a later CPU microcycle by a READ PORT signal. The IDC port control logic de­
codes the port microinstruction and generates the control signals required to make the current address
information available for transfer to the CPU. The READ PORT input to the IDC port control logic is
used to assert the current read/write data address to the CPU via the CPU Y BUS. (A detailed dis­
cussion of how the current address information is transferred from the IDC to the CPU is provided in
Paragraph 3.5.13.4.)

3.2.3.5 Data Transfer (IDC to CPU) - The CPU controls the transfer of data from the IDC buffers to
the CPU. The data contained in the IDC data buffers may be transf~rred in either byte or longword
format. The CPU causes the transfer of a data byte or single data longword by asserting a READ
DAT A BYTE or READ DAT A WORD port microinstruction followed during a later CPU microcycle
by a READ PORT signal. The IDC decodes the port microinstruction and generates the control signals
that make available for transfer to the CPU a single data byte or a series of four contiguous data bytes
arranged in a longword format. The READ PORT signal input to the IDC enables the data byte or data
longword to be transferred to the CPU via the CPU Y BUS.

For transferring a series of data longwords, the CPU presets the IDC using an AUTOMODE port mi-·
croinstruction, followed by a single READ DAT A WORD port microinstruction. Presetting the IDC
with the AUTOMODE and READ DATA WORD port microinstructions allows a series of data long­
words to be transferred with a series of READ PORT signals (each successive READ PORT input
signal causes the transfer of successive data longwords). (A detailed discussion of how the data are
transferred from the IDC to the CPU is provided in Paragraph 3.5.13. 7 .)

3.3 OVERALL IDC LOGIC FAMILIARIZATION
Figure 3-1 is a block diagram of the IDC. Each block represents a grouping of components having the
operational characteristics identified in that block.

3.3.l IDC Port Control Logic
The I DC port control logic operates under CPU control. The CPU uses port microinstruction inputs to
get control of the I DC. The port microinstructions are applied to the IDC port control logic via the
CSR17 and CSR14:10 signal lines. When these signal lines contain a valid port device (IDC or.FPA)
instruction, the CPU also asserts a high PORT INSTR signal. When the PORT INSTR input is high~
the I DC port control logic decodes the port microinstruction and generates the control signals to preset
the I DC logic, to load the required input(s) or IDC control word into the IDC, or to make information
or data contained in the IDC available for transfer to the CPU.

3-5

3.3.2 Microcontroller
The microcontroller, a combination of conditional addressing logic and associated PROMs, generates
the proper sequence of microwords that control the operation of the I DC in causing the function speci­
fied by the IDC control word. Branch condition inputs from the control status register (CSR), data
buffer and data register control logic, header/data comparator, and ECC/CRC logic determine the
sequence of microwords generated by the microcontroller. Timing for the sequence of microwords gen­
erated is controlled by the sequence clock output of the clock control.

3.3.3 Y -Bus Transceivers
All control words, addr~ss information, error detection information, status information, and data are
transferred between the CPU and IDC via the Y-bus transceivers. The READ IDC input to the trans­
ceivers is used to control the direction of signal flow. The READ IDC input is generated from the
READ PORT input from the CPU. A low READ IDC signal enables the signals at the IDC bus 1/0 to
be asserted on the CPU Y-bus. A high READ IDC input enables the signals on the CPU Y-bus to be
asserted on the IDC bus 1/0.

3.3.4 Disk Address Register
The disk address register is loaded under CPU control with the required disk drive control word or
read/write data address. The read/write data address of the disk address register may be incremented
by the microcontroller to update the read/write data address information as additional contiguous sec­
tors of data are written or read. The contents of the disk address register may be transferred from the
IDC to the CPU under CPU control.

3.3.5 Data Input Register, Data Buffer and Data Register Control Logic, Data Output Register, Read
Data Tristate Drivers, and R80 Multiplexer

The data input register and the data buffer and data register control logic operate under CPU control to
cause loading of the required data inputs into the IDC data buffers. The data output register and the
data buffer and data register control logic operate under CPU control to cause the transfer of the disk
drive status information, header information, or data contained in the data buffers from the IDC to the
CPU. During a write function, the data buffer and data register control logic operates from micro­
controller inputs to cause the transfer of data from the data buffers into the data shift register. During a
read function, the data buffer and data register control logic, read data tristate drivers, and R80 multi­
plexer operate from miCrocontroller inputs to load the data buffers with the proper header information,
status information, or data from the applicable disk drive.

3.3.6 Control Status Register
The control status register (CSR) is loaded under CPU control with the IDC control word. The CSR
also operates under CPU control to cause the transfer of the IDC status word (the current IDC control
word contained in the CSR and a summary of the current status of the IDC and disk drives) from the
IDC to the CPU.

The CSR asserts the initial branch conditions (FO, Fl, and F2) and the start signal (CROY) to the
microcontroller. The CSR also controls selection of the applicable disk drive and enables the appropri­
ate read data paths of the IDC. Status information from the disk drives and from the IDC header /data
comparator and ECC/CRC logic is asserted to the CSR, which makes this information available to the
CPU in the form of the IDC status word output.

When the function specified by the IDC control word is completed or has been halted due to ~n error,
the CSR operates from microcontroller inputs to generate and assert the applicable interrupt (UBUS
BRS or PORT XFER REQ) to the CPU.

3-6

i--RL DRIVE RDY
f4-RL DRIVE ERR
!+-RBO SEL ADDRESS 0

'4-RBO SEL ADDRESS 1

FE
RL DRIVE RDY...--i '4-RL DRIVE READY

PORT K RBO STATUS

RL DRIVE ERR4---j !4-RL DRIVE ERROR
XFER

~ PORT XFER REQ RL SECTOR PLS
!+-AL SECTOR PLS O~I ~ R

SYNC SECTOR PLS s
DRIVE ERR

+
x

ON LINE RBO COMB SECTOR PLS
14-RBO SECTOR PLS -- PORT XFER REQ CONTROL DRIVE ROY jsYNCHRONIZER

CROY
MICROCONTROLLER

XFER GRANT ... STATUS FO, Fl, F2, ABO WRITE FORMAT (512 X 64 PROM) ~80 SYNC INDEX PLS __... RBO INDEX PLS ... UBUS BR5 REGISTER MAINT, ASSI
~ '4-RBO INDEX PLS

R80 R80 SEL ADDRESS a- !4-RBO SEL ADDRESS 0
INH SSE SSE RBO SEL ADDRESS 1- l+-RBO SEL ADDRESS 1

BUS 1/0 RL02/R80 f--DRIVE SEL 0

CRI FJO Jo

~
~

DRIVE SEL o-
DRIVERS f--+RL DRIVE SELECT O

r-DRIVE SEL 1 DRIVE SEL 1--......, f--RL DRIVE SELECT 1

~
f-'- RL02 CNTL TAG AND

.L TAG

~ 14-MISMATCH i-t---RBO ECC MAX OVFLW MISMATCH
BUS HD/CYL TAG RECEIVERS 1--RBO TAG 1

24 -v1 ERROR
~

...-.ABO TAG 2
T f--CRC/ECC ERROR

DAR15, 01, 00~
CONTROL READ TAG

1--RBO TAG 3 f--STAT 0

)

WRITE TAG WRITE/READ REGS
f--STAT 1 (/J

__...

JAM f- l y R80 TAG BUS 09:00 ~ INIT-.i JAM z
-1\ WRITE INHIBIT <(

~
f- DAR 14:02
(/J -/

~ 5'"A:rnl
SERIAL DAR z

v1-
l-_SYNC SEEN 0 SERIAL DAR f-- RL DRIVE COMMAND

J_

~ LMODIFIED READ DATA l
u ~

(SERIAL DAR)
'W DISK t--

~ I V1 1 ~.
ADDRESS

READ DATA WRITE/READ REGS REGISTER ... SERIAL DAR RL02 RL02----,

INIT-.i
DAR15:DAROO

··~

N

v SYNC
READ REG BUS CONSTANTS 8 HEADER/ SEEN

~
OUT T }"' DATA RBO READ DATA

f-R80 READ DATA .L ""--1 MISMATCH
DATA _J_

N
COMPARATOR DISK 32 OUTPUT K READ DATA RL STATUS

!+-RLSTATUS 8 DATA
A .L-1\.

COAO [
REGISTER I MUX STATUS/

YBUS ~ OUTPUT ~SYNCBYTE~ ~RLDATA CPU Y BUS 32 BUS ~TRISTATE r'\.. 8 1
DSR 61

DATA RL READ DATA
TRANSCEIVERS REGS _L "- GATE DS f-RL READ DATA

"'"
T IN DATA BUFFER w DRIVERS 'If I - READ

• DATA
_L -1\. 8 (FIFO A) 8 WAT SERIAL DATA

READ IDC
32) L -"\ I v (512 x 8) DATA IN DATA ~ SEPARATOR t-DATA CHECK fl INPUT 8 J LOAD l SYNCHRONIZER
1 v -/ REGISTER T

J_ .L SYNC Sl.TOR PLS DS CLOCK

..L -" DATA BUFFER w 8 :> DATA 8 RL WRITE DATA
SHIFT SERIAL !--RL WRITE DATA 8 (FIFO Bl 8 I 'U DATA IN WRITE DATA MFM ~" T (512 X8) REGISTER NRZ 4.1 MHz ENCODER

RL02/R80
FIFO CONTROLS 4.1 MHz

T REGS j J SERIAL DAR DATA DRIVERS f--RL SYSTEM CLOCK
AND ADDRESSES NRZ AND (4.1 MHz)

DSR 0 DSR 0 FORMATTER
DATA

WRITE INHIBIT
RECEIVERS

DATA I READ DATA BUFFER v _L A J_ BUS R80 WRITE DATA 1-- RBO WRITE DATA '----1 f--FIFO MAX 8 j TRISTATE 8 8 AND

JAM~ DATA
1 l DRIVERS T I

REGISTER
f--FIFO OVFLW /1A RBO--i CONTROL J_ CRC/ECC ERROR~

~ LOGIC

RBO !(; RBO STATUS 8 STAT O+, <; R80 STATUS R80 STATUS

I .L T STAT 1 --i ECC/CRC

~
.L K 8 A LOGIC ~

13 ECC POS/PAT MUX V'?; _L ECC POS/PAT
~ T

T .,.. ~80 SECTOR COUNT ~80 SECTOR COUNT 8

SEL POS/PAJ

R80 SECTOR COUNT
WRITE/ FIFO READ/ SEL I

" READ STROBE
SELECT WRITE POS/

~

REGS CONTROL PAT l
READ PORT ''°] SEL ACC IN.- CURRENT SEQUENCE SYNC INIT~ f-+R80 INITIALIZE

PORT INSTR CL Or CL1CK sr DS 10CK

a) f"-INIT
RL STATUS CLOCK !DC PORT i... f4-RL STATUS CLOCK CSR17, CSR14:10 f--- PORT CLOCK INIT-----i RBO READ CLOCK CONTROL LOGIC f--RBO READ CLOCK

