
Multithreaded Programming Guide

Sun Microsystems, Inc.
4150 Network Circle
Santa Clara, CA 95054
U.S.A.

Part No: 806–6867–10
May 2002

Copyright 2002 Sun Microsystems, Inc. 4150 Network Circle, Santa Clara, CA 95054 U.S.A. All rights reserved.

This product or document is protected by copyright and distributed under licenses restricting its use, copying, distribution, and decompilation. No
part of this product or document may be reproduced in any form by any means without prior written authorization of Sun and its licensors, if any.
Third-party software, including font technology, is copyrighted and licensed from Sun suppliers.

Parts of the product may be derived from Berkeley BSD systems, licensed from the University of California. UNIX is a registered trademark in the U.S.
and other countries, exclusively licensed through X/Open Company, Ltd.

Sun, Sun Microsystems, the Sun logo, docs.sun.com, AnswerBook, AnswerBook2, and Solaris are trademarks, registered trademarks, or service marks
of Sun Microsystems, Inc. in the U.S. and other countries. All SPARC trademarks are used under license and are trademarks or registered trademarks
of SPARC International, Inc. in the U.S. and other countries. Products bearing SPARC trademarks are based upon an architecture developed by Sun
Microsystems, Inc.

The OPEN LOOK and Sun™ Graphical User Interface was developed by Sun Microsystems, Inc. for its users and licensees. Sun acknowledges the
pioneering efforts of Xerox in researching and developing the concept of visual or graphical user interfaces for the computer industry. Sun holds a
non-exclusive license from Xerox to the Xerox Graphical User Interface, which license also covers Sun’s licensees who implement OPEN LOOK GUIs
and otherwise comply with Sun’s written license agreements.

Federal Acquisitions: Commercial Software–Government Users Subject to Standard License Terms and Conditions.

DOCUMENTATION IS PROVIDED “AS IS” AND ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES,
INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT, ARE
DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE LEGALLY INVALID.

Copyright 2002 Sun Microsystems, Inc. 4150 Network Circle, Santa Clara, CA 95054 U.S.A. Tous droits réservés

Ce produit ou document est protégé par un copyright et distribué avec des licences qui en restreignent l’utilisation, la copie, la distribution, et la
décompilation. Aucune partie de ce produit ou document ne peut être reproduite sous aucune forme, par quelque moyen que ce soit, sans
l’autorisation préalable et écrite de Sun et de ses bailleurs de licence, s’il y en a. Le logiciel détenu par des tiers, et qui comprend la technologie relative
aux polices de caractères, est protégé par un copyright et licencié par des fournisseurs de Sun.

Des parties de ce produit pourront être dérivées du système Berkeley BSD licenciés par l’Université de Californie. UNIX est une marque déposée aux
Etats-Unis et dans d’autres pays et licenciée exclusivement par X/Open Company, Ltd.

Sun, Sun Microsystems, le logo Sun, docs.sun.com, AnswerBook, AnswerBook2, et Solaris sont des marques de fabrique ou des marques déposées, ou
marques de service, de Sun Microsystems, Inc. aux Etats-Unis et dans d’autres pays. Toutes les marques SPARC sont utilisées sous licence et sont des
marques de fabrique ou des marques déposées de SPARC International, Inc. aux Etats-Unis et dans d’autres pays. Les produits portant les marques
SPARC sont basés sur une architecture développée par Sun Microsystems, Inc.

L’interface d’utilisation graphique OPEN LOOK et Sun™ a été développée par Sun Microsystems, Inc. pour ses utilisateurs et licenciés. Sun reconnaît
les efforts de pionniers de Xerox pour la recherche et le développement du concept des interfaces d’utilisation visuelle ou graphique pour l’industrie
de l’informatique. Sun détient une licence non exclusive de Xerox sur l’interface d’utilisation graphique Xerox, cette licence couvrant également les
licenciés de Sun qui mettent en place l’interface d’utilisation graphique OPEN LOOK et qui en outre se conforment aux licences écrites de Sun.

CETTE PUBLICATION EST FOURNIE “EN L’ETAT” ET AUCUNE GARANTIE, EXPRESSE OU IMPLICITE, N’EST ACCORDEE, Y COMPRIS DES
GARANTIES CONCERNANT LA VALEUR MARCHANDE, L’APTITUDE DE LA PUBLICATION A REPONDRE A UNE UTILISATION
PARTICULIERE, OU LE FAIT QU’ELLE NE SOIT PAS CONTREFAISANTE DE PRODUIT DE TIERS. CE DENI DE GARANTIE NE
S’APPLIQUERAIT PAS, DANS LA MESURE OU IL SERAIT TENU JURIDIQUEMENT NUL ET NON AVENU.

020115@3062

Contents

Preface 11

1 Covering Multithreading Basics 15

Defining Multithreading Terms 15
Meeting Multithreading Standards 17
Benefiting From Multithreading 17

Improving Application Responsiveness 17
Using Multiprocessors Efficiently 17
Improving Program Structure 18
Using Fewer System Resources 18
Combining Threads and RPC 18

Understanding Basic Multithreading Concepts 18
Concurrency and Parallelism 18
Looking at Multithreading Structure 19
Scheduling 21
Cancellation 22
Synchronization 22

Using the 64–bit Architecture 23

2 Basic Threads Programming 25

The Threads Library 25
Create a Default Thread 26
Wait for Thread Termination 27
A Simple Threads Example 28
Detaching a Thread 29

