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Abbut This Manual

This manual describes the functions of the IBox in the VAX 9000 family system. It is
a reference manual for Customer Services personnel as well as a training resource for
Educational Services.

Intended Audience
The content, scope, and level of detail in this manual assumes that the reader:
o Is familiar with the VAX architecture and VMS operating system at the user level

e Has experience maintaining midrange and large VAX systems

Manual Structure
This manual has six chapters, an appendix, a glossary of IBox terms, and an index.

Chapter 1 contains an introduction to the IBox, describing the major features, functions,
and physical organization of the unit. Chapter 2 describes the program counter. Chapters
3, 4, and 5 provide a detailed description of the functions of the IBox, with each chapter
emphasizing one of the three main pipeline stages of the unit. Chapter 6 is a summary
of the errors that can be generated in the IBox.

Appendix A provides a listing of the input and output signals of the three multichip units
(MCUs) that comprise the IBox.
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1

General Description

This chapter provides an overview of the VAX 9000 family IBox, including descriptions of
the major hardware features, physical characteristics, and interbox interfaces.

1.1 IBox Introduction

The IBox is an independent functional unit that fetches and decodes instructions and
their specifiers from the MBox and passes them to the EBox for execution. The EBox is
provided with data and control functions so that it can execute several instructions in one
cycle.

The IBox provides all required instruction data to the EBox: source, destination, PC,
fork address, as well as pointers to the source data and destination. The instruction
data is stored in the EBox source list or general-purpose registers (GPRs). In the case
of a memory source operand, the IBox generates the operand address and passes it to
the MBox requesting a memory read operation. The MBox prefetches the data and then
writes it into the EBox source queue.

Using the source pointers provided by the IBox, the EBox accesses its source list or GPRs
and executes the instruction. Depending on the destination, the EBox writes the results
to a GPR or transfers the results to the MBox to be subsequently written to memory. In
effect, the EBox deals only with data (no opcodes or operand specifiers).

In addition, the IBox can decode and store several instructions ahead of the EBox.
However, given the capabilities of the EBox and MBox, it is difficult for the IBox to
remain several instructions ahead.

1.2 Basic Hardware implementation

This section describes the major new hardware implementations incorporated into the
IBox. Figure 1-1 shows the basic IBox block diagram. '

1.2.1 Program Counter Unit

The program counter unit (PCU) is responsible for directing the I-stream that the IBox
will decode, and for generating the PC address used by the EBox and MBox. The PCU
provides the control logic for the two IBox caches: virtual instruction cache (VIC) and
the branch prediction cache (BPC). In addition, the PCU controls the secondary branch
prediction mechanism.

DIGITAL INTERNAL USE ONLY 1-1
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Figure 1-1
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1.2.2 Virtual Instruction Cache

The virtual instruction cache (VIC) is a virtually addressed, 8 Kbyte, direct-mapped,
one:way associative cache that reduces the number of I-stream requests issued to the
MBox. By flushing the VIC on every REI, the IBox can ignore writes to memory. Having
a virtually addressed instruction cache eliminates the need for address translation and
translation logic. Because the VIC has its own MBox request port, it is refilled from the
MBox data cache, rather than memory.

1.2.3 Instruction Buffer

The IBox incorporates a 25-byte instruction buffer that latches the I-stream. The
instruction buffer is partitioned into a 9-byte instruction buffer IBUF), an 8-byte
extended instruction buffer IBEX), and an additional 8-byte extended instruction buffer
(IBEX2).

The content of the nine IBUF bytes are latched, decoded, and shifted. The remaining 16
bytes of IBEX and IBEX2 contain additional prefetched I-stream from the VIC, which is
passed to the IBUF as required. :

1.2.4 Branch Prediction

When branch instructions are encountered in the I-stream, the IBox predicts the direction
the I-stream will follow (redirects the I-stream by taking a branch or continues decoding
sequential I-stream by not taking the branch). When initially encountering a branch,
the IBox decides to take or not take the branch by accessing the logic that contains fixed
predictions for each branch instruction. Branch predictions are validated by the EBox
and the correct predictions are stored in a branch prediction cache that is accessed when
the same branch is subsequently encountered.

1.2.4.1 Branch Prediction Cache

To minimize the idle time spent flushing and refilling the pipeline after every branch
instruction, the instruction decode stage includes a branch prediction cache (BPC). This
1K virtual cache increases performance by storing information about the branch validity,
and the target address. As a branch instruction is being decoded, it is referenced, in
parallel, in the BPC and a prediction is made whether to take the instruction. The IBox
uses the cached target address to redirect the instruction fetch stage to the new I-stream
if the branch is taken. For performance reasons, the BPC is never flushed.

1.2.5 Multiple Specifier Decode Unit

The multiple specifier decode unit (XBAR, or “crossbar”) is implemented as a set of
multiplexers that provide the capability of simultaneously decoding up to three operand
specifiers. The I-stream is presented to the XBAR nine bytes at a time from the IBUF.

The actual number of specifiers decoded depends on the specifier type. The XBAR can
decode up to three specifiers (for example, two simple specifiers and one complex specifier,
or three simple specifiers). Simple specifiers are considered register mode or short literal,
while all other specifiers are considered complex.
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1.2.6 Specifier Handlers

The specifier handlers are in the operand processing unit (OPU). The logic is comprised
of three dedicated specifier evaluation units:

Complex specifier unit
Short literal unit
Free pointer logic .

In addition, the OPU maintains a set of GPRs. The GPRs are implemented in self-timed
register (STREG) files that provide multiported, read/write access capabilities.

The OPU maintains a virtually addressed MBox request port.

1.2.6.1 Complex Specifier Unit

The complex specifier unit (CSU) is responsible for evaluating complex specifiers.
The XBAR supplies the CSU with the register, register index, and up to 32 bits of
displacement. The CSU calculates branch target addresses, immediate operands, and
memory addresses of operands supplied to the EBox from the MBox.

The CSU contains the OPU port interface to the MBox and the interface to the EBox.
Operand addresses are sent to the MBox, while the EBox receives the immediate

operands directly from the CSU.

The CSU also contains the IBox GPRs. The GPRs are read and written by the CSU, and
written by the EBox.

1.2.6.2 Short Literal Unit

The short literal unit (SLU) receives decoded short literal specifiers from the XBAR and
expands them for entry into the EBox source list. The SLU can produce a single longword
of expansion each cycle. The literal expansion depends on the specifier data type.

1.2.6.3 Free Pointer Logic

The free pointer logic (FPL) manages pointers into the EBox source list. The FPL tracks
the available (free) source list addresses and associated pointers. The FPL establishes
the correct source 1 and source 2 pointers for operands the EBox will use to execute an
instruction. The FPL also generates the correct destination pointer for an instruction
result.
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1.2.7 Read/Write Scoreboards

The IBox processes specifiers while the EBox is executing previously decoded instructions.
The IBox must be prevented from performing an address calculation that depends on the
result of a currently executing instruction. This is accomplished by recording the register
numbers to be written by the EBox, and by matching those numbers against any register
selected for use in an operand specifier. When a match occurs, the CSU stalls and waits
for the instruction to be completed before calculating the operand address.

The XBAR generates the read and write masks for conflict checking in the OPU. The
masks represent GPR 0 through 14. The masks prevent reading or writing a GPR that is
scheduled to be modified or read by the EBox.

The CSU maintains the read and write register scoreboards for up to six instructions in
the pipeline. Both scoreboards contain 15-bit registers, representing GPR 0 through 14.

The read scoreboard tracks the GPRs designated to be read by a previously decoded
instruction. These GPRs cannot be written by the OPU for autoincrement and
autodecrement until their corresponding instructions are completed by the EBox.

The write scoreboard tracks GPRs designated as destinations by instructions in the
pipeline. These GPRs cannot be used by the OPU for address calculations until the
instruction is completed by the EBox.

1.3 Physical Organization

The IBox logic is physically contained in three multichip units (MCUs) (Figure 1-2). This
section introduces each MCU and its related macrocell arrays (MCAs).

cTu MUL FAD VAD
1 5 S 13
DTA DST INT ucs
2 6 10 14
VAP DTB cTL VRG
3 7 11 15
o ———————q
|| opu XBR vic | 1] vme
l 4 8 12 l 16
I |
I1BOX
________ a4

MR_X0040_89

Figure 1-2 Planar Module Layout
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1.3.1 VIC MCU

The VIC MCU is comprised of two MCAs and forty-two 1K x 4-bit STRAMs. Two bit-
slices of the program counter and the data STRAMs for branch prediction and VIC are
resident in this MCU. Figure 1-3 shows the MCU content.

The following list introduces the MCA and STRAM functions of the VIC MCU:

* PCBP MCA — The program counter/branch prediction control MCA contains bits
[07:00] of the PC and provides branch prediction control.

e PCVC MCA — The program counter/VIC control MCA contains bits [15:05] of the PC
and provides VIC control.

e VIC data STRAMs — These eighteen 1K x 4-bit STRAMs are dedicated to the VIC
data and associated byte parity.

¢ Branch prediction STRAMs — These twenty-four 1K x 4-bit STRAMs are
dedicated to the branch prediction function. The STRAMs store the branch PC
tag, prediction PC, branch instruction length, and prediction bit.

viC

I BPST

l BPST
BRANCH l PCBP
PREDICTION

TAG ADDRESS

AND PARITY PROGRAM COUNTER BP TARGET
[07:00} ADDRESS

BP CONTROL

DISPLACEMENT

l PCVC INSTRUCTION
LENGTH
cD12
PROGRAM COUNTER
[15:05] PREDICTION

VIC CONTROL PARITY -

I VICD

VIC DATA STRAMs
AND PARITY

MR_X0041_89

Figure 1-3 VIC MCU Content
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1.3.2 XBRMCU

The XBR MCU contains the instruction buffer, XBAR, two of the four PC slices, and tag
STRAMs for the VIC. Figure 1-4 shows the MCU content.

The following list introduces the MCA and STRAM functions of the XBR MCU:

PCLO MCA — The program counter low MCA contains bits [23:13] of the PC.
PCHI MCA — The program counter high MCA contains bits [31:24] of the PC.

IBFA MCA — The instruction buffer A MCA contains the low-order nibble of the
instruction buffer. IBFA also provides the VIC hit logic.

IBFB MCA — The instruction buffer B MCA contains the high-order nibble of the
instruction buffer. Parity checking is performed by combining IBFB parity with a
partial parity from IBFA.

XDTA MCA — The XBAR data A MCA contains the low-order nibble of the XBAR.
The major MCA outputs are displacements for the OPU.

XDTB MCA — The XBAR data B MCA contains the high-order nibble of the XBAR
data path.

XSCA MCA — The XBAR control MCA is the XBAR control unit. It receives I-
stream data from the IBUF and performs some simple instruction decoding. The
instruction buffer shift control is generated from the number of specifiers decoded
and the number of specifiers the instruction contains.

VICT STRAMs — Five of the nine 1K x 4-bit STRAMs contain the 19-bit VIC tags.
Two of the STRAMs provide the 4-bit VIC quadword valid fields and associated parity
bits and parity for the VIC quadword valid bits. The remaining two provide the VIC
block valid field.

I XDTA l IBFA I PCHI

XBAR IBUF PROGRAM COUNTER
Low LOW [31:24]
NiBBLE NIBBLE

I XSCA | VICT

XBAR VIC TAG
CONTROL cpos BLOCK AND

AND DECODE QW VALID
SHIFT COUNT AND PARITY

I XDTB | {BFB IPCLO

XBAR IBUF PROGRAM COUNTER
HIGH HIGH [23:13]
NIBBLE NIBBLE

MR_X0042_89

Figure 1-4 XBR MCU Content
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1.3.3 OPU MCU

The OPU MCU contains the logic responsible for the specifier decode process. The
operand port interface to the MBox also resides in this MCU. The MCU also contains a
pair of self-timed registers (STREGs) that provide the IBox GPRs. Figure 1-5 shows the
MCU content.

The following list introduces the MCA and STRAM functions of the OPU MCU:

OPUx MCA — The OPUA and OPUB MCAs provide the data path for the complex
specifier unit (CSU). (OPUA provides the low-order word; OPUB provides the high-
order word.) The CSU receives up to 32 bits of displacement from the XBAR, operand
data from the MBox, and result data from the EBox and directs the outputs to the
MBox, EBox, or a loopback to the CSU.

OSQA MCA — This MCA provides control for the GPR STREGs. The OPUA and
OPUB multiplexers (AMUX, BMUX) are also provided by this MCA. This MCA also
controls the EBox and OPU port interfaces and stall logic.

OSQB MCA — This MCA receives short literal, source, and destination data from
the XBAR. Short literal specifiers are expanded into the correct context and passed to
the EBox. The source and destination pointers are also passed to the EBox.

OCTL MCA — The operand control MCA maintains the read/write scoreboard and
directs flush signals to other appropriate IBox functional units.

oPU

I §TG2 IOPUA I OPUB

CSU ADDRESS CSU ADDRESS
GPR [15:00} CALCULATION CALCULATION
[15:00] [31:18]

8TG3 l OSQA

RLOG, GPR, CSU

GPR [31:16] CDO04 AND OPU PORT
CONTROL

STALL LOGIC

I OCTL l [e}-1e}-]

FLUSH AND SL
SCOREBOARD EXPANSION
LOGIC AND FPL

MR_X0043_89

Figure 1-5 OPU MCU Content
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1.4 Pipeline Overview

The IBox consists of three main pipeline stages that closely relate to the MCU physical
structure. Each stage can generate indicators to aid in isolating errors to an MCU FRU.
The three pipeline stages are defined as follows:

Instruction fetch — This stage consists of the logic involved in fetching the I-stream
before it is latched in the instruction buffer and includes these components:

VIC

Program counter logic (PCU)

IBEX, IBEX2, and part of the IBUF
IBUF-to-MBox interface

Instruction decode and branch prediction — This stage consists of the logic
involved in decoding the instruction in the IBUF and includes these components:

XBAR
Branch prediction unit (BPU)

Specifier evaluation — This stage consists of the OPU logic involved in the
evaluation of operand specifiers and includes these components:

Complex specifier unit (CSU)
Branch prediction logic

Free pointer logic (FPL)
Short literal unit (SLU)
Operand control unit (OCTL)
OPU-to-MBox interface
OPU-to-EBox interface

Because the IBox is pipelined, when a stage cannot complete its operation, previous
stages must be stalled. That is, previous stage operations may be suspended.

Figure 1-6 through 1-9 provide examples of basic pipeline flow.
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Figure 1-6 shows the IBox pipeline decoding sequential instructions where no stalls
are encountered in any of the pipeline stages. The following events occur in each of the
machine cycles of this example:

* During the first machine cycle (T0), the IBUF is loaded with the I-stream to be
presented to the decode units of the IBox.

* During the second cycle (T'1), the logic representing the decode pipeline stage decodes
the opcode and the specifier bytes in the IBUF, and passes them to the specifier
handlers. The logic representing the fetch stage replenishes the decoded bytes of the
IBUF.

*  During the third cycle (T2) of this example, the decoded specifiers are processed by
the specifier handlers and passed to the EBox. The decode logic and the fetch logic
continue to perform their operations simultaneously.

The parallel operations of the three pipeline stages continue until one of the units stalls
or until the IBox is flushed to a new I-stream. A stall in one of the units is caused by
instruction specifiers that require more than a single cycle to be processed or by conflicts
in the instructions (for example, an instruction that contains two sequential complex
specifiers and the first one requires more than a single cycle to be processed in the
specifier pipeline stage).

TO T T2 T3 T4 TS
< FETCH >< DECODE SPECIFIER
FETCH DECODE SPECIFIER >
FETCH DECODE >< SPECIFIER >

MR_XCC42_88

Figure 1-6 IBox Pipeline: No Stalis
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Figure 1-7 shows the IBox pipeline when the processing of a specifier requires more than
a single cycle and a subsequent specifier requires processing by the same specifier
handler. This stall occurs when the CSU is processing an autodecrement-deferred
indexing mode specifier and another complex specifier is decoded by the XBAR. The
following events occur in this example of the IBox pipeline:

T0

During the first machine cycle (T0), the IBUF is loaded with the I-stream to be
presented to the decode units of the IBox.

During the second machine cycle (T1), the decode unit decodes an autodecrement-
deferred indexing mode specifier and the fetch unit replenishes the decode units with
I-stream.

During the third machine cycle (T2), the CSU begins processing the autodecrement-
deferred indexing mode specifier, the decode unit decodes a complex specifier and

is replenished by the buffers representing the fetch stage of the IBox pipeline.
Because the autodecrement-deferred indexing mode specifier requires multiple cycles
to process and a subsequent complex specifier is to be processed by the CSU, the
IBox pipeline stalls and cannot resume operations until the first complex specifier is
processed. The autodecrement-deferred indexing mode specifier requires a minimum
of four cycles to be processed.

T1 T2 T3 T4 T5 T6 77

< FETCH ,( DECODE >< SPECIFIER >

SPECIFIER

< SPECIFIER >< SPECIFIER >< SPECIFIER >

N

\f reron )( oscoos)
reron )

DECODE

7N N
L

FETCH

MA_X00¢5_88

Figure 1-7 1Box Pipeline: CSU Stall
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Figure 1-8 shows the pipeline when a branch is taken, but is predicted by the secondary
prediction mechanism. The following events occur when a branch is predicted by the
secondary prediction mechanism:

* During the second cycle (T1) of this example, a branch is decoded by the XBAR.
The BPC is accessed, but no information regarding this branch is valid. The branch
displacement is passed to the CSU to calculate the branch target address.

* During the third éycle (T2), the secondary branch prediction logic is accessed and the
branch is predicted taken. The branch target PC calculation is completed by the CSU
and the PC is passed to the fetch logic the next cycle.

* During the fourth cycle (T3), the fetch logic requests the data at the address supplied
by the branch target PC to be loaded into the instruction buffer.

To T1 T2 ' T3 T4 Ts

< FETCH >< DECODE >< SPECIFIER >

FETCH

MR_X(046_89

Figure 1-8 IBox Pipeline: Branch Taken, Secondary Prediction

Figure 1-9 shows the IBox pipeline during the execution of a branch instruction. The
branch, in this case, is stored in the BPC and the history bit indicates that the branch is
to be taken. The BPC lookup requires one extra cycle to predict the branch and load the
correct target PC.

To T T2 T3 T4 T5

‘ FETCH >< DECODE k SPECIFIER
FETCH DECODE >< SPECIFIEH)

MR_X0047_89

Figure 1-9 IBox Pipeline: BP Cache Hit, Prediction Taken
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1.5 IBox Interfaces

The IBox interfaces to each of the other CPU functional units through dedicated
interfaces (or ports). This section describes each interface.

1.5.1 MBox Interface
The IBox interfaces to the MBox through two ports in the MBox:

e Instruction buffer port — This port requests data from the MBox when a miss is
encountered in the VIC.

e Operand processing unit (OPU) port — This port requests memory-related
source operands from the MBox and passes operand addresses that specify memory
destinations to the MBox.

1.5.1.1 Instruction Buffer Port

The instruction buffer port is a read-only port to the MBox. The IBox uses the instruction
buffer port to issue requests to the MBox for I-stream data — 64 bits at a time with byte
parity. The I-stream is retrieved from the MBox cache. In the case of a cache miss,

the request is forwarded to memory through the system control unit (SCU). Typically,

a request is for four (aligned) quadwords to fill the VIC. Requests are initiated by the
instruction buffer on a VIC miss.

1.5.1.2 OPU Port

The OPU port is a read/write operand access port to the MBox. The port has a 32-bit
wide data path with byte parity. Any rotation of the data (justification) is performed by
the MBox. The port provides the following functions:

Operand prefetch from cache or memory on behalf of the EBox and VBox
Queuing of addresses for operands destined to cache and memory
Prefetching operands that are address deferred (indirect) from cache or memory

The IBox issues requests on behalf of the EBox and VBox for operands that come from
memory. The operands are passed directly from the MBox to the EBox source list.

The IBox sends the destination address to the MBox. In turn, the MBox performs a
translation buffer (TB) lookup and stores the physical address in the write queue. The
MBox then waits for the result data from the EBox.

For deferred addressing, the MBox returns the address of the operand to the IBox for a
successive fetch for the data (operand). The data operand is returned to the EBox.

DIGITAL INTERNAL USE ONLY



1-14 General Description

1.5.2 EBox Interface

The IBox interfaces to the EBox through the queue functional unit port in the EBox. This
unit contains a set of FIFO buffers (queues) that accept instruction control information
and operands from the IBox.

1.5.2.1 IBox-to-EBox Interface

This interface is used to send operands to the EBox 32 bits at a time with byte parity and
their respective pointers. These operands are handled by the OPU within the IBox (sign

or zero-extended data, integer and floating short literal operands, immediate mode data).
The source and destination pointers are maintained in queues within the EBox, and they
allow the EBox to access the correct data.

In addition, control information is passed to the EBox for microcode control, RLOG
information, program count, and errors.

1.5.2.2 EBox-to-IBox Interface
This interface is used to transfer:

Result data

A starting or flushing PC

RLOG unwind data

Control information (branch valid, queue full, keep masks)

This interface transfers 32-bit EBox result data (including byte parity) to the IBox. The
result data is generally an operand that has a destination of a GPR. The data, including
the byte parity, is written to the IBox GPR set.

In addition to the various control signals, the EBox result data may also be of a
controlling function, for example, an address passed to the IBox to initiate instruction
fetch.

1.5.3 VBox Interface

The VBox issues requests for operands through the IBox. It sends the address (30
bits) with byte parity and control data. Control data is the reference data size, type of
reference (read or write), and whether it is a block read.

1.5.4 Service Processor Interface

The service processor unit (SPU) interfaces through the scan latches throughout the IBox

data and control paths, and error logic. The SPU can retrieve and store the state of the

~ IBox scan logic for error reporting and possible recovery. Field Service can then perform
analysis on the stored error symptom data for identification of the failing FRU.

The scan paths can implement symptom-directed diagnosis (SDD) as well as test-directed
diagnosis (TDD). The scan latches have scan data/clock inputs and the usual system
data/clock inputs. The scan inputs can be controlled by the SPU and diagnostics to shift
test patterns in and test for the correct pattern that is subsequently retrieved.
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Program Counter

This chapter describes the functions of the IBox program counter unit (PCU). It identifies
the major PCs that control the IBox and the MCAs that comprise them. This chapter
also provides a detailed explanation of the PC parity coverage and the construction of the
32-bit PCs across four MCAs.

2.1 Overview

The PCU directs the flow of the I-stream through the IBox and provides control to the
branch prediction cache (BPC) and the virtual instruction cache (VIC). The PCU also
directs the EBox and MBox in instruction fetch and instruction execution by supplying
a copy of the PC to the EBox and by providing an address to the MBox on a VIC refill
operation.

2.2 Major PCs

The IBox generates four major PCs:

Prefetch PC
Decode PC
Branch PC
Unwind PC

The primary inputs to the PCU are from the EBox, the OPU MCU, and the branch
prediction cache (BPC). The EBox input (EBOX_RESULT_H[31:00]) directs the IBox to
begin decoding a new I-stream as the result of a flush. The OPU input (OPU_RESULT_
H[31:00]) provides the branch target address when a branch in the I-stream is not stored
in the BPC. The target address is calculated by the complex specifier unit (CSU) and
loaded into the decode PC (DECODE_PC_H[31:00]). When a branch stored in the BPC is
decoded, BP_PREDICTION_PC_H[31:00] is loaded into the prefetch PC.

Figure 2-1 is a block diagram of the PCU data path.

2.2.1 Prefetch PC

The prefetch PC is 32 bits wide and is used during the instruction fetch stage of the
pipeline. This PC is the address of the next quadword that the instruction buffer receives.
This address is used to request data from the VIC. When a cache miss is encountered,
this address is the address of a request to the MBox.

Each cycle, the prefetch PC is incremented by a quadword until the buffers of the
instruction buffer are completely full. While the instruction buffer is full, the prefetch PC
is held. The PC begins incrementing again when IBEX2 is empty.
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When there is a request for I-stream, the prefetch PC is used as the address to the MBox.

All requests for I-stream are quadword aligned, so it is not necessary to send bits 0
through 2 of the PC to address the MBox data cache.

On a flush, the EBox provides the new PC to the IBox. The IBox then uses the PC
provided to address the VIC and to address the MBox on a VIC miss.

2.2.2 Prefetch PC Data Path

The prefetch PC is loaded from the target PC, BP prediction PC, incremented PC, or
MTAG. When a target PC is selected as the prefetch PC, it redirects the IBox from
decoding sequential I-stream. The target PC is loaded from the:

EBox during a flush
OPU as a calculated branch PC
Unwind PC when a branch prediction is incorrect

BP_PREDICTION_PC_H[31:00] is selected as the prefetch PC when the branch
prediction cache is supplying the PC of the branch being decoded.

MTAG is loaded into the prefetch PC on each cycle of an MBox response. The MTAG is
the memory tag of the returning data from the MBox. MTAG is incremented by eight
each cycle of the MBox response and, when the response is complete, is loaded into the
prefetch PC. The prefetch PC gets loaded with the MTAG because, during the MBox
response, the prefetch PC can increment beyond the next quadword it is to receive.

The prefetch PC outputs control the VIC and provide the addresses of requests to the
MBox.

Figure 2-2 describes the data path of the prefetch PC. The prefetch PC is selected from:

e  MTAG — At the completion of a VIC refill, MTAG is loaded into the prefetch PC to
ensure that the prefetch PC points to the next quadword loaded into the instruction
buffer.

o Target PC — A target PC from one of the sources described in Section 2.2.3 can be
loaded into the prefetch PC to redirect the I-stream. :

¢ Incremented PC — This input increments the prefetch PC by a quadword.

BP PREDICTION PC
+8 PREFETCH PC

TARGET PC LATCH >
MTAG TARGET PC
PC_PREFETCH_PC_SEL[01:00] PREFETCH_PC_SEL[01:00]

MR_X0052_8%

Figure 2-2 Prefetch PC Data Path
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2.2.2.1 Prefetch PC Control

The prefetch PC is incremented each cycle until the instruction buffer informs the PCU
that IBEX and IBEX2 are full. When these units are full, the prefetch PC is held until
IBEX2 again requires an I-stream. This continues until a request is made for an I-stream
that is not in the VIC or a new target PC redirects the prefetch PC from sequential
decoding.

2.2.3 Target PC

The target PC is loaded into both the prefetch PC and the decode PC to redirect the
I-stream from decoding sequential instructions. A branch in the I-stream or a flush loads
a new target PC into the decode PC and prefetch PC.

Figure 2-3 describes the sources of the target PC.

TARGET _PC_SELECT _H[01:00] is controlled by the PCU microcode and selects an input
to redirect the I-stream for each of the following conditions:

¢ Prediction PC is selected when a branch that is being decoded is stored in the BPC
(BP hit).

e OPU target PC provides the target PC when a branch is predicted taken but not
stored in the BPC (BP miss).

¢ EBox result provides the target PC when the EBox directs the IBox to flush to a new
I-stream.

¢ Unwind PC is loaded into the target PC after a bad branch prediction.

PREDICTION PC TB

OPU TARGET PC

TARGET PC
EBOX RESULT r—» PREFETCH PC

UNWIND PC

——— DECODE PC

TARGET_PC_SELECT_H[01:00]

MR_X005"_89

Figure 2-3 Target PC Sources

2.2.4 Decode PC

The decode PC is the PC of the instruction whose opcode is in the opcode byte (byte 0)
of the instruction buffer. That is, it is the PC of the instruction currently being decoded.
The decode PC does not reflect intermediate shift counts that result from partially
decoded instructions. The decode PC is used in the instruction specifier stage of the IBox
and is passed to the EBox to be placed in the PC history buffer. In the EBox it is called
the VAX PC because it is the PC of the instruction to be executed and is used by the
EBox when handling exceptions.

This PC is also used by the CSU to evaluate implied specifiers and branch displacements.
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The decode PC is loaded from two sources. The next or sequential PC provides the
decode PC when instruction decode is following a sequential path (straight line) and
when branches are encountered that are predicted not taken. When a branch is predicted
taken or a flush is encountered, a new (nonsequential) PC is loaded into the decode PC.
This PC is supplied by the OPU or the branch prediction cache on branch predictions or
is supplied by the EBox on a flush.

2.2.5 Decode PC Data Path

The decode PC is loaded from the next PC, when decoding sequential I-stream, or is
loaded from the target PC. The target PC is loaded into the decode PC at the same time
a new target PC is loaded into the prefetch PC. The next PC is generated each cycle by
adding the number of bytes the XBAR decodes to the decode PC. When the instruction
under decode is completely decoded, this addition yields a new decode PC.

The decode PC is output to the EBox (IBOX_PC_H[31:00]) to be placed in a queue until
the instruction is executed. The CSU of the OPU receives a copy of the decode PC (PC_
OPU_DECODE_PC_H[31:00]) to identify the instruction that is being decoded. When a
branch instruction is being processed, and the branch meets the criteria required to be
written in the branch prediction cache, the decode PC is written to that cache. The BP
tag is written with DECODE_PC_H[31:10] at the address supplied by DECODE_PC_
H[09:00].

Each cycle, the decode PC is added to the number of bytes decoded by the XBAR (XBAR_
SHIFTCOUNT_H[03:00]). When all of the specifier bytes of an instruction are decoded
(XSCA_SHIFTOPCODE_H asserted), the next sequential PC or next PC is loaded as the
decode PC.

Each new decode PC that is loaded asserts IBOX_PC_H[31:00] in the EBox and OPU_
DECODE_PC_H[31:00] in the OPU MCU. The EBox copy of the decode PC is stored in a
queue for instructions to be executed. The OPU copy of the decode PC is used to calculate
specifier PCs and branch displacement.

TARGET PC

XBAR SHIFT COUNT DECODE PC~
LATCH >
NEXT PC

)

J XSCA_SHIFTOPCODE_H

MR_X0055_89

Figure 2-4 Decode PC Data Path

2.2.5.1 Delta PC

The XBAR shift count (XSCA_SHIFTCOUNT_H[03:00]) is accumulated to produce the
decode delta. That is, the total number of bytes in an instruction yields the decode delta.
The decode delta provides the OPU and the BPC with the instruction length.
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2.2.6 Branch PC

The branch PC is the address of the branch instruction that is currently under
evaluation. When the IBox encounters a branch, the decode PC is loaded into the branch
PC. The branch PC is used to address the branch prediction cache. The branch PC is
compared with the branch prediction (BP) tag to produce a hit or miss in the branch
prediction cache.

2.2.7 Branch PC Data Path

The branch PC is loaded from either the decode PC or the second branch PC. When a
branch instruction is being processed, the address of the branch is saved until the branch
is shifted out of the instruction buffer. After the branch is shifted out of the instruction
buffer, the branch PC provides the information pertaining to the branch that is written to
the branch prediction cache.

Because the IBox can process two branches simultaneously, a second branch PC must
be generated for the second branch. The second branch PC (SECOND_BRANCH_PC_
H([31:00)) is stored in a scan latch until the first branch is completely processed. The

second branch PC is then loaded into the branch PC and used as data to be written to
the branch prediction cache.

Figure 2-5 describes the data path of the branch PC. The decode PC is loaded into the
branch PC for each branch the IBox encounters. The address is saved until the branch is
completely processed. If two branches are being processed, each address is saved.

DECODE PC

BRANCH PC
LATCH

DECODE PC SECOND BRANCH PC
] LATCH

MR_X005¢_89

Figure 2-5 Branch PC Data Path
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2.2.8 Unwind PC

The unwind PC is the PC of the direction not taken in a branch prediction. When the
IBox makes a branch prediction, two PCs relate to the prediction: the branch target PC
and the next or sequential PC. When a branch is predicted taken, the branch target PC
or the prediction PC is the path that the instruction execution follows. The next PC is the
path that is not taken. The IBox saves the path that is not taken (in this case, the next
sequential PC) in case the IBox predicted the branch incorrectly. If the EBox informs the
IBox that a branch has been incorrectly predicted, the IBox can correct the prediction by
loading the unwind PC into the decode and prefetch PCs and start decoding in the correct
path.

Because the IBox can process two branches simultaneously, it is necessary to have two
unwind PCs. These PCs are called the unwind PC and the second unwind PC. These
PCs are both used when a branch is predicted and a second branch is predicted before
the first has been validated by the EBox. Once the first branch is validated, the second
unwind PC is loaded into the first unwind PC. The original, first unwind PC is discarded.

2.2.9 Unwind PC Data Path

When the IBox predicts a branch, the PC of the instruction that will not be executed is
saved as the unwind PC. In the event of a wrong prediction, the PCU can return to the
PC that was saved and continue with the correct I-stream.

The PCU can maintain information pertaining to two conditional branches, therefore,
two unwind PCs are stored. Figure 2-6 describes the data path of the unwind PC. The
unwind PC is loaded from one of three sources:

e Next PC — This PC is loaded when a branch is predicted taken.
e OPU result — This PC is loaded when a branch is predicted not taken.

¢ Second unwind PC — This PC is loaded by latching the next PC and loading it as
the unwind PC.

The second unwind PC is loaded into the unwind PC only after the first branch that has
been predicted has been validated by the EBox.

NEXT PC

OPU RESULT UNWIND PC
| LATCH |

NEXT PC SECOND UNWIND PC
91 LATCH

MR_X0055_89

Figure 2-6 Unwind PC Data Path
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2.3 Cache Control

Control of the branch prediction cache (BPC) and the virtual instruction cache (VIC)
is provided by the PCU. The VIC is addressed by the prefetch PC on read and write
operations, the VIC tag is compared to the prefetch PC to determine a match when
requesting data, and the prefetch PC provides the address for MBox requests on a VIC
refill. The decode PC provides both the BP tag and the BP address. Figure 2-7 shows
the relationship of the cache control signals to the PCU outputs.

IBOX IB ADDRESS

313029282726252423222120191817 1615141312 11100808 070605 04 03{02 0100

VIC TAG VIC ADDRESS

3130292827262524232221201918171615141312 11100908 07 06 050403020100

BP TAG BP ADDRESS

MA_X0048_88

Figure 2-7 PCU Cache Control

2.3.1 BPC Control

The branch PC provides BPC fields. The BP tag is bits 31 through 10 of the branch PC
and is written when the branch is first encountered. The tag is written at the cache
address that is supplied by decode PC bits 0 through 9. When a branch is encountered,
the virtual address of the branch (DECODE_PC_H[31:00]) is compared to the BP tag to
determine a hit or miss in the BPC.

2.3.2 VIC Control

The prefetch PC provides control for the VIC. This PC provides the address of a request
to the MBox (IBOX_IB_ADDRESS_H[31:03]), the VIC tag (VIC_TAG_H[31:13]), and to
address the VIC when replenishing the instruction buffer.

Bits 31 through 13 provide the VIC tag. The tag is written on a VIC refill and
subsequently compared with bits 31 through 13 of the prefetch PC when the instruction
buffer is requesting VIC data.