CPU P~ L2CLOCK CLOCK CONTROL R80 SERVO CLOCK
P2 CLOCK 1 f4-R80 SERVO CLOCK

PORT CLOCK f--R80 WRITE CLOCK
DCLO...., f---CPU CLOCK ACLO----..i f-- R80 POWER SEQUENCE PICK

ACLO
~~~~~~~~~•R80POWERSEOUENCEHOLD 

Figure 3-1 IDC Functional Block Diagram 

3-7 



3.3. 7 Clock Control 
The clock control synchronizes the operation of the IDC with either the selected disk drive or the CPU. 
Selection of the proper clock for use as the CURRENT and SEQUENCE CLOCK outputs is caused 
by inputs from the microcontroller. 

3.3.8 TAG Bus Control 
During an R80 seek function, the TAG bus control operates from microcontroller inputs to format and 
assert the disk drive control word from the disk address register to the R80 disk drive. During an R80 
read or write function, the microcontroller inputs to the TAG bus control enable assertion of R80 read 
gate or write gate, as applicable. 

3.3. 9 Serializer 
During an RL02 seek or get status function, the serializer operates from microcontroller inputs to for­
mat and assert the disk drive control word from the disk address register to the RL02 disk drives. 

The serializer is also used during the read and write data functions to serialize the read/write data 
address contained in the disk address register so that the address can be compared with the address 
read from the disk drive. The address comparison is performed in the header/ data comparator. 

During the R80 read and write data functions, the serializer is also used to monitor the skip sector flag 
(bit 13) of the R80 header data and to assert a skip secto·r error (SSE) input to the microsequencer if a 
bad or displaced sector is encountered. 

3.3.10 Header/ Data Comparator 
The header /data comparator operates from microcontroller inputs. During a read or write data func­
tion, the header/ data comparator is used to locate the disk drive sector to or from which the data is to 
be written or read. During a write check function, the header /data comparator is used to perform a bit­
by-bit comparison of data read from memory with the data contained in the data buffers. 

3.3.11 Data Shift Register 
The data shift register operates from microcontroller inputs during the read data, write data, and write 
check data· functions. During the initial phases of the read data and write data functions, and during the 
write check data function, the data shift register is used with the header /data comparator to locate the 
header sync byte of the data read from the disk drive. Once the header sync byte has been located and a 
header match found, the operation of the data shift register depends on the function (write data, write 
check data, or read data). 

During the write data function, the data shift register seriaiizes the data bytes input from the data 
buffers and the sync byte input from the sync byte tristate drivers. The serialized output (DSRO) is. 
asserted to the NRZ data formatter. 

During the write check function, the data shift register serializes the data byte input from the data 
buffers and asserts the serialized data to the header/ data comparator to allow a bit-by-bit comparison 
of the data contained in the data buffers with the data read from the disk drive. 

During the read data function, the data shift register converts the serial read data input from the disk 
drive to a byte format for storage in the data buffers. 

3-9 



3.3.12 NRZ Data Formatter 
The NRZ data formatter operates from microcontroller inputs. During the write and maintenance func­
tions, the NRZ data formatter converts the DSRO output of the data shift register into N RZ and 
WRITE DAT A pulses. The NRZ data output is the write data input to the R80 disk drive and the data 
sample input to the ECC/CRC logic. The WRITE DATA pulses are input to the MFM encoder to 
produce the RL WRITE DATA pulses for the RL02 disk drives. When the CRC portion of the RL02 
write data is to be written, the NRZ data formatter converts the NRZ output of the ECC/CRC logic to 
WRITE DAT A pulse inputs to the MFM encoder. The CRC and ECC portions of the R80 WRITE 
DATA are written directly from the ECC/CRC logic by way of the NRZ data bus. During a read 
function, the NRZ data formatter converts the SERIAL DATA IN to an NRZ format for use in the 
ECC/CRC logic. 

3.3.13 MFM Encoder 
The MFM encoder converts the WRITE DAT A inputs from the NRZ data formatter to MFM-encoded 
RL WRITE DAT A. These data make up the write data inputs to the RL02 disk drives. During the 
IDC maintenance function (testing under microdiagnostic control), the RL WRITE DATA is applied 
to the read data separator to simulate the RL READ DAT A output of the RL02 disk drives. 

3.3.14 ECC/CRC Logic 
The ECC/CRC logic operates from microcontroller inputs during the write and read functions. During 
both the write and read functions, the ECC/CRC logic generates both CRC and ECC data. During the 
write function, the ECC/CRC logic outputs this data, as applicable, to be written on the disk drive. 
During the read function, the ECC/CRC logic compares the CRC or ECC code generated with the 
ECC/CRC data received to validate the integrity of the data read from the disk drive. If an error is 
indicated ·by the comparison, an error signal is generated and the status of the error is indicated. The 
ECC/CRC logic may also be controlled by the CPU to cause the transfer of the ECC POS/PAT data 
from the IDC to the CPU. 

3.3.15 Read Data Separator 
The read data separator operates from microcontroller inputs to convert the MFM-encoded RL READ 
DATA to a format compatible with the IDC logic~ The read data separator also generates the DS 
CLOCK, which is used to synchronize the IDC operation with the timing of the RL READ DAT A 
input. 

3.3.16 Status/Data Gate 
The status/data gate operates from microcontroller inputs to enable either the RL STATUS input or 
DS DAT A output of the read data separator to be applied as the RL DAT A input to the disk data 
multiplexer. _, 

3.3.17 Disk Data Multiplexer 
The disk data multiplexer enables either the RL DATA or R80 READ DATA as the READ DATA 
input to the data synchronizer, serializer, and header/data comparator. 

3.3.18 Data Synchronizer 
The data synchronizer converts the READ DATA inputs to pulses having a pulse duration equal to the 
time interval between synchronizing clock pulses. [The applicable clock pulse used for synchronization 
(current clock) is selected by microcontroller inputs to the clock control.] 

3.3.19 Sector and Index Pulse Multiplexer and Synchronizer 
The SYNC SECTOR PLS and R80 SYNC INDEX PLS inputs to the microsequencer are controlled 
by a multiplexer and synchronizer. The multiplexer enables either the RL SECTOR PLS or the R80 
C:OMB SECTOR PLS from the disk drives to be asserted as the SECTOR PLS input to the synchro­
mzer. 

3-10 



The synchronizer conditions the SECTOR PLS and R80 INDEX PLS inputs such that the ·pulse dura­
tion of these inputs will be equal to the synchronizing clock pulses (current clock) asserted from the 
clock control. 

3.4 IDC FUNCTIONAL THEORY OF OPERATION 
Each of the IDC operations in causing a CPU-specified function is initiated by loading the IDC control 
status register (CSR) with an IDC control word with the CROY bit reset. When the JDC control word 
is loaded into the CSR, the function bits (FO, Fl, and F2) and the CRDY bit of the JDC control word 
input are asserted to the microcontroller (see Figure 3-1 ). The function bits specify to the micro­
controller the function that is to be performed and are used to provide the branch condition inputs to 
preset the initial microword output of the microcontroller. The CRDY bit is the start command for the 
microcontroller. When the JDC is not busy performing a CPU-requested function, it operates in the idle 
mode of operation. While in the idle mode, the microcontroller sequentially enables and samples the 
operational status of each of the disk drives. After sampling the operational status of the disk drives, the 
microcontroller monitors the CRDY input from the CSR. If the CRDY input is reset, the micro­
controller branches on the function bits (FO, Fl, and F2) to preset the microword output of the micro­
controller to initiate the CPU function specified. 

The disk drive address bits of the JDC control word input are asserted on the DRIVE SEL 0 and 
DRIVE SEL 1 outputs of the CSR. The DRIVE SEL 0 and 1 outputs of the CSR are asserted on the 
RL DRIVE SEL 0 and RL DRIVE SEL 1 outputs of the IDC to enable, if applicable, one of the RL02 
disk drives. Also, the disk drive address bits are used within the CSR. These bits are decoded to deter­
mine if the selected drive is an RL02 or the R80 and to enable the RL02 or R80 outputs of the CSR. 
Internal to the CSR, the RL02 and R80 signals couple the applicable RL DRIVE RDY, RL DRIVE 
ERROR, R80 DRIVE ROY, or R80 FAULT inputs to the CSR on the DRIVE ROY or DRIVE ERR 
inputs to the microcontroller. (Refer to Paragraph 3.5. l for a more detailed description of disk drive 
select and drive status monitor.) 

The R80 output of the CSR is asserted to the microcontroller, serializer, and data buffer and data 
register control logic. The R80 input to the microcontroller is used to control the sequence of micro­
words generated. The R80 input to the serializer determines the sequence in which the contents of the 
disk address register (DAR) is serialized. The R80 input to the data buffer and data register control 
logic is used to enable the FIFO MAX and FIFO OVFLW outputs after either 512 bytes of data (one 
full sector of R80 disk drive read data) or 256 bytes of data (one full sector of RL02 disk drive read 
data). 

The RL02 output of the CSR is asserted to .the clock control to enable the proper clock to be selected 
for synchronizing the IDC operation with the selected disk drive, and to the IDC multiplexers to enable 
either the RL02 or R80 data and sector pulse paths. The RL02 output conditions the read data separa­
tor. 

The interrupt enable bit (IE) of the IDC control word input is used within the CSR to enable the 
UBUS BR5 interrupt signal on command by the microcontroller. The UBUS BR5 signal is asserted to 
the CPU to indicate that the function specified by the IDC control word input has been completed, or 
that the II;)C operation has been halted due to a detected error. 

The attention bits of the IDC control word input are used to reset the registered attention bits within 
the CSR. 

The maintenance bit of the IDC control word input is asserted to the microcontroller to enable the IDC 
maintenance function. 

3-11 



The following paragraphs describe the operation of the IDC relative to each of the functions that can 
be specified by the IDC control word input (see Table 3-1 ). The functional operation of the IDC in the 
idle mode is also discussed. The following discussions are keyed to the functional block diagram in Fig­
ure 3-1. Where applicable, reference is made to more detailed discussions. 

3.4.1 Seek Functions 
Each of the four seek functions listed in Table 3-1 may be initiated by the CPU by loading the disk 
address register with the correct disk drive control word and loading the CSR with the I DC control 
word. 

For the RL02 seek function, the disk address register is loaded with an RL02 seek command (Figure 2-
4). For the R80 seek functions, the disk address register is loaded with one of the three R80 drive com­
mands (seek command, Figure 2-5; head select command, Figure 2-6; or recalibrate command, Figure 
2-7). 

Since the sequence of IDC operations in initiating the seek functions and asserting the applicable drive 
commands depends on whether an RL02 or R80 disk drive is selected, the seek functions are discussed 
separately as follows. 

3.4.1.1 RL02 Seek - When an RL02 seek function is specified by the IDC control word input, the 
microcontroller branches on the FO, Fl, and F2 inputs to preset the microcontroller microword output. 

The microcontroller then checks the DRIVE ROY input to determine if the selected disk drive is ready 
(the selected disk drive is operational and not busy performing a seek). This check is performed because 
it is possible that a previous seek was issued to this drive and the seek has not yet been completed. If the 
DRIVE ROY input is present or when it is asserted, the microcontroller enables the RL SYSTEM 
rLOCK (4.1 megahertz) to be asserted on the CURRENT CLOCK and SEQUENCE CLOCK out­
puts of the clock control, which synchronizes the IDC with the selected RL02 disk drive. 

To avoid writing a command to the disk drive during the time that a sector pulse is present, the micro­
controller loops until 50 microseconds after a sector pulse input (SYNC SECTOR PLS) from the disk 
drive has been asserted and has terminated. Then, the microcontroller enables the serializer to assert, 
serially, the contents of the DAR to the RL DRIVE COMMAND input of the applicable RL02 disk 
drive. 

After the last bit of the DAR (DAR 15) has been asserted, the microcontroller selects the P2 CLOCK 
as the CURRENT CLOCK and SEQUENCE CLOCK outputs of the clock control to allow the IDC 
to be synchronized with the CPU. Then, the microcontroller sets the CROY output of the CSR and, if 
the IE bit of the previous IDC control word input was set, enables the UBUS BR5 signal output of the 
CSR. The UBUS BR5 signal signifies to the CPU that the seek command has been issued to the disk 
drive. The IDC then returns to the idle mode of operation. 

3.4.1.2 R80 Seek - When the disk address register is loaded, the DAR 09:02 outputs are asserted on 
the R80 TAG BUS 09:02 signal lines. The DAR 15, 01, and 00 outputs are applied to the TAG bus 
control. DAR 14 and 13 are asserted as conditioning inputs to the R80 TAG 2 and R80 TAG I signal 
line drivers. 

When an R80 seek is specified by the IDC control word input and CROY is reset, the microcontroller 
branches on the FO, Fl, and F2 inputs to preset the microcontroller microword output. 

3-12 



The microcontroller then checks the DRIVE ROY input to determine if the R80 disk drive is ready 
(the R80 disk drive is operational and not busy performing a seek). If the DRIVE ROY input is present 
or when it is asserted, the microcontroller asserts a seek instruction input to the TAG bus control. The 
seek instruction enables the DAR 01 and 00 outputs of the disk address register to be asserted on the 
R80 TAG BUS 01 and 00 signal lines, respectively, via the READ TAG and WRITE TAG outputs of 
the TAG bus control. Next, the microcontroller asserts a strobe input to the TAG bus control. The 
strobe input enables the HD /CYL TAG output of the TAG bus control, and if DAR 15 is H (the seek 
instruction in the DAR is a recalibrate command), it enables the CNTL TAG output of the TAG bus 
control. The HD /CYL TAG output is used with the DAR 13 and 14 inputs to the R80 TAG I and R80 
TAG 2 signal line drivers to enable the applicable R80 TAG input to the R80 disk drive (R80 TAG I if 
the disk address register was loaded with an R80 seek command; R80 TAG 2 if the disk address regis­
ter was loaded with an R80 head select command). If the disk address register was loaded with an R80 
recalibrate command, the CNTL TAG output of the TAG bus control would assert the R80 TAG 3 
input to the R80 disk drive (see Table 2-2). (A detailed discussion of the TAG bus control logic is 
presented in Paragraph 3.5.2.) 

Assertion of one of the R80 TAG inputs loads the R80 TAG BUS 9:0 signals into the R80 disk drive. 
After the specified seek instruction has been asserted, the microcontroller sets the CROY output of the 
CSR and, if the IE bit of the previous IDC control word input was set, enables the UBUS BR5 signal 
output of the CSR. The IDC then returns to the idle mode of operation. 

3.4.2 RL02 Get Status 
The RL02 get status function is initiated by loading the disk address register with an RL02 get status 
command (Figure 2-3) and loading the CSR with the applicable IDC control word. 

When an RL02 get status function is specified by the IDC control word, the microcontroller branches 
on the FO, F 1, and F2 inputs to preset the microcontroller microword output. 

The microcontroller then selects FIFO A and clears the FIFO A address counter. Next the micro­
controller enables the RL WRITE CLOCK ( 4.1 megahertz) to be asserted on the CURRENT CLOCK 
and SEQUENCE CLOCK outputs of the clock control, which synchronizes the operation of the IDC 
with the selected disk drive. Then the microcontroller enables the serializer to assert, serially, the RL02 
get status command from the disk address register to the RL DRIVE COMMAND input of the se­
lected R L02 disk drive. After the RL02 get status command has been asserted, the microcontroller 
deselects the RL WRITE CLOCK and enables the RL STATUS CLOCK on the CURRENT CLOCK 
and SEQUENCE CLOCK outputs of the clock control. 

The 16 bits of status information from the selected RL02 disk drive are asserted to the IDC in synchro­
nization with the RL STATUS CLOCK. (The format and bit significance of the RL02 status informa-· 
tion are shown in Figure 2-19.) The RL02 status information is applied to the IDC via the RL STATUS 
input to the RL02 receivers. Each bit of the RL02 status information is coupled through the sta­
tus/data gate, disk data multiplexer, and data synchronizer, and is asserted to the data shift register. 

After the first eight bits of status information have been shifted into the data shift register, the micro­
controller enables the read data tristate drivers, which asserts the parallel output of the data shift regis­
ter to the FIFOs. Then, the microcontroller writes the first eight bits as a single byte into FIFO A and 
increments the FIFO A address. After the second eight bits of status information have been shifted into 
the data shift register, the microcontroller again enables the read data tristate drivers and writes the 
second eight bits as a single byte into FIFO A. (A detailed discussion of how the microcontroller causes 
writing of data to the data buffers is provided in Paragraph 3.5.12.) 

3-13 



After the two bytes of status information have been loaded into FIFO A, the microcontroller deselects 
the RL STATUS CLOCK and enables the CPU CLOCK (P2 CLOCK) to be asserted on the CUR­
RENT CLOCK and SEQUENCE CLOCK outputs of the clock control. Then, the microcontroller 
clears the FIFO address, sets the CROY output of the CSR, and, if the IE bit of the previous I DC 
control word was set, asserts a UBUS BR5 interrupt to the CPU to signal that the requested function 
has been completed. The RL02 status information is now ready for transfer from the IDC to the CPU. 
The CPU transfers the RL02 status information from the IDC to the CPU as discussed in Paragraph 
3.5.13. 

3.4.3 R80 Get Status 
The R80 get status function is initiated by loading the CSR with the applicable IDC control word. 
When the IDC control word is loaded, the microcontroller branches on the FO, Fl, and F2 inputs to 
preset the microcontroller microword output. 

Then, the microcontroller selects FIFO A and clears the FIFO A address counter. The 16 bits of R80 
status information from the R80 disk drive are asserted to the IDC in parallel format. The R80 status 
information and R80 sector count inputs are applied to the R80 multiplexer. After FIFO A has been 
selected and the FIFO address counter has been cleared, the microcontroller enables the R80 SECTOR 
COUNT through the R80 multiplexer, writes the sector count information into FIFO A, and in­
crements the FIFO A address .. Then, the microcontroller enables the R80 ST A TUS through the R80 
multiplexer and writes the R80 status information into FIFO A. 

After the R80 status information has been written into FIFO A, the microcontroller clears the FIFO A 
address counter, sets the CROY output of the CSR, and, if the IE bit of the previous IDC control word 
was set, asserts a UBUS BR5 signal to the CPU. The R80 status information is now ready for transfer 
from the IDC to the CPU. The CPU transfers the R80 status information from the IDC to the CPU as 
discussed in Paragraph 3.5.13. 

3.4.4 Read Header 
The read header function is initiated by loading the CSR with the applicable IDC control word. The 
sequence of operations performed by the IDC in executing the read header function depends on wheth­
er the header data is to be retrieved from one of the RL02 disk drives or the R80 disk drive. These 
alternatives are discussed separately as follows. 

3.4.4.1 RL02 Read Header - When the IDC control word is loaded, the microcontroller branches on 
the FO, Fl, and F2 inputs to preset the microcontroller microword output. 

The microcontroller then selects FIFO A and resets the FIFO A address counter. Next the micro­
controller checks the DRIVE ROY input to determine if the selected RL02 disk drive is ready (the 
selected disk drive is operational and not busy performing a seek). If the DRIVE ROY input is present 
or when it is asserted, the microcontroller enables the RL SYSTEM CLOCK ( 4.1 megahertz) to be 
asserted on the CURRENT CLOCK and SEQUENCE CLOCK outputs of the clock control. (A de­
tailed discussion of the clock control is provided in Paragraph 3.5.3.) This synchronizes the operation of 
the IDC with the selected RL02 disk drive. Then, the microcontroller loops until the leading edge of a 
SYNC SECTOR PLS is detected. (This pulse is generated from the RL SECTOR PLS from these­
lected RL02 disk drive.) After the leading edge of the RL SECTOR PLS has been detected, the micro­
controller loops until eight microseconds after the RL SECTOR PLS has terminated. After the loop, 
the microcontroller enables the read data separator, and then loops again until after 32 RL READ 
DAT A pulses have been asserted. When enabled, the read data separator converts the MFM-encoded 
RL READ DATA to an NRZ format. The read data separator is enabled during the header preamble 
portion of the RL READ DATA from the RL02 disk drive (see Figure 2-20) and uses the first four 

3-14 



bytes of zeros to synchronize itself with the RL READ DAT A input. In addition to converting the RL 
READ DATA to an NRZ format, the read data separator generates a clock (OS CLOCK) that is syn­
chronized with the DS DAT A output. After the synchronization loop, the microcontroller clears the 
data shift register, presets the CONSTANTS (which will allow the header/data comparator to deter­
mine when the sync byte of the RL READ DATA is present), and enables the OS CLOCK output of 
the read data separator to be asserted on the CURRENT CLOCK output of the clock control. 

The SEQUENCE CLOCK output of the clock control is inhibited until the sync byte of the RL READ 
DAT A has been asserted. This causes the microcontroller to stall until the sync byte is located. (A 
detailed discussion of how the sync byte is located is provided in Paragraph 3.5.4.) 

When the sync byte has been located, the SYNC SEEN signal is asserted to the clock control, which 
enables the DS CLOCK to be asserted on the SEQUENCE CLOCK output of the clock control. Re­
sumption of the SEQUENCE CLOCK restarts the microcontroller. 

After the first eight bits following the sync byte have been shifted into the data shift register, the micro­
controller enables the read data tristate drivers, loads the contents of the data shift register into FIFO 
A, and increments the FIFO A address counter. The following eight bits are also shifted into the data 
shift register, loaded into FIFO A, and the FIFO A address counter incremented. Now the two bytes of 
the RL sector address are contained in FIFO A. 

As shown in Figure 2-20, the two bytes of RL READ DAT A following the two address bytes are zeros. 
Thus, these data are not loaded into the FIFO. However, the two bytes of CRC data that follow are 
loaded into FIFO A. (A detailed discussion of how the microcontroller causes writing of data to the 
data buffers is provided in Paragraph 3.5.12.) 

After the CRC data have been loaded into FIFO A, the microcontroller clears the FIFO A address 
counter and enables the P2 CLOCK to be asserted on the SEQUENCE CLOCK and CURRENT 
CLOCK outputs of the clock control. This allows the IDC to be synchronized with the CPU. The mi­
crocontroller also sets the CROY output of the CSR and, if the IE bit of the previous IDC control word 
input was set, asserts a UBUS BRS signal to the CPU. 

The RL02 header data are now ready for transfer from the IDC to the CPU. The CPU transfers the 
RL02 header data from the IDC to the CPU as discussed in Paragraph 3.5.13. 

3.4.4.2. R80 Read Header - When the IDC control word is loaded, the microcontroller branches on the 
FO, Fl, and F2 inputs to preset the microcontroller microword output. 

The microcontroller then selects FIFO A. Next the microcontroller checks the DRIVE ROY input to 
determine if the R80 disk drive is ready (the disk drive is operational and not bu~y performing a seek). 
If the DRIVE ROY input is present or when it is asserted, the microcontroller enables the R80 SERVO 
CLOCK to be asserted on the CURRENT CLOCK and SEQUENCE CLOCK outputs of the clock 
control. (A detailed discussion of the clock control is provided in Paragraph 3.5.3.) This synchronizes 
the IDC operation with the operation of the R80 disk drive. Then the microcontroller loops until the 
leading edge of the SYNC SECTOR PLS is detected. (The SYNC SECTOR PLS is generated from 
the R80 SECTOR PLS or R80 INDEX PLS input from the R80 disk drive.) After the leading edge of 
the SYNC SECTOR PLS is detected (indicating the beginning portion of the sector), the micro­
controller clears the FIFO A address counter and loops until 60 R80 SER VO CLOCK pulses have been 
asserted. This loop is initiated to inhibit enabling the R80 read circuitry until the read/write heads are 
positioned over the sector gap portion of the R80 header data. The microcontroller then enables the 
TAG bus control to assert the READ TAG and CNTL TAG signals to the R80 drivers. These signals 
enable the R80 drivers to assert the R80 TAG BUS 01 and R80 TAG 3 outputs of the IDC. These 
outputs enable the R80 read gate and allow the R80 READ DAT A and R80 READ CLOCK to be 
asserted to the IDC. 

3-15 



After the R80 TAG BUS 01 and R80 TAG 3 signals have been asserted, the microcontroller loops until 
after 88 R80 servo clock pulses have been asserted to allow the R80 disk drive to achieve phase lock. 
Phase lock is achieved by reading a sequence of zeros in the sector gap of the R80 READ DAT A. (See 
Figure 2-17 for the R80 READ DAT A format.) After the phase lock loop, the microcontroller clears 
the data shift register and presets the CONSTANTS output of the microcontroller to the R80 SYNC 
BYTE pattern. Then the microcontroller enables the R80 READ CLOCK to be asserted on the CUR­
RENT CLOCK output of the clock control. The R80 READ CLOCK is not asserted on the 
SEQUENCE CLOCK output until after the sync byte has been found (when SYNC SEEN from the 
header/ data comparator is asserted to the clock control). Thus, the microcontroller is forced to stall 
until the header sync byte of the R80 READ DAT A is located. (A detailed discussion of how the sync 
byte is located is provided in Paragraph 3.5.4.) · 

When the header sync,byte has been located, the SYNC SEEN output of the header/data comparator 
is asserted to the clock control to enable the R80 READ CLOCK to be asserted on the SEQUENCE 
CLOCK output. This restarts the microcontroller, which then enables the read data tristate drivers. 

After the first eight bits of header information (first byte of cylinder address) have been shifted into the 
data shift register, the microcontroller loads the parallel output of the data shift register into FIFO A 
and then increments the FIFO A address counter. The remaining 40 bits of header information are 
converted into byte format and loaded into FIFO A in the same manner as the first eight bits. {A de­
tailed discus~ion of how the microcontroller causes writing of data to the data buffers is provided in 
Paragraph 3.5.12.) 

After all six bytes of R80 header data have been loaded into FIFO A, the microcontroller resets the 
FIFO A address counter and enables the P2 CLOCK to be asserted on the SEQUENCE CLOCK and 
CURRENT CLOCK outputs of the clock control. This synchronizes IDC operation with the CPU. The 
microcontroller also deasserts the read gate output of the tag bus control, sets the CROY output of the 
CSR, and, if the IE bit of the previous IDC control word was set, asserts a UBUS BR5 signal to the 
CPU. 

The R80 header data are now ready for transfer from the IDC to the CPU. The CPU transfers the R80 
header data from the IDC to the CPU as discussed in Paragraph 3.5.13. 

3.4.5 Write Data, Read Data, and Write Check Data 
The write data, read data, and write check functions are initiated by loading the data to be written to 
the disk drive into the FIFO, loading the disk address register with the applicable read/write data ad­
dress, and loading the CSR with the applicable IDC control word. 

The first sector (512 bytes, R80; 256 bytes, RL02) of data to be written is loaded into FIFO A. If two 
sectors are to be written, the second sector is loaded into FIFO B. If several contiguous sectors of data 
are to be written, the CPU loads FIFO A with the first sector, and FIFO B with the second sector. 
After the IDC has transferred the data from FIFO A, and while it is transferring the second sector 
from FIFO B, the CPU loads the third sector of data into FIFO A. After the IDC has transferred the 
contents of FIFO B, and while it is transferring the third sector from FIFO A, the CPU loads FIFO B 
with the fourth sector of data. This process may be repeated until all sectors of the cylinder (31 sectors 
for the R80 and 40 sectors for the RL02) have been written. 

After the data have been loaded into the FIFO(s) and the read/write data address has been loaded into 
the disk address register, the CPU initiates the write data function by loading the applicable IDC con­
trol word into the CSR. 

The operational sequence executed by the IDC in performing the write data, read data, and write check 
data functions depends on whether an RL02 or the R80 disk drive is selected. Therefore, the oper­
ational sequences are discussed separately in the following paragraphs. 

3-16 



3.4.5.1 RL02 Write Data, Read Data, and Write Check - When an RL02 write data, read data, or 
write check function is specified by the IDC control word, the microcontroller branches on the FO, Fl, 
and F2 inputs to preset the microcontroller microword output. The microcontroller then selects FIFO A 
and resets the FIFO A address counter. Next, the microcontroller checks the DRIVE ROY input to 
determine if the selected disk drive is rea0y (the disk drive is operational and not busy performing a 
seek function). If the DRIVE ROY input is present or when it is asserted, the microcontroller enables 
the RL SYSTEM CLOCK (4.1 megahertz) to be asserted on the CURRENT CLOCK and 
SEQUENCE CLOCK outputs of the clock control. This synchronizes the IDC operation with the se­
lected RL02 disk drive. (A detailed discussion of the clock control is provided in Paragraph 3.5.3.) 

The microcontroller then loops until the leading edge of the SYNC SECTOR PLS is detected. This 
pulse is generated by the RL SECTOR PLS input from the RL02 disk drive. Presence of the SYNC 
SECTOR PLS indicates that the applicable read/write head of the RL02 disk drive is positioned at the 
beginning portion of a data sector. After the leading edge of the SYNC SECTOR PLS is detected, the 
microcontroller loops until the trailing edge of the SYNC SECTOR PLS is detected. Then the micro­
controller again loops until 32 RL SYSTEM CLOCK ( 4.1 megahertz) pulses have been asserted to the 
microcontroller via the SEQUENCE CLOCK output of the clock control. This second microcontroller 
loop is initiated to prevent the read data separator from trying to achieve phase lock on data that may 
contain glitches. After the loop, the microcontroller enables the read data separator, clears the 
ECC/CRC logic, clears the MISMATCH output of the header/data comparator, and then loops until 
after 32 RL SYSTEM CLOCK ( 4.1 megahertz) pulses have been asserted to the microcontroller via 
the SEQUENCE CLOCK output of the clock control. This loop is initiated to allow time for the read 
data separator to achieve phase lock on the data being read from the disk (RL READ DAT A input). 
Phase lock is achieved by reading a sequence of four bytes of zeros in the header preamble of the RL 
READ DAT A. (See Figure 2-20 for the RL READ DATA format.) 

After the loop for phase lock, the microcontroller presets the conditions for locating the header sync 
byte of the RL READ DATA. The microcontroller also conditions the serializer such that after the 
sync byte has been located, the address portion of the RL READ DAT A input can be compared with 
the read/write data address contained in the disk address register. 

To preset the conditions for locating the header sync byte, the microcontroller clears the data shift 
register and presets the CONSTANTS output of the microcontroller to the header sync byte pattern. 
Then the microcontroller selects the OS CLOCK for syncronization. The DS CLOCK is generated 
from the RL READ DAT A input and thus synchronizes the IDC with the selected RL02 disk drive 
data rate. When the DS CLOCK from the read data separator is selected, the OS CLOCK is asserted 
on the CURRENT CLOCK output of the clock control. The OS CLOCK is not asserted on the 
SEQUL: ~\JCE CLOCK output of the clock control until after the sync byte has been found (when 
SYNC SEEN from the header/data comparator is asserted to the clock control). Thus, the micro­
controllcr is forced to stall until the header sync byte has been found. (A detailed discussion of how the· 
header sync byte is located is provided in Paragraph 3.5.4.) 

When the RL READ DATA header sync byte is found, the SYNC SEEN output of the header/data 
comparator is asserted to the clock control to enable the DS CLOCK to be asserted on the 
SEQUENCE CLOCK output. This restarts the microcontroller which then enables the ECC/CRC log­
ic. The SYNC SEEN signal is asserted also to the serializer to enable the contents of the disk address 
register to be asserted serially to the header /data comparator where it is compared bit-by-bit with the 
address information of the RL READ DAT A. (A detailed discussion of the RL02 header comparisons 
is provided in Paragraph 3.5.5.) 

The address information of the RL READ DAT A is also asserted via the data synchronizer on the 
SERIAL DATA IN input of the NRZ data formatter. The NRZ data formatter couples the SERIAL 
DATA JN to the ECC/CRC logic via the NRZ data bus. While the address information is being com­
pared in the header/data comparator and while the results of the comparison are being tested, the 
ECC/CRC logic generates a CRC word based on the configuration of the two bytes of address informa­
tion and the two bytes of zeros that follow the address information. 

3-17 



After the 16 bits of address information of the RL READ DAT A have been compared with the 
read/write data address, the microcontroller turns off the serializer and monitors the MISMATCH 
output of the header/data comparator. If the MISMATCH output is low (the address information of 
the RL READ DATA did not match the read/write data address in the disk address register), the 
microcontroller enables the RL SYSTEM CLOCK (4.1 megahertz) to be asserted on the CURRENT 
CLOCK and SEQUENCE CLOCK outputs of the clock control. Then the microcontroller loops until 
the next sector is encountered (the next SYNC SECTOR PLS is asserted) before reinitiating the head­
er/data comparison. This process is repeated until a match is found or until TIMEOUT occurs. (Refer 
to Paragraph 3.5.10 for a discussion of TIMEOUT.) 

If the MISMATCH output is high (the address information of the RL READ DATA matched the 
read/write data address in the disk address register), the microcontroller loops until the two bytes of 
zeros following the address information of the RL READ DATA have been asserted to the ECC/CRC 
logic. Then the microcontroller enables the ECC/CRC logic to load the header CRC word of the RL 
READ DATA. After the header CRC word is loaded, the microcontroller enables the ECC/CRC)ogic 
to compare the CRC word generated by the ECC/CRC-logic from the address information and two 
bytes of zeros of the address information with the header CRC word of the RL READ DATA. 

If a CRC error is indicated by the ECC/CRC logic (CRC/ECC ERROR is asserted to micro­
controller), the microcontroller deselects the DS CLOCK and enables the P2 CLOCK to be asserted on 
the SEQUENCE CLOCK and CURRENT CLOCK outputs of the clock control. This synchronizes 
the operation of the IDC with the CPU. Then the microcontroller sets the Operation Incomplete (OPI) 
and CROY bits in the CSR. Next, if the IE bit of the previous IDC control word was set, the micro­
controller generates and asserts a UBUS BR5 interrupt to the CPU. 

If no CRC error is detected, the microcontroller clears the ECC/CRC logic and branches on the Fl 
and F2 bits of the IDC control word input to initiate the operations associated with the RL02 write data 
function, RL02 read data function, or RL02 write check function. 

a. RL02 Write Data 

After the proper sector has been located and the CRC pattern verified, the microcontroller 
checks to make certain that the data to be written to the disk were loaded into the FIFO 
(FIFO OVFLW is asserted to the microcontroller) and that the selected RL02 disk drive is 
operational (DRIVE ROY is asserted to the microcontroller). ~ 

If the FIFO was not filled by the CPU, the microcontroller enables the P2 CLOCK to be 
asserted on the CURRENT CLOCK and SEQUENCE CLOCK outputs of the clock con­
trol, sets the Data Late (DLT) error and CRDY bits in the CSR, clears the MISMATCH 
output of the header/ data comparator, and, if the IE bit of the previous IDC control word 
was set, generates and asserts a UBUS BR5 signal to the CPU. 

If the selected RL02 disk drive is not operational (DRIVE RDY is not asserted), the micro­
controller enables the P2 CLOCK to be asserted on the CURRENT CLOCK and 
SEQUENCE CLOCK outputs of the clock control, sets the Operation Incomplete (OPI) and 
CROY bits in the CSR, and, if the IE bit of the previous IDC control word was set, generates 
and asserts a UBUS BR5 signal to the CPU. 

3-18 



If the Fl FO is full and the selected RL02 disk drive is operational, the I DC continues with 
the write data function. First the microcontroller deselects the DS CLOCK and enables the 
RL SYSTEM CLOCK ( 4.1 megahertz) to be asserted on the SEQUENCE CLOCK and 
CURRENT CLOCK outputs of the clock control. Then, after a loop, the microcontroller 
clears the Fl FO address counter, clears the data shift register, and enables the NRZ data 
formatter and MFM encoder. Next the microcontroller again loops until 40 bits (zeros), part 
of the data preamble, have been written to the selected RL02 disk drive. (The zeros are writ­
ten by holding the DSRO input to the NRZ data formatter low.) When the last bit of the data 
preamble has been written, the microcontroller generates and enables the CONSTANTS 
from the microcontroller to be loaded into the data shift register. (The CONSTANTS speci­
fy the sync byte pattern (8016) to be written as part of the RL write data preamble.) Then the 
microcontroller enables the CONST ANTS to be asserted serially via the DSRO. output of the 
data shift register to the NRZ data formatter. The NRZ data formatter samples the DSRO 
output of the data shift register at a 4.1 megahertz rate and generates an NRZ formatted 
pulse train, which is asserted to the ECC/CRC logic via the NRZ data bus. The NRZ data 
formatter also generates the WRITE DATA inputs of the MFM encoder. 

The MFM encoder translates the WRITE DATA inputs to an MFM format and asserts these 
data to the selected RL02 disk drive via the RL WRITE DATA signal line. 

After the last bit of the sync byte has been asserted to the NRZ data formatter, the micro­
controllcr enables the first byte of data from FIFO A to be loaded into the data shift register 
and increments the Fl FO A address counter. At the same time, the microcontroller enables 
the ECC/CRC logic, which samples the bit configuration of the 256 bytes of data as it is 
being transferred to the disk drive and generates a 16-bit CRC word representative of the bit 
configuration. 

After the first byte of data has been loaded, the data shift register serially asserts bits 0 
through 7 of the first data byte to the NRZ data formatter. After bit 7 of the first data byte 
has been asserted to the N RZ data formatter, the second byte of data from FIFO A is loaded 
into the DSR and the Fl FO A address counter is again incremented. After bit 7 of the second 
data byte has been asserted to the NRZ data formatter, the third data byte from FIFO A is 
loaded into the data shift register and the FIFO A address counter is incremented. This pro­
cess is repeated until all 256 bytes of data from FIFO A have been loaded into the data shift 
register and asserted to the RL WRITE DAT A input of the selected RL02 disk drive via the 
N RZ data formatter and MFM encoder. (A detailed discussion of how the microcontroller 
causes transfer of data from the data buffers to the data shift register and data shift register 
operation in serializing the data is provided in Paragraph 3.5.11.) 

After the 256 bytes of data have been asserted on the RL WRITE DAT A signal line (the 
Fl FO A address counter has been incremented to its maximum count and FIFO MAX is 
asserted to the microcontroller), the microcontroller enables the ECC/CRC logic to assert 
serially the 16-bit CRC word derived from the bit configuration of the 256 bytes of data on 
the RL WRITE DATA signal line. The CRC word is asserted on the RL WRITE DATA 
signal line via the NRZ data bus, NRZ data formatter and MFM encoder. After the last bit 
of the CRC word is asserted, the microcontroller inhibits the ECC/CRC logic, and then 
holds the N RZ data formatter enabled until 16 zeros (data postamble) have been written. 
After the 16 zeros have been written, the microcontroller inhibits the NRZ data formatter 
and enables the P2 CLOCK to be asserted on the SEQUENCE CLOCK and-CURRENI 
CLOCK outputs of the clock control, which synchronizes IDC operation with1he CPU. f~ 
the microcontroller clears the FIFO A address counter and enables the PORT XFER REQ 
output of the CSR to be asserted to the CPU. 

3-19 



If more data are to be written, the CPU asserts XFER GRANT to the CSR. The XFER 
GRANT input resets the PORT XFER REQ output of the CSR, which causes the micro­
controller to select FIFO Band then monitor the CROY output of the CSR. If more data are 
to be transferred, the CROY output of the CSR will have remained cleared and the mic-o­
controller will then increment the read/write data address in the disk address register ar~.J 
reset the function timer. Then the microcontroller reinitiates the RL02 write data function to 
cause the transfer of the data contained in FIFO B to the next sector of the RL02 disk drive. 

If no more data is to be written, the CPU responds to the PORT XFER REQ input by load­
ing an IDC control word with CRDY set and then asserting XFER GRANT. The XFER 
GRANT input to the IDC resets the PORT XFER REQ signal. When the PORT XFER 
REQ signal is reset, the microcontroller monitors the CROY output of the CSR. If the 
CROY output is set, indicating that no more data are to be transferred, the microcontroller 
sets the CROY output of the CSR and, if the IE bit of the previous IDC control word was 
set, generates and asserts a UBUS BR5 s_ignal to the CPU. 

b. RL02 Read Data 

After the proper sector has been located and the CRC pattern verified, the microcontroller 
checks to make certain that the selected FIFO is empty. If the FIFO is full (FIFO OVFLW 
is asserted to the microcontroller), the microcontroller clears the MISMATCH output of the 
header/ data comparator and sets the CRDY and Data Late (DLT) error bits in the CSR. If 
the IE bit of the previous IDC control word was set, the microcontroller also generates and 
asserts a UBUS BR5 signal to the CPU. The IDC then returns to the idle mode of operation. 

If the FIFO is empty, the microcontroller deselects the DS CLOCK and enables the RL 
SYSTEM CLOCK (4.1 megahertz) to be asserted on the SEQUENCE CLOCK and CUR­
RENT CLOCK outputs of the clock control. The microcontroller then loops until the write 
splice area within the header gap has passed the read/write heads of the RL02 disk drive. 
Then the microcontroller clears the ECC/CRC logic and enables the read data separator. 

Next, the microcontroller loops until 32 RL READ DATA pulses have been asserted to the 
IDC. This loop is initiated to allow the read data separator to achieve phase lock on the data 
being read from the disk. After the phase lock loop, the microcontroller clears the selected 
FIFO address counter and presets and asserts the CONST ANTS output of the micro­
controller to the header/data comparator. (The CONSTANTS output is preset to the bit 
configuration of the RL READ DATA data preamble sync byte.) The microcontroller then 
enables the DS CLOCK to be asserted on the CURRENT CLOCK output of the clock con­
trol. The DS CLOCK is not asserted on the SEQUENCE CLOCK output of the clock con­
trol until the sync byte has been found (when SYNC SEEN from the header/data com­
parator is asserted to the clock control). Thus, the microcontroller is forced to stall until the 
RL READ DAT A data preamble sync byte has been found. (A detailed discussion of how 
the ·sync byte is located is provided in Paragraph 3.5.4.) 

Detection of the sync byte of the data preamble signals the start of the data segment of the 
sector to be read. When the header preamble sync byte has been found, the SYNC SEEN 
output of the header/ data comparator is asserted to the clock control to enable the DS 
CLOCK to be asserted on the SEQUENCE CLOCK output. This restarts the micro­
controller, which then enables the ECC/CRC logic, and begins converting the RL READ 
DATA into byte format and storing the 256 bytes of RL READ DATA in the selected FIFO. 
(A detailed discussion of how the READ DATA are converted to byte format and stored in 
the data buffers is provided in Paragraph 3.5.12.) 

3-20 



Each bit of the 256 bytes of RL READ DATA is used in the ECC/CRC logic to generate a 
16-bit CRC word representative of the bit configuration of the RL READ DATA. After all 
256 bytes of RL READ DATA have been loaded into the selected FIFO (FIFO MAX is 
asserted to the microcontroller), the microcontroller enables the 16-bit CRC word from the 
RL02 disk drive to be loaded into the ECC/CRC logic. After the CRC word has been 
loaded, the microcontroller enables the ECC/CRC logic to compare the CRC word gener­
ated from the 256 bytes of RL READ DAT A with the CRC word read from the disk. Next 
the microcontroller deselects the DS CLOCK and enables the P2 CLOCK to be asserted on 
the SEQUENCE CLOCK and CURRENT CLOCK outputs of the clock control. Then the 
microcontroller monitors the CRC/ECC ERROR signal output of the ECC/CRC logic. 

If a CRC/ECC error is indicated, the microcontroller sets the CROY output of the CSR 
and, if the IE bit of the previous IDC control word was set, generates and asserts a UBUS 
BR5 signal to the CPU. Then the I DC returns to the idle mode of operation. 

If no CRC/ECC ERROR is indicated, the microcontroller clears the selected FIFO address 
counter and generates and asserts the PORT XFER REQ output of the CSR to the CPU. 
This signal signifies that the IDC has completed reading a sector of data and that the data 
are ready for transfer to the CPU. 

If more data are to be read, the CPU asserts a XFER GRANT signal to the CSR. When the 
XFER GRANT signal is asserted, the PORT XFER REQ output is reset. When the PORT 
XFER REQ is reset, the microcontroller changes the FIFO selected and monitors the CROY 
output of the CSR. If the CROY output of the CSR has remained cleared, the micro­
controller increments the read/write data address in the disk address register, resets the 
timer, and reinitiates the RL02 read data function to read the next sector of RL READ 
DAT A and store the data in the selected FIFO. 

If no further data are to be read, the CPU responds to the PORT XFER REQ input by load­
ing an IDC control word with CROY set and then asserting XFER GRANT. The XFER 
GRANT input to the IDC resets the PORT XFER REQ signal. When the PORT XFER 
REQ signal is reset, the microcontroller monitors the CROY output of the CSR. If the 
CROY output is set, the microcontroller sets the CROY output of the CSR and, if the IE bit 
of the previous I DC control word was set, generates and asserts a UBUS BR5 signal to the 
CPU. The I DC then returns to the idle mode of operation. 

c. RL02 Write Check 

After the proper sector has been located and the CRC pattern verified, the microcontroller 
checks to make certain that the data to be compared with the data from the disk drive were 
loaded into the FIFO (FIFO MAX is asserted to the microcontroller). 

If the FIFO was not filled by the CPU, the microcontroller enables the P2 CLOCK to be 
asserted on the CURRENT CLOCK and SEQUENCE CLOCK outputs of the clock con­
trol, sets the Data Late (DTL) error and CROY bits in the CSR, clears the MISMATCH 
output of the header /data comparator, and, if the IE bit of the previous JDC control word 
was set, generates and asserts a UBUS BR5 signal to the CPU. 

3-2 I 



If the FIFO is full, the I DC continues with the write check function. First the micro­
controller enables the RL SYSTEM CLOCK (4.1 megahertz) to be asserted on the 
SEQUENCE CLOCK and CURRENT CLOCK outputs of the clock control. Next. the mi­
crocontroller disables the read data separator and then loops until the write splice area within 
the header gap has passed the read/write heads of the RL02 disk drive. The read data sepa­
rator is disabled to prevent the read data separator circuitry from being triggered by data 
glitches at the beginning of the header gap. (The data glitches were produced when the write 
heads were first turned on when the header gap was written.) 

After the loop to allow the read/write heads of the RL02 disk drive to be positioned over the 
valid data in the header gap, the microcontroller again enables the read data separator. After 
the read data separator is enabled, the microcontroller loops until 32 RL SYSTEM CLOCK 
pulses have been asserted to the microcontroller via the SEQUENCE CLOCK output of the 
clock control. This loop is initiated to allow the read data separator to again achieve phase 
lock on the data being read from the disk. 

After the phase lock loop, the microcontroller clears the FIFO address counter and enables 
the first byte of data from the selected data buff er to be asserted to the data shift register. 
The microcontroller also clears the MISMATCH output of the header /data comparator, and 
presets and enables the CONST ANTS from the microcontroller to be asserted to the head­
er/ data comparator. (The CONSTANTS output is preset to the bit configuration of the 
RL02 READ DA TA data preamble sync byte.) The microcontroller then enables the OS 
CLOCK to be asserted on the CURRENT CLOCK output of the clock control. The OS 
CLOCK is not asserted on the SEQUENCE CLOCK output of the clock control until the 
sync byte has been found (when SYNC SEEN from the header/ data comparator is asserted 
to the clock control). Thus, the microcontroller is forced to stall until the RL02 READ 
DAT A data preamble sync byte has been found. (A detailed discussion of how the sync byte 
is found is provided in Paragraph 3.5.4.) 

Detection of the RL02 READ DAT A data preamble sync byte signals the start of the data 
segment of the sector on which the write check is to be performed. When the sync byte has 
been found, the SYNC SEEN output of the header /data comparator is asserted to the clock 
control to enable the DS CLOCK to be asserted onto the SEQUENCE CLOCK output. This 
restarts the microcontroller, which then enables the ECC/CRC logic. 

In the write check mode, the WRT CHK LOAD output of the header /data comparator is 
enabled also when the RL02 READ DATA data preamble sync byte is found. The WRT 
CHK LOAD signal is asserted to the data shift register where it enables the first data byte 
from the selected FIFO to be loaded into the data shift register. The microcontroller then 
increments the selected FIFO address counter. 

When the first data byte is loaded into the data shift register, bit 0 of the first data byte is 
asserted to the header/ data comparator via the DSRO output of the data shift register. The 
first bit of the data portion of the first data byte is asserted to the header/ data comparator 
coincident with the first bit of the data portion of the RL READ DAT A asserted from the 
disk drive. (Because the CURRENT CLOCK used by the data shift register is derived from 
the RL READ DATA input, the data loaded into the data shift register are serialized and 
asserted to the header/data comparator in sync with each bit of the RL READ DATA in­
put.) The data shift register serializes and asserts bits 0 through 7 of the first data byte to the 
header /data comparator. 

After bit 7 of the first data byte has been asserted to the header/ data comparator, the rnicro­
controller loads the second byte of data from the selected FIFO into the data shift register 
and increments the selected FIFO address counter. 

3-22 



After bit 7 of the second data byte has been serialized and asserted to the header /data com­
parator, the microcontroller loads the third data byte from the selected FIFO into the data 
shift register and increments the FIFO A address counter. This process is repeated until all 
256 bytes of data from the selected FIFO have been serialized and asserted to the head­
er/ data comparator for comparison with the RL READ DAT A input. (A detailed discussion 
of how the microcontroller and data shift register cause serialization of data from the data 
buffers is provided in Paragraph 3.5.11.) 

The header/data comparator performs a bit-by-bit comparison of the RL READ DATA in­
put with the DSRO input to determine if the RL READ DAT A matches the serialized data 
from the data shift register. 

Each bit of the data asserted to the header/data comparator for comparison with the RL 
READ DATA is asserted also to the ECC/CRC logic via the NRZ data formatter and NRZ 
data bus. The ECC/CRC logic generates a 16-bit CRC word based on the configuration of 
the 2048 data bits asserted to the ECC/CRC logic via the DSRO input to the NRZ data 
formatter. 

After all 256 bytes of data from the Fl FO have been serialized and asserted to the head­
er /data comparator for comparison with the RL READ DATA inpu~ (the FIFO A address 
counter has been incremented to its maximum count and FIFO MAX is asserted to the mi­
crocontroller ), the microcontroller strobes the header/ data comparator to sample the results 
of the data comparison. If the data did not compare, the MISMATCH output of the head­
er /data comparator will remain low. If the data matched the RL READ DATA, the MIS­
MATCH output will be set high. The MISMATCH output is asserted to the status logic in 
the CSR and to the microcontroller. 

The microcontrollcr also enables the ECC /CRC logic to load the 16-bit CRC word being 
read from the RL02 disk drive. After the CRC word has been loaded, the microcontroller 
enables the ECC/CRC logic to compare the two CRC words (the CRC word generated from 
the 2048 bits of data used for comparison with the 2048 bits of RL READ DAT A with the 
CRC word read from the disk drive). Then the microcontroller enables the P2 CLOCK to be 
asserted on the CURRENT CLOCK and SEQUENCE CLOCK outputs of the clock control 
to synchronize I DC operation with the CPU. 

If a CRC comparison error is indicated (the ECC/CRC ERROR signal is asserted to the 
microcontroller and CSR), the microcontroller sets the CRDY output of the CSR and, if the 
IE bit of the previous I DC control word was set, generates and asserts a UBUS BR5 signal 
the CPU. Then the I DC returns to the idle mode of operation. [Note that if the results of the 
data comparison (the 2048 bits of RL READ DATA with the 2048 bits of data from the 
Fl FO) did not match, then a CRC error will also occur. It is not, therefore, necessary to 
terminate the write check function when a data comparison error is detected. However, if the 
write check function is terminated by a CRC error, the CPU can determine if the error was 
CRC related or a data comparison error by reading the IDC status word. The results of the 
data comparison (MISMATCH) and CRC comparison (CRC/ECC ERROR) are made 
available to the CPU via the IDC status word.] 

If no ECC comparison error is indicated, the microcontroller clears the selected FIFO ad­
dress counter and enables the PORT XFER REQ output of the CSR to be asserted to the 
CPU. The PORT XFER REQ signal signifies to the CPU that the write check function has 
been performed on the requested sector of data and that the data comparison was valid. 

3-2.3 



If the write check function is to be performed on the next sector of data, the CPU asserts an 
XFER GRANT signal to the CSR. The XFER GRANT input resets the PORT XFER REQ 
output. When the PORT XFER REQ output is reset, the microcontroller changes the FIFO 
selected and monitors the CROY output of the CSR. If the write check function is to be 
continued, the CROY output of the CSR will have remained cleared, and the microcontrolkr 
will increment the read/write data address conlained in the disk address register and reset 
the function timer. Then the microcontroller checks the DRIVE RDY input. If the selected 
RL02 disk drive is operational, the microcontroller reinitiates the RL02 write check function 
to compare the next sector of data from the selected RL02 disk drive with the data contained 
in the selected Fl FO. 

If the write check function is not to be continued, the CPU responds to the PORT XFER 
REQ input by loading an IDC control word with CROY set and then asserting XFER 
GRANT. The XFER GRANT input to the IDC resets the PORT XFER REQ signal. When 
the PORT XFER REQ signal is reset, the microcontroller monitors the CRDY output of the 
CSR. If the CROY output is set, the microcontroller sets the CROY output of the CSR and. 
if the IE bit of the previous IDC control word was set, generates and asserts a UBUS BR:' 
signal to the CPU. The IDC then returns to the idle mode of the operation. 

3.4.5.2 R80 Write Data, Read Data, and Write Check - When a R80 write data. read data, or write 
check function is specified by the IDC control word, the microcontroller branches on the FO, FL and 
F2 inputs to preset the microcontroller microword output. The microcontroller then selects Fl FO A and 
resets the FIFO A address counter. Next the microcontroller checks the DRIVE ROY input to dctcr­
mine·if the disk drive is ready (the R80 disk drive is operational and not busy performing a seek). If the 
DRIVE ROY input is present or when it is asserted, the microcontrollcr enables the R80 SERVO 
CLOCK to be asserted on the CURRENT CLOCK and SEQUENCE CLOCK outputs of the clock 
control. This synchronizes the operation of the I DC with the R80 disk drive. (A detailed discussion ot' 
the clock control is provided in Paragraph 3.5.3.) 

The microcontroller then loops until the leading edge of the SYNC SECTOR PLS is detected. This 
pulse is generated by the R80 SECTOR PLS or R80 INDEX PLS inputs from the R80 disk drive. 
Presence of the SYNC SECTOR PLS indicates that the applicable read/write head of the R80 disk 
drive is positioned at the beginning portion of the header data. After the leading edge of the SYNC 
SECTOR PLS is detected, the microcontroller loops until 60 R80 SERVO CLOCK pulses have been 
asserted. This microcontroller loop is initiated to prevent the R80 disk drive from trying to achievi.: 
phase lock on data that may contain glitches. After the loop, the microcontroller enables the TAG bus 
control to assert the READ TAG and CNTL TAG signals to the R80 drivers. These signals enable the 
R80 drivers to assert the R80 TAG BUS 01 and R80 TAG 3 outputs of the IDC (assert a read gate 
command to the R80 disk drive). The read gate command enables the R80 disk drive to read the data 
from the disk and assert the data to the I DC via the R80 READ DAT A signal line: The R80 disk drive 
also generates and asserts the R80 READ CLOCK, which is synchronized with the READ DATA in­
put to the I DC. 

After the read gate command has been asserted, the microcontroller clears the ECC /CR C logic. ckars 
the MISMATCH output of the header/ data comparator, and then loops until after 88 R80 SERVO 
CLOCK pulses have been asserted to the IDC. This loop is initiated to allow time for the R80 disk 
drive to achieve phase lock on the data being read from the disk. Phase lock is achieved by reading a 
sequence of zeros in the sector gap of the R80 READ DAT A. (Sec Figure 2-1 7 for the R80 READ 
DATA format.) 

After the loop for phase lock, the microcontroller presets the conditions for locating the header synl' 
byte of the R80 READ DATA. The microcontroller also conditions the serializcr such that after the 
sync byte has been located, the address portion of the R80 READ DAT A input can be compared with 
the read/write data address contained in the disk address register. 

3-24 



To preset the conditions for locating the header sync byte, the microcontroller clears the data shift 
register and presets the CONSTANTS output of the microcontroller to the header sync byte pattern. 
Then the microcontroller selects the R80 READ CLOCK for synchronization. The R80 READ 
CLOCK is generated within the R80 disk drive from the R80 READ DATA input and thus synchro­
nizes the I DC with the selected R80 disk drive data rate. 

When the microcontroller selects the R80 READ CLOCK, the R80 READ CLOCK is asserted on the 
CURRENT CLOCK output of the clock control. The R80 READ CLOCK is not asserted on the 
SEQUENCE CLOCK output of the clock control until the sync byte has been found (when SYNC 
SEEN from the header/data comparator is asserted to the clock control). Thus, the microcontroller is 
forced to stall until the R80 header sync byte has been found. (A detailed discussion of how the sync 
byte is located is provided in Paragraph 3.5.4.) 

When the R80 READ DATA header sync byte is found, the SYNC SEEN output of the header/data 
comparator is asserted to the clock control to enable the R80 READ CLOCK to be asserted on the 
SEQUENCE CLOCK output. This restarts the microcontroller, which enables the ECC/CRC logic. 
The SYNC SEEN signal is also asserted to the serializer to enable the contents of the disk address 
register to be asserted to the header/data comparator, where it is compared bit-by-bit with the address 
information of the R80 READ DAT A. 

The format of the R80 read/write data address contained in the disk address register is not the same as 
the format of the address information contained in the header of the R80 READ DAT A input. In addi­
tion to address information, the header of the R80 READ DA TA input contains unused bits, various 
flags, and skip sector information. During the R80 read/write address comparison, the serializer per­
forms three functions: 

1. Modifying the READ DAT A input to mask the unused and various flag bits contained in the 
header of the READ DA TA input order of each of the bits 

2. Controlling assertion order of each of the bits of the read/write data address contained in the 
disk address register to enable these bits to be compared with the corresponding bits of the 
READ DATA input 

3. Recording, if enabled, the status of the skip sector flag in the header of the READ DAT A 
input 

The header/ data comparator performs a bit-by-bit comparison of the MODIFIED READ DATA input 
with the SERIAL DAR output of the serializer to determine if the MODIFIED READ DATA match­
es the read/write data address contained in the disk address register. (A detailed discussion of the R80-
hcadcr data comparison including monitoring for the skip sector flag is provided in Paragraph 3.5.6.) 

Each bit of the R80 header data asserted to the data synchronizer is asserted also to the SERIAL 
DATA IN input of the NRZ data formatter. The NRZ data formatter couples the SERIAL DATA IN 
to the ECC/CRC logic via the NRZ data bus. The ECC/CRC logic generates a CRC word based on 
the configuration of the 32 bits of the R80 header data. 

After all 32 bits of the R80 header data have been compared, the microcontroller turns off the seriali­
zer and monitors the MISMATCH output of the header/data comparator. If the MISMATCH output 
is low (the address information of the R80 header data did not match the read/write data address in the 
disk address register), the microcontroller enables the R80 SERVO CLOCK to be asserted on the 
CURRENT CLOCK and SEQUENCE clock outputs of the clock control. Then the microcontroller 
loops until the next sector is encountered (the next SYNC SECTOR PLS is asserted) before reinitiat­
ing the header data comparison. This process is repeated until a match is found or until TIMEOUT 
occurs. (A detailed discussion of ·the timeout logic is provided in Paragraph 3.5.10.) 

3-25 



If the MIS MATCH output is high (the address information of the R80 header data matched the 
read/write data address in the disk address register), the microcontroller then monitors the SSE output 
of the scrializcr. 

If the skip sector flag (SSE) of the R80 header data was set and the INH SSE bit of the IDC control 
word is not asserted, indicating that the sector being read is a bad or displaced sector, the serializcr 
asserts a skip sector error (SSE) signal to the microcontroller. 

If a skip sector error is indicated, the microcontroller sets the SSE output of the CSR and increments 
the sector address contained in the disk address register. (Only one bad sector may be encountered per 
cylinder; however, each sector following the bad sector will also be flagged because it will have been 
displaced. Provision for an additional sector (Sector 31) is provided on each cylinder; therefore, if a bad 
or displaced sector is encountered. on the current cylinder, the microcontroller can inhibit monitoring 
for further skip sector flags during the remainder of the current function without degrading system 
performance.) Then the microcontroller loops until the next SYNC SECTOR PLS is asserted before 
reinitiating the header data comparison. 

If the sector being read is not a bad or displaced sector, the microcontroller then enables the 
ECC/CRC logic to load the CRC word of the R80 header data. After the R80 header CRC is loaded, 
the microcontroller enables the ECC/CRC logic to compare the CRC word generated by the 
ECC/CRC logic from the R80 header data with the R80 header CRC word. 

If a CRC error is indicated by the ECC/CRC logic, the microcontroller deselects the R80 READ 
CLOCK and enables the P2 CLOCK to be asserted on the SEQUENCE CLOCK and CURRENT 
CLOCK outputs of the clock control to synchronize the operation of the I DC with the CPU. Then the 
microcontroller sets the Operation Incomplete (OPI) bit and sets the CROY bit in the CSR. Next, if 
the IE bit of the previous I DC control word was set, the microcontroller generates and asserts a UBUS 
BR5 interrupt to the CPU. 

If no CRC error is detected, the microcontroller clears the ECC/CRC logic and branches on the FO, 
Fl, and F2 bits of the I DC control word input to initiate the operations associated with the R80 write 
data function, the R80 READ DATA function, or the R80 write check function. 

a. R80 Write Data 

After the proper sector has been located and the CRC pattern verified, the microcontroller 
selects the R80 SERVO CLOCK to be asserted on the CURRENT CLOCK and 
SEQUENCE CLOCK outputs of the clock control. Next the microcontroller checks to make 
certain that the data to be written to the disk were loaded into the FIFO (FIFO MAX is 
asserted to the microcontroller). If the FIFO was not filled by the CPU, the microcontroller 
enables the P2 CLOCK to be asserted on the CURRENT CLOCK and SEQUENCE 
CLOCK outputs of the clock control, sets the Data Late (DL T) error and CROY bits in the 
CSR, clears the MISMATCH output of the header/data comparator, and, if the IE bit of 
the previous IDC control word was set, generates and asserts a UBUS BR5 signal to the 
CPU. 

3-26 



If the Fl FO is full, the I DC continues with the write data function. First, the microcontroller 
disables the read gate signal output of the TAG bus control, which deasserts the READ 
GA TE signal from the R80 disk drive. Then, after a loop, the microcontroller enables the 
TAG bus control to assert a write gate command to the R80 disk drive. The microcontroller 
also clears the Fl FO address counter and clears the data shift register. Then the micro­
controller again loops until 120 bits of zeros (header gap) have been written to the R80 disk 
drive. (The zeros are written by holding the R80 WRITE DATA output of the NRZ data 
formatter low.) When the last bit of the header gap is written, the microcontroller generates 
and enables the CONST ANTS from the microcontroller to be loaded into the data shift reg­
ister. (The CONSTANTS specify the sync byte pattern to be written in the R80 header gap, 
that is, 1916-) Then, the microcontroller enables the NRZ data formatter and asserts serially 
the sync byte data from the data shift register to the NRZ data formatter. The NRZ data 
formatter samples the DSRO output of the data shift register and generates an NRZ for­
matted pulse train that is asserted on the R80 WRITE DAT A signal line and to the 
ECC/CRC logic via the NRZ data bus. 

After the last bit of the sync byte has been asserted to the NRZ data formatter, the micro­
controller enables the first byte of data from FIFO A to be loaded into the data shift register 
and increments the FIFO A address counter. At the same time, the microcontroller enables 
the ECC/CRC logic, which samples the bit configuration of the 512 bytes of data as they are 
being transferred to the disk drive and generates a 32-bit ECC word representative of the bit 
configuration. 

After the first byte of data has been loaded, the data shift register serializes and asserts bits 0 
through 7 of the first data byte to the NRZ data formatter. After bit 7 of the first data byte 
has been asserted to the NRZ data formatter, the second byte of data from FIFO A is loaded 
into the data shift register and the FIFO A address counter is incremented. After bit 7 of the 
second data byte has been asserted to the NRZ data formatter, the third data byte from 
FIFO A is loaded into the data shift register and the FIFO A address counter is incremented. 
This process is repeated until all 512 bytes of data from FIFO A have been loaded into the 
data shift register and asserted to the R80 WRITE DATA input of the R80 disk drive via the 
N RZ data formatter. (A detailed discussion of how the microcontroller causes the transfer of 
data from the data buffers to the data shift register and data shift register operation in seria­
lizing the data is provided in Paragraph 3.5.11.) 

After the 512 bytes of data from the FIFO have been asserted on the R80 WRITE DATA 
signal line (the FIFO A address counter has been incremented to its maximum count), FIFO 
MAX is asserted to the microcontroller. When FIFO MAX is asserted, the microcontroller 
enables the ECC/CRC logic to assert serially the 32-bit ECC word derived from the bit con­
figuration of the 512 bytes of data asserted on the R80 WRITE DATA signal line via the 
NRZ data bus. 

After the last bit of the ECC word is asserted, the microcontroller inhibits the ECC/CRC, 
holds the WRITE GATE output of the TAG bus control logic asserted to the R80 disk drive 
and the NRZ data formatter enabled until 16 zeros have been written to the data gap. After 
the 16 zeros have been written, the microcontroller inhibits the TAG bus control, which deas­
serts the WRITE GATE signal from the R80 disk drive. The microcontroller then enables 
the P2 CLOCK to be asserted on the SEQUENCE CLOCK and CURRENT CLOCK out­
puts of the clock control, which synchronizes IDC operation with the CPU. Next the micro­
controller clears the FIFO A address counter and enables the PORT XFER REQ output of 
the CSR to be asserted to the CPU. 

3-27 



If more data arc to be written, the CPU asserts XFER GRANT to the CSR. The XFER 
GRANT input resets the PORT XFER REQ output of the CSR, which causes the micro­
controller to select Fl FO Band then monitor the CROY output of the CSR. If more data arc 