3

Create a Key for Thread-Specific Data 30
Delete the Thread-Specific Data Key 31
Set Thread-Specific Data 32
Get Thread-Specific Data 33
Get the Thread Identifier 36
Compare Thread IDs 36
Initializing Threads 37
Yield Thread Execution 37
Set the Thread Priority 38
Get the Thread Priority 39
Send a Signal to a Thread 39
Access the Signal Mask of the Calling Thread 40
Forking Safely 41
Terminate a Thread 41
Finishing Up 42
Cancellation 43
Cancel a Thread 44
Enable or Disable Cancellation 45
Set Cancellation Type 45
Create a Cancellation Point 46
Push a Handler Onto the Stack 47
Pull a Handler Off the Stack 47

3 Thread Create Attributes 49

Attributes 50
Initialize Attributes 50
Destroy Attributes 52
Set Detach State 52
Get Detach State 53
Set Stack Guard Size 54
Get Stack Guard Size 55
Set Scope 56
Get Scope 57
Set Thread Concurrency Level 57
Get Thread Concurrency Level 58
Set Scheduling Policy 58
Get Scheduling Policy 59

4 Multithreaded Programming Guide • May 2002

Set Inherited Scheduling Policy 60
Get Inherited Scheduling Policy 61
Set Scheduling Parameters 61
Get Scheduling Parameters 62
Set Stack Size 64
Get Stack Size 65
About Stacks 65
Set Stack Address 67
Get Stack Address 68

4 Programming with Synchronization Objects 69

Mutual Exclusion Lock Attributes 70
Initialize a Mutex Attribute Object 72
Destroy a Mutex Attribute Object 72
Set the Scope of a Mutex 73
Get the Scope of a Mutex 74
Set the Mutex Type Attribute 75
Get the Mutex Type Attribute 76
Set Mutex Attribute’s Protocol 76
Get Mutex Attribute’s Protocol 79
Set Mutex Attribute’s Priority Ceiling 79
Get Mutex Attribute’s Priority Ceiling 80
Set Mutex’s Priority Ceiling 82
Get Mutex’s Priority Ceiling 83
Set Mutex’s Robust Attribute 83
Get Mutex’s Robust Attribute 85

Using Mutual Exclusion Locks 86
Initialize a Mutex 87
Make Mutex Consistent 88
Lock a Mutex 89
Unlock a Mutex 91
Lock With a Nonblocking Mutex 92
Destroy a Mutex 93
Mutex Lock Code Examples 94

Condition Variable Attributes 98
Initialize a Condition Variable Attribute 99
Remove a Condition Variable Attribute 100

Contents 5

Set the Scope of a Condition Variable 101

Get the Scope of a Condition Variable 102

Using Condition Variables 102

Initialize a Condition Variable 103

Block on a Condition Variable 104

Unblock One Thread 105

Block Until a Specified Time 107

Block For a Specified Interval 108

Unblock All Threads 109

Destroy Condition Variable State 110

The Lost Wake-Up Problem 111

The Producer/Consumer Problem 111

Semaphores 114

Counting Semaphores 116

Initialize a Semaphore 116

Named Semaphores 118

Increment a Semaphore 118

Block on a Semaphore Count 119

Decrement a Semaphore Count 119

Destroy the Semaphore State 120

The Producer/Consumer Problem, Using Semaphores 121

Read-Write Lock Attributes 122

Initialize a Read-Write Lock Attribute 123

Destroy a Read-Write Lock Attribute 123

Set a Read-Write Lock Attribute 124

Get a Read-Write Lock Attribute 125

Using Read-Write Locks 125

Initialize a Read-Write Lock 126

Read Lock on Read-Write Lock 127

Read Lock With a Nonblocking Read-Write Lock 128

Write Lock on Read-Write Lock 128

Write Lock With a Nonblocking Read-Write Lock 129

Unlock a Read-Write Lock 129

Destroy a Read-Write Lock 130

Synchronization Across Process Boundaries 131

Producer/Consumer Problem Example 131

Interprocess Locking Without the Threads Library 133

Comparing Primitives 133

6 Multithreaded Programming Guide • May 2002

5 Programming With the Operating Environment 135

Process Creation—Forking Issues 135
The Fork-One Model 136
The Fork-All Model 139
Choosing the Right Fork 139

Process Creation—exec(2) and exit(2) Issues 139
Timers, Alarms, and Profiling 140

Per-LWP POSIX Timers 140
Per-Thread Alarms 141
Profiling 141

Nonlocal Goto—setjmp(3C) and longjmp(3C) 142
Resource Limits 142
LWPs and Scheduling Classes 142

Timeshare Scheduling 143
Realtime Scheduling 143
Fair Share Scheduling 144
Fixed Priority Scheduling 144

Extending Traditional Signals 145
Synchronous Signals 146
Asynchronous Signals 146
Continuation Semantics 146
Operations on Signals 147
Thread-Directed Signals 149
Completion Semantics 150
Signal Handlers and Async-Signal Safety 151
Interrupted Waits on Condition Variables 153

I/O Issues 154
I/O as a Remote Procedure Call 154
Tamed Asynchrony 155
Asynchronous I/O 155
Shared I/O and New I/O System Calls 156
Alternatives to getc(3C) and putc(3C) 157