Bits 0 through 9 of the prefetch PC provide the cache address on VIC requests and, when
requesting data from the MBox data cache bits 31 through 3 of the prefetch PC, provides
the requested address (IBOX_IB_ADDRESS_H[31:03]).
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2.4 PCU Error Detection

Each of the MCAs that comprise the PCU receives inputs from most of the other
functional units in the IBox and from the MBox and EBox. Each PCU MCA contains
parity detection logic that detects errors in the internally generated signals and inputs to
the PCU. Errors detected in the PCU MCAs result in both fetch and decode errors being
asserted in the IBox and EBox.

This section contains block diagrams of the error logic of each PCU MCA and lists the
decode and fetch errors that can occur in each MCA.

2.4.1 PCVC Error Logic

PCVC fetch errors are latched in IBFB as an IBFB_FETCH_ERROR and then asserted
in the EBox as IBOX_FORK_ERROR_H. During this process, the scan latches in PCVC
receive a hold signal. The hold signal preserves the state of the error scan latches so that
the intermediate error can be determined.

PCVC decode errors are latched in XDTB and OSQB as XDTB_DECODE_ERROR_H.
OSQB asserts IBOX_POINTER_ERROR_H and DATA_ERROR_H in the EBox.

Figure 2-8 shows a block diagram of the PCVC error logic and Table 2-1 lists the error
signals generated in this MCA.

Table 2-1 PCVC Errors

Input Signal Intermediate Error

Fetch Errors

DECODE_P(C[15:08] PCVC_DECODE_PC_ERROR
PREFETCH_PC_H[15:08] PCVC_PREFETCH_PC
PCBP_DECODE_PC[05:00] PCVC_PCBP_DECODE_PC_ERROR
BP_PREDICTION PCVC_BP_PREDICTION_ERROR
BP_PREDICTION_TAG_H[15:00] PCVC_BP_PRED_TAG_ERROR
Decode Errors

XSCA_XSCA_SHIFTCOUNT_H[03:00] PCVC_DECODE_ERROR
XSCA_SHIFTOPCODE PCVC_DECODE_ERROR
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Figure 2-8 PCVC Error Logic
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Figure 2-9 shows a block diagram of the PCBP error logic and Table 2-2 lists the error

signals generated in this MCA.

Table 2-2 PCBP Errors

Input Signal

Intermediate Error

Fetch Errors

DECODE_PC[07:00]
PREFETCH_PC_H[07:00]
INSTRUCTION_LENGTHI[05:00]
DECODE_PC{23:16]
DECODE_PC[31:24]
BP_PREDICTION

PCBP_DECODE_PC_ERROR
PCBP_PREFETCH_PC_ERROR
INSTRUCTION_LENGTH_ERROR
PCBP_PCLO_DECODE_PC_ERROR
PCBP_PCHI_DECODE_PC_ERROR
BP_PREDICTION_ERROR

Decode Errors

XSCA_SHIFTCOUNT_H[03:00]
XSCA_SHIFTOPCODE_H

XSCA
XSCA

2.4.3 PCLO Error Logic

Figure 2-10 shows a block diagram of the PCLO error logic and Table 2-3 lists the error

signals generated in this MCA.

Table 2-3 PCLO Errors

Input Signal

Intermediate Error

Fetch Errors

DECODE_P(C[23:13]
PREFETCH_PC_H[23:13]
DECODE_PC[05:00]
EBOX_RESULT{15:08]
BP_PREDICTION_PC[15:13]
BP_PREDICTION

PCLO_DECODE_PC_ERROR
PCLO_PREFETCH_PC_ERROR
PCLO_PCBP_DECODE_PC_ERROR
PCLO_EBOX_RESULT_ERROR
PCLO_PRED_PC_15_13_ERROR
PCLO_BP_PREDICTION_ERROR

Decode Errors

XSCA_SHIFTCOUNT_H[03:00]
XSCA_SHIFTOPCODE_H

PCLO_DECODE_ERROR
PCLO_DECODE_ERROR

DIGITAL INTERNAL USE ONLY



2-12 Program Counter

68 £S00X N

OAQd 'd80d 'OIA

H 8 HOHH3 300930 810X

(S3IHOLVI A10H)

H HOYHI ONOdS3IH

H HOHY3
H HOlv1 viva Q1OH
_ . GNv_ 1901
X083 @— - - H 81 HOHH3 300230 xoOEG
H 'HOYH3I HILNIOd X08I — — - a1ax - - - H3INO3HO
H HOHYI viva xoal 9050 H HOHH3 300030 810X H HOHY3 300930 d89d ALiuvd
H HOHHI NOILDIQ3Hd d8 d8dd
X083 = — — [20:€0]H HOHHI 9V1 ‘NOILDIGIHUd d8 d80d H3IND3HO
H HOWHI XHO4 XO08i 8481 fa-—- oo mee o] HOHHI g e e e e ALldvd
H HOYY3 HOL3I4 848! H HOBY3 d83d d80d H HOMHI 0d 300030 IHOd 'd80d
H HOHH3 0d 30003G 019d d80d
H HOHHI HLON3I1 NOILONHiSNI d89d
H HOHH3 Dd HO13434d d82d
Nod 'v48l ‘810X ———————————t H HOHY3 0d 300230 d8dd HOHY3 d80d

ALlHVd '3Q00dO L4IHS
‘lo0:e0} LNNOD L4IHS (VDSX) HVEX

H Y NOILOIQ3Hd dd8

(91:1€]H OVL NOILDIGIHd d8

{v2:1€]H 0d 300030 1HOd

f91:62lH 0d 3002307 0710d

[00:50]H THLONIT 'NOILONHLSNI dE

{00:20]0d "HD13434d

loo:z0l0d7300230

Figure 2-9 PCBP Error Logi
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Figure 2-10 PCLO Error Logi
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2.4.4 PCHI Error Logic

Figure 2-11 shows a block diagram of the PCHI error logic and Table 24 lists the error
signals generated in this MCA.

Table 2-4 PCHI Errors

Input Signal Intermediate Error

Fetch Errors

DECODE_P(C[31:24] PCHI_DECODE_PC_ERROR
PREFETCH_PC_H{31:24] PCHI_PREFETCH_PC_ERROR
DECODE_PC[05:00] PCHI_PCBP_DECODE_PC_ERROR
DISPLACEMENT[11:08, 03:00] PCHI_XDTA_DISP_ERROR
DISPLACEMENT/15:12, 07:04] PCHI_XDTB_DISP_ERROR
BPTD_TAG_DISPLACEMENT[15:00] PCHI_BP_TAG_DISP_ERROR{01:00]
BP_PREDICTION PCHI_BP_PREDICTION_ERROR
Decode Errors

XSCA_SHIFTCOUNT_H[03:00] PCHI_DECODE_ERROR
XSCA_SHIFTOPCODE_H , PCHI_DECODE_ERROR

2.5 PCUInputs

The MBox inputs to the PCU are in response to an instruction buffer request to the
MBox. The two signals the PCU receives are as follows:

e MBOX_IB_RESPONSE_H directs the control of the MTAG and the prefetch PC when
the MBox is returning data for a VIC refill.

e MBOX_IB_PAGEFAULT_H inhibits writing page faulted data to the VIC.

The EBox inputs to the PCU validate predicted branches and, when the IBox is flushed,
provides a starting address. The primary EBox inputs to the PCU are as follows:

e EBOX_RESULT_H[31:00] provides the starting address after a flush.
e EBOX_BRANCH_A_H, when asserted, indicates a bad branch prediction.
e EBOX _BRANCH_VALID_A_H validates EBOX_BRANCH_A_H.

The XBAR provides shift counts and error status to the PCU. The XBAR inputs are as
follows:

e XSCA_SHIFTCOUNT_H[03:00] is used to increment the decode PC.

e XDTB_DECODE_ERROR_H informs the PCU of an error in the instruction decode
pipeline stage of the IBox. The signal sets the PCU in a hold state.
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The OPU provides flush signals and the target PC for branch instructions. The OPU
inputs are as follows:

e OCTL_PC_FLUSH flushes the IBox to a new decode PC, provided by the EBox.

e OCTL_IBUF_FLUSH holds the prefetch PC until the IBox can resume decoding an
I-stream. The signal is sent when the IBox has to wait for one of the VIC block valids
to be flushed.

e OPU_TARGET_PC_H[31:00] is provided by the CSU on branch instructions.
¢ OCTL_VIC_FLUSH_H flushes the VIC.

2.6 PCU Outputs

The PCU directs outputs to the MBox, EBox, XBAR, and OPU. The outputs direct the
flow and execution of instructions through the functional units that receive them.

The MBox receives a byte parity protected address that directs the prefetching of I-
stream. These two outputs are as follows:

e IBOX_IB_ADDRESSI[31:03] is the prefetch PC. (The lower three bits are always zero.)

e IBOX_IB_ADDRESS_PARITY[03:00] is the byte parity for the address that the PCU
is sending the MBox.

The EBox receives a copy of the decode PC and information pertaining to branches. The
signals the EBox receives are as follows:

e IBOX_PC[31:00] is a copy of the decode PC. The EBox, after execution of the
instruction to which this PC points, stores it in the PC history buffer, or uses it
during exception processing.

e IBOX_PC_PARITY[03:00] is the byte parity for the IBox PC.

e IBOX_CORRECTION_H is asserted if the IBox can correct a bad branch prediction
before it is shifted out of the IBUF.

¢ IBOX_PC_VALID_H is asserted when a new valid opcode is shifted into the opcode
byte of the IBUF.

¢ IBOX_PREDICTION_H, asserted, informs the EBox that the IBox has predicted a
branch to be taken.

The XBAR receives two signals from the PCU:

e PCHI_UNWIND_H is asserted when the EBox detects a bad branch prediction. The
signal asserts a restart signal in the three XBAR MCAs.

e PCHI_DECODE_ERROR_H is asserted by a parity error on XSCA_SHIFTCOUNT_
C_H or XSCA_SHIFTOPCODE_C_H.

The following PCU outputs provide the OPU with the decode PC and branch information:
e DECODE_PC_H[31:00] is the CSU’s copy of the decode PC.

e PCHI_UNWIND_H is asserted on a bad branch prediction. This signal initiates a
flush of the CSU.

e PCHI_CORRECTION_H is input to the branch count logic of the CSU.

e PCVC_VIC_FIP_H is sent to OCTL when the VIC is being flushed. Asserting this
signal directs OCTL to stall the IBox if another flush is received before the first flush
is complete. (The VIC flush requires 256 cycles.)
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Instruction Fetch

This chapter describes the functional units representing the instruction fetch pipeline
stage: the VIC, the instruction buffer, and the MBox interface.

3.1 VIC

The VIC is a direct-mapped, 8-Kbyte cache with a block size of 32 bytes and a fill size of
8 bytes. Physically, the VIC is made up of four groups of STRAMs:

e Data STRAMs — Store one quadword of data per location.
e Tag STRAMSs — Store bits [31:13] of the address of each block in the VIC.
e Block valid STRAMs — Store one bit to indicate that the VIC block is valid.

e Quadword valid STRAMs — Store four bits to indicate that a corresponding
quadword is valid.

VIC data STRAMs are on the VIC MCU and the VIC tag STRAMs are on the XBR MCU.
A VIC block consists of four quadwords of VIC data. There are 1024 VIC data locations
and 256 VIC tags, VIC block valid bits, and VIC quadword valid bits. There are two
separate block valid bits for the VIC. Figure 3-1 is a simplified block diagram of the
VIC.

VIC TAG STRAMs, 256 ENTRIES

QUADWORD
VALID
PARITY

VICA
BLOCK
VALID

VICB VIC MATCH LOGIC
BLOCK ->
VALID

TAG
PARITY
{03:02]

QUADWORD
VALID

ol1|2l3

TAG
[31:13]

VIC DATA STRAMs, 1024 ENTRIES

QUADWORD 0
MBOX IB DATA [63:00] VIC DATA [63:00])
AND BYTE PARITY QUADWORD 1 AND BYTE PARITY

QUADWORD 2

QUADWORD 3

MR_X006C_89

Figure 3-1 VIC
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3-2 Instruction Fetch

3.1.1 VIC Hit

The instruction buffer determines a VIC hit (VIC_MATCHA_H or VIC_MATCHB_H
asserted) if the following conditions are met:

The VIC block is valid.
The prefetch PC matches the VIC tag.
The quadword is valid.

If these conditions are not met, a VIC miss is signaled and an instruction buffer request
is made to the MBox.

3.1.2 VIC Data Write

Control of the VIC is provided by the prefetch PC and the instruction buffer. VIC match
and instruction buffer request logic are in the instruction buffer, while the requested
address is provided by the prefetch PC.

Figure 3-2 shows a block diagram of the VIC data write function. The instruction buffer
request initiates the following sequences:

*  One cycle after the request is made, the instruction buffer asserts IBUF_REQUEST_
IN_PROCESS. This signal selects the memory tag (MTAG) to address the VIC.

e MBOX_IB_RESPONSE is asserted when the MBox responds to the request. Without
any stalls present or a page fault on the requested data, this signal provides the write
enable for the VIC data.
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Figure 3-2 VIC Data Write
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3—4 Instruction Fetch

3.1.2.1 VIC Address Selection

The VIC is addressed by the prefetch PC on VIC requests and is addressed by the MTAG
when the I-stream is being returned from the MBox. The MTAG is the address that is
returned from the MBox in response to an instruction buffer request.

Figure 3-3 shows the generation of the VIC address. The prefetch PC provides the
requested address to the MBox and is then held from incrementing until the MBox
returns the requested data. When the data is returned (MBOX_IB_ RESPONSE H
asserted), the prefetch PC begins incrementing again.

VIC_ADDRESS_SELECT_H is asserted to select MTAG when the MBox returns the
requested I-stream.

The prefetch PC does not address the VIC when data is returning from the MBox because
the XBAR does not always consume a quadword of I-stream in a single cycle. If the
prefetch PC did address the VIC and the XBAR did not consume a quadword of I-stream
each cycle of the response, the prefetch PC would be incremented past the last quadword
that the instruction buffer receives next. The prefetch PC is loaded with the MTAG at
the end of an instruction buffer request so that it points to the next quadword that the
instruction buffer requests.

PREFETCH PC

LATCH

MTAG VIC ADDRESS

>

+8

MBOX_iB_RESPONSE_H VIC_ADDRESS_SELECT_H

MR_X0050_89

Figure 3-3 VIC Address Selection

3.1.2.2 VIC Data

With the VIC data write signal (PCVC_VIC_DATA_WRITE_H) enabled and the VIC
address selected, the MBox returns the I-stream and writes it to the STRAMs. The
I-stream arrives one quadword per cycle and is byte parity protected.

Most requests for VIC data are for four quadwords, but requests for less can be issued.
If a request is for less than four quadwords, the MBox returns the requested quadword
and the remaining quadwords in the block. That is, the request does not wrap around
the block. For example, if the requested address is for the third quadword in a block,
quadwords 2 and 3 are returned, but quadwords 0 and 1 are not.
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3.1.3 VIC Tag Write

instruction Fetch 3-5

As VIC data is being written to the cache, the tags are also written. As the requested
I-stream is returned from the MBox, the PCU writes the tag field (bits [31:13] of the
MTAG) and validates the block and quadword valid bits for that location in the VIC.
Figure 3—4 is a block diagram of the VIC tag write function.

MBOX_IB_RESPONSE_H is asserted in the first cycle of a response from the MBox and

enables writing the tag and valid fields to the VIC tag (VICT) STRAMs.

The following sections describe the four write functions associated with the VIC tag field.
The four fields to be written are as follows:

VIC tag

Quadword valid bits
Block valid bit

Tag parity

MBOX_IB_PAGEFAULT_L

CP_ABORT_L

CTL_PC_FLUSH_L
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VIC_FLUSH_IN_PROGRESS
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USE_BLOCK_A_VALID
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QUADWORD
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QUADWORD
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PREFETCH_PC
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DECODE
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USE_BLOCK_A_VALID i \ BLOCK_A_DATA

Figure 3-4 VIC Tag Write

! / BLOCK_B_DATA

WMA_X0082_83

DIGITAL INTERNAL USE ONLY



3-6 Instruction Fetch

3.1.3.1 Tag Write

When the requested I-stream is returned from the MBox, the PCU writes MTAG bits
[31:13] to the tag field. The address of the request was originally supplied by the prefetch
PC, but when the I-stream is returning, the VIC is addressed by the MTAG.

When the VIC is receiving multiple responses from the MBox, the address of the VIC
must be incremented by a quadword in each cycle of the MBox response. The prefetch
PC is not incremented by a quadword until a quadword of I-stream is consumed by the
XBAR. Because of this, a new address (MTAG) must be used when the I-stream comes
from the MBox to the VIC.

To address subsequent returning quadwords, bits [04:03] of the VIC address are
incremented each cycle. The VIC address is then loaded into the MTAG and used as

the returning quadword address.

3.1.3.2 Quadword Valid Write

As each quadword returns, bits [04:03] of the MTAG are decoded to identify the quadword
being written. The bit field is decoded and the single bit valid field is written as the data
is written to the data field. Validating this field as the data is being written provides
valid data, for the instruction buffer, in the first cycle of the MBox response.

3.1.3.3 Block Valid Write

The VIC contains two sets of the block valid field. The 2-bit field, when validated,
indicates that valid data is in the VIC. The purpose of the two copies of the field is to
enable a VIC flush in a single cycle.

To validate this field, the correct block valid is selected, then the valid bit is latched into
the STRAM. The field is validated when the first quadword, of a request, is returned from
the MBox.

A block valid selection and write is initiated by the assertion of MBOX_IB_RESPONSE_
H. The selection of the block valid is achieved by inverting USE_BLOCK_A_VALID. This
selects the block that was not in use since the last VIC flush.

3.1.3.4 Tag Parity

All VIC tag parity checking is performed in IBFA. When a VIC tag parity error is detected
in IBFA, IBFA_VIC_ERROR_H is asserted and passed to the IBFB fetch error circuitry.
IBFB asserts IBFB_FETCH_ERROR_H and forwards it to the EBox when a VIC tag
parity error is detected.
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Instruction Fetch 3-7

3.1.4 VIC Flush

The VIC is flushed on every REI and, in most cases, the flush is achieved in a single
cycle.

A flush is initiated when OCTL_VIC_FLUSH_H is asserted. This signal is generated in
OCTL and is the result of a flush code sent by the EBox. Receipt of this signal inverts
the selection of the block valid being used and initiates the flush of the original block
valid that was in use. The flush requires 256 cycles.

Each cycle of the block valid flush, VIC_CLEAR_ADDRESS_H[08:00] is incremented.
The flush is complete when bit 8 is set (VIC_CLEAR_ADDRESS_H[08:00] = 1FF).

Once a flush is initiated by OCTL, the PCU asserts VIC_FLUSH_IN_PROGRESS_H.
This signal remains asserted until the flush is complete and prohibits issuing another
flush request until it is negated.

3.1.5 VIC Data Read

When the instruction buffer requires a new I-stream, compare logic on the IBFA MCA
checks the VIC tag field for a resident block and valid quadwords then compares the
requested address with the VIC address tag field. If there is a match, a VIC hit (VIC_
MATCH_H) is signaled and the requested I-stream is loaded into the instruction buffer.
Figure 3-5 is a simplified block diagram showing the VIC compare logic.

VICB_BLOCK_VALID
BLOCK_VALID
VICA_BLOCK_VALID VJ

USE_BLOCK_A_VALID_H )

OUADWORDO_VALID_H
QUADWORD1_VALID_H .
QUADWORD_VALID_H — \ VIC_MATCH_H
QUADWORD2_VALID_H ] / 1BOX_VALID_L \ REQUEST_CONDITION_H

QUADWORD3_VALID_H e _/

IBOX_EMPTY_TB_H

PREFETCH_PC_H[04 03]

SC_GEQ_IBOX_VC_H

PREFETCH_PC_H[31:13]

TAG_MATCH_H

VIC_TAG_H[31:13) COMPARE

SPU_DISABLE_H

MA_X0063_88

Figure 3-5 VIC Match Logic
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3-8 Instruction Fetch

The block valid bit is checked to detect a valid VIC block. The prefetch PC (bits [04:03])
selects the quadword valid to be compared. The tag address is compared with prefetch
PC [31:13]. A match of the two address fields enables VIC_MATCH_H.

A VIC hit asserts READ_VIC_DATA_H and the requested I-stream is written to the
instruction buffer.

3.1.5.1 VIC STRAM Bypass
During a VIC refill, it is possible to write and validate the data and latch the data in the
instruction buffer in the same cycle.

When the MBox is returning the first quadword of an I-stream, the block and quadword
are marked valid and the tag and data are written to the STRAMs. By placing the data
on the output latches of the STRAMs, the instruction buffer is allowed to receive the
valid data late in the same cycle.

If the XBAR consumes the instruction buffer data in a single cycle and the MBox is
simultaneously returning VIC data, subsequent quadwords are latched in the instruction
buffer through the VIC STRAM bypass.

3.1.6 VIC Parity Coverage

The VIC can cause two errors: fetch errors and decode errors. The VIC tag (VICT) fields
are parity checked on the IBFA MCA. VIC data (VICD) is parity checked on IBFA and
IBFB.

VIC data is byte parity protected and is checked on the output, as the data is latched into
the instruction buffer. IBFB_FETCH_ERROR_H is asserted when this error is detected.

Block valid parity, tag parity, and quadword valid parity is checked on IBFA. Errors
in these units assert IBFA_VIC_ERROR_H. This signal is latched to IBFB and asserts
IBFB_FETCH_ERROR_H.

The SPU can disable the VIC parity error detection logic. Enabling this feature
suppresses reporting of VIC parity errors.

3.1.7 Disabling VIC Hits

The SPU can disable the VIC hit logic. Enabling this feature causes every VIC access to
result in a VIC miss. The instruction buffer is then forced to initiate an MBox request
each time it needs an I-stream. This feature can be used as a troubleshooting aid or as a
temporary solution to an excessive error rate in the VIC.
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Instruction Fetch 3-89

3.2 Instruction Buffer

The instruction buffer logic is physically partitioned across the IBFA and IBFB MCAs on
the XBR MCU, with IBFA handling the low nibble and IBFB handling the high nibble.
The primary function of the instruction buffer is to present the I-stream to the XBAR for
decoding.

The instruction buffer is comprised of six major functional units (Figure 3-6):

IBUF
IBEX
IBEX2
Rotator
Shifter
Merger

Under usual conditions, the instruction buffer is filled in the following manner: The
first quadword of VIC data passes through the rotator and merger and is loaded into
the IBUF. The second quadword is loaded into IBEX, and IBEX2 receives the third
quadword. As the IBUF bytes are decoded, they are shifted out and replenished with
bytes from IBEX. The rotator, shifter, and merger align the remaining IBUF bytes and
the new IBEX bytes in sequential order in the IBUF. When the IBEX becomes empty, the
quadword in IBEX2 is loaded into IBEX and IBEX2 requests more data from the VIC. If
no valid data is in the VIC, then a request is passed to the MBox.

PC |
' IBUF I
IBEX SHIFTER
\l IBUF DATA [71.00}
IBEX2 ROTATOR J
VIC DATA [63:00] | M

IBEX_ROTATE_SELECT([01:00]

IBUF_VALID_COUNT{03:00}

|BEX_VALID_COUNT[03.00] ROTATE ROTATE_DATA_SELECT[02:00]

XBAR_SHIFTCOUNT_H[03:00] SELECT

IBUF_VALID_COUNT[03:00]

MERGE | MERGE_SELECT[08:00]
XBAR_SHIFTCOUNT([03:00] SELEGT

MR_X0064_89

Figure 3-6 Instruction Buffer
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3-10 Instruction Fetch

IBEX and IBEX2 are quadword buffers between the VIC and IBUF. Data can be loaded
into IBUF from either of these registers, with valid data in IBEX taken before any valid
data from IBEX2. Data taken from either of these sources is rotated by the rotator to
provide the correct byte position in IBUF.

As the data in IBUF is consumed, decoded bytes are shifted out and replenished with
new valid data from IBEX, IBEX2, or the VIC. The shifter provides this function by
shifting the decoded bytes out and shifting remaining bytes down into vacant lower byte
positions.

The merger ties the functions of the rotator and shifter together by replenishing IBUF
with valid data from both the shifter and rotator.

Control for the instruction buffer depends primarily on three signals:
¢ IBUF_VALID_COUNT_H[03:00] is the number of valid bytes in the 9-byte IBUF.
e IBEX_VALID_COUNT_H[03:00] is the number of valid bytes in the 8-byte IBEX.

¢ XSCA_SHIFTCOUNT _H is the number of IBUF bytes the XBAR has decoded in a
single cycle.

These three signals direct the flow of data through the rotator and shifter, and they
initiate requests to the VIC and MBox for replenishment.

The shift count (XSCA_SHIFTCOUNT_H[03:00]) is the number of bytes the XBAR has
decoded and directs the shifter to shift decoded bytes out of IBUF.

The IBUF valid count (IBUF_VAL_H[03:00]) selects rotate and merger data for
replenishing IBUF. This valid count is calculated by subtracting the XBAR shift count
from the previous IBUF valid count.

The IBEX valid count (IBEX_VALID_COUNT_H[02:00]) is the number of valid bytes

in the 8-byte IBEX. This valid count is used by the rotator to select valid bytes to be
loaded into IBUF. When no valid bytes are in IBEX (IBEX_VALID_COUNT_H = 0), data
is loaded into IBUF from IBEX2, the VIC, or a request is made to the MBox.

3.2.1 IBEX2

IBEX2 is an 8-byte buffer between the VIC and IBEX. IBEX2 receives and outputs data
eight bytes per cycle. IBEX2 receives input data from the VIC and outputs to either
IBEX or IBUF. Which unit receives IBEX2 data depends on the valid counts of IBEX and
IBUF. For example, if IBEX is empty (IBEX_VALID_COUNT_H = 0) and IBUF is full
(IBUF_VALID_COUNT_H = 9), then the eight bytes of IBEX2 data is loaded into IBEX.
This load is accomplished by selecting IBEX2 data at the rotator multiplexer (IBEX_
ROTATE_SELECT _H[01:00] = 1). The data is not passed through the rotator because the
IBUF valid count indicates that IBUF is full.

Validating IBEX2 requires only a single bit, as the buffer is either full or empty. IBEX2_
VALID_H is asserted when valid data is in IBEX2. To load data into IBEX2 and assert
the IBEX2 valid bit, IBEX must contain valid data IBEX_EMPTY_TB_H is negated) and
a VIC match must occur (VIC_MATCHA_H or VIC_MATCHB_H asserted).
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Instruction Fetch 3-11

When IBEX2 contains valid data (IBEX2_VALID_H asserted), the prefetch PC cannot be
incremented past the next sequential quadword it is addressing. A hold signal (IBUF_
HOLD_PREFETCH_PC) is asserted to stop incrementing the PC. This signal is asserted
when IBEX2_VALID_H is asserted and IBEX_EMPTY_H is negated. The PC is held
because it must continue to point to the next quadword the instruction buffer will receive.
When IBEX2 becomes empty, the quadword that the prefetch PC is addressing is loaded
into IBEX2 and the PC is incremented.

3.2.2 IBEX

IBEX, unlike IBEX2, can contain valid data in any of its byte locations. This allows IBEX
to replenish IBUF with any number of bytes as they are decoded by XBAR. Data that is
loaded into IBEX is sent to the rotator of the instruction buffer. IBEX data is passed to
the rotator in a low-to-high byte order, providing IBUF with a sequential I-stream.

IBEX receives data from either IBEX2 or the VIC. If IBEX2 is valid, then it replenishes
IBEX. If IBEX2 is not valid, then the VIC (f valid) replenishes IBEX.

3.2.2.1 IBEX Valid Count
Because IBEX replenishes IBUF with as many bytes as needed, it can contain any
number of valid bytes between eight and zero.

The IBEX valid count (IBEX_VALID_COUNT _H[03:00]) is calculated by subtracting the
valid count, of the previous cycle, from the number of bytes loaded into IBUF (MERGE_
COUNT_H[03:00)).

When IBEX contains valid data, and the IBUF valid count (IBUF_VC_H[03:00]) is less
than nine, IBEX data is selected at the rotator multiplexer. The IBEX data is placed
on the input of the rotator. The rotator rotates the bytes needed to fill IBUF (ROTATE_
SELECT_H[03:00]) and passes the rotated IBEX bytes to the merger. The merger passes
shift data and rotate data to IBUF and produces a merge count (MERGE_COUNT_
H[03:00]). The previous IBEX valid count is subtracted from the merge count to produce
a new IBEX valid count.

When the IBEX valid count is decremented to zero, IBEX_EMPTY_H is asserted and
directs IBEX_ROTATE_SELECT_H[01:00] to select VIC data or IBEX2 data at the IBEX
rotator multiplexer. When either of these sources is supplying data to IBUF, and IBUF
does not require all eight bytes, the remaining bytes are stored and validated in IBEX.

3.2.3 Rotator

The rotator aligns the bytes from IBEX, IBEX2, or the VIC so that they are correctly
placed in IBUF. This logic consists of a bank of multiplexers that can select any of the
eight bytes and insert them into IBUF in the correct byte position.

The rotator is controlled by the IBEX valid count, the IBUF valid count, and the XBAR
shift count. The rotator receives data from the IBEX rotator multiplexer, which selects
IBEX data, IBEX2 data, or VIC data to be input to the rotator. The source of the data
at the IBEX rotator multiplexer is selected by IBEX_ROTATE_SELECT_H[01:00]. This
select signal is derived from IBEX_EMPTY_H (asserted when IBEX contains no valid
data), IBEX2_VALID_H (the single valid bit for IBEX2), and READ_VIC_DATA_H (the
read enable signal for the VIC).

IBEX_ROTATE_SELECT_H[O1:00] selects valid data from IBEX before selecting IBEX2
or VIC data. If the IBEX data is not valid, IBEX2 data is selected (if valid) before the
VIC data. If neither IBEX nor IBEX2 data is valid, VIC data is selected.
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3-12 Instruction Fetch

Figure 3-7 shows the rotator supplying IBEX data to IBUF to replenish four bytes that
have been decoded and shifted out.

e During cycle 1, four bytes, including the opcode, are decoded and shifted out of IBUF.
IBEX contains seven valid bytes and IBEX2 is valid.

e During cycle 2, IBUF bytes 4 through 9 are shifted into bytes 0 through 4, and IBEX
bytes 1 through 4 are rotated into the empty IBUF bytes. IBUF is full, IBEX contains
three valid bytes, and IBEX2 is valid.

o8 07 06 0S5 04 03 02 o1 00

CYCLE 1
00 00 08 8F Do 56 $4 51 (3]
IBUF T
ROTATOR
|
IBEX_ROTATE_SELECT_H[01:00}
07 06 05 04 03 02 01 00 o7 06 05 04 03 02 01 00
45 67 00 9F D4 54 [+]¢] XX 55 53 52 Ct B4 45 84 ]}
IBEX IBEX2
VIC DATA
CYCLE 2 08 07 08 05 04 03 02 01 oc
F D4 54 00 00 00 08 8F 00
1BUF f
ROTATOR
]
IBEX_ROTATE_SELECT_H[01:00]
07 06 0s 04 03 02 01 00 07 06 05 04 03 02 01 (1]
45 67 00 XX | XX XX XX | XX 55] 53 ] 52 (3] B4 45 B4 []¢]
IBEX IBEX2
VIC DATA

MA_X0065_89

Figure 3-7 Rotator
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3.2.3.1 IBEX2 Rotate Data
When IBEX is empty, IBEX2 (if valid) replenishes IBUF with an I-stream. Figure 3-8
shows the loading of IBEX2 data into IBUF. The quadword that IBEX2 contained is
partially loaded into both IBUF and IBEX. In Figure 3-8, the initial IBUF valid count is
nine, the IBEX valid count is zero, and IBEX2 is valid.

e During cycle 1, seven bytes of IBUF data are decoded and shifted out of IBUF. The
new IBUF valid count is two.

e During cycle 2, IBEX2 data is selected at the rotator multiplexer. Seven bytes of
IBEX2 data are loaded into IBUF; one byte is loaded into IBEX. The IBEX2 valid
bit IBEX2_VALID_H) is negated, the IBEX valid count (IBEX_VALID_COUNT_
H[03:00]) is one, and the IBUF valid count IBUF_VC_H[03:00]) is nine.

When the IBEX2 valid count is negated, a read request is sent to the VIC and the
prefetch PC is incremented (IBFA_HOLD_PREFETCH_PC_H is negated).

instruction Fetch 3-13

IBEX_ROTATE_SELECT_H[01:00]

04 03 02 ot 00

oo | CF | DO 56 55

IBEX_ROTATE_SELECT_H[01:00]

04 03 02 01 00

XX | XX | XX | XX | XX

MR_X0066_389

CYGLE 1 08 07 06 05 04 03 02 01 00
54 | Co [ 54 | oo | 00| 00 | 06 | 8F | DO
{BUF T
ROTATOR
]
/ N
07 06 05 04 03 02 01 00 ' Lm 06 05
XX | XX | xx | xx | Xx | xx | xxX | XX B4 | 54 | 10
IBEX IBEX2
VIC DATA
CYCLE 2 08 ©7 06 05 04 03 02 01 00
s4 | 10 | 0o | CF | DO | 56 | 55 | 54 | CO
IBUF t
ROTATOR
|
Vi N
07 ©06 ©05 04 03 02 O1 ooAI Loy 06 05
B4 | xx | xx | xx | xx { xx | xx | xX xx | xx | xx
IBEX IBEX2
VIC DATA
Figure 3-8 IBEX2 Rotate Data
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3—-14 Instruction Fetch

3.2.4 Merger

The merger consists of nine, 8-bit, 2-to-1 multiplexers where each multiplexer replenishes
one of the nine bytes of the IBUF. Either rotate data or shift data can be selected as the
input, with IBUF as the destination of the output.

Figure 3-9 shows a simplified block diagram of the merger. Each merger multiplexer
receives SHIFT _DATA_H and ROTATE_DATA_H for inputs. MERGE_SELECT_H[08:00]
selects each byte to be loaded into IBUF.

SHIFT_DATA_H

IBUF_DATA_H[71:64]

ROTATE_DATA_H

MERGE_SELECT_H[08)

SHIFT_DATA_H
IBUF_DATA_H[63:56}

ROTATE_DATA_H

MERGE_SELECT_H[07)]

SHIFT_DATA_H

IBUF_DATA_H[15:08]

ROTATE_DATA_H

MERGE_SELECT_H[01]

SHIFT_DATA_H

IBUF_DATA_H{[07:00]

ROTATE_DATA_H

MERGE_SELECT_H{00]

MR_X0067_89

Figure 3-9  Simplified Merger
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Merge select is calculated by subtracting the XBAR shift count from the IBUF valid
count. The select logic outputs a 9-bit field MERGE_SELECT{08:00]), with each bit
controlling one of the multiplexers of the merger. A logical one, in the field, selects rotate
data while a logical zero selects shift data.

Figure 3-10 shows the merger supplying IBUF with data from both the shifter and the
rotator. With a XBAR shift count of 4, bytes 1 through 4 are shifted out of IBUF and
bytes 0 (opcode) and 5 through 8 are inputs to the merger from the shifter. The merge
select logic receives the XBAR shift count and the IBUF valid count, and outputs the 9-
bit field that selects shifter bytes 1 through 4 and rotator bytes 5 through 8. The opcode
byte, because it is not shifted, is recirculated through the shifter and merger until the
instruction is completely decoded.