to be transferred, the CROY output of the CSR will have remained cleared and the micro­
controller will then increment the read/write data address in the disk address register and 
reset the function timer. Then the microcontroller checks the DRIVE ROY input. If the R80 
disk drive is operational, the microcontroller reinitiates the R80 write data function to cause 
the transfer of the data contained in FIFO B to the next sector of the R80 disk drive. 

If no more data are to be written, the CPU responds to the PORT XFER REQ input by 
loading an IDC control word with CROY set and then asserting XFER GRANT. The XFER 
GRANT input to the IDC resets the PORT XFER REQ signal. When the PORT XFER 
REQ signal is reset, the microcontroller monitors the CROY output of the CSR. If the 
CRDY output is set, indicating that no more data are to be transferred, the microcontroller 
sets the CROY output of the CSR and, if the IE bit of the previous IDC control word was 
set, generates and asserts a UBUS BR5 signal to the CPU. The IDC then returns to the idle 
mode of operation. 

b. R80 Read Data 

After the proper sector has been located and the CRC pattern verified, the microcontroller 
selects the R80 SERVO CLOCK to be asserted on the SEQUENCE CLOCK and CUR­
RENT CLOCK outputs of the clock control. Then the microcontroller checks to make cer­
tain that the FIFO is empty. If the FIFO is full (FIFO MAX is asserted to the micro­
controller), the microcontroller clears the MISMATCH output of the header /data 
comparator and sets the CRDY and Data Late (DLT) error bits in the CSR. If the IE bit of 
the previous IDC control word was set, the microcontroller also generates and asserts a 
UBUS BR5 signal to the CPU. The IDC then returns to the idle mode of operation. 

If the FIFO is empty, the microcontroller causes the TAG bus control to deassert the read 
gate command from the R80 disk drive. The microcontroller then loops until the write splice 
area within the header gap has passed the read/write heads of the R80 disk drive. Then the 
microcontroller enables the TAG bus control to reassert the read gate command to the R80 
disk drive. Next the microcontroller clears the ECC/CRC logic. 

After the read gate command is asserted to the R80 disk drive, the microcontroller loops 
until 88 R80 SERVO CLOCK pulses have been asserted to the IDC. This loop is initiated to 
allow the R80 disk drive to achieve phase lock on the data being read from the disk. After the 
phase lock loop, the microcontroller clears the selected FIFO address counter, and presets 
and asserts the CONSTANTS output of the microcontroller to the header /data comparator. 
(The CONST ANTS output is preset to the bit configuration of the R80 READ DAT A head­
er gap sync byte, that is, 1916.) The microcontroller then enables the R80 READ CLOCK to 
be asserted on the CURRENT CLOCK output of the clock control. The R80 READ 
CLOCK is not asserted on the SEQUENCE CLOCK output of the clock control until the 
sync byte has been found (when SYNC SEEN from the header /data comparator is asserted 
to the clock control). Thus, the microcontroller is forced to stall until the R80 header gap 
sync byte has been found. (A detailed discussion of how the sync byte is found is provided in 
Paragraph 3.5.4.) 

Detection of the sync byte of the R80 header gap signals the start of the data segment of the 
sector to be read. When the R80 header gap sync byte has been found, the SYNC SEEN 
output of the header/ data comparator is asserted to the clock control to enable the R80 
READ CLOCK to be asserted onto the SEQUENCE CLOCK output. This restarts the mi­
c~ocontroller, which then enables the ECC/CRC logic, and begins converting the R80 
READ DAT A into byte format and storing the 512 bytes of R80 READ DAT A into the 
selected FIFO. 

3-28 



After the data shift register has been loaded with the first eight bits of R80 READ DATA, 
the microcontroller enables the parallel output of the data shift register to be asserted to the 
input of the Fl FO(s) via the READ DAT A tristate drivers, loads the data byte into the se­
lected Fl FO. and increments the selected FIFO address counter. This process (converting the 
R80 READ DATA to byte format and storing each byte) is repeated until all 512 bytes of 
R80 READ DAT A have been written into the selected FIFO. (A detailed discussion of how 
the READ DATA arc converted to byte format and stored in the data buffer is provided in 
Paragraph 3.5.12.) 

Each bit of the 512 bytes of R80 READ DATA is used in the ECC/CRC logic to generate a 
32-bit ECC word representative of the bit configuration of the R80 READ DAT A. After all 
512 bytes of R80 READ DAT A have been loaded into the selected FIFO (FIFO MAX is 
asserted to the microcontroller), the microcontroller enables the 32-bit ECC word from the 
R80 disk drive to be loaded into the ECC/CRC logic. After the ECC word has been loaded, 
the microcontroller enables the ECC/CRC logic to compare the ECC word generated from 
the 512 bytes of R80 READ DAT A with the ECC word read from the disk. Then the micro­
controllcr clears the Fl FO address counter and monitors the CRC / ECC ERROR signal out­
put of the ECC/CRC logic. 

If a CRC / ECC error is indicated, the microcontroller initiates an ECC correction routine. 
At the completion of the correction routine, the results of the correction computation are 
indicated in the ST AT 0 and ST AT 1 signals that are asserted to the status logic of the CSR. 
On completion of the correction computation, the microcontroller deselects the R80 READ 
CLOCK and enables the P2 CLOCK to be asserted on the SEQUENCE CLOCK and CUR­
RENT CLOCK outputs of the clock control. Then the microcontroller clears the selected 
Fl FO address counter, sets the CROY output of the CSR, and, if the IE bit of the previous 
IDC control word was set, generates and asserts a UBUS BR5 signal to the CPU. The JDC 
then returns to the idle mode of operation. 

If no CRC/ECC ERROR is indicated, the microcontroller deselects the R80 READ 
CLOCK and enables the P2 CLOCK to be asserted on the SEQUENCE CLOCK and CUR­
RENT CLOCK outputs of the clock control. This synchronizes the IDC with the CPU. Then 
the microcontroller generates and asserts the PORT XFER REQ output of the CSR to the 
CPU. This signal signifies that the JDC has completed reading one sector of data and that 
the data arc ready for transfer to the CPU. 

If more data are to be read, the CPU asserts an XFER GRANT signal to the CSR. When 
the XFER GRANT signal is asserted, it resets the PORT XFER REQ output. When the 
PORT XFER REQ is reset, the microcontroller changes the FIFO selected and monitors the 
CROY output of the CSR. If more data are to be read, the CROY output of the CSR will 
have remained cleared, and the microcontroller will increment the read/write data address in 
the disk address register and reset the function timer. Then the microcontroller checks the 
DRIVE ROY input. If the R80 disk drive is operational, the microcontroller reinitiates the 
R80 READ DATA function to read the next sector of data from the R80 disk drive and store 
the data in the selected Fl FO. 

If no further data arc to be read. the CPU responds to the PORT XFER REQ input by load­
ing an IDC control word with CROY set and then asserting XFER GRANT. The XFER 
GRANT input to the IDC resets the PORT XFER REQ signal. When the PORT XFER 
REQ signal is reset, the microcontrollcr monitors the CROY output of the CSR. If the 
CROY output is set, the microcontroller sets the CRDY output of the CSR and, if the IE bit 
of the previous I DC control word was set, generates and asserts a UBUS BR5 signal to the 
CPU. The IDC then returns to the idle mode of operation. 

3-29 



c. R80 Write Check 

After the proper sector has been located and the CRC pattern verified, the microcontrollcr 
checks to make certain that the data to be compared with the data from the disk drive were 
loaded into the FIFO (FIFO OVFLW is asserted to the microcontroller). 

If the FIFO was not filled by the CPU, the microcontroller enables the P2 CLOCK to be 
asserted on the CURRENT CLOCK and SEQUENCE CLOCK outputs of the clock con­
trol. Then the microcontroller sets the Data Late (DL T) error and CROY bits in the CSR, 
clears the MISMATCH output of the header /data comparator, and, if the IE bit of the pre­
vious I DC control word was set, generates and asserts a UBUS BR5 signal to the CPU. 

If the FIFO is full, the I DC continues with the write check function. First, the micro­
controller selects the R80 SERVO CLOCK to be asserted on the CURRENT CLOCK and 
SEQUENCE CLOCK outputs of the clock control. Next, the microcontroller disables the 
READ GATE signal output of the TAG bus control, which deasserts the READ GATE sig­
nal from the R80 disk drive. The READ GATE signal is deasserted to disable the R80 disk 
drive read circuitry from being triggered by data glitches at the beginning of the header gap. 
(The data glitches were produced when the write heads were first turned on when the header 
gap was written.) Then, after a loop to allow the read/write heads of the R80 disk drive to be 
positioned over the valid data in the header gap, the microcontroller enables the TAG bus 
control to reassert the read gate to the R80 disk drive. After the read gate command is as­
serted, the microcontroller loops until 88 R80 SERVO CLOCK pulses have been asserted to 
~he I DC. This loop is initiated to allow the R80 disk drive to again achieve phase lock on the 
data being read from the disk. After the phase lock loop, the microcontroller clears the FIFO 
address counter and enables the first byte of data from the selected data buffer to be asserted 
to the data shift register. The microcontroller also clears the MISMATCH output of the 
header/data comparator, and presets and enables the CONSTANTS from the micro­
controller to be asserted to the header /data comparator. (The CONSTANTS output is pre­
set to the bit configuration of the R80 READ DAT A header gap sync byte, that is, 191 6.) 

The microcontroller then enables the R80 READ CLOCK to be asserted on the CURRENT 
CLOCK output of the clock control. The R80 READ CLOCK is not asserted on the 
SEQUENCE CLOCK output of the clock control until the sync byte has been found (when 

· SYNC SEEN from the header/ data comparator is asserted to the clock control). Thus, the 
microcontroller is forced to stall until the R80 READ DATA header gap sync byte has been 
found. (A detailed discussion of how the sync byte is found is provided in Paragraph 3.5.4.) 

Detection of the R80 READ DAT A header gap sync byte signals the start of the date. seg­
ment of the sector on which the write check is to be performed. When the header gap sync 
byte has been found, the SYNC SEEN output of the header/ data comparator is asserted to 
the clock control to enable the R80 READ CLOCK to be asserted on the SEQUENCE 
CLOCK output. This restarts the microcontroller, which then enables the ECC/CRC logic. 

In the write check mode, the WRT CHK LOAD output of the header/data comparator is 
also enabled when the R80 READ DATA header gap sync byte is found. The WRT CHK 
LOAD signal is asserted to the data shift register where it enables the first data byte from 
the selected FIFO to be loaded into the data shift register. The microcontroller then in­

crements the selected FIFO address counter. 

J-30 



When the first data byte is loaded into the data shift register, bit 0 of the first data byte is 
asserted to the header/ data comparator via the DSRO output of the data shift register. The 
first bit of the first data byte is asserted to the header/ data comparator coincident with the 
first bit of the data portion of the R80 READ DAT A asserted from the disk drive. (Because 
the CURRENT CLOCK used by the data shift register is derived from the R80 READ 
CLOCK input, the data loaded into the data shift register is serialized and asserted to the 
header/data comparator in sync with each bit of the R80 READ DATA input.) The data -
shift register serializes and asserts bits 0 through 7 of the first data byte to the header/ data 
comparator. 

After bit 7 of the first data byte has been asserted to the header/ data comparator, the micro­
controller loads the second byte of data from the selected FIFO into the data shift register 
and increments the selected FIFO address counter. 

After bit 7 of the second data byte has been serialized and asserted to the header/ data com­
parator, the microcontroller loads the third data byte from the selected FIFO into the data 
shift register and increments the FIFO A address counter. This process is repeated until all 
512 bytes of data from the selected FIFO have been serialized and asserted to the head­
er/ data comparator for comparison with the data portion of the R80 READ DAT A input. (A 
detailed discussion of how the microcontroller causes serialization of data from the data buf­
fers is provided in Paragraph 3.5.11.) 

The header/ data comparator performs a bit-by-bit comparison of the data portion of the R80 
READ DATA input with the DSRO input to determine if the data stored on the disk match 
the serialized data from the data shift register. 

Each bit of the data asserted to the header/ data comparator for comparison with the R80 
READ DATA is asserted also to the ECC/CRC logic via the NRZ data formatter and NRZ 
data bus. The ECC/CRC logic generates a 32-bit ECC word based on the configuration of 
the 4096 data bits asserted to the ECC/CRC logic via the DSRO input to the NRZ data 
formatter. 

After the 512 bytes of data from the FIFO have been serialized and asserted to the head­
er/ data comparator for comparison with the data portion of the R80 READ DAT A input 
and to the ECC/CRC logic for generation of a 32-bit ECC word, (the FIFO A address 
counter has been incremented to its maximum count, FIFO MAX is asserted to the micro­
controller), the microcontroller strobes the header data comparator to sample the results of 
the data comparison and enables the ECC/CRC logic to load the 32-bit ECC word of the 
R80 READ DAT A input. If the data did not compare, the MISMATCH output of the head­
er/ data comparator will be low. If the data from the data buffer matched the data portion of 
the R80 READ DAT A, the MISMATCH output will be high. The MISMATCH output is 
asserted to the status logic in the CSR and to the microcontroller. After the ECC word has 
been loaded, the microcontroller enables the ECC/CRC logic to compare the two ECC 
words (the ECC word generated from the 4096 bits of data used for comparison with the 
4096 bits of R80 READ DAT A with the ECC word read from the disk drive). Also, the 
microcontroller enables the P2 CLOCK to be asserted on the CURRENT CLOCK and 
SEQUENCE CLOCK outputs of the clock control to synchronize IDC operation with the 
CPU. 

3-31 



If an ECC comparison error is indicated (the ECC/CRC ERROR signal is asserted to the 
microcontroller and CSR), the microcontroller sets the CROY output of the CSR and, if the 
IE bit of the previous JDC control word was set, generates and asserts a UBUS BR5 to signal 
the CPU. Then the IDC returns to the idle mode of operation. [Note that if the results of the 
data comparison (the 4096 bits of R80 READ DAT A with the 4096 bits of data from the 
Fl FO) did not match, then an ECC error will also occur. Therefore, it is not necessary to 
terminate the write check function when a data comparison error is detected. However, if the 
write check function is terminated by an ECC error, the CPU can determine if the error was 
ECC related or a data comparison error by reading the I DC staus word. The results of the 
data comparison (MISMATCH) and ECC comparison (CRC/ECC ERROR) arc made 
available to the CPU via the IDC status logic.] 

If no ECC comparison error is indicated, the microcontroller clears the selected Fl FO ad­
dress counter and enables the PORT XFER REQ output of the CSR to be asserted to the 
CPU. The PORT XFER REQ signal signifies to the CPU that the write check function has 
been performed on the requested sector of data and that the data comparison was valid. 

If the write check function is to be performed on the next sector of data, the CPU asserts an 
XFER GRANT signal to the CSR. The XFER GRANT input resets the PORT XFER REQ 
output. When the PORT XFER REQ output is reset, the microcontroller changes the FIFO 
selected and monitors the CROY output of the CSR. If the write check function is to be 
continued, the CROY output of the CSR will have remained cleared, and the microcontroller 
will increment the read/write data address in the disk address register and reset the function 
timer. Then the microcontroller checks the DRIVE RDY input. If the R80 disk drive is oper­
ational, the microcontroller reinitiates the R80 write check function to compare the next sec­
tor of the data from the R80 disk drive with the data contained in the selected FIFO. 

If no further data are to be read, the CPU responds to the PORT XFER REQ input by load­
ing an IDC control word with CROY set and then asserting XFER GRANT. The XFER 
GRANT input to the JDC resets the PORT XFER REQ signal. When the PORT XFER 
REQ signal is reset, the microcontroller monitors the CROY output of the CSR. If the 
CROY output is set, the microcontroller sets the CROY output of the CSR and, if the IE bit 
of the previous JDC control word was set, generates and asserts a UBUS BR5 signal to the 
CPU. The JDC then returns to the idle mode of operation. 

3.4.6 Read Data Without Header Check 
The read data without header check function specified in Table 3-1 may be initiated by the CPU by 
loading the CSR with the applicable I DC control word. Since the operational sequence of the I DC in 
performing the read data without header check function depends on whether an RL02 or R80 disk 
drive is selected, the read data without header check functions are discussed separately as follows. 

3.4.6.1 RL02 Read Data Without Header Check - When an RL02 read data without header check 
function is specified in the I DC control word, the microcontroller branches on the FO, F 1, and F2 inputs 
to preset the microcontroller microword output. The microcontroller then selects FIFO A and resets the 
FIFO A address counter. Next the microcontroller checks the DRIVE ROY input to determine if the 
selected disk drive is ready (the disk drive is operational and not busy performing a seek function). If 
the DRIVE ROY input is present or when it is asserted, the microcontroller enables the RL SYSTEM 
CLOCK (4.1 megahertz) to be asserted on the CURRENT CLOCK and SEQUENCE CLOCK out­
puts of the clock control. This synchronizes the I DC operation with the selected RL02 disk drive. 

The microcontroller then loops until the leading edge of the SYNC SECTOR PLS is detected. This 
pulse is generated by the RL SECTOR PLS input from the RL02 disk drive. Presence of the SYNC 
SECTOR ~LS indicates that the applicable read/write head of the RL02 disk drive is positioned at the 

3-32 



beginning portion of a data sector. After the leading edge of the SYNC SECTOR PLS is detected, the 
microcontroller loops until the trailing edge of the SYNC SECTOR PLS is detected. Then the micro­
controllcr loops until 32 RL SYSTEM CLOCK (4.1 megahertz) pulses have been asserted to the mi­
crocontroller via the SEQUENCE CLOCK output of the clock control. This second microcontroller 
loop is inititated to prevent the read data separator from trying to achieve phase lock on data that may 
contain glitches. After the loop, the microcontroller enables the read data separator and then loops until 
after 32 RL SYSTEM CLOCK ( 4.1 megahertz) pulses have been asserted to the microcontroller via 
the SEQUENCE CLOCK output of the clock control. This loop is initiated to allow time for the read 
data separator to achieve phase lock on the data being read from the disk (RL READ DAT A input). 
Phase lock is achieved by reading a sequence of four bytes of zeros in the header preamble of the RL 
READ DATA. (See Figure 2-20 for the RL READ DATA format.) 

After the loop for phase lock, the microcontroller presets the conditions for locating the header sync 
byte of the RL READ DAT A. 

To preset the conditions for locating the header sync byte, the microcontroller clears the data shift 
register and presets the CONST ANTS output of the microcontroller to the header sync byte pattern. 
Then the microcontroller selects the OS CLOCK for synchronization. The OS CLOCK is generated 
from the RL READ DAT A input and thus synchronizes the I DC with the selected RL02 disk drive 
data rate. When the OS CLOCK from the read data separator is selected, the OS CLOCK is asserted 
on the CURRENT CLOCK output of the clock control. 

The OS CLOCK is not asserted on the SEQUENCE CLOCK output of the clock control until the sync 
byte has been found (when SYNC SEEN from the header /data comparator is asserted to the clock 
control). Thus, the microcontroller is forced to stall until the header sync byte has been found. (A de­
tailed discussion of how the header sync byte is located is provided in Paragraph 3.5.4.) 

When the RL READ DA TA header sync byte is round, the SYNC SEEN output of the header /data 
comparator is asserted to the clock control to enable the OS CLOCK to be asserted on the 
SEQUENCE CLOCK output. This restarts the microcontroller, which then loops until the 48 bits com­
prising the address information, the 16 bits of the zeros that follow, and the CRC word of the RL02 
header portion of the RL READ DATA have been bypassed. 

After the header portion of the RL READ DAT A has been bypassed, the microcontroller checks to 
make certain that the selected FIFO is empty. If the FIFO is full (FIFO MAX is asserted to the micro­
controller), the microcontroller clears the MISMATCH output of the header /data comparator and sets 
the CROY and Data Late (DL T) error bits in the CSR. If the IE bit of the previous IDC control word 
was set, the microcontroller also generates and asserts a UBUS BR5 signal to the CPU. The IDC then 
returns to the idle mode of operation. 

If the FIFO is empty, the microcontroller deselects the DS CLOCK and enables the RL SYSTEM 
CLOCK ( 4.1 megahertz) to be asserted on the SEQUENCE CLOCK and CURRENT CLOCK out­
puts of the clock control. The microcontroller then loops until the write splice area within the header 
gap of the RL READ DATA has passed the read/write heads of the RL02 disk drive. Then the micro­
controller clears the ECC /CRC logic and enables the read data separator. 

Next, the microcontroller loops until 32 RL READ DAT A pulses have been asserted to the IDC. This 
loop is initiated to allow the read data separator to achieve phase lock on the data being read from the 
disk. After the phase lock loop, the microcontroller clears the selected FIFO address counter and pre­
sets and asserts the CONST ANTS output of the microcontroller to the header /data comparator. (The 
CONSTANTS output is preset to the bit configuration of the RL READ DATA header preamble sync 
byte.) The microcontroller then enables the DS CLOCK to be asserted on the CURRENT CLOCK 
output of the clock control. The DS CLOCK is not asserted on the SEQUENCE CLOCK output of the 

3-33 



clock control until the sync byte has been found (when SYNC SEEN from the header /data comparator 
is asserted to the clock control). Thus, the microcontroller is forced to stall until the RL READ DAT A 
header preamble sync byte has been found. (A detailed discussion of how the sync byte is located is 
provided in Paragraph 3.5.4.) 

Detection of the sync byte of the header preamble signals the start of the data segment of the sector to 
be read. When the header preamble sync byte has been found, the SYNC SEEN output of the head­
er /data comparator is asserted to the clock control to enable the OS CLOCK to be asserted on the 
SEQUENCE CLOCK output. This restarts the microcontroller, which then enables the ECC/CRC 
logic, and begins converting the data portion of the RL READ DAT A input into byte format and stor­
ing the 256 bytes of RL READ DAT A into the selected Fl FO. (A detailed discussion of how the 
READ DAT A are converted to byte format and stored in the data buffers is provided in Paragraph 
3.5.12.) 

Each bit of the 256 bytes of the data portion of the RL READ DAT A is used in the ECC /CRC logic to 
generate a 16-bit CRC word representative of the bit configuration of the RL READ DAT A. After all 
256 bytes of RL READ DATA have been loaded into the selected FIFO (FIFO MAX is asserted to the 
microcontroller), the microcontroller enables the 16-bit CRC word of the RL READ DAT A input to be 
loaded into the ECC/CRC logic. After the CRC word has been loaded, the microcontroller enables the 
ECC/CRC logic to compare the CRC word generated from the 256 bytes of RL READ DAT A with 
the CRC word read from the disk. Next, the microcontroller deselects the OS CLOCK and enables the 
P2 CLOCK to be asserted on the SEQUENCE CLOCK and CURRENT CLOCK outputs of the clock 
control. Then, the microcontroller monitors the CRC/ECC ERROR signal output of the ECC/CRC 
logic. 

· If a CRC/ECC error is indicated, the microcontroller sets the CRDY output of the CSR and, if the IE 
bit of the previous IDC control word was set, generates and asserts a UBUS BR5 signal to the CPU. 
The I DC then returns to the idle mode of operation. 

If no CRC/ECC ERROR is indicated, the microcontroller clears the selected FIFO address counter 
and generates and asserts the PORT XFER REQ output of the CSR to the CPU. This signal signifies 
that the IDC has completed reading a sector of data and that the data are ready for transfer to the 
CPU. 

If more data are to be read, the CPU asserts a XFER GRANT signal to the CSR. When the XFER 
GRANT signal is asserted, the PORT XFER REQ output is reset. When the PORT XFER REQ is 
reset, the microcontroller changes the FIFO selected and monitors the CROY output of the CSR. If the 
CROY output of the CSR has remained cleared, the microcontroller resets the function timer, and 
reinitiates the RL02 read data without header check function to read the next sector of RL READ 
DAT A and store the data portion in the selected FIFO. 

If no further data are to be read, the CPU responds to the PORT XFER REQ input by loading an IDC 
control word· with CROY set and then asserting XFER GRANT. The XFER GRANT input to the 
IDC resets the PORT XFER REQ signal. When the PORT XFER REQ signal is reset, the micro­
controller monitors the CROY output of the CSR. If the CROY output is set, the microcontroller sets 
the CROY output of the CSR and, if the IE bit of the previous IDC control word was set, generates 
and asserts a UBUS BR5 signal to the CPU. The IDC then returns to the idle mode of operation. 

3.4.6.2 R80 Read Data Without Header Check - When an R80 read data without header check func­
tion is specified by the IDC control word, the microcontroller branches on the FO, Fl, and F2 inputs to 
preset the microcontroller microword output. The microcontroller then selects FIFO A and resets the 
FIFO A address counter. Next, the microcontroller checks the DRIVE ROY input to determine if the 

3-34 



disk drive is ready (the R80 disk drive is operational and not busy performing a seek). If the DRIVE 
ROY input is present or when it is asserted, the microcontroller enables the R80 SERVO CLOCK to 
be asserted on the CURRENT CLOCK and SEQUENCE CLOCK outputs of the clock control. This 
synchronizes the operation of the I DC with the R80 disk drive. 

The microcontroller then loops until the leading edge of the SYNC SECTOR PLS is detected. This 
pulse is generated by the R80 SECTOR PLS or R80 INDEX PLS inputs from the R80 disk drive. 
Presence of the SYNC SECTOR PLS indicates that the applicable read/write head of the R80 disk 
drive is positioned at the beginning portion of the header data. After the leading edge of the SYNC 
SECTOR PLS is detected, the microcontroller loops until 60 R80 SERVO CLOCK pulses (9.677 me­
gahertz) have been asserted. The microcontroller loop is initiated to prevent the R80 disk drive from 
trying to achieve phase lock on data that may contain glitches. After the loop, the microcontroller en­
ables the TAG bus control to assert the READ TAG and CNTL TAG signals to the R80 drivers. These 
signals enable the R80 drivers to assert the R80 TAG BUS 01 and R80 TAG 3 outputs of the IDC 
(assert a read gate command to the R80 disk drive). The read gate command enables the R80 disk drive 
to read the data from the disk and assert the data to the IDC via the R80 READ DAT A signal line. 
The R80 disk drive also generates and asserts the R80 READ CLOCK, which is synchronized with the 
READ DATA input to the IDC. 

After the read gate command has been asserted, the microcontroller loops until after 88 R80 SERVO 
CLOCK pulses have been asserted to the IDC. This loop is initiated to allow time for the R80 disk 
drive to achieve phase lock on the data being read from the disk. Phase lock is achieved by reading a 
sequence of zeros in the sector gap of the R80 READ DAT A. (See Figure 2-17 for the R80 READ 
DATA format.) 

After the loop for phase lock, the microcontroller presets the conditions for locating the header sync 
byte of the R80 READ DATA. 

To preset the conditions for locating the header sync byte, the microcontroller clears the data shift 
register and presets the CONSTANTS output of the microcontroller to the header sync byte pattern. 
Then the microcontroller selects the R80 READ CLOCK for synchronization. The R80 READ 
CLOCK is generated within the R80 disk drive from the R80 READ DATA and thus synchronizes the 
IDC with the R80 disk drive data rate. When the R80 READ CLOCK is selected, the R80 READ 
CLOCK is asserted on the CURRENT CLOCK output of the clock control. The R80 READ CLOCK 
is not asserted on the SEQUENCE CLOCK output of the clock control until the sync byte has been 
found (when SYNC SEEN from the header /data comparator is asserted to the clock control). Thus, 
the microcontroller is forced to stall until the R80 READ DAT A header sync byte has been found. (A 
detailed discussion of how the sync byte is located is provided in Paragraph 3.5.4.) 

When the R80 READ DATA header sync byte is found, the SYNC SEEN output of the header/data 
comparator is asserted to the clock control to enable the R80 READ CLOCK to be asserted on the 
SEQUENCE CLOCK output. This restarts the microcontroller, which then loops until the 48 bits com­
prising the address information and CRC word of the header portion of the R80 READ DAT A have 
been bypassed. 

After the header portion of the R80 READ DAT A has been bypassed, the microcontroller selects the 
R80 SERVO CLOCK to be asserted on the SEQUENCE CLOCK and CURRENT CLOCK outputs 
of the clock control. Then the microcontroller checks to make certain that the FIFO is empty. If the 
FIFO is full (FIFO MAX is asserted to the microcontroller), the microcontroller clears the MIS­
MATCH output of the header/data comparator and sets the CROY and Data Late (DLT) error bits in 
the CSR. If the IE bit of the previous IDC control word was set, the microcontroller also generates and 
asserts a UBUS BR5 signal to the CPU. The IDC then returns to the idle mode of operation. 

3-35 



If the Fl FO is empty, the microcontroller causes the TAG bus control to deassert the read gate com­
mand from the R80 disk drive. The microcontroller then loops until the write splice area within the 
header gap has passed the read/write heads of the R80 disk drive. Then, the microcontroller enables 
the tag bus control to reassert the read gate command to the R80 disk drive. Next the microcontroller 
clears the ECC/CRC logic. 

After the read gate command is asserted to the R80 disk drive, the microcontroller loops until 88 R80 
SERVO CLOCK pulses have been asserted to the IDC. This loop is initiated to allow the R80 disk 
drive to achieve phase lock on the data being read from the disk. After the phase lock loop, the micro­
controller clears the selected FIFO address counter, and presets and asserts the CONSTANTS output 
of the microcontroller to the header/ data comparator. (The CONST ANTS output is preset to the bit 
configuration of the R80 READ DATA header gap sync byte.) The microcontroller then enables the 
R80 READ CLOCK to be asserted on the CURRENT CLOCK output of the clock control. The R80 
READ CLOCK is not asserted on the SEQUENCE CLOCK output of the clock control until the R80 
READ DATA header gap sync byte has been found (when SYNC SEEN from the header/data com­
parator is asserted to the clock control). Thus, the microcontroller is forced to stall until the R80 
READ DAT A header gap sync byte has been found. (A detailed discussion of how the sync byte is 
found is provided in Paragraph 3.5.4.) 

Detection of the R80 READ DAT A header gap sync byte signals the start of the data segment of the 
sector to be read. When the R80 READ DAT A header gap sync byte has been found, the SYNC 
SEEN output of the header/ data comparator is asserted to the clock control to enable the R80 READ 
CLOCK to be asserted on the SEQUENCE CLOCK output. This restarts the microcontroller, which 
then enables the ECC/CRC logic, and begins converting the data portion of the R80 READ DATA 
into byte format and storing the 512 bytes of R80 READ DATA in the selected FIFO. 

After the data shift register has been loaded with the first eight bits of R80 READ DAT A, the micro­
controller enables the parallel output of the data shift register to be asserted to the input of the FIFO(s) 
via the read data tristate drivers, loads the data byte into the selected FIFO, and increments the se­
lected FIFO address counter. This process (converting the R80 READ DAT A to byte format and stor­
ing each byte) is repeated until all 512 bytes of the data portion of the R80 READ DAT A have been 
written into the selected FIFO. (A detailed discussion of how the READ DATA are converted to byte 
format and stored in the data buffer is provided in Paragraph 3.5.12.) 

Each bit of the 512 bytes of R80 READ DATA is used in the ECC/CRC logic to generate a 32-bit 
ECC word representative of the bit configuration of the data portion of the R80 READ DAT A. After 
all 512 bytes of R80 READ DATA have been loaded into the selected FIFO (FIFO MAX is asserted to 
the microcontroller), the microcontroller enables the 32-bit ECC word of the R80 READ DATA to be 
loaded into the ECC/CRC logic. After the ECC word has been loaded, the microcontroller enables the 
ECC/CRC logic to compare the ECC word generated from the 512 bytes of R80 READ DATA with 
the ECC word read from the disk. Then the microcontroller clears the FIFO address counter and mon­
itors the CRC/_ECC ERROR signal output of the ECC/CRC logic. 

If a CRC/ECC error is indicated, the microcontroller initiates an ECC correction routine. At the com­
pletion of the correction routine, the results of the correction computation are indicated in the STAT O 
and ST AT 1 signals that .are asserted to the status logic of the CSR. On completion of the correction 
computation, the microcontroller deselects the R80 READ CLOCK and enables the P2 CLOCK to be 
asserted on the SEQUENCE CLOCK and CURRENT clock outputs of the clock control. Then the 
microcontroller clears the selected FIFO address counter, sets the CROY output of the CSR, and, if 
the IE bit of the previous IDC control word was set, generates and asserts a UBUS BR5 signal to the 
CPU. The IDC then returns to the idle mode of operation. 

3-36 



If no CRC/ECC ERROR is indicated. the microcontroller deselects the R80 READ CLOCK and en­
ables the P2 CLOCK to be asserted on the SEQUENCE CLOCK and CURRENT CLOCK outputs of 
the clock control. This synchronizes the IDC with the CPU. Then the microcontroller generates and 
asserts the PORT XFER REQ output of the CSR to the CPU. This signal signifies that the IDC has , 
completed reading one sector of data and that the data are ready for transfer to the CPU. 

If more data are to be read, the CPU asserts a XFER GRANT signal to the CSR. When the XFER 
GRANT signal is asserted, it resets the PORT XFER REQ output. When the PORT XFER REQ is 
reset, the microcontroller changes the Fl FO selected and monitors the CROY output of the CSR. If 
more data are to be read, the CROY output of the CSR will have remained cleared, and the micro­
controller will reset the function timer and reinitiate the R80 read data without header check function 
to read the next sector of data from the R80 disk drive and store the data in the selected FIFO. 

If no further data are to be read. the CPU responds to the PORT XFER REQ input by loading an IDC 
control word with CROY set and then asserting XFER GRANT. The XFER GRANT input to the 
I DC resets the PORT XFER REQ signal. When the PORT XFER REQ signal is reset, the micro­
controller monitors the CRDY output of the CSR. If the CROY output is set, the microeontroller sets 
the CRDY output of the CSR and, if the IE bit of the previous IDC control word was set, generates 
and asserts a UBUS BR5 signal to the CPU. The IDC then returns to the idle mode of operation. 

3.4.7 Write Format 
The write format is used only to format R80 disk drive headers. When the write format function is initiat­
ed. the JDC checks to make certain that the R80 disk drive is ready {that it is operational and not busy 
performing a seek). If the R80 disk drive is ready or when it becomes ready. the JDC waits until the R80 
INDEX PLS from the R80 disk drive is detected (waits for the beginning of sector 0). 

After the R80 INDEX PLS is detected, the IDC then 

• writes a sequence of zeros (224 ), 

• writes the header sync byte, 

• writes four bytes of header data from the data buffer, 

• writes the header CRC word, which was generated in the IDC from the header data written 
to the disk drive, 

• writes a sequence of zeros (I 36), 

• writes the header gap sync byte, 

• writes a sequence of zeros ( 4096), 

• writes the ECC word which was generated in the IDC while the sequence of zeros (4096) 
were being written, and 

• writes a sequence of zeros. 

The I DC then waits for the leading edge of the next sector pulse. After the next sector pulse is de­
tected, the I DC repeats the write sequence just specified. This process is repeated until the R80 IN­
DEX PLS is again detected. Then the IDC generates and asserts, if enabled, a UBUS BR5 interrupt to 
the CPU, which indicates that the specified function has been completed. 

3-37 



3.4.8 Idle Mode 
The I DC idle mode of operation is entered automatically after the completion of a CPU-specified func­
tion. The JDC remains in the idle mode until another IDC function is specified by the CPU (the CROY 
L input to the microcontroller is set to a high). When the idle mode is entered, the microcontroller 
generates and asserts the UDRV SEL 0, UDRV SEL I, and UDRV SEL signals to the CSR (see Fig­
ure 3-1 ). These signal inputs are used to generate the DRIVE SEL 0 and I signals, which select which 
one of the disk drives is to be enabled. These signals also enable the operational status signal inputs 
from the selected disk drive (RL DRIVE ROY, RL DRIVE ERR, R80 DRIVE RDY, R80 PLUG 
VALID, R80 ON CYLINDER, and R80 FAULT) to control assertion of the DRIVE RDY and 
DRIVE ERR signals to the microcontroller. (A detailed discussion of how the disk drives are selected 
and the status signals are asserted to the microcontroller is provided in Paragraph 3.5.1.) The DRIVE 
SEL O and 1 signals also enable the appropriate ONLINE signal output of the CSR to be asserted to 
the microcontroller. (The ONLINE signal contained in the CSR is set and cleared by the micro­
controller to provide a record of which drives are currently in use. A discussion of the ONLINE regis­
ter contained in the CSR is provided in Paragraph 3.5.10.) 

After the disk drive has been selected, the microcontroller branches on the DRIVE RDY, DRIVE 
ERR, and ONLINE signals asserted and generates the control signals (USET ATTN L, USET ON­
LINE L, and UCLEAR ONLINE L) to record the disk drive status. The USET and UCLEAR ON­
LINE signals are asserted to the CSR to record the sampled disk drive status during the monitoring 
period. The USET A TIN signal is asserted to the CSR to record that the enabled disk drive has 
changed operational status (has gone off-line, has come back on-line, or is reporting an error). (A de­
tailed discussion of the function of the A TIN and ONLINE registers contained in the CSR is provided 
in Paragraph 3.5.10.) 

After the operational status of the selected disk drive has been sampled and recorded, the micro­
controller increments the address count (UDRV SEL 0 and 1) and reasserts USEL DRV to enable the 
next disk drive. When the next disk drive is enabled, the microcontroller again branches on the DRIVE 
ERR, DRIVE ROY, and ONLINE inputs and records the status of the enabled disk drive. After all 
disk drives have been sampled, the microcontroller checks the CROY L input from the CSR to deter­
mine if the CPU has requested the IDC to perform a function. If no function has been requested (the 
CROY L input is L), the microcontroller repeats the idle mode routine. 

3.5 DETAILED FUNCTIONAL LOGIC DESCRIPTIONS 

3.5.1 Disk Drive Selection and Drive Status Monitor 
The disk drive selection and drive ready monitor logic is used to enable, if applicable, one of the RL02 
disk drives, to condition the IDC logic for operation with either the R80 disk drive or an RL02 disk 
drive, and to monitor the status of the selected disk drive. 

The RL02 disk drives are connected to the IDC in a· daisy chain. Each RL02 disk drive is pre­
programmed with a specific address by installing an address plug. Each RL02 disk drive is enabled by 
the IDC by asserting the configuration of DRIVE SEL 0 and 1 bits which matches the preprogrammed 
address. When an RL02 disk drive is enabled, it asserts to the IDC its operational status information 
(RL DRIVE RDY or RL DRIVE ERROR). The RL DRIVE ROY signal is only asserted if the se­
lected disk drive is operational and is not busy performing a seek. When an RL02 disk drive is enabled, 
operational, and not performing a seek function, the selected RL02 disk drive enables the read data 
from the disk and the sector pulses to be asserted to the JDC via the RL READ DAT A and RL SEC­
TOR PLS signal lines. 

3-38 



The R80 disk drive is enabled at all times and continuously asserts its status information (including R80 
ON CYLINDER and R80 DRIVE ROY or R80 FAULT), R80 SECTOR PLS, and R80 INDEX PLS 
outputs to the I DC. Unlike the RL02 disk drives, the R80 disk drive asserts its address information to 
the I DC via the R80 SEL ADDRESS 0 and 1 signal lines. When the configuration of DRIVE SEL O 
and I bits match the address of the R80 disk drive, the IDC generates an R80 signal. The R80 signal 
conditions the I DC logic for operation with the R80 disk drive. Again, unlike the RL02 disk drives, the 
R80 does not assert its READ DAT A output to the IDC when it is selected. A separate command from 
the IDC TAG bus control (read gate) must be asserted before the R80 READ DATA output is asserted 
to the IDC. 

A functional block diagram of the disk drive selection and drive ready monitor logic is .presented in 
Figure 3-2. Figure 3-2 shows the maximum number and configuration of disk drives that may be con­
nected to the I DC: three RL02 disk drives and one R80 disk drive, or four RL02 disk drives. 

The disk drive selection and drive status monitor generates the appropriate DRIVE SEL 0 and I signals 
that are used to enable, if applicable, the appropriate RL02 disk drive, to control generation of the 
RL02 and R80 signals, and to enable the appropriate DRIVE ROY or DRIVE ERR input signal to be 
asserted to the microcontroller. 

3.5.1. 1 Generation of DRIVE SEL 0 and 1 - When performing a CPU-specified function, the IDC 
generates the DRIVE SEL 0 and I signals from bits 08 and 09 of the IDC control word input that is 
loaded into the control register of the CSR. When the IDC is operating in the idle mode, the DRIVE 
SEL 0 and I outputs are generated from the UDRV SEL, UDRV SEL 0, and UDRV SEL I outputs of 
the microcontroller. 

3.5.1.2 Generation of RL02 and R80 - If the configuration of DRIVE SEL 0 and 1 signals asserted to 
the R80 address compare logic match the R80 SELECT ADDRESS 0 and I signals asserted from the 
R80 disk drive, and if an R80 PLUG V AUD signal is asserted (the R80 disk drive is installed as part 
of the RB730 disk subsystem and an address plug is installed), the RL02 output will be a low. The 
RL02 output is inverted to produce the R80 signal. If the address does not compare or an R80 disk is 
not installed, the RL02 output will be high and the R80 signal will be low. 

3.5.1.3 Gating DRIVE RDY - The RL02 output of the R80 address compare logic is used to enable 
either the R80 DRIVE ROY or RL DRIVE ROY input to be asserted to the DRIVE RDY input of the 
microcontroller. 

3.5.1.4 Gating DRIVE ERR - The RL DRIVE ERROR or R80 FAULT output of the selected disk 
drive is enabled on the DRIVE ERR output of the disk drive selection and drive status monitor by the 
RL02 output of the R80 address compare logic. The DRIVE ERR output is asserted to the IDC micro­
controller and to the I DC status logic. 

3.5.2 TAG Bus Control Logic 
The TAG bus control logic operates from microcontroller inputs to assert the following commands to 
the R80 disk drive via the R80 TAG and R80 TAG BUS signal lines. 

R80 seek 
R80 head select 
R80 recalibrate 
Read gate 
Write gate 

3-39 



~c-------------------------1 
::~ ~:~:~~ :~:~ ~ toi~--------,1..-------tr---1 
Rao PLUG VALID Rao T Rao· I 

,...--------R.,..B_O_D_R_IV_E_R_D_Y ________ --t RECEIVERS "'~--------,1..-------t DISK 

R80 ON CYLINDER ~ I DRIVE I 
R80 FAULT l I 

T --~ 

PART OF CONTROL STATUS REGISTER (CSR) TO MICROCONTROLLER 
SERIALIZER, AND DATA I 

us 
10 

PART OF 
CONTROL 
REGISTER 

~m 
DSO 

PAL j ~R80 
BUFFER AND DATA REGISTER I 
CONTROL LOGIC 

COMPARE RL0
2 

- _._.._..., 
LOGIC ~ :::J RL02 TO RL02/R80 MUX'S, 

- DRIVE SEL 0 .------CLOCK CONTROL, AND 

R80 ADDRES51_ JM=> 
r----r- ..-- - STATUS LOGIC I 
I ___J- RL DRIVE ROY ___ R_L_D_R_1_v_E_R_D_Y ......... ---..-----1r---, 

09 ~ DS1 - ~----t--t--+------------___,t--______ RL02 DRIVE SEL 0 l RL02* I 
~HI Li1---+.:;;.;;..'-+--...__-+-+-@--r-, DRIVERS/ DRIVE SEL 1 

1 
DISK I 

t .....____.. 
TO STATUS 
LOGIC 

- ---........-+-+--! r- ~ RL02 I 
MICRO-RB~ 0 TO I 1-H g~l~E I 

..,_,._P-t----------------------------------- CONTROLLER I _J ORV ERR '---

ORV ROY u~IVE ROY I 1-+-+-r---..., 
UDRV SEL 1 

UDRV SEL 0 

UDRV SEL 

FROM 
MICROCONTROLLER 

RL02 ~ RL02 I 
~-----~ORV ROY} 

0 I 1-H g~l~E I 
--,----- DRIVE TO STATUS ._ ___ j 

STATUS 1--f-+ ORV ERR LOGIC I 
._U_D_R_V_S_E_L ___ ___,"4 REGISTER 1--f-+ RL02 H ~ - -11 

L-J RL02 

I L.-J DISK I 
-! DRIVE I 

___ _J 

L _________________________ _ 
• MAXIMUM DISK DRIVE CONFIGURATION WHICH MAY BE CONNECTED TO IDC 

IS ON R80 DISK DRIVE AND UP TO THREE RL02 DISK DRIVES: IF AN R80 
DISK DRIVE IS NOT USED, UP TO FOUR RL02 DISK DRIVES MAY BE CONNECTED. 

Figure 3-2 Disk Drive Selection and Drive Status Monitor 

fK.lJBu 



3.5.2.1 Asserting R80 Seek, Head Select, and Recalibrate Commands - When the appropriate R80 
seek (Figure 2-5), R80 head select (Figure 2-6), or R80 recalibrate (Figure 2-7) command is loaded into 
the I DC disk address register and an R80 seek function is specified by the JDC control word input, the 
microcontroller controls gating of the appropriate command to the R80 disk drive. A functional block 
diagram of the TAG bus control logic is shown in Figure 3-3. 

To assert the appropriate seek, head select, or recalibrate command contained in the disk address regis­
ter, the microcontroller asserts a USEEK INSTR signal and a UTAG STROBE signal to the TAG bus 
control logic. Timing of the US EEK INSTR and UTAG STROBE inputs to the TAG bus control logic 
is shown in Figure 3-3. 

3.5.2.2 Asserting Read Gate - The read gate command input to the R80 disk drive is initiated by 
holding the R80 TAG 3 input high and asserting the R80 TAG BUS 1 input. The read gate command is 
terminated when the R80 TAG BUS 1 input is deasserted. 

To initiate a read gate command, the microcontroller asserts a UTAG STROBE, which enables the 
R80 TAG 3 output (see Figure 3-3). Next, the microcontroller asserts a UENB LOOP LOCK signal, 
which enables the R80 TAG BUS I output. The microcontroller may terminate the read gate command 
by deasserting the UENB LOOP LOCK input to the TAG bus control logic. Figure 3-2 shows the tim­
ing relationship of the UT AG STROBE and UENB LOOP LOCK input signals. 

3.5.2.3 Asserting Write Gate - The write gate command input to the R80 disk drive is initiated by 
holding the R80 TAG 3 input high and asserting the R80 TAG BUS 0 input. The write gate command 
is terminated when the R80 TAG BUS 0 input is deasserted. 

To initiate a write gate command, the microcontroller asserts a UTAG STROBE, which enables the 
R80 TAG 3 output (see Figure 3-3). Next the microcontroller asserts a UWRITE GATE signal, which 
enables the R80 TAG BUS 0 output. The microcontroller may terminate the write gate command by 
deasserting the UWRITE GA TE input to the tag bus control logic. Figure 3-2 shows the timing rela­
tionship of the UTAG STROBE and UWRITE GATE input signals. 

3.5.3 Clock Control Logic 
The clock control logic is used to synchronize operation of the IDC with the CPU, the R80 disk drive, 
or the RL02 disk drive, as applicable. It is also used to inhibit the sequence clock output and thus stall 
the I DC microcontroller until the sync byte of the read data input is detected. 

A functional block diagram of the clock control logic is shown in Figure 3-4. A timing diagram showing 
the periods of the input clocks and the controlled gating of the clocks to the CURRENT CLOCK and 
SEQUENCE CLOCK outputs is presented in Figure 3-5. · 

As shown in Figure 3-4, the RL02 input to the clock control enables the appropriate RL02 or R80 disk 
drive clock inputs to be asserted as the SYS CLOCK or DISK CLOCK inputs to the CURRENT 
CLOCK and SEQUENCE CLOCK gates. The P2 CLOCK Land the RL STATUS CLOCK inputs 
are asserted directly to the CURRENT CLOCK and SEQUENCE CLOCK gates. 

To change from one synchronizing clock to another, the microcontroller asserts a UCHANGE 
CLKSRC H input and the applicable clock select signal (USEL SYS CLK, USEL STATUS CLK, 
USEL CPU CLK, or USEL DSK CLK). 

3-41 



DAR 01 

FROM 
MICROCONTROLLER 

USEEK INSTR 

TAG BUS 
CONTROL R80 LINE 

DRIVERS 
R80 TAG BUS 1 

R80 TAG BUS 0 

RBO TAG 3 

R80 TAG 2 

RBO TAG 1 
TO R80 
DISK 
DRIVE 

RBO TAG BUS 07 

R80 TAG BUS 06 

RBO TAG BUS 03 

R80 TAG BUS 02 

ABO TAG BUS OB 

RBO TAG BUS 05 

SEEK 13 
HEAD SEL 14 
RECAL 15, 06 

e GATING SEEK, HEAD SELECT, AND RECALIBRATE COMMANDS 

---.j r-- ONE CPU MICROSTATE (270 nsec) 

USEEK INSTR~ 

UTAG STAOBE ______ r--1~----

I-- CONTENTS OF DAR OO:DAR 03, 
DAR 06 AND 07 ASSERTED ON 
ASSOCIATED TAG BUS OUTPUTS. 

I __ CONTENTS OF DAR 13:DAR 15 DECODED 
r-- AND APPLICABLE TAG OUTPUT ASSERTED 

(SEEK = TAG 1, HEAD SELECT = TAG 2, 
RECALIBRATE = TAG 3). 

_I CONTENTS OF DAR 04, 05, 08 
I AND 09 ASSERTED ON 

ASSOCIATED TAG BUS OUTPUTS. 
~ 

e GATING READ GATE COMMAND 

UTAG STROBE ____ _, 

UENBLOOPLO~ ~ 

__..j ABO TAG 3 ASSERTED l+-
__J RBO TAG BUS 1 l....__ 

-J ASSERTED I-

e GATING WRITE GATE COMMAND 

UTAG STROBE 

UWAITE GATE___s----1 ~ 
___, ABO TAG 3 ASSERTED r--

___J R80 TAG BUS 0 L_ .. 
---i ASSERTED r--

Figure 3-3 TAG Bus Control Logic Functional Block Diagram 



FROM MFM ENCODER-4.;.;.·.;....;.;1 M"'-H""z----~ 

FROM READ DATA--=:..::....::..=.::..:::.; 
SEPARAyTOR 

FROM 
RBO DISK 
DRIVE 

FROM RL02 RL STATUS CLOCK 
DISK DRIVE 

FROM IDC/CPU P2 CLOCK L 
INTERFACE LOGIC 

INIT L 

FROM SYNC 
BYTE RECOGNITION 
LOGIC 

__;S;...Y_N_C"--SE_E_N_H_-4 D 

CURRENT CLK L 

SYS CLOCK 

CURRENT CLK 

DISK CLOCK 

ENB OSK SEO CLK 

ENB SEQ CLK L 

UCHANGE 
CLK SRC H 

INIT l 

D 

TO MICROCONTROLLER 

ENB SEO CLK L 

USEL 
SYS 
CLK H 

D D 

USEL 
CPU 
CLK L 

USEL USEL 
STATUS OSK 
CLK H CLK H 

D D 
CLOCK SELECT 
REGISTER 

1-----TO HEADER/DATA COMPARATOR 
SEL OSK CLK 

DISK CLOCK 
SEL STATUS CLK 

RL STATUS CLOCK 

SEL CPU CLK H 
P2 CLOCK L 

SEL SYS CLK 

SYS CLOCK 

SEL SYS CLK 

SE L CPU SYS CLOCK 
CLK L P2 CLOCK l 

RL STATUS CLOCK 

DISK CLOCK 

SEO CLK H 

Figure 3-4 Clock Control Logic Functional Block Diagram 



P2 CLOCK L 

DS CLOCK* 
4.1 MHz** 
AL STATUS CLOCK** 

R80 READ CLOCK 
RBO SERVO CLOCK t 

ENABLE SYS CLOCK 

CURRENT CLOCK H 

UCHANGE CLK SRC H 

USEL SYS CLK H 

SEL SYS CLK 

SEQUENCE CLOCK H 
(ASSUMING RL02 INPUT H) 

ENABLE RL STATUS CLOCK 

CURRENT CLOCK H 

UCHANGE CLK SAC H 

USEL STATUS CLK 

END SYNC CLR H 

END SYNC CLR L 

SEL STATUS CLK H 

ENB SEO CLK H 

SEQUENCE CLOCK H 

I 2

10 

~ 1-45 nsec 

~---

T K-i30f; 

Figure 3-5 Clock Control Logic Timing (Sheet I of 2) 



ENABLE DISK CLOCK (RL02) 

CURRENT CLOCK H 

UCHANGE CLK SRC H 

USE L OSK CLK H 

SEL OSK CLK 

ENB SEQ CLK L 

SYNC SEEN H 

SEQUENCE CLOCK H ~~----------".!{~ 

OS CLOCK AL THOUGH SHOWN TO OCCUR AT A 4.1 MHz RATE 
(NOMINAL) MAY VARY SLIGHTLY WITH DISK DRIVE SPEED. 
4.1 MHz CLOCK AND RL STATUS CLOCK OCCUR AT THE 4.1 MHz 
RATE SHOWN FOR THE OS CLOCK; HOWEVER, THE PHASE 
RELATIONSHIP OF THESE CLOCKS VARY. 
R80 SERVO CLOCK OCCURS AT THE RATE SHOWN FOR THE 
R80 READ CLOCK; HOWEVER, THE PHASE RELATIONSHIP 
OF THESE CLOCKS VARY. 

R80 SERVO CLOCK OCCURS AT THE RATE SHOWN FOR THE 
R80 READ CLOCK; HOWEVER, THE PHASE RELATIONSHIP 
OF THESE CLOCKS VARY. 

NOTE: PHASE RELATIONSHIP OF CLOCK INPUTS TO THE IDC 
SHOWN ABOVE MAY OR MAY NOT BE AS ILLUSTRATED: 
THIS DIAGRAM ILLUSTRATES THE VARIOUS PERIODS 
OF THE CLOCK INPUTS ONLY. 

Figure 3-5 Clock Control Logic Timing (Sheet 2 of 2) 

TK·7364 



3.5.3.1 Enable SYS CLOCK - To enable the SYS CLOCK to be asserted onto the CURRENT 
CLOCK and SEQUENCE CLOCK outputs of the clock control logic, the microcontrollcr asserts 
UCHANGE CLKSRC Hand USEL SYS CLK to the clock control (sec Figure 3-4). The lJCHANGE 
CLKSRC H input enables the CHG CLK flip-flop to be set with the following CURRENT CLOCK 
input. When the CHG CLK flip-flop is set, it asserts an END SYNC CLR signal to the clock gate of 
the clock select register, which initiates loading of the USEL SYS CLK signal. The resulting SEL SYS 
clock output is asserted to the CURRENT CLOCK and SEQUENCE CLOCK gates to enable either 
the 4.1 megahertz clock or R80 SERVO CLOCK inputs, as applicable, to be asserted on the 
SEQUENCE CLOCK and CURRENT CLOCK outputs. Figure 3-5 illustrates the timing relation­
ships of input and output signals for changing the synchronization clock from the CPU CLK (P2 
CLOCK) to the SYS CLOCK (4. l megahertz clock). 

3.5.3.2 Enable RL STATUS CLK or CPU CLOCK - To enable the RL STATUS CLK or CPU 
CLOCK to be asserted on the CURRENT CLOCK and SEQUENCE CLOCK outputs of the clock 
control, the microcontroller asserts UCHANGE CLKSRC and USEL RL STATUS CLK or USEL 
CPU CLK to the clock control (see Figure 3-4). 

The UCHANGE CLKSRC H input is asserted to the CHG CLK flip-flop and to the reset gate of the 
sequence clock delay. The UCHANGE CLKSRC input together with the END SYNC CLR L output 
of the CHG CLK flip-flop resets the sequence clock delay. 

When the sequence clock delay is reset, the ENB SEQ CLK outputs are deasserted from the sequence 
clock gates, which inhibits the currently selected clock (with the exception of the SYS CLK) from 
being asserted on the SEQUENCE CLOCK output. 

When the UCHANGE CLKSRC signal is loaded into the CHG CLK flip-flop (when the CURRENT 
CLOCK input goes high), the END SYNC CLR H and L outputs are enabled. The END SYNC CLR 
H output initiates loading of the applicable clock select input (for this discussion, the USEL CPU CLK 
or USEL STATUS CLK input) from the microcontroller into the clock select register. The END 
SYNC CLR L output removes the reset signal from the sequence clock delay. 

The applicable clock select (SEL STATUS CLK or SEL CPU CLK L and H) outputs of the clock 
select register are asserted to the sequence clock and current clock gates. The appropriate SEL STA­
TUS CLK or SEL CPU CLK H output enables the selected clock input to be asserted directly on the 
CURRENT CLOCK output. 

The selected clock input RL STATUS CLOCK or CPU CLOCK (P2 CLOCK L) is not enabled on the 
SEQUENCE CLOCK output until after the sequence clock delay asserts the applicable ENB SEQ 
CLK signal to the sequence clock gates. 

As noted earlier, the ENB SEQ CLK outputs of the sequence clock delay were reset when the UCH­
ANGE CLKSRC H input was asserted from the microcontroller and was held in the reset state until 
the UCHANGE CLKSRC input was loaded into the CHG CLK flip-flop. After the reset to the se­
quence clock delay has been removed, and four positive transitions of the CURRENT CLOCK have 
been asserted, the ENB SEQ CLK Hand L outputs are enabled. These outputs enable the selected RL 
ST A TUS CLOCK or CPU CLOCK (P2 CLOCK L) inputs to be asserted on the SEQUENCE 
CLOCK output. 

The timing diagram of Figure 3-5 illustrates the relationships of input and output signals required to 
change the synchronization clock from the CPU CLOCK to the RL ST A TUS CLOCK. 

3-46 



3.5.3.3 Enable DISK CLOCK - To enable the DISK CLOCK (R80 READ CLOCK or OS CLOCK) 
on the CURRENT CLOCK and SEQUENCE CLOCK outputs of the clock control, the micro­
controller asserts UCHANGE CLKSRC Hand USEL OSK CLK H to the clock control. The DISK 
CLOCK is enabled on the CURRENT CLOCK output of the clock control in much the same manner 
as discussed for enabling the CPU CLOCK or RL STATUS CLOCK (Paragraph 3.5.3.2). However, 
an additional input (SYNC SEEN) to the clock control is necessary before the DISK CLOCK is gated 
on the SEQUENCE CLOCK output. Gating of the DISK CLOCK to the SEQUENCE CLOCK out­
put is delayed until after SYNC SEEN is asserted (see Figure 3-4). The timing diagram of Figure 3-5 
illustrates the relationships of input and output signals required to change the synchronization clock 
from the SYS CLOCK (4.1 megahertz) to the DISK CLOCK (DS CLOCK). 

3.5.4 Sync Byte Recognition Logic 
The sync byte recognition logic is used to locate the sync byte of the READ DAT A from the selected 
disk drive. There are two sync bytes in each sector of READ DAT A asserted from the disk drives; one 
directly precedes the header portion of the READ DATA, the second directly precedes the data portion 
of the READ DATA. The process for locating each of these sync bytes is similar; thus, the following 
discussion is keyed to locating the sync byte that precedes the data portion of the READ DATA input. 
This was selected because, when the sync byte has been located and if the IDC is performing a write 
check function, the SYNC SEEN signal is used to initiate loading the data shift register with the first 
byte of data to be compared with the READ DATA input. (The SYNC SEEN signal is used to load the 
data shift registers because the microcontroller, which normally controls loading of the data shift regis­
ters, remains in a stall condition until after SYNC SEEN is generated, which would result in mis­
alignment of the data to be compared.) 

To locate the sync byte of the READ DAT A input, the sync byte recognition logic converts the serial 
READ DAT A input to a parallel format and compares the parallel formatted READ DAT A with the 
sync byte pattern expected (CONSTANTS input from the microcontroller). When a match is deter­
mined, a SYNC SEEN signal is generated. A functional block diagram of the sync byte recognition 
logic is shown in Figure 3-6. 

The microcontroller presets the conditions that enable the sync byte to be located. First, the micro­
controller generates and asserts the CONSTANTS to the eight-bit checker. For locating the sync byte 
in the RL02 READ DATA, the CONSTANTS asserted are preset to 80t6· For locating the sync byte 
in the R80 READ DATA, the CONSTANTS are preset to 19t6· (CNST 7 of the CONSTANTS input 
is the most significant digit of the specified sync byte pattern asserted via the CNST 7:0 inputs.) Also, 
if the I DC is performing a write check function, the microcontroller asserts a UWRT CHK H signal. 
Then the microcontroller selects the DISK CLK to be asserted on the CURRENT CLOCK output of 
the clock control. When the DISK CLOCK is selected, the clock control asserts its SEL OSK CLK, 
CURRENT CLOCK H, and CURRENT CLOCK L outputs to the sync byte recognition logic. Be­
cause the OSK CLOCK asserted ori the CURRENT CLOCK outputs of the clock control is derived 
from the READ DAT A asserted, the CURRENT CLOCK H and L input are synchronized with each 
bit of the READ DAT A input. 

The READ DATA H input to the sync byte recognition logic is asserted to the eight-bit checker and 
read data synchronizer (see Figure 3-6). The READ DATA H input to the read data synchronizer is 
sampled at the midpoint of each data bit interval by the CURRENT CLOCK L input, and the condi­
tion of the READ DAT A H input (a logical 0 or I) is loaded into the read data synchronizer. A dia­
gram showing the timing relationship of the signals and events discussed in the following paragraphs is 
presented in Figure 3-7. 

3-47 



VJ 
I 

~ 
00 

UWRT CHK H PART OF HEADER/ DATA COMPARATOR 

CNST 7 

CNST 6 

CNST 5 

FROM 
MICROCONTROLLER 

CNST 4 

CNST 3 (PAL) 

FROM READ DATA H 
SERIALIZER 

FROM 
CLOCK 
CONTROL 

CURRENT 
CLOCK L 

READ DATA 
SYNCHRONIZER 

CURRENT CLOCK H 

SEL DSK CLK H 

CNST 2 

CNST 1 

CNST 0 

SERIAL DATA IN 

DATA 
SHIFT 
REGISTER 

BYTE 
8 BIT COMPARE H 
CHECKER 

TO RL02 HEADER 
COMPARISON LOGIC 
AND WRITE CHECK 
COMPARISON LOGIC 

Figure 3-6 Sync Byte Recognition Logic Functional 
Block Diagram 

~~;Dc~~R L TO WRITE 
e>--~~...o...:.'-'--''- CHECK 

SYNC 

COMPARISON 
LOGIC 

SEEN H TO CLOCK 

CONTROL 



READ DATA H 

DATA INTERVAL 
OF READ DATA 
INPUT FROM 
DISK DRIVE 

ZERO BIT 1 BIT 2 BIT 3 

R80 SYNC BYTE PATTERN 

BIT 4 BIT 5 BIT 6 BIT 7 

CURRENT CLOCK H 

CURRENT CLOCK L 

SERIAL DATA IN H --------
DSR 6 

CONTENTS DSR 5 
OF DATA DSR 4 

[ 

DSR 7 

SHIFT 
REGISTER DSR 3 

DSR 2 
DSR 1 

CNST 7 
CNST 6 
CNST 5 
CNST 4 
CNST 3 
CNST 2 
CNST 1 
CNST 0 

BYTE COMPARE H 

SEL DSK CLK H 

SYNC SEEN L 

WRT CHK LOAD DSR L 

0 
0 
0 
0 
0 
0 

0 
1 
0 
0 
0 
0 
0 

0 
0 
1 
0 
0 
0 
0 

0 
0 
1 
0 
0 
0 

1 
0 
0 
1 
0 
0 

0 

0 
0 
1 
0 

0 
0 
1 
1 
0 
0 
1 

0 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~• 0 
0 0 
0 0 
1 1 
1 1 
0 0 
0 0 
1 1 

Figure 3-7 Sync Byte Recognition Logic Timing Diagram 

BIT 8 

DAfA INTERVAL 
OF FIRST BIT 
OF HEADER 
OR DATA 

0 
0 
0 
1 
1 
0 
0 

TK·7377 



When the read data synchronizer is loaded, it asserts the sampled condition of the READ DAT A H 
input to the data shift register via the SERIAL DATA IN signal line. The CURRENT CLOCK H 
input to the data shift register loads the SERIAL DATA IN signal asserted into DSR7 of the data shift 
register and shifts the current contents of DSR 7: 1 to DSR 6:0, respectively. 

The parallel outputs DSR7:1 of the data shift register are asserted to the eight-bit checker where they 
are compared with the CONSTANTS (CNST 6:0, respectively). When a match is determined and the 
READ DATA H input matches the CNST 7 input, the BYTE COMPARE H output of the eight-bit 
checker is asserted to the input gates of the SYNC FF and to the write check load DSR gate. The 
BYTE COMPARE Hand SEL OSK CLK H inputs to the SYNC FF input gates enable the SYNC FF 
to be set with the next positive transition of the CURRENT CLOCK H input, producing the SYNC 
SEEN Hand L output signals. The BYTE COMPARE H signal enables the WRT CHK LOAD DSR 
L output. The WRT CHK LOAD DSR L output is asserted to the data shift register, where it is com­
bined with the CURRENT CLOCK H input to load the data shift register. 

The SYNC SEEN H output of the SYNC FF is asserted to the input gates of the SYNC FF, where it is 
combined with the SEL DSK CLK H input from the clock control to inhibit the SYNC SEEN output 
from being reset until another clock is selected by the microcontroller. The SYNC SEEN L output of 
the SYNC FF is asserted to the serializer. 

3.5.5 RL02 Header Comparison Logic 
The RL02 header comparison logic enables the IDC to locate the sector to or from which the data are 
to be written or read. The address to or from which the data are to be written or read is loaded into the 
IDC disk address register by the CPU. The parallel output of the disk address register is asserted to the 
serializer where it is converted into a serial format and asserted to the header/ data comparator for 
comparison with the READ DATA input (the address portion of the RL02 header data). A functional 
block diagram of the RL02 header comparison logic is shown in Figure 3-8. 

The microcontroller disk drive select and drive status monitor and the sync byte recognition logic preset 
the conditions for performing the RL02 header comparison. The disk drive select and drive status mon­
itor asserts a low R80 input to the bit select gates of the serializer to identify the selected drive as an 
RL02. (The R80 input identifies the order in which the parallel output of the disk address register is 
serialized). With the R80 input low, the bit select gates enable the DAR 00: 15 inputs to be asserted 
sequentially to the SERIAL DAR H output (DAR 00 is asserted first and DAR 15 is asserted last). 

When the search for the sync byte preceding the header data is initiated by the microcontroller, the 
microcontroller asserts a UENB CLR BC H input to the serializer binary counter. The UENB CLR 
BC H input and the SYNC SEEN L input (a high until the sync byte is found) hold the binary counter 
reset to the count of zero. While the binary counter is reset, the bit select gates continuously assert the 
DAR 00 O}ltput on the MUX DAR H output. (This enables the SERIAL DAR H output to provide the 
first bit of the header data to the header data comparator coincident with the first bit of the header 
data asserted via the READ DAT A H input.) Before the sync byte is located, the SYNC SEEN H 
input to the header/data comparator is low. The low SYNC SEEN H input holds the compare flip-flop 
set until the SYNC SEEN H signal is asserted high. The UWRT CHK H input to the header /data 
comparator is a low when not performing a write check function, allowing the READ DAT A H input to 
be compared with the SERIAL DAR H input once the sync byte has been located. 

3-50 



READ 
FROM DISK DATA H 
DATA MUX SERIALIZER 

{ 

_____ _...D""'A-..R_1_s_ .. BIT 

SELECT 
FROM GATES 
DISK ADDRESS 
REGISTER 

DAR 00 

~:~~E~~~CT-RB~O.._.,. _____________ ....,. 

AND DRIVE 
STATUS MONITOR 

FROM SYNC BYTE SYNC 
RECOGNITION LOGIC SEEN L 

~~g:CcoNTROLLER ~:=..:~;.:,,~~0B:-:C,.....,-,1Ht-L........I 

BINARY 
COUNTER 
(PAL) 

CLK 

FROM 
CLOCK CURRENT CLOCK H 
CONTROL 

' FOR RL02 ADDRESS COMPARISON, 
MODIFIED READ DATA H OUTPUT OF 
SERIALIZER IS THE SAME AS THE 
READ DATA H INPUT. 

FROM UWRT CHK H 
MICROCONTROLLE R 

SERIAL DAR H 

PART OF HEADER/DATA COMPARATOR 

(PAL) 

SYNC 
FROM SYNC SEEN H 
BYTE 
RECOGNITION 
LOGIC 

Figure 3-8 RL02 Header Comparison Logic Functional 
Block Diagram 

COMPARE L 



When the sync byte has been located, the SYNC SEEN H and SYNC SEEN L signals to the compare 
flip-flop enable gates and the reset gate of the serializer binary counter are asserted. The SYNC SEEH 
H signal enables the comparison of the first bit of the header data asserted via the READ DATA H 
input and the first bit of the read/write address from the disk address register (DAR 00) asserted via 
the SERIAL DAR H input to the header/data comparator. The SYNC SEEN L signal input to the 
serializer binary counter presets the binary counter to the bit count of I. When the binary counter is 
preset by the SYNC SEEN L input, DAR 01 from the bit select gates is asserted on the MUX DAR H 
signal line. 

With the first positive transition of the CURRENT CLOCK H input (following the assertion of the 
SYNC SEEN H and L signals), the results of the comparison of the first bit of the header data and the 
first bit of the desired read/write address are sampled at the compare flip-flop. Also, the first positive 
transition of the CURRENT CLOCK H input increments the serializer binary counter and enables the 
second bit of the read/write address to be loaded into the serializer flip-flop and asserted to the head­
er/ data comparator via the SERIAL DAR H input. (The binary counter is always one bit count ahead 
of the header address bit being compared. This enables each of the read/write address bits to be as­
serted to the header /data comparator in sync with the corresponding address bits asserted via the 
READ DAT A H input.) 

The SERIAL DAR Hand READ DATA H inputs to the header/data comparator are compared via an 
exclusive OR in the enable gates of the compare flip-flop. If the SERIAL DATA H and READ DATA 
H inputs match, the output of the exclusive OR remains low and the compare flip-flop remains reset. 
However, if the inputs do not match, the compare flip-flop is set and a feedback loop from the compare 
flip-flop holds the compare flip-flop set for the remainder of the bit comparisons. 

After all 16 bits of header have been compared, the microcontroller tests the comparison results by 
setting UCON 1 Hat a high and UCON 0 at a low. This configuration of UCON signals inhibits three 
of the four enable gates at the input of the mismatch flip-flop. If during the bit comparisons all bits of 
the header data and the read/write address compared, the COMPARE H input to the fourth enable 
gate will be a low. Thus, when the other three enable gates are inhibited, the MISMATCH L output of 
the header /data comparator will be asserted high. However, if the bits did not compare, the 
COMPARE H input to the fourth enable gate holds the MISMATCH L output at a low when tested 
with the UCON signal inputs. The MISMATCH L signal output is asserted to the microcontroller. A 
timing diagram showing the relationship of signal inputs and events for the RL02 header comparison 
logic is shown in Figure 3-9. 

3.5.6 R80 Header Comparison and Skip Sector Monitor Logic 
The R80 header comparison and skip sector monitor logic enables the IDC to locate the sector to or 
from which the data are to be written or read and to determine if the sector is bad or displaced. The 
address to or from which the data are to be written or read is loaded into the IDC disk address register 
by the CPU. The parallel output of the disk address register is asserted to the serializer where it is 
converted into a serial format and asserted to the header/ data comparator for comparison with the 
header portion of the READ DATA input (the R80 header data). 

The R80 header data is not asserted via the READ DAT A H input in the same bit configuration as the 
read/write data address contained in the disk address register. Also, the R80 header data contains 
unused bits, and various flag bits that are not significant to the R80 header comparison function. There­
fore, for the R80 header comparison and skip sector monitor operation, the serializer is used to mask 
the unused bits and various flag bits of the R80 header data, to control assertion of the read/write 
address from the disk address register, and, if enabled, to record the status of the skip sector flag of the 
R80 header data. A functional block diagram of the R80 header comparison and skip sector monitor 
logic is shown in Figure 3-10. 

3-52 



UENB CLR BC H _j 

SYNC SEEN L 

MODIFIED 
READ DATA H 

CURRENT 
CLOCK H 

BIT COUNT 

SERIAL DAR H 

COMPARE L 

MISMATCH L 

UCON 1 H 

UCON 0 H 

0 

LAST BIT OF 
SYNC BYTE 

FIRST BIT OF HEADER 
DATA ASSERTED 

4 5 6 

2 I 3 5 6 

DAR 00 01 02 03 04 05 06 

FIRST BIT OF READ/WRITE 
ADDRESS ASSERTED 

8 9 

07 08 

10 11 12 13 14 15 16 

10 11 12 13 14 15 16 

09 10 11 12 13 14 15 

L...------------- --

TEST 

t------------------------------------.....,~ MATCH 

NOTE: DASHED LINES INDICATE SIGNAL CHARACTERISTICS IF 
COMPARISON IS NOT VALID. COMPARE L SIGNAL INDICATES THAT 
BIT 11 OF HEADER DID NOT MATCH. 

Figure 3-9 RL02 Header Comparison Logic Timing Diagram 

TK-7380 



FROM SKIP 
SECTOR CONTROL 
LOGIC 

FROM DISK 
DATA MUX 

FROM 
MICROCONTROLLER 

FROM DISK DRIVE 
SELECT AND DRIVE 
STATUS MONITOR 

FROM DISK ( 
ADDRESS REGISTER 

FROM SYNC BYTE 
RECOGNITION LOGIC 

FROM 
MICROCONTROLLER 

FROM CLOCK 
CONTROL 

INH SSE L 

READ 
DATA H 

UWRT 
CHK H 

RBO 
DAR 19 

DAR 00 

SYNC 
SEEN L 

UENB CLR 
BC H 

CURRENT 
CLOCK H 

TO SKIP SECTOR 
CONTROL LOGIC 
SSE 

FROM 
MICROCONTROLLER 
UWRT CHK H 

SERIALIZER 

CURRENT 
CLOCK H 

-J -

(PALS) 

.-- SSE SSE 

_L DETECTOR 

j 
PART OF HEADER/DATA COMPARATOR 

Kr-MODIFIED READ DATA H ,___ 

SYNC 
_READ DATA FROM 

MODIFIER SYNC ~H 
r-- BYTE 

[BIT 

RECOGNITION 
LOGIC 