6 Safe and Unsafe Interfaces 159

Thread Safety 159
MT Interface Safety Levels 160

Reentrant Functions for Unsafe Interfaces 162

Contents 7

Async-Signal-Safe Functions 162

MT Safety Levels for Libraries 163

Unsafe Libraries 164

7 Compiling and Debugging 165

Compiling a Multithreaded Application 165

Preparing for Compilation 165

Choosing Solaris or POSIX Semantics 166

Including <thread.h> or <pthread.h> 166

Defining _REENTRANT or _POSIX_C_SOURCE 167

Linking With libthread or libpthread 167

Linking With -lrt for POSIX Semaphores 168

Link Old With New 169

The Alternate libthread 169

Debugging a Multithreaded Program 169

Common Oversights 169

Tracing and Debugging With the TNF Utilities 170

Using truss(1) 171

Using mdb(1) 171

Using dbx 171

8 Programming With Solaris Threads 175

Comparing APIs for Solaris Threads and POSIX Threads 175

Major API Differences 176

Function Comparison Table 176

Unique Solaris Threads Functions 180

Suspend Thread Execution 180

Continue a Suspended Thread 181

Similar Synchronization Functions—Read-Write Locks 181

Initialize a Read-Write Lock 182

Acquire a Read Lock 183

Try to Acquire a Read Lock 184

Acquire a Write Lock 185

Try to Acquire a Write Lock 185

Unlock a Read-Write Lock 186

Destroy Read-Write Lock State 186

Similar Solaris Threads Functions 188

8 Multithreaded Programming Guide • May 2002

Create a Thread 188
Get the Minimal Stack Size 191
Get the Thread Identifier 191
Yield Thread Execution 192
Send a Signal to a Thread 192
Access the Signal Mask of the Calling Thread 192
Terminate a Thread 192
Wait for Thread Termination 193
Create a Thread-Specific Data Key 194
Set Thread-Specific Data 194
Get Thread-Specific Data 194
Set the Thread Priority 195
Get the Thread Priority 195

Similar Synchronization Functions—Mutual Exclusion Locks 196
Initialize a Mutex 196
Destroy a Mutex 197
Acquire a Mutex 198
Release a Mutex 198
Try to Acquire a Mutex 198

Similar Synchronization Functions—Condition Variables 199
Initialize a Condition Variable 199
Destroy a Condition Variable 200
Wait for a Condition 200
Wait for an Absolute Time 201
Wait for a Time Interval 201
Unblock One Thread 201
Unblock All Threads 202

Similar Synchronization Functions—Semaphores 202
Initialize a Semaphore 202
Increment a Semaphore 203
Block on a Semaphore Count 204
Decrement a Semaphore Count 204
Destroy the Semaphore State 204

Synchronization Across Process Boundaries 205
Using LWPs Between Processes 205
Producer/Consumer Problem Example 206

Special Issues for fork() and Solaris Threads 207

Contents 9

9 Programming Guidelines 209

Rethinking Global Variables 209

Providing for Static Local Variables 210

Synchronizing Threads 211

Single-Threaded Strategy 212

Reentrance 212

Avoiding Deadlock 214

Deadlocks Related to Scheduling 215

Locking Guidelines 215

Following Some Basic Guidelines 216

Creating and Using Threads 217

Lightweight Processes 217

Unbound Threads 219

Bound Threads 219

Thread Creation Guidelines 219

Working With Multiprocessors 219

The Underlying Architecture 220

Summary 224

Further Reading 224

A Sample Application—Multithreaded grep 225

Description of tgrep 225

Getting Online Source Code 226

B Solaris Threads Example: barrier.c 251

Index 255

10 Multithreaded Programming Guide • May 2002

Preface

The Multithreaded Programming Guide describes the multithreaded programming
interfaces for POSIX and Solaris threads in the Solaris™ Operating Environment. This
guide shows application programmers how to create new multithreaded programs
and how to add multithreading to existing programs.

Although this guide covers both the POSIX and Solaris threads implementations, most
topics assume a POSIX threads interest. Information applying to only Solaris threads is
covered in a special chapter.

To understand this guide, a reader must be familiar with

� A UNIX® SVR4 system—preferably the Solaris Operating Environment.

� The C programming language—multithreading is implemented through the
libthread library

� The principles of concurrent programming (as opposed to sequential
programming)—multithreading requires a different way of thinking about function
interactions. Some books you might want to read are:

� Algorithms for Mutual Exclusion by Michel Raynal (MIT Press, 1986)

� Concurrent Programming by Alan Burns & Geoff Davies (Addison-Wesley, 1993)

� Distributed Algorithms and Protocols by Michel Raynal (Wiley, 1988)

� Operating System Concepts by Silberschatz, Peterson, & Galvin (Addison-Wesley,
1991)

� Principles of Concurrent Programming by M. Ben-Ari (Prentice-Hall, 1982)

11

How This Guide Is Organized
Chapter 1 gives a structural overview of threads implementation in this release.

Chapter 2 discusses the general POSIX threads library routines, emphasizing creating
a thread with default attributes.

Chapter 3 covers creating a thread with nondefault attributes.

Chapter 4 covers the threads library synchronization routines.

Chapter 5 discusses changes to the operating environment to support multithreading.

Chapter 6 covers multithreading safety issues.

Chapter 7 covers the basics of compiling and debugging multithreaded applications.

Chapter 8 covers the Solaris threads (as opposed to POSIX threads) interfaces.

Chapter 9 discusses issues that affect programmers writing multithreaded
applications.

Appendix A shows how code can be designed for POSIX threads.

Appendix B shows an example of building a barrier in Solaris threads.

Accessing Sun Documentation Online
The docs.sun.comSM Web site enables you to access Sun technical documentation
online. You can browse the docs.sun.com archive or search for a specific book title or
subject. The URL is http://docs.sun.com.

What Typographic Conventions Mean
The following table describes the typographic changes used in this book.

12 Multithreaded Programming Guide • May 2002

TABLE P–1 Typographic Conventions

Typeface or Symbol Meaning Example

AaBbCc123 The names of commands, files, and
directories; on-screen computer output

Edit your .login file.