Table 3—1 is a sample of the merge select output. All outputs are based on an initial
IBUF valid count of nine with different shift counts.

os 07 06 05 iOA ]03 IOZ IO1 00
| T 1 1 T
'

| INSTRUCTION BUFFER
. : A .
ROTATE DATA SHIFT DATA
XBAR_SHIFTCOUNT[03:00]) = 4
MERGE_SELECT[08:00] = 1E0
IBUF_VALID_COUNT{03700] = 9 ;‘;f&%r
SHIFT DATA
ROTATOR SHIFTER

[\

IBEX2 DATA

VIC DATA

MR_X0068_89

Figure 3-10 Merger

Table 3-1 Sample Merge Select

IBUF Valid Count XBAR Shift Count MERGE_SELECT_H[08:00]

1FF
1FE
1FC
1F8
1F0
1E0
1CO
180

100

0

WO O W WRWWWTIWWW
S = N)wWA T -1 00O
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3-16 Instruction Fetch

3.2.5 Shifter

The instruction buffer shifter is responsible for shifting out decoded bytes, holding the
opcode byte (byte 0), and realigning the remaining valid bytes in IBUF. XBAR provides
three signals that control the shifter:

XSCA_SHIFTCOUNT{03:00] provides the number of IBUF bytes decoded in the last
cycle.

XSCA_SHIFTOPCODE shifts the opcode out of byte 0. The signal is received when
all of the specifier bytes of an instruction have been decoded.

XSCA_FD_SHIFTOPCODE is asserted when the XBAR detects an FD (extended
opcode) in the opcode byte of IBUF. The FD byte is shifted out of byte 0 and the
second byte of the opcode is shifted into byte 0.

NOTE

Figure 3-11 provides examples of the state of IBUF after the completion of three
cycles. For simplification, no new I-stream is placed in IBUF at the completion
of each cycle.

[ ]

Cycle 1 — XBAR decodes one byte and produces a shift count of one. Byte 1 is
shifted out of IBUF and the remaining bytes are shifted down to replace it.

Cycle 2 — XBAR decodes the two remaining bytes of the instruction, asserts XSCA_
SHIFTOPCODE_H, and produces a total shift count of three. The opcode and the two
remaining bytes of the instruction are shifted out, with the remaining bytes in IBUF
again being shifted down to replenish those shifted out.

Cycle 3 — XBAR decodes the FD in the opcode byte of IBUF, asserts XSCA_FD_
SHIFTOPCODE_H, and produces a total shift count of one. The FD in the opcode
byte is shifted out and the remaining bytes are shifted down one byte.

DIGITAL INTERNAL USE ONLY



Instruction Fetch 3-17

CYCLE
o8 07 06 ©05 04 03 02 01 00
00 | o5 | pa | 7c | FD | 55 | 44 | 08 | C1
f
o8 [o7 los [os {os |03 {oz |o o0
00 {05 [Da | 7c | FD | 55 | 44 | c1
SHIFT
RIGHT
XSCA_SHIFTCOUNT_H[03:00] = 1
CYCLE 2
08 07 06 05 04 03 02 01 00
00 | o5 | pa | 7¢c | FD | 55 | 44 | C1
4 4 4
los [o7 o6 los |os {os foz |o1 [oo
oo | o5 | D4 | 7¢ | FD
SHIFT | XSCA_SHIFTCOUNT_H[03.00] = 3
XSCA_SHIFTOPCODE_H (ASSERTED)
CYCLE 3

08 07 o1} 05 04 03 02 01 00

00 05 D4 | 7C | FD

]08 107 ‘06 lDS ‘04 |03 l02 lO‘l 00

oo 05 D4 7C

tr

SHIFT | XSCA_SHIFTCOUNT_H([03:00] = 1
XSCA_FD_SHIFTOPCODE_H (ASSERTED)

MR_X0D0€95_88

Figure 3-11  IBUF Data
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3.2.6 IBUF

IBUF holds nine bytes of I-stream that are passed to XBAR for decoding. Byte 0 always
contains the opcode of the instruction that is being decoded. A copy of this opcode is sent
to the EBox, OPU, XBAR, and the branch prediction logic.

Specifier bytes are parsed by XBAR and handled by the XBAR decode units while the
opcode bytes remain in IBUF until the instruction has been completely decoded.

3.2.6.1 Simple Decode

As the I-stream is presented to XBAR for decoding, logic in the instruction buffer
performs a small amount of decode. The decoded I-stream provides branch information
for the PCU and CSU. Register, short literal, and YREG information is also decoded and
passed to XBAR. Figure 3—12 shows a block diagram of the instruction buffer decode
units.

- 1

A INSTRUCTION BUFFER

08 07 06 05 04 03 02 01 00

LY jH J
OPCODE[07:00]
IBFE_BRANCH_INSTRUCTION_H
> csu
IBFB_BRANCH_OPCODE_H,L -
BRANCH IBFB_CACHEABLE_H .
DECODE | \grp_LOOP_BRANCH_H, L PCcU
IBFB_UNCONDITIONAL_H
XSCA_EXTENDED (FROM XBAR)
YREG IBFA_YREG_F_H[04:01]
DECODE >
IBFB_DATA[62:63, 55:54, 46:47) sL IBFB_SL_MODE_H|[07:05]
DECODE —>
IBFB_DATA[71:68, 63:60, 55:52, 47:44] RE&&%‘%ER IBFB_REGISTER_MODE_H[08:05]
DECODE .

MR_X0070_889

Figure 3-12 Simple Decode
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3.2.6.2 Branch Decode

Each time a new opcode is loaded into IBUF, the opcode is decoded to detect a branch
instruction. The decoded branch opcode has two destinations, the CSU and the PCU.
The CSU receives a single signal (IBFB_BRANCH_INSTRUCTION_H) that indicates a
branch instruction is currently being decoded.

The PCU receives more detailed information relevant to the branch. The four signals
provide information to aid in directing the PCU and branch prediction cache (BPC)
handling. The four signals provided by the branch decode logic are as follows:

e IBFB_BRANCH_OPCODE_H is asserted if the opcode is a branch instruction.
e IBFB_UNCONDITIONAL_H is asserted if the opcode is an unconditional branch.

e IBFB_LOOP_BRANCH_H is asserted for any loop branch instruction, except for
an emulated branch. (Loop branches are AOBLEQ, AOBLSS, SOBGEQ, SOBGTR,
ACBL, ACBW, and ACBB.)

e IBFB_CACHEABLE_H informs the PCU that the branch opcode in IBUF can be
cached in the BPC. (Noncacheable branches are RSB, JSB, JMP, CALLG, and CALLS.
These instructions do not have normal branch displacement specifiers.)

3.2.6.3 YREG Decode
The low nibble of bytes 1, 2, 3, and 4 are decoded to provide YREG information for XBAR.
When all four bits are set, PC addressing is possible.

3.2.6.4 Short Literal Decode

Bytes 5, 6, and 7 are decoded to detect short literal specifiers. If the upper two bits of
bytes 5, 6, and 7 are zeros, a short literal specifier is detected. Each bit in the signal
corresponds to the byte number in the I-stream of IBUF.

3.2.6.5 Register Mode Decode

Bytes 5 through 8 are decoded to a value of 5. The high nibble of the IBUF I-stream is
input to the decoder, producing an output with each bit in the signal corresponding to the
byte being decoded (for example, if IBFB_REGISTER_MODE_H[08:05] = 3, then bytes 5
and 6 may contain register specifiers).

3.2.7 Instruction Buffer Parity

Instruction buffer data is byte parity protected and is checked at two locations. The
outputs of IBEX and IBUF contain parity detection circuitry.

As data is output from IBEX, a parity check is performed. IBFB receives partial parity
from IBFA and performs the check. Detected errors assert IBFB_IBEX_ERROR_H,
which asserts IBFB_FETCH_ERROR_H and is forwarded to the EBox as IBOX_FORK_
ERROR_H.

The data that is being presented to the XBAR is checked on the output to the instruction
buffer. IBFB receives partial parity from IBFA and performs the check. Detected errors
assert IBUF_ERROR_H, which is latched to the XBAR as DECODE_ERROR_H. This
error is forwarded to the EBox as IBOX_POINTER_ERROR_H.
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3.3 Instruction Buffer Interface

The instruction buffer interface is a read-only port to the MBox. Requests are made
across this port for the I-stream to be loaded into the VIC. Most requests are for a VIC

block (four aligned quadwords).

Figure 3-13 summarizes the instruction buffer interface to the MBox. Table 3-2
describes each signal line.

MBOX IBOX
IBOX_1B_REQUEST_H
IBFA
IBOX_IB_ADDRESS_H[31:24, 23:13, 12:08, 07:03]
PCHI
PCLO
IBOX_IB_ADDRESS_PARITY_H[03, 02, 01, 00] PCVC
PCBP
ORT_H
I1BOX_IB_ABORT_ BFA
IBOX_ABORT_H. L
pCVC
MBOX_!B_DATA_H[E3 00)
VICD
MBOX_iB_DATA_PARITY_H[07:00)
vICD
MBOX_IB_RESPONSE_A&B_H, A_L
PCVC
MBOX_IB_PAGE_FAULT_H, L PCVC
»| IBFA
PCVC

MR_X0071_89

Figure 3—13 Instruction Buffer interface
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Table 3-2 Instruction Buffer interface Signals

Name

Description

IBOX_IB_REQUEST_H

IBOX_IB_ADDRESS_H[31:03]

IBOX_IB_ADDRESS_PARITY_H[03:00]
IBOX_IB_ABORT_H

IBOX_ABORT_H

MBOX_IB_DATA_H[63:00]
MBOX_IB_DATA_PARITY_H[07:00]

MBOX_IB_RESPONSE

MBOX_IB_PAGE_FAULT_H, L

The request for data from the MBox. Detection of a
VIC miss or flush of the VIC asserts this line.

Address lines for the requested quadword. The
address is generated by the PCU and, because all
requests are quadword aligned, the lower three bits
of the address are assumed to be zero.

Parity protection for the address that the IBox
sends.

Asserted to abort a request. The signal aborts a
request only if it is in the TB stage of the MBox.

Overriding abort signal for the interface. When
asserted, it asserts IBOX_IB_ABORT. An EBox flush
or branch prediction unwind asserts this signal.
This signal also aborts OPU port transactions.

Returning quadwords requested by the IBox.

Byte parity for the quadword being returned by the
MBox.

Informs the IBox that data will be returned in the
next cycle. The signal is negated late in the cycle
that the last quadword is being returned.

Asserted to inform the IBox that the requested
data has page faulted in the MBox. The instruction
buffer and the XBAR receive this signal and inform
the EBox of the page fault if decode of the data is
attempted.
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3.3.1 Instruction Buffer Requests

Figure 3—14 shows an instruction buffer request that is honored, with three quadwords
written to the VIC.

Usually, IBOX_IB_ADDRESS_H[31:03], IBOX_IB_REQUEST_H, and IBOX_IB_ABORT_
H are asserted. In response to these signals, the MBox latches the address, and detects
and aborts the request each cycle.

A request is initiated by negating the abort signal (IBOX_IB_ABORT _H) early in the
cycle after the address has been latched in the MBox. This signal is negated when
REQUEST_CONDITION_H is asserted by IBEX_EMPTY_H asserted, and IBEX2_
VALID_H, VIC_MATCHA_H, and VIC_MATCHB_H are all negated. The MBox detects
the request early in this same cycle and the IBox lowers the request signal.

The request is detected in the MBox translation buffer (TB) stage. In this stage, the
MBox latches the request and address, and arbitrates for the TB. When control of the TB
is received, a TB lookup and a validation of the translation is performed. Figure 3-14
shows the request in the TB stage for a single cycle. Figure 3-14 is a best case example
because TB arbitration could cause several cycles of delay if the MBox was honoring other
requests. The instruction buffer port has the lowest priority of all ports that arbitrate for
the TB. :

Cache arbitration results in a cache hit or miss. A cache hit asserts MBOX_IB_
RESPONSE_H, late in the cycle. In the following cycle, the MBox returns the requested
quadword (MBOX_IB_DATA[63:00]) and subsequent quadwords to the end of the block.

Late in the same cycle that the last quadword is being returned, the MBox response
signal is negated. In the same cycle, the abort signal then the request signal are asserted
again.

IBOX_IB_ADDRESS_H[EH.03]{ ADDRESS >< ADDRESS >< ADDRESS><

IBOX_IB_REQUEST_H

IBOX_IB_ABORT_H

l 1

MBOX TB MBOX CACHE

MBOX_IB_RESPONSE_H l L_

MBOX_iB_DATA[63:00] ( Qwo >< aw1 >< Qw2 >

MBOX_IB_PAGE_FAULT_H

IBOX_ABORT_H

MR_X0072_89

Figure 3-14 Instruction Buffer Request
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3.3.1.1 Aborting Requests
Two abort signals are associated with the instruction buffer interface:

IBOX_IB_ABORT_H
IBOX_ABORT_H

IBOX_IB_ABORT_H, when asserted, attempts to abort the request. This signal is not
asserted for a request that has entered the cache stage because of the penalties the
MBox must pay to clean up. The MBox returns the first quadword and then aborts.
The quadword is not written to the VIC because IBOX_IB_ABORT_H, asserted, negates
VIC_DATA_WRITE_H. :

IBOX_ABORT, when asserted, unconditionally aborts instruction buffer requests. This
signal is asserted by an EBox flush (EBOX_FLUSH_H[02:001) due to an error, interrupt,
or branch unwind situation.

3.3.1.2 Page Faults

When a page fault is detected, the MBox asserts MBOX_IB_RESPONSE_H and MBOX_
IB_PAGE_FAULT_H in the same cycle. The page fault signal is sent to the instruction
buffer and the XBAR. The XBAR notifies the EBox of page faults if decode of the data is
attempted. If the VIC is flushed, the data is not accessed and the MBox clears the page
fault and associated registers.
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4

Instruction Decode

This chapter describes the two functional units representing the instruction decode
pipeline stage: the XBAR and branch prediction logic.

4.1 XBAR
The XBAR decodes the individual macroinstructions and determines the following:

Number of instruction specifiers
Destination of each decoded specifier
Number of specifiers decoded in a single cycle

Each cycle, the XBAR attempts to decode and pass specifier data to the specifier handling
units of the IBox: SLU, CSU, and FPL. Because each unit processes a unique specifier
type, the number of combinations of specifiers the XBAR can successfully decode each
cycle is restricted. The XBAR can decode up to three specifiers in a single cycle. The
specifiers may be all register mode, two register mode and one short literal or complex,
or one of each (register, complex, or short literal) in any order. Complex specifiers are
branch displacements and all specifiers other than short literal mode and register mode
specifiers. The XBAR concurrently processes specifiers of a single instruction only.

The XBAR is also responsible for generating read and write register masks for conflict
checking by the CSU. In special cases where conflicts occur in a single instruction, the
XBAR redirects register specifiers to the CSU for processing.

Figure 4-1 is a block diagram of the XBAR. As shown in Figure 4-1, the XBAR receives
72 bits of instruction buffer data and distributes it throughout the associated MCAs
(XSCA, XDTA, and XDTB). The following list introduces the major XBAR functional
blocks.
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DRAM and XRAM — The DRAM and XRAM decode the opcode and produce the
following:

— Specifier count — The total number of specifiers the instruction contains.

— Specifier data type — The data type of each specifier in the instruction (byte,
word, longword, etc.).

— Specifier access type — The access type of each specifier in the instruction
(read, write, modify, etc.). :

The XRAM specifier count output controls the instruction buffer shifter by providing
a running total of specifiers decoded each cycle and by informing the instruction
buffer to load a new opcode into the opcode byte (byte 0) of the IBUF when all of the
specifiers of an instruction have been decoded by the XBAR.

The specifier attribute outputs (data type and access type) are distributed throughout
the XBAR to the individual data path units (displacement, short literal, and source
and destination logic units) to validate outputs to the specifier handlers. These
outputs are also used to generate a read and write mask and to detect intra-
instruction read conflicts (IRC).

Simple decode logic — Simple decode logic decodes the I-stream and provides the
addressing mode (register mode, absolute mode, and so on) for the first four bytes of
the instruction. The addressing mode outputs are used to validate the data path unit
outputs and by the decode tree logic and request logic when generating their shift
count and specifier count outputs.

Decode tree and request logic — Each cycle, the decode tree logic and request
logic perform a parallel operation that determines the number of specifiers the XBAR
will decode and the number of specifier bytes that will be decoded.

The decode trees produce shift count and specifiers decoded outputs based on the
decoded addressing modes and data types and by decoding the I-stream. There are
14 pairs of output (one shift count and one number of specifiers decoded) generated
each decode cycle.

Request logic decodes addressing modes, specifier access types, and the specifier
count. It produces an output that selects the correct decode tree output for the
instruction currently being decoded.

For example, for the instruction ADDL2 RO, R1, the request logic determines that
there are two specifiers, the access types are read and modify, and there are two
register specifiers in the instruction. The request logic selects R2 (R2_SC_H[02:00]
shift count and R2_N_H[001:00] specifiers decoded count) from the request logic. The
R2 output provides the correct shift count to the instruction buffer and the correct
number of specifiers decoded to the specifier count logic.

The decode tree logic has produced 14 outputs for the ADDL2 RO, R1 with only one
of the outputs producing the correct specifiers decoded and the correct shift count.
The R2 output is produced by logic that produces only an output that is based on

an instruction that contains two specifiers. In the same cycle that the R2 output

is selected, outputs based on different numbers and structures of specifiers are
produced. If the R3BW output were selected, the shift count and number of specifiers
decoded would be equal to those based on decoding three specifiers, with the third
specifier being a branch word displacement.
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The parallel operation of the decode tree logic and the request logic is implemented to
reduce the cycle time required to decode the specifiers of an instruction (to determine
their addressing modes, access types, and data types) and then calculate the number
of bytes that will be decoded and the number of specifiers that can be decoded.

* Displacement logic — The displacement logic receives the complex specifiers (other
than register and short literal specifiers) and, when a specifier is valid, passes up to
32 bits of displacement to the CSU of the OPU MCU.

¢ Short literal logic — The short literal unit decodes the short literal specifiers
and passes six bits of short literal data to the SL specifier handler in the OPU for
expansion.

¢ Source and destination logic — The source and destination logic outputs source
1 pointers, source 2 pointers, destination pointers, and a read and write register
field to the OPU specifier handlers and to the read/write mask logic. The source
and destination pointers define the operand addresses (register number or memory
location) of the specifiers. The read/write masks record the reading and writing of
registers by the EBox during the execution of an instruction.

e TIRC logic — The IRC logic detects intra-instruction read conflicts. These conflicts
occur when there are read conflicts in the specifiers of an instruction. That is, an
instruction specifier directs the EBox to read RO and a subsequent specifier directs
the IBox to autoincrement or autodecrement RO. When IRCs occur, the IBox decodes
each specifier separately and does not update the EBox GPRs until instruction
execution is completed by the EBox.

4.1.1 DRAM

The XBAR DRAM is implemented as a functional logic block in the XSCA MCA. That is,
the DRAM is comprised of logic gates instead of a RAM structure, as with previous VAX
systems.

The inputs to the DRAM logic are the instruction opcode, the extended opcode bit, and the
specifiers remaining in the instruction currently being decoded. Based on theses inputs,
the number of specifiers the instruction contains and the specifier attributes (access type
and data type of each specifier) are determined. The outputs of the DRAM are passed

to the other functional units of the XBAR and are used to validate the specifier handler
outputs and also are used in the specifier count and shift count logic. Figure 4-2 shows a
block diagram of the DRAM logic.

ASRC
SP1_ACCESS_TYPE| wrloe
| MODIFY

DRAM SPe AcoRSS YR VoG MODIEY
SP3_AGCESS_TYPE| BRANGI BYTE
SPECIFIER 1 ———————=———) BRANGH WORD
Ty IMPLIED READ
EXTENDED_H
SPECIFIER 3
I_DATA_H[07:00]
LDATA_RIOT 001 ) FepeciFiER 4 BYTE
-\ WORD
SPECIFIER 5 SPEC1_DATA_TYPE_H[02:00]) MntowoRD
SPECIFIER 6 SPEC2_DATA_TYPE_H[02:00] | SUAPWORD
sPEC3_DATA_TYPE_njo2.00]| b ELOATING
G FLOATING
H FLOATING

SPECIFIERS_COMPLETED_H[02:00} MR_X0263_89

Figure 4-2 DRAM Logic -
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DRAM data type logic decodes the opcode (I_DATA_H[07:00]) and the extended opcode
bit (EXTENDED_H), and produces SP1_DATA_TYPE_H[02:00] through SP6_DATA_
TYPE_H[02:00]. Each output describes the data type of the specifier it represents. (For
example, SP1_DATA_TYPE_H[02:00] describes the data type of the first specifier of the
instruction being decoded.)

Each cycle, SPECIFIERS_COMPLETED_H[02:00] selects up to three of the data type
outputs to be used by the XBAR decode units. SPECIFIERS_COMPLETED_H[02:00] is
the number of specifiers that have been decoded in the instruction that is currently being
decoded.

DRAM access type outputs are also based on the decode of the instruction opcode and the
extended opcode bit. The access type of each specifier (for example, SPEC1_READ_H and
SPEC1_WRITE_H) is placed on the DRAM output multiplexers and is also selected by
SPECIFIERS_COMPLETED_H[02:00].

4.1.2 XRAM

The XRAM is physically structured like the DRAM and is contained on XDTB. The
XRAM decodes the instruction opcodes and the extended bit, and produces five fields:

s SPECIFIER_COUNT_H[02:00] is the total number of specifiers the instruction
contains.

o IMPLIED_MASK_H is asserted when a character string instruction is detected.

e VSRC_FORK_MODIFY_H is asserted when a variable length bit field instruction is
decoded.

e SUSPEND H is asserted because the instruction that is currently being decoded
does not leave predictable results in memory or registers. XBAR continues to
decode specifiers until it encounters a complex specifier and then suspends (stops
all decoding) and waits for the EBox to restart it (EBOX_UNSUSPEND_H). Some of
the instructions that assert SUSPEND_H are as follows:

ADAWI (add aligned word interlocked)
ADDP4 (add packed 4-operand)
EDITPC (edit packed to character string)

e STOP_H is similar to SUSPEND_H. STOP_H is asserted by certain instructions
after all of the specifiers of the instruction have been decoded. When STOP_H is
asserted, the XBAR does not process any specifiers until the EBox asserts EBOX_
UNSUSPEND_H. Some instruction that assert STOP_H are as follows:

HALT
CASEXx (case byte, word, longword)
CHMx (change mode)
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4.1.3 Simple Decode Logic

The simple decode logic receives the high nibble of the first four bytes of instruction
buffer data and I_YREG_F[04:01] (used to determine which bytes are relative addressing
mode or immediate addressing mode) from the instruction buffer simple decode logic.
Outputs defining the addressing modes of bytes 1 through 4 of the I-stream are produced
from these inputs. Figure 4-3 shows the inputs and outputs of the simple decode logic.

The simple decode logic also decodes the I-stream to produce CASE_H[01:00]. This 2-bit
signal defines where in the I-stream the complex specifier is located. CASE_H[01:00] is
valid when any addressing mode other than short literal or register is detected. Table 4-1
describes the four case outputs.

CASE_H[01:00] is input to the decode tree logic to produce shift counts for complex
specifiers. Because CASE_H[01:00] determines only the location of the complex specifier,
it must be decoded with the addressing mode to produce the length of the specifier for the
shift count logic.

REGISTER_MODE[04:01]

SIMPLE SL_MODE[04:01]
DECODE
i_DATA_H[39:36, 31:28, 23:20, 15'12) LOGIC INDEX_MODE([03:01]
I_DATA_L[39:36, 31:28, 23.20, 15:12) COMPLEX[04:01]
I_YREG_F_L[04:01) ABSOLUTE_MODE[04:01]

IMMEDIATE_MOCDE[04:01]

CASE{01:00]

MR_X0074_83

Figure 4-3 Simple Decode Logic

Table 4-1 Case Output

CASE_H[01:00] Byte Position of Complex Specifier

00
01
10
11

Laat R S VL]
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Each cycle, the decode tree logic decodes the I-stream and produces 14 unique outputs.
One of the outputs is selected, at the end of a cycle, to produce a shift count and the
number of specifiers decoded. Figure 4—4 shows the inputs and outputs of the decode tree

logic.
DECODE
TREES
R1
I_DATA_H[38:37, 31:28, 23:21, 15:13] R1B8
|_DATA_L[39:37, 31:29, 23:21, 15:13)
I_VALID_H[08:01] R1BW
I_VALID_L[08:01]
REGISTER_MODE_H[07:03, 01] Rl
REGISTER_MODE_L[0B01] R2
SL_MODE_H[01]
SL_MODE_L[07:01]
R2BB
INDEX_MODE_H{02:01)
INDEX_MODE_L{02 01}
R2BW
ABSOLUTE_MODE_H[0401]
ABSOLUTE_MODE_L[0301]
R21
IMMEDIATE_MODE_L[03:01]
CASE_H{01:00] R2R
CASE_L[01:00]
SP2_DATATYPE_H[02:00] R3
SP1_DATATYPE_H[0200]
R3B8
IRC_L
OPU_STALL_H
R3BW
OPU_STALL_L
SL_STALL_H
SL_STALL_L R3XR

R1_SC_H[02:00]

R1_SC_L[02:00}

R1_N_H[00)

R18B_SC_H[00]

R1BB_SC_L[00]

R1BB_N_H{00]

R1BW_SC_L[01]

R1BW_N_H[00]

R11_N_H[00]

R2_SC_H[02:00]

R2_N_H[01:00]

R2BB_SC_H[01:00]

R2BB_N_H[01:00]

R2BW_SC_H[01:00]

R2BW_N_H[01:00]

R21_SC_H[00]

R2I_N_H{01:00}

R2R_SC_H[02:00]

R2R_N_H[01:00]

R3_SC_H[03:00]

R3_N_H[01:00]

R3BB_SC_H[01:00)

R3BB_N_H[01:00]

R3BW_SC_H{02:00]

R3BW_N_H[01:00]

R3XR_SC_L[03:00]

R3XR_N_ri[01:00]

Figure 4-4 XBAR Decode Trees

MR_X0075_88
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Each of the 14 outputs contains 2 fields. The two fields determine the number of
specifiers decoded and a shift count for the XBAR:

Rx_SC_H[02:00] is the shift count. The shift count is the number of IBUF bytes that
will be decoded when this tree output is selected.

Rx_N_H[01:00] is the specifier count. This count represents the number of specifiers
that is decoded when this tree output is selected.

The decode tree logic receives the following inputs:

I-stream — The high nibble of bytes 1 through 4 (I_DATA_H[38:37, 31:29, 23:21,
15:13]) and their valid bits (I_VALID_H[04:01]). The valid signals are received from
the IBUF valid count.

Addressing modes — The addressing mode logic decodes the I-stream and supplies
the addressing mode.

Case — Indicates the location of the complex specifier in the I-stream.

Data type — The DRAM decodes the opcode and outputs the specifier data types to
the tree logic.

IRC — IRC decode logic passes this signal when an IRC is detected in the I-stream
currently being decoded.

Stall — If the CSU or SLU is stalled, the decode tree logic is notified. The stall signal
from either of these two units (OPU_STALL_H and SL_BUSY_STALL) influences
decode tree output. If the SLU is stalled, the decode tree cannot produce an output
that selects data to be sent to the SLU of the OPU.

Figure 4-5 shows a block diagram of the R2BW decode tree. This example of the tree
logic is used because it is one of the less complex.

I_VALID_L{03] | R2BW_SC_H[01]
OPU_STALL_H R2BW_N_H{01}
.—————c
i_VALID_H[01]

R2BW_SC_H(00}
I_VALID_H{03] -

I_VALID_L]01}

OPU_STALL_L

R2BW_N_H][01]

I_VALID_H[03]

MR_X0076_8S

Figure 4-5 R2BW Decode Tree
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The outputs of the R2BW tree logic are based on an I-stream that contains two valid
specifiers, with the second specifier being a word displacement of a branch instruction.

As shown in Figure 4-5, I_VALID_H[03] IBUF valid bit for byte 3) selects R2ZBW_N_
H[00] from I_VALID_L[01] or OPU_STALL_L (the stall signal for the CSU). The valid
bits for IBUF bytes 1 and 3 of the IBUF are ORed to produce R2BW_SC_H[00], and the
valid bit for IBUF byte 3 and the CSU stall signal produce R2BW_SC_H[01] and R2BW_
N_H[01].

This tree logic output would be selected if the XBAR is decoding an ACBW R1, R2, R3,
displacement word and the first two specifier bytes of the instruction had been decoded in
a previous cycle. The output would be valid because the XBAR is decoding two specifiers,

with the second specifier being a branch word displacement. The output for this decode
cycle of the instruction would be R2BW_SC_H = 2 and R2BW_N_H = 2.

Table 4—2 describes the I-stream addressed by each decode tree.

Table 4-2 XBAR Decode Trees

Name Function

RO No specifiers are decoded.

R1 Decodes one specifier.

R1BB Decodes one branch byte specifier.

R1BW Decodes one branch word specifier.

R11 Decodes one implied specifier.

R2 Decodes two specifiers.

R2BB Decodes two specifiers; the first is a register or short literal specifier and the
second is a branch byte displacement.

R2BW Decodes two specifiers; the first is a register or short literal specifier and the
second is a branch word displacement.

R21 Decodes two specifiers; the second is implied.

R2R Decodes two specifiers; the second is a register specifier.

R3 Decodes three nonconflicting specifiers.

R3BB Decodes three specifiers; the third is a branch byte displacement.

R3BW Decodes three specifiers; the third is a branch word displacement.

R3XR Decodes three specifiers but not in the same cycle.

4.1.5 Request Logic

The request logic decodes the specifier addressing modes and access types, and it outputs
the 4-bit field (REQUEST_H[03:00]) that selects 1 of the 14 decode tree outputs (Rx_
SC_H[02:00] and Rx_N_H[01:00]). Figure 4-6 shows the relationship of these units and
shows the inputs and outputs of the request logic.
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READ_H[02]}

REQUEST
LOGIC

READ_L[03:01]

WRITE_H[03:02]

WRITE_L[03:02]

MODIFY_H[03:02}

MODIFY_L[03:02]

BRANCH_BYTE_H[03:01)

BRANCH_BYTE_L[02]

BRANCH_WORD_H[03, 01]

BRANCH_WORD_L[03:02)

VSRC_READ_H[02]

VSRC_READ_L[02.01]

VSRC_MODIFY_H[02]

VSRC_MODIFY_L[02]

ASRC_H[02]

ASRC_L[02:01]

IMPLIED_READ_H[02:01]

IMPLIED_WRITE_H{02:01]

REGISTER_MODE_H[03:01]

REGISTER_MODE_L]02'01]

SL_MODE_H[01]

SL_MODE_L{02:01]

INDEX_MODE_L[03:01]

COMPLEX_L[04:01]

SPECIFIERS_NEEDED_H[01:00]

SPECIFIERS_NEEDED_L{01:00]

XBAR_STALL_H

Figure 4-6 Request Logic
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The request logic uses SPECIFIERS_NEEDED_H[01:00] to determine the number of
specifiers to decode. (For example, if only one specifier is to be decoded, the request logic
selects only one of the R1 trees.) The addressing mode logic provides four inputs:

Register mode
Short literal mode
Index mode
Complex

These inputs determine the number of specifiers that can be decoded and passed to the
specifier handlers. For example, for ADDL3 R1 #43 R5, the request logic and decode tree
logic perform their parallel operations as follows:

Request logic — Receives SPECIFIERS_NEEDED_H[01:00] = 3 (the number of
specifiers in the instruction) from the XRAM and specifier count logic. The addressing
modes of the three specifiers in the instruction are provided by the simple decode
logic. (REGISTER_MODE_H[03:01] = 5, specifiers 1 and 3 are register specifiers
and SL_MODE_H[02:01] = 2, specifier 2 is a SL specifier). The access type of the
specifiers is also input to the request logic. These inputs, supplied by the DRAM,
would be READ_H[03:01] = 011 and WRITE_H[03:02] = 10, signifying read, read,
write as the order of access in the instruction.

Specifier data types (SP1_DATATYPE_H[02:00] and SP2_DATATY. PE_H[02:00] = 0
longword) are also input to the request logic. This signal is also from the DRAM.

The request logic output (REQUEST_H[03:00]) produces an output based on the
above inputs that selects the R3_SC_H[03:00] and R3_N_H[01:00].

Tree logic functions — In parallel with the request logic functions, the decode trees
decode the I-stream, the addressing modes, and data types of the specifiers and stall
signals from the specifier handlers of the OPU to produce shift counts and specifier
decode counts for the instruction.

The tree logic (specifically the R3 tree) produces an output that produces shift counts
(R3_SC_H[02:00]) and the number of specifiers decoded (R3_N_H[01:00]) for an
instruction that contains three specifiers.

The tree logic produces the R3_N_H[01:00] outputs first and uses them as a basis for
generating R3_SC_H[03:00].

To generate R3_N_H[01:00], the logic inputs the valid counts for the instruction
buffer data that is being decoded (I_VALID_H[08:00]).
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4.1.6 Specifier Count Logic

Specifier counts are produced every cycle to determine the initial number of specifiers
an instruction contains (SPECIFIER_COUNT_H[02:00]), the number decoded in a
cycle (SPECIFIERS_DECODED_H[02:00]), and the number that remain to be decoded
(SPECIFIERS_REMAINING_H[02:00]). Figure 4-7 shows the specifier count logic.

Initially, SPECIFIER_COUNT_H[02:00] is produced by the XRAM and input to the
specifier count logic. The XRAM generates the specifier count based on the opcode of the
instruction. ‘

The decoded specifier output of the decode tree logic (N_L[01:00]) is subtracted from the
specifier count to produce SPECIFIERS_REMAINING_H[02:00].

e SPECIFIERS_NEEDED_H[01:00] is the number of specifiers needed in the current
decode cycle. This signal is decoded so that it represents only a maximum of three
because the maximum number of specifiers decoded in a single cycle is three. This
signal is loaded into an adder and a comparator.

e XSCA_SPECIFIERS_DECODED_H[01:00] is the latched value of N_L[01:00] and is
loaded into an adder with XDTB_SPECIFIERS_REMAINING_H[02:00] to produce
XSCA_SPECIFIERS_REMAINING_H[02:00].

¢ The comparator receives N_L[01:00] and XSCA_SPECIFIERS_REMAINING_
H[02:00], and outputs XSCA_ALL_SPECIFIERS_COMPLETED_H when they are
equal.

N_L[01:00]

XSCA_SPECIFIERS_DECODED_H[01:00]

ALL_SPECIFIERS_COMPLETED_H
COMPARE

(SUBTRACT)

! ©OPCODE_REOUIRED_ L
[t ittt

o ()

SPECIFIER_COUNT_H{02-00] ’\' XDT8_SPECIFIERS_REMAINING _H[02:00] SPECIFIERS_NEEDED_H[02:00]

LATCH

XDTB_SPECIFIERS_COMPLETED([02:00]

(ADD)

| OPCODE_REOUIRED L

Figure 4-7 Specifier Count Logic
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4.1.7 Shift Count Logic

Each cycle, the XBAR passes a shift count (XSCA_SHIFTCOUNT_H[03:00]) to the
instruction buffer. The shift count directs shifting of decoded bytes out of the instruction
buffer and replenishment with a new I-stream.