~~~ SELECT - MUX r-- ·-- D 1~ -DAR 
DAR H::n X~ COMP ·-AND BIT ~Dl SERIAL

ASSERT ,__ FF
ASSERTION

BIT
CONTROL

r--- GATES 0

BIT
,. 0

....__

COUNT
...__

~D
BINARY -

t~°" COUNTER
._

';--;~ (PAL)

~ 4 MIS

~o
FF

1---_ r- 0 .___
(PAL)

CURRENT CLOCK H

FROM {UCON 1 H
MICROCONTROLLER UCON 0 H

Figure 3-10 R80 Header Comparison and Skip Sector Monitor
Logic Functional Block Diagram

COMPARE L

MISMATCH L

FROM
MICROCONTR OLLER

3.5.6.1 R80 Header Comparison Logic - The microcontroller disk drive select and drive status mon­
itor and the sync byte recognition logic preset the conditions for performing the R80 header com­
parison. The R80 input to the bit select and bit assertion control gates identifies the order in which the
parallel output of the disk address register is to be serialized and enables the ASSERT BIT output with
specific bit counts to mask the header data bits within the R80 header data that are not significant in
locating the desired address. The R80 input is asserted also to the read data modifier.

With the R80 input asserted and the UWRT CHK H signal not asserted, the read data modifier masks
out the header data bits that are of no significance in locating the desired address, by asserting the
MODIFIED READ DATA H output to a high during the bit count interval in which these header data
bits occur.

When the search for the sync byte preceding the header data is initiated, the microcontroller asserts a
UENB CLR BC H input to the serializer binary counter. The UENB CLR BC H input and the SYNC
SEEN L Input (a high until the sync byte is found) hold the binary counter reset to the count of zero.
While the binary counter is reset, the bit select and bit assertion control gates continuously assert the
DAR 09 output on the MUX DAR H and the SERIAL DAR H outputs. (This enables the SERIAL
DAR H output to provide the first bit of the header data to the header data comparator coincident with
the first bit of the R80 header data asserted via the MODIFIED READ DATA H input.)

Before the sync byte is located, the SYNC SEEN H input to the header /data comparator is low. The
low SYNC SEEN H input holds the compare flip-flop set until the SYNC SEEN H signal is asserted.
The UWRT CHK H input to the header/data comparator is an L when not performing a write check
function, thus allowing the MODIFIED READ DATA H input to be compared with the SERIAL
DAR H input once the sync byte has been located.

When the sync byte has been located, the SYNC SEEN H and SYNC SEEN L signals are asserted to
the compare flip-flop enable gates and the reset gate of the serializer binary counter. The SYNC SEEN
H signal enables the comparison of the first bit of the header data asserted via the MODIFIED READ
DAT A H input with the first bit of the read/write address from the disk address register to be asserted
via the SERIAL DAR H input to the header/data comparator.
The SYNC SEEN L signal input to the serializer binary counter presets the binary counter to the bit
count of I. When the binary counter is preset by the SYNC SEEN L input, DAR IO from the bit select
and bit assertion control gates is asserted on the MUX DAR H signal line. With the first positive transi­
tion of the CURRENT CLOCK H input (the first positive transition following the assertion of the
SYNC SEEN H and L signals), the results of the comparison of the first bit of the R80 header data
(modified READ DATA) and the first bit of the desired read/write address (DAR 09) is sampled at
the compare flip-flop. Also, the first positive transition of the CURRENT CLOCK H input increments
the serializer binary counter and enables the second bit of the read/write address (DAR I 0) to be
loaded into the serializer flip-flop and asserted to the header /data comparator via the SERIAL DAR H
input.