Use ls -a to list all files.

machine_name% you have
mail.

AaBbCc123 What you type, contrasted with
on-screen computer output

machine_name% su
Password:

AaBbCc123 Command-line placeholder: replace with
a real name or value

To delete a file, type rm
filename.

AaBbCc123 Book titles, new words, or terms, or
words to be emphasized.

Read Chapter 6 in User’s Guide.

These are called class options.

You must be root to do this.

Shell Prompts in Command Examples
The following table shows the default system prompt and superuser prompt for the C
shell, Bourne shell, and Korn shell.

TABLE P–2 Shell Prompts

Shell Prompt

C shell prompt machine_name%

C shell superuser prompt machine_name#

Bourne shell and Korn shell prompt $

Bourne shell and Korn shell superuser prompt #

Preface 13

14 Multithreaded Programming Guide • May 2002

CHAPTER 1

Covering Multithreading Basics

The word multithreading can be translated as multiple threads of control or multiple flows
of control. While a traditional UNIX process always has contained and still does
contain a single thread of control, multithreading (MT) separates a process into many
execution threads, each of which runs independently.

Multithreading your code can

� Improve application responsiveness
� Use multiprocessors more efficiently
� Improve program structure
� Use fewer system resources

This chapter explains some multithreading terms, benefits, and concepts. If you are
ready to start using multithreading, skip to Chapter 2.

� “Defining Multithreading Terms” on page 15
� “Meeting Multithreading Standards” on page 17
� “Benefiting From Multithreading” on page 17
� “Understanding Basic Multithreading Concepts” on page 18

Defining Multithreading Terms
Table 1–1 introduces some of the terms used in this book.

15

TABLE 1–1 Multithreading Terms

Term Definition

Process The UNIX environment (such as file descriptors, user ID, and
so on) created with the fork(2) system call, which is set up
to run a program.

Thread A sequence of instructions executed within the context of a
process.

pthreads (POSIX threads) A POSIX 1003.1c compliant threads interface.

Solaris threads A Sun Microsystems™ threads interface that is not POSIX
compliant. A predecessor of pthreads.

Single-threaded Restricting access to a single thread.

Multithreaded Allowing access to two or more threads.

User- or Application-level
threads

Threads managed by the threads library routines in user (as
opposed to kernel) space.

Lightweight processes Threads in the kernel that execute kernel code and system
calls (also called LWPs).

Bound thread A user-level thread that is permanently bound to one LWP.

Unbound thread A user-level thread that is not necessarily bound to one LWP.

Attribute object Contains opaque data types and related manipulation
functions used to standardize some of the configurable
aspects of POSIX threads, mutual exclusion locks (mutexes),
and condition variables.

Mutual exclusion locks Functions that lock and unlock access to shared data.

Condition variables Functions that block threads until a change of state.

Read-write locks Functions that allow multiple read-only access to shared data,
but exclusive access for modification of that data.

Counting semaphore A memory-based synchronization mechanism.

Parallelism A condition that arises when at least two threads are executing
simultaneously.

Concurrency A condition that exists when at least two threads are making
progress. A more generalized form of parallelism that can
include time-slicing as a form of virtual parallelism.

16 Multithreaded Programming Guide • May 2002

Meeting Multithreading Standards
The concept of multithreaded programming goes back to at least the 1960s. Its
development on UNIX systems began in the mid-1980s. While there is agreement
about what multithreading is and the features necessary to support it, the interfaces
used to implement multithreading have varied greatly.

For several years a group called POSIX (Portable Operating System Interface) 1003.4a
has been working on standards for multithreaded programming. The standard has
now been ratified. This Multithreaded Programming Guide is based on the POSIX
standards: P1003.1b final draft 14 (realtime), and P1003.1c final draft 10
(multithreading).

This guide covers both POSIX threads (also called pthreads) and Solaris threads. Solaris
threads were available in the Solaris 2.4 release, and are not functionally different from
POSIX threads. However, because POSIX threads are more portable than Solaris
threads, this guide covers multithreading from the POSIX perspective. Subjects
specific to Solaris threads only are covered in the Chapter 8.

Benefiting From Multithreading

Improving Application Responsiveness
Any program in which many activities are not dependent upon each other can be
redesigned so that each activity is defined as a thread. For example, the user of a
multithreaded GUI does not have to wait for one activity to complete before starting
another.

Using Multiprocessors Efficiently
Typically, applications that express concurrency requirements with threads need not
take into account the number of available processors. The performance of the
application improves transparently with additional processors.

Numerical algorithms and applications with a high degree of parallelism, such as
matrix multiplications, can run much faster when implemented with threads on a
multiprocessor.

Chapter 1 • Covering Multithreading Basics 17

Improving Program Structure
Many programs are more efficiently structured as multiple independent or
semi-independent units of execution instead of as a single, monolithic thread.
Multithreaded programs can be more adaptive to variations in user demands than
single-threaded programs.

Using Fewer System Resources
Programs that use two or more processes that access common data through shared
memory are applying more than one thread of control.

However, each process has a full address space and operating environment state. The
cost of creating and maintaining this large amount of state information makes each
process much more expensive than a thread in both time and space.

In addition, the inherent separation between processes can require a major effort by
the programmer to communicate between the threads in different processes, or to
synchronize their actions.

Combining Threads and RPC
By combining threads and a remote procedure call (RPC) package, you can exploit
nonshared-memory multiprocessors (such as a collection of workstations). This
combination distributes your application relatively easily and treats the collection of
workstations as a multiprocessor.