Three signals provide control to the instruction buffer shifter:

XSCA_SHIFTCOUNT_H[03:00]
XSCA_FD_SHIFTOPCODE_H
XSCA_SHIFTOPCODE_H

Figure 4-8 shows the generation of these three signals.

XSCA_SPECIFIER_COUNT_H[03:00] is generated from the decode tree logic SC_
H[02:00] and is passed as the value to be loaded into the instruction buffer shifter.
When an instruction is completely decoded, XSCA_SHIFTOPCODE_H is asserted and
selects the incremented SC_H[02:00] to be sent to the shifter.

4.1.7.1 FD Shift Opcode

XSCA decodes the FD opcodes and asserts XSCA_FD_DETECTED_H. This signal is
passed to the shift count logic, which asserts XSCA_FD_SHIFTOPCODE_H and directs
the instruction buffer to shift out the FD opcode. Shifting the FD out of the opcode byte
results in a shift count of one, as no specifiers are decoded until the FD is shifted.

SC_H[02 00]
XSCA_SHIFTCOUNT_H[03:00]

i eyl
L

SPECIFIERS_REMAINING_H[02:00]

XSCA_SHIFTOPCODE_H
N_L[01:00] COMPARE
XSCA_FD_DETECTED_H XSCA_FD_SHIFTOPCODE_H

LATCH

MR_X0079_89

Figure 4-8 Shift Counts

DIGITAL INTERNAL USE ONLY



4—14 Instruction Decode

4.1.8 Fork Logic

The EBox receives a fork address for each instruction that is decoded by the XBAR. The
fork address is supplied by the XBAR and the instruction buffer.

The instruction buffer sends two fork signals:

IBOX_FORK_ADDRESS_H[07:00]
IBOX_FORK_ADDRESS_PARITY_H

The fork address is a copy of the opcode.

The XBAR outputs three fork signals:

e IBOX_FORK_VALID_H is the valid signal for the fork address.

e IBOX_FORK_ADDRESS_HI[08] is asserted when an FD opcode is decoded.

¢ IBOX_REGISTER_FORK_H distinguishes between a register and a memory reference
(asserted = register) when a VSRC specifier is decoded.

When a VSRC specifier is to be decoded, the fork is not validated until the determination
between memory or register reference is made.

4.1.9 XBAR Displacement Data Path

Up to 32 bits of displacement can be passed by the XBAR to the CSU in a single cycle.
Figure 4-9 shows the logic that decodes the complex specifiers and passes the related
displacement to the CSU.

The XBAR displacement logic outputs four fields to the CSU:

e DISPLACEMENT H([31:00] is 32 bits of branch displacement or complex specifier
data.

¢ XREG_HI[03:00] indicates the GPR of index register for indexed operand specifiers.

e YREG_H[03:00] indicates the GPR of base register for the operand specifier being
delivered.

e XDTB_INDEXED_H indicates the specifier under decode is indexed mode.

4.1.9.1 Displacement
DISPLACEMENT H[31:00] is provided by XDTA and XDTB. The 32-bit field is nibble

sliced as follows:

XDTA_DISPLACEMENT_H[27:24, 19:16, 11:08, 03:00]
XDTB_DISPLACEMENT_HI[31:28, 23:20, 15:12, 07:04]

The displacement field is selected from the instruction buffer data by decoding:

XSCA_REQUEST_H[03:00]
CASE_H[01:00]
XSCA_X8F_H

Decoding these three fields determines where in the I-stream the complex specifier is
located and if the specifier is an extended immediate mode specifier (XSCA_X8F_H).
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XSCA_REQUEST_H[03:00]
CASE_H|01:00] DISPLACEMENT
XSCA_X8F _H SELECT
I_DATA_H[71:00] [63:32]
[55:24]
[71.40) DISPLACEMENT_H{31:00]
[47.16] >
[39:08]
[19:16]
{11:08} XREG_H[03:00]
(27:24)
(27 :24]
CASE_H[01:00]
[18:16)
YREG_H[03:00]

{35:32)

{11:08]

XSCA_REQUEST_H[03°00]
CASE_H[01:00] vREG

XSCA_IRC_H sEnEeT
REGISTER_MODE_H[01]

CASE_H[01:00}
IRC_REGISTER_H

= = INDEX XDTB_INDEXED_H
IMPLIED_H DECODE

INDEX_MODE_H[02.00]

MR_Xo0080_89

Figure 4-9 XBAR Displacement

4.1.9.2 Extended Immediate Mode (X8F) Detection

Most complex specifiers are decoded by the crossbar and passed to the CSU in a single
cycle across the 32-bit XBAR to OPU data path. Extended immediate mode specifiers are
of data types longer than 32 bits and require more than a single cycle to be decoded and
passed to the OPU. Because of the size of these specifiers, special handling by the XBAR
is required to process them.

The special handling of these specifiers involves manipulating the shift counts and
specifier counts produced by the XBAR.

XSCA contains logic that detects extended immediate mode specifiers. This logic
decodes the specifiers’ data types (SP1_DATATYPE_H[02:01] and so on) from the DRAM,
IMMEDIATE_MODE_H[04:01], INDEX_MODE_H[02:01], and CASE_H[01:00] (all from
the simple decode logic). When extended immediate mode is detected, X8F_H, X8F_
INHIBIT_SHIFTOPCODE_H, and X8F_SC_H[02] are asserted.

Asserting these X8F signals forces N_H[01:00] (from the decode trees and signifying
the number of specifiers decoded) to equal 1 and also forces SC_H[02:00] (also from the
decode trees and signifying the number of bytes to shift out of the instruction buffer)
to equal 4. This scenario allows the XBAR to pass the decoded specifier to the OPU
in multiple cycles without incorrectly affecting the specifier count logic and without
asserting SHIFTOPCODE_H before the specifier is completely decoded.
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4.1.9.3 XREG

When an indexed specifier is decoded, XREG_H[03:00] is asserted and sent with
XDTB_INDEXED_H to the CSU. XREG_H[03:00] identifies the index register. XDTB_
INDEXED_H is generated by decoding the following:

e IRC_REGISTER_MODE is asserted when the IRC is detected and the specifier is
register mode.

e IMPLIED_H is asserted by decoding the request logic field.
e CASE_H[01:00] identifies the location of the complex specifier in the I-stream.

¢ INDEX_MODE_H[02:00], from the addressing mode logic, defines which specifier, if
any, is decoded as an index specifier.

4.1.9.4 YREG

YREG_H[03:00] is generated in XDTA and sent to OSQA (CSU) to indicate which GPR
the CSU references for an operand address calculation. Byte 1, 2, 3, or 4 of instruction
buffer data is selected by CASE_H[01:00] to produce the YREG output.

The YREG generation logic also contains inputs from the request logic, DRAM, and
IRC detection logic. When an IRC is detected, this logic supplies the GPR number for
specifiers during IRC handling.

4.1.10 XBAR Short Literal Data Path

The XBAR short literal logic outputs a 6-bit short literal specifier, a valid bit, and the
number of the short literal specifier to the short literal expansion unit of the specifier
evaluation logic. Figure 4-10 shows the organization of the XBAR short literal logic.

4.1.10.1 Short Literal Data Select
The XBAR SL data path receives the following:

¢ Instruction buffer data (I_DATA_H[67:64, 59:56, 51:48, 39:32, 31:24, 23:16, 15:08]).

e SL_MODE_H[08:01] is from the XBAR simple decode logic and the instruction buffer
simple decode logic. It identifies the bytes that contain short literal specifiers. That
is, if bit 1 is asserted, then a short literal specifier is detected in the byte 1 position of
the I-stream.

¢ XSCA_REQUEST_H[03:00] is the output of the request logic.

The specifier decode logic decodes the instruction buffer data and the addressing mode to

produce the following:

e SPx_SL_HI[05:00] contains the 6-bit short literal data for three specifiers (x = 1, 2, or
3).

¢ SPx_SL_H corresponds to the three byte positions that the SL data could be in. SP1_
SL_H, asserted, denotes specifier 1 is a short literal specifier.

The byte position of the short literal specifier (SPx_SL_H) is decoded with XSCA_
REQUEST _H[03:00] to produce the short literal specifier offset (SL_SPECIFIER_

OFFSET_H[02:00]). This signal selects the short literal data and outputs the field
(XDTA_SL_H[05:04] and XDTB_SL_H[03:00]) to the SL specifier handler.
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|_DATA_H[67:64, 59:56, 51:48, SP1_SL_H[05:00]
45:40, 39:32, 31:24, 21:16, 13:08]
sL S$P2_SL_H[05:00]
SPECIFIER - XDTB_SL_H[05:04)
SL_MODE_H[08:01] DEGODE SP3_SL_H[05:00] —>
rI XDTA_SL_H[03:00]
1

SL_SPECIFIER_OFFSET(02:00]
SP1_SL_H \

SP2_SL_H

DECODE
SP3_SL_H

XDTB_SL_SPECIFIER
_NUMBER_H[02:00) L

OPU_SPECIFIERS_COMPLETED[02:00] ‘J
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sP2_SL_H XDTB_SL_VALID_H

SP3_SL_H

XSCA_REQUEST_H[03:00]

»{ DECODE

MR_X0081_89

Figure 4-10 Short Literal Logic

4.1.10.2 Short Literal Specifier Number

XDTB_SL_SPECIFIER_NUMBER_H[02:00] defines which specifier of the instruction is
being passed to the SL specifier handler. This signal is generated by adding the specifier
byte position to OPU_SPECIFIERS_COMPLETED_H[02:00].

4.1.10.3 Short Literal Valid

XDTB_SL_VALID_H is sent with the valid short literal data to the SLU of the OPU.
This signal is generated by decoding the input from the request logic (XSCA_REQUEST_
H[03:00]) and selecting the valid byte containing the short literal specifier.
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4.1.11 XBAR Source and Destination Logic

Each specifier decoded and passed to the specifier handlers has an associated source and
destination field to identify the function of the specifier. The source and destination fields
are processed by the specifier handlers and loaded into the EBox pointer queues until the
instruction they represent is executed. Figure 411 shows the inputs and outputs of the

source and destination logic.

SOURCE AND
DESTINATION
LOGIC

ASRC_H[01]

BRANCH_BYTE_H[03:01]

BRANCH_WORD_H[03, 01]

IMPLIED_WRITE_H[02:01]

MODIFY_H[02:01]

READ_H[02:01]

VSRC_MODIFY_H[02:01)

VSRC_READ_H[01]

WRITE_H[02:01]

R1I_REQUEST_L

R1BX_REQUEST_L

R2BX_REQUEST_L

SP1_REGISTER_H{03:00]

SP1_REGISTER_MODE_H
SP2_REGISTER_H[03:00]

SP2_REGISTER_MODE_H
SP3_REGISTER_H{[03:00]

SP3_REGISTER_MODE_H

XSCA_IRC_L

XSCA_SPECIFIERS_DECODED_H{01:00]

DESTINATION_REG_H[03:00]

DESTINATION_REG_VALID_H

DESTINATION_VALID_H

MASK_SOURCE!_REG_VALID_H

SOURCE1_REG_H[03:00}

SOURCE1_REG_VALID_H

SOURCE!_VALID_H

SOURCE2_REG_H[03:00]

SOURCE2_REG_VALID_H

SOURCE2_VALID_H

SP1_REGISTER_DESTINATION_H

SP2_REGISTER_DESTINATION_H

Figure 4-11
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4.1.12 XBAR Source 1 Data Path

The source 1 data path logic passes three fields to the FPL and, if the specifier is a
register, also passes a register field to the mask logic. Figure 4-12 shows the XBAR
source 1 logic. :

The XBAR source 1 logic passes the low nibble of instruction buffer byte 1 to the FPL
as the register field XDTA_SOURCE1_REG_H[03:00)). The source 1 validation logic
receives the following:

REGISTER_MODE_H[01]
XSCA_REQUEST_H[03:00]
SPECIFIER1_ACCESS_TYPE_H
XSCA_SPECIFIERS_DECODED_H[02:00]

These fields are decoded to output the two source 1 valid fields:

e XDTA_SOURCE1_REG_VALID_H is asserted when the present source 1 operand is a
register specifier. This field validates XDTA_SOURCE1_REG_H[03:001.

e XDTA_SOURCE1_VALID_H validates the specifier as a source operand.

When SOURCE1_REG_VALID_H is negated and SOURCE1_VALID_H is asserted, the
source 1 specifier is a memory operand.

|_DATA_H[11:08} 3y SP1_REGISTER_H[03:00] XDTA_SOURCE1_REG_H[03:00)
10 gl
B8_SOURCE1_REG_H[03:00]
LATCH —
REGISTER_MODE _R[01]
XSCA_REQUEST_H[03:00] XDTA_SOURCE1_REG_VALID_H
REGISTER —>
SP1_ACCESS_TYPE_H VALID B_SOURCE1_REG_VALID_H

XSCA_SPECIFIERS_DECODED_H[01:00]

B_SOURCE1_VALID_H

>

SOURCE 1
VALID XDTA_SOURCE1_VALID_H

WMR_Xxo0082_89

Figure 4-12 XBAR Source 1 Logic
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4.1.13 XBAR Source 2 Data Path

Source 2 fields are passed to the operand handlers if two source specifiers are decoded.
The source 2 fields are similar to the source 1 fields in structure, but they rely on the
source 1 specifier characteristics when they are generated. That is, if source 1 is a
complex specifier, then the location in the I-stream that contains source 2 is determined
by case, source 1, and source 2 data types and the number of specifiers completed.
Figure 4-13 shows the generation the source 2 fields.

The source 2 select logic selects the byte position that contains the specifier. If the
specifier is not a register, the byte position is selected, but the field (SP2_REGISTER_
H[03:00]) is negated. The inputs to the select logic are as follows:

e CASE_H[01:00] identifies the location in the instruction of the complex specifier.
o XSCA_SP1_DATATYPE_H[02:00] identifies the data type of the source 1 specifier.

e REGISTER_MODE_H[07:01], from register mode logic and instruction buffer simple
decode logic, identifies which bytes contain register specifiers.

e INDEX_MODE_H[01], IMMEDIATE_MODE_H[01], and ABSOLUTE_MODE_H{01]
identify the source 2 specifier as either of these three addressing modes.

e SP2_ACCESS_TYPE_H provides the access type of the source 2 specifier.

e XSCA_SPECIFIERS_DECODED_H[02:00] identifies the total number of specifiers
decoded in the instruction currently being decoded.

The source 2 register field is validated if the specifier is a valid register mode specifier.
The specifier 2 access type is input into the valid logic to differentiate between the
destination and the source specifiers. A write or modify access negates the validation of a
specifier as a source operand.

I_DATA_H[59:16] BYTE 2

BYTE 3

BYTE 4
SP2_REGISTER_H[03:00]

BYTE §
BYTE 6

BYTE 7

XDTA_SOURCE2_REG_H[03:00]

L—— LATCH

CASE_H[01:00] REOQUEST
XSCA_SP1_DATATYPE_K[02:00] SRC2_REG_MODE SOURCE 2 | B_SOURCE2_REG_VALID_H
—————————»| REGISTER
REGISTER_MODE_H{07:01] VALID
XDTA_SOURCE2_REG_VALID_H
IMMEDIATE_MODE_H[01] SOURCE 2
BYTE
INDEX_MODE_H[01] SELECT
ABSOLUTE_MODE_H[01]
SPECIFIERS_DECODED
SP2_ACCESS_TYPE SOURCE 2 | B_SOURCE2_VALID_H
ACCESS_TYPE VALID >
XSCA_SPECIFIERS_DECODED_H[01:00)]
XDTA_SOURCE2_VALID_H

M A_X0083_89

Figure 4-13 XBAR Source 2 Logic
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4.1.14 XBAR Destination

The XBAR destination fields are generated for destination specifiers that are passed to
the specifier handlers. Figure 4-14 shows a simplified block diagram of the destination
logic.

SPECIFIER_ACCESS _TYPE

X$CA_SPECIFIERS_DECODED_H[01:00] DESTINATION B_DESTINATION_VALID_H
| xoTa_bESTINATION_VALID_H

—_—

SP1_REGISTER_H[03:00] ™
SP2_REGISTER_H[03:00] B_DESTINATION_REG[03:00] L
SP3_REGISTER_H[03:00] 1 XOTA_DESTINATION_REG_H[03:00]
SP1_REGISTER_MODE_H I
SP2_REGISTER_MODE_H SPECIFIER1_REG_DESTINATION_H
SP3_REGISTER_MODE_H DESTINATION | SPECIFIER2_REG_DESTINATION_H B_DESTINATION_REG_VALID

SPECIFIER

SELECT SP3_REGISTER_MODE_H rXDTA_DEST!NATION_REG_VALID_H N
SPECIFIER_ACCESS _TYPE

XSCA_SPECIFIERS_DECODED_H(N:OD}T

WA_X:c84_ 83

Figure 4-14 XBAR Destination

4.1.14.1 Destination Valid
XDTA_DESTINATION_VALID_H is sent to the FPL of the OPU to validate a destination
specifier. This signal is generated from access type and specifiers decoded fields.

The access type of the destination specifier must be write, modify, implied write, or VSRC
modify. Any specifier with an access type of read is a source specifier.

To validate the destination specifier, the specifiers decoded must indicate the specifier
under decode (destination specifier) is the last specifier of the instruction.

4.1.14.2 Destination Register Valid

Destination registers are validated when the destination specifier is a register. SPx_
REGISTER_DESTINATION_H is asserted when the selected destination specifier is a
register mode specifier.
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4.1.15 Register Masks

The register mask logic receives a register number for any register that is read or written
to by the EBox during the execution of an instruction. All of the register accesses in an
instruction are accumulated in one of two registers and passed to the OCTL unit of the
OPU at the completion of the instruction decode. Figure 4-15 shows the XBAR mask
logic.

B_SOURCE1_REG_H[03:00]

SOURCE1_MASK_H[14:00]

XSCA_SP1_DATATYPE_H[02:01] SOURCE 1
MASK

B_SOURCE2_REG_H[03:00] SOURCE2_MASK_H[14:00]

XSCA_SP2_DATATYPE_H[02:01] so::scKs 2

B_MASK_SOURCEY_REG_VALID_H nEs XDTA_READ_MASK_H[14:00)
GENERATION

B_SOURCE1_VALID_H

B_SOURCE2_REG_VALID_H

B_SOURCE2_VALID_H

XSCA_SHIFTOPCODE_D_L

B_DESTINATION_REG_VALID_H

A 4

WRITE XDTA_WRITE_MASK_H[14:00]

B_DESTINATION_VALID_H MASK
GENERATION

B_DESTINATION_REG{03.00]

DESTINATION_MASK_H[14:00]

XSCA_SP3_DATATYPE_H[0200]

DESTINATION
MASK

A
XSCA_SPECIFIERS_DECODED_H[01:00] !

MA_X0085_89

Figure 4-15 XBAR Read and Write Masks

4.1.15.1 Read Mask
A XBAR read mask is generated by decoding each valid source operand that is passed to
the FPL. The read mask logic receives the following:

B_SOURCEx_REG_H[03:00]
B_SOURCEx_VALID_H
B_SOURCEx_REG_VALID_H
XSCA_SPx_DATATYPE_H[02:00]

The source valid and source register fields are decoded to detect valid register specifiers.
When a valid register specifier is detected, the register field is stored in the read mask
logic.

The data type of the specifier (XSCA_SPx_DATATYPE_H[02:00]) further defines the read
access of the registers by asserting subsequent register numbers in the read mask when
the base register data type is quadword or octaword. For example, a quadword read of
register 1 would generate XDTA_READ_MASK H[14:00] = 0006. This mask identifies
register 1 and register 2 as being read during the execution of this instruction.

READ_MASK_H[14:00] is passed to OCTL when XSCA_SHIFTOPCODE_H is asserted.
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4.1.15.2 Write Mask

The XBAR write mask field contains entries pertaining to registers that are written to
during the execution of an instruction. The write mask is generated by decoding the
following:

DESTINATION_REG_VALID_H
DESTINATION_VALID_H
DESTINATION_REGI{03:00]
XSCA_SP3_DATATYPE_H[02:00]

The data type and the register field generate DESTINATION_MASK_H[14:00] when the
data type is as follows:

Write

Modify
Implied write
VSRC modify

When both DESTINATION_REG_VALID_H and DESTINATION_VALID_H are asserted,
an entry is added to the write mask.

4.1.15.3 Implied Mask

When a character string instruction is detected, the XRAM asserts IMPLIED_MASK_H,
which asserts XDTA_ WRITE_MASK_H[05:00]. RO through R5 are asserted in the write

mask because they contain the control block that maintains updated addresses and state
information during the execution of the instruction.

4.1.16 Intra-Instruction Read Conflicts

Intra-instruction read conflicts (IRCs) occur when a read conflict is in the specifiers

of a single instruction. These conflicts occur when a register specifier is to be used as
data in the EBox and is subsequently used as the base register for an autoincrement or
autodecrement.

An IRC occurs in the instruction ADDL3 RO, (R0)+, R1. This instruction directs the EBox
to read RO and also directs the IBox to use RO as the base register for an autoincrement.
The IBox detects this IRC by monitoring the read and write masks that are generated
for each instruction. When the XBAR detects an IRC, it notifies the OPU and passes
the autoincrement or autodecrement specifier to the CSU of the OPU and also passes all
subsequent register specifiers through the CSU, instead of through only the FPL.

The CSU processes the autoincrement specifier, updates the IBox copy of the GPRs, but it
does not update the EBox copy of the GPRs. Subsequent register specifiers are processed
by the CSU and passed to the EBox as data and placed in the source list. The data
passed to the source list is the content of the IBox copy of the register.

The OPU records the modified register numbers until the instruction has been completed
and then writes the registers to the EBox GPRs using the data in the IBox GPRs.

The XBAR does not process any subsequent specifiers until the instruction is complete
(in the EBox) and then writes the IBox (modified) GPRs to the EBox GPRs. This process
is called a delayed GPR update.
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The IRC mask decode logic (shown in Figure 4-16) generates a composite IRC mask
(IRC_MASK_H[08:00]). The composite IRC mask identifies the data types of GPR
accesses for the IRC detection logic.

IRC_MASK_H[08:00] is generated by decoding the read mask and decoding the I-stream
for autoincrement and autodecrement mode specifiers. IRC_YREG_H[03:00] is also input
into the IRC mask logic. IRC_YREG_H[03:00] identifies the base register of register
specifiers in the instruction.

The IRC composite mask, n (number of specifiers decoded), CASE_[01:00], index mode,
and the specifier data types are input to the IRC detection logic (Figure 4-17. The Rlxx
shift count and specifiers decoded count are also input to this logic. The output of the
IRC detection logic produces the specifier counts and specifier decoded counts during IRC
handling.

When an IRC is detected, three outputs are produced to direct the special handling
required for the instruction:

IRC_H
IRC_N_HI[00]
IRC_SC_H[02:00]

IRC_N_HI[00] provides the specifiers decoded count for the IRC and can equal only zero
or one. IRC_SC_H[02:00] provides the shift count for the IRC. During an IRC, the shift
counts are based only on the decode tree outputs of R1, R1BB, R1BW, and R1L

The XBAR continues to decode one specifier at a time until the instruction is complete.
All decoded specifiers are passed through the CSU. Autoincrements or autodecrements
are performed only on the IBox GPRs. The XBAR stalls (IRC_STALL_H) when the
instruction is completely decoded and waits for the EBox to complete the instruction.
When the EBox completes the instruction, a delayed GPR update is performed and the
XBAR resumes decoding (0SQA_DGPR_UPDATE_FINISHED_H negates IRC_STALL _
H).

IRC MASK DECODE

IRC_MASK_H|08:00]

CASE_H[01:00]

I_DATA_H[38:08]

I_DATA_L[39 37, 31:29, 23:21, 19:13, 11:08]

READ_MASK_H[14:00]

REGISTER_MODE_H[02:01]

SL_MODE_H[02:01]

IRC_YREG_H[03:00]

MR_XC338_89

Figure 4-16 IRC Detection: Read Mask
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IRC DETECTION

OUTPUTS IRC_DETECTED_H

IRC_H
IRC_L
B_IRC_H
B_IRC_L

=S

RIRC_SC_H[02:00]
RIRC_N_L[00]

XDTA_IRC_MASK_H[08:00] INPUTS
SP1_DATATYPE_H[02:01]
SP2_DATATYPE_H{02:01}

INDEX_MODE_H[01]
INDEX_MODE_L[02]

CASE_H[01]

CASE_L[00]

REQUEST_L{[03:00]

N_L[01:00]
B_ALL_SPECIFIERS_COMPLETED_H

R1_SC_L[02.00]
R1_N_H[00]
R1BB_SC_L[00]
R1BB_N_H{[00]
R1BW_SC_L[01]
R1BW_N_H[0O0]
R1I_N_H[00]
BRANCH_BYTE_H[01]
BRANCH_WORD_H{01]
IMPLIED_READ_H[01]
IMPLIED_WRITE_H{01]

B_RESTART_XBAR_H
XBAR_STALL_H
XBAR_STALL_L
B_IBOX_ERROR_H

MR_X0339_89

Figure 4-17 IRC Detection: IRC Mask

4.1.17 XBAR Stalls

XSCA detects stalls in the XBAR. Most of the stalls in the XBAR are related to specifiers
that require special handling or are related to situations external to the XBAR logic.
The external situations are a result of the limitations of the logic units that receive
decoded specifiers from the XBAR or because the instruction buffer and/or the VIC are
not providing valid I-stream to the XBAR. This section describes the logic that initiates
XBAR stalls, and it describes the conditions external to the XBAR that cause the XBAR
to stall.
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When XBAR_STALL_H is asserted, the XBAR forces the decode tree logic and the request
logic to produce outputs that generate no shift counts and produce zero for a specifiers
decoded output. During a XBAR stall, the request logic produces an output that selects
a nonexistent decode tree output (REQUEST_H[03:00] = F). Selecting the nonexistent
decode tree output generates a shift count of zero (XSCA_SHIFTCOUNT_H[03:00] = 0)
and generates a number of specifiers decoded count of zero (N_H[01:00] = 0). The shift
count of zero directs the instruction buffer to hold (not shift) the I-stream it is presenting
for decode and the specifiers decoded count of zero results in no valid specifier data being
passed to the OPU.

XBAR_STALL_H is asserted when the following conditions are true:

o JRC_STALL_H is asserted after the XBAR passes all the specifiers of an instruction
that contains an IRC to the OPU.

e RAF_H is asserted, signifying a reserved addressing fault. This fault is detected in
the XBAR.

e FPD_FLUSH_H is asserted when the EBox stalls the execution of an instruction to
service an exception or an interrupt.

e PCHI_IBUF_FLUSH_H is asserted. This signal is asserted when there is a change in
I-stream.

e I_VALID_L[00], when negated, there is no valid opcode in the instruction buffer.

e OCTL_MASK_STALL_H is asserted when the OPU read/write register mask logic is
full.

. OSQA_DECODE_STALL_H is asserted because the OPU cannot receive decoded
specifiers because one or more of the following conditions exist:

EBox source list or source pointers are full.

Read or write conflict stall exists (inter-instruction conflict or scoreboard stall).
Autoincrement or autodecrement follows a branch.

Branch follows a branch.

Two conditional branches are buffered.

GPR update is delayed.

The XBAR generates two stall signals, OPU_STALL_H and SL_STALL_H, that are
related to the availability of resources in the OPU. These signals inhibit the XBAR from
decoding complex or short literal specifiers when they are asserted.

When OPU_STALL_H is asserted, this informs the XBAR that the OPU is processing a
complex specifier and has another complex specifier buffered in the OPU stall logic. This
stall signal inhibits the XBAR from decoding and passing another complex specifier to the
OPU. This signal is input to the decode tree logic and affects the shift count and number
of specifiers decoded outputs. When OPU_STALL_H is asserted and another complex
specifier is decoded, XBAR_STALL_H is asserted.

SL_STALL _H is asserted to inform the XBAR that two short literal specifiers are
currently in the SLU. This stall inhibits decoding another short literal specifier and
asserts XBAR_STALL_H when another short literal is encountered.
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This section describes the VAX 9000 family branch prediction functions. It describes the
three methods used to predict a branch and the microcode that controls them.

The three methods used to predict branches are as follows:

e Primary mode is used when the branch being decoded is stored in the branch

prediction cache (BPC). The fields in the BPC direct the decision of taking or not

taking the branch and provide the branch PC.

e Demote is related to primary mode and occurs when the cached displacement or
instruction length does not match that of the branch being decoded. Under demote,
the cached prediction bit is used and the branch PC is provided by the CSU.

o Secondary mode is used when the branch is not stored in the BPC. The branch
may not be cached because it has not been encountered before or because it is not a
cacheable branch. In this mode, the branch PC is provided by the CSU.

4.2.1 Primary Predictions

Primary branch predictions use the BPC to direct the flow of I-stream when branches are
encountered. These predictions are based on the content of the BPC.

The BPC contains five fields that are written when a cacheable branch is first
encountered and read when the branch is subsequently encountered. Figure 4-18 shows

the organization of the BPC.

DECODE PC {31:10]

PREDICTION TAG [31:10}
PREDICTION TAG PARITY {03:01]

TAG INSTRUCTION LENGTH {05:00]
TAG INSTRUCTION LENGHTH PARITY [00]

DELTA PC (SHIFT COUNT)

COMPARE |—»

PCxx_BP_ADDRESS_H]08 00] PREDICTION PC [31:00]
PREDICTION PC PARITY [03:00)

TAG DISPLACEMENT [15:00]
TAG DISPLACEMENT PARITY [01:00]

XBAR DISPLACEMENT

COMPARE [—%

pcu  |—»

PREDICTIONA, B,C, D, E, F

Figure 4-18 BPC Organization

COMPARE —¥®

PCU —»>

HIT

DEMOTE

VIC ADDRESS

DEMOTE

PREDICT TAKEN

MR_X03£0_89
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The BPC has 1024 locations and is never flushed. The following fields describe the

contents and functions of the branch prediction cache fields:

¢ Branch PC tag — This field contains bits [31:10] of the virtual PC of the branch.
¢ Prediction PC — This 32-bit field is the destination PC of the branch.
* Branch displacement — This 16-bit field is the actual displacement of the branch.

* Branch instruction length — This 6-bit field contains the actual instruction length

of the branch.

* Prediction bit — This bit is set when the branch is predicted taken.

4.2.1.1 Primary Hits

A branch prediction hit occurs when the BP tag field matches the corresponding bits in
the decode PC. A hit directs the cached prediction PC to be loaded into the decode PC if
the prediction bit is asserted. Figures 4-19 and 4-20 show the compare logic of the BPC

and the results of the comparisons.

DECODE_PC[31:10] HIT
PREDICTION_TAG([31:10] COMPARE| MisS LATCH
b———.
BP_PREDICTION
LATCH

DELTA_PC[05-00]

TAG_INSTRUCTION_LENGTH[0500}

XBAR_DISPLACEMENT[15:00]

LATCH

COMPARE

TAG_DISPLACEMENT{15:00]

Figure 4-19 BPC Compare: Hit

LATCH

!

COMPARE

DECODE_PC_H[31:10]

TAG HIT
PREDICTION_TAG_H{31:10] | o nB%ns

LATCH

BP_PREDICTION
—_—

LATCH

BSHOP
—_——

LATCH

DELTA_PC_H[05:00]
—_—_——

TAG_INSTRUCTION
_LENGTH[05:00]

LATCH

H
ul

COMPARE

XBAR_DISP[15:00]
—_——

TAG_DISP[15:00}
—_—— T

LATCH

MR _Xp086_89

MOVE_BP_TO_DECODE

)‘é@ DEMOTE

COMPARE

Figure 4-20 BPC Compare: Demote
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When a branch is encountered, the BPC is accessed to perform a compare. The compare
results in one of three outputs: hit, miss, or demote.

Two cycles are required to produce a predicted taken branch from the branch prediction
cache.

1. In the first cycle, DECODE_PC[31:10] and PREDICTION_PC[31:10] are compared
and produce a hit or miss. A miss directs the prediction to the secondary mechanism
and a hit requires subsequent comparisons to produce a hit or a demote.

2. If a hit is encountered in the PC comparisons, DELTA_PC[05:00] and TAG_
INSTRUCTION_LENGTHI05:00] are compared, producing a hit or demote.

3. The XBAR_DISPLACEMENT[15:00] and TAG_DISPLACEMENT{15:00] are
compared to produce a demote if they do not match.

4. If a hit is encountered, BP_PREDICTION_H must be set for the branch t.o.be
predicted taken. _ , ,

4.2.1.2 Tag Match Enable

The IBUF simple decode logic decodes branch instructions and informs the PCU if the
branch is cacheable. When IBFB_CACHEABLE_H is asserted and the BPC is not being
written, a tag match is enabled. Figure 4-21 shows the logic that enables the tag match.

IBFB_CACHEABLE_H
ENABLE_BP_TAG_MATCH_H

BP_WRITE_TB_ L J
DISABLE_BP_HIT_L |

MR_X0088_83

Figure 4-21 BP Tag Match Enable

4.2.2 Demote

A primary prediction hit is demoted if the instruction length or the displacement of the
branch do not match those stored in the BPC on a predicted taken branch. This occurs
when the virtual PCs of the branch match, but they are not the same branch.

If the displacement and instruction length do not match, the history bit is checked before
the branch is demoted. If the branch is predicted not taken (history bit = 0), no demote
is necessary and decoding of the sequential I-stream continues. When the prediction

bit is set, the branch is demoted, the target PC is provided by the CSU, and the BPC is
written. That is, the new branch PC, instruction length, and displacement are written.

If the prediction is incorrect, the BPC is rewritten with the prediction bit cleared.
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4.2.3 Secondary Predictions

Secondary predictions are performed by the branch bias logic of the XBAR. A secondary
prediction is based on the opcode of the branch instruction. When a secondary prediction
directs the IBox to take the branch, the branch target PC is supplied by the CSU.

Secondary mode is used when the branch has not been cached or when the BPC cannot
be accessed because it is busy being written. Figure 4-22 shows the inputs and outputs
of the branch bias logic.

The branch bias logic (BRAM) is comprised of 22 scan latches and selection logic. The

latches are loaded with fixed predictions for branches and accessed when a branch that
has not been cached is encountered. The opcode is used to select the prediction that is

stored in the branch bias latches.

The fixed predictions for the branches are based on a bias for that instruction. That is, a
BEQL tests two conditions for equality. Because equality in mathematlcal situations is
rare, this branch would be predicted not taken.

A branch that is predicted taken in the BRAM logic asserts XDTB_BRAM_BIAS_H. This
signal is passed to the branch prediction logic.