The sequence in which the read/write address bits (DAR 19:00) are enabled on the SERIAL DAR H
input to the header/data comparator is controlled by the bit select and bit assertion control gates. Also,
the bit select and bit assertion control gates enable a high to be asserted on the SERIAL DAR H signal
line coincident with the BIT COUNT associated with the unused and various flag bits of the R80 head­
er data. During the data interval (BIT COUNT) in which the unused and various flag bits of the R80
header data arc being asserted on the READ DATA H signal line, the read data modifier forces the
MODI Fl ED READ DATA H signal to a high. This allows the unused and various flag bits of the R80
header data to be masked from the comparison of the address information.

The timing diagram (Figure 3-1 I) shows the format of the R80 header data asserted via the READ
DAT A H input, the corresponding BIT COUNT output of the binary counter, the intervals (BIT
COUNT) during which each DAR BIT is gated, the intervals during which the ASSERT BIT is en­
abled (L), and the intervals in which the READ DAT A H input is modified to produce the MOD I­
FI ED READ DATA H output. Figure 3-11 also shows the resulting MODIFIED READ DATA Hand
SERIAL DAR H outputs.

3-55 .

UENB _r----1
CLR BC H

SYNC ~
SEEN L

READ -----1
DATA H----1 C.A.O CA1 CA2 CA3 CA4 CA5 CA6

------f
(BIT COUNT)

------f
MODIFIED -----1
READ DATA -----1 CAC CA1 CA2 CA3 CA4 CA5 CA6

DAR -----1
BIT GATED~ 10 11 12 13 14 15 16

----1 I I ASSERT BIT___, H H H H I H I H I H I
SERIAL---S
DAR H ___,

CURRENT IU
CLOCK H

'FMT (1) = 16 BIT DATA FORMAT

Figure 3-11

CA7 CA8 CA9 FMT(l) SSF SAO SAl SA2 SA3 SA4

10 11 12 13 14 15 16 17 18 19 20 21

CA7 CA8 CA9 FMT(l) SAO SAi SA2 SA3 SA4

17 18 00 01 02 03 04

H I H L I L I L I L I L L I H H I H H I H I L

17 18

R80 Header Data Modification and Comparison
Data Control Timing

0 0 HSO HS1 HS2 HS3

22 23 24 25 26 27 28

HSO HS1 HS2 HS3

05 06 07 08

I L I H I H I H I H

The SERIAL DAR Hand MODIFIED READ DATA H outputs of the serializer are compared in an
exclusive OR in the header/data comparator. If the SERIAL DATA H and MODIFIED READ
DAT A H inputs match, the output of the exclusive OR remains low and the compare flip-flop remains
reset. However, if the inputs do not match, the compare flip-flop is set and a feedback loop from the
compare flip-flop holds the compare flip-flop set for the remainder of the bit comparisons.

After all bits of R80 header have been compared, the microcontroller tests the comparison results by
setting the UCON I H at a high and UCON 0 at a low. This configuration of UCON signals inhibits
three of the four enable gates at the input of the mismatch flip-flop. If during the bit comparisons, all
bits of the header data and the read/write address compared, the COMPARE H input to the fourth
enable gate will be a low. Thus, when the other three enable gates are inhibited, the MISMATCH L
output of the header/data comparator will be asserted high. However, if the bits did not compare, the
COMPARE H input to the fourth enable gate holds the MISMATCH L output at a low when tested
with the UCON signal inputs. The MISMATCH L signal output is asserted to the microcontroller.

3.5.6.2 Skip Sector Monitor Logic - The SSE detector of the serializer is enabled during BIT COUNT
14 if the IN H SSE L signal is not asserted L. When the SSE detector is enabled, the state of the
READ DATA H input is loaded into the SSE detector at the end of BIT COUNT 14 by the CUR­
RENT CLOCK H input. If the READ DAT A H signal line were high during the interval, indicating
that the sector is a bad or displaced sector, a high SSE signal is asserted to the skip sector control logic.

3.5. 7 Skip Sector Control Logic
The skip sector control logic (Figure 3-12) enables the IDC to skip a bad or defective sector when writ­
ing or reading from the R80.

SECTOR 27

DATA FOR
SECTOR 27

SECTOR 28 SECTOR 29 SECTOR 30 SECTOR 31

(RESERVED
DATA FOR DEFECTIVE DATA FOR SECTOR)
SECTOR 28 SECTOR SECTOR 29 DATA FOR

SECTOR 30

SSF SSF SSF

TK-8672

Figure 3-12 Skip Sector Control Logic
Functional Block Diagram

When the skip sector flag (bit 13 of the header word) is detected during a write operation, that sector is
skipped. The information is then written in the next sector. Each following sector is displaced by one.

Figure 3-13 shows an example of the last five sectors of a track. In this example, sector 29 was found to
be defective during the formatting process. The skip sector flag was set in sectors 29 and 30. Notice
that the data for sector 29 were written in sector 30. The data for sector 30 are written in the reserve
sector 31. The skip sector flag is set in all remaining sectors of the track. This is done in case a data
transfer begins at a sector that is beyond the defective sector.

3-57

BUSY

BUSY

BUSY

D27
ASS I

D22
SSE I

SSE FLAG
D23 ~

[-

REGISTER

CPU
CONTROLLED
SSE
INHIBIT

INH SSE L

-+------,
LIZER ~ I .--

1 SERIA

I
L_

SSE It RD DATA H DETECTOR

_____ :J
SSE H

[MICROSEOUENCER
CONTROLLED

[SSE INHIBIT

ASSI H

INH SEEL

SSE FLAG L

USET SSE L

ASSI H

MICROSEOUENCER
CSSE H

USET ISSE L

Figure 3-13 Skip Sector Example

~

t--'

TO CSR

}

TO IDC STATUS
WORD DRIVERS

r-- UINCR DAR L

J
rK-8663

During a read operation, the same type of process takes place. When a skip sector is detected as being
set, the data are then read from the next sector.

When a skip sector error is detected by the skip sector monitor logic (Figure 3-10), it asserts skip sector
error signal SSE H which is sourced to the skip sector control logic. Inside -the skip sector control logic
the skip sector error signal SSE His ANDed with the microsequencer inhibit skip section error (USET
ISSE L). Provided that the microsequ"!ncer has enabled skip sector errors (USET ISSE L deasserted),
skip sector error fignal SSE H is sourced to the microsequencer as CSSE H.

Provided that the CPU has disabled automatic skip sectoring (CSR bit 27 (ASSI) set), the micro­
sequencer aborts the operation immediately. This results in the assertion of USET SSE L to flag the
CPU (SSE FLAG L) that operation has been terminated due to a skip sector error and in the assertion
of UINCR DAR L to increment the disk address register.

The driver software then sets CSR bit 23 (SSE FLAG) to clear the skip sector error, sets CSR bit 22
(SSEI) to inhibit further generation of skip sector errors, and clears CSR 7 (CRDY) to set the GO bit
which continues the transfer.

The SSEI bit aliows the IDC to finish the transfer without an interrupt from the skip sector flag. It also
sets up the IDC to read sector 31, if necessary. The SSEI bit is cleared by the IDC at the end of each
track. Therefore, the driver software must clear SSEI at the beginning of each data transfer.

3.S.8 Write Check Data Comparison Logic
The write check data comparison logic (Figure 3-14) performs a bit-by-bit comparison of the data por­
tion of the R80 /RL READ DAT A input with the DSRO input to determine if the R80 /RL READ
DAT A matches the serialized data from the data shift register.

3-58

FROM PART OF HEADER/DATA COMPARATOR
'V1 I CROCONT ROLLER _U_W_R_T_C~H-"K-"-"H'------11------.

FROM READ DATA H
DISK DATA MUX

FROM
FIFO

DATA BYTE

FROM DSR L
MICROCONTROLLER

FROM SYNC
BYTE
RECOGNITION
LOGIC

WRT CHK
LOAD
DSR L

FROM
CLOCK
CONTROL

CURRENT CLOCK H

DATA
SHIFT
REGISTER DSR 0

t---~--------____jU
FROM
SYNC BYTE SYNC SEEN H

RECOGNITION

LOGIC

{

UCON 1 H

~~g~OCONTROLLER -1-___ u_c_o_N_O_H ___ ___,_i--.i

(PAL)

Figure 3-14 Write Check Data Comparison Logic
Functional Block Diagram

COMPARE L

MISMATCH L TO

MICROCONTROLLER

TK-8712

In the write check mode, the WRT CHK LOAD DSRL output of the header/data comparator is en­
abled when the R80 READ DATA header gap/RL02 READ DATA data preamble sync byte is found.
The WRT CHK LOAD DSRL signal is asserted to the data shift register where it enables the first data
byte from the selected FIFO to be loaded into the data shift register. The microcontroller then in­
crements the selected FIFO address counter.

When the first data byte is loaded into the data shift register, bit 0 of the first data byte is asserted to
the header/ data comparator via the DSRO output of the data shift register. The first bit of the first
data byte is asserted to the header/ data comparator coincident with the first bit of the data portion of
the R80/RL READ DATA asserted from the disk drive (READ DATA H from the DISK DATA
MUX). (Because the CURRENT CLOCK used by the data shift register is derived from the R80/RL
READ DATA input, the data loaded into the data shift register is serialized and asserted to the head­
er /data comparator in sync with each bit of the R80/RL READ DATA input.) The data shift register
serializes and asserts bits 0 through 7 of the first data byte to the header/ data comparator.

After bit 7 of the first data byte has been asserted to the header /data comparator, the microcontroller
loads the second byte of data from the selected FIFO into the data shift register and increments the
selected FIFO address counter.

After bit 7 of the second data byte has been serialized and asserted to the header/data comparator, the
microcontroller loads the third data byte from the selected FIFO into the data shift register and in­
crements the FIFO A address counter. This process is repeated until all 512/256 bytes of data from the
selected FIFO have been serialized and asserted to the header/data comparator for comparison with
the data portion of the R80/RL READ DATA input. (A detailed discussion of how the microcontroller
causes serialization of data from the data buffers is provided in Paragraph 3.5.11.)

When the sync byte has been located, the SYNC SEEN H signal to the compare flip-flop enables gates
is asserted. The SYNC SEEN H signal enables the comparison of the first bit of R80/RL READ
DAT A asserted via the READ DAT A H input and the first bit of data of the serialized data from the
data shift register asserted via the DSRO input to the header/ data comparator.

With the first positive transition of the CURRENT CLOCK H input (the first positive transition fol­
lowing the assertion of SYNC SEEN H), the results of the comparison of the first bit of the R80/RL
READ DATA and the first bit of the serialized data from the data shift register are sampled at the
compare flip-flop.

The DSRO and READ DATA H inputs to the header /data comparator are compared via an exclusive
OR in the enable gates of the compare flip-flop. If the DSRO and READ DAT A H inputs match, the
output of the exclusive OR remains low and the compare flip-flop remains reset. However, if the inputs
do not match, the compare flip-flop is set and a feedback loop from the compare flip-flop holds the
compare flip-flop set for the remainder of the bit comparisons.

After all bits have been compared, the microcontroller tests the comparison results by setting UCON I
Hat a high and UCON 0 at a low. This configuration of UCON signals inhibits three of the four enable
gates at the input of the mismatch flip-flop. If during the bit comparisons, all bits of the data shift
register and the R80/RL READ DATA compared, the COMPARE H input to the fourth enable gate
will be a low. Thus, when the other three enable gates are inhibited, the MISMATCH L output of the
header/data comparator will be asserted high. However, if the bits did not compare, the COMPARE H
input to the fourth enable gate holds the MISMATCH L output at a low when tested with the UCON
signal inputs. The MISMATCH L signal output is asserted to the microcontroller. A timing diagram
showing the relationship of signal inputs and events for the write check data comparison logic is shown
in Figure 3-15.

3-60

LAST BIT OF FIRST BIT OF
SYNC BYTE DATA

READ DATA H ___ f_._l _1_{_,___2_._3-..1 _4___.1_5-..1 _6__..l_1_....l _8_,.__9__..l_1_0....__11__.l1~2} /1408514os6 I 4os1 l 4os9 l 4099 I 4090 I 4091I4092I4093 I 4094 l409514096 I
SYNC SEEN L

WRT CHK LOAD DS~FIRST BYTE FROM FIFO
LOADED INTO DATA SHIFT REGISTER

CURRENT CLOCK H

SEQUENCE CLOCK H

ULOAD DSR L
..--------</I-'------...

INCREMENT FIFO ~LOAD SECOND B~TE FROM FIFO ~LOAD LAST BYTE FROM FIFO
COUNTER INTO DATA SHIFT REGISTER INTO DATA SHIFT REGISTER

UINCR FIFO CNTR H------ ___________ !l ________ -tj -------

DSRO,.,_..___...__...__...__..___..___..___..__ _ _.__1_0__.__1_1 __._1_2 I 4085 I 4086 I 4087 l 4088 l 4089 l 4090 I 4091 I 4092 l 4093 I 4094 l 4095 l 4096 I

FIFO MAX

FIRST BIT OF TEST

------DA_T_A_F-RO_M_F-IF-0---......,~TCH UCON 1 H

UCON 0 H

MISMATCH L

Figure 3-15 Write Check Data Comparison Logic Timing Diagram

H IF MATCH
IS VALID

TK·7381

3.5.9 Interrupt Control Logic
The IDC generates two interrupts: UBUS BRS and PORT XFER REQ. The UBUS BR5 interrupt is
generated, when enabled by the CPU, after the function requested by the CPU has been performed or
in the idle mode of operation if a drive status change is detected. The PORT XFER REQ is a special
interrupt signal that is used during the read, write, or write check functions. The PORT XFER REQ
signals the CPU that I DC has read, written, or write checked one complete sector of data and is ready
to read, write, or write check the next sector of data.

3.5.9. t UBUS DRS - The UBUS BRS interrupt control logic is enabled by the CPU by setting the
Interrupt Enable (IE bit) of the IDC control word input. When the IDC control word is loaded into the
CSR, the IE bit·is asserted to the UBUS BR5 interrupt control logic (see Figure 3-16). If the IE bit of
the IDC control word is not set (the IE signal input is low) the generation of UBUS BRS is inhibited. If
the IE bit is set, the UBUS BR5 interrupt may be generated by the microcontroller by asserting a
USET INTL signal, or by the IDC status logic by deasserting any one of the attention bits (ATTN3:0).

FROM
MICROCONTROLLER

FROM IDC/CPU {
INTERFACE
LOGIC

PART OF CONTROL STATUS REGISTER (CSR)

USET

INTL

(PAL)

FROM IDC ATTN 2 H

STATUS ATTN 1 H
LOGIC [

ATTN 3 H

ATTN 0 H

FROM IDC IE H

SET INT
REQ H

(PAL)

STATUS -------
LOGIC

RESET BR L

P2 CLOCK L

INT REQ
DIN H D l

BR5

-+-------~-----~--~~--~----'

Figure 3-16 UBUS BR5 Interrupt Control Logic Functional
Block Diagram

INT
REQ
H TO IDC

STATUS
LOGIC

When the USET INT L signal from the microcontroller is asserted or one of the attention bits from the
IDC status logic is deasserted, the SET INT REQ signal goes low producing a high INT REQ DIN
signal input to the BR5 flip-flop. The high INT REQ DIN signal causes the BR5 flip-flop to be set with
the next P2 CLOCK L input, producing an INT REQ H output. The INT REQ H output of the BR5
flip-flop is inverted to produce the UBUS BRS L interrupt signal. The INT REQ H output of the BR5
flip-flop is also inverted and asserted to the control gates of the BR5 flip-flop to hold the UBUS BR5 L
interrupt signal asserted until it is reset by the CPU.

3-62

The CPU resets the flip-flop by asserting a RESET BR port microinstruction to the IDC/CPU inter­
face logic. The resulting RESET BR L signal causes the INT REQ DIN H input to the BR5 flip-flop
to be deasserted, which enables the BR5 flip-flop to be reset with the P2 CLOCK L input. When the
BR5 flip-flop is reset, the UBUS BRS L signal output to the CPU is set H.

3.5.9.2 PORT XFER REQ - The PORT XFER REQ L interrupt signal output of the IDC is set by
inputs from the microcontroller (see Figure 3-17). The microcontroller initiates the PORT XFER REQ
L signal output by asserting UCMD2(H), UCMDl(L) and UCMDO(L). The UCMD inputs enable the
PORT XFER REQ flip-flop to be reset. When the PORT XFER REQ flip-flop is reset, the low signal
output is coupled back to the input gates to hold the flip-flop in the reset state. The low signal output of
the flip-flop is inverted to produce an XFER REQ H signal. The XFER REQ H signal is inverted and
asserted to the CPU as the PORT XFER REQ L (interrupt) signal. The PORT XFER REQ L signal is
reset when the CPU asserts an XFER GRANT L signal or when the IDC is initialized (INIT L as­
serted).

PART OF CONTROL
STATUS REGISTER (CSR)

~~g~O- ! ~::: : :
CONTROLLER ----------t-

~U=CM=D~O~H--+-+------t

FROM CPU XFER GRANT L

FROM IDC/CPU
INTERFACE
LOGIC [

INIT L

P2 CLOCK L

XFER REO H

Figure 3-17 PORT XFER REQ Logic Functional Block Diagram

PORT XFER

REO L -

TO CPU

TK·7360

3.5.10 IDC Control Register, Timeout Logic, and Status Logic - The IDC control register, timeout
logic, and status logic is contained in the control status register (CSR) shown in Figure 3-1.

3.5.10. 1 IDC Control Register - The IDC control register portion of the IDC control register, timeout
logic, and status logic registers the IDC control word input from the CPU. The registered IDC control word
inputs (See Figure 3-18) are used to provide the following:

• Branch condition inputs to the microcontroller
• Drive select information to the disk drive select and drive status monitor
• Skip sector data to the skip sector control logic
• Interrupt enable signal to the UBUS BR5 interrupt control logic
• Presetting the IDC data paths for maintenance
• Resetting the IDC status timeout, OPI, and DL T control registers

3-63

/}. IDC CONTROL WORD TO MICROCONTROLLER TO NR2 DATA FORMATTER AND
IDC STATUS WORD6

INPUT BITS -""" "' RL02 READ DATA SEPARATOR

01j_ FO H111 RBO
CROY L ~

OUTPUT BITS t
FORMAT OPI L MAINT H--~

02 Fl H
~

03 F2 H ~
25 MAINT H ~
27 ASSI H ~
06

~

REGISTER IE H ~
CTO UBUS BR5 INTERRUPT

08 DSO H
CONTROL LOGIC

~
09

~

DS1 H ~
WRITE CSR L FROM DISK DRIVE

~ ~}TO DISK DRIVE SELECT SELECT AND DRIVE
RL02 -0 P2 CLOCK L AND DRIVE STATUS MONITOR

STATUS MONITOR

22
FROM SKIP {

INH SSE L _,, ~
23

SSEI } TO SKIP SECTOR SECTOR CONTROL SSE FLAG L; ~ SSE FLAG CONTROL LOGIC LOGIC ,,,.

g (PAL) FROM UBUS BR5 INT REO ~
~ 29 INTERRUPT LOGIC

FE[RBO FORMAT1 al
t--1

R80 FORMAT H Pa >- H H REGISTER J
CROY L 1' IDC 28 :::

28 ~(/) J WRITE l WRITE INHIBIT L
."" STATUS ~;i t--1 F!I_ INHIBIT 1' WORD

t--1 t--1 REGISTER j L_... TO RL02/R80 TO MICROCONTROLLER DRIVERS
DRIVERS P2 CLOCK L _.J JAM JAM H AND DATA BUFFER

INIT H] CONTROL JAM L AND DATA REGISTER
r-P2 CLOCK L CONTROL LOGIC

FROM .,DicMD o, 1, 2
(PAL)

UCMD 0, 1, 2 ~

1
CROY L TIMEOUT TO CLOCK CONTROL ~

07

v
a

MICROCONTROLLER H (PAL)
CROY >~TIMER l TIMER H INIT L TIMEOUT CONTROL

ONE SHOr ~ CONTROL r-r
REGISTER (330 msecl ~ REGISTER ·

FROM _y_ ~ t'-+INIT L MICROCONTROLLER INIT L

MOPI
TIMEOUT H

CONTROL OPI L

H REGISTER

~ OPl•OCTC -

~OCT
FROM HEADER/ MISMATCH Ll_;J)

DLT L DATA COMPARATOR _r::n COMPOSITE
CONTROL

~ ERROR REGISTER FROM DISK .,.. ORV ERR L

DRIVE SELECT { 1 -
b c d

SEL CSR L

AND DRIVE ORV ERR H

STATUS MONITOR ORV ROY H

Figure 3-18 IDC Control Register Timeout Logic and Status
Logic Functional Block Diagram (Sheet l of 3)

_,,i ~ _,
~
R
~
~

ECC 1CRC~ ~ ERROR L

FROM 1 ECC/

~i~TO- ~ CRC
LOGIC

~ ~~~T ,-

J ~ v

h
~

19

18

17

16

v

a b c d

FROM (PAL)
MICROCONTROLLER
FROM DISK DRIVE USET ATTN L ATTN3
SELECT AND { DRIVE SEL 0 H CONTROL
DRIVE STATUS DRIVE SEL 1 H REGISTER
MONITOR BUS 1/0 19 H BUS 1/0 19 L

,..-----.,
~

r-1

ATTN2
CONTROL

.... REGISTER BUS 1/0
BUS 1/0 18 H 18 L ~

1--1--I-
I-t--
I-

ATTN 1
~

CONTROL
.... REGISTER BUS 1/0 BUS 1/0 17 H

17 L
~

I-1--t--
t--t-

I-

~

ATTN 0
CONTROL

BUS 1/0 16 H REGISTER BUS 1/0

WRITE CSR L 16 L

P2 CLOCK L

INIT L

SEL CSR H

..__
INIT L FROM IDC/CPU "'~"'} ~CL~ L INTERFACE LOGIC

~ITE CSR L

Figure 3-18 IDC Control Register Timeout Logic and Status
Logic Functional Block Diagram (Sheet 2 of 3)

~
19

18
17
16

7

-

FROM DISK DRIVE

SELECT AND DRIVEj
STATUS MONITOR

FROM ·
MICROCONTROLLER

FROM {
IDC/CPU INTERFACE
LOGIC

(PAL)
ONLINE ONLINE H

...... GATE

~ p ~ ~

DRIVE SEL 0 H
DRIVE SEL 1 H
USET ONLINE L -- ONLINE 3
UCLA ONLINE L CONTROL

t/°"
ONLINE 3 L

....J
REGISTER

~
~

......
~

ONLINE 2 ONLINE 2 L CONTROL .A' ""'
I-+ t--

REGISTER

I-+

--
~ ONLINE 1

CONTROL ~
ONLINE 1 L

REGISTER
.....

t--I-+
I-+

~

~

ONLINE 0 .. CONTROL 1/°
ONLINE 0 L

INIT H
~ REGISTER

~ ~

~

P2 CLOCK L

Figure 3-18 JDC Control Register Timeout Logic and Status
Logic Functional Block Diagram (Sheet 3 of 3)

-- TO MICROCONTROLLER

TK·7352

All registered I DC control word inputs are asserted to the IOC status word drivers and form part of the
I DC status word output of the IOC.

There are four unregistered I DC control word inputs (BUS 1/0 19: 16). These bits are used to clear the
attention (ATTN) control registers of the IOC status logic.

Each of the I DC control word is loaded into the IOC by the WRITE CSR Land P2 CLOCK L inputs
from the I DC/CPU interface logic. Bits 01, 02, 03, 06, 08, 09, 25, 27, 28, and 29 are loaded directly
into registers. These registered bits are asserted to the IOC status word drivers to provide (as part of the
status word output) a record of the specified IOC control word input. These registered bits also provide
branch condition inputs to the microcontroller (FO, Fl, F2, MAI NT, ASSI, R80 FORM.AT), an enable
bit (IE) to the UBUS BR5 interrupt control logic, disk drive select information (OSO and OSI) to the
disk drive select and drive status monitor, and, if a maintenance function is specified, a write inhibit
signal to the timeout logic and to the R80/RL02 drivers. The write inhibit signal inhibits writing to the
R80 or RL02 disk drives and inhibits timeout from occurring during a maintenance function.

Bits 22 and 23 are registered bits also. However, these bits are discussed as part of the skip sector
control logic (refer to Paragraph 3.5. 7).

Bits 16 through 19 of the IDC control word input are used to reset the attention control register associ­
ated with each disk drive. The attention control registers are discussed as part of the timeout and status
logic.

Bit 07 of the I DC control word input is asserted to the CROY, OPI, and OL T control registers. Bit 07
(the CROY bit input) is registered in the CROY control register. When registered, the CROY-output is
asserted to the microcontroller where it enables the microcontroller to branch on the branch condition
inputs and initiate the specified function. The CROY output is asserted also to the timeout logic to start
the timer. While bit 07 is being loaded into the CROY control register, it is also being used to reset the
OPI and DL T control registers of the status logic to clear any error information that may have been
generated during the previously specified IOC function.

3.5.10.2 Timeout and Status Logic - The timeout and status logic of the control status register limits
the time in which the IDC may attempt to perform a specified function (other than maintenance), reg­
isters I DC fault status (OPI and DLT), keeps track of the disk drives currently in use, and, if the IOC
did not complete the specified function within the time constraints of the timeout logic, registers the
reason for noncompletion. The status logic also formats and asserts to the IOC status word drivers the
status information from the disk drive select and drive ready monitor, skip sector control logic, UBUS
BRS interrupt control logic, header /data comparator, and ECC/CRC logic.

The timeout of the control status register is enabled when the CROY L output of the CROY control
register is set to a high (when an IOC control word is loaded). The low-to-high transition of the CROY
L signal triggers the timer oneshot (see Figure 3-18). The duration of the timer oneshot is set at 150
milliseconds, which allows sufficient time for the IOC to perform the function specified by the IOC
control word input. After the 150 millisecond time limit, the timer oneshot output goes low producing a
TI MER H signal input to the timeout control register. (If a maintenance function is specified, the
WRITE INHIBIT L signal from the write inhibit register inhibits the generation of TIMER H). The
Tl MER H signal is asserted to the timeout control register where it is combined with the CROY input.
If the CROY input has not been set to a L indicating that the specified function has not been com­
pleted, the timeout control register is set producing a high TIMEOUT H signal. The TIMEOUT H
input to the OPI control register causes the OPI control register to be set, producing a low OPI output.

3-67

The TI MEO UT H signal is also asserted to the jam control and to the OPI control register. The Tl ME­
O UT H input to the jam control initiates generation of the JAM H and JAM L outputs. The JAM H
output is asserted to the microcontroller, to force the next address to I FF and to the data buffer and
data register control logic to inhibit reading and writing to the data buffers. The JAM L output is as­
serted to the clock control to deselect the clock selected and to select the CPU clock. When the micro­
controller is set to I FF, the UCMD 0, 1, and 2 outputs from the microcontroller set the CROY control
register producing a low CROY L output. Also, the microcontroller generates a USET INT L signal
which causes a UBUS BR5 interrupt signal to be asserted to the CPU (Refer to Paragraph 3.5.9. l).

If the function specified by the IDC control word input is to be extended (for example, if the current
read function is to be performed for reading more than one sector of data), the microcontroller retrig­
gers the timer oneshot by asserting a URESET TIMER L pulse. Retriggering the timer oneshot inhib­
its the timeout from occurring as a result of extended operations by extending the timer cycle an addi­
tional 150 milliseconds.

The I DC fault status registers include the OPI control register and the DL T control register. The OPI
and DL T control registers are reset when an IDC control word specifying a function to be performed is
loaded (where the CROY bit, bit 07, is low and WRT CSR Lis asserted low) or the IDC is initialized.
When the OPI and DLT control registers are reset, the OPI L and DL T L outputs are set high. The
microcontroller causes setting of the OPI L and DLT L outputs. The OPI control register may be set
also by the TIMEOUT H signal from the timeout control register as discussed previously.

The microcontroller causes setting of the the OPI and DLT control registers by asserting the proper
UCMD 0, I, and 2 codes. If the IDC does not locate the proper header before timeout occurs, the
microcontroller asserts the UCMD code to set the DLT control register. If an ECC/CRC error is found
in the disk header data, the microcontroller asserts the UCMD code to set the OPI control register. If
during a write function, the requisite data needed has not been loaded, the microcontroller sets the
DL T control register. The OPI and DLT L outputs are asserted to the status formatting logic where it
is encoded to provide error information to the CPU via the IDC status word output. The format of the
IDC status word output is presented in Figure 2-10.

The timeout and status logic of the control status register also keeps track of the disk drive status
through the attention (ATTN) and on-line control registers (See Figure 3-16). One attention control
register and one on-line control register is provided for each of the four disk drives that may be used
with the JDC. The on-line registers record that when last monitored, the applicable disk drive was in
use (performing a function) or not in use. The attention registers are used to signal the CPU that the
associated drive is currently in use, has completed the function it had been performing, or i~ reporting
an error.

During the idle mode of operation, the microcontroller samples disk drive status. When in the idle mode
of operation, the microcontroller generates the UDRV SEL 0 and I and UDRV SEL signals used by
the disk drive select and drive status monitor. The resulting disk drive address bits (DRIVE SEL 0 and
I) from the disk drive select and drive status monitor are asserted to each of the ATTN 3:0 control
registers, the on-line 3:0 control registers, and the on-line.gate. The disk drive select and drive status
monitor gates the DRIVE RDY and DRIVE ERR signals from the appropriate disk drive to the micro­
controller. The DRIVE SEL 0 and I inputs to the on-line gate enables the appropriate ONLINE signal
to be asserted to the microcontroller.

The microcontroller, after asserting the UDRV SEL 0 and I and UDRV SEL outputs, branches on the
DRIVE ROY, DRIVE ERR, and ONLINE inputs to control the on-line and attention control registers
associated with the addressed disk drive.

3-68

If the selected disk drive is not reporting an error and DRIVE RDY is not present (the disk drive is
performing a function), the microcontroller asserts a UCLEAR ONLINE L signal to the on-line con­
trol registers. The UCLEAR ONLINE signal clears the appropriate on-line register to provide a record
that during the monitoring period, the disk drive was busy.

If the selected disk drive is not reporting an error, DRIVE RDY is present, and the appropriate ON­
LINE control register is set (indicating that during the previous monitoring period the disk drive was
not busy), the microcontroller enables the next sequential UDRV SEL 0 and 1 address and UDRV
SEL signals.

If the selected disk drive is not reporting an error, DRIVE RDY is present, and the on-line control
register is reset (indicating that during the previous monitoring period the disk drive was busy), the
microcontroller asserts a USET ON LINE L signal to the on-line control registers and a USET A TIN
L signal to the attention control registers. The USET ONLINE signal sets the appropriate on-line con­
trol register to record that during the monitoring period, the disk drive was not busy. The USET A TIN
L signal sets the applicable attention control registers.

If the selected disk drive is reporting an error (DRIVE ERR is asserted), the microcontroller asserts a
USET ATTN L signal to the attention control registers. Also, if the associated on-line control register is
presently cleared (indicating that the disk drive had been busy performing a function during the pre­
vious monitoring period), the microcontroller asserts a USET ONLINE signal to the on-line control
registers.

The USET ATTN L signal sets the applicable attention control register. The USET ONLINE signal
sets the applicable on-line control registers to record that during the previous monitoring period the
drive was not busy or was reporting an error.

As indicated in Figure 3-18, the on-line control registers may be cleared and set by the microcontroller
or when the IDC is initialized. However, the attention control registers may be cleared only by the CPU
through an IDC control word input or when the IDC is initialized.

3.5.11 Serializing Data from Data Buffer and Sync Byte Tristate Drivers - The sync byte tristate driv­
ers, data buffers (FIFO A and FIFO B), and data shift register are used to serialize the sync byte and
data to be written to the disk drive during a write data function. During a write check function the data
buffers and data shift register are used to serialize the data from the selected FIFO such that it may be
compared with the data portion of the READ DAT A input from the disk drive.

When a write data or write check function is specified by the IDC control word input to the IDC, the
microcontroller selects the FIFO to be used by asserting the appropriate USEL FIFO (A or B) signal to­
the data buff er and data register control logic (see Figure 3-19).

During the write data function, the inputs from the microcontroller cause the assertion of the DSR 0
output of the data shift register to the NRZ data formatter to control assertion of a series of zeros and
sync byte (data preamble), and the sector of data contained in the selected data buffer. After the prop­
er sector has been located (header found and ECC or CRC pattern verified), the microcontroller asserts
a UCLR FIFO CNTR H pulse to the data buffer and data register control logic. The UCLR FIFO
CNTR H input causes the ADDRESS asserted to the selected FIFO to be reset to zero. The micro­
controller also clears the data shift register by asserting a UCLR DSR L pulse. After the data shift
register is cleared (the DSR 0 output has been reset), the microcontroller loops until the data intervals
required to write the series of zeros to the data preambl~ have been asserted to the disk drive.

3-69

VJ
I

-....J
0

FROM DISK DRIVE
SELECT AND DRIVE
READY ABO MONITOR

PART OF DATA
BUFFER AND
DATA REGISTER
CONTROL LOGIC

FROM
MICROCONTROLLER

FIFO MAX L FIFO OVFLW L

FROM { CONSTANTS (CNST O:CNST 7)

MICROCONTROLLER UENB CONST L

... u...,SE;;.;L--...F.;..;.1 F-"0.._A;..:...;.H.._ ________ _... __ Fl FO A ADDRESS

~.=.LR:..:...:.F..:.:I F_,O C:.:.NT..._R:..:...:.H:..a.. _______ .___..,. COUNTER AND FIFO A ADDRESS

~U.;..;.IN~C~R"-'-'Fl~F-O~C~N~T~R"-'-"H _____ ~_.,._... __ coNTROL.
ENB FIFO A

FIFO B

FROM
MICROCONTROLLER

~U~E.:..:N.::.B..:.F..;..I F:...;0"-.:..H'----1-----.--~-+--+--.t (PALS)

USEL FIFO 3

FROM
CLOCK CONTROL CURRENT CLOCK L

• CONTROL OF FIFO A AND FIFO B
ADDRESS COUNTER AND CONTROL
IS SHARED WITH THE IDC/CPU
INTERFACE LOGIC.

FIFO FIFO B

r-•M~A~X;.;...;;L~....a.~O~VFLW

FIFO B ADDRESS

ENB FIFO B

FROM {
MICROCONTROLLER ULOAD DSR L

UCLA DSR L

FROM SYNC WAT CHK LOAD DSR L
BYTE RECOGNITION
LOGIC FROM CLOCK CURRENT CLOCK H

CONTROL

DATA SHIFT REGISTER

Figure 3-19 Data and Sync Byte Serialization Control
Logic Functional Block Diagram

DSR O TO HEADER/DATA
COMPARATOR
AND NRZ DATA
FORMATTER

As the last zero bit of the data preamble is being written, the microcontroller asserts a UENB CONST
L signal to the sync byte tristate drivers that enables the CONST ANTS output of the microcontroller
(which has been preset to the appropriate sync byte pattern) to be asserted to the parallel input of the
data shift register. The microcontroller also asserts a ULOAD DSR L pulse which causes the sync byte
pattern to be loaded into the data shift register with the next positive transition of the CURRENT
CLOCK H input. When the data shift register is loaded, the first bit of the sync byte is asserted on the
DSRO output. Then, with the leading edge of each CURRENT CLOCK H input, each successive bit of
the sync byte pattern is asserted on the DSRO output.

During the interval that the last sync byte bit is being asserted, the microcontroller asserts the UENB
FIFO H signal and UINCR FIFO CNTR H pulse to the data buffer and data register control logic and
a ULOAD DSR L pulse to the data shift register. The UENB FIFO H input to the· data buffer and
data register control logic is combined with the USEL FIFO (A or B) input to generate the ENB FIFO
(A or B) output. The ENB FIFO output is asserted to the selected FIFO where it enables the data byte
stored at the current FIFO ADDRESS location specified (ADDRESS 0) to be asserted to the parallel
input of the data shift register. At the data shift register, the ULOAD DSR L input enables the data
byte asserted from the selected data buffer to be loaded with the next positive transition of the CUR­
RENT CLOCK H input.

Coincident with the loading of the data byte into the data shift register, the UINCR FIFO CNTR H
pulse and CURRENT CLOCK L inputs to the selected FIFO address counter and control are com­
bined to increment the FIFO ADDRESS. When the data byte is loaded (directly after the data interval
in which the last bit of the sync byte was asserted to the DSR 0 output), the first bit of the data byte is
asserted on the DSR 0 output. Then, with the leading edge of each CURRENT CLOCK H input, each
successive bit of the first data byte is asserted on the DSR 0 output.

During the data interval in which bit 7 of the first data byte and bit 7 of each successive data byte is
being asserted on the DSR 0 output, the microcontroller asserts a UINCR FIFO CNTR pulse to FIFO
A and B address counter and control and a ULOAD DSR L signal to the data shift register. The
ULOAD DSR L signal input to the DSR enables the data byte from the current FIFO ADDRESS to
be loaded into the disk address register with the next positive transition of the CURRENT CLOCK H
signal. The UINCR FIFO CNTR H pulse enables the FIFO ADDRESS asserted to the selected FIFO
to be incremented. When the FIFO ADDRESS has been incremented to 256, if an RL02 disk drive is
selected, or 512, if the R80 disk drive is selected, the FIFO A address counter and control asserts a
Fl FO MAX L signal to the microcontroller This signal signifies that after the next seven bits are as­
serted, the entire sector of data has been serialized and asserted on the DSR 0 output of the data shift
register. A timing diagram showing the relationship of the control signals used in serializing the data
from the data buffers and sync byte tristate drivers is presented in Figure 3-20.

During the write check function, the inputs from the microcontroller cause serialization of bytes I
through 255 (RL02) or 511 (R80) of the data contained in the selected FIFO in the same manner as
discussed in the preceding two paragraphs. However, byte 0 of the data contained in selected FIFO is
loaded into the data shift register and the FIFO address counter is incremented as discussed in the
following paragraph.

The microcontroller is in a stall condition until after the sync byte preceding the read data to be com­
pared with the data from the selected FIFO has been located. Thus, before setting up the conditions for
locating the sync byte, the microcontroller asserts a UCLR FIFO CNTR H pulse to the data buffer and
data register control logic. The UCLR FIFO CNTR H input causes the ADDRESS asserted to the
selected FIFO to be reset to zero. The microcontroller then generates and asserts a UENB FIFO signal
to the data buffer and data register control logic. The UENB FIFO signal is combined with the USEL
FIFO (A or B) input to generate the ENB FIFO (A or B) output asserted to the selected FIFO. The
ENB FIFO signal enables the data contained at the current FIFO ADDRESS specified (ADDRESS 0)
to be asserted to the parallel input of the data shift register. At the same time that the microcontroller
asserts the UENB FIFO signal, it stalls until after the sync byte is found.