For example, one thread might create child threads. Each of these children could then
place a remote procedure call, invoking a procedure on another workstation. Although
the original thread has merely created threads that are now running in parallel, this
parallelism involves other computers.

Understanding Basic Multithreading
Concepts

Concurrency and Parallelism
In a multithreaded process on a single processor, the processor can switch execution
resources between threads, resulting in concurrent execution.

18 Multithreaded Programming Guide • May 2002

In the same multithreaded process in a shared-memory multiprocessor environment,
each thread in the process can run on a separate processor at the same time, resulting
in parallel execution.

When the process has fewer or as many threads as there are processors, the threads
support system in conjunction with the operating environment ensure that each thread
runs on a different processor.

For example, in a matrix multiplication that has the same number of threads and
processors, each thread (and each processor) computes a row of the result.

Looking at Multithreading Structure
Traditional UNIX already supports the concept of threads—each process contains a
single thread, so programming with multiple processes is programming with multiple
threads. But a process is also an address space, and creating a process involves
creating a new address space.

Creating a thread is less expensive when compared to creating a new process, because
the newly created thread uses the current process address space. The time it takes to
switch between threads is less than the time it takes to switch between processes,
partly because switching between threads does not involve switching between address
spaces.

Communicating between the threads of one process is simple because the threads
share everything—address space, in particular. So, data produced by one thread is
immediately available to all the other threads.

The interface to multithreading support is through a subroutine library, libpthread
for POSIX threads, and libthread for Solaris threads. Multithreading provides
flexibility by decoupling kernel-level and user-level resources.

User-Level Threads
Threads are the primary programming interface in multithreaded programming. 1

Threads are visible only from within the process, where they share all process
resources like address space, open files, and so on. The following state is unique to
each thread.

� Thread ID
� Register state (including PC and stack pointer)
� Stack
� Signal mask
� Priority

1 User-level threads are so named to distinguish them from kernel-level threads, which are the concern of systems
programmers only. Because this book is for application programmers, kernel-level threads are not discussed.

Chapter 1 • Covering Multithreading Basics 19

� Thread-private storage

Because threads share the process instructions and most of the process data, a change
in shared data by one thread can be seen by the other threads in the process. When a
thread needs to interact with other threads in the same process, it can do so without
involving the operating environment.

By default, threads are lightweight. But, to get more control over a thread (for
instance, to control scheduling policy more), the application can bind the thread.
When an application binds threads to execution resources, the threads become kernel
resources (see “System Scope (Bound Threads)” on page 22 for more information).

To summarize, user-level threads are:

� Inexpensive to create because they do not need to create their own address space.

� Fast to synchronize because synchronization is done at the application level, not at
the kernel level.

� Managed by the threads library; either libpthread or libthread.

Lightweight Processes
The threads library uses underlying threads of control called lightweight processes that
are supported by the kernel. You can think of an LWP as a virtual CPU that executes
code or system calls.

You usually do not need to concern yourself with LWPs to program with threads. The
information here about LWPs is provided as background, so you can understand the
differences in scheduling scope, described on “Process Scope (Unbound Threads)”
on page 21.

Much as the stdio library routines such as fopen() and fread() use the open()
and read() functions, the threads interface uses the LWP interface, and for many of
the same reasons.

Lightweight processes (LWPs) bridge the user level and the kernel level. Each process
contains one or more LWP, each of which runs one or more user threads. (See Figure
1–1.)

20 Multithreaded Programming Guide • May 2002

Unbound threads

Threads Library

Bound threads

= thread = LWP

User

Kernel

FIGURE 1–1 User-level Threads and Lightweight Processes

Each LWP is a kernel resource in a kernel pool, and is allocated and de-allocated to a
thread on a per thread basis.

Scheduling
POSIX specifies three scheduling policies: first-in-first-out (SCHED_FIFO), round-robin
(SCHED_RR), and custom (SCHED_OTHER). SCHED_FIFO is a queue-based scheduler
with different queues for each priority level. SCHED_RR is like FIFO except that each
thread has an execution time quota.

Both SCHED_FIFO and SCHED_RR are POSIX Realtime extensions. SCHED_OTHER is
the default scheduling policy.

See “LWPs and Scheduling Classes” on page 142 for information about the
SCHED_OTHER policy.

Two scheduling scopes are available: process scope for unbound threads and system
scope for bound threads. Threads with differing scope states can coexist on the same
system and even in the same process. In general, the scope sets the range in which the
threads scheduling policy is in effect.

Process Scope (Unbound Threads)
PTHREAD_SCOPE_PROCESS threads are created as unbound threads. The association
of these threads with LWPs is managed by the threads library.

Chapter 1 • Covering Multithreading Basics 21

In most cases, threads should be PTHREAD_SCOPE_PROCESS. These threads have no
restriction to execute on a particular LWP, and are equivalent to Solaris thread created
without the THR_BOUND flag. The threads library decides the association between
individual threads and LWPs.

System Scope (Bound Threads)
PTHREAD_SCOPE_SYSTEM threads are created as bound threads. A bound thread is
permanently attached to an LWP.

Each bound thread is bound to an LWP for the lifetime of the thread. This is
equivalent to creating a Solaris thread in the THR_BOUND state. You can bind a thread
to use special scheduling attributes with Realtime scheduling.

Note – In neither case, bound or unbound, can a thread be directly accessed by or
moved to another process.

Cancellation
Thread cancellation allows a thread to terminate the execution of any other thread in
the process. The target thread (the one being cancelled) can keep cancellation requests
pending and can perform application-specific cleanup when it acts upon the
cancellation notice.