XDTB

EXTENDED_H B_BIAS_H

—_— —~———
H

I_DATA_H[07:00] e B_BIAS_L

—— e »

MR_X0083_89

Figure 4-22 Branch Bias Logic

4.2.4 BPC Correction

Correction refers to the actions taken to correct an incorrect branch prediction before
the branch instruction is shifted out of the instruction buffer. Branch instructions

are predicted when they are shifted into the instruction buffer and are acted upon
when they are shifted out of the instruction buffer. If the EBox validates the branch
prediction before it is shifted out of the instruction buffer, and the prediction is incorrect,
a correction is initiated.

A correction causes the rewriting (inverting) of the BPC prediction bit and the writing
of the unwind PC (UNWIND_PC_H[31:00]) to the prediction PC (PREDICTION_PC_
H([31:00]). If the branch was predicted to be taken and was incorrect, the IBox continues
following sequential I-stream. If the branch was predicted to be not taken and was
incorrect, the IBox redirects the I-stream to the PC supplied by the CSU. In both
cases, the correct PC (sequential or nonsequential) is loaded from the unwind PC to

the prediction PC.
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4.2.5 BPC Unwind

Unwind refers to the actions necessary to correct an incorrect branch prediction whose
validation arrives after the instruction buffer has shifted the branch instruction out and
has started preprocessing the wrong I-stream. A BPC unwind initiates the following
events:

L]

Asserts IBOX_ABORT to abort any instruction buffer requests for new I-stream.
Flushes the instruction buffer of any I-stream loaded since the branch instruction.

Invalidates any pointers to the EBox source list that have been entered after the
branch prediction was made.

Invalidates any OCTL GPR read/write masks that pertain to instruction decoded
after the bad branch prediction. _

Rewrite (invert) the BPC history bit to reflect the correct prediction for the branch.

The unwind PC is loaded into the prediction PC so that the IBox can start processing
the correct I-stream. :

4.3 PCU Microcode

The PCU and BPC are controlled by PCU microcode. This microcode is implemented
in hard-coded microcode. That is, the microcode structure is generated in hard logic as
opposed to a conventional RAM structure.

The PCU microcode consists of 38 bits that are partitioned into 22 fields. The fields are
addressed by an 11-bit address field that contains PCU state information and the control
signals to govern the flow of the microcode.

4.3.1 PCU Microaddress

The address for the PCU microcode is 11 bits wide. The address is organized as follows:

UADDRESS[03:00] provides PCU control signals.
UADDRESS!06:04] indicates where to store OPU_TARGET_PC.
UADDRESS[10:07] defines the state of the PCU at the beginning of the current cycle.

Table 4-3 describes the three address fields.
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Table 4-3 PCU Microaddress Descriptions

UADDRESS[03:00] PCU Control

UADDRESS[00] This bit is set when the CSU has delivered a target PC to the PCU

and there was not an unwind, last cycle.

UADDRESS[01] This signal indicates whether an IBox branch prediction was correct.

The signal is only valid when UADDRESS[02] is asserted.

UADDRESS[02] Asserted, this bit validates UADDRESS[01].

UADDRESS[03] Asserted when an unconditional branch is in the IBUF

UADDRESS[06:04] OPU Target PC Destination

UADDRESS[04]! This bit directs the target PC to be stored in the unwind PC in the

PCU.

UADDRESS[05] This bit directs the target PC to be stored in the decode PC.

UADDRESS[06]! This bit is asserted if the PCU has a branch prediction, predict taken

hit. This informs the microcode to ignore the target PC.

UADDRESS[10:07] Label Description

0000 IDLE The PCU has not encountered a branch
and the IBox is executing sequential
code.

0001 BSHOP VAL PCU has received a target PC from the
CSU before the branch has been shifted
out of the IBUF and before EBox has
validated prediction.

0010 VAL UNC TAR VAL TAR XBAR has decoded a conditional,
unconditional, and another conditional
branch, in that order. There may
have been sequential code between the
branches. The PCU is waiting for EBox
validation of the first branch, a target
PC for the unconditional branch, and
EBox validation and target PC for the

~ third branch.

0011 VAL The PCU is waiting for EBox validation
of a branch prediction.

0100 VAL VAL TAR Two conditional branches have been
shifted out of IBUF. The first needs
EBox validation and the second needs
EBox validation and target PC from the
CSU.

0101 BSHOP TAR This state occurs when the branch is
validated before it is shifted out of the
IBUF. (EBox is ahead of IBox.)

0110

VAL TAR XBAR decodes a conditional branch and
: shifts it out of the IBUF. The validation
and target PC follow a few cycles later.

(IBox is ahead of EBox.)

1These three bits are mutually exclusive. Only one of these bits may be set in a cycle.
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UADDRESS[10:07]

Label

Description

0111

1000

1001

1010

1011

1100

1101

1110

1111

VAL TAR VAL TAR

TAR VAL TAR

TAR

VAL UNC TAR TAR

TAR TAR

VAL BSHOP VAL

VAL UNC TAR

VAL TAR TAR

VAL VAL TAR UNC TAR

Two conditional branches have been
decoded by XBAR with both awaiting
validation and target PCs.

Two branches are being processed.
The first has been validated but needs
a target PC. The second needs both
validation and a target PC.

A target PC is required from the CSU
to process a branch completely.

The PCU is processing three branches.
The first is conditional and needs
validation. The second and third are
unconditional and need target PCs from
the CSU. .

The CSU has not delivered target PCs
for two branches.

An outstanding branch is in the PCU
and the CSU has provided a target
PC before the second branch has been
shifted out of the instruction buffer.
This state occurs only with JSB or
BSB.

The PCU is waiting for a validation
for one branch and a target PC for a
subsequent unconditional branch.

The PCU needs validation and a
target PC for a conditional branch
and a target PC for a subsequent
unconditional branch.

The IBox has shifted out two
conditional and one unconditional
branches. The target PC has been
delivered for only the first conditional
branch and the EBox has not validated
either conditional branch.
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4.3.2 PCU Microword

The PCU microword is 39 bits wide and is partitioned into 22 fields. Figure 4-23 provides
a breakdown of the microword. Table 44 describes each microcode field.

;'——_M'_/;’_—"J ' H____JNEXT STATE

LOAD DECODE
LOAD UNWIND

LOAD DEL TARGET

LOAD SEC UNWIND
LOAD SEC BRANCH
USE BRANCH OK
8P WRITE

IBUF FLUSH

BRANCH TAKEN

CORRECTION

38 37 36 35 34 33 32 31 30 29 28 27 26 25 24 23 22 21 20

BP ADDRESS
BRANCH PC
LOAD MARKERS

A A A A \_r_/ | invemT

TARGET PC
DECODE PC
UNWIND PC

SET UNWIND

LOAD BRANCH

BRANCH OK SEL

SEC MARKERS IN USE

MA_X0850_89

Figure 4-23 PCU Microword Format
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Table 4-4 PCU Microword Field Descriptions

[03:00] Next State Description
0000 IDLE See Table 4-3 for field descriptions.
0001 BSHOP VAL
0010 VAL UNC TAR VAL TAR
0011 VAL
0100 VAL VAL TAR
0101 BSHOP TAR
0110 VAL TAR
o111 VAL TAR VAL TAR
1000 TAR VAL TAR
1001 TAR
1010 VAL UNC TAR TAR
1011 TAR TAR
1100 VAL BSHOP VAL
1101 VAL UNC TAR
1110 VAL TAR TAR
1111 VAL VAL TAR UNC TAR
[04] Load Decode Description
1 - Bad branch prediction. Load unwind PC into decode
PC or PCU waits for target PC from CSU. Load
decode is set when destination PC arrives.
fo5] Load Unwind Description
1 - Unwind PC is loaded when predict taken branch is
shifted out of IBUF. On predict not taken, unwind PC
is loaded when CSU provides destination PC.
[06] Load Delayed Target Description
1 - When the CSU delivers a target PC before branch is
shifted out, this signal instructs the PCU to latch and
hold the target PC.
[07] Load Second Unwind Description
1 - Same as load unwind, except the PC is loaded into

second unwind PC (on second branch prediction).
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Table 4-4 (Cont.) PCU Microword Field Descriptions

[08] Load Second Branch Description
1 - Asserted when a second branch is shifted out of the
IBUF. The PCU must latch and hold the following:
Virtual address
Prediction bit
Cacheable
Loop branch
Instruction length
Branch displacement
[09] Use Branch OK Description
1 - Set when EBox sends validation of branch before
shifting the branch out of IBUF. Remains set until
branch is shifted.
[13:10] BP Write Description

000 FALSE BPC is not written when this state is chosen.

001 NOHIT BPC is written if present branch is not stored and
cacheable.

010 PT NL BPC is written in this case if the branch is incorrectly
predicted taken and is not a loop branch.

011 CA Cacheable branch is encountered for the first time
and is written to the BPC.

100 NL CA Not loop, cacheable. Branch predicted incorrectly
from BPC is rewritten correctly (prediction bit) if it is
not a loop branch.

101 NEXT This field enables the write of a second branch being
processed, to BPC, if the branch is cacheable.

[15:14] IBUF Flush Description
00 NOOP Hold previous values.
01 TRUE IBUF flush.
10 NPT Not predict taken.
11 PT Predict taken.
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Table 4-4 (Cont.) PCU Microword Field Descriptions

[18:16] Branch Taken Description
00 NOOP Hold previous value.
01 NPT Not predict taken.
10 PT Predict taken.
11 TRUE Predict taken.
100 NOT BT Not branch taken.
101 SBT Second branch taken.
[19] Correction Description
1 - Asserted when the EBox informs the IBox of a bad
branch before it has been shifted out of the IBUF.
[20] Invert Description
1 - When the EBox informs the IBox of a bad prediction,
this signal directs the PCU to invert its fields.
[22:21] BP Address Description
00 - If the branch is still in the IBUF, the decode PC
provides the address.
01 - If the branch has been shifted out of the IBUF, the
stored branch PC provides the address.
10 - Second branch PC is selected by this value.
[23] Branch PC Description
0 Decode PC The branch PC is loaded into the decode PC.
Second branch PC The branch PC is loaded into the second branch PC

(two branches being processed).
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Table 4-4 (Cont.) PCU Microword Field Descriptions

[27:24]

Load Markers

Description

0000
0001

0010

0011

0100

0101

0110

0111

1000
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NOOP
TRUE

FALSE

SET SID

TAR CASES

FROM SECOND

SET IG

SECOND

PUSH

Load markers with values held last cycle.

The marker set depends on the prediction of the
branch and if the branch hits in the BPC. The
following table provides the value dependent on
these two variables.

BP Hit Predict Marker Set
Taken

0 Store in unwind.
1 Store in decode.

0 Store in unwind. .
1 1 Ignore PC.

All markers, first and second, are cleared when all
branches are completely processed or when EBox
detects a bad branch prediction.

This state clears all markers and sets STORE_IN_
DECODE.

This state is set when the validation of a branch
arrives before the destination PC. This state depends
on three signals: BRANCH_OK, BP_HIT, and
PREDICT TAKEN.

Branch BP Hit Predict Marker Set
OK Taken

(] 0 Store in decode.
Ignore PC.
Store in decode.
Ignore PC.

- O O

Ignore PC.
Store in decode.
Ignore PC.
Ignore PC.

bt e e O O O
o QO o OO
—_ O e O e O

When processing two branches, at the completion of
the first, this field is selected to move the markers
stored in the second position into the first position.

When the PCU is awaiting a destination PC from the
CSU, and the EBox indicates the prediction is wrong,
markers are switched from store in decode to ignore
PC.

When the microcode selects the second set of markers,
the TRUE state is used as the input.

This field is only used when going to state VAL VAL
TAR UNC TAR. The first markers get the content of
the second marker and the second marker gets loaded

with appropriate markers for the unconditional
branch that has just been shifted out of the IBUF.
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Table 4-4 (Cont.) PCU Microword Field Descriptions

[29:28] Target PC Select Description
00 OPU results Target PC provided by the SCU.
01 Unwind PC Unwind PC provides target PC.
10 Delayed target PC Wait for target PC.
[81:30] Decode PC Select Description
00 Target PC Target PC is selected on predict taken.
01 Next PC Next PC is selected on predict not taken.
[83:32] Unwind PC Select Description
00 Next PC
01 OPU result
10 Second unwind PC
[35:34] Set Unwind Description
01 Next On a bad branch prediction, this signal informs the
IBox to unwind from the prediction. This signal is
used only if the branch has been shifted out of the
IBUF. Next selects next PC on a bad predict taken.
10 OPU result Load OPU result on bad not taken prediction.
11 Second unwind Load second unwind PC.
[36] Load Branch Description
1 - This field is the same as load second branch. The
same information is stored but pertains to the first
branch.
[87] Branch OK Select Description
1 - This field can force the validation signal from
the EBox. The signal indicates that the PCU has
acknowledged the bad prediction and has corrected
it without causing any damage to the integrity of the
IBUF.
[38] Second Markers Description
0 - When a demote occurs, demote the first branch.

When a demote occurs, demote the second branch.
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4.3.3 Writing the BPC

The PCU writes the information pertaining to cacheable branches it has encountered.
Certain criteria must be met for a branch to be cacheable:

e Branches must have displacements that will not change during the execution of the
instruction.

¢ Branches must have a displacement as part of the I-stream.

A branch that has already been written to cache will not be rewritten unless the
prediction is incorrect. The EBox informs the IBox of an incorrect prediction and the
prediction bit is inverted.

4.3.3.1 BPC Write Enable
The BP write field of the PCU microcode selects the field that enables the BPC write
signal. Figure 4-24 shows the write enable logic.

0 \
BP_HIT_L
IBFB_CACHEABLE

PREDICT_TAKEN
BP_LP_BRANCH_L
IBFB_CACHEABLE

WRITE BP BP WRITE
LATCH p———® PCBP

CACHEABLE

CACHEABLE

LOOP_BRANCH_L

PPy

NEXT_CACHEABLE
BP_WRITE_SEL{02:00] (MICROCODE [13:10})
CTL_PC_FLUSH_L (ENABLE)

Figure 4-24 BPC Write Enable

MR_X009"_8¢9
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4.3.3.2 Cache Tag Write

Figure 4-25 shows the BP tag address write logic. To write the tag, either the branch
PC, decode PC, or second branch PC is selected at the BP tag multiplexer. Selection is as
follows:

e Decode PC is selected if the branch is still in the instruction buffer. The branch
remains in the instruction buffer if the address must be read from or written to.

e Branch PC is selected after the branch has been shifted out of the instruction buffer.
The virtual address of the branch is loaded into the branch PC.

e Second branch PC is used when the PCU is processing two branches. This address
can be loaded directly into the BPC or into the branch PC when the first branch
address is no longer needed.

The selected PC provides bits [31:10] of the virtual address of the branch to be written to
the BPC tag field.

DECODE_PC
BRANCH_PC \\] BP ADDRESS

SECOND_BRANCH_PC

BP_ADDRESS_SEL[01:00] (MiCROCODE {22:21])

Figure 4-25 BPC Tag Write

4.3.3.3 Instruction Length Field Write

The instruction length field is loaded from the delta PC. This PC is derived from the
accumulated shift counts since the last SHIFT_OPCODE_H. This value, when the
instruction is shifted out of the instruction buffer, yields the instruction length.

Figure 4-26 shows the logic generating the detla PC. The delta PC represents the current
instruction length or, if a second branch is being processed, it is selected as the second
branch instruction length.

DELAYED_DELTA_PC
LATCHK
CURRENT_INSTRUCTION_LENGTH_H{05:00]
BRANCH_IL PC_INSTRUCTION_LENGTH_H{05:00]
LATCH
l/l i
2ND_BRANCH_IL
LATCH

BP_ADDRESS_SELECT_H (MICROCODE {22:21]) 5

XBAR_SHIFTCOUNT{05:00]

wA_x0883_38

Figure 4-26 BP Instruction Length

DIGITAL INTERNAL USE ONLY



4-42 |Instruction Decode

4.3.3.4 Prediction PC Write
Figure 4-27 shows the inputs that are written to the BP prediction PC field.

The time when the PCU writes the prediction PC field depends on the prediction of the
branch. When a branch is predicted not taken, the field is written when the branch is
shifted out of the instruction buffer. The value that is written for a branch predicted not
taken is unpredictable. The field that is written is not valuable because the branch is
predicted not taken the next time it is encountered.

A branch that is predicted taken must wait for the target PC to arrive from the CSU
before it can be written.

When a branch is predicted incorrectly, the BPC must be updated with the correct
information. In this case, the unwind PC supplies the correct prediction PC.

TARGET PC

DECODE PC
LATCH |—— B8P TARGET PC

NEXT PC

DECODE PC SELECT

MR_X0D09¢_39

Figure 4-27 BP Prediction PC Write

4.3.3.5 BP Displacement Write

The branch displacement is calculated by the XBAR and, when the branch is cacheable,
is written to the BPC. Figure 4-28 shows the logic that selects from two inputs to be
written to the BPC.

XBAR_DISPLACEMENT_H[15:00] is written to the BPC or latched as SECOND_
BRANCH_DISPLACEMENT_H[15:00] when two branches are being processed.

XBAR_DISPLACEMENT[15:00])
DISPLACEMENT[15:00}

A_SECOND_BRANCH _DISPLACEMENT[15:00]
LATCH

MR_X0095_88

Figure 4-28 BP Displacement Write

4.3.3.6 BP Prediction Bit

The BP prediction bit is the bit that is stored in the BP cache and determines the history
of the branch. This bit is the reference to whether the branch was predicted taken or
predicted not taken the last time it was encountered.

This section provides a detailed description of the reading and writing of the prediction
bit.
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4.3.3.6.1 BP Prediction Bit Read
Two inputs supply the BPC prediction bit during a read operation. (refer to Figure 4-29)

e BPP_PREDICT - the history bit that is stored in the BPC.

e XDTB_BRAM_BIAS - the prediction bit supplied by the BRAM bias logic. This
prediction is the fixed prediction that is based on the opcode of the branch instruction.

The selection between these two inputs depends on if the branch prediction tag match
occurs in the BPC. When a tag match occurs, the prediction bit from the BPC is used.
When there is no tag match in the BPC or the BPC cannot be read because it is currently
being written, the branch prediction is supplied by the branch bias logic.

Loop branches and unconditional branches assert FORCE_OUTPUT which always selects
PREDICT_TAKEN.

4.3.3.6.2 BP Prediction Bit Write

The prediction bit is written to the BPC when the branch is initially encountered and
may also require being rewritten (inverted) when a branch prediction is determined to be
incorrect. The logic that writes the prediction bit can write a prediction bit for a second
branch prediction while the preceding branch is still under evaluation.

In Figure 4-29, TAKEN or PCBP_BP_TAKEN is the output that is used to access the
BPC history bit during read and write operations. For reads, BP_ADDRESS_SEL_
H[01:00] (PCU microcode bits [22:21]) selects A_PREDICT_TAKEN to access the BPC.
For writes to the BPC, BP_ADDRESS_SEL_H[01:00] selects either BRANCH_TAKEN or
A_SECOND_BRANCH_TAKEN. Either of these fields is selected when writing the BPC
on a miss, or for rewriting the BPC on a correction or an unwind.

BRANCH_TAKEN is selected from one of five different fields by BRANCH_TAKEN_
SEL_H[02:00]. The selection of the source for this field depends on timing and different
states or conditions related to the branch instruction. The following list describes the five
sources and when they are used:

o The previous output is selected during a noop.
e The inverted output of PREDICT_TAKEN is selected for a correction.

e PREDICT_TAKEN is selected for the write path when the branch. misses in the BPC
and it is an unconditional branch.

e On a bad not taken prediction, rewriting the BPC is done by selecting the field that
forces the history bit to be asserted (shown as 1 in Figure 4-29).

e An unwind uses the latched and inverted version of BRANCH_TAKEN to rewrite the
history bit.

e When two branches are being processed, PREDICT_TAKEN is latched and then used
to rewrite the history bit if it is required (correction or unwind occurs).

BRANCH_TAKEN_SELECT{02:00] controls the selection of the write field and is supplied
by the PCU microcode bit [18:16].
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4.3.3.7 BPC Address Selection
On read and write references, the BPC is addressed by PCBP_BP_ADDRESS[05:00].
When reading the BPC, DECODE_PC[09:00] provides the address (Figure 4-30). When
writing the BPC, BRANCH_PC[09:00] is used. BRANCH_PC is also used to address the
BPC when rewriting the BPC during a correction or an unwind.

When a second branch is to be written before the first is validated, the decode PC is
latched and selected as SECOND_BRANCH_PC[09:00] to address the BPC.

The ten bits of the address are supplied by two of the PCU MCAs:

PCBP provides bits [05:00].
PCVC provides bites [09:06].

The field that selects the BP address (BP_ADDRESS_SEL{01:00)) is provided by the PCU
microcode bits [22:21]. -

BRANCH PC

SECOND BRANCH PC DECODE PC )
W PCBP_BP_ADDRESS{05:00]

ATCH
DECODE PC -

PCVC_BP_ADDRESS[09:06)
SECOND BRANCH PC

—® LATCH

WR_X5097_89

Figure 4-30 BPC Address Selection
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Specifier Decode

This chapter describes the logic representing the IBox specifier decode pipeline. stage. It
also describes the three specifier handlers; the interfaces to the MBox, EBox, and VBox;
PC generation; and related stalls and flushes. :

5.1 Overview

The XBAR decodes macroinstructions and passes individual specifiers to the OPU
MCU. Within the OPU, the specifiers are processed by a specifier handler and passed
as operand data to the EBox or passed as an operand address to the MBox.

The OPU MCU contains three specifier handlers:

e Complex specifier unit — The CSU handles all specifiers other than short literal
and register specifiers.

e Short literal unit — The SLU expands the short literal and floating short literal
specifiers into a format and passes them to the EBox source list.

e Free pointer logic — The FPL manages the pointer to the Ebox source list. The
free pointer points to the next location in the source list that the IBox can write to.
Source and destination pointers are passed through this unit to the EBox source and
destination pointer queues.

The following list describes the processing of the instruction ADDLS3 RO #54 R5 in the
specifier decode pipeline stage. The example is based on the XBAR having decoded the
instruction in a single cycle.

¢ The FPL receives RO, register valid, and source 1 valid for the first instruction
specifier.

e The SLU receives the short literal data (54) and short literal valid bit. The FPL
receives source 2 valid and register not valid.

e R5, the register valid bit, and the destination valid bit are sent to the FPL for the
destination specifier.

e OCTL receives a 31-bit register mask indicating RO will be read and R5 will be
written.
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From these inputs, pointers for each of the specifiers are passed to the EBox in the
following manner:

The source 1 logic passes a 5-bit field to the source pointer queue. The bit field
indicates that the operand is a register and contains the register number.

The short literal specifier (source 2) is expanded by the SLU and passed to the EBox
source list. The free pointer provides the address in the source list that will receive
the operand. The 5-bit source 2 pointer is placed in the source pointer queue and
contains the location in the source list of the short literal operand.

The free pointer is incremented by 1. This sets the free pointer to the next free
location in the source list.

The destination pointer is passed to the destination pointer queue and contains a
5-bit field indicating that the destination is a register and indicating the register
number.

The register mask is stored in the register mask logic and is not discarded until the
instruction is executed by the EBox.

If the destination specifier were a register-deferred specifier, it would be processed by the
CSU. When processing ADDL3 RO #54 (R5), the two source specifiers would process the
same as previously described. The destination specifier (R5) would be processed by the
CSU. To process this specifier, the CSU sends the contents of R5 (the destination address)
to the MBox write queue and the destination pointers to the EBox destination queue.
The destination pointer contains a bit signifying a memory destination.

For the instruction CLRW @(R4)+[R5], the CSU performs the following steps:

1.

Sends an OPU port request to the MBox to return the contents of the address
supplied by R4 and autoincrements R4 by four.

Multiplies the contents of the index register (R5) by two and then adds the data
returned from the MBox to the contents of R5. The result of the addition produces
the address of the operand which is sent as an OPU request with the data being
returned to the EBox source list.
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5.1.1 Stall Logic

Figure 5-1 shows a block diagram of the stall buffer that each of the specifier handlers
has to buffer the inputs from the XBAR. These stall circuits enable the specifier handlers
to receive two specifiers from the XBAR before they inform the XBAR that it must stall.

The stall buffer consists of two scan latches, a latch, and a multiplexer. The multiplexer
provides selection of input data or stalled data to be processed by the specifier handler.
This data is held in a scan latch until the present specifier sequence is completed. The
present specifier sequence is represented by current data and can also be stalled data if
the sequence requires multiple cycles or if the specifier handler has stalled.

At the start of a specifier sequence, the input data is selected by the following:

OPU_SEQUENCE_START_H in the CSU
SL_SEQUENCE_START _H in the SLU
FPL_STALLED_L in the FPL

The input data is selected as current data and passed to the functional units of the
specifier handler. Current data is also passed through the latch and scan latch, and
placed on the input of the multiplexer. Any subsequent specifier cycles for this operation
will continue to select stalled data at the multiplexer until the next sequence start.

STALLED DATA

TB
LATCH

SCAN
LATCH

CURRENT DATA
INPUT DATA SCAN SPECIFIER DATA ——
——e

LATCH

SEQUENCE START

MR_X0098_8S

Figure 5-1 OPU Stall Logic
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5.2 Complex Specifier Unit
The complex specifier unit (CSU) provides the following functions:

Handles complex specifiers.

Calculates operand addresses and branch target addresses.
Controls the MBox OPU port.

Provides IBox data control to the EBox.

Performs GPR and REOG write operations.

The CSU is contained in the OPU MCU and is divided across five MCAs. The MCAs
provide the following functions:

¢ OPUA — Low word of the data path
¢ OPUB — High word of the data path

¢ OSQA — Control unit for RLOG, GPRs, OPUA, OPUB, and the OPU port and EBox
interfaces

s STG2 — Low word of the GPRs
¢ STG3 — High word of the GPRs
Figure 5-2 is a basic block diagram showing the organization of the CSU.

EBOX MBOX

< EBOX INTERFACE > < OPU PORT INTERFACE >

F——— e — o ——— — - _— | —— —————— -— v — ———

EBOX_DATA[31:00]

OP_ADDRESS[31:00]

0SQA
XBAR_DISPLACEMENT([31:00] OPUA/OPUB
OPU PORT CONTROL

MBOX_OP_DATA[31:00]

OPU CONTROL

XGPR_DATA[31:00} [g?%%TDATA loal:%_o?ESULT EBOX INTERFACE
: ’ CONTROL

VBOX_ADDRESS[31:00)

GPR CONTROL

STG2/STG3

EBOX_RESULT[31:00]

b oo o o e v o e e e - e o = o]

MR_X0099_83

Figure 5-2 CSU Organization
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The OPUA and OPUB MCAs contain the adders that calculate the target addresses of
operands for the EBox. A context shifter (multiplier) is contained in the OPUA logic.
The OPU port and the EBox interfaces are physically contained in these two MCAs and
receive control from OSQA and OSQB.

The GPRs are dual port STREGs that can be read from and written to under control
provided by OSQA. These GPRs can also receive inputs from the VBox. The VBox sends
addresses to the MBox through the OPU.

5.2.1 OPUA Data Path

The OPUA MCA controls bits [15:00] of the address and data path of the CSU. OPUA
contains an adder that receives inputs that are added together to calculate the operand
data or address. Two multiplexers, AMUX and BMUZX, supply the data to the adder from
a variety of sources. When processing a displacement mode specifier, the AMUX provides
the register (YREG) to the adder and the BMUX provides the sign-extended data to the
adder. The adder adds the two inputs together and produces the operand address. (For
example, OPUA produces the low 16 bits of the address while OPUB produces the high
16 bits.)

OPUA receives displacement data from the XBAR, sign extends the data, and presents
it to the adder of the MCA as an operand. OPUA also accesses the GPRs. The CSU
microcode selects the relevant operands for the specifier that is currently being evaluated
and adds them together. The output of this operation can be used as an address for an
OPU port request, passed as data to the EBox, sent to the PCU as a target PC, or placed
on the input of the adder for the next cycle operation. Figure 5-3 shows a block diagram
of the data and address paths of the OPUA MCA.

The AMUX receives XBAR_DISPLACEMENT_H[15:00], the low 16 bits of the 32 bits
of XBAR displacement. This input (XBAR_DISPLACEMENT_H[15:00]) represents the
following:

e Byte, word, or longword displacement for addressing modes A through F

Byte displacement

Byte displacement deferred
Word displacement

Word displacement deferred
Longword displacement
Longword displacement deferred

HEoQWe

e Immediate data for addressing mode 8F

e Absolute address for addressing mode 9F

¢ Byte, word, or longword displacement for relative addressing modes (AF through FF)
e Byte or word displacements for branch instructions

XBAR_DISPLACEMENT_H[15:00] is sign extended to produce SXDISP_H[15:00], which
is then placed on the input of the two multiplexers (AMUX and BMUX) that provide the
data to the adder circuit.

DIGITAL INTERNAL USE ONLY



(2018 01) (00:53IVL™ 110834 VN4O
(n2d O1) 2d” 130UVI

[94: 1811108307 vNaO

5-6 Specifier Decode

100:5414GQV 4O XOHI r

- - HO LYY
(80:S41H VIVO XOBI NVOS

HoIv1
. looisi) S
_wonsoay | N
8 631VIS

[00:201H 1387 13HSD

91 A8 U3y NN

LIVMINVHD 4O

(00:51117 1 11§D

8 AH U311yl N
¥ AB Udiidiiinm

€ Ay udNdilinn

[ UREIRNIFSIT]

\ /

80437

100:54iVIVO BuD UIAVI5Q

100:541HuDA 2018

HO 1V
NVOS
040
{AbyvI)
{os:s il uNI0aY ¥ " anjaov
loo:s 4l 1INy

HIIY]

81

9d

(00:51INOISNVAX3 1S

18118783 LILM ™IS YOBO

HUNIOav

‘v ganvis

100-24 14" XNINY

Too:ov

HI1V]

NVOS

loa:silvive 90

947 1NIWHND

lo0:s1lagiUXS

leo:sili1Ns 4 vndo

{og: ol 138 XNME

vl T INDTSNNIN
(00:51}HaOX " ¢DLS
1) iNvisNOD
{00:51ld810XS

fog:sHLINSINTVYNIO

HOLVI]
NYOS§

0:S4131AH dSIOXE

lo0:z0ln" 193138 XNNY

[00:5110HOMI " WYIH 161 INIHUND

[00:61) ININIDV 19510 HVEX

DIGITAL INTERNAL USE ONLY

Figure 5-3 OPUA



Specifier Decode 5-7

5.2.1.1 AMUX Inputs

The AMUX receives six inputs, one of which is selected by the OPU microcode (AMUX _
SELECT H[02:00]) and passed as one half of the operand to the adder. The inputs to the
AMUX are as follows: .

e SXDISP[15:00] — XBAR displacement that has been sign extended.

e CURRENT_PC_H[15:00] — The current updated PC. This PC is generated by
adding XBAR_DECODE_PC and DECODE_DELTA and is used for calculating branch
target PCs and in PC relative addressing.

e OPU data — Data that has been returned from the MBox in response to an OPU
port request when processing an indirect addressing mode specifier.

e STG2_YGPR_H[15:00] — YGPR is the GPR that is being referenced in the present
specifier cycle. YGPR represents any GPR reference except for indexed specifiers.

e Delayed GPR data — YGPR data that has not been written to the EBox GPRs.
Delayed GPR data is used when processing intra-instruction read conflicts (IRCs).

e OPUA result — The result of the last addition (adder output) that is pléced back on
the input of the AMUX for further processing.

5.2.1.2 BMUX Inputs

The BMUX receives six inputs, one of which is selected by the OPU microcode (BMUX _
SELECT _H[02:00]) and passed as the operand to the context shifter and then the adder.
The inputs to the BMUX are as follows:

e OPUA result — The result of the last addition (adder output) that is placed back on
the input of the BMUX for further processing.

e SXDISP[15:00] — Displacement data provided by the XBAR.

e STG2 XGPR — The input to the BMUX to represent which register is being accessed
for an indexed operation.

e Constant -1 — Selected for autodecrement operations.
e Constant +1 — Selected for autoincrement operations.

The BMUX output is passed to the context shifter, which multiplies the output by 0,
1, 2, 4, 8, or 16. The multiplication type is selected by the OPU microcode (CSHFT_
SEL_H[02:00]) for index, auteincrement, autodecrement, and autoincrement-deferred
operations. BMUX inputs are passed unchanged through the CSHFT logic by selecting
zeros as the function.
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5.2.1.3 Adder

The output of the AMUX multiplexer (AMUX_H[15:00]) is input to a 16-bit adder and
added with the output of the context shifter (CSFT_H[15:00]) to produce RESULT_
H[15:00]. Any carry produced from the addition is sent to a similar add circuit in OPUB.

The output of the OPUA adder (RESULT_H[15:00]) is passed to one of the following
signals to the other functional units of the MBox, EBox, and IBox:

¢ IBOX_DATA_H[15:00] is passed to the EBox source list as an operand.

¢ IBOX_OP_ADDRESS.H[15:00] sends result data to the MBox as the address of an
operand with data being returned to the IBox or to the EBox source list, or as the
destination address of an operand where the EBox is to write the destination data.

e OPUA_RESULT_HI[15:00] is selected as the output and sent to the PCU as the
target address of a branch instruction. This output (OPUA_RESULT_H[15:00]) can
also be selected and written to a GPR (STG2) that was updated (autoincrement or
autodecrement operation). OPUA_RESULT_H[15:00] can also be selected as an input
to AMUX or BMUX for subsequent add operations. '

5.2.2 OPUB Data Path

The OPUB MCA performs functions similar to OPUA. This MCA receives the high-order
bytes of XBAR displacement data XBAR_DISPLACEMENT_H[31:16]) and produces the
high-order bytes of the operands or operand addresses and GPR update data.

Figure 54 shows a block diagram of the OPUB MCA. OPUA contains an AMUX, a
BMUX, and a context shifter. As in OPUA, the output of the AMUX is added to the
output of the BMUX and context shifter to produce the operand address or the operand
data. OPUB uses two adder circuits. The two outputs they produce are “add with carry”
and “add without carry.” (For example, the high-order 16 bits of the operand are added
together, producing an output that assumes a carry and a no carry from the low-order
addition.) The output of the two adders are placed on a multiplexer and selected by the
carry bit from the adder of OPUA (OPUA_ADDER_COUNT_H).
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Figure 5-4 OPUB
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5.2.3 Current PC Generation

The CSU calculates the current PC for branch instruction target addresses and for PC
relative addressing mode specifiers. The current PC generation logic is divided between
the OPUA and OPUB MCAs. OPUA generates the low-order word of the current PC
while OPUB generates the high-order word. This section provides a detailed description
of the current PC logic.

Figures 5-5 and 5-6 are detailed block diagrams describing the current PC generation in
the CSU.