3-71

w
I

......,]

N

CURRENT CLOCK H
AND SEQUENCE CLOCK H

UENB CONST L

ULOAD DSR L

USEL FIFO I'
UCLR FIFO CNTR ~

UENB FIFO H

UINCR FIFO CNTR H -------i
r-, __ _

CURRENT CLOCK L ~

14--- SYNC BYTE LOADED INTO DSR

~ INCREMENT FIFO ADDRESS TO 1

I--- BYTE 0 LOADED INTO DSR

INCREMENT FIFO ADDR.ESS TO 2/t= INCREMENT FIFO ADDRESS TO 256

BYTE 1 LOADED INTO DSR... . j..- BYTE 255·

SERIALIZED BITS ASSERTED
ON DSRO OUTPUT OF
DATA SHIFT REGISTER

If Io j 1 j 2 j 3 I 4 Is I 6 I 1 Io j 1 I 21314151611 I a I

LOADED
INTO DSR

I 1 o I 11 I 12 I 13 I ... I 2041 I I 204a I
~----1 f---'

LAST ZERO SYNC BYTE BITS ASSERTED DATA BITS ASSERTED

BIT OF DATA
PREAMBLE

FIFO MAX L *

• ASSUMES WRITING FULL SECTOR OF DATA
TO RL02 (I.E., FULL SECTOR EQUALS 256
BYTES OF DATA): FOR RSO, FULL SECTOR
EQUALS 512 BYTES OF DATA; THUS, FIFO
MAX L IS ASSERTED AT ADDRESS COUNT
OF 512.

Figure 3-20 Data and Sync Byte Serialization Control
Logic Timing Diagram

When the sync byte is found, the sync byte recognition logic generates and asserts a WRT CHK LOAD
DSR L signal to the data shift register. The WRT CHK LOAD DSR L signal together with the next
positive transition of the CURRENT CLOCK H input loads the data byte asserted from the selected
Fl FO into the date. shift register. When the first byte is loaded, bit zero of the first data byte is asserted
on the DSR 0 output. With each successive positive transition of the CURRENT CLOCK H input,
each successive bit of the first data byte is asserted on the DSR 0 output.

While bit I of the first data byte is being asserted on the DSR 0 output, the microcontroller is again
started. When started, the microcontroller asserts a UINCR FIFO CNTR H signal to the data buffer
and data register control logic. The UINCR FIFO CNTR H signal is combined with the USEL FIFO
(A or B) and CURRENT CLOCK L inputs to increment the selected FIFO address counter, which
enables the second data byte from the FIFO to be asserted to the parallel input of the data shift regis­
ter.

While bit 7 of the first and each successive data byte is being asserted on the DSR 0 output of the data
shift register, the microcontroller generates and asserts a ULOAD DSR L pulse to the data shift regis­
ter and a UINCR FIFO CNTR H pulse to the data buffer and data register control logic. These signals
cause loading of the data shift register and incrementing the FIFO ADDRESS as discussed for serializ­
ing the data from the data buffers during the write data function. This process is continued until the
Fl FO MAX L signal from the FIFO A address counter and control is asserted to the microcontroller.
The FIFO MAX L signal indicates that the full sector of DA TA contained in the selected FIFO has
been loaded into the data shift register.

3.5.12 Formatting and Loading Disk Drive Read Data in Data Buffers
During a read data function the read data tristate drivers and data buffer (FIFO A or FIFO B) are used
to convert the serial READ DAT A input from the disk drive to byte format and to load the formatted
data into the selected FIFO. When a read data function is specified by the IDC control word input to
the I DC, the microcontroller selects the FIFO to be used by asserting the appropriate USEL FIFO (A
or B) signal to the data buffer and data register control logic (see Figure 3-21).

After the proper data sector has been located (header found and ECC or CRC pattern verified), the
microcontroller asserts a UCLR FIFO CNTR H pulse to the data buffer and data register control log­
ic. The UCLR FIFO CNTR H input causes the address asserted to the selected FIFO to be reset to
zero. Then the microcontroller stalls until after the SYNC BYTE preceding the data portion of the
READ DAT A has been located.

While the I DC is looking for the sync byte and after the sync byte is found, each bit of the data read
from the selected disk drive is asserted on the READ DAT A H input to the read data synchronizer.
The READ DAT A H input to the read data synchronizer is sampled at the midpoint of each data bit·
interval by the CURRENT CLOCK L input, and the condition of the READ DATA H input (a logical
0 or I) is loaded into the read data synchronizer. A diagram showing the timing relationship of the
signals and events discussed in the following paragraphs is presented in Figure 3-22.

When the read data synchronizer is loaded, it asserts the sampled condition of the READ DAT A H
input to the data shift register via the SERIAL DATA IN signal line. The CURRENT CLOCK H
input to the data shift register loads the SERIAL DATA IN signal asserted into DSR 7 of the data shift
register and shifts the current contents of DSR7:1 to DSR6:0, respectively.

3-73

ux READ DATA H J READ lsERIAL DATA IN BUS IN rt DATA J -1\ SYNCHRONIZER
BUS IN 7:0 vi

FROM
DISK DATA M

DATA) CURRENT SHIFT 1 READ DATA CLOCK L REGISTER DSR7:0
l) v TRISTATE BUS IN 7:0 y

DRIVERS 1
CURRENT CLOCK H

~ TO MICROCONTROLLER BUS IN 7:0

rFIFO FIFO

FROM {
CLOCK
CONTROL

FROM
MICROCONTROLLE R

UENB DSR L

PART OF DATA BUFFER

MAX L OVFLW L p
AND DATA REGISTER

FROM DRIVE
CONTROL LOGIC

SELECT AND R80 FIFO A ADDRESS
DRIVE READY USEL FIFO A H

~

COUNTER AND CONTROL•
MONITOR UCLR FIFO CNTR H -

UWRITE FIFO H FIFO A ADDRESS

UINCR FIFO CNTR H
~ (PALS) WRITE FIFO A L

M FRO
MIC ROCONTROLLER _}1FO B MAX L _t

USEL FIFO B H

FROM CLOCK CURRENT CLOCK L

CONTROL

• CONTROL OF FIFO A AND FIFO 8 ADDRESS
COUNTER AND CONTROL IS SHARED WITH
THE !DC/CPU INTERFACE LOGIC.

~
~
~

.-
~

FIFO B ADDRESS
COUNTER AND CONTROL•

FIFO B ADDRESS

WRITE FIFO B L

(PALS)

Figure 3-21 Read Data Formatting and Storage Control
Logic Functional Block Diagram

FIFO A

WRITE FIFO A L

FIFO B

t
WRITE
FIFO B L

READ DATA H

I
SYNC SEEN L

CURRENT CLOCK L

SERIAL DATA IN H

CURRENT CLOCK H

DSR 7

DSR 6

BIT 8 OF SYNC BYTE
t BIT 1 OF READ DATA
~

I I I

0 I

DSR 51 1 I
DATA DSR 4
SHIFT
REGISTER
CONTENTS DSR 3 0 I

DSR 2---,

DSR 1

BIT 8 OF READ DATA
~

I I

LI! LJ

LJI
LI!

BIT 16 OF READ DATA ...----..
I I

r

LJ ~

LI'
~

DSRO II._ __ _. LI! r
SE OU ENCE
CLOCK

UENB DSR l

UWRITE FIFO H .---, r--1
~--------------'' ·~----------' L..

UINCR FIFO CNTR H---------------~11 IL
WRITE FIFO L

CLOCK TO FIFO
ADDRESS COUNTER H

WRITE FIFo-LJ

u=INCREMENT ADDRESS

Figure 3-22 Formatting and Loading Read Data
Input to FIFO: Timing Diagram

WRITE FIFO-LJ

L_F INCREMENT
ADDRESS

After the sync byte has been found, the microcontroller is restarted. The microcontroller is restarted at
the same time that the first data bit of the READ DAT A H input is loaded into DSR 7 of the data shift
register. Once the microcontroller is restarted, it counts the number of CURRENT CLOCK H -pulses
asserted to control assertion of the UENB DSR L, UWRITE FIFO H, and UINCR FIFO CNTR H
outputs. (The CURRENT CLOCK H pulses are derived from the read data input and thus are syn­
chronized each data bit interval.)

During the data interval in which each eighth data bit of the READ DAT A is being loaded into the
data shift register, the microcontroller generates and asserts a UENB DSR · L signal to the read data
tristate drivers, and the UWRITE FIFO Hand UINCR FIFO CNTR signals to the FIFO A and FIFO
B address counter and control of the data buffers and data register control logic.

3-75

The UENB DSR L input to the read data tristate drivers enables the parallel output of the data shift
register (DSR7:0) to be asserted to the input of the FIFO A and FIFO B data buffers. The UWRITE
FIFO Hand UINCR FIFO CNTR inputs to the FIFO A and FIFO B address counter and control are
combined with the USEL FIFO {A or B) and CURRENT CLOCK L inputs to generate the WRITE
FIFO (A or B) L signal, which loads the data byte asserted from the read data tristate drivers into the
selected FIFO, and the clock input to the selected FIFO address counter to increment the ADDRESS
asserted to the selected FIFO. This process (sampling the READ DATA H input, shifting the sampled
data into the data shift register, enabling and loading the parallel data output of the data shift register
into the selected FIFO, and incrementing the FIFO ADDRESS counter) is repeated with each eight
bits sampled until the FIFO ADDRESS has been incremented to 255 (if the data are being read from
an RL02 disk drive) or 511 (if the data are being read from the R80 disk drive). When the FIFO ad­
dress counter has been incremented to a count of 255 or 511 (depending on the state of the R80 signal
input to the address counter and control), the address counter and control asserts a FIFO MAX L sig­
nal to the microcontroller. The FIFO MAX L signal indicates that the data portion of one sector of
READ DAT A has been converted to byte format and has been loaded into the selected data buffer.

3.5.13 IDC/CPU Interface Logic
The IDC/CPU interface logic enables the CPU to control loading the CSR, disk address register, and
data· buffers (FIFO A and FIFO B), and to control reading the CSR, disk address register, data buffers
(FIFO A and FIFO B), and ECC/CRC logic. (Figure 3-23 defines the type of words, data, or informa­
tion that is loaded into or read from the IDC registers and buffers.) Also, the IDC/CPU interface logic
enables the CPU to initialize the IDC logic and R80 disk drive and to reset the UBUS BR5 interrupt
signal. A functional block diagram of the IDC/CPU interface logic is shown in Figure 3-24.

DATA AND
INFORMATION
TRANSFERRED
BETWEEN IDC
AND CPU VIA
CPU Y BUS

LOAD
IDC CONTROL WORD

READ
IDC STATUS WORD

LOAD
• DISK DRIVE CONTROL WORDS

(RL02 GET STATUS COMMAND)
(RL02 CYLINDER DIFFERENCE)
(R80 SEEK COMMAND)
(R80 HEAD SELECT COMMAND)
(R80 RECALIBRATE COMMAND)

• RL02 READ/WRITE ADDRESS
• ABO READ/WRITE ADDRESS

READ
• CURRENT RL02 READ/WRITE ADDRESS
• CURRENT R80 READ/WRITE ADDRESS

READ ONLY

• RL02 STATUS INFORMATION
• R80 STATUS INFORMATION
• RL02 HEADER
• R80 HEADER
• DATA (BYTE OR LONGWORD)

LOAD ONLY

• DATA (BYTE OR LONGWORD)
• R80 HEADER DATA

READ ONLY
• DATA ERROR INFORMATION

(ERROR POSITION)
(ERROR PATTERN)

CONTROL
STATUS
REGISTER

DISK
ADDRESS
REGISTER

DATA
OUTPUT
REGISTER

DATA
INPUT
REGISTER

ECC/CRC
LOGIC

Figure 3-23 IDC Register Source and Destination
for Data and Information Transferred between

IDC and CPU via CPU Y-bus

3-76

TK-7359

w
I

-....)
-..)

l

I TO/FROM A _L _1' _L

DATA PAT H <; CPU Y BUS
7

32
Y BUS 32 BUS 1/0

MODULE v TRANSCEIVERS
V'

WRITE Ciill 1 IN CPU SEL WRITElm_ f
SEL STROBE DATA H

CSR

lREAD
IDC L [CONTROL STATUS]

REGISTER

IDC PORT CONTROL LOGIC

DAR

[DISK
ADDRESS
REGISTER

DAR

l PENB IN­
REG BO:B3

1
DATA INPUT
REGISTERS

Busli81iB ~ ~ a]Ia
DATA BUFFER AND DATA REGISTER CONTROL LOGIC IN ~ltB

s!

CSR 17

PORT
CSR 14

MICRO- CSR 13
INSTRUCTION
FROM

CSR 12

WCS MODULE CSR 11

IN CPU CSR 10

~

PORT
MICRO
INSTRUCTION
DECODE

~
REGISTER

RESET BR

CLEAR IDC L
WRITE CSR L
WRITE DAR L
STROBE DATA H

WRITE DATA L
READ DATA L
BYTE L

i TIALIZE/CLEARJ
GIC

EE FIGURE 3-33)

......

......

r------,!P~EN~B~IN~R~E~G!..E:BO~:~B~J---~~--1~ ' 7

DATA
FORMAT
CONTROL
LOGIC

PW RITE
FIFO

PINCR

FIFO CNTR

PENB

FIFO

FIFO A ADDRESS.
COUNTER AND
CONTROL•
(SEE NOTE)

(PALS)

WRITE
FIFO A

_1'

ADORES~ DATA BUFFER
- y (FIFO A)

ENB
FIFO A

FROM
UBUS

FROM
DATA
PATH
MODULE
IN CPU

FROM
wcs
MODULE
IN CPU

ENABLE OUT REG L

DCLO
~.___l_P_A_U _ __,

DCLO

PORT
INSTR H

l-.f..'-.::....;...;..__-+-++-+-<1-+-l.i.....ir-----...., AUTOMODE H
SEL WORD L °' EN TR

CPU

CLOCK
H

~
PLOAD OUTREG PSEL PCLR PORT
BO:B3 FIFO FIFO CLK

...._ ____ _. A CNTR L

(SEE NOTE)

~ SEL BYTE L~X> r.i....i1-+-+--=~A~B~L~E~O.::..::.U.:....:..;.E~G=---l-I-------~-~
~ READ READ IDC L J

~PSEL FIFO B

l] DATA OUTPUT
~-------+---+--+'~-~-~.;.;~;..;:~;..;:~-..i-._ REGISTERS

~ ~~~:CT ~~~ g~RR LL

~ REGISTER PSEL FIFO A H

READ PORT L
PCLR FIFO CNTR H

SEL POSITION L
SEL ACC IN H ~i-=.::....:..;.;;:..;;....;.;,;+-:-:~~ (PAL) SEL PATTERN L f: l,../"' -L---J:----1-P-O~R-T_C_L_O_C_K_L--------------+-+----------------.

{

CPU P2H1 r IDC/CPU 1 CPU CLOCK H SEL SEL
PORT 1 INTERFACE [,....._P_A_T_T_E._R_N __ t.......,POSITION

P2 CLOCK L r l CLOCK L 1. SYNCHRONIZER -- P2 CLOCK L (CPU CLOCK) ECC/CRC Li---------'

NOTE: FOR SIMPLICITY, ONLY FIFO A ADDRESS COUNTER AND CONTROL AND FIFO A
DATA BUFFER IS SHOWN; l!:l:NTICAL CIRCUITS EXIST FOR FIFO B .

• CONTROL OF FIFO ADDRESS COUNTER AND CONTROL IS SHARED BY THE
CPU AND THE MICROCONTROLLER.

TO CLOCK CONTROL LOGIC BUS 1/0

Figure 3-24 JDC/CPU Interface Logic Functional Block Diagram

For simplification, only the signals and control logic used for the control of one of the data buffers
(FIFO A) is shown (the FIFO A address counter and control and the FIFO A data buffer). Identical
logic exists for the control of FIFO B. Control of the FIFO A and FIFO B address counter and control
is shared by the microcontroller and the CPU. This allows the microcontroller to cause loading or read­
ing of the data buffers while the CPU is loading or reading the other data buffer. The microcontroller­
initiated signal inputs to the FIFO A address counter and control are not shown in Figure 3-24. (CPU
control of the data buffers is discussed in Paragraphs 3.5.11 and 3.5.12).

The I DC/CPU interface logic is synchronized with the CPU by the CPU timing signal inputs (CPU P2
H and PORT CLOCK L). The P2 CLOCK L output of the IDC/CPU interface logic is the basic CPU
CLOCK signal used by the clock control to synchronize IDC operation with the CPU.

3.5.13.1 Loading CSR -The CPU causes loading of the CSR by asserting a WRITE CSR port micro­
instruction and a PORT INSTR signal to the port microinstruction decode register, and simultaneously
asserting the word to be loaded via the CPU Y BUS (see Figure 3-24).

The port microinstruction decode register decodes the PORT MICROINSTRUCTION input and gen­
erates and asserts a WRITE CSR L signal to the CSR. The low-to-high transition of the WRITE CSR
L signal input loads the word asserted on the BUS I/O via the CPU Y BUS and the Y-bus transceivers
into the CSR.

Figure 3-25 shows a timing diagram illustrating the relationship of the PORT MICRO­
INSTRUCTION, PORT INSTR, and CPU timing signal inputs to the IDC and the resultant signal
(WRITE CSR L) that loads the CSR.

__I CPU MICROCYCLE L___
----, (270 nsec) r-

PO I P1 I P2 I PO I P1 I P2 I PO I P1 I P2 I PO I P1 I
PORT CLOCK L

CPU P2 H

CPU CLOCK H

P2 CLOCK L I LJ LJ LJ
CPUYBUS ~ -(BUS y D31:DOO) WORD ASSERTED

PORT MICROINSTRUCTION~ WRITE CSR -
(CSR 17, CSR 14:CSR 10) ~ _

PORT INSTR H _____ _.

WRITE CSR L L__F'"":Z: WORD ASSERTED VIA
CPU Y BUS LOADED
INTO CSR BY
POSITIVE TRANSITION

OF WRITE CSR L

TK-7355

Figure 3-25 IDC Control Word Transfer Timing (CPU to IDC)

3-78

3.5.13.2 Reading CSR - To read and transfer the contents of the CSR to the CPU, the CPU asserts a
READ CSR port microinstruction and a PORT INSTR signal to the read port interface select register,
followed during a later CPU microcycle by a READ PORT L signal (see Figure 3-24). The READ
CSR port microinstruction is loaded into the read port interface select register during clock phase 2
(CPU P2 H asserted) by the CPU CLOCK H input.

This conditions the read port select register such that a SEL CSR L output signal will be enabled by
the READ PORT L signal input. When the READ PORT L signal is asserted and the SEL ACC IN H
signal is not asserted (indicating that the READ PORT L signal is applicable to the IDC), the read port
interface select register generates the SEL CSR L and READ IDC L outputs. The SEL CSR L output
is asserted to the CSR where it enables the contents of the CSR to be asserted on the BUS I/O. The
READ IDC L output is asserted to the Y-bus transceivers, where it enables the word. asserted on the
BUS 1/0 to be asserted to the CPU via the CPU Y BUS.

Figure 3-26 shows the timing relationship of the PORT MICROINSTRUCTION, PORT INSTR,
READ PORT L, and CPU timing signals input to the IDC, the resulting IDC control signals, and the
period during which the contents of the CSR are asserted to the CPU.

~ CPU MICROCYCLE L_
--------i (270 nsec) i----

I PO I Pl I P2 I PO I Pl I P2 I PO I Pl I P2 I PO I Pl I

PORT CLOCK L

CPU P2 H

CPU CLOCK H

P2 CLOCK L _j LJ LJ LJ L
PORT MICROINSTRUCTION~ READ CSR •
(CSR 17,CSR14:CSR 10) ~ •

PORT INSTR H

READ PORT L

READ IDC L

SEL CSR L

CPUYBUS - -(BUSY D31:DOO)~

CONTENTS OF CSR
ASSERTED TO CPU

TK-7361

Figure 3-26 IDC Status Word Transfer Timing (IDC to CPU)

3-79

3.5.13.3 Loading Disk Address Register - The CPU loads the disk address register by asserting a
WRITE DAR port microinstruction and a PORT INSTR signal to the port microinstruction decode
register, and simultaneously asserting the word to be loaded via the CPU Y BUS (see Figure 3-24).

The port microinstruction decode register decodes the PORT MICROINSTRUCTION input and gen­
erates and asserts a WRITE DAR L signal to the disk address register. The low-to-high transition of the
WRITE DAR L signal input loads the word asserted on the BUS 1/0 via the CPU Y BUS and the Y­
bus transceivers into the disk address register.

Figure 3-27 shows a timing diagram illustrating the relationship of the PORT MICRO­
INSTRUCTION, PORT INSTR, and CPU timing signal inputs to the IDC and the resulting signal
(WRITE DAR L) that loads the disk address register.

_J CPU MICROCYCLE L I (270 nsec) j

I PO I P1 I P2 I PO I Pl I P2 I PO I Pl I P2 I PO I Pl I P2 I PO I Pl I

PORT CLOCK L

CPU P2 H

CPU CLOCK H

P2 CLOCK L I LJ LJ LJ LJ
CPU Y BUS
(BUS y D31 :DOO) ~ IM.)RD ASSERTED

PORT MICROINSTRUCTION m~~~~~~~----~-~~~~~~~~~~~~~~~
(CSR 17, CSR 14:CSR10) ~ WRITE DAR ~

PORT INSTR H _____
WRITE DAR L LJ ~ WORD ASSERTED VIA CPU

----- Y BUS LOADED INTO DISK
ADDRESS REGISTER BY
POSITIVE TRANSITION OF
WRITE DAR L

Figure 3-27 Disk Drive Control Word and Read/Write Address
Transfer Timing (CPU to I DC)

3-80

3.5.13.4 Reading Disk Address Register - To read and transfer the contents of the disk address regis­
ter to the CPU, the CPU asserts a READ DAR port microinstruction and a PORT INSTR signal to
the read port interface select register, followed during a later CPU microcycle by a READ PORT L
signal (see Figure 3-24). The READ DAR ;-ort microinstruction is loaded into the read port interface
select register during clock phase 2 (CPU P2 H asserted) by the CPU CLOCK H input. This conditions
the read port select register such that a SEL DAR L output signal will be enabled by the READ PORT
L signal input. When the READ PORT L signal is asserted and the SEL ACC IN H signal is not
asserted (indicating that the READ PORT L signal is applicable to the IDC), the read port interface
select register generates the SEL DAR L and READ IDC L outputs. The SEL DAR L output is as­
serted to the disk address register where it enables its contents to be asserted on the BUS 1/0. The
READ I DC L output is asserted to the Y-bus transceivers, where it enables the word asserted on the
BUS 1/0 to be asserted to the CPU via the CPU Y BUS.

Figure 3-28 shows the timing relationship of the PORT MICROINSTRUCTION, PORT INSTR,
READ PORT L, and CPU timing signals input to the IDC, the resultant IDC control signals, and the
period during which the contents of the disk address register are asserted to the CPU via the CPU Y
BUS.

I CPU MICROCYCLE L
---i (270 nsec) r--

I PO I Pl I P2 I PO I Pl I P2 I PO I Pl I P2 I PO I Pl I P2 I
PORT CLOCK L

CPU P2 H

CPU CLOCK H

P2 CLOCK L j LJ u LJ L
PORT MICROINSTRUCTION~ READ DAR
(CSR 17, CSR14:CSR10) - •

PORT INSTR H

READ PORT L

READ IDC L

SEL DAR L

CPUYBUS -
(BUSY D31:DOO)

CONTENTS OF DISK ADDRESS
REGISTER ASSERTED TO CPU

Figure 3-28 Current Read/Write Address Transfer Timing
(IDC to CPU)

3-81

TK·7357

3.5.13.5 Reading ECC/CRC Logic - To read and transfer the contents of the ECC/CRC logic to the
CPU, the CPU asserts a READ POSITION or READ PATTERN port microinstruction, as appli­
cable, and a PORT INSTR signal to the read port interface select register, followed during a later CPU
microcycle by a READ PORT L signal (see Figure 3-24). The READ POSITION or READ PAT­
TERN port microinstruction is loaded into the read port interface select register during clock phase 2
(CPU P2 H asserted) by the CPU CLOCK H input. This conditions the read port select register such
that a SEL POSITION Lor SEL PATTERN L, as applicable, output signal will be enabled by the
READ PORT L signal input. When the READ PORT L signal is asserted and the SEL ACC IN H
signal is not asserted (indicating that the READ PORT L signal is applicable to the IDC), the read port
interface select register generates the appropriate SEL POSITION L or SEL PATTERN L and
READ IDC L outputs. The SEL POSITION or SEL PATTERN L output is asserted to the
ECC/CRC logic where it enables the contents of the ECC position register or ECC pattern register, as
applicable, to be asserted on the BUS 1/0. The READ IDC L output is asserted to the Y-bus trans­
ceivers, where it enables the word asserted on the BUS 1/0 to be asserted to the CPU via the CPU Y
BUS.

Figure 3-29 shows the timing relationship of the PORT MICROINSTRUCTION, PORT INSTR,
READ PORT L, and CPU timing signals input to the JDC, the resulting IDC control signals, and the
period during which the contents of the ECC/CRC logic are asserted to the CPU.

_--l CPU MICROCYCLE 1.,.__
I (270 nsec) ,-

I . PO I Pl I P2 I PO I Pl I P2 I PO I Pl I P2 I PO I Pl I P2 I PO I P1 I P2

PORT CLOCK L

CPU P2 H

CPU CLOCK H

P2 CLOCK L _J LJ LJ LJ LJ Lf
PORT MICROINSTRUCTION~ READ POSITION ~ READ PATTERN -
(CSR 17,CSR 14:CSR 10) - - -

PORT INSTR H

READ PORT L

READ IDC L·

SEL POSITION L

SEL PATTERN L---------------------.

CPU Y BUS
(BUSYD12:DOO)- ~ ~

'---v---' '---v---'

CONTENTS OF ECC POSITION CONTENTS OF ECC PATTERN
REGISTER ASSERTED TO CPU REGISTER ASSERTED TO CPU

TK-7356

Figure 3-29 Data Error Information Transfer Timing (IDC to CPU)

3-82

3.5.13.6 Loading JDC Data Buffers - The CPU to load the IDC data buffer(s), the CPU selects the
data buffer to be used (asserts a SELECT FIFO A or SELECT FIFO B port microinstruction and
PORT INSTR signal) and clears the FIFO address counter and control logic (asserting a CLEAR
Fl FO CNTR port microinstruction and PORT INSTR signal). Then the CPU asserts a WRITE
DAT A BYTE or WRITE DAT A WORD port microinstruction and PORT INSTR signal while simul­
taneously asserting via the CPU Y BUS the data byte or data longword to be loaded. The CPU must
load the data buffer with a full sector of data [256 data bytes (64 data longwords), one full sector of
RL02 data; or 512 data bytes (128 data longwords), one full sector of R80 data].

The read port select register decodes the SELECT FIFO A port microinstruction and generates and
asserts a PSEL FIFO A H signal to the FIFO A address counter and control (see Figure 3-24). The
read port select register decodes the CLEAR FIFO CNTR port microinstruction and generates and
asserts a PCLR FIFO CNTR H pulse to the FIFO A and FIFO B address counter and control.

The PSEL FIFO A H signal and PCLR FIFO CNTR H pulse initiates resetting of the FIFO A AD­
DRESS asserted to the data buffer (FIFO A).

The port microinstruction decode register decodes the WRITE DAT A BYTE or WRITE DA TA
WORD PORT MICROINSTRUCTION input and generates and asserts a STROBE DATA H pulse
to the data input registers and a WRITE DAT A L pulse to the data format control logic. If the PORT
MICROINSTRUCTION input was WRITE DATA BYTE, the port microinstruction decode register
also generates and asserts a BYTE L pulse to the data format control logic.

The STROBE DAT A H pulse loads the data longword or data byte asserted on the BUS I/O via the
CPU Y BUS and Y-bus transceivers into the data input registers. THE WRITE DATA Land BYTE L
inputs to the data format control logic enable the proper sequence of control signals required to load the
data byte input into the selected FIFO, or to convert the data longword input to four data bytes and
load each of the four bytes into four contiguous storage locations of the selected FIFO.

If a data byte is to be loaded into FIFO A, the WRITE DATA L and BYTE L inputs to the data
format control logic are used with the CPU CLOCK H input to enable the PENB INREG BO,
PWRITE FIFO, and PINCR FIFO CNTR outputs. The PENB INREG BO signal enables the con­
tents of IN REG BO of the data input registers to be asserted to the inputs of FIFO A and FIFO B. The
PWRITE FIFO and PINCR FIFO signals are asserted to the FIFO A address counter and control
where they are used with the PSEL FIFO A and PORT CLOCK L inputs to produce a WRITE FIFO
A L signal. The WRITE FIFO AL signal loads the data byte asserted from the data input register. The
PSEL FIFOA and PORT CLOCK L inputs also produce a clock input to the FIFO A address counter
to increment the ADDRESS asserted to FIFO A.

Figure 3-30 shows the timing relationship of the CPU timing signals, PORT MICROINSTRUCTION,
PORT INSTR, and CPU Y BUS inputs to the IDC and the resulting control signals that are generated
in loading FIFO A with the first data byte of the sector of data to be loaded.

If a data longword is to be loaded, the WRITE DAT A L input to the data format control logic enables
the series of PENB INREG BO:B3, PWRITE, and PINCR FIFO CNTR signals that enable the data
longword input to be assembled into four data bytes and loaded into four contiguous storage locations
within FIFO A.

Figure 3-31 shows the timing relationship of the CPU timing signals, PORT MICROINSTRUCTION,
PORT INSTR, and CPU Y BUS inputs to the IDC and the resulting control signals that cause loading
into the data buffer the first data longword of the sector of data to be loaded.

3-83

w
I

00
~

_J CPU MICROCYCLE L l (270 nsec) j

PORT CLOCK L

CPU CLOCK H

P2 CLOCK L

CPU Y BUS
(BUS Y D07:DOO)

PORT MICROINSTRUCTION
(CSR 17, CSR14:CSR 10)

PORT INSTR H

PSEL FIFO A H

PCLR FIFO CNTR H

STROBE DATA H

WRITE DATA L
AND BYTE L

PENB INREG BO L

PWRITE FIFO H
AND PINCR FIFO CNTR H

WRITE FIFO A L

(CLOCK INPUT TO FIFO A
ADDRESS COUNTER)

PO I P1 I P2 I PO I P1 I P2 I PO I P1 I P2 I PO I P1 I P2 I PO I P1 I P2 I PO I P1 I P2 I PO I P1 I P2 I

LJ LJ LJ LJ LJ LJ
DATA BYTE -SELECT FIFO ~CLEAR FIFO CNTR~WRITE DATA BYTE-~

r-1 <"°FIFO A ADDRESS COUNTER
I ~ RESET TO ZERO

DATA BYTE LOADED INTO DATA INPUT

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~--~REGISTER 

Figure 3-30 Data Byte Transfer Timing (CPU to IDC) 

tjZ=DATA BYTE LOADED 
INTO FIFO A 

L__F="ZO=FIFO ADDRESS INCREMENTED 



VJ 
I 

00 
V't 

. - . J CPU MICROCYCLE L ~ 
~ (270 nsec) r-

I PO I Pl I P2 I PO I Pl I P2 I PO I Pl I P2 I PO I P1 I P2 I PO I P1 I P2 I PO I P1 I P2 I PO I P1 I P2 I 

PORT MICROINSTRUCTION ~~[~s~E~L~EC~T~F~I F~o~J~~~~~~~C~L~EA~R~F~IF~O~CN~T~R~~~~~~~®W~~Rl~T!E~D~A~T~A~W~O~RD~~~~~~~~~~~~~~ (CSR 17, CSR 14:CSR10) L. -

PORT INSTR H 

PSEL FIFO A H 
_______ __. 

FIFO A ADDRESS COUNTER 

PCLR FIFO CNTR H --------------------'~RESET TO ZERO 

---«" DATA LONGWORD LOADED INTO 
STROBE DATA H t.L.j DATA INPUT REGISTER -----------------------------------

WRITE DATA L 

PENB INREG BO L 

PENB INREG Bl L 

PENB INREG B2 L 

PENB INREG B3 L 

PWRITE FIFO A H 

BYTE CONTAINED IN INREG BO ASSERTED TO FIFO A~-----------­

BYTE CONTAINED IN INREG B1 ASSERTED TO FIFO A~~-------­

BYTE CONTAINED IN INREG B2 ASSERTED TO FIFO Ab------­

BYTE CONTAINED IN INREG B3 ASSERTED TO FIFO A b-----

AND PJNCR FIFO CNTR H ------------------------------------

-----------------------------------~._/'~ /,....-i (,......,j 1 LOAD FIFOA WRITE FIFO A L ~ l!J ~ CJ 

(CLOCK INPUT TO FIFO A 
ADDRESS COUNTER) 

Figure 3-31 Data Longwood Transfer Timing (CPU to JDC) 

INCREMENT 
FIFO A ADDRESS 
COUNTER 

TK·7383 



3.S.13.7 Reading IDC Data Buffers - The CPU reads the IDC data buffer(s) by selecting the data 
buffer to be used (asserting a SELECT FIFO A or SELECT FIFO B port microinstruction and PORT 
INSTR signal), and clearing the address counter and control logic (asserting a CLEAR FIFO CNTR 
port microinstruction and PORT INSTR signal). Then the CPU asserts a READ DAT A BYTE or 
READ DAT A WORD port microinstruction and PORT INSTR, followed during a later CPU micro­
cycle by a READ PORT L signal. 

After the CPU selects the data buffer to be read and clears the FIFO address counter, the CPU may 
read a single byte or data longword or a series of them by asserting the applicable READ DAT A BYTE 
or READ DATA WORD port microinstruction and PORT INSTR signal, followed during a later CPU 
microcycle by a READ PORT L signal for each data byte or data longword to be read. For reading a 
series of data longwords, the CPU may preset the CPU interface logic to the AUTOMODE, which 
enables a series of data longwords to be read by asserting only a READ PORT L signal for each succes­
sive data longword to be read. The CPU may preset the AUTOMODE function by asserting a SET 
AUTOMODE port microinstruction and PORT INSTR signal. 

The read port select register decodes the SELECT FIFO A PORT MICROINSTRUCTION input and 
generates and asserts a PSEL FIFO AH signal to the FIFO A address counters and control (see Figure 
3-24). The read port select register decodes the CLEAR FIFO CNTR PORT MICRO­
INSTRUCTION input and generates and asserts a PCLR FIFO CNTR H pulse to the FIFO A and 
FIFO B address counter and control. The PSEL FIFO AH signal and the PCLR FIFO CNTR H pulse 
initiates resetting of the FIFO A ADDRESS asserted to the data buffer (FIFO A). 

The READ DATA BYTE or READ DATA WORD port microinstruction is decoded by the port mi­
croinstruction decode register to produce the READ DATA Land BYTE L outputs or READ DATA 
L output, respectively. The READ DATA BYTE or READ DATA WORD port microinstruction is 
also loaded into the read port select register as a conditioning input to enable the SEL BYTE Lor SEL 
WORD L output, respectively, when the READ PORT L signal is asserted during a following CPU 
microcycle. 

The READ DATA L and BYTE L outputs of the port microinstruction decode register are asserted to 
the data format control logic. The READ DAT A L and or BYTE L inputs enable the data format 
control logic to generate the proper sequence of output signals that cause gating of a single data byte 
from FIFO A and loading the data byte into the data output registers or cause gating of a series of four 
data bytes from four contiguous storage locations within the FIFO and loading the four data bytes in a 
longword format into the data output registers. 

3-86 



If a data byte is to be read, the READ DATA L and BYTE L inputs to the data format control logic 
are used with the CPU. CLOCK H input to enable the PENB FIFO, PLO AD OUTREG BO, and 
PINCR FIFO CNTR outputs. The PENB FIFO signal is asserted to the FIFO A address counter and 
control where it is combined with the PSEL FIFO A input to produce the ENB FIFO A output. The 
ENB FIFO A signal is asserted to FIFO to enable the data byte contained in the current address loca­
tion (specified by the ADDRESS input) to be asserted to the input of the data output registers. The 
PLOAD OUTREG BO output of the data format control logic is asserted to the data output registers to 
cause loading of the data byte asserted from FIFO A into register BO of the data output registers. The 
PINCR FIFO CNTR output of the data format control logic is asserted to the FIFO A address counter 
and control where it is used with the PSEL FIFO A and PORT CLOCK L inputs to generate a clock 
signal to increment the ADDRESS asserted to FIFO A. 

If a data longword is to be read, the READ DAT A L input to the data format control logic is used with 
the CPU CLOCK H input to enable the PENB FIFO, PLOAD OUTREG BO:B3, and PINCR FIFO 
CNTR outputs. The PENB FIFO and PINCR FIFO signals are asserted to the FIFO A address 
counter and control. The PENB FIFO signal is combined with the PSEL FIFO A input to produce the 
ENB FIFO A output, which is asserted to FIFO A to enable the data byte contained in the address 
location specified by the ADDRESS input to be asserted to the input of the data output registers. The 
PINCR FIFO CNTR signal is combined with the PSEL FIFO A and PORT CLOCK L inputs to gen­
erate a series of four clock pulses to sequentially increment the ADDRESS asserted to FIFO A and 
thus enable the data bytes from four contiguous address locations to be asserted to the data output 
r~gisters. The PLOAD OUTREG BO through PLOAD OUTREG B3 outputs of the data format con­
trol logic are enabled sequentially to enable the data bytes from the four contiguous addresses to be 
assembled into a data longword format in data output registers. 

When the READ PORT L signal is asserted, following the READ DATA WORD or READ DATA 
BYTE port microinstruction, and the SEL ACC IN H is not asserted (indicating that the READ 
PORT L signal is applicable to the IDC), the read port select register generates the applicable SEL 
BYTE L or SEL WORD L and READ IDC L outputs. The SEL BYTE L or SEL WORD L output 
produces an ENABLE OUTREG L signal. The ENABLE OUTREG L signal is asserted to the data 
output registers to enable the contents of the data output registers to be asserted onto the BUS I/O. 
The ENABLE OUTREG L signal is also asserted to the port microinstruction decode register. The 
READ IDC L output is asserted to the Y-bus transceivers to enable the data byte or data word on the 
BUS 1/0 from the data output registers to be asserted to the CPU via the CPU Y BUS. 

If the AUTOMODE function had been preset by a PORT MICROINSTRUCTION input to the read 
port select register, then the AUTOMODE Hand the ENABLE OUTREG L inputs to the port micro­
instruction decode register will initiate a WRITE DAT A L output signaL The WRITE DAT A L output 
reinitiates loading of the data output registers with the next data longword to be read. 

Figures 3-32 and 3-33 show the timing relationship between the CPU PORT MICROINSTRUCTION, 
PORT INSTR, READ PORT Land timing signal inputs to the IDC, the resulting IDC control signals 
and the period during which the requested data byte or data longword, respectively, is asserted to the 
CPU via the CPU Y BUS. Figure 3-34 shows the timing for data longword transfers to the CPU using 
the AUTOMODE function. 