The pthreads cancellation feature permits either asynchronous or deferred termination
of a thread. Asynchronous cancellation can occur at any time; deferred cancellation
can occur only at defined points. Deferred cancellation is the default type.

Synchronization
Synchronization allows you to control program flow and access to shared data for
concurrently executing threads.

The four synchronization models are mutex locks, read/write locks, condition
variables, and semaphores.

� Mutex locks allow only one thread at a time to execute a specific section of code, or
to access specific data.

� Read/write locks permit concurrent reads and exclusive writes to a protected
shared resource. To modify a resource, a thread must first acquire the exclusive
write lock. An exclusive write lock is not permitted until all read locks have been
released.

22 Multithreaded Programming Guide • May 2002

� Condition variables block threads until a particular condition is true.
� Counting semaphores typically coordinate access to resources. The count is the

limit on how many threads can have access to a semaphore. When the count is
reached, the semaphore blocks.

Using the 64–bit Architecture
For application developers, the major difference between the Solaris 64–bit and 32–bit
operating environments is the C–language data type model used. The 64–bit data type
uses the LP64 model where longs and pointers are 64–bits wide. All other
fundamental data types remain the same as those of the 32–bit implementation. The
32–bit data type uses the ILP32 model where ints, longs, and pointers are 32–bits.

The following summary briefly describes the major features and considerations for
using the 64–bit environment:

� Large Virtual Address Space

In the 64-bit environment, a process can have up to 64 bits of virtual address space,
or 18 exabytes. This is 4 billion times the current 4 Gbyte maximum of a 32-bit
process. Because of hardware restrictions, however, some platforms might not
support the full 64 bits of address space.

Large address space increases the number of threads that can be created with the
default stack size (1 megabyte on 32 bits, 2 megabytes on 64 bits). The number of
threads with the default stack size is approximately 2000 threads on a 32–bit
system and 8000 billion on a 64–bit system.

� Kernel Memory Readers

Because the kernel is an LP64 object that uses 64-bit data structures internally,
existing 32-bit applications that use libkvm, /dev/mem, or /dev/kmem do not
work properly and must be converted to 64-bit programs.

� /proc Restrictions

A 32-bit program that uses /proc is able to look at 32-bit processes, but is unable
to understand a 64-bit process; the existing interfaces and data structures that
describe the process are not large enough to contain the 64-bit quantities involved.
Such programs must be recompiled as 64-bit programs to work for both 32-bit and
64-bit processes.

� 64–bit Libraries

32–bit applications are required to link with 32–bit libraries, and 64–bit applications
are required to link with 64–bit libraries. With the exception of those libraries that
have become obsolete, all of the system libraries are provided in both 32–bit and
64–bit versions. However, no 64–libraries are provided in static form.

� 64–bit Arithmetic

Chapter 1 • Covering Multithreading Basics 23

Though 64–bit arithmetic has long been available in previous 32–bit Solaris
releases, the 64–bit implementation now provides full 64–bit machine registers for
integer operations and parameter passing.

� Large Files

If an application requires only large file support, then it can remain 32-bit and use
the Large Files interface. It is, however, recommended that the application be
converted to 64-bit to take full advantage of 64-bit capabilities.

24 Multithreaded Programming Guide • May 2002

CHAPTER 2

Basic Threads Programming

The Threads Library
This chapter introduces the basic threads programming routines from the POSIX
threads library, libpthread(3THR). This chapter covers default threads, or threads
with default attribute values, which are the kind of threads that are most often used in
multithreaded programming.

Chapter 3, explains how to create and use threads with nondefault attributes.

The POSIX (libpthread) routines introduced here have programming interfaces that
are similar to the original (libthread) Solaris multithreading library.

The following brief roadmap directs you to the discussion of a particular task and its
associated man page.

� “Create a Default Thread” on page 26
� “Wait for Thread Termination” on page 27
� “Detaching a Thread” on page 29
� “Create a Key for Thread-Specific Data” on page 30
� “Delete the Thread-Specific Data Key” on page 31
� “Set Thread-Specific Data” on page 32
� “Get Thread-Specific Data” on page 33
� “Get the Thread Identifier” on page 36
� “Compare Thread IDs” on page 36
� “Initializing Threads” on page 37
� “Yield Thread Execution” on page 37
� “Set the Thread Priority” on page 38
� “Get the Thread Priority” on page 39
� “Send a Signal to a Thread” on page 39
� “Access the Signal Mask of the Calling Thread” on page 40
� “Forking Safely” on page 41

25

� “Terminate a Thread” on page 41
� “Cancel a Thread” on page 44
� “Enable or Disable Cancellation” on page 45
� “Set Cancellation Type” on page 45
� “Create a Cancellation Point” on page 46
� “Push a Handler Onto the Stack” on page 47
� “Pull a Handler Off the Stack” on page 47

Create a Default Thread
When an attribute object is not specified, it is NULL, and the default thread is created
with the following attributes:

� Unbound
� Nondetached
� With a default stack and stack size
� With a priority of zero

You can also create a default attribute object with pthread_attr_init(), and then
use this attribute object to create a default thread. See the section “Initialize Attributes”
on page 50 for details.

pthread_create(3THR)
Use pthread_create(3THR) to add a new thread of control to the current process.

Prototype:
int pthread_create(pthread_t *tid, const pthread_attr_t *tattr,

void*(*start_routine)(void *), void *arg);

#include <pthread.h>

pthread_attr_t ()tattr;
pthread_t tid;
extern void *start_routine(void *arg);
void *arg;
int ret;

/* default behavior*/
ret = pthread_create(&tid, NULL, start_routine, arg);

/* initialized with default attributes */
ret = pthread_attr_init(&tattr);
/* default behavior specified*/

ret = pthread_create(&tid, &tattr, start_routine, arg);

The pthread_create() function is called with attr having the necessary state
behavior. start_routine is the function with which the new thread begins execution.
When start_routine returns, the thread exits with the exit status set to the value
returned by start_routine (see “pthread_create(3THR)” on page 26).