I - SCAN STALLED_PC[31:15]
waten [ caTen
CURRENT_PC[31:16] \

PC_OPU_DECODE_PC[31:16] SCAN | SPECIFIER_DECODE_PC[31:16]

PC_PLUS_CIN{31:16]

st N

INVERT-CURRENT_PC_PAHITY_HIOB 102}

SCAN
LATCH

OPUA_PC_COUT

OSQA_OPU_SEQ_START

WR_x0102_88

Figure 5-5 CSU Current PC (High Slice)

e OSQA_OPU_SEOQ_START_H
PC_OPU_DECODE_PC_H[15:00] | gcan | SPECIFIER_DECODE_PC[15:00]

LATCH

SPECIFIER_PC_H[15:00] CURRENT_PC_H[15:00]

XDTB_DECODE_DELTA_H[05:00] | scan | SPECIFIER_DECODE_DELTA_H[15:00] I . L

LATCH 8 SCAN
. LaTeH ™™ LaTcH
6 A STALLED_PC_H[15:00]

INVERT_SPECIFIER_PC_PARITY_H[01:00]

SCAN
LATCH

WR_X0103_88

Figure 5-6 CSU Current PC (Low Slice)
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5.2.3.1 OPUA Current PC [15:00] :
OPUA receives PCxx_OPU_DECODE_PC_H[15:00] from the PCU. These 16 bits are
delivered in the following manner:

PCBP sends bits {07:00].
PCVC sends bits [12:08].
PCLO sends bits [15:13].

The XBAR sends XDTB_DECODE_DELTA_H[OS:bO], which equals the total number of
instruction buffer bytes that have been shifted out of the instruction buffer since the last
SHIFTOPCODE was asserted.

These two signals are latched and then added (Figure 5-6) together to produce
SPECIFIER_PC_H[15:00], which is latched and produces an output of CURRENT_PC_
H[15:00). A carry from the addition results in a carry bit being asserted in the logic that
generates the high-order word of the current PC. CURRENT_PC_H[15:00] is an AMUX
input in the OPUA data path of the CSU.

This logic also contains a stall buffer that controls selection of a current PC output or a
stalled output (STALLED_PC_H[15:00)). The stalled PC is selected when the CSU is in
sequence.

5.2.3.2 OPUB Current PC [31:16]

The high-order word for the current PC (CURRENT_PC_H[31:16]) is generated in OPUB
and is an input to the AMUX in the OPUB data path of the CSU. Figure 5-5 shows a
block diagram of the logic that generates the high-order word of the current PC.

OPUB receives PCxx_OPU_DECODE_PC_H[31:16] from the PCU. Theses 16 bits are
delivered in the following manner:

PCHI supplies bits [31:24].
PCLO supplies bits [23:16].

These two PC fields are latched and produce SPECIFIER_DECODE_PC_HI[3 1:16],
which is input to a multiplexer for final selection of the current PC. Also input to the
multiplexer is an incremented version of SPECIFIER_DECODE_PC_H{31:16] (PC_PLUS_
CIN_H[31:16]). The incremented PC is selected when the calculation of the low-order
word of the current PC results in a carry.

This logic also contains stall circuitry similar to that in the logic that generates the
low-order word of the current PC.
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5.2.4 CSU Microcode

The CSU is controlled by microcode logic that is resident on the OSQA MCA. The
microcode controls the multiplexers that supply inputs to the adders of the CSU. Control
of the OPU port interface, GPR writes, YGPR incrementing, and source list writes is also
provided under microcode control.

5.2.4.1 CSU Microaddress

The CSU microaddress is 10 bits wide and contains 4 fields that govern the flow of the
microcode (Figure 5-7). Table 5-1 lists the fields of the microaddress.

09 08 05 04 02 01 00

INDEX MODE ACCESS TYPE COUNT

MR_X0270_83

Figure 5-7 CSU Microaddress Format

Table 5-1 CSU Microaddress Descriptions

Index [09] Indexed Indication Label
0 Nonindexed specifier NI
1 Indexed specifier I
Original Mode
Mode [08:05] Specifier Mode Label Values
0000 Autoincrement AINC 8x
0001 Autoincrement deferred AINCDEF 9x
0010 Displacement DISP Ax, Cx, Ex
0011 Displacement deferred DISPDEF Bx, Dx, Fx
0100 Unused 4 0x, 1x, 2x, 3x, 4x
0101 Register REG 5x!
0110 Register deferred REGDEF 6x
0111 Autodecrement ADEC 7x
1000 Immediate IMM 8F
1001 Absolute ABS 9F
1010 Relative REL AF, CF, EF
1011 Relative deferred RELDEF BF, DF, FF
1100 Unused 12 OF, 1F, 2F, 3F, 4F
1101 Unused 13 5F
1110 PC deferred PCDEF 6F
1111 PC autodecrement PCADEC 7F
Access Type
[04:02] Specifier Access Type Label
000 Address (ASRC) A
001 Read R
010 Write w

IThis specifier mode is selected when IRC is asserted in the XBAR.
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Table 5-1 (Cont.) CSU Microaddress Descriptions

Specifier Decode 5-13

Access Type

[04:02] Specifier Access Type Label
011 Modify M

100 Vield source (VSRC) v

101 Branch displacement B

110 Implied I

m Callx specifier C
Count {01:00] Microword in Sequence Label
00 First microword 0

01 Second microword 1

10 Third microword 2

11 Fourth microword 3
Register Mode

Count [01:00] Register Mode Size Label
00 Longword data type 0

01 Octaword data type 1

10 Three longwords 2

11 Quadword data type 3

5.2.4.2 CSU Microword
The CSU microword is 19 bits wide and is divided into 12 fields (Figure 5-8). Table 5-2
lists the fields of the microword.

16 15 14 13

o8 07 04 03 00

lmneo . WA
apDR ' MREC onsi SLIST

MUL
FACTOR

BMUX | AMUX
SELECT 'SELECT

25 24

22 21 2019 17

MICROWORD INC
PARITY

YREG , GPRS

WRITE
PC

MREQ
DESY

MREOC
SIZE

MA_X9271_88

Figure 5-8 CSU Microword Format

DIGITAL INTERNAL USE ONLY



5-14 Specifier Decode

Table 5-2 CSU Microword Field Descriptions

Bits Name Value Description
03:00 AMUX select 000 Previous cycle’s adder output.
001 Sign-extended I-stream data.
010 Current specifier’s PC.
011 OPU port data returned to OPU.
100 Contents of specifier’s base GPR.
101 Contents of current delayed GPR.
07:04 BMUX select 000 Previous cycle’s adder output.
001 Sign-extended I-stream data.
010 Constant value of one.
100 Contents of specifier’s index GPR.
101 Constant value of minus one.
11:08 Multiply factor 000 Multiply BMUX output by zero.
001 Multiply BMUX output by one.
010 Multiply BMUX output by two.
011 Multiply BMUX output by four.
100 Use specifier’s context.
12 Write source list 0 Don’t write adder result to source list.
1 Write adder result to source list.
13 EOS 0 Specifier sequence continues.
1 End of specifier sequence.
14 MREQ 0 Don’t issue an MBox OPU port request.
1 Issue an MBox OPU port request.
16:15 MREQ address select 0 Use adder result as OPU port address.
1 Use AMUX output as OPU port address.
19:17 MREQ size 00 Use specifier’s context as request size.
01 Force request size to word.
10 Force request size to longword.
11 Force request size to quadword.
21:20 MREQ destination 0 Return data to OPU.
1 Write data to EBox source list.
22 Write PC 0 Don’t send target PC.
1 Send target PC if appropriate.
23 Write GPRs 0 Don’t write GPRs.
1 Write IBox and EBox GPRs.
24 Increment YREG 0 Don’t increment base GPR pointer.
1 Increment base GPR pointer.
25 Microword parity 0 Parity bit disabled, microword has odd number of bits.
1 Parity bit enabled, microword has even number of bits.
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Figure 5-9 shows signals involved in generating a CSU microword. The following list
describes the source of each signal used to generate the CSU microword:

e OSQB_ACCESS_TYPE_H[03:00] is from the OSQB DRAM and defines the access
type of the current specifier.

e XDTB_INDEXED_H is from the XBAR and is asserted when the specifier is indexed
mode.

e XDTB_MODE_H[03:00] is from the XBAR and provides the addressing mode of the
specifier.

e XDTA_XREG_H[03:00] is from the XBAR and provides the base register for any
register operands.

A count field is also input to the microaddress generation to control the count of the
CSU sequence. The count field is generated by decoding the inputs to the microaddress
generation logic.

5.2.5 CSU Stalls

In the CSU, the OSQA MCA contains the logic that monitors conditions that may initiate
stalls. The stalls that occur in this unit can be related to handling certain specifiers
(read and write conflict stalls) or related to the units that the CSU is supplying data to.
This section describes the stalls that occur in the CSU, and it describes how each stall is
detected and how each stall is cleared. .

5.2.5.1 Scoreboard Stalls

The OCTL MCA contains the scoreboard logic that tracks the reading and writing of
GPRs by the EBox during the execution of macroinstructions. Read and write conflicts
occur when the IBox is directed to read or write a GPR before the EBox has performed a
required operation on the same GPR. When these conflicts occur, the CSU must stall and
wait for the EBox to complete the conflicting instruction before it can proceed.

Two types of read and write conflict stalls can be asserted in the CSU. The two types of
stalls are caused by the same conflicts but differ only in the timing of the detection of
the stall. For example, a read conflict can initiate a stall by asserting a SPECIFIER_
READ_CONFLICT_H or a CURRENT_READ_CONFLICT_H. A specifier read conflict
occurs when the conflicting data is latched from the XBAR but has not yet been acted
on by the CSU. A current read conflict occurs after the CSU begins evaluating the data
(OPU_SEQ_START_H is asserted).

This section describes the initiation of read conflict and write conflict stalls, and it
describes the clearing of these conditions.
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Figure 5-9 CSU Microword Select
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5.2.5.1.1 Read Conflict Stall

Read conflicts are detected by OSQA and initiate scoreboard stalls. A read conflict occurs
when the CSU is directed to update (autoincrement or autodecrement) a GPR that the
EBox is directed to read. For example:

MOVL RO, xx (read R0O)
ADDL2 yy, (R0)+ (autoincrement R0)

The above sequence of instructions causes a read stall because the EBox is directed to
read RO and the IBox is directed to update R0O. Depending on how many instructions
ahead of the EBox the IBox is, the IBox could possibly update RO before the EBox reads
RO.

Read conflicts are detected by monitoring the read mask (READ_MASK_H[15:00]),

the specifier GPR (YREG_H[03:00)), and the occurrence of an autoincrement or
autodecrement (AUTOXXX_MODE_H). When the read mask and YREG both point to
the same register and an autoincrement or autodecrement is to be performed by the CSU,
SPECIFIER_READ_CONFLICT_H and SPECIFIER_READ_STALL_H are asserted in
OSQA. These stall signals also assert OPU_STALLED_H and SCOREBOARD_STALL_H.

The stall is cleared by a flush or unwind or when the instruction containing the conflict
is executed by the EBox. When a flush or BP unwind occurs, INIT_ OPU_AND_SL_H
is asserted and any read or write conflicts are negated. When the EBox completes an
instruction, EBOX_INSTRUCTION_DONE_H is asserted. This signals directs OCTL to
discard the masks related to the completed instruction. If the mask that is discarded is
the one that asserted the stall, then the CSU resumes operation.

5.2.5.1.2 Write Conflict Stall
Write conflicts are similar to read conflicts in the CSU. Write conflicts occur when the
EBox is directed to write a GPR and the IBox is directed to read the same GPR.

Write conflicts are detected by monitoring the write mask (WRITE_MASK_H[15:00]) and
the specifier GPR (YREG_H[03:00]) for register mode addressing. When a match of the
write mask and a YREG is detected, a write conflict is asserted.

A write conflict can also occur when processing index mode specifiers. OSQA compares
the index register (XREG_H[03:00]) with the write mask to detect this conflict.

Write conflicts assert CURRENT _WRITE_STALL_H or SPECIFIER_WRITE_STALL_H,
which asserts OPU_STALLED_H to stall the CSU and asserts SCOREBOARD_STALL_H
in the OCTL MCA. These stalls are cleared by an EBox flush, a PCU unwind, or when
the EBox has compisted the conflicting instruction and directs the OCTL mask logic to
discard the write mask associated with it.
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5.2.5.2 Branch Under Branch Stall

The CSU stalls when a conditional branch is encountered, if an outstanding branch has
not yet been validated by the EBox. OSQA maintains a count of conditional branches
that have been processed by the CSU. The unconditional branch count is incremented
each time the CSU sends a target PC to the PCU (TARGET_PC_H[31:00], and TARGET._
VALID_H) and the current instruction is an unconditional branch (CURRENT _
UNCOND_BRANCH_TB_L negated).

The branch under branch stall (CURRENT_BUB_STALL_H) occurs when the following
conditions exist:

¢ BRANCH_CNT_EQL_1_H is asserted.

* SPECIFIER_BRANCH_ACCESS_TYPE_H is asserted. This signal is from the 0SQB
" DRAM access type. '

¢ SPECIFIER_DATA_AVAILABLE_H is asserted. This signal is asserted when XSCA_
VALID_H is asserted and XDTA_RAF_L is negated.

e SPECIFIER_UNCON D_BRANCH_L is asserted in the instruction buffer simple
decode logic.

¢ OPU_SEQ_START_H is asserted.

CURRENT_BUB_STALL_H asserts OPU_STALLED_H. The stall is cleared by an EBox
flush, PCU unwind, or when the first branch is validated by the EBox (EBOX_BRANCH_

VALID_H).

5.2.5.3 AUTOxx Under Branch Stali

The CSU does not process autoincrement and autodecrement specifiers when an
outstanding branch prediction is awaiting EBox validation. When an autoincrement,
autodecrement, or autoincrement-deferred mode specifier is detected and the branch
count is equal to one, the CSU stalls and waits for the branch prediction to be validated
before it continues operation.

CURRENT_AUB_STALL_H is asserted to initiate this stall when the following conditions
exist:

¢ SPEC_NOT_BRANCH_OR_IMPLIED_H is asserted.

* SPECIFIER_DATA_AVAILABLE_H is asserted.

¢ SPECIFIER_AUTOXX_MODE_H is asserted.

* BRANCH_COUNT_EQL_1_H is asserted.

* OPU_SEQ _START_H is asserted.

Asserting CURRENT_AUB_STALL_H also asserts OPU_STALLED_H. The stall is
cleared by an EBox flush, a PCU unwind, or when the EBox validates the outstanding
branch prediction.

During this stall, it is possible for the CSU to initiate an OPU port request to handle the
AUTOxx specifier. For an autoincrement specifier, the CSU can read the GPR and then
write (autoincrement) the GPR when the stall is negated.
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5.2.5.4 OPU Port Grant Wait Stall

When the CSU issues an OPU port request, the MBox must respond to the request before
the CSU can continue processing. When the MBox does not respond, the CSU stalls.
When an OPU port request is issued, the CSU selects stalled A and B addends as input
to the CSU adder by asserting OSQA_OP_GRANT_WAIT_H. This holds the port request
information until the MBox responds.

OP_GRANT_WAIT_H asserts OPU_STALLED_H if another OPU port request is issued.
The stall is cleared when the MBox responds to the request by asserting MBOX_OP_
GRANT_TA_L or if an EBox flush or PCU unwind occurs.

5.3 Short Literal Unit

The short literal unit (SLU) expands the 6-bit integer and floating short literal (SL)
operands into a relevant field (32-, 64-, or 128-bit field). S

Figure 5-10 shows the inputs and outputs of the SLU. This unit receives XBAR_
SL[05:00] and a copy of the opcode (OPCODE[08:00]) from the XBAR. The opcode is
decoded to determine the SL data type. The data type and the SL data are input to the
SL data formatter, which outputs the expanded SL data.

The SLU can produce a single longword of expansion per cycle. Data formats larger than
a longword require successive cycles to produce their output.

osQB
XBAR_SL_H[05:00]
XBAR_SL_VALID_H SHORT
LITERAL
SL_DATA_TYPE_H{03:00] UNIT EXPANDED_SL_H[31:29, 14, 09:00] e

MR_X0104_89

Figure 5-10 Input and Outputs of the Short Literal Unit

5.3.1 Short Literal Processing

Figure 5-11 shows a block diagram of the SLU. The SL formatter provides integer and F-
, D-, G-, and H-floating formats to the format select logic. The SL formatter receives the
6-bit short literal data (XBAR_SL_H[05:00i) and expands it into four formats (INTEGER_
H[31:00], F/D_FLOAT_H[31:00], G_FLOAT_H[31:00], and H_FLOAT_H[31:00]).

The expansion select logic selects one of the four SL formatter outputs, PREVIOUS_
EXPANSION_H[31:00], or zero. PREVIOUS_EXPANSION_H[31:00] is selected when
short literal data that was previously expanded was not written to the EBox source list
(for example, IBox-to-EBox interface is busy). Zero is selected in cycles other than the
first in multiple cycle expansion (for example, D-, G-, and H-floating formats). The data
type of the specifier being processed (SL_DATA_TYPE_H[03:00]) and a signal monitoring
the status of the EBox source list (SLIST_FULL_H) are input to expansion select. The
data type is generated by decoding instruction opcodes in the OSQB access type and data
type logic and provides selection of the expanded short literal data.
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[+]

INTEGER(31:00]

XBAR_SL_H[05:00] STALL

F/D_FLOAT[31:00]

sL -
BUFFER I™ rORMATTER | G-FLOATI[31:00]

H_FLOAT[31:00}

O

PREVIOUS_EXPANSION

|

@

SL_EXPANSION[31:29, 14, 09:00]

T8
- LATCH

SCAN
I ’ LATCH
SL_DATA_TYPE_H[03:00] SCAN EXPANSION
LATCH SELECT

SLIST_FULL

!

XBAR_SL_VALID_H STALL

SL_DATA_TYPE_H[03:00]

SEQUENCE_START

BUFFER —l_
|/

SCAN
LATCH LONGWORDS_OUTSTANDING[02:00]

LONGWORD [T SL_BUSY_STALL
SELECT

LONGWORDS_OUTSTANDING_1[02:00]

NEW_LONGWORDS_OUTSTANDING[02:00)

T8

NEW_LONGWORDS_OUTSTANDING_1[02:00]

’
)

LATCH 1

Figure 5-11 Short Literal Unit Block Diagram

Short literal sequences start when SL_SEQUENCE_START_H is asserted. Assertion of
this signal selects valid short literal data (XBAR_SL_H[05:00]) from the input stall buffer
to be loaded into the SL formatting logic. SL_SEQUENCE_START_H is asserted when

the following occurs:

MR_X0+05_89

e XDTB_SL_VALID_H is asserted, signifying that the XBAR is passing valid short

literal data to the SLU.

e XDTA_RAF_L is negated, signifying that the XBAR did not detect an RAF.

e SL_LWORDS_LEFT TA_EQL_O_H is asserted, signifying that no short literal
specifiers are currently being processed.

e PREV_SLIST_FULL_L is negated, signifying that the source list is not full.
e INIT OPU_AND_SL_L is negated, signifying that no flush or PCU unwind is in

progress.
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At the start of a short literal sequence, SL_LWORDS_H[02:00] is loaded into SL_
LWORDS_LEFT_H{02:00]. SL_LWORDS_H[02:00] is originally loaded with the value
or count that is derived from the data type of the current SL specifier being evaluated.
For byte, word, and longword formats, the count equals one. For quadword formats, the
count equals two; for octaword formats, the count equals four.

When CURRENT_SL_LWORDS_H[02:00] equals SL_LWORDS_LEFT_H[02:00], OSQA_
SL_WRITES_SLIST_H is asserted to write expanded short literal data to the source list.

Each time the write signal is asserted, SL_LWORDS_LEFT_H[02:00] is decremented.
When the longword count is decremented to zero, the SL sequence is complete.

5.3.2 Integer Expansion

Integer short literal operands represent values from 0 to 63. The short literal operands
are zero extended, according to their data type, and passed to the EBox source list.

Figure 5-12 shows the outputs of the SLU when processing an integer short literal
operand. In this example, the zero expansion of 63 occurs in a single cycle for the byte,
word, and longword contexts. Quadword outputs occur in a minimum of two cycles.
Producing the octaword format requires a minimum of four cycles.

XBAR_SL{05:00]
(105:00] = 3F)
SHORT LITERAL SL_EXPANSION[31:29, 14, 09:00]
SL_DATA_TYPE|03:00) EXPANSION
UNIT
7 0
) £ (BYTE)
{03:00]) DATA TYPE
0001 BYTE
0010 WORD 15 0
0011 LONGWORD
0100 QUADWORD 0 [} 3 [ (WORD)
0101 OCTAWORD
1000 G FLOATING
1011 F FLOATING
1100 D FLOATING 31 0
1101 H FLOATING
ol oo o] o] of s | F | (LONGWORD)
63 L, N 0
ol ol o o | 3| ¢ | touaoworD)
1 v
127 \ N 0
0 0 0 0 3 F {OCTAWORD)

MR_X0106_88

Figure 5-12 SLU Integer Expansion
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5.3.3 Floating-Point Expansion

Figure 5-13 shows the format of the 6-bit short literal field when representing a floating-
point number.

The 6-bit floating short literal field is expanded to produce the relevant F-, D-, G-, and
H-floating operands. Figures 5-14, 5-15, 5-16, and 5-17 show the format of each type of
floating output from the SLU.

Bit 3 of SL_DATA_TYPE_H[03:00] is asserted to indicate a floating point literal field and
also provides the most significant bit (MSB) of the exponent. The actual expansion is
performed by correctly positioning the exponent and fraction fields.

05 03 02 00

EXPONENT FRACTION

MR_X0107_89

Figure 5-13 SLU Floating Point Literal Format

SL_DATA_TYPE[03:00}=[1011] XBAR_SL[05:00]
l 110100

3130292827 26252423222120191817161514 1312 11100908 07 06 05 04 0302 0100

olofotojojofojojojojojojojolojojoj1jojolofofrit1ioftio|lololofo]o

MR_X0108_89

Figure 5-14 SLU F-Floating Expansion

SL_DATA_TYPE[03:00}={1100} XBAR_EL[05:00]

110100

Wi

3130292827 262524232221201918171615141312 11100908 07 06 0504 0302 0100

oicjojo(ojojojojo|0ojOo|OjOjOjOlO|O(tTfOjOjO|O|t1[1]O}t1|0}OjO|O|O]|O

63

MR_X0109_88

Figure 5-15 SLU D-Floating Expansion
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SL_DATA_TYPE[03:00]=[1000] XBAR_SL[05:00]
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Figure 5-16 SLU G-Floating Expansion
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Figure 5-17 SLU H-Floating Expansion
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5.3.4 Outputs to the EBox Interface

The 14-bit short literal operand is passed as 32 bits of short literal data to the EBox
across the EBox interface. This field is constructed by zeroing out the remaining 18 bits
as the data is passed to the EBox source list.

5.3.4.1 Order
When specifiers from the CSU and SLU are both valid, XBAR_SL_ORDER is used to

keep the operand entries to the free pointer in order. When asserted, the short literal
specifier precedes the complex specifier. This signal is generated by the XBAR.

5.3.5 Stalis
The SLU stalls for three reasons:
¢ The unit is processing a multicycle SL specifier.

¢ The EBox interface cannot accept the expanded SL data because the OPU is using
the interface.

¢ The EBox queues are full.

5.3.5.1 Source List Full

The FPL tracks the available free slots in the source list. When the source list is full,

OSQB_SLIST_FULL_H is asserted in the OSQB MCA and passed to the OSQA MCA.

The receipt of this signal disables any SLU or CSU writes across the EBox interface to

the source list.

5.3.5.2 SLU Stalled

The XBAR must be informed of the status of the SLU so that when the SLU is busy
processing one specifier, another is not passed to it. OSQA_SL_BUSY_STALL H is
asserted and sent to the XBAR to signify that the SLU is busy processing a specifier. This
signal is an output of the comparator, in the SLU, that tracks the number of longwords
remaining in a SL expansion.

5.3.5.3 EBox Interface Output Stall

The EBox interface cannot pass both SL and CS data to the EBox simultaneously. If SL
data is available to be written to the source list and the EBox interface is busy with CS
data, SL_BUSY_STALL_H is asserted until the interface is free to accept the SL data.

5.3.6 Parity Coverage and Errors
Three key signals of the SLU are parity checked before the SL specifier is processed:

XDTB_SL_SPECIFIER_NUMBER_H[02:00]
XDTB_ORDER_H
XBAR_SL_H[05:00]
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5.4 Free Pointer Logic

The free pointer logic (FPL) processes and passes pointers that are used by the EBox to
direct the execution of instructions:

Source 1 pointer
Source 2 pointer
Destination pointer
Free pointer

The EBox maintains queues for the source and destination pointers it receives from the
_IBox. The source pointers point to entries in the source list or to GPRs. The source list
is a queue for storing operands. These operands have either been passed by the IBox or
prefetched from memory on behalf of the EBox.

To manage the source list, the IBox generates a free pointer. The free pointer points to
the next free location in the source list that the IBox will write to.

The structure of the EBox queueé is as follows:

+ Source pointer queue — A 5-bit wide x 16-location deep queue. The top bit of
the entry specifies if the operand is in the source list or a GPR. The remaining bits
contain the address, in the source list, or the GPR number.

o Destination pointer queue — A 5-bit wide x 8-bit deep queue. The top bit in
the queue specifies if the destination is memory or a GPR, while the remaining bits
contain the GPR number when applicable.

e Source list — A 16-entry circular queue for memory, immediate, and short literal
operands. Each time an entry is inserted into the source list, the free pointer must
be incremented to point to the next free location. If the operand size is a quadword
or octaword, the free pointer must be incremented to reflect the size.

Figure 5-18 shows a simplified block diagram of the FPL.

5.4.1 Source 1 Pointer

The source 1 pointer is generated and validated in XDTA and passed to the FPL logic in
OSQB. Three signals deliver the source 1 information:

e XDTA_SOURCE_REG_H[03:00] is the register number containing the operand if it is
a register operand.

e XDTA_SOURCE_REG_VALID_H is asserted when the operand is a register.
e XDTA_SOURCE_VALID_H is asserted when a valid operand is being passed.

These signals allow the FPL to generate a pointer, validate the pointer, and, if the
operand is not a register, allocate the source list entry and update the free pointer.

Figure 5-19 shows a block diagram of the source 1 pointer logic. The source 1 register
field (XDTA_SRC1_REG_H[03:00]) is placed on the input of the pointer select multiplexer,
if no stalls are present.
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Figure 5-18 Free Pointer Logic
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Figure 5-19 FPL Source 1 Pointer Logic

The register valid signal (XDTA_SRC1_REG_VALID) is latched from the XBAR and
provides the select at the pointer multiplexer. Register valid asserted denotes a register
operand and selects the register field to be entered in the source queue. If negated,
the free pointer is selected and an entry is allocated in the source list for the source 1
operand.

Aside from providing a pointer select, the register valid signal is latched as bit 4 of
the source 1 pointer and, when negated, generates SRC1_NOT_REGISTER_H. When
asserted, SRC1_NOT_REGISTER_H initiates the process of incrementing the free
pointer.

To pass a valid source 1 pointer, IBOX_SRC1_VALID_H must be asserted. This signal
is passed from the XBAR, and, if no stalls or flushes are present, is passed to the EBox.
This signal enables the EBox to enter the source 1 pointer into the source queue.

5.4.2 Source 2 Pointer

The source 2 pointer and valid signals are generated in a similar manner as the source 1
pointer. Figure 5-20 is a detailed block diagram of the source 2 pointer logic.
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Figure 5-20 FPL Source 2 Pointer Logi
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The pointer multiplexer of this logic provides the selection of three sources for the source

2 pointer.

e CURRENT_SOURCE2_REGISTER[03:00] — When source 2 is a register operand,
the source 2 register field is passed.

e FREE_POINTER[03:00] — Selected when source 1is a valid register and source 2
is valid but not a register operand. This entry is submitted to the source list.

e FREE_POINTER_PLUS_SOURCEI1_SIZE[03:00] — When both source 1 and
source 2 are valid but not registers, the entry for the source list (free pointer) must
be allocated after the source list entries for the source 1 operand.

The select for the pointer multiplexer is provided by the source 1 and source 2 not register

signals.

5.4.3 Free Pointer

As entries are added to the source list, the free pointer must be incremented to reflect the
size of the entries. Figure 5-21 is a block diagram depicting the management of the free

pointer.
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The opcode of each instruction is decoded in the access/data type logic, with the data type
providing the specifier size for each valid memory operand. Register operands have no
effect on the free pointer because they are not entered into the source list.

When source 1 and source 2 pointers have both been passed as valid entries into the
source list, the free pointer is equal to the size of the two operands (SRC1_PLUS_SRC2_
SIZE) plus the previous free pointer.

If either source 1 or source 2 is a register operand, then only the size of the memory
operand must be added to the free pointer to produce a new free pointer. When both
source 1 and source 2 are register operands, the free pointer is not affected.

5.4.3.1 Free Pointer Initialization

On a flush of the free pointer logic, the EBox copies the free pointer into the last
pointer in the source list, and the IBox increments the free pointer (FREE_POINTER_
PLUS1[03:00]) so that the source list appears empty.

5.4.4 Destination Pointer

The destination pointer is generated and validated in XDTA and passed to the FPL in
OSQB. Three signals deliver the destination pointer information:

e XDTA_DESTINATION_REG_H[03:00] is the register number of the destination
operand when it is a register operand.

e XDTA_DESTINATION_REG_VALID_H is asserted when the destination operand is a
register.

¢ XDTA_DESTINATION_VALID_H is asserted when a valid destination operand is
being passed.

Figure 522 shows a block diagram of the destination pointer logic.

5.4.4.1 Destination Register

The XBAR supplies the destination register field (XDTA_DESTINATION_REG[03:00])
and, when the register valid bit is set XDTA_DESTINATION_REG_H), the operand is a
register and the field is placed in the destination queue as the address of the GPR that
receives the destination data.

5.4.4.2 Destination Valid

The destination valid signal (XDTA_DESTINATION_VALID) is passed by the XBAR.
This signal validates the destination pointer if FPL_FLUSH, EBOX_QUE_FULL, or
DISABLE_VALIDS are not asserted.

5.4.4.3 Destination Memory

To differentiate between a register destination and a memory destination, IBOX_
DESTINATION_MEMORY_H is used. When asserted, this signal signifies a memory
destination is being passed. This signal is asserted when XDTA_DESTINATION_VALID_
H is asserted, XDTA_DESTINATION_REGISTER_H is negated, and no flush is present.

All destination pointers are sent to the EBox destination pointer queue.
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Figure 5-22 Destination Pointer Logi
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5.5 Operand Control Unit

The operand control (OCTL) unit provides control and distribution of stall and flush
signals from the EBox and from other IBox functional units. OCTL also stores the read
and write register masks that are generated for each instruction. Figure 5-23 is a basic
block diagram of OCTL.

PCU
XDTA_READ_MASK[14:00] INSTRUCTION BUFFER
vic

MBOX

EBOX_FLUSH_H[02:00)
FLUSH
" XDTA_WRITE_MASK[14:00]

PCHI_UNWIND_H ocTL

SCOREBOARD_STALL

EBOX_READ_MASK[14:00)

EBOX_WRITE_MASK[14:00]

MASK_VALID

MR_X0117_89

Figure 5-23 OCTL Unit

5.5.1 Read/Write Masks

Up to six read and write masks can be stored in OCTL. Each mask is passed by the
XBAR when the instruction it represents has been completely decoded. The masks are
generated to prevent the EBox and IBox from using stale data during the execution
of instructions. Figure 5-24 is a detailed block diagram of the read and write mask
generation, storage, and unwind logic.

Each instruction that is decoded in the XBAR generates a 31-bit mask that is passed to
the OCTL unit. This field is passed at the completion of the instruction decode with a
valid bit (XDTB_MASK_VALID_H) and is broken down as follows:

XDTA_MASK_H{30] is the odd parity for the mask field.
XDTA_MASK_HI[29:15] is the write mask field.
XDTA_MASK_H[14:00] is the read mask field.

If the first instruction the IBox decoded were ADDL2 RO, R1, the mask the XBAR
generates would contain bits 0 and 1 set in the read mask and bit 1 set in the write mask.
This mask would be selected by REG_INSERT[02:00] to be stored in REG_MASKO.

The following list describes the three basic operations that can be performed with the
masks. The signals that initiate the function precede the descriptions.

XDTB_MASK_VALID_H — Accept a new mask from the XBAR.
EBOX_INSTRUCTION_DONE_H — Discard the oldest mask.
EBOX_KEEP_MASKS[02:00] — Unwind the masks on a bad branch prediction.

These three functions affect the following two fields:

e REGISTER_SIZE_H[02:00] is the field that indicates the number of the masks that
are valid.

¢ REGISTER_INSERT_H[02:00] is the field that points to the position where the next
mask should be inserted.
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Figure 5-24 OCTL Read/Write Masks

5.5.1.1 Mask Valid

XDTB_MASK_VALID_H, asserted, directs REGISTER_SIZE and REGISTER_INSERT to
be incremented. The mask field is then inserted into MASKx. Incrementing is done in
modulo 6 (count = 0 through 5).

The six sets of registers that hold the masks are cyclic. That is, if the last mask was
MASKS5, the next mask to be used would be MASKO.

5.5.1.2 Instruction Done

The EBox, at the completion of an instruction, asserts INSTRUCTION_DONE_H. This
signal directs the mask logic to discard the mask associated with the instruction that was
decoded.

Discarding the mask is accomplished by decrementing (modulo 6) REGISTER_SIZE_
H[02:00]. This function directs the oldest mask to be deleted while REGISTER_INSERT_
H[02:00] still points to the next valid position for a mask to be written.
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5.5.1.3 Correction

In the event of a bad branch prediction, the EBox must direct the IBox masks to be
unwound back to the point of the branch. The EBox directs the unwind operation by
sending EBOX_KEEP_MASK_L[01:00] to the mask logic. Figure 5-25 shows the logic
involved in the correction.

REG_INSERT_H[02: REGISTER_SIZE_H[02:0
— -H02:00) MODULC & A o REGISTER MASKx_VALID_H[29:00)

CORRECTION_H[02:00) COUNTER | REG_INSERT_H[02:00] VALID

MR_XD119_89

Figure 5-25 OCTL Mask Correction Logic

NEW_REG_INSERT_H[02:00] is generated by subtracting CORRECTION_H[02:00] from
REG_INSERT_H([02:00]. The subtraction is modulo 6. Table 5-3 describes the generation
of NEW_REG_INSERT_H[02:00] with the possible combinations of REG_INSERT{02:00]

and CORRECTION_H[02:00]. ’

Table 5-3 Modulo 6 Subtraction Logic
REG_INSERT{02:00]

CORRECTION_

H{02:00] 0 1 2 3 4 5 6 7

0 000 001 010 011 100 101 XXX XXX
1 101 000 001 010 011 100 XXX XXX
2 100 101 000 001 010 011 XXX XXX
3 011 100 101 000 001 010 XXX XXX
4 010 011 100 101 000 001 XXX XXX
5 001 010 011 100 101 000 XXX XXX
6 000 001 010 011 100. 101 XXX XXX
7 XXX XXX XXX XXX XXX XXX XXX XXX
Legend

0-7 = Input count for CORRECTION_H([02:00] or REG_INSERT[02:00]
000-101 = NEW_REG_INSERT_H[02:00] binary output
XXX = Not possible
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NEW_REG_INSERT_H[02:00] is decoded with REGISTER_SIZE_H[02:001 to produce the
register valid field. Table 5—4 provides the output of the decode logic for the register valid
fields.