3-87 



w 
I 

00 
00 

CPU MICROCYCLE 
r-mo nsec) 1 
I PO I P1 I P2 I PO I P1 I P2 I PO I P1 I P2 I PO I P1 I P2 I PO I P1 I P2 I PO I P1 I P2 I PO I P1 I P2 I PO I P1 I P2 I PO I P1 I P2 I PO I P1 I P2 I 

PORT CLOCK L 

CPU P2 H 

CPU CLOCK H 

P2 CLOCK L 

PORT MICROINSTRUCTION 
(CSR 17, CSR 14:CSR 10) 

PORT INSTR~ 

PSEL FIFO A H 

PCLR FIFO CNTR H 

READ DATA L 
AND READ BYTE L 

PENB FIFO H 
AND PINCR FIFO H 

LJ Li u LJ LJ u u LJ 
SELECT FIFO A CLEAR FIFO CNTR READ DATA BYTE 

L L e 

FIFO A ADDRESS COUNTER RESET TO ZERO 

~~~~~~~~~~~~~~~~~~~~~ 

PLOAD OUTREG L

(CLOCK INPUT TO
FIFO A ADDRESS COUNTER)

READ PORT L

READ IDC L AND
ENABLE OUTREG L

t..J==LOAD OUTREG BO

u==z:INCREMENT FIFO A ADDRESS

DATA BYTE ASSERTED TO CPU

LJ Lr

CPU Y BUS (V
(BUSY D07:DOO) BYTE-~

TK·7391

Figure 3-32 Data Byte Transfer Timing (IDC to CPU)

CPU MICROCYCLE
f-" (270 nsec)-.j

I PO I Pl I P2 I PO I Pl I P2 I PO I Pl I P2 I PO I Pl I P2 I PO I Pl I P2 I PO I Pl I P2 I PO I Pl I P2 I PO I Pl I P2 I PO I Pl I P2 I PO I Pl I P2 I

PORT CLOCK L

CPU P2 H

CPU CLOCK H

P2 CLOCK L

SELECT FIFO A CLEAR FIFO CNTR READ DATA WORD

~~~1~~~N~~~-------~-----.. -,--~~~-,~m*mz~~m%m~m~mmlm·~m~~m~~m~mm@m~~~~~m,mM~G~®~u~~~@~l~:~~~~fil 
PORT INSTR H 

PSEL FIFO A H ___ _.. 
FIFO A ADDRESS COUNTER RESET TO ZERO 

PCLR FIFO CNTR H 
__________ __, 

READ DATA L 

PENB FIFO AND 
PINCR FIFO CNTR H----------------------' 

PLOAD OUTREG BO L 

PLOAD OUTREG Bl L 

PLOAD OUTREG B2 L 

PLOAD OUTREG B3 L 

ENB FIFO A L 

LJ+---z__ LOAD Fl RST BYTE 

LJ-z_ LOAD SECOND BYTE 

LJ---z... LOAD THIRD BYTE 

LJ+--z... LOAD FOURTH BYTE 

(CLOCK INPUT TO FIFO A-----------------------. 
ADDRESS COUNTER) 

READ PORT L 

ENABLE OUTREG L 

READ IDC L 

CPU Y BUS 
(BUS Y D31 :DOO) 

'--_,-/ 

DA lA LONGWORD 
ASSERTED TO CPU 

Figure 3-33 Single Data Longword Transfer Timing (IDC to CPU) 

3-89 



CPU MICROCYCLE 
H270 nsecl-1 

1 po 1 Pl 1 P2 I po 1 Pl 1P21Po1Pl1 P2 1 Po 1 Pl 1 P2 1 Po 1 Pl 1 p2 1 PO 1 Pl 1 P2 I po 1 Pl 1 P2 I Po 1 Pl 1 P2 I Po 1 Pl r P21 po 1 Pl 1 P2 I po 1 Pl 1 P2 1 po 1 Pl 1 P21 

PORT CLOCK L 

CPU P2 H 

CPU CLOCK H 

P2 CLOCK L 

SELECT FIFO A CLEAR FIFO CNTR SET AUTOMODE READ DATA WORD 

PORTMICROINSTRUCTIONI ... ... ... -
ICSR 17, CSR 14:CSR 101 1-. ___ Ji:ii_rtt/Ai~~L---....l-~~~~---.-J-~==:r.L---__J~================== 

e r e r 

PORT INSTR H 

PSEL FIFO AH---__. 
FIFO A ADDRESS COUNTER 

PCLR FIFO CNTR H -----------'~RESET TO ZERO 

AUTOMODE H ------------------
READ DATA L 

PENB FIFO H AND 
PINCR FIFO CNTR H ------------------------

PLOAD OUT REG BO L 

PLOAD OUT REG Bl L 

PLOAD OUT REG B2 L 

PLOAD OUT REG B3 L 

ENABLE FIFO A L 

~c~g~:s~N~~~N~~:to A----~ 

READ PORT L 

ENABLE OUT REG L 

READ IDC L 

CPUYBUS ~ ~ ~-
(BUS Y D31 :DOOi 

~ '---..,..-.) 
FIRST DATA LONGWORD SECOND DATA LONGWORD 
ASSERTED TO CPU ASSERTED TO CPU 

Figure 3-34 Automode Data Longword Transfer Timing (IDC to CPU) 

3.5.13.8 Initializing/Clearing JDC and R80 Disk Drive - The IDC and R80 disk drive may be in­
itialized under CPU control or initialized automatically following an interruption of operating voltages 
from the V AX-11 /730 power system. A logic diagram of the initialize/ clear logic is shown in Figure 3-
35. 

When a CLEAR IDC port microinstruction is asserted to the IDC, the resulting CLEAR IDC L signal, 
a 270 nanosecond pulse, is asserted to the initialize/clear logic. The CLEAR IDC L input is loaded into 
flip-flop I by the P2 CLOCK L input and transferred to flip-flop 2 by the second P2 CLOCK L input. 
The output of flip-flop 2, a 270 nanosecond positive pulse, is the initialize signal for the IDC and R80 
disk drive. 

3-90 



P2 CLOCK l 

CLEAR IDC L 

FF1~~~~~~-'r-----i•~~~~~~~~ 

FF2~--------~r-----1-~~~~ 

R80 INITIALIZE H 

FROM CPU USUS DCLO l DCLO H 

CLEAR IDC L 

LOGIC 

L POWER I_ POWER 
!INTERRUPTED r-- RESTORED 

P2CLOCK~ 

DCLO~ 

FF1 

FF2 

INIT H 

R80 INITIALIZE H 

INIT H 

INIT L 

I 
I 

~ 
: f-11 L ( f--? ~1-< _______ L 

~: L 

'-----------1 ~~~VER RSO INITIALIZE 6?s~agRIVE 6:~~N~C~FACE { 

.~-P_2_C_L~O~C~K_.:...L~~~~-~~~-~~~~~~~~~~....L..-~---1 

Figure 3-35 Initialize/Clear Logic Diagram 



The UBUS DCLO L input to the initialize/clear logic is asserted when de power to the VAX-11/730 is 
interrupted or goes out of tolerance. Following the power interruption, DCLO L is held asserted until 
approximately 100 microseconds after de power has been restored. During the period between restora­
tion of de power and deassertion of DCLO L, and for two CPU microcycles following deassertion of 
DCLO L, the initialize/clear logic holds the INIT H, INIT L, and R80 INITIALIZE signal outputs 
asserted. 

The timing diagram in Figure 3-35 shows the interval of assertion of the INIT and R80 INITIALIZE 
outputs relative to the CLEAR IDC L and DCLO L signals asserted. 

3.5.14 Microcontroller Branching, Loops, and Stalls 
The microcontroller consists of eight 512 X 8 PRO Ms, branch enable multiplexers, loop counter, and 
microfunction decoders (see Figure 3-36). The eight 512 X 8 PROMs are addressed in parallel, which 
provides a 512 X 64 PROM with 512 addressable locations. Each address provides a unique 64-bit 
microword output. The microword output is made up of the following: 

• Nine "next address" bits (NAO 8:0) 

• Two loop counter control bits (ULOAD LOOP CNTR and UINCR LOOP CNTR) 

JAM H 

MISMATCH L 
DRIVE ERR 
OPI 
MAINT 
ASSI 
RBO FORMAT 
F2 

SYNC SEC PLS 
XFER REQ 
CRC/ECC ERROR 
FIFO OVFLW 
FIFO MAX 
ONLINE 
Fl 

DRIVE RDY 

CROY 
RBO 
RBO SYNC INDEX PLS 
CSSE 
FO 

SEQUENCE CLOCK H 

NAO 0 
NAO 1 

NAO 2 

NAO 8:NAD 3 il 
JAM H 

" 
NAO 2 

NAO 8:NAD 3~ 
NUA 2 V 512 X 64 PROM 

40 
1 

IT 2 
~3 

BRANCH 

4 
ENABLE 
MUX 

BEN2SO,IJ1 
UINCR ULOAD 0 5 

K 
LOOP LOOP c'i 

6 CNTR CNTR 
7 u "1 z 

:::> 

~o NUA 1 ~ 
BRANCH r 

0 

.... 1 ,:.: 
[ MICROFUNCTION 

2 Ul DECODERS I-
3 ENABLE~ z 
4 MUX > <( 

.L III t;; 
5 t;;/I z 

~6 0 12 BIT I a:: BENl SO, Sl, S2 u 
~1 u::'r MICROWORD 

0 
<( 

~o g~UA 0 

1 
CNTR OVFLW 

2 BRANCH 
3 ENABLE 
4 MUX rnTS 5 v 6 BENO SO, Sl, S2 

~1 ~ 4 
CNTR OVFLWJ 

LOOP l ] COUNTER 

1 
UDRV rUDRV 1UDRV -1 
SEL SEL 0 SEL 1 

v 

Figure 3-36 Microncontroller Functional Block Diagram 

3-92 

~2 BIT 
ROWORD MIC 

v 
47 BIT 

ROWORD MIC 
(CO NTROL SIGNALS) 



• An eight-bit selectable constant (CNST 7:0) 

• Nine branch enable bits (BEN 2 SO, SI, and S2; BEN I SO, SI, and S2; and BEN 0 SO, SI, 
and S2) 

• Four microfunction bits (UFUNC 3:0), a 47-bit microword 

The 4 7-bit microword output is made up of a 32-bit microword from the 5 I 2 X 64 PRO Ms, the UDRV 
SEL, UDRV SEL 0, and U ORV SEL I bit outputs of the loop counter, and the 12-bit microword 
output of the microfunction decodes. 

The nine .. next address" bits are used as the base address in formulating the next address for the 5 I 2 X 
64 PROM. The nine branch enable bits specify which (if any) branch conditions are examined to modi­
fy the three least significant bits of the base "next address." 

The two LOOP CNTR control bits are used to load the loop counter with a selectable constant and 
enable the loop counter to be incremented by the SEQUENCE CLOCK input. 

The eight-bit CONSTANTS output is used to present the loop counter and to generate the sync byte 
patterns. 

The four microfunction bits are decoded in the microfunction decoders to provide a I 2-bit microword. 

The 12-bit microword output of the microfunction decoders, the drive select bit outputs of the loop 
counter, and the 32-bit microword output of the 5 I 2 X 64 PROM provide a 46-bit microword output of 
the microcontroller, which provide the control signals for the IDC. 

3.5.14.1 Microcontroller Branching - The microword output from the IDC microcontroller is deter­
mined by the address input to the 512 X 64 PROM. The address is derived from the six most signifi­
cant ·~next address" bits output from the PROMS (NAD 8:3) and the three "next microaddress" bits 
output from the branch enable multiplexers (NUA 2:0). The next microaddress bits are derived from 
the next address (NAD 2:0) or any one of the conditional inputs asserted to the microcontroller branch 
enable multiplexers. Each of the three branch enable multiplexers may select any one of the inputs ·to 
be asserted on the associated NUA signal line. The signals selected allow the three least significant 
address bits to enable an eight-location multiway branch. 

3.5.14.2 Microcontroller Loops - The microcontroller may be made to loop on one or a series of ad­
dresses until a specific branch condition is satisfied. 

3.5.14.3 Microcontroller Stalls - Microcontroller stalls are caused by interrupting the SEQUENCE 
CLOCK input. Once the microcontroller is stalled, it remains in the microstate initiated before the 
clock was interrupted until the SEQUENCE CLOCK input is reasserted. 

3.5.15 Read Data Separator Operation 
The read separator (Figure 3-37) converts MFM-encoded RL READ DAT A into an IDC compatible 
format (NRZ). It also generates the OS CLOCK used to synchronize JDC operation with the timing of 
RL READ DATA inputs. 

The data stream transferred from the disk (RL02) to the IDC consists of composite clock and data bits. 
With single density, a data bit is decoded by a data window that is generated from the clock bit. In 
double density, the lack of consistent clock bits makes it impossible to generate a data window in this 
manner. Instead, to separate clock and data bits the data separator circuit must first determine their 
nominal position and then generate a clock and data window that is centered around the bit positions. 

3-93 



DATA L 

RL02 H --------1 
UENBLOOPLOCKH~~,___,,, 

PULSE 
SHAPER 

PHASE - LOCK LOOP 

PHASE 
COMPARATO 

ERROR 
INTEGRATOR SIGNAL 

8.2 MHZ 
VCO H 

DATA 
SEPARATOR 

L __________ ___, 

SEL OSK CLK H 

CROY L-----' 

Figure 3-37 Read Data Separator Block Diagram 

FAST 
LOCK L 

OS CLK H 

OS DATA H 

Tt<.·8670 



To determine the nominal bit position around which to center the window, the data separator must 
track data bit frequency changes. It uses the phase relationship between a bit and its window to vary 
the position of the window. In this way, even if an unpredictable bit shift occurs, the read data separator 
can adjust the window's position to compensate for the change. 

Since a data pulse may occur at either the center or boundary of a bit cell, its location remains unpre­
dictable for random data patterns. The only consistent pattern that may be used as the basis for data 
separation (MFM to N RZ) is the fact that MFM encoding guarantees that there will be at least one 
flux reversal on the disk for every two bit cells. This fundamental frequency makes it feasible to use 
phase lock loop techniques to form a self-clocking read data separator. 

3.5.15.1 Phase Lock Loop (PLL) -The PLL is a closed loop circuit that locks onto the basic frequen­
cy of data bits (RL READ DATA L) read off the disk, and provides an output (8.2 megahertz VCO H) 
that is in phase anad frequency locked with the input data. Its output frequency is twice that of the 
incoming RL READ DAT A bit rate. A simplified block diagram is shown in Figure 3-37. The input 
data to the pulse shaper can come from two different sources. The WRITE DATA L line .provides a 
data path between the write precompensation circuit and the pulse shaper. This data path is used dur­
ing the maintenance command as a means of sending write data back into the read circuits. The PL 
READ DAT A L line is the data path followed when reading data off the disk. The RL READ DATA 
L pulses are standardized in the pulse shaper to a uniform 60 nanosecond pulse width and applied to the 
phase comparator and data separator. The other input to the phase comparator is the inverted output of 
the voltage-controlled oscillator (8.2 megahertz VCO H). 

In the phase comparator, the phase of the RL READ DAT A L pulse is compared with that of the VCO 
output (8.2 megahertz VCO H) as is illustrated in Figure 3-38A. The phase comparator then generates 
two signals (pulses) equal in duration to the phase difference: UP L if the VCO output (8.2 megahertz 
VCO H) is less than twice the data rate (Figure 3-388) or DOWN L if the VCO output is more than 
twice the data rate (Figure 3-38C). If the VCO output is less than twice the data rate the VCO should 
speed up. Hence UP Lis asserted and its width represents the magnitude of the speedup required. The 
same is true for slowdown if the VCO output is more than twice the data rate, (DOWN L asserted). 
These phase error outputs (UP L and DOWN L) are applied to the integrator, which generates the 
small error offset voltages required to control the VCO frequency and maintain loop lock. 

RL READ DATA INPUT 
TO PULSE SHAPER 

RL READ DATA OUTPUT 
OF PULSE SHAPER 

PRESET INPUT TO UP 
& DOWN FLIP FLOP 

8.2 MHZ VCO H 
AT TWICE DATA RATE 

HI ~------~--~--~~~ 
UP L 

LOW 

DOWN L 
HI~--~--~~~--~~~ 

LOW 

T K-11668 

Figure 3-38a VCO Output at Twice Data Rate 
(Frequency Lock) Timing Diagram 

3-95 

RL READ DATA INPUT 
TO PULSE SHAPER 

RL READ DATA OUTPUT 
OF PULSE SHAPER 

PRESET INPUT TO 
UP & DOWN FF 

8.2 MHZ VCO H AT LESS 
THAN TWICE DATA 
RATE 

UP L 

I I -----,;uo---u 
I I 

DOWN L I I 
I I LOW 
I I 

INTEGRATOR OUTPUT ___v.-
1 I 
I I 

L 

TK·B669 

Figure 3-38b VCO Output Less Than Twice 
Data Rate Timing Diagram 



RL READ DATA INPUT 
TO PULSE SHAPER 

RL READ DATA OUTPUT 
OF PULSE SHAPER 

PRESET INPUT TO 
UP & DOWN FF 

8.2 MHZ VCO HAT MORE 
THAN TWICE DATA RATE 

UP L 

I I 

DOWN L ---u--u 
I I 
I I 

INTEGRATOR OUTPUT ---~ ... : __ _ 
I I 
I I 

TK~8667 

Figure 3-38c VCO Output More Than Twice Data Rate 
Timing Diagram 

The integrator converts the UP Land DOWN L signals to an error voltage. The output (errror voltage) 
of the integrator is raised or lowered proportionally to the area under the UP Lor DOWN L pulse (the 
integral of the pulse). Since the amplitude of the UP Land DOWN L pulses is fixed and the duration 
represents the amount of phase error, the change in error voltage due to the area under the pulse is also 
proportional to the phase error. The integration time constant (the rate at which the error voltage is 
allowed to change) is chosen such that the system will track long term frequency variations of the input 
but not respond to individual. peak-shifted bits. 

The voltage-controlled oscillator generates an output signal (8.2 megahertz VCO H) whose frequency is 
proportional to the voltage (error voltage) applied. 

Figure 3-39 illustrates the relationship between the read data and the phase lock loop settling time. The 
phase lock loop is designed to lock onto read data frequency within four byte times. 

_--1 SECTOR------ HEADER PREAMBLE ------.11r•..__ADDRESS ---I 
~ PULSE ----i 

ZEROS ZEROS ZEROS ZEROS ZEROS 

---SETTLING TIME ----.i 
I 

SYNC 
BYTE 

(SECTOR 
HEADER 
CYLINDER) 

ZEROS 

,,,.,..-- ....... 
,,,. ' 

/ ' 
I 
I 
I 

4 BYTE TIMES ALLOWED FOR VCO FAST LOCK 
ERROR / ' 
VOLTAGE t------'-------..-~-­
TO VCO 

Figure 3-39 Loop Lock Settling Time 

3-96 



3.5.15.2 Data Separator - The data separator examines the incoming data stream and separates the 
pulses into DS DATA or DS CLOCK. A detailed diagram of the data separator is illustrated in Figure 
3-40 and its timing sequence is illustrated in Figure 3-41. 

When a read header command is decoded and the SYNC SECTOR PLS is detected, the header pre­
amble from the selected drive appears on the RL READ DATA L line. The assertion of RLC2 H and 
UENB LOOP LOCK H allows the header preamble to enter the phase lock loop. The phase lock loop 
performs a fast lock using the first four bytes of zeros to synchronize itself with the RL READ DAT A 
frequency. This fast lock is enabled by the assertion of FAST LOCK L from the enable flip-flop. 

SEL OSK CLK H 

READ DATA 

D 

ENABLE 
FFl 

c 0 

FAST LOCK L 

D 

WINDOW 
FF2 

c 0 

OS CLK H 

------l----"---t D 

c 

DATA 
FF3 

0 

+3V H 

OS 
DATA 
FF4 

0 

RL02 H & UENB __ _. 
LOOP LOCK H 

CROY L 

WINDOW 
GATE 

Figure 3-40 Data Separator Detailed Diagram 

8.2 MHZ VCO H 

SEL OSK CLK H _J 

FAST LOCK L __J 

OS CLK H 
(WINDOW FF) 

DATA WINDOW 
(WINDOW GATE) ----

OS DATA H (NAZ) 

I I 
I I 

~ 
1 

TK-8665 

Figure 3-41 Data Separator Timing Diagram 

3-97 

OS DATA H 

TK-8673 



After synchronization (fast lock), SEL OSK CLK H is asserted to enable the data separator. The en­
able flip-flop will set on the detection of the first data pulse and remains set until the data separator is 
disabled by the negation of SEL OSK CLK H. 

The window flip-flop is now allowed to toggle under control of the 8.2 megahertz VCO H input produc­
ing two outputs (normal and inverted) at 4.1 megahertz each. The normal output (OS CLK H) is syn­
chronized with DS DAT A H and is asserted on the CURRENT CLOCK output of the clock control. 
When the window flip-flop is set, the inverted (low) output indicates a window time during which data 
pulses are interpreted as cell center pulses (data ones). When reset, it indicates a window time during 
which data pulses are interpreted as cell boundary pulses (data zeros). 

The data flip-flop sets only when a data one occurs during the assertion of the window (window flip-flop 
set). 

The window gate generates a pulse that simultaneously clocks the DS data flip-flop and clears the data 
flip-flop. 

The OS data flip-flop is set by data ones (data flip-flop set} but is synchronized to the window gate. 

3.5.16 MFM Encoding and Write Precompensation 
The MFM encoding and write precompensation logic (Figure 3-42) performs two major functions: 

I. Converting serial digital data (DSRO H) to a modified frequency modulation (MFM) format 
(MFM DATA L) 

2. Preshifting the MFM data pulses to precompensate for magnetic peak shift phenomena 
(WRITE DATA L/H) 

Figure 3-43 illustrates the timing relationship for the MFM encoding and write precompensation logic. 

3.5.16.1 MFM Encoding - The RL02 uses a modified frequency modulation (MFM) encoding tech­
nique to magnetically record digital data on the disk surfaces. With this technique, each logical one 
produces a flux reversal in the center of its bit cell. Two successive logical zeros produce a flux reversal 
at the boundary of each bit cell containing a logical zero following a logical zero. This technique has the 
advantage of putting at least one flux reversal on the disk for every two bit cells, making it feasible to 
use phase lock loop techniques to form a self-clocking data recovery system. 

During the write (UDISK WRITE H) or maintenance (UMAINT H) functions, the NRZ enable logic 
allows the DSRO H input from the data shift register to appear as NRZ WRT DAT A H. 

The write data shift register converts the serial write data (NRZ WRT DAT A H) input to parallel write 
data (WRT DATA (3:0) H) using the 4.1 megahertz L clock. This allows the write data to be viewed as 
follows: 

• WRT DAT A3 H (next bit to be written) 
• WRT DAT A2 H (bit to be written) 
• WRT DAT A I H (least significant preceding bit) 
• WRT DAT AO H (most significant preceding bit) 

The ALLOW I logic, using both 4.1 megahertz clocks, monitors the present write data one (WRT DAT A2 
H) and the previous write data one (ALLOW I H). If either signal is a one, ALLOW 1 H is asserted or 
remains asserted to the encoder, creating a window for the generation of an MFM-encoded logical one. The 
LOAD REG L output is used to clock in write data (WRT DAT A (3:0) H) for use within the ALLOW I 
and the write early /write late bit comparison logic. 

3-98 



r ~~~o= ----- -- -- -- -L -- --l- -- --1w-;,; P-;;zO;;- -- -- -- -- -- -- - --1, 
4. 1 MHZ H LOAD REG L 

ALLOW T I 8.2 MHZ CLK H DIVIDE 
BY 

4.1 MHZ L ..... 1 I .--------. 
r-t-+- LOGIC ALLOW 1 H ....-----. MFM 5 NSEC I 

J I 
DATA L~ TIME 20 NSEC 

[----..... ~ I DELAY 35 ~ WRITE 

2 

~C .-----t-.i NORMAL t---

i------------~ ENCODER I ~ (NOMINALJ 
DISK 
WRITE H 

NRZ I l 
-----<~M ENABLE rr;NRZWRT1-D-A-TA-H----<1-+-+-------------<1--------,~,..-~ LOGIC :J f-+ 
DSRD H WRT DATA 0 H r- -- --

.. _J__ 

UMAINT H 

._____ 1 WRITE 

WRITE 
DATA 
SHIFT 
REG 

l LATE BIT 
1----~-t-1-----W_R_T_DA_T_A_l H-----<1--------r--i~,__~ COMP AR ISON 1--1.-S_l_L_~ l LOGIC 

WAT DATA 2 H 

WRT DATA 3 H 

T 

l 
I 

I 
I 
I 
I 
I 

WRITE 
___ _._EARLY BIT 

COMPARIS0~' 1-----.--s_o_L _ _, 
LOGIC 

WRITE 
LATE 

WRITE 
EARLY t--

WRITE DATA L 
~ 

WRITE 

DATA H ~ 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

______ J I [-
L_ __________ _J_ ________ _ 

Figure 3-42 MFM Encoding and Write Precompensation 
Logic Functional Block Diagram 



8.2 MHZ H 

4.1 MHZ L 

4.1 MHZ H 

NRZ WRT 
DATA H 

WRT 
DATA3 H 

WRT 
DATA2 H 

WRT 
DATAl H 

WRT 
DATA 0 H 

0 0 

ALLOW 1 H Jl n...__ ___ _. 

MFM DATA H 

Sl L LJ 
SOL 

.____---JI 

rK 8664 

Figure 3-43 MFM Encoding and Write Precompensation 
Timing Diagram 

The encoder monitors the following write data (WRT DAT A (2: I) H) conditions: 

• Logical one (ALLOW I H) 
• Two successive logical zeros (the complement of WRT DATA (2: I) H) 

The encoder, in synchronization with the clock inputs (8.2 megahertz H, 4.1 megahertz L, 4. I megahertz 
H), will assert MFM DAT A L in the center of its bit cell for each write data logical one (ALLOW H). For 
two successive write data logical zeros (the complement of WRT DAT A (2: I) H), the encoder will assert 
MFM DATA Lat the boundary of each bit cell containing a logical zero following a logical zero. 

3.5.16.2 Write Precompensation - One of the problems associated with double density magnetic record­
ing is a phenomenon called peak shift, in which flux reversals written on the disk tend to repel one 
another. Because of this, the flux reversals appear displaced from where they were written. This can 
cause pattern sensitive data recovery problems. 

The write precompensation logic offsets the harmful effects of peak shift. This logic displaces the 
MFM-encoded data pulses (MFM DATA L) by 15 nanoseconds in one direction or the other (early or 
late) before they are written on the disk. This allows the peak shift phenomenon to displace the flux 
reversal to the desired position. 

To determine if an MFM-encoded data pulse is to be displaced from its nominal position (20 nanose­
conds), the following rule is used. A pulse is preshifted only if: 

• It is bounded on one side by a pulse that is not more than one bit cell away, and 
• It is bounded on the other side by a pulse that is more than one bit cell away 

3-100 



The direction (early or late) of the prcshift depends on the write data bit combinations that precede (WRT 
DAT A (I :0) H) and/or follow (WRT DAT A3 H) the bit to be preshifted (WRT DAT A2 H). 

The write prccompensation logic is concerned with only four write data bit combinations, as shown in 
Figure 3-44. All other bit combinations preclude the need for preshifting by 15 nanoseconds and, therefore, 
the nominal position (20 nanoseconds) is used. The write late and write early bit comparison logic monitors 
the four write data bits (WRT DAT A (3:0) H) looking for one of the four bit combinations that require 
prcshifting. After monitoring the bit combinations, the logic causes one of the following to occur: 

• Leave the pulse to be written in its nominal position (S 1 L, SO L deasserted, and the 20-
nanosecond tape asserted) 

• Write the pulse 15 nanoseconds early (20 nanoseconds minus 15 nanoseconds) (SI L deas­
serted, SO L, and the five-nanosecond tape asserted) 

• Write the pulse 15 nanoseconds late (20 nanoseconds plus 15 nanoseconds) (SOL deasserted, 
S l L, and 35-nanosecond tape asserted) 

Thus, for the write data bit combination 1000 as shown in Figure 3-44, the MFM-encoded data pulse 
must be preshifted 15 nanoseconds to the right (late) to compensate for a peak shift to the left. For the 
bit combination 0001, the MFM-encoded data pulse must be preshifted 15 nanoseconds to the left 
(early) to compensate for a peak shift to the right. 

The MFM-encoded and write-precompensated data (WRITE DAT A L/H) are made available to the 
RL02 disk drive. 

DISPLACEMENT BY 
PRECOMPENSATION 

PRECEDING BITS 

WRT WRT 
DATAO H DATA 1 H 

0 

DELAY i----­
(WRITE LATE) 

PS 

0 0 

ADVANCE PRE 

(WRITE EARLY) 

ADVANCE 
(WRITE EARLY) 

0 

DELAY 

(WRITE LATE) 

WRT 
DATA2 H 
BITTO 
BE WRITTEN 

0 

PRE 

0 

PS 

PRE PS 

WRT 
DATA3 H 
NEXT 
BIT 

0 
to-----1 A 

B 

0 

------c 

PS PRE 
D 

TIME---+ 

NOTES: 

(1) PS·DIRECTIONOFPEAKSHIFT 
PRE ·DIRECTION OF PRESHIFT TO COMPENSATE FOR PEAK SHIFT 

(2) SHADED AREA= DON'T CARE 

TK~662 

Figure 3-44 Write Precompensation Early /Late Bit Combinations 

3-101 



4.1 MAINTAINABILITY FEATURES 

CHAPTER 4 
MAINTAINABILITY FEATURES 

The circuitry of the IDC contains several features that enhance maintenance. These are: 

• Maintenance mode 
• Data loopback 
• Write inhibit 
• Timeout inhibit 
• Defeatable enables 

4.1.1 Maintenance Mode 
When bit 25 of the CSR is set, the I DC is placed in maintenance mode, where it is used to redefine 
instructions and to allow initiation of diagnostic software. 

4.1.2 Data Loopback 
When testing the JDC with microdiagnostics, the IDC provides a simulated RL READ DATA input 
(See Figure 3-1 ). When a maintenance function is specified by the CPU, the microcontroller selects the 
RL WRITE DAT A output of the MFM encoder as the RL READ DATA input to the IDC read data 
separator. This allows the capability of performing testing of the IDC using known data configurations. 

4.1.3 Write Inhibit and Timeout Inhibit 
During microdiagnostic testing of the IDC, the timeout logic is inhibited and writing to the disk drives 
is inhibited. The timeout inhibits prevent the IDC from terminating diagnostic operations requiring 
more than 150 milliseconds to perform. The write inhibit enables the IDC to be tested without corrupt­
ing the data stored in the associated disk drives. 

4.1.4 Def eatable Enables 
The enable input to each of the PALs (the GND input that enables the output of the PALs to be as­
serted) is applied through a resistor. Thus, the enable may be manually defeated by asserting a +3 Vdc 
level at the enable input of the PAL. 

4-1 



5.1 BASIC SYSTEM OPERATION 

CHAPTER 5 
PROGRAM INTERFACE 

Five basic decisions are made by the CPU when a data transfer occurs: 

1. The drive to be used (drive number) 
2. Where on the disk the desired data are located (cylinder, sector, track) 
3. The direction of data transfer (read or write) 
4. Where in memory the data to be read from or written to are found (starting memory address) 
5. The amount of data to be transferred (number of words) 

The commands generated by the CPU to make these decisions are applied to the selected disk through 
the IDC. 

Up to four RL02 disk drives or one R80 disk drive and up to three RL02 disk drives can be connected 
to the IDC. However, since all of the drives have the same bus address, the CPU must designate (to the 
I DC) which drive to select. Once selected, only that particular drive can decode and respond to the 
operational commands. 

Once selected, the drive starts its mechanical positioning after receiving the cylinder, sector, and track 
values plus a seek command containing a GO bit. The drive notifies the CPU, through the IDC, when 
the desired position is located. If no error condition exists, the CPU initiates the data transfer sequence. 

When the heads are at the correct location and the command is a read operation, serial data are read 
from the disk, converted to parallel in the IDC, and then transmitted to the CPU. At the completion of 
a read or write operation, the IDC 'interrupts the CPU (providing the interrupt enable is set) to indicate 
that the data transfer is complete. 

5.2 PROGRAMMING OVERVIEW 
The communication of control commands, status data, error conditions, and maintenance information is 
accomplished through registers contained in the IDC. The IDC contains eight registers required for 
drive operation. Table 5-1 lists these registers, their mnemonics, their address, the type of register (read 
only or read/write), and their basic functions. 

5.2.1 IDC Registers 

5.2.1.1 Control Status Register (CSR) - The control status register (address F26200) is loaaed under 
CPU control with the IDC control word. The CSR also operates under CPU control to cause the trans­
fer of the IDC status word (the current IDC control word contained in the CSR and a summary of the 
current status of the IDC and disk drives) from the IDC to the CPU. 

5-1 



Table 5-1 I DC Registers 

Register Name Address Type Function 

Control Status f 26200 R/W I DC control and status interface. 
(CSR) 

Bus Address F26204 R/W Contains the UNIBUS virtual 
(BAR) address of first byte to be 

transferred. 

Byte Count f 2608 R/W Contains 2's complement of number 
(BCR) of bytes to be transferred. 

Disk Address F2620C R/W Contains disk cylinder, sector, 
(DAR) and track address (head number) 

where transfer is to occur. 

Multipurpose F26210 R/W RL02 get status. 
(MPR) 

ECC Position F26214 R Contains the starting bit position 
of a correctable ECC error 
encountered during an R80 read. 

ECC Pattern F26218 R Contains the bit ( 11) pattern to 
be used to correct the error. 

IDC Initialize F2621C R/W When written with a negative one, 
causes the entire I DC to be 
initialized. 

The CSR asserts the initial branch conditions (FO, Fl, and F2) and the start signal (CROY) to the 
microcontroller. The CSR also controls selection of the applicable disk drive and enables the appropri­
ate read data paths of the IDC. Status information from the disk drives and from the IDC header /data 
comparator and ECC/CRC logic is asserted to the CSR, which makes this information available to the 
CPU in the form of the IDC status word output. 

When the function specified by the IDC control word is completed, is waiting for a data transfer to or 
from the CPU, or has been halted due to an error, the CSR operates from microcontroller inputs to 
generate and assert the applicable interrupt (UBUS BR5 or PORT XFER REQ) to the CPU. 

Table 5-2 provides a description of each bit of the CSR. 

5-2 



Bit Position 

00 

03:01 

05:04 

06 

07 

09:08 

Table 5-2 Control Status Register Bit Assignments 

Name 

Drive Ready 
(DROY) 

Function 
(F2:FO) 

Not used 

Interrupt 
Enable (IE) 

Controller 
(IDC) Ready 
(CROY) 

Drive Select 
(OSI:DSO) 

Description 

lndicates the drive is ready to receive a command. It is cleared 
during a seek or head select operation and is reasserted when 
the operation is completed. 

These bits are set by software to indicate the function to be 
performed when CROY is cleared. Cleared by INIT. 
Commands are as follows: 

R80 
FMT F2 Fl FO Command 

0 0 0 0 No drive operation 
0 0 0 I Write check data 
0 0 1 0 Get status 
0 0 I I Seek 
0 I 0 0 Read header 
0 I 0 I Write data 
0 I I 0 Read data 
0 I I I Read data without header check 
I 0 0 0 R80 write format function 

Commands are described in detail in Paragraph 5.3. 

When set, the CPU is interrupted at the normal or error 
termination of any function. 

Any asynchronous condition, such as a drive coming on line or 
completing a seek or asserting error, causes an interrupt due to 
the setting of the attention flop associated with that drive. This 
bit is set and cleared by the software writing the register. It is 
cleared by INIT. 

This bit is cleared by the software to indicate that the function 
contained in bits {03:01) is to be performed. It is set by the 
IDC at the completion of the requested function, at the 
detection of an error, or by INIT. 

Selects one of four drives (3 through 0) connected to the 
controller. Cleared by INIT. 

5-3 



Bit Position 

IO 

11 

12 

13 

14 

15 

Table S-2 Control Status Register Bit Assignments (Cont) 

Name 

Operation 
Incomplete 
(OPI) 

Data Check 
Error (DCK) 

Data Late 
(DLT) 

Nonexistent 
Memory (NXM) 

Description 

When set, indicates that the function did not complete within 
the OPI timeout or that a function was stopped because of a 
header CRC or skipped sector error. 

If OPI is cleared, the ECC error occurred on the data (DCK). 
If OPI is set, the error occurred on the header (HCRC). 

Indicates on a write, if OPI is cleared, that the CPU did not 
respond in time with accepting read data or passing write data. 
When OPI is set, the same bit indicates header not found 
(HNF). This indicates that the OPI timeout occurred while the 
IDC was searching for the correct sector to read, write, or 
write check. 

Indicates that the IDC was unable to access the memory 
address shown in the BAR. OPI and DLT are usually set when 
this error occurs. 

NOTES 
1. In bits 13:10, the CRC check is performed on 

both header words, even through the second 
header word on the RL02 is always 0. 

2. Bits 13:10, if caused by DRIVE ERROR, are 
cleared by INIT or by initiating a function. 
CROY is set by INIT. 

Drive Error 
(DE) 

Composite 
Error (ERR) 

Indicates that the selected drive has flagged an error. The 
source of the error can be determined by performing a get 
status function. This error can be cleared for the RL02 by the 
RST bit during a get status function. DE will not cause ERR 
and CROY until the normal occurrence of CROY. 

Indicates that at least one of the error bits 14: 10 is set. When 
ERR is set, an operation will terminate and interrupt if IE is 
set. 

5-4 



Bit Position 

19: 16 

2I :20 

22 

23 

Table 5-2 Control Status Register Bit Assignments (Cont) 

Name 

Attention 
(ATTN3:ATTNO) 

R80 ECC Status 
(ECSI:ECSO) 

D~c;cription 

An attention bit is provided for each drive to signal that a seek 
has been completed or that the drive has changed status. A 
status change is defined as asserting Drive Ready and 
removing Drive Ready while not doing a seek. These changes 
in drive status are scanned by the IDC whenever it is not 
occupied with performing a function. These bits are cleared by 
writing a one to the appropriate attention bit. 

These two status lines are encoded as follows: 

00 - No Errors. This is the initial state of the status lines. The 
00 state is maintained unless a read data error is encountered. 

0 I - Data Error. The 0 I state is entered following the check 
field of a read operation if·the data is nonzero. This bit 
indicates that the correction determination is in progress. 

I I - Correctable Error. The I I state is entered at the 
completion of the correction computation if the computation is 
successful. 

I 0 - Hard Error. If the correction computation operation is not 
successful, the 10 state is entered. 

NOTE 
The 01 state indicates that an error has occurred 
(ECC or CRC mode) and that a correction com­
putation is in progress (ECC mode). ST AT 1 senes 
as a "correction computation complete" signal. 

R80 Skip 
Sector Inhibit 
(SSEI) 

R80 Skip 
Sector Error 
(SSE) 

This is a read/write bit used to inhibit skip sector errors. When 
written as a I, skip sector errors are inhibited from occurring 
until the bit is cleared. This bit can be cleared by writing it to a 
zero or by INIT. It should not be used when in automatic skip 
sector mode (bit 27 cleared). 

This bit can be read or written and can be set to either a 0 or 1. 

It is set when bit 13 of the R80 header is read as a one, 
indicating that the sector being read is a displaced sector 
because it or a previous sector contained a bad spot. This error 
can be cleared by writing a 0 in the bit position or by INIT. 
This bit should not be used when in automatic skip sector mode 
(bit 27 cleared). 

5-5 



Bit Position 

24 

25 

26 

27 

28 

29 

30 

31 

Table 5-2 Control Status Register Bit Assignments (Cont) 

Name 

Interrupt 
Request (IR) 

Maintenance 
(MTN) 

R80 

Automatic Skip 
Sector Inhibit 
(ASSI) 

Time Out 
Inhibit {TOI) 

R80 Format 
(R80 FMT) 

Not used 

Mask Attention 
(MASK ATTN) 

Description 

Indicates that it is the IDC that has asserted BR5 and is 
requesting an interrupt. This bit can be cleared by writing a 
one to bit 24. 

Places the IDC in maintenence mode, where it is used to 
redefine instructions and allow initiation of diagnostic 
software. It can be read and written to a 1 or 0. 

This bit is asserted when DS 1 :0 has selected the R80 disk 
drive. 

When this bit is cleared, the I DC automatically handles skip 
sector errors. During this state, CSR bits 22 and 23 are 
undefined and should not be altered by software. Setting this 
bit disables the automatic handling of skip sector errors. Bits 
22 and 23 assume the meanings just described and are used to 
control SSEs in software. 

When set, this bit disables the IDC on-board timeout clock. 
This bit is primarily used by microdiagnostics. 

This bit, in combination with a function code of zero, selects 
the R80 format function to be performed after clearing 
CROY. 

When set, any writes to the CSR are masked, so as not to clear 
the attention bits. 

5.2.1.2 Bus Address Register (BAR) - The bus address register (address F26204) is loaded with the 
UNIBUS virtual address of the first byte to be transferred. Bits (31: 18) are ignored. 

5.2.1.3 Byte Count Register (BCR) - The byte count register (address F26208 is loaded with the two's 
complement of the number of bytes to be transferred. 

5-6 



5.2.1.4 Disk Address Register (DAR) -The disk address register (address F2620C) is loaded under 
CPU control with the required disk drive control word or read/write data address. The read/write data 
address of the disk address register may be incremented by the microcontroller to update the 
read/write data address information as additional contiguous sectors of data are written or read. The 
contents of the disk address register may be transferred from the IDC to the CPU under CPU control. 

The format of this 32-bit register is shown in Figure 5-1. 

The DAR must be loaded immediately before seek or data transfer commands. Since the R80 and 
RL02 have different geometries, the drive to be commanded must be selected before loading this regis­
ter. 

31 1615 0807 00 

CYLINDER I TRACK I SECTOR I 
TK-92 78 

Figure 5-1 Disk Address Register 

5.2.1.5 Multipurpose Register (MPR) - The multipurpose register (address F26210), when used with 
the RL02 get status function, is loaded with a get status command. The RL02 drive status word is 
obtained by loading the MPR with a get status command and then loading the CSR with a get status 
function. The IDC must be ready (CROY) before loading the MPR. With the R80, get status is in­
itiated by simply loading the CSR with the get status function. 

Table 5-3 provides a description of each bit of the MPR. 

Bit Position 

0 

2 

3 

15:4 

Name 

Marker 
(M) 

Get Status 
(GS) 

Not used 

Reset 
(RST) 

Not used 

Table 5-3 MPR Bit Assignments 

Description 

Used by the drive to tell when a new serial command word 
has arrived. Must be a 1. 

Must be a 2, indicating to the drive that the status word is 
being requested. At the completion of a get status command, 
the drive status word can be read from the MPR. With this 
bit set, bits 15:8 are ignored by the drive. 

If set, the RL02 drive clears its error register before sending 
the status. 

5-7 



S.2.1.6 ECC Position Register - The ECC position register (address F26214) is a 13-bit register that 
indicates the starting bit position of a correctable ECC error encountered during an R80 read function. 

S.2.1.7 ECC Pattern Register - The ECC pattern register (address F26218) is an 11-bit register in­
dicating the bits to be used to correct the error. It is valid only during an R80 read that contains a 
correctable ECC error. 

S.2.1.8 IDC Initialization Register - When written with a negative one (-1 ), the I DC initialization reg­
ister (address F262 l C) will cause the entire IDC to be initialized. 

S.3 COMMANDS 
Program operations are initiated by the combination of the actions listed below: 

• Selecting a drive 
• Loading the CSR with a function code 
• Setting the GO bit (CROY) 

The function code identifies a specific command. On assertion of the GO bit (CROY), the drive pro­
ceeds to execute the command. The commands can be divided into three categories: 

1. Positioning 
2. Data transfer 
3. Housekeeping 

These commands and their corresponding function codes are described in the following paragraphs. 

S.3.1 Positioning Commands 
Positioning commands direct the logic that controls the amount of mechanical movement required to 
position the heads over the recording media. These commands assert the A TIN bit after their normal 
completion. 

S.3.1.1 Seek Function (F2:FO = 3) - A seek is initiated to a drive by selecting it via the CSR, loading 
the DAR with the desired disk address, and issuing a seek command. 

RL02 Seek - When a seek command is encountered, the IDC will set CROY as soon as the drive receives 
the command and interrupt if IE is set. On receiving the cylinder address, the RL02 drive will seek and/or 
select a new head as indicated. Other combinations of DAR (0, I) will cause undefined results. 

If a cylinder address is provided that attempts to move the head past the innermost (track 511) or out­
ermost (track 0) limits, the head will come to rest on either track 0 or 510. 

If software discovers that a seek was unsuccessful or that the RL02 is not selecting the proper cylinder, 
the execution of a read header command followed by a seek to the desired cylinder will resynchronize 
the IDC to the proper cylinder. 

R80 Seek - The DAR must be loaded prior to the start of the seek function. The clearing of CROY will 
then initiate the desired operation. As soon as the transfer is complete, CROY will be set and the IOC will 
interrupt if IE is set. 

NOTE 
When - 1 is written to the DAR, the microcode will 
issue a recalibrate command R80. This command 
positions the heads over cylinder 0. 

5-8 



5.3.2 Data Transfer Commands 
Data transfer commands involve the transfer of data to or from the disk. This also includes the transfer 
of status information. 

5.3.2.1 Read Header Function (F2:FO = 4) - When a read header function is decoded with CRDY 
cleared, the I DC will read and buff er in the first header encountered on the selected drive. The IDC 
will set CROY and interrupt if IE is set. Software can then read the two header words and the CRC 
word from the MPR with three successive reads to determine the current cylinder, head, or sector loca­
tion of the drive. 

5.3.2.2 Write Data Function (F2:FO = 5) - When the write data function is decoded with CRDY 
cleared, the IDC begins reading successive header words and compares them to the DAR. When a 
match is found, the header CRC is checked and, if correct, the sector is written with the words provid­
ed by the CPU. For partial sector writes, the remamining sector area is filled with Os. At the end of the 
sector, the DAR is incremented and the next sector is written if there is count remaining. At the end of 
the transfer, CROY is set and an interrupt made if IE is set. 

5.3.2.3 Read Data Function (F2:FO = 6) - When this function is decoded with CRDY cleared, the 
I DC begins reading successive header words and comparing them to the DAR. When a match is found, 
the header CRC is checked and, if correct, that sector is read and the words requested are buffered for 
transfer to memory by the CPU. Data ECC (or CRC for RL02) is then checked and the DAR in­
cremented. If the desired number of words has not been transferred, the next sector is read. Otherwise, 
CROY is set and an interrupt made if IE is set. 

5.3.2.4 Read Data Without Header Check Function (F2:FO = 7) - When this function is decoded with 
CROY cleared, the data portion of the sector following the next sector pulse is read and the words 
requested are buffered for transfer to memory by the CPU. The header is neither compared nor check­
ed for CRC errors. Data ECC (or CRC for RL02) is checked at the end of a sector. If the desired 
number of words has not been transferred, the next sector is r~ad. Otherwise, CROY is set and an 
interrupt made if IE is set. · 

5.3.2.5 Write Check Function (F2:FO = 1) - This function is used to perform a bit-by-bit comparison 
between data in main memory and data on the disk. When the function is decoded with CRDY cleared, 
the I DC starts reading headers and compares them to the DAR. When a match is found, the header 
CRC is checked and, if correct, that sector is read and the data are compared in the controller with 
data that has been fetched from main memory by the CPU. At the end of a sector, if a data comparison 
error or a data CRC/ECC error has been sensed, the Data Check (DCK) error bit will be set in the 
CSR. 

5.3.2.6 Get Status Function (F2:FO = 2) 

RL02 Get Status - If the Get Status bit (bit I in the MPR) is set, the RL02 drive will send its status word 
via the status line to the IDC. When the drive status word is received, the JDC will set CROY and interrupt 
if IE is set. The CPU can then read the RL02 status word by reading the MPR. This function may be 
performed any time the controller is ready, even though the drive is not (during a seek or when in the load 
state). 

The operation is undefined if the Get Status bit is a 0. If bit 3 in the MPR is set, the drive will attempt 
to clear its error bits before sending the status word. 

The contents of the RL02 status word are listed in Table 5-4. 

5-9 



Bit Position Name 

2:0 State 
(ST)(A, B, or C) 

3 Brush Home 
(BH) 

4 Heads Out (HO) 

5 Cover Open (CD) 

6 Head Select (HS) 

7 Reserved 

8 Drive Select 
Error (DSE) 

9 Volume Check 
(VC) 

10 Write Gate 
Error (WGE) 

11 Spindle Error 
(SPD) 

12 Seek Timeout 
(SKTO) 

13 Write Lock (WL) 

14 Head Current 
Error (HCE) 

15 Write Data 
Error (WDE) 

Table 5-4 RL02 Get Status 

Description 

These bits define the state of the drive: 

CB A 
0 0 0 
0 0 1 
0 1 0 
0 1 1 
1 0 0 
1 0 1 
1 1 0 
1 1 1 

Load State 
Spin-Up 
Brush Cycle 
Load Heads 
Seek Track Counting 
Seek Linear Mode 
Up Load Heads 
Spin Down 

Asserted when the brushes are not over the disk. 

Asserted when the heads are over the disk. 

Asserted when the cover is open .or the dust cover is not in 
place. 

Indicates the currently selected head. 

Indicates multiple drive selection is detected. 

Indicates the transition from a head load state to a head on 
track state. 

Indicates the drive sensed Write Gate asserted when the 
sector pulse is asserted. 

Indicates the spindle is not reaching speed in the required 
time, or is overspeeding. 

Indicates the heads did not come on track in the required 
time during a seek command. 

Indicates write lock status of the selected drive. 

Indicates write current was detected in the heads when write 
gate was not asserted. 

Indicates Write Gate was asserted, but no transitions were 
detected on the write data line. 

5-10 



R80 Get Status - The R80 sends its status word to the IDC in parallel via the interface lines. When the 
drive status word is ready, the IDC will set CROY and interrupt if IE is set. The CPU can then read the 
R80 status word by reading the MPR. This function may be performed any time the IDC is ready, even 
though the drive is not (during a seek or when in the load state). 

The contents of the R80 status word are listed in Table 5-5. 

Table 5-5 R80 Get Status 

Bit Position Name Description 

4:0 Sector Count Sector count will change on leading edge of sector or index. 
(SEC4:0) Timing integrity is maintained throughout seek operation. 

7:5 Not used 

8 Fault (FLT) Signals fault condition. The following types of faults are 
detected: de power fault, head select fault, write fault, write 
or read while off cylinder, and write gate during a read 
operation. May be cleared by INIT or FAULT CLEAR on 
the opera tor panel. 

9 Plug Valid Bit indicates that a logic plug is installed in the operator 
(PLGV) panel. 

10 Seek Error Indicates that R80 was unable to complete a seek within 500 
.(SKE) milliseconds, that the carriage has moved to a position outside 

the recording field, or that an illegal address has been 
detected. 

1 1 On Cylinder Indicates that the servo has positioned the heads over a track. 
(ONCY) The status is cleared by any seek instruction causing carriage 

movement or zero track seek. 

12 Drive Ready Indicates that the unit is up to speed, the heads are loaded, 
(DROY) and a no fault condition exists within the drive. 

13 Write Protect Signals that the write protect switch has been enabled. 
(WTP) Attempting to write at this time causes a fault to be issued. 

15: 14 Not used 

5-11 



5.3.3 Housekeeping Commands 
Housekeeping commands are used to place the drive logic into a known or initial state. ATTN is not 
raised at the completion of the housekeeping command unless there is a persistent error condition. 

5.3.3.1 NOP Function (F2:FO = 0) 
This function is a NOP, except in the case of the R80 bit being set, and an R80 selected by the CSR. In 
this case an R80 Format function is performed. 

5.4 R80 ECC HANDLING 
The I DC has the ability to detect errors that occurred while reading the data field and to provide infor­
mation for software to recover the data. The ECC code that will be used, called burst error correcting 
fire code, will locate an error that falls within an error burst of length 11 bits or less. Any errors outside 
the specified burst length are guaranteed to be detected, but not to be correctable. 

The I DC logic will do the following: 

• Find the 1 I-bit burst within which the read error is included. 
• Determine the exact location of the burst within the data field. 

This information will be provided to the software via the following two I DC registers. 

• ECC pattern register: will contain the actual error burst 

• ECC position register: will contain the address of the first bit of the error burst within the 
data field 

5.5 HARDWARE ERROR RECOVERY 
If an ECC error is detected, the I DC will simultaneously clock the ECC shift register and increment 
the position counter. When the counter overflows, the correction computation enters a second phase 
searching for a correctable error pattern. This is done by clocking the shift register bits (20:0) and 
simultaneously keeping a count of the number of shifts in the position counter. When an all zero condi­
tion is found, shifting and counting stop and ECC STAT (I :0) is set to I I, which indicates a correctable 
error pattern has been found. The error pattern and the error position can then be read via the specific 
registers. 

There is one condition under which a correctable error pattern cannot be computed: an all zero condi­
tion is not found within n shifts, where n equals the number of data bits plus check bits: 4096 + 32 
4128. Under this condition, ST AT (I :0) is set to I 0, indicating a hard error. 

5.6 SOFTWARE ERROR CORRECTION 
Error correction is accomplished by the software as follows (not necessarily in this order): 

• Software reads the position register. 

• Software counts from the beginning of its data field the number of bits as specified by the 
position register and extracts I I-bits, which represents the burst within which the error oc­
curred. 

• Software reads the pattern register. 

• Software performs a logical "exclusive OR" of the I I-bit error burst with the contents of the 
pattern register. The result is the corrected I I-bit data burst, which is now put back into 
storage. 

5-12 



5.7 R80 SKIP SECTOR OPERATION 

5. 7.1 R80 Bad Spot Problem 
The advent of the 3350 type high capacity drives has caused an increase in the number of bad spots 
appearing on the media. It is projected that the R80 could have up to 350 bad spots per head disk 
assembly (HOA). DEC STD 144, which is currently the only specification covering bad spots on disk 
drives, falls short of handling this large a number of defects. The R80 thus uses a skip sectoring ap­
proach that presents bad block information to the driver level software. 

5. 7 .2 The Concept of Skip Sectoring 
On each track of the disk, one sector is reserved that will be used as a replacement sec~or in the event of 
a bad spot on the track. This replacement is done by sliding each sector down by one, starting at the bad 
spot, such that the last sector at the end of the track is now the reserved sector. If more than one error 
occurs on a track, the second bad spot will be logged in the bad block file described in DECSTD 144. 

The I DC automatically handles skip sector errors and continues the data transfer if the Inhibit bit (bit 
27) in the CSR is cleared. Following is a description of software handling if the Inhibit bit is set. 

5.7.2.1 Software Handling of Skip Sector Errors - The responsibility of the IDC is to notify the soft­
ware that it is trying to read a sector that has been displaced. The responsibility of the software is to 
restart the transfer at the next sector (n + I). 

5.7.3 Skip Sectoring (with Automatic Inhibit Bit Set) - When the IDC driver receives a request for 
data, a logical block number and extent is supplied to determine where the transfer will take place on 
the disk. With skip sectoring, the transfer is initiated as usual by converting the block number to a 
physical address, loading the word count and address, and initiating the transfer. If no errors occur or 
an error other than an SSE occurs, the transfer is handled as in the past. If an SSE occurs, as indicated 
by a I in bit 23 of the CSR (MSB of byte 2), it indicates that a sector has been encountered that is 
physically displaced by one on the disk. This error could occur immediately at the beginning of a trans­
fer, if it started after a bad spot on a track, or in the middle of a transfer if the operation was started 
before a bad spot and continued beyond it. 

The software must first set SSE Inhibit (bit 22) of the CSR. This inhibits further generation of SSEs 
and allows the operation to continue without further interrupts from SSEs for the rest of the track. The 
software must then restart the operation. When the operation was aborted in the IDC, because 13 was 
set in the header, the disk address was incremented by I. This is exactly where we want to start the 
operation again when skip sectoring occurs, so no modification of the disk address is necessary. Also, 
since the I DC aborted the operation as soon as the SSE bit in the header was detected, no data from the 
sector that generated the error was transferred. This means that the word count and address for the rest· 
of the transfer are correct. So, to restart the transfer, all that is necessary is to set the GO bit (clear 
CROY). 

5.8 R80 FORMATTING 
Provisions have been made within the IDC to format the R80. The following procedure is required to 
format the disk, one track at a time. 

a. Select cylinder and head. 

b. Set up registers as in a write data function, supplying four bytes of header for each of the 32 
sectors on a track (I 28 bytes). 

c. I nitiatc the write format function. 

5-13 



The IDC will: 

a. Search for the leading edge of the index pulse (sector 0). 

b. Immediately bring up write gate and start writing zeros. 

c. Write all zeros for head scatter and PLO sync areas (27 bytes). 

d. Write a sync pattern, four header bytes, and check word. 

e. Write all zeros for write splice gap and PLO sync field ( 12 bytes). 

f. Write a sync pattern, the data field, the four-byte data ECC word, and a two-byte pad at the 
end of the check word. 

g. Wait for the leading edge of the next sector pulse and repeat steps a through f. 

h. Continue until the index pulse is detected once again. 

t. Set CROY, interrupt, and return to idle. 

5.9 EXAMPLES OF SYSTEM OPERATION 

5.9.1 Seek Operation 
The following is an example of the sequence involved in a seek function. 

a. Select drive and function. 

b. Load DAR with desired cylinder, track, and sector. 

c. Issue seek function to drive and wait for interrupt. Seek will cause two interrupts, one when 
the seek has been issued to the drive (CROY sets) and one when the seek completes. The 
drive doing the seek asserts DROY when the seek is complete. The controller, when it is not 
busy performing functions, checks all drives that have been issued seeks to see if they have 
asserted DROY. Respective attention flops are set by the microsequencer for those drives 
that have done so. 

d. Check error flag to complete the seek operation. 

NOTE 
Since the controller becomes ready and interrupts as 
soon as a seek is issued, it is possible to issue seeks 
to additional drives while the first is seeking. An at­
tention interrupt is provided for each drive as each 
drive completes its seek. The software must know 
which drives are doing seeks so that it will know why 
the Attention bit has been asserted. 

5-14 



5.9.2 Data Transfer Operation (Read/Write) 
When the seek is completed, the CPU can issue a data transfer command. One drive can be doing a 
seek at the same time a data transfer command is issued to another drive. Once a data transfer has 
started, no further commands can be issued to a controller until the transfer is completed either nor­
mally or by error. 

The read data operation is as follows: 

a. Select drive and function. Load byte count, bus address, DAR, and issue read function via 
CSR. • 

b. DAR is compared to disk headers until a match is found. 

c. The CPU will transfer data into memory using the BAR as a UNIBUS virtual address. 

d. The controller will interrupt when the transfer is completed. Software will check error flag in 
CSR. 

e. Select drive and function. Load BCR, BAR, and DAR and issue write function via the CSR. 

f. DAR is compared to disk headers until a match is found. 

g. The CPU will tansf er data from memory to the drive. 

h. The controller will interrupt when the transfer is completed. Software will check error flag in 
CSR. 

5-15 



APPENDIX 
PROGRAMMED ARRAY LOGIC DEVICES (PALS) 

A.1 INTRODUCTION TO PALS 
Programmed array logic devices (PALs) are logic arrays that may be programmed to give a custom­
designed chip unique to a specific requirement. 

The basic logic configuration used in PALs is shown in Figure A-1. The circuitry consists of a program­
mable AND array connected to a fixed OR array. Note that the AND array shown in the basic logic 
configuration has only four programmable (fusable link) inputs and two fixed OR outputs. In the PAL 
circuits used in the VAX-11 /730, up to 32 programmable AND inputs and up to eight fixed OR inputs 
are used per output. 

INPUT 1 

Fl 

OUTPUT 

F8 

INPUT 2 

TK-6630 

Figure A-1 Basic PAL Logic Configuration 

An unprogrammed PAL has all fuses intact, as indicated in Figure A-1. A PAL is programmed by 
"blowing" the links for the unused AND inputs to give the desired AND before OR logic configura!i_on. 
For example, the top half of Figure A-2 shows the links "blown" to implement the XOR function AB V 
AB in the basic PAL logic configuration. This same logic function may also be represented as shown in 
the bottom half of-Figure A-2 where an X represents the links that are left intact to perform the logical 
AND. This last method of showing an AND array configuration is the convention used in the PAL plot 
listings provided in the VAX-11/730 microfiche set. 

A-1 



A 

Fl 

AB v AB 

F4 

B 

A 

ABVAB 

B 

TK-6627 

Figure A-2 XOR Logic Function Using PAL Logic 

A.2 PAL DEVICE TYPES 
The four types of PALs used in the VAX-11 /730 are listed in Table A-1. Logic diagrams for each PAL 
are given at the end of this appendix. 

It can be seen from the logic diagrams that the four PAL devices all use the basic. AND before OR 
logic configuration discussed in Paragraph A.1. However, outputs from the 16L8 are inverted and six of 
the eight outputs feed back to the AND arrays for added functionality. In addition, the output inverters 
for these six outputs may be turned on and off by the AND arrays (programmable I/O). This provides 
added logic capability. It also allows the corresponding output pin to be used (when the inverter is 
turned off) as an input to the AND array just like a designated input pin. 

Also note from the logic diagrams that the 16R8 ~has register outputs (D-type flip-flops) and no gate 
outputs. Again, outputs are fed back to the AND array but not directly by way of the output pins. 
Instead, the 0 outputs of the flip-flop drive the array. As a result, the output pins cannot be used as 
input pins as for a 16L8. The other two PAL types, the 16R6 and l 6R4, have varying combinations of 
both gate and register outputs on the same chip. 

A-2 



Table A-1 PAL Device Types Used in the VAX-11/730 

PAL 
Device Program Register 
Type Inputs Outputs IO Outputs Description 

16L8 16 8 6 0 AND-OR gate 
array 

16L8 16 8 0 8 AND-OR array 
with registers 

16R6 8 8 2 6 AND-OR array 
with registers 

16R4 8 8 4 4 AND-OR array 
with registers 

A.3 PAL SYMBOLOGY 
A typical PAL as represented in the VAX-11/730 Engineering Print Set is shown in Figure A-3. Infor­
mation within the symbol includes the device type, part number, and location. For example, the PAL in 
Figure A-3 is a l 6R4 located at E50 with a part number equal to 010K3. The PAL part number dis­
tinguishes one programmed PAL from another. 

Inputs to the designated PAL input pins are shown at the left of the PAL symbol. Outputs appear at the 
right. When an output pin is used as an input pin as discussed in Paragraph A.2, the input signal is 
entered at the left of the symbol and a dotted line (drawn across the PAL symbol) is used to show the 
connection to the output pin on the right. Pins having both input and output capability are labeled as 
1/0 on the PAL symbol. Gate outputs not having both input/output capability are labeled with an 0. 
Register outputs are identified by an R. Finally, designated input pins are specified by a D. 

BUS I B D06 H 2 DO 

BUSIBD04H 
3 

Dl 

BUSIBD02H 
4 

D2 

BUS 18 000 H 5 D3 

BUS Y D06 H 
6 

D4 

BUS Y D04 H 
7 

D5 

BUS Y D02 H S D6 

BUSY DOD H 
9 

D7 

PAL 16R4 
010K3 
E50 

R 
17 

DAPH OS 6 H 

R 
16 

DAPH OS 4 H 

R 
15 

DAPH OS 2 H 

R l 
4 

DAPH OS 0 H 

DAPH LOAD Y TO OS L ----- 1/0 

1/0 DAPH RMODE B L 

DAPB OS CTL 1 H ---- 1/0 

DAPB OS CTL 0 H ---- 1/0 

DAPB CLOCK REGS H 
1 

CLOCK 
11 

ENABLE 

TK-29 

Figure A-3 Typical PAL Symbology 

A-3 



A.4 READING THE PAL PLOT LISTING 
An example of a PAL plot listing is shown in Figure A-4. The part number and PAL device type (a 
16R6 in this case) are at the top of the listing. The input or output associated with each PAL pin is 
given next. (NC indicates no connection; VCC indicates the + 5 volt power source.) A low assertion 
level for input/output signals on the listing is indicated by a slash ( I) immediately preceding the signal 
name. If there is no slash, the signal is asserted high. Input/output signal names on the listing are some­
times abbreviated and may not be exactly the same as in the Engineering Print Set. 

The rest of the listing consists of the ANO array plots for each output pin. An X represents the fusable 
links left intact; a dash ( - ) represents a Hblown" link. To the right of each line in a plot is the list of 
signals selected by the intact links that make up the AND inputs. Because these individual ANO terms 
are ORed by the PAL logic, the list of AND terms in the listing (ORed together) result in an easily 
read Boolean expression that represents the logic function performed. For example, output pin 12, 
which is a gate output (refer to the 16R6 logic diagram) and the last plot in the listing, has the following 
input: 

vcc 
START_8085_CYC*IO* Al4* /RAS 
/RAS*STATE 

The underlines in the expression above only represent a space (a blank character) in the signal name. 
An asterisk(*) between signal names specifies the logical ANO operation. Discounting the enable level 
for the output inverter, which in this case is always asserted, this input expression for output pin 12 
(/UART_CHIP _SEL) may be read as follows: 

UART CHIP SELL = START 8085 CYC H IO H A14 H RASH 
RASH V STATE H 

For a register output, the Boolean expression read from the listing specifies the output signal just as for 
a gate output. The output pin is not asserted or negated until the register flip-flop is clocked. Flip-flops 
are clocked by the positive-going transition of the clock . . 
A.5 PAL LOGIC DIAGRAMS 
The logic diagrams for the l 6L8, l 6R4, l 6R6, and l 6R8 PAL devices are shown in Figures A-5 
through A-8. 

A-4 



PART NUMBER: 23-004K4-0-0 

DEVICE TYPE: PAL16R6 

PIN NUMBER 

l= CLOCK 
2= ALE 

SYMBOL TABLE: 

8= SEL 9600 BAUD 
9= RESET 

15= STATE 
16=/RAS 

3= REQUEST REFR 10= GROUND 17= REFRESH DONE 
18=/START 8085 CYC 
19=/LONG CYCLE-
20= vcc -

4= IO -
5= Al4 
6= 9600 BAUD 
7= 300 BAUD 

11= OUT EN 
12=/UART CHIP SEL 
13=/9600-300 BAUD 
14= REFRESH CYC 

FUSE PLOT: 

OUTPIN 19 

(X = FUSE INTACT - = FUSE BLOWN) 

---x x---
xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx 
xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx 
xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx 
xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx 
xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx 
xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx 

vcc 
START 8085 CYC*Al4 

OUTPIN 18 X--- ALE 
---X X--- --X- REFRESH CYC*START 8085 CYC*Al4 

xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx 
xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx 
xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx 
xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx 
xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx 
xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx 

OUTPIN 17 -X-- /REQUEST REFR 

OUTPIN 16 

OUTPIN 15 

---X ---X /REFRESH=DONE*/REFRESH_CYC 
xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx 
xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx 
xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx 
xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx 
xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx 
xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx 

--x- --x-
---x --x-

---x -x-- x-x-

/RAS*REFRESH CYC 
RAS* STATE -
START_8085_CYC*/RAS*/IO*Al4 

xxxx xxxx xxxx xxxx xxxx xxxx xxxx 
xxxx xxxx xxxx xxxx xxxx xxxx xxxx 
xxxx xxxx xxxx xxxx xxxx xxxx xxxx 
xxxx xxxx xxxx xxxx xxxx xxxx xxxx 

X--- RESET 
xx xx 
xx xx 
xx xx 
xxxx 

--x- /START_8085_CYC 

Figure A-4 PAL Plot Listing (Sheet 1 of 2) 

A-5 



---x RAS 
-x-- /Al4 

xx xx xx xx xx xx xx xx xx xx xx xx xx xx xx xx 
xxxx xx xx xx xx xx xx xxxx xx xx xx xx xx xx 
xx xx xx xx xx xx xx xx xxxx xx xx xx xx xx xx 
xxxx xx xx xx xx xx xx xx xx xx xx xx xx xx xx 

OUT PIN 14 ---x START 8085 CYC 
---x --x- RAS*REFRESH CYC 
---x --x- RAS* STATE 

-x-- ---x /REFRESH_CYC*/REQUEST REFR 
--x- ---x /REFRESH CYC*REFRESH DONE 

x--- --x- ---x ---x /REFRESH=CYC*/RAS*ALE*/STATE 
x--- RESET 

xxxx xxxx xx xx xx xx xx xx xx xx xx xx xx xx 

OUTPIN 13 x--- x--- SEL 9600 BAUD*9600 BAUD 
/SEL 9600 BAUD*300 

-x--- -x-- BAUD -xxxx xx xx xx xx xxxx xx xx xx xx xx xx xx xx 
xxxx xx xx xx xx xx xx xx xx xx xx xx xx xx xx 
xx xx xx xx xx xx xx xx xx xx xx xx xx xx xx xx 
xx xx xx xx xx xx xx xx xx xx xx xx xx xx xx xx 
xx xx xx xx .XXXX xx xx xx xx xx xx xx xx xx xx 
xx xx xx xx xx xx xxxx xx xx xx xx xx xx xx xx 

OUT PIN 12 vcc 
---x x--- x-x- START 8085 CYC*IO*Al4*/RAS 

--x- --x- /RAS*STATE-
xx xx xx xx xx xx xx xx xx xx xx xx xx xx xx xx 
xx xx xx xx xx xx xx xx xx xx xx xx xxxx xx xx 
xx xx xx xx xx xx xx xx xx xx xx xx xx xx xx xx 
xx xx xx xx xx xx xx xx xx xx xx xx xxxx xx xx 
xx xx xx xx xx xx xxxx xx xx xx xx xx xx xx xx 

Figure A-4 PAL Plot Listing (Sheet 2 of 2) 

A-6 



,... 

~ r:b 19 to-,__ ..... ,._...., ... _ 
~ 

~ ~ - ... ,... .. b-J p- . 
18 ~ ...,...._...., -

~~ 

Ht-"--1 
3 ~ 

~ 
...,_ 
~ . .,., ,... .. u i............, 

~ 17 
i............., 
... t--
..... h 
t:>---

4 ... ... 
~ ~ ,... .. N ... ~ 

16 J.-t----' ... ,.........., 
t:t--
.....r--i 
J--

5 . .... 
~ ~ .... -

~ f-\-, 15 ~ -~ -
~ 
~ 
b-

6 ~ 
..... 

3.. 
~- .... -

~ K---. 14 K--. 
~ ~ ..... ....__ 
..... t---1 .......___ 

7 ~ 
...... ..... 

-~ 
. .., --..... .. N ... ,..._.., 

13 ......__ -1-\........., 
to---
t--t--
t'.:t-

8 .. ..... 
2 ~ - --

~ t-\-, 12 ~ -...... ~ 
~~ 
t--1....__,. -,_ 

9 ... L.J ..... 11 
~ ~ .. r- ,,.. 

TK-6624 

Figure A-5 Logic Diagram: PAL16L8 

A-7 



r"""' HLl ~r-1 

~ - 19 
~ 
~ 
~ .....,_.... 

~ ~'1.. ..... - r""'I 

~ ~ 
K-. 18 ~ 
~ 
~ 
~ 

3 .... ...... .A 

~ ~ -"- ~ ~ 
1 ~ ~ 

~ 
~ ~· H 
~ 

4 .. ~ ..... 

> ~ - r""'I 

~ 
~ 16 
~ 

~ 
H~ 
Hr--, 

~ 
5 ... 3:1 -2': - - -H'"1 

....r-' 

~ ~ 
~~ 

~ 
~ ....,--
~ L.oo 

6 ... .A 

2 _5. ,_ 
~ ,-
~ 
~ 

~ ~ ....,-- ./ 

~ 
.,._r--; ....,--
~ 

7 .... 
L.T--

...... 
~ _s..r 

~ ...... 

""W ~ 
~ 13 
~ ..._r---. 
~ 
~ 
L..F-

8 2: ..... _s..r - -...... 

N H~ 

~ - 12 
Hl---ll 
H~ 
~ 
U"---' 

9 .... L-<J>!! ~ _s;,,,'1.. - -
TK-6623 

Figure A-6 Logic Diagram: PAL l 6R4 

A-8 



,..... 

~~ i---..........., 

~ - 19 .....,--
~ 
~ ...... 

~ ~'I. - !"""I ~ ... 

~ 
~ 

1 ~ 
.._.., 
~ 
~ 

~ ~ 
r{::l 

3 ");-
'-"' .A 

~L 
·vc 

'""'\---.., 

~ 

~ ~ 

~ 
~ ~ 
~ 
~ 

4 .. '-"' .... 
2 ~ 

R=l - ~ ~ t-{"-1 

r1 ~ ....... 
~ L....i 

5 
~ 

.... 
~ - l'"""I i"' t-(""1 ,__... 

~ ~ 
i-r--' !-----" 

~ 
~ 
~ 
~ ~ 

6 .... A 

~ 3... - -
R--i 
~~ ~ ~ 
~ 

~ 
t-}-, 
~ 
~ 

7 .... L.,,j A 

~ - ........ ,-
~ 

~ ~ 
~ 

~ t-\-
~ 
~ 

8 ... .... 
l2_ -~ 

- ~ 

........ 

~~ ~ 12 t-\--
~ 
t-\-
~,,,_, 
tj.-

9 .... .... L(p!! ~ ~ -
TK-6621 

Figure A-7 Logic Diagram: PAL I 6R6 

;\-9 



TK-6622 

Figure A-8 Logic Diagram: PAL16R8 

A-10 



Reader's Comments 

V AX-11 /730 IDC Technical Description 

Your comments and suggestions will help us in our continuous effort to improve the quality and 
usefulness of our publications. 

What is your general reaction to this manual? In your judgment is it complete, accurate, well organized, well 
wMtten, etc? Is it easy to use?----------------------------~ 

What faults or errors have you found in the manual?--------------------

Does this manual satisfy the need you think it was intended to satisfy? ____________ _ 

Does it satisfy your needs?----------Why?------------------

Please send me the current copy of the Documentation Products Directory, which contains information 
on the remainder of DIGITAL's technical documentation. 

Name-----------------~Street-----------------~ 
Title CitY-------------------
Company State/CountrY---------------
Department ZiP------------------~ 

Additional copies of this document are available from: 

Digital Equipment Corporation 
Accessories and Supplies Group 
P.O. Box CS2008 
Nashua, New Hampshire 03061 

Attention: Documentation Products 
Telephone: 1-800-258-171 O 

Order No __ E_K_-_R_B_7_30_-_T_D_-O_O_l ______ _ 

TW 



---------------------~~~re--------------------~ 

-----------------Do Not Tear - Fold Here and Staple 

~nmnoma 

BUSINESS REPLY MAIL 
FIRST CLASS PERMIT NO. 33 MAYNARD. MA. 

POSTAGE WILL BE PAID BY ADDRESSEE 

Digital Equipment Corporation 
Educational Services/Quality Assurance 
12 Crosby Drive, BU/E08 
Bedford, MA 01730 

I II II I No Postage 
Necessary 

if Mailed in the 
United States 



Dig'ital Equipment Corporation• Bedford, MA: •o 17 30 


	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	1-01
	1-02
	1-03
	1-04
	1-05
	2-01
	2-02
	2-03
	2-04
	2-05
	2-06
	2-07
	2-08
	2-09
	2-10
	2-11
	2-12
	2-13
	2-14
	2-15
	2-16
	2-17
	2-18
	2-19
	2-20
	2-21
	2-22
	2-23
	2-24
	2-25
	2-26
	2-27
	3-001
	3-002
	3-003
	3-004
	3-005
	3-006
	3-007
	3-009
	3-010
	3-011
	3-012
	3-013
	3-014
	3-015
	3-016
	3-017
	3-018
	3-019
	3-020
	3-021
	3-022
	3-023
	3-024
	3-025
	3-026
	3-027
	3-028
	3-029
	3-030
	3-031
	3-032
	3-033
	3-034
	3-035
	3-036
	3-037
	3-038
	3-039
	3-040
	3-041
	3-042
	3-043
	3-044
	3-045
	3-046
	3-047
	3-048
	3-049
	3-050
	3-051
	3-052
	3-053
	3-054
	3-055
	3-056
	3-057
	3-058
	3-059
	3-060
	3-061
	3-062
	3-063
	3-064
	3-065
	3-066
	3-067
	3-068
	3-069
	3-070
	3-071
	3-072
	3-073
	3-074
	3-075
	3-076
	3-077
	3-078
	3-079
	3-080
	3-081
	3-082
	3-083
	3-084
	3-085
	3-086
	3-087
	3-088
	3-089
	3-090
	3-091
	3-092
	3-093
	3-094
	3-095
	3-096
	3-097
	3-098
	3-099
	3-100
	3-101
	4-01
	5-01
	5-02
	5-03
	5-04
	5-05
	5-06
	5-07
	5-08
	5-09
	5-10
	5-11
	5-12
	5-13
	5-14
	5-15
	A-01
	A-02
	A-03
	A-04
	A-05
	A-06
	A-07
	A-08
	A-09
	A-10
	replyA
	replyB
	xBack