26 Multithreaded Programming Guide • May 2002

When pthread_create() is successful, the ID of the thread created is stored in the
location referred to as tid.

Creating a thread using a NULL attribute argument has the same effect as using a
default attribute; both create a default thread. When tattr is initialized, it acquires the
default behavior.

Return Values

pthread_create() returns zero when it completes successfully. Any other return
value indicates that an error occurred. When any of the following conditions are
detected, pthread_create() fails and returns the corresponding value.

EAGAIN
A system limit is exceeded, such as when too many LWPs have been created.

EINVAL
The value of tattr is invalid.

Wait for Thread Termination

pthread_join(3THR)
Use pthread_join(3THR) to wait for a thread to terminate.

Prototype:

int pthread_join(thread_t tid, void **status);

#include <pthread.h>

pthread_t tid;
int ret;
void *status;

/* waiting to join thread "tid" with status */
ret = pthread_join(tid, &status);

/* waiting to join thread "tid" without status */

ret = pthread_join(tid, NULL);

The pthread_join() function blocks the calling thread until the specified thread
terminates.

The specified thread must be in the current process and must not be detached. For
information on thread detachment, see “Set Detach State” on page 52.

When status is not NULL, it points to a location that is set to the exit status of the
terminated thread when pthread_join() returns successfully.

Chapter 2 • Basic Threads Programming 27

If multiple threads wait for the same thread to terminate, they all wait until the target
thread terminates, than one thread returns successfully and the others fail with an
error of ESRCH.

After pthread_join() returns, any data storage associated with the thread can be
reclaimed by the application.

Return Values

pthread_join() returns zero when it completes successfully. Any other return
value indicates that an error occurred. When any of the following conditions are
detected, pthread_join() fails and returns the corresponding value.

ESRCH
tid is not a valid, undetached thread in the current process.

EDEADLK
A deadlock would exist, such as a thread waits for itself or thread A waits for
thread B and thread B waits for thread A.

EINVAL
The value of tid is invalid.

Remember that pthread_join() works only for target threads that are
nondetached. When there is no reason to synchronize with the termination of a
particular thread, then that thread should be detached.

A Simple Threads Example
In Example 2–1, one thread executes the procedure at the top, creating a helper thread
that executes the procedure fetch(), which involves a complicated database lookup
and might take some time.

The main thread wants the results of the lookup but has other work to do in the
meantime. So it does those other things and then waits for its helper to complete its
job by executing pthread_join().

An argument, pbe, to the new thread is passed as a stack parameter. This can be done
here because the main thread waits for the spun-off thread to terminate. In general,
though, it is better to use malloc(3C) to allocate storage from the heap instead of
passing an address to thread stack storage, because this address might disappear or be
reassigned if the thread terminated.

EXAMPLE 2–1 A Simple Threads Program

void mainline (...)
{

struct phonebookentry *pbe;

28 Multithreaded Programming Guide • May 2002

EXAMPLE 2–1 A Simple Threads Program (Continued)

pthread_attr_t tattr;
pthread_t helper;
void *status;

pthread_create(&helper, NULL, fetch, &pbe);

/* do something else for a while */

pthread_join(helper, &status);
/* it’s now safe to use result */

}

void *fetch(struct phonebookentry *arg)
{

struct phonebookentry *npbe;
/* fetch value from a database */

npbe = search (prog_name)
if (npbe != NULL)

*arg = *npbe;
pthread_exit(0);

}

struct phonebookentry {
char name[64];
char phonenumber[32];
char flags[16];

}

Detaching a Thread

pthread_detach(3THR)
pthread_detach(3THR) is an alternative to pthread_join(3THR) to reclaim
storage for a thread that is created with a detachstate attribute set to
PTHREAD_CREATE_JOINABLE.

Prototype:

int pthread_detach(thread_t tid);

#include <pthread.h>

pthread_t tid;
int ret;

/* detach thread tid */

ret = pthread_detach(tid);

Chapter 2 • Basic Threads Programming 29

The pthread_detach() function is used to indicate to the implementation that
storage for the thread tid can be reclaimed when the thread terminates. If tid has not
terminated, pthread_detach() does not cause it to terminate. The effect of multiple
pthread_detach() calls on the same target thread is unspecified.

Return Values

pthread_detach() returns zero when it completes successfully. Any other return
value indicates that an error occurred. When any of the following conditions is
detected, pthread_detach() fails and returns the corresponding value.

EINVAL
tid is not a valid thread.

ESRCH
tid is not a valid, undetached thread in the current process.

Create a Key for Thread-Specific Data
Single-threaded C programs have two basic classes of data—local data and global
data. For multithreaded C programs a third class is added—thread-specific data (TSD).
This is very much like global data, except that it is private to a thread.

Thread-specific data is maintained on a per-thread basis. TSD is the only way to define
and refer to data that is private to a thread. Each thread-specific data item is associated
with a key that is global to all threads in the process. Using the key, a thread can access
a pointer (void *) that is maintained per-thread.

pthread_key_create(3THR)
Use pthread_key_create(3THR) to allocate a key that is used to identify
thread-specific data in a process. The key is global to all threads in the process, and all
threads initially have the value NULL associated with the key when it is created.

Call pthread_key_create() once for each key before using the key. There is no
implicit synchronization.

Once a key has been created, each thread can bind a value to the key. The values are
specific to the threads and are maintained for each thread independently. The
per-thread binding is deallocated when a thread terminates if the key was created with
a destructor function.

Prototype:
int pthread_key_create(pthread_key_t *key,

void (*destructor) (void *));

30 Multithreaded Programming Guide • May 2002

#include <pthread.h>

pthread_key_t key;
int ret;

/* key create without destructor */
ret = pthread_key_create(&key, NULL);

/* key create with destructor */

ret = pthread_key_create(&key, destructor);

When pthread_key_create() returns successfully, the allocated key is stored in
the location pointed to by key. The caller must ensure that the storage and access to
this key are properly synchronized.

An optional destructor function, destructor, can be used to free stale storage. When
a key has a non-NULL destructor function and the thread has a non-NULL value
associated with that key, the destructor function is called with the current
associated value when the thread exits. The order in which the destructor functions
are called is unspecified.

Return Values

pthread_key_create() returns zero after completing successfully. Any other
return value indicates that an error occurred. When any of the following conditions
occur, pthread_key_create() fails and returns the corresponding value.

EAGAIN
The key name space is exhausted.

ENOMEM
Not enough virtual memory is available in this process to create a new key.

Delete the Thread-Specific Data Key

pthread_key_delete(3THR)
Use pthread_key_delete(3THR) to destroy an existing thread-specific data key.
Any memory associated with the key can be freed because the key has been
invalidated and will return an error if ever referenced. There is no comparable
function in Solaris threads.

Prototype:

int pthread_key_delete(pthread_key_t key);

#include <pthread.h>

pthread_key_t key;

Chapter 2 • Basic Threads Programming 31

int ret;

/* key previously created */

ret = pthread_key_delete(key);

Once a key has been deleted, any reference to it with the pthread_setspecific()
or pthread_getspecific() call yields undefined results.

It is the responsibility of the programmer to free any thread-specific resources before
calling the delete function. This function does not invoke any of the destructors.

Return Values

pthread_key_delete() returns zero after completing successfully. Any other
return value indicates that an error occurred. When the following condition occurs,
pthread_key_create() fails and returns the corresponding value.

EINVAL
The key value is invalid.

Set Thread-Specific Data

pthread_setspecific(3THR)
Use pthread_setspecific(3THR) to set the thread-specific binding to the specified
thread-specific data key.

Prototype:

int pthread_setspecific(pthread_key_t key, const void *value);

#include <pthread.h>

pthread_key_t key;
void *value;
int ret;

/* key previously created */

ret = pthread_setspecific(key, value);

Return Values

pthread_setspecific() returns zero after completing successfully. Any other
return value indicates that an error occurred. When any of the following conditions
occur, pthread_setspecific() fails and returns the corresponding value.

ENOMEM
Not enough virtual memory is available.

32 Multithreaded Programming Guide • May 2002

EINVAL
key is invalid.

Note – pthread_setspecific() does not free its storage. If a new binding is set,
the existing binding must be freed; otherwise, a memory leak can occur.

Get Thread-Specific Data

pthread_getspecific(3THR)
Use pthread_getspecific(3THR) to get the calling thread’s binding for key, and
store it in the location pointed to by value.

Prototype:

void *pthread_getspecific(pthread_key_t key);

#include <pthread.h>

pthread_key_t key;
void *value;

/* key previously created */

value = pthread_getspecific(key);

Return Values

No errors are returned.

Global and Private Thread-Specific Data Example

Example 2–2 shows an excerpt from a multithreaded program. This code is executed
by any number of threads, but it has references to two global variables, errno and
mywindow, that really should be references to items private to each thread.

EXAMPLE 2–2 Thread-Specific Data—Global but Private

body() {
...

while (write(fd, buffer, size) == -1) {
if (errno != EINTR) {

fprintf(mywindow, "%s\n", strerror(errno));
exit(1);

}

Chapter 2 • Basic Threads Programming 33

EXAMPLE 2–2 Thread-Specific Data—Global but Private (Continued)

}

...

}

References to errno should get the system error code from the routine called by this
thread, not by some other thread. So, references to errno by one thread refer to a
different storage location than references to errno by other threads.

The mywindow variable is intended to refer to a stdio stream connected to a window
that is private to the referring thread. So, as with errno, references to mywindow by
one thread should refer to a different storage location (and, ultimately, a different
window) than references to mywindow by other threads. The only difference here is
that the threads library takes care of errno, but the programmer must somehow make
this work for mywindow.

The next example shows how the references to mywindow work. The preprocessor
converts references to mywindow into invocations of the _mywindow() procedure.

This routine in turn invokes pthread_getspecific(), passing it the mywindow_key
global variable (it really is a global variable) and an output parameter, win, that
receives the identity of this thread’s window.

EXAMPLE 2–3 Turning Global References Into Private References

thread_key_t mywin_key;

FILE *_mywindow(void) {
FILE *win;

win = pthread_getspecific(mywin_key);
return(win);

}

#define mywindow _mywindow()

void routine_uses_win(FILE *win) {
...

}

void thread_start(...) {
...
make_mywin();
...
routine_uses_win(mywindow)
...

}

34 Multithreaded Programming Guide • May 2002

The mywin_key variable identifies a class of variables for which each thread has its
own private copy; that is, these variables are thread-specific data. Each thread calls
make_mywin() to initialize its window and to arrange for its instance of mywindow to
refer to it.

Once this routine is called, the thread can safely refer to mywindow and, after
_mywindow(), the thread gets the reference to its private window. So, references to
mywindow behave as if they were direct