Table 5-4 Register Valid Fields

REGISTER_SIZE_H{02:00]

NEW_REG_

INSERT_H[02:00] 000 001 010 011 100 101 110
000 000000 100000 110000 111000 111100 111110 111111
001 000000 000001 100001 110001 111001 111101 111111
010 000000 000010 000011 100011 110011 11011 111111
011 000000 000100 000110 000111 100111 110111 111111
100 000000 001000 001100 001110 001111 101111 111111
101 000000 010000 011000 011100 011110 011111 111111
Legend

000-101 = Input count for REGISTER_SIZE_H[02:00] or NEW_REG_INSERT_H[02:00]
000000-111111 = REG5 valid through REGO valid output

Where a 1 indicates valid and 0 indicates invalid

For example, 100000 = REGS5 valid, 000011 = REG]1 valid and REGO valid

Using Table 54, if NEW_REGISTER_INSERT_H[02:00] were 001 and REGISTER_
SIZE_H[02:00] were 010, REGISTER_VALID_H would equal 100001. This value
represents REG5 and REGO as valid.

5.5.2 Read/Write Mask Parity

REG_MASKO0[30:00] through REG_MASK5_H[30:00] are parity checked at their output of
the OCTL MCA. An error detected within one of the masks asserts REG_MASK_PERR_0O
through REG_MASK_PERR_5, with 0 through 5 corresponding to the register mask.

REG_MASK_PERRx asserts OCTL_ERROR, which is passed to the OSQA MCA. OSQA,
on receipt of this error, asserts SPECIFIER_ERROR_H and forwards it to the EBox.

5.5.3 Flushes _

The OCTL unit receives EBOX_FLUSH_H[02:00], decodes the field, and distributes flush
signals to the appropriate functional units. Figure 5-26 shows the flush logic in the
OCTL unit.

The EBox redirects the flow of the IBox with a 3-bit flush code. Table 5-5 provides the
breakdown of these flush fields.
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PCVC_VIC_FIP

[01] T8 SCAN VIC_FLUSH_STALL
102] LATCH LATCH

PCVC

[02]
) T8 OCTL_VIC_FLUSH VIC_FLUSH_IN_PROGRESS
[01} LATCH ,_SAC{%'L

EBOX_FLUSH[02:00] SCAN .
LATCH 1BOX_FLUSH_ABORT

MBOX

[02] .
T OCTL_IBUF_FLUSH SCAN |'BUF_FLUSH_IN_PROGRESS
LATCH LATCH
PCHI_UNWIND AN
i FLUSH_CTL
XBR (XDTB, XSCA)
fo2}
100) ) s OCTL_FPD_FLUSH SCAN |FPD_FLUSH_IN_PROGRESS

Ti
LATCH LATCH

WR_X8:22_89

Figure 5-26 OCTL Flush Logic

Table 5-5 EBox Flush Codes

Code Name Action

010 VBox mode Directs the IBox to enter VBox mode.

011 Unsuspend Directs the XBAR to resume decoding specifiers.

100 IBUF flush Flushes the instruction buffer.

110 VIC flush Directs the PCU to flush the VIC. If, during the 256 cycles

that it takes the VIC to complete the flush, a subsequent flush
is received, the IBox stalls.

111 FPD flush First part done (FPD) flush is used by the EBox to stall the
execution of lengthy instructions. The instruction, under
EBox microcode control, is stalled during execution to service
interrupts or exceptions. The XBAR receives this signal.

Ixx PC flush Each flush directed to the IBox functional units is also copied
to the PCU. This copy of the flush redirects the PCU to a new
prefetch PC.
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5.5.4 OCTL Stalls

Two stalls are related to the read/write mask logic: scoreboard stall and mask stall. A
scoreboard stall (SCOREBOARD_STALL_H) occurs when instructions containing GPR
conflicts are being processed. Scoreboard stalls inhibit updating the EBox GPRs until the
instruction containing the conflicts is completely processed. Mask stall (OCTL_MASK_
STALL_H) is asserted when the IBox is ahead of the EBox by six instructions. The stall
inhibits the IBox fom processing more I-stream.

5.5.4.1 Scoreboard Stall
0SQA, in controlling the EBox interface, detects this stall and inform the mask logic.
The stall directs the mask to be submitted again for a write to the EBox.

5.5.4.2 Mask Stall
Figure 5-27 is a detailed block diagram describing the mask stall logic.

On power-up, the SPU loads a value of six (MASK_COUNT_HJ[02:00]) into one
comparator and MASK_COUNT_H[02:00] minus one into a second comparator. Each
time a new mask is loaded, REG_SIZE_H[02:00] is compared to MASK_COUNT_
H[02:00]. The two comparators used in this process output MASK_FULL_NEXT_
CYCLE_H when the count reaches five and MASK_CURRENTLY_FULL_H when the
count reaches six. OCTL_MASK_STALL_H is asserted to inhibit passing read and write
masks to the EBox when the IBox is six instructions ahead of the EBox.

The value that is passed to the mask logic (MASK_COUNT_H[02:00]) is programmable.
This value can be set at the console from one to six. Setting the value to one allows the
IBox to get one instruction ahead of the EBox.

SPU
(POWER-UP) SCAN | MASK_CNT[02:00] (FULL NEXT
e Jl" F CYCLE)

| LATCH
t COMPARE

T8 OCTL_MASK_STALL  XBAR
LATCH osoA

REG_SIZE[02:00] (CURRENTLY

FULL)

COMPARE

OSQA_SCOREBOARD_STALL T8 SCOREBOARD_STALL
LATCH

1R_X0:21 _88

Figure 5-27 OCTL Mask Stall Logic
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5.6 OPU Port Interface

The OPU port interface is a read/write interface to the MBox. The interface is 32 bits
wide and is byte parity protected. The interface is used for three reasons:

Prefetching operands, from memory, for the EBox

Queuing destination operand addresses for data from the EBox

Fetching operands that are indirectly addressed
Passing VBox requests to the MBox

Figure 5-28 lists the signals that comprise the OPU port interface and Table 5—6

describes them.

MBOX

1BOX_OP_REQUEST_H

1BOX

IBOX_OP_ADDRESS_H[31:18, 15:00}

IBOX_OP_ADDRESS_PARITY_H[03:02, 01:00]

IBOX_OP_CONTEXT_H[02:00]

IBOX_OP_CONTROL_H[02:00]

1IBOX_OP_CONTROL_PARITY_H

IBOX_OP_INDIRECT_H[01:00}

IBOX_OP_TAG_H[03:00]

IBOX_ABORT_H, L

IBOX_FLUSH_ABORT_H, L

MBOX_OP_DATA_H[31:16, 15:00)

MBOX_OP_DATA_PARITY_H[03:02, 01:00]

MBOX_OP_GRANT_H

MBOX_OP_RESPONSE_H

Figure 5-28 OPU Port Interface
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OSQA

OPUB, A

OPUB, A

0SsQA

OSQA

OSQA

0OSQA

0SQA

PCVC

OCTL

OPUB, A

OPUB, A

OSQA

0SQA
OPUA, B

MR_X0122_89



Table 5-6 OPU Port Interface Signals
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Name

Description

IBOX_OP_REQUEST_H

IBOX_OP_ADDRESS_H[31:00]
IBOX_OP_ADDRESS_PARITY_H[03:00]
IBOX_OP_CONTEXT_H[02:00]

IBOX_OP_CONTROL_H([02:00]

When asserted, indicates that an OPU port request
is being made and that all other OPU port fields are

valid.

These lines are the 32-bit address sent to the MBox.
Byte parity for the OPU address.
Defines the reference size of the OPU port request.

Field Reference Size

000 Longword

001 Byte

010 Word

011 Unused

100 Quadword

101 Octaword

110 Unused

111 Block (16 quadwords)

Provides the reference type of the transaction.

Field Reference Type

000 Read (lock status)

001 Read with write check (lock status)

010 Read with write check (no conflict check)
011 Write check (lock status)

100 Read (don’t lock status)

101 Read with write check (don’t lock status)
110 Unused

111 Unused
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Table 5-6 (Cont.) OPU Port Interface Signals

Field Reference Size

IBOX_OP_INDIRECT H[01:00] Indicates the final destination of the MBox reference.

Field Destination

00 Nonwrite reference for the EBox

01 Write reference for the EBox

10 Indirect OPU read for a nonwrite specifier

11 Indirect OPU read for a write specifier
IBOX_OP_TAG_H[03:00] Provides the address in the source list that the

returning MBox data should be written.
IBOX_OP_CONTROL_PARITY_H 0dd parity for IBOX_OP_CONTEXT_H[02:00], IBOX_

OP_CONTROL_H[02:00], IBOX_OP_INDIRECT_
H[01:00], and IBOX_OP_TAG_H[03:00].

5.7 I|IBox-to-EBox Interface

The IBox interface to the EBox is used to send the CSU and SLU operand data, control,
and error information to the EBox. Figure 5-29 lists the signals that comprise the
IBox-to-EBox interface and Table 5-7 describes them.
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1BOX

OPUB, A
OPUB, A
OSQA
OSQA
OSQA
OSQA
0SQB
0sQB
osae
0sQB
0osaB
osaB
0sQB
osas

0SQB
0sSQOB

OSQB

XSCA
IBFB. A

IBFB
XSCA

OSQA
0SQA
0SQA
XDTA
OSQA
0SQA
OSQA
CSQA
0SQA
XSCA
PCH!

PCHI

PCHI, LO
PCVC, BP

PCLO
XSCA
0S0B
0saB
XSCA
XDTA

IBOX_DATA_H[31:16, 15:00]

EBOX

IBOX_DATA_PARITY_H[03:02, 01:00]

IBOX_DATA_TAG_H, L{03:00]

IBOX_DST_DATA_TAG_H[03:00)

1BOX_DATA_VALID_H, L

iIBOX_OSQA_ISSA_PARITY_H

IBOX_SOURCE1_POINTER_H, L[04:00]

IBOX_SOURCE1_VALID_H, L

IBOX_SOURCE2_POINTER_H, L[04:00}

{BOX_SOURCE2_VALID_H, L

IBOX_OSQB_SRCS_PARITY_H

IBOX_DESTINATION_MEMORY_H

IBOX_DESTINATION_POINTER_H[03:00]

IBOX_DESTINATION_VALID_H

IBOX_OSQB_ISSB_PARITY_H

IBOX_OSQB_QPTR_PARITY_H

IBOX_FREE_POINTER_H[03:00]

IBOX_FORK_H[08, 07:04, 03:00]

IBOX_FORK_ADDRESS_PARITY_H

1BOX_FORK_VALID_H

IBOX_GPR_H[03:00]

1BOX_DST_GPR_H[03:00]

IBOX_GPR_WRITE_H

IBOX_REGISTER_FORK_H

IBOX_RLOG_CONTEXT_H[03:00]

IBOX_RLOG_TAG_H[01:00)

IBOX_RLOG_WRITE_H

IBOX_RLOG_COMPLETE_H

IBOX_OSQA_RLOG_PARITY_H

IBOX_INSTRUCTION_DECODED_H

IBOX_CORRECTION_H

{BOX_PREDICTION_H

1BOX_PC_H[31:24, 23:13, 12:08, 07:00]

IBOX_PC_PARITY_H[03, 02, 01, 00]

{1BOX_PC_VALID_H

IBOX_FORK_ERROR_H

1BOX_POINTER_ERROR_H

IBOX_DATA_ERROR_H

IBOX_IB_PAGE_FAULT_H

IBOX_RAF_H

Figure 5-29 |Box-to-EBox Interface

MR_X0123_89
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Table 5-7

IBox-to-EBox Interface Signals

Name

Description

IBOX_DATA_H[31:00]

IBOX_DATA_PARITY_H[03:00]
IBOX_DATA_TAG_H, L{03:00]

IBOX_DATA_VALID_H
IBOX_DATA_ERROR_H
IBOX_OSQA_ISSA_PARITY_H

IBOX_SOURCE1_POINTER_H, L{04:00]

IBOX_SOURCE1_VALID H, L
IBOX_SOURCE2_POINTER_H, L{04:00]

IBOX_SOURCE2_VALID_H, L
IBOX_OSQB_SRCS_PARITY_H
IBOX_DESTINATION_MEMORY_H

IBOX_DESTINATION_POINTER_
H[03:00]

IBOX_DESTINATION_VALID_H
IBOX_OSQB_ISSB_PARITY_H
IBOX_0OSQB_QPTR_PARITY_H

IBOX_FREE_POINTER_H[03:00]

IBOX_FORK_H{08:00]
IBOX_FORK_PARITY_H
IBOX_FORK_VALID_H

IBOX_GPR_H{03:00]
IBOX_DST_GPR_H[03:00]

IBOX_WRITE_H
IBOX_REGISTER_FORK_H
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This bus delivers the short literal or immediate

data to the EBox source list. GPR updates, due to
autoincrement and autodecrement specifiers, are also
delivered to the EBox GRPs with this bus.

Byte parity for IBOX_DATA_H[31:00].

Address in the source list that the IBOX_DATA is to
be written to.

When asserted, indicates that there is short literal or
immediate data for the source list.

Asserted to inform the EBox that a specifier error has
been detected. :

0dd parity for IBOX_DATA_TAG_H{03:00] and
IBOX_DATA_VALID.

Provides the EBox source queue with the address,
or the GPR of the source 1 operand. If the operand
is SLU, CSU, or MBox data, the field provides the
source list address for the operand.

Validates the source 1 pointer.

The same as the source 1 pointer, except it is the
pointer for the source 2 operand.

Valid bit for the source 2 pointer.
Parity bit for source 1 and 2 pointers and valid bits.

Asserted to inform the EBox that the destination
operand is memory (not register).

Provides the destination operand address. The
address contains a GPR reference or write queue
address in the MBox.

When asserted, validates all destination signals.
Parity bit for destination pointers and valid bit.

Parity bit for source 1, source 2, and destination valid
bits and pointers.

Provides the current free pointer value in the source
list.

Copy of the opcode.
Parity bit for IBOX_FORK_H[08:00].

Asserted to indicate that IBOX_FORK_H{[08:00] is
valid.

The address of the EBox GPR that is to be written.
This copy of the address is used by the RLOG.

Contains the address of the EBox GPR that is to be
written. This copy of the address is for the STREG.

Valid bit for IBOX_GPR_H and IBOX_DATA _H.

Asserted to inform the EBox that a USRC specifier is
being decoded.
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Table 5-7 (Cont.) 1Box-to-EBox Interface Signals

Name

Description

IBOX_RLOG_CONTEXT_H[03:00]

IBOX_RLOG_TAG_H[01:00]

IBOX_RLOG_WRITE_H

IBOX_RLOG_COMPLETE_H

IBOX_OSQA_RLOG_PARITY_H
IBOX_INSTRUCTION_DECDODED_H

IBOX_CORRECTION_H

IBOX_PREDICTION_H
IBOX_PC_H[31:00]

IBOX_PC_PARITY_H[03:00]
IBOX_PC_VALID_H

Indicates the context for an RLOG request. The field
supplies size and direction of changes.

Field Change

0000 No change to GPR

0001 GPR incremented by one (byte)

0010 GPR incremented by two (word)

0011 GPR incremented by four (longword)
0100 GPR incremented by eight (quadword)
0101 GPR incremented by sixteen (octaword)
0110 Unused :

0111 Unused

1000 Unused

1001 GPR decremented by one (byte)

1010 GPR decremented by two (word)

1011 GPR decremented by four (longword)
1100 GPR decremented by eight (quadword)
1101 GPR decremented by sixteen (octaword)
1110 Unused

1111 Unused

No change is used when the IBox detects an IRC.
This records the fact that the GPR was modified, but
only in the IBox.

Indicates for which instruction the RLOG information
pertains. The field is matched with 3-bit counters
that indicate which instruction is being executed in
the EBox and IBox.

Asserted to indicate that RLOG information is to
be written and to validate all other RLOG-related
signals.

Asserted to inform the EBox that the CSU has
stopped evaluating specifiers.

Parity bit for the RLOG-related signals.

Informs the EBox that the XBAR has completed
decoding an instruction.

Asserted by the PCU on a bad branch prediction.
Informs the EBox that an unwind is not necessary,
as the branch has not yet been shifted out of the
instruction buffer.

Asserted by the PCU to inform the EBox that the
branch under decode is predicted taken.

These lines deliver a copy of the decdode PC to the
EBox.

Byte parity for the EBox copy of the decode PC.
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Table 5-7 (Cont.) IBox-to-EBox Interface Signals

Name Description

IBOX_FORK_ERROR_H Asserted to inform the EBox that a fork error has
been detected.

IBOX_POINTER_ERROR_H Asserted to inform the EBox of a detected pointer
error.

IBOX_IB_PAGE_FAULT H Asserted to inform the EBox that the data being
) decoded page faulted in the MBox. The signal is not
sent unless the data is accessed.

IBOX_RAF H The XBAR informs the EBox of an RAF by asserting
this line.

5.8 EBox-to-IBox Interface

The EBox interface to the IBox is used to write result data to GPRs and to provide a
variety of control functions for the IBox. The control signals can include starting or
flushing PCs, RLOG unwinds, interrupts, and branch prediction status signals.

Figure 5-30 lists the signals that comprise the EBox-to-IBox interface and Table 5-8
describes them.
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IBOX

EBOX_BRANCH_A_H&L, B_H

EBOX

PCU
O0SQA

EBOX_BRANCH_VALID_A_H&L, B_H

EBOX_FLUSH_H[02:00]

OCTL

EBOX_GPR_BYTEO_WRITE_H

s$TG2

EBOX_GPR_BYTE1_WRITE_H

8§TG2

EBOX_GPR_H[03:00}

$7Gz2, 3

EBOX_GPR_WORDI1_WRITE_H

STG3

OCTL

EBOX_KEEP_MASKS_H, L[01:00]

XDTB

EBOX_INSTRUCTION_DONE_H

OCTL

EBOX_INTERRUPT_H

OSQA

EBOX_LAST_POINTER_H[03:00]

osQB

EBOX_QUEUE_FULL_H

osaB

EBOX_RESULT_H[31:16, 15:00]

STG3, 2

PCHI, LO

EBOX_RESULT_L[31:24, 23:08, 07:05, 07:00]

PCVC, BP

§TG3, 2

PCHI, LO
PCBP

EBOX_RESULT_PARITY_H[03:02, 01:00]

EBOX_RESULT_PAR!TY_L{03, 02:01, 00]

EBOX_RLOG_FULL_H

osaB

XDTB

XDTA

EBOX_RLOG_POINTER_H[01:00}

EBOX_UNSUSPEND_H

e

Figure 5-30 EBox-to-IBox Interface

MR_X0124_89
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Table 5-8 EBox-to-1Box Interface Signals

Name

Description

EBOX _BRANCH_A,B_H
EBOX_BRANCH_VALID_H
EBOX_FLUSH_H[02:00]
EBOX_GPR_BYTEO_WRITE_H
EBOX_GPR_BYTE1_WRITE_H
EBOX_GPR_H[03:00]

EBOX_GPR_WORD1_WRITE_H

EBOX_KEEP_MASK_H[01:00]

EBOX_INSTRUCTION_DONE_H

EBOX_INTERRUPT_H

EBOX_LAST_POINTER_H[03:00]
EBOX_QUEUE_FULL_H
EBOX_RESULT_H[31:00]
EBOX_RESULT_PARITY_H[03:00]
EBOX_RLOG_FULL_H
EBOX_RLOG_POINTER_H[02:00]

EBOX_UNSUSPEND_H

Asserted in the PCU and OSQA when a bad branch
prediction is detected.

Asserted to inform the IBox that a conditional branch
has been retired. The CSU decrements the branch
count if the branch was predicted correctly.

This field passes EBox flush signals to the IBox.

Asserted to indicate that the EBox wishes to write
byte 0 of the GPR pointed to by EBOX_GPR_H[03:00].

Asserted to indicate that the EBox wishes to write
byte 1 of the GPR pointed to by EBOX_GPR_H[03:00].

These lines indicate which GPR the EBox will write
to.

Asserted to indicate the EBox wishes to write
the high-order word that EBOX_GPR_H[03:00] is

addressing.

This field informs the IBox of how many register
masks to keep on a bad branch prediction. The field
reflects the number of instructions still in progress in
the EBox.

Asserted when an instruction is complete in the
EBox. Directs the register mask logic to delete the
oldest mask.

Asserted when the EBox is taking an exception or
an interrupt and directs the IBox to stop processing
specifiers.

This field provides a pointer to the last used location
in the source list.

Asserted when the EBox queues are full (except
RLOG).

These lines deliver the result data to be written to
the IBox GPRs and is also the path used to supply a
new PC to the IBox.

Byte parity for the EBox result datz.

Asserted to inform the IBox that the EBox RLOG
queue is full.

This field is sent to XDTB and describes the current
RLOG entry.

This signal is sent to XSCA to negate XBAR_
SUSPEND_H.
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The VBox interfaces to the MBox through the EBox and the IBox. The MBox prefetches
the operand requested and the VBox, through the IBox STREGs and OPU port, requests
the operands. The operand data is returned to the EBox source list.

Figure 5-31 list the signals that comprise the VBox interface and Table 5-9 describes

them.
1BOX VBOX
VBOX_ADDRESS_H[31:16, 15:00]
$TG3, 2
VBOX_ADDRESS_PARITY_H[03:02, 01:00]
8TG3, 2
VBOX_ADDRESS_VALID_H
OSQA
VBOX_REFERENCE_SIZE_H
0OSQA
VBOX_REFERENCE_TYPE_H
OSQA
VBOX_BLOCK_READ_H
QSQA
VBOX_READ_NOP_H
OSQA
MR_X0125_89
Figure 5-31 VBox Interface
Table 5-9 VBox Interface Signals
Name Description

VBOX_ADDRESS_H[31:02]

VBOX_ADDRESS_PARITY_H[02:(:0]
VBOX_ADDRESS_VALID_H

VBOX_BLOCK_READ_H

VBOX_REFERENCE_SIZE_H

VBOX_REFERENCE_TYPE_H

Address lines of the request the VBox is making to
the MBox. Bits 0 and 1 are always cleared.

Byte parity for the VBox address.

Asserted to indicate that the VBox is making an
MBox request, across the OPU port. The signal
validates all other VBox signals received by the IBox.

Asserted when the VBox request is for a block of data
(16 longwords). When asserted, it is assumed that a
read request is being made.

When asserted, indicates that the reference size of
the VBox request is a quadword. When negated, the
reference is a longword.

When asserted, indicates that the VBox reference
type is write. When negated, the reference type is
read.
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6

IBox Error Descriptions

This chapter describes the IBox error registers. Six registers report errors. The tables
in this chapter contain a description of each error, including the register bit, the error
pneumonic, the error signal that asserts the error bit, and a description of the failing
data or control signals that cause the error.

6.1 IBox Error Registers
The six error registers that report IBox errors are as follows:

IBOX_FETCH_ERROR_REG1_H[31:00]
IBOX_FETCH_ERROR_REG2_H[31:00]
IBOX_DECODE_ERROR_REG1_H[31:00]
IBOX_XBR_DECODE_ERROR_REGISTER_H[31:00]
IBOX_SPECIFIER_REG1_H[31:00}
IBOX_SPECIFIER_REG2_H[31:00]

Each register corresponds to one of the three IBox pipeline stages: fetch, decode, or
specifier. Data and control flow mainly from the fetch stage to the decode stage, then
to the specifier stage in the IBox. Because of this relationship, if an error is detected in
a previous stage, only that error is reported. Once an error is detected in the IBox, the
state elements in the IBox are held until the console can scan in new values and restart
the IBox.

6.2 Fetch Error Register 1

Two 32-bit registers report errors occurring in the fetch stage of the IBox pipeline. The
errors reported are those detected in the following MiCAs: .

PCBP
PCVC
PCLO
PCHI
IBFA
IBFB

Figure 6-1 shows the bit field breakdown of fetch error register 1. Table 6-1 describes
each error that this register reports.
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6-2 IBox Error Descriptions
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
IBFA PARITY ERRORS PCHI PARITY ERRORS PCLO PARITY ERRORS
VvIiC PRE BP BP
TAG PC XDTB | XDTA | PCBP | PRE- BP DISP PRE DEC | PCBP ‘ RE- PRE-
0 oo 2 o1 00 DisP | DISP | DEC PC| DICT ot | 00 PC PC |DEC PcI SULT | DicT
15 14 13 12 11 10 09 08 07 06 0s 04 03 02 o1 00
PCLO PARITY ERRORS PCVC PARITY ERRORS PCBP PARITY ERRORS
PRE- B8P
DICT | PRE DEC | PCBP | PRE- BP PRE DEC PCHI | PCLO | PRE- BP BPTAG PRE | DEC
PC PC Pc |DEC PC| DICT | TAG PC PC |DEC PCIDEC PC| DICT [LENGTH| ., PC PC
115:13] 00
MR_X0740_89
Figure 6-1 Fetch Error Register 1

Table 6-1 Fetch Error Register 1

Description

Bits Error Name

00 DEC PC (PCBP_DECODE_
PC_ERROR_H)

01 PRE PC (PCBP_PREFETCH_
PC_ERROR_H)

03:02 BP TAG (PCBP_BP_PRED_
TAG_ERROR_H{03:02])

04 BP LENGTH (PCBP_BP_
INSTR_LENGTH_ERROR_H)

05 BP PREDICT (PCBP_BP_
PREDICTION_ERROR_H)

06 PCLO DEC PC (PCBP_PCLO_
DECODE_PC_ERROR_H)

07 PCHI DEC PC (PCBP_PCHI_
DECODE_PC_ERROR_H)

08 DEC PC (PCVC_DECODE_
PC_ERROR_H)

09 PRE PC (PCVC_PREFETCH_
PC_ERROR_H)

10 BP TAG (PCVC_BP_PRED_
TAG_ERROR_H)

11 BP PRED (PCVC_BP_
PREDICTION_ERROR_H)

12 PCBP DEC PC (PCVC_PCBP_

DIGITA

DECODE_PC_ERROR_H)
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Occurs when a parity error is detected in data being
latched in DECODE_PC_TA_H[07:00] in PCBP.

Occurs when a parity error is detected in the data
being latched in PREFETCH_PC_H[07:00] in PCBP.

Occurs when a parity error is detected in bits
[31:16] of the branch prediction cache tag field.
Parity checking is performed in PCBP.

Occurs when a parity error in the instruction length
field is stored in the BP STRAMs on the VIC MCU.
Parity checking is performed after the field is passed
to PCBP.

Occurs when the two prediction bits from the BP
STRAMs are not the same. PCBP receives these
bits from the VIC MCU.

Occurs when a parity error is detected in PCLO_
DECODE_PC_TB_H[23:16]. PCBP receives this
field from PCLO and performs the parity check.

Occurs when a parity error is detected in PCHI_
DECODE_PC_TB_H[31:24]. PCBP receives this
field from PCHI and performs the parity check.

Occurs when a parity error is detected in the data
being latched in DECODE_PC_TA_H[15:08].

Occurs when a parity error is detected in the data
being latched in PREFETCH_PC_H[15:08] in PCVC.

Occurs when a parity error is detected on bits
{15:10] of the branch prediction tag. The parity
check is performed when the STRAM data is passed
to PCVC.

Occurs when the BP prediction bits sent to PCBP
are not the same. The bits are stored in the BP
STRAMs of the VIC MCU.

Occurs when a parity error is detected on data being
latched in PCBP_DECODE_PC_TA_H{05:00].



Table 6-1 (Cont.) Fetch Error Register 1

{Box Error Descriptions 6-3

Bits

Error Name

Description

13

14

15

16

17

18

19

20

22:21

23

24

25

26

29:27

31:30

DEC PC (PCLO_DECODE_
PC_ERROR_H)

PRE PC (PCLO_PREFETCH_
PC_ERROR_H)

PREDICT PC [15:13] (PCLO_
PRED_PC_15_13_ERROR_H)

BP PREDICT (PCLO_BP_
PREDICTION_ERROR_H)

EBOX RESULT (PCLO_
EBOX_RESULT_ERROR_
H[01]) :

PCBP DEC PC (PCLO_PCBP_
DECODE_PC_ERROR_H)

DEC PC (PCHI_DECODE_PC_
ERROR_H)

PRE PC (PCHI_PREFETCH_
PC_ERROR_H)

BP DISP (PCHI_BP_TAG_
DISP_ERROR_H[01:00])

BP PREDICT (PCHI_BP_
PREDICTION_ERROR_H)

PCBP DEC PC (PCHI_PCBP_
DECODE_PC_ERROR_H)

XDTA DISP (PCHI_XDTA_
DISP_ERROR_H)

XDTB DISP (PCHI_XDTB_
DISP_ERROR_H)

PRE PC (IBFA_PREF_PC_
ERROR_H[03:01])

VIC TAG (IBFA_VICT_TAG_
ERROR_H[02])

Occurs when the data being latched in DECODE_
PC_TA_H[23:16] causes a parity error in PCLO.

Occurs when the data being latched in PREFETCH_
PC_H[23:16] asserts a parity error in PCLO.

Occurs when BPPC_PREDICTION_PC_B_H[15:13]
from BPST asserts a parity error in PCLO.

Occurs when the two BP prediction bits sent to
PCBP are not the same. The bits are stored in the
BP STRAMs in the VIC MCU.

Occurs when EBOX_RESULT_H[15:08] from the
EBox asserts a parity error in PCLO.

Occurs when PCBP_DECODE_PC_TA_H[05:00]
or PCBP_DECODE_PC_PARITY_TA_H asserts a
parity error in PCBP.

Occurs when the data being latched in DECODE_
PC_TA_HI[31:24] causes a parity error in PCHL

Occurs when the data being latched in PREFETCH_
PC_H[31:24] asserts a parity error in PCHIL

Occurs when BPTD_TAG_DISPLACEMENT_
H[15:00] asserts a parity error in PCHIL

If this error occurs, the two prediction bits sent to
PCBP from the BP STRAMs are not the same value.

Occurs if a parity error is detected when checking
PCBP_DECODE_PC_TA_H[05:00] on PCEP.

Asserted in PCHI when a parity error is detected in
XDTA_DISPLACEMENT_L[11:08, 03:00].

Asserted in PCHI when a parity error is detected
when checking XDTB_DISPLACEMENT_L[15:12,
07:04] and XDTB_DISPLACEMENT_PARITY_
H[01].

Asserted in IBFA when a parity error Is detected
in the following signals: PCBP_PREFi?TCH_PC_
H[04:00] from PCBP to IBFA, PCHI_PREFETCH_
PC_H[31:24] from PCHI to IBFA, and PCLO_
PREFETCH_PC_H[23:16] from PCLO to IBFA.

Bit 30 of this error is asserted when VICT_TAG_
H[23:13] asserts a parity error. Bit 31 is set when
VICT_TAG_H[31:24] asserts a parity error. Both
VIC tag fields are checked in IBFA when they are
passed from the VICT STRAMs to the XBR MCU.
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Error Descriptions

6.3 Fetch Error Register 2

Fetch error register 2 is 11 bits wide and reports errors occurring in IBFA and IBFB.
Figure 6-2 shows the bit field breakdown of this register and Table 6-2 describes each

error that

this register reports.

31 3o 29 28 27 26 25 24 23 22 21 20 19 18 17 16
NOT USED
15 14 13 12 11 10 08 08 o7 06 05 04 03 02 01 o0
IBFB PARITY ERRORS (BFA PARITY ERRORS
NOT VICB VICA
USED IBEX ERROR [07:00] BLOCK | BLOCK vIC
, . . 07 06 05 04 03 02 _ 01 _ 00 VAL | VAL jOW VAL
MA_Xs141_88

Figure 6-2 Fetch Error Register 2

Table 6-2 Fetch Error Register 2

Bits Error Name Description

00 VIC QW VAL (IBFA_VIC_ Occurs when a parity check of VICQ_QUADWORD_
QUADWORD_ERROR_H) VALIDS_H[03:00] fails.

01 VICA BLOCK VAL (IBFA_ Occurs when VICA_BLOCK_VALID_H[01:00] is
VICA_BLOCK_VALID_ parity checked after being passed from VICT to
ERROR_H) IBFA on the XBR MCU.

02 VICB BLOCK VAL (IBFA_ Occurs when VICB_BLOCK_VALID_H[01:00] fails
VICB_BLOCK_VALID_ parity testing after being passed from VICT to IBFA
ERROR_H) on the XBR MCU.

10:03 IBEX ERROR (A_IBFB_IBEX _ Occurs when IBEX_DATA_H[63:00] fails a parity

ERROR_H[07:00])

test that is performed as the data is passed to IBUF.
The failing data is held partly in IBFA, partly in
IBFB. Each byte of IBEX data has one parity bit.
Each byte of IBEX data is split into nibbles. The
low nibbles are stored in IBFA and the high nibbles
are stored in IBFB.
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6.4 Decode Error Register 1

1Box Error Descriptions 6-5

Decode errors are reported in two registers. Decode error register 1 reports errors that
occur on instruction buffer data that is passed to XBAR and on control signals that are
passed from XBAR to the PCU (shift counts, shift opcode). Figure 6-3 shows the bit field
breakdown of this register and Table 6-3 describes each error that this register reports.

31 30 29 28 27 26 25

24 23 22 21

NOT USED

15 14 13 12 " 10 09

08 07 06 0s 04 03 02 01 00

J‘S%Ta 1BUF ERROR [08:00]
08 07 06 0s 04 03
. . .

{BFB PARITY ERRORS

IBFB
SC PE

{BFA PCHI
DEC PE | DEC PE

PCLO PCVC PCBP
DEC PE | DEC PE | DEC PE

02 01 00

= | i

Figure 6-3 Decode Error Register 1

Table 6-3 Decode Error Register 1

WR_XD142_89

Bits Error Name Description
00 PCBP DEC PE (A_PCBP_ Occurs when an error is detected in XSCA_
DECODE_ERROR_H) SHIFTCOUNT_C_L[03:00], XSCA_SHIFTOPCODE _
C_L, or XSCA_PCBP_B_PARITY_H. Parity checking
is performed on PCBP as these signals are passed
from XBAR.
01 PCVC DEC PE (A_PCVC_ Occurs when an error is detected in A_
DECODE_ERROR_H) XBAR_SHIFTCOUNT_H[03:00], A_XBAR_
SHIFTOPCODE_H, and A_XSCA_PCVC_B_
PARITY_H as they are passed to PCVC.
02 PCLO DEC PE (A_PCLO_ Occurs when an error is detected in
DECODE_ERROR_H) XSCA_SHIFTCOUNT_C_H[03:00], XSCA_
SHIFTOPCODE_C_H, and XSCA_PCLO_B_
PARITY_H as they are passed to PCLO.
03 PCHI DEC PE (A_PCHI_ Occurs when an error is detected in
DECODE_ERROR_H) XSCA_SHIFTCOUNT_B_H[03:00], XSCA_
SHIFTOPCODE_B_H, XSCA_DISPLACEMENT_
VALID_H, and XSCA_PCHI_B_PARITY_H when
they are passed to PCHI.
04 IBFA DEC PE (A_IBFA_ Occurs when an error is detected in
DECODE_ERROR_H) XSCA_SHIFTCOUNT_A_H[03:00], XSCA_
SHIFTOPCODE_A_H, XSCA_FD_SHIFTOPCODE_
H, and XSCA_IBFA_B_PARITY_H as they are
passed to IBFA.
05 IBFB DEC PE (A_IBFB_SC_ Occurs when an error is detected in XSCA_

ERROR_H)

SHIFTCOUNT_A_L{03:00], XSCA_SHIFTOPCODE_
A_L, XSCA_FD_SHIFTOPCODE_L, XSCA_
EXTENDED_L, and XSCA_IBFB_B_PARITY_H

as they are passed to IBFB.
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6-6 IBox Error Descriptions

Table 6-3 (Cont.) Decode Error Register 1

Bits Error Name Description

14:06 IBUF ERROR (A_IBFB_IBUF_  Covers the IBFA and IBFB data paths for IBUF
ERROR_H[08:00]) data to XBAR. Detection of a parity error in any
of the nine bytes of IBUF data as it is passed to
XBAR asserts the respective bit in this signal. (For
example, when a parity error is detected in byte 0
of the IBUF data, byte 0 of A_IBFB_IBUF_ERROR_
H[08:00] is asserted.)

6.5 XBAR Decode Error Register

The XBAR decode error register reports decode errors that occur, primarily, in the
XBAR. Failing data passing between XSCA, XDTA, and XDTB asserts errors that are
reported in this register. Control signals with sources external to XBAR are also reported
(for example, OSQA_BRANCH_COUNT _H[01:00] and OSQA_SL_BUSY_STALL_H).
Figure 6—4 shows the bit field breakdown of this register and Table 64 describes each
error that this register reports.

31 36 29 28 27 26 25 24 23 22 21 20 19 18 17 16

NOT USED

1 1 L L 1 L It i i L A ¢ L il

15 14 13 12 11 10 09 08 07 08 05 04 03 02 o1 [+11]

XSCA PARITY ERRORS XDTB PARITY ERRORS XDTA PARITY ERRORS

NOT
USED 0S0A
PE

IBFB
PE

IBFA
PE

XDTA

PE USED USED

IBFB IBFA NOT XSCA
PE PE PE

1BFB IBFA NOT XSCA
PE PE PE

MR _X0743_89

Figure 6-4 XBAR Decode Error Register
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Table 6-4 XBAR Decode Error Register

IBox Error Descriptions 6—7

Bits

Error Name

Description

00

01

02

04

05

06

08

IBFA PE (IBFA_XDTA_
PARITY_ERROR_H)

IBFB PE (IBFB_XDTA_
PARITY_ERROR_H)

XSCA PE (XSCA_XDTA_
PARITY_ERROR_H)

IBFA PE (IBFA_XDTB_
PARITY_ERROR_H)

IBFB PR (IBFB_XDTB_
PARITY_ERROR_H)

XSCA PE (XSCA_XDTB_
PARITY_ERROR_H)

IBFA PE (IBFA_XSCA_
PARITY_ERROR_H)

Occurs when an error is detected in IBFA_YREG_
F_A_L[03:01], IBFA_VALID_A_L[03:01], or IBFA_
DATA_A_L[67:64, 59:56, 51:48, 43:40, 35:32, 27:24,
19:16, 11:08] as they are passed from IBFA to XBAR.

Occurs when an error is detected in IBFB_DATA_A_
L{39:36, 31:28, 23:20, 15:12] or IBFB_REGISTER_
MODE_L[08:05] as they are passed from IBFB to
XBAR.

Occurs when an error is detected on the interconnect
between XSCA and XDTA. The signals that can
cause this error are as follows: .

XSCA_IMPLIED_MASK_H

XSCA_IRC_L

XSCA_REQUEST_H[03:00] :
XSCA_SPECIFIERS_DECODED_H[01:00]
XSCA_SP1_ACCESS_H[09:00]

XSCA_SP1_DATATYPE_H[02:00]

XSCA_SP2_ACCESS_H{06:00]
XSCA_SP2_DATATYPE_H[02:00]
XSCA_SP3_ACCESS_H[01:00]

XSCA_SP3_DATATYPE_H[02:01]

XSCA_X8F_H

Occurs when an error is detected in IBFA_DATA_A_
H[03:00] or IBFA_YREG_F_A_H[04:01] as they are
passed from IBFA to XDTB.

Occurs when a parity error is detected in IBFB_
DATA_A_H[71:68, 63:60, 55:52, 47:44, 39:36, 31:28,
23:20, 15:12, 07:04] after it is passed to XDTB.

Occurs when an error is detected on the interconnect
between XSCA and XDTB. An error detected in one
or more of the following signals can assert this
error:

XSCA_REQUEST_H[03:00}

XSCA_IRC_L

XSCA_X8F_H
XSCA_SP1_DATATYPE_H[02:00]
XSCA_SP2_DATATYPE_H[02:00]
XSCA_SP1_DATATYPE_H[02, 00]
XSCA_SPECIFIERS_REMAINING_L{[02:01]
XSCA_SPECIFIERS_DECODED_H[01:00]

Qccurs when an error is detected in one or more of
the following signals:

IBFA_DATA_B_H[03:00]
IBFA_VALID_H[08:00]
IBFA_YREG_F_B_H[04:01]
IBFA_IB_PAGE_FAULT_H
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6-8 IBox Error Descriptions

Table 6-4 (Cont.) XBAR Decode Error Register

Bits Error Name Description
09 IBFB PE (IBFB_XSCA_ Occurs when an error is detected on the interconnect
PARITY_ERROR_H) between IBFB and XSCA. The following signals can
assert this signal:
IBFB_DATA_B_H[39:36, 31:28, 23:20, 15:12,
07:04] :
IBFB_REGISTER_MODE_H[08:05]
IBFB_SL_MODE_H[07:05]
IBFB_UNCONDITIONAL_B_H
10 XDTA PE (XDTA_XSCA_ Occurs when an error is detected in XDTA_IRC_
PARITY_ERROR_H) MASK_H[08:00] as it is passed from XDTA to
XSCA. This error may propagate to a specifier error.
11 OSQA PE (OSQA_XSCA_ Occurs when OSQA_DECODE_STALL. H, OSQA_

PARITY_ERROR_H)

BRANCH_COUNT_H[01:00], OSQA_SL_BUSY_

STALL_H, or OSQA_IN_SEQUENCE_H asserts a
parity error in XSCA. This error may propagate to a

specifier error.

6.6 Specifier Error Register 1

Specifier error register 1 reports errors that occur when data is being passed from XBAR
to OSQA, OSQB, and OCTL. Errors occurring with the control signals passed to the
OPU MCU and the data paths for the FPL and SLU are reported through this register.
Figure 6-5 shows the bit field breakdown of this register and Table 6-5 describes the

errors that this register reports.

31 30 29 28 27 26 25 24 23 22 21 20

NOT USED

15 14 13 12 11 10 09 08 07 06 05 04

03 02 01 0o

OCTL PARITY ERRORS OSQB PARITY ERRORS
NOT opP
USED CODE
REG MASK PE [05:00) PE
. A . ,

XDTBPE

ot 00

XOTA
P

] OSQA PARITY ERRORS
i

NOT | MASK | XDTB | XDTA
UsSeED | PE PE | PE

4

Figure 6-5 Specifier Error Register 1
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Table 6-5 Specifier Error Register 1

IBox Error Descriptions 6-9

Bits

Error Name

Description

00

01

02

04

05

06

07

08

09

XDTA PE (XDTA_OSQA_
PERR_TA_H)

XDTB PE XDTB_OSQA_
PERR_TA_H)

MASK PE (OSQA_MASK _
PERR_TA_H)

XDTA PE (XDTA_OSQB_
PERR_TA_H)

XDTB PE (XDTB_OSQB_A_
PERR_TA_H)

XDTB PE (XDTB_OSQB_B_
PERR_TA_H)

OPCODE PE (OPCODE_
PERR_TA_H)

REG MASK PE {00] (REG_
MASK_PERR_TA_H[00])

REG MASK PE [01] (REG_
MASK_PERR_TA_H[01])

Asserted by detection of a parity error in XDTA_
XREG_H[03:00], XDTA_OSQA_A_PARITY_H, or
XDTA_YREG_H[03:00] after they are passed from
XDTA to OSQA.

Occurs when a parity error is detected in XDTB_
ORDER_H, XDTB_SL_VALID_H, XDTB_OSQA_B_
PARITY_H, XDTB_INDEXED_H, XDTB_MODE_
H[03:00], or XDTB_RLOG_TAG_H[02:00] in OSQA.

Occurs when a parity error is detected when
checking OCTL_EBOX_READ_MASK_H{14:00],
OCTL_EBOX_WRITE_MASK_H[14:00], and OCTL_
EBOX_MASK_PARITY H.

Asserted by a parity error on the interconnect
between XDTA and OSQB. An error in one or more
of the following signals asserts this error:

XDTA_SL_H[03:00]
XDTA_DESTINATION_REG_H[03:00]
XDTA_SOURCE1_REG_H[03:00]
XDTA_SOURCE2_REG_H[03:00]
XDTA_DESTINATION_REG_VALID_H
XDTA_DESTINATION_VALID_H
XDTA_SOURCE1_REG_VALID_H
XDTA_SOURCE1_VALID_H
XDTA_SOURCE2_REG_VALID_H
XDTA_SOURCE2_VALID_H
XDTA_OSQB_B_PARITY_H

Asserted by a parity error in XDTB_OPU_
SPECIFIERS_COMPLETED_H[02:00], XDTB_
RSL_H[02:01], and XDTB_OSQB_A_PARITY_H.
Parity checking is performed in OSQB when these
signals are passed from XDTB.

Asserted by a parity error in XDTB_SL_
SPECIFIER_NUMBER_H[02:00], XDTB_ORDER _
H, XDTB_SL_VALID_H, XDTB_SL_H([05:04], and
XDTB_OSQB_B_PARITY_H. Parity checking is
performed in OSQB as these signals are passed
from XDTB.

Asserted by a parity error in IBFA_OPCODE_A_
1[03:00], IBFB_OPCODE_L{07:04], and IBFB_
OPCODE_PARITY_H. Parity checking is performed
in OSQB when these signals are received from IBFB
and IBFA.

Occurs when an error is detected in register
read/write mask 0 in OCTL (REG_MASKO_TA_
H[30:00]). Each mask (mask 0 through 5) is parity
checked in OCTL after being passed from XDTA.

Occurs when an error is detected in register
read/write mask 1 in OCTL (REG_MASK1_TA_
H[30:00]).
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6-10 IBox Error Descriptions

Table 6-5 (Cont.) Specifier Error Register 1

Bits Error Name Description
10 REG MASK PE [02] (REG_ Occurs when an error is detected in register
MASK_PERR_TA_H[02]) read/write mask 2 in OCTL (REG_MASK2 TA_
H[30:00]).
11 REG MASK PE [03] (REG_ Occurs when an error is detected in register
MASK_PERR_TA_H[03]) read/write mask 3 in OCTL (REG_MASK3_TA_
H{30:00]).
12 REG MASK PE [04] (REG_ Occurs when an error is detected in register
MASK_PERR_TA_H[04]) read/write mask 4 in OCTL (REG_MASK4_TA_
H[30:00]). .
13 REG MASK PE [05] (REG_ Occurs when an error is detected in register

MASK_PERR_TA_H[05))

read/write mask 5 in OCTL (REG_MASK5_TA_
H[30:00]).

6.7 Specifier Error Register 2

Specifier error register 2 is 26 bits wide and reports errors detected in the OPUA and
OPUB MCAs. Figure 66 shows the bit field breakdown of this register and Table 6—6

describes each error that this register reports.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
OPUB PARITY ERRORS
osas
NOT SL oPUB AMUX BMUX : DEC PC SPEC
USED EXPAN-| CTRL |  PE[03:02] PE [03:02] | [04:03) l 1-STREAM
, . SION 01, 00 o1 , 00 | 0t 00 01 00
15 14 13 12 1 10 09 08 07 06 05 04 03 02 01 00
OPUA PARITY ERRORS
NOT 0SQOB St oPUA AMUX BMUX “DEC PC SPEC DEC
USED EXPANSION | CTRL PE[01:00] | PE[01:00] [02:00] I-STREAM DELTA
, , 01 00 01 00 | 01 , 00 02 o1 00 01 00
BR.XS143.00
Figure 6-6 Specifier Error Register 2
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Table 6-6 Specifier Error Register 2

IBox Error Descriptions 6-11

Bits Error Name Description
00 DEC DELTA (SPEC_ Occurs when a parity check on XDTB_DECODE_
DECODE_DELTA_PERR_ DELTA_H[05:00] and XDTB_DECODE_DELTA_
TA_H) PARITY_H fails.
01 SPEC I-STREAM (SPEC_ Occurs when a parity error is detected when
ISTREAM_LWORD_PERR_ testing XDTA_DISPLACEMENT_H{[11:08),
TA_H[00]) XDTA_DISPLACEMENT H[03:00], and XDTA_
DISPLACEMENT_PARITY_H[00].
02 SPEC I-STREAM (SPEC_ Occurs when a parity error is detected when
ISTREAM_LWORD_PERR _ testing XDTB_DISPLACEMENT_H[15:12],
TA_H[01]) XDTB_DISPLACEMENT_H[07:04], and XDTB_
DISPLACEMENT_PARITY_H[01]. -
03 DEC PC [00] (SPECIFIER_ Occurs when a parity error is detected when testing
DECODE_PC_PERR_TA_ PCBP_OPU_DECODE_PC_H[07:00] and PCBP_
H[00]) OPU_DECODE_PC_PARITY_H[00]. .
04 DEC PC [01] (SPECIFIER_ Occurs when a parity error is detected while testing
DECODE_PC_PERR_TA_ PCVC_OPU_DECODE_PC_H[12:08] and PCVC_
H[01]) OPU_DECODE_PC_PARITY_H.
05 DEC PC [02] (SPECIFIER_ Occurs when a parity error is detected while testing
DECODE_PC_PERR_TA_ PCLO_OPU_DECODE_PC_H[15:13] and PCLO_
H{o02D OPU_DECODE_PC_PARITY_H[01].
06 BMUX PE [00] (BMUX_PERR_ Asserted by an error detected in the low BMUX data
TA_H[00]) byte in OPUA (BMUX_H[07:00]).
07 BMUX PE [01] BMUX_PERR_  Asserted by an error in the high BMUX data byte in
TA_H[01]) OPUA (BMUX_H[15:08]).
08 AMUZX PE [00] (AMUX_PERR_ Asserted by an error in the low AMUX data byte in
TA_H[00]) OPUA (AMUX_H[07:00]).
09 AMUX PE [01] (AMUX_PERR_  Asserted by an error in the high AMUX data byte in
TA_H[01]) OPUA (AMUX_HJ[15:08]).
10 OPUA CTRL (OPUA_ Occurs when a parity error is detected in OSQA_
CONTROL_PERR_TA_H) AMUX_SEL_H{02:00], 0SQA_BMUX_SEL_
HI[02:00], OSQA_CSHFT_SEL_H[02:00], OSQA_
OP_GRANT_WAIT H, OSQA_OPU_SEQ START_H,
or OSQA_OPUX_CONTROL_PARITY_H. Parity
checking is performed in OPUA.
11 .SL EXPANSION (SL_ Occurs when an error is detected while testing
EXPANSION_PERR_TA_ 0OSQB_SL_EXPANSION_H[07:00] and OSQB_SL._
H{00]) EXPANSION_PARITY_H[00].
12 SL EXPANSION (SL_ Occurs when an error is detected while
EXPANSION_PERR_TA_ testing OSQB_SL_EXPANSION_H[14], OSQB_
H{01]) SL_EXPANSION_H[09:08], and OSQB_SL_
EXPANSION_PARITY_H[01].
16 SPEC I-STREAM (SPEC_ Occurs when an error is detected while testing
ISTREAM_LWORD_PERR_ XDTA_DISPLACEMENT_H[27:24], XDTA_
TA_H[02]) DISPLACEMENT_H{19:16], and XDTA_
DISPLACEMENT_PARITY_H[02].
17 SPEC I-STREAM (SPEC_ Occurs when an error is detected while testing

ISTREAM_LWORD_PERR_
TA_H[03])

XDTB_DISPLACEMENT_H[31:28], XDTB_
DISPLACEMENT_H[23:20], and XDTB_
DISPLACEMENT_PARITY_H[03].
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IBox Error Descriptions

Table 6-6 (Cont.) Specifier Error Register 2

Bits Error Name Description
18 DEC PC [03] (SPECIFIER_ Occurs when an error is detected while testing
DECODE_PC_PERR_TA_ PCLO_OPU_DECODE_PC_H[23:16] and PCLO_
H[02]) OPU_DECODE_PC_PARITY_H[02].
19 DEC PC [04] (SPECIFIER_ Occurs when an error is detected while testing
DECODE_PC_PERR_TA_H) PCHI_OPU_DECODE_PC_H[31:24] and PCHI_
OPU_DECODE_PC_PARITY_H[03].
20 BMUX PE [02] BMUX_PERR_  Asserted by an error detected in the low BMUX data
TA_H[02]) byte in OPUB (BMUX_H[23:16)).
21 BMUX PE [03] BMUX_PERR_  Asserted by an error detected in the high BMUX
TA_HI03]) data byte in OPUB (BMUX_H[31:24]). -
22 AMUX PE [02] (AMUX_PERR_  Asserted by an error detected in the low AMUX data
TA_H[02]) byte in OPUB (AMUX_H[23:16]).
23 AMUX PE [03] (AMUX_PERR_  Asserted by an error detected in the high AMUX
TA_H[03]) data byte in OPUB (AMUX_H[31:24).
24 OPUB CTRL (OPUB_ Occurs when an error is detected in one or more of
CONTROL_PERR_TA_H) the following signals:
OSQA_AMUX_SEL_L{02:00]
OSQA_BMUX_SEL_L[02:00]
OSQA_CSHFT_SEL_L[02:00]
OSQA_OP_GRANT WAIT_H
OSQA_OPU_SEQ_START_H
OSQA_OPUX_CONTROL_PARITY_H
25 0SQB SL EXPANSION (SL_ Occurs when an error is detected while testing

EXPANSION_PERR_TA_
H[03])

OSQB_SL_EXPANSION_H[31:29] and OSQB_SL._
EXPANSION_PARITY_H[03].

6-12
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A

IBox Input and Output Listing

Tables A-1, A-2, and A-3 list the input and output signals of the IBox. The signals are
grouped by their MCU and MCA origination or destination and are listed alphabetically.
All signals represent communication between the IBox and the VBox, MBox, and EBox.

The box origination of input signals is defined in the prefix of the signal (for example,
EBOX_BRANCH_B_H([00] is an input from the EBox).

Table A-1 1Box-VIC Signals

Input Destination  Origination
EBOX_BRANCH_A_H([00] VIC-PCBP UsQ-UsQC
EBOX_BRANCH_A_H[00] VIC-PCVC UsSQ-USQC
EBOX_BRANCH_VALID_A_H{00] VIC-PCBP UsQ-UsQC
EBOX_BRANCH_VALID_A_H[00] VIC-PCVC UsSQ-usQC
EBOX_RESULT_L[07:00] VIC-PCBP MUL-RETO
EBOX_RESULT_L{07:05] VIC-PCVC MUL-RETO
EBOX_RESULT_PARITY_L{03:00] VIC-PCBP MUL-RETO+RET1
MBOX_IB_DATA_H{[03:00] VIC-CL#4 DTA-DTMO
MBOX_IB_DATA_H[07:04] VIC-CL#7 DTA-DTM1
MBOX_IB_DATA_H[11:08] VIC-CL#4 DTA-DTM1
MBOX_IB_DATA_H[15:12] VIC-CL#4 DTA-DTM1
MBOX_IB_DATA_H[19:16] VIC-CL#4 DTA-DTM2
MBOX_IB_DATA_H[23:20] : VIC-CL#7 DTA-DTM2
MBOX_IB_DATA_H[27:24] VIC-CL#4 DTA-DTM3
MBOX_IB_DATA_H[31:28] VIC-CL#7 DTA-DTM3
MBOX_IB_DATA_H[35:32] VIC-CL#4 DTA-DTMO
MBOX_IB_DATA_H[39:36] VIC-CL#7 DTA-DTMO
MBOX_IB_DATA_H[43:40] VIC-CL#4 DTA-DTM1
MBOX_IB_DATA_H[47:44] VIC-CL#7 DTA-DTM1
MBOX_IB_DATA_H[51:48] VIC-CL#4 DTA-DTM2
MBOX_IB_DATA_H[55:52] VIC-CL#7 DTA-DTM2
MBOX_IB_DATA_H[59:56] VIC-CL#4 DTA-DTM3
MBOX_IB_DATA_H[63:60] VIC-CL#7 DTA-DTM3
MBOX_IB_DATA_PARITY_H([01:00] VIC-CL#7 DTB-DTM0, DTM1
MBOX_IB_DATA_PARITY_H[03:02) VIC-CL#7 DTA-DTM2, DTM3
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A-2 IBox Input and Output Listing

Table A-1 (Cont.) [Box-VIC Signals

Input Destination  Origination
MBOX_IB_DATA_PARITY_H[05:04] VIC-CL#7 DTB-DTM0, DTM1
MBOX_IB_DATA_PARITY_H[07:06] VIC-CL#7 DTA-DTM2, DTM3
MBOX_IB_PAGE_FAULT_L{00] VIC-PCVC VAP-FALT
MBOX_IB_RESPONSE_H[00] VIC-PCVC CTU-CTMV
MBOX_IB_RESPONSE_TA_H[00] VIC-PCBP CTU-CTMV
Output Origination Destination
IBOX_ABORT_H{00] VIC-PCVC MBOX-VAP-VAPO
IBOX_ABORT_L{00] VIC-PCVC MBOX-VAP-CCSQ
IBOX_IB_ABORT_H[00] VIC-PCVC MBOX-VAP-VAPO
IBOX_IB_ABORT_L{00] VIC-PCVC MBOX-VAP-CCSQ
IBOX_IB_ADDRESS_H[05:00] VIC-PCBP MBOX-VAP-VAPO
IBOX_IB_ADDRESS_H[12:06] VIC-PCVC MBOX-VAP-VAPO
IBOX_IB_ADDRESS_H[31:13] VIC-PCVC MBOX-VAP-FXUP
IBOX_IB_ADDRESS_PARITY_H[00] VIC-PCBP MBOX-VAP-VAPO
IBOX_IB_ADDRESS_PARITY_H[01] VIC-PCVC MBOX-VAP-VAPO
IBOX_PC_H[05:00] VIC-PCBP EBOX-CTL-QPCS
IBOX_PC_H[12:06] VIC-PCVC EBOX-CTL-QPCS
IBOX_PC_PARITY_H{00] VIC-PCBP EBOX-CTL-QPCS
TBOX_PC_PARITY_H[01] VIC-PCVC EBOX-CTL-QPCS
IBOX_CORRECTION_H[00] XBR-PCHI EBOX-INT-USQC
Table A-2 [Box-XBR Signals

Input Destination  Origination
EBOX_BRANCH_A_L[00] XBR-PCHI INT-USQC
EBOX_BRANCH_A_L[00] XBR-PCLO INT-USQC
EBOX_BRANCH_VALID_A_L[00] XBR-PCHI INT-USQC
EBOX_BRANCH_VALID_A_L[00] XBR-PCLO INT-USQC
EBOX_KEEP_MASKS_L[01:00] XBR-XDTB CTL-iSSA
EBOX_RESULT_L{23:08] XBR-PCLO MUL-RETO
EBOX_RESULT_L[31:24] XBR-PCHI MUL-RET1
EBOX_RESULT_PARITY_L{02:01] XBR-PCLO MUL-RETO
EBOX_RESULT_PARITY_L{03] XBR-PCHI MUL-RET1
EBOX_RLOG_POINTER_H[02:00] XBR-XDTB DST-SRCS
EBOX_UNSUSPEND_H[00] XBR-XDTA INT-USQA
MBOX_IB_PAGE_FAULT_H[00] XBR-IBFA VAP-FALT
MBOX_IB_RESPONSE_TA_L{00] XBR-IBFA CTU-CTMV
MBOX_IB_RESPONSE_TA_L{00] XBR-PCHI CTU-CTMV
MBOX_IB_RESPONSE_TA_L[00] XBR-PCLO CTU-CTMV
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Table A-2 (Cont.) IBox-XBR Signals

IBox Input and Output Listing

A-3

Output Origination Destination
IBOX_FORK_ADDRESS_H[03:00] XBR-IBFA EBOX-CTL-FRAMX
IBOX_FORK_ADDRESS_H{07:04] XBR-IBFB EBOX-CTL-FRAMX
IBOX_FORK_ADDRESS_H[08] XBR-XSCA EBOX-CTL-FRAMX
IBOX_FORK_ADDRESS_PARITY_H[00] XBR-IBFB EBOX-CTL-QPTR
IBOX_FORK_ERROR_H[00] XBR-XSCA EBOX-CTL-ISSE
IBOX_FORK_VALID_H[00] XBR-XSCA EBOX-CTL-QTPR
IBOX_IB_ADDRESS_H[21:13] XBR-PCLO MBOX-VAP-FXUP
IBOX_IB_ADDRESS_H[31:22] XBR-PCHI MBOX-VAP-FXUP
IBOX_IB_ADDRESS_PARITY_H[02] XBR-PCLO MBOX-VAP-FXUP
IBOX_IB_ADDRESS_PARITY_H[03] XBR-PCHI MBOX-VAP-FXUP
IBOX_IB_PAGE_FAULT_H[00] XBR-XSCA EBOX-CTL-ISSA, ISSB, ISSC:
IBOX_IB_REQUEST_H[00] XBR-IBFA MBOX-VAP-VAPO ;
IBOX_INSTRUCTION_DECODED_H[00] XBR-XSCA EBOX-CTL-ISSA, ISSB, ISSC
IBOX_PC_H[21:13} XBR-PCLO EBOX-CTL-QPCS
IBOX_PC_H[31:22] XBR-PCHI EBOX-CTL-QPCS
IBOX_PC_PARITY_H[02] XBR-PCLO EBOX-CTL-QPCS
IBOX_PC_PARITY_H[03] XBR-PCHI EBOX-CTL-QPCS
IBOX_PC_VALID_H{00] XBR-PCLO EBOX-CTL-QPCS
IBOX_PREDICTION_H[00] XBR-PCHI EBOX-CTL-QPTR
IBOX_RAF_H[00] XBR-XDTA EBOX-CTL-ISSA, ISSB, ISSC
IBOX_REGISTER_FORK_H[00} XBR-XDTA EBOX-CTL-QTPR
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A-4 [Box Input and Output Listing

Table A-3 IBox-OPU Signals

Input Destination Origination
EBOX_BRANCH_B_H[00] OPU-OSQA UsQ-UsQC
EBOX_BRANCH_VALID_B_H[00] OPU-0OSQA USQ-UsQC
EBOX_FLUSH_H[02:00] OPU-OCTL, 0QSA, 0SQB UsQ-usQa
EBOX_GPR_BYTEO_WRITE_H[00] OPU-STG2 CTL-ISSC
EBOX_GPR_BYTE1_WRITE_H[00] OPU-STG2 CTL-ISSC
EBOX_GPR_H[03:00] OPU-STG2 CTL-ISSC
EBOX_GPR_H[03:00] OPU-STG3 CTL-ISSC
EBOX_GPR_WORD1_WRITE_H[00] OPU-STG3 CTL-ISSC
EBOX_INSTRUCTION_DONE_H[00] OPU-OCTL CTL-ISSA
EBOX_INTERRUPT_H[00] OPU-0OSQA USQ-USQA
EBOX_KEEP_MASKS_H[01:00] OPU-OCTL CTL-ISSA
EBOX_LAST_POINTER_H[03:00] OPU-0SQB CTL-ISSA
EBOX_QUEUE_FULL_H{00] OPU-0SQB CTL-QPTR
EBOX_RESULT_H[15:00] OPU-STG2 MUL-RETO0+RET1
EBOX_RESULT_H[31:16] OPU-STG3 MUL-RETO+RET1
EBOX_RESULT_PARITY_H[01:00] OPU-STG2 MUL-RETO0+RET1
EBOX_RESULT_PARITY_H[03:02] OPU-STG3 MUL-RETO+RET1
EBOX_RLOG_FULL_H{00] OPU-0SQB INT-RLOG
MBOX_OP_DATA_H[15:00] OPU-OPUA DTA-DTMO, DTM1
MBOX_OP_DATA_H[31:16] OPU-OPUB DTA-DTM2, DTM3
MBOX_OP_DATA_PARITY_H[01:00] OPU-OPUA DTA-DTMoO, DTM1
MBOX_OP_DATA_PARITY_H[03:02] OPU-OPUB DTA-DTM2, DTM3
MBOX_OP_GRANT_H[00] OPU-OSQA VAP-VAPO
MBOX_OP_RESPONSE_H[00] OPU-0SQA, OPUA, OPUB CTU-CTMV
VBOX_ADDRESS_H[15:00] OPU-STG2 VBOX-VAD-VMKA
VBOX_ADDRESS_H[31:16] OPU-STG3 VBOX-VAD-VMKA
VBOX_ADDRESS_PARITY_H[01:00] OPU-STG2 VBOX-VAD-VMKA
VBOX_ADDRESS_PARITY_H[03:02] OPU-STG3 VBOX-VAD-VMKA
VBOX_ADDRESS_VALID_H{00] OPU-0SQA, 0SQB VBOX-VAD-VMKB
VBOX_BLOCK_READ_H{00] OPU-0SQA, 0SQB VBOX-VAD-VMKB
VBOX_READ_NOP_H{00] OPU-0SQA, 0SQB VBOX-VAD-VMKB
VBOX_REFERENCE_SIZE_H[00] OPU-0SQA, 0SQB VBOX-UCS-VCTC
VBOX_REFERENCE_TYPE_H[00] OPU-0SQA, 0SQB VBOX-UCS-VCTA
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IBox Input and Output Listing A-5

Table A-3 (Cont.) |Box-OPU Signals

Output Origination Destination
IBOX_DATA_H[15:00] OPU-OPUA EBOX-DST-STGO
IBOX_DATA_H[31:16] OPU-OPUB EBOX-DST-STG1
IBOX_DATA_PARITY_H[01:00] OPU-OPUA EBOX-DST-STGO
IBOX_DATA_PARITY_H[03:02] OPU-OPUB EBOX-DST-STG1
IBOX_DATA_ERROR_H{00] OPU-0OSQB EBOX-CTL-ISSE
IBOX_DATA_TAG_H[03:00] OPU-0SQA EBOX-CTL-ISSA, ISSB, ISSC,
DST-SRCS
IBOX_DATA_VALID_H[00] OPU-0SQA : EBOX-CTL-ISSA, ISSB, ISSC,
DST-SRCS o
IBOX_DATA_VALID_L{00] OPU-0SQA EBOX-CTL-ISSA, ISSB, ISSC,
DST-SRCS
IBOX_DESTINATION_MEMORY_H[00] OPU-0OSQB gPTl}OI){(-CTLPISSA, ISSB, ISSC,
IBOX_DESTINATION_POINTER_ OPU-0OSQB EBOX-CTL-ISSA, ISSB, ISSC,
H[03:00] QPTR
IBOX_DESTINATION_VALID_H[00] OPU-0SQB I‘Q)%%){(-CTL—ISSA, ISSB, ISSC,
IBOX_DST_DATA_TAG_H[03:00] OPU-0SQA EBOX-DST-STGO, STG1
IBOX_DST_GPR_H[03:00] OPU-0SQA EBOX-DST-STGO, STG1
IBOX_FLUSH_ABORT_H[00] OPU-OCTL MBOX-VAP-VAPO
IBOX_FLUSH_ABORT_L[00] OPU-OCTL MBOX-VAP-CCSQ
IBOX_FREE_POINTER_H[03:00] OPU-0SQB EBOX-ISSA, ISSB, ISSC
IBOX_GPR_H[03:00} OPU-0SQA EBOX-DST-SRCS
IBOX_GPR_WRITE_H[00] OPU-0SQA EBOX-DST-SRCS
IBOX_OP_ADDRESS_H[31:16] OPU-OPUB MBOX-VAP-FXUP
IBOX_OP_ADDRESS_H[15:00] OPU-OPUA MBOX-VAP-FXUP
IBOX_OP_ADDRESS_PARITY_H[01:00] OPU-OPUA MBOX-VAP-VAPO
IBOX_OP_ADDRESS_PARITY_H[03:02] OPU-OPUB MBOX-VAP.FXUP
IBOX_OP_CONTEXT_H[02:00] OPU-0SQA MBOX-VAP-VAPO
IBOX_OP_CONTROL_H{02:00] OPU-0SQA MBOX-VAP-VAPO
IBOX_OP_CONTROL_PARITY_H[00] OPU-0SQA MBOX-YAP-VAPO
IBOX_OP_INDIRECT_H[01:00] OPU-0SQA MBOX-VAP-VAPO
IBOX_OP_REQUEST_H[00] OPU-0SQA MBOX-VAP-VAPO
IBOX_OP_TAG_H[03:00] OPU-0SQA MBOX-VAP-VAPO
IBOX_OSQA_ISSA_PARITY_H[00] OPU-0SQA EBOX-CTL-ISSA
IBOX_0OSQA_RLOG_PARITY_H[00] OPU-0SQA EBOX-INT-RLOG
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A-6 IBox Input and Output Listing

Table A-3 (Cont.) 1Box-OPU Signals

Output Origination Destination

IBOX_OSQB_ISSB_PARITY_H[00] OPU-0SQB EBOX-CTL-ISSB
IBOX_OSQB_QPTR_PARITY_H[00] OPU-0SQB EBOX-CTL-QPTR
IBOX_OSQB_SRCS_PARITY_H[00] OPU-0SQB EBOX-DST-SRCS
IBOX_POINTER_ERROR_H[00] OPU-0SQB EBOX-CTL-ISSE
IBOX_RLOG_COMPLETE_H[00] OPU-0SQA EBOX-DST-SRCS
IBOX_RLOG_CONTEXT_H[03:00] OPU-0SQA EBOX-DST-SRCS
IBOX_RLOG_TAG_H[02:00} OPU-0SQA - EBOX-DST-SRCS
IBOX_RLOG_WRITE_H{00] OPU-0SQA EBOX-DST-SRCS
IBOX_SOURCE1_POINTER_H[04:00] OPU-0SQB EBOX-CTL-QPTR
IBOX_SOURCE1_POINTER_L{04:00] OPU-0SQB EBOX-CTL-SRCS
IBOX_SOURCE1_VALID_H{00]} OPU-0SQB EBOX-CTL-QPTR
IBOX_SOURCE1_VALID_L[00] OPU-0SQB EBOX-CTL-SRCS
IBOX_SOURCE2_POINTER_H{[04:00] OPU-0SQB EBOX-CTL-QPTR
IBOX_SOURCE2_POINTER_L[04:00] OPU-0SQB EBOX-CTL-SRCS
IBOX_SOURCE2_VALID_H[00] OPU-0SQB EBOX-CTL-QPTR
IBOX_SOURCE2_VALID_L[00] OPU-0OSQB EBOX-CTL-SRCS
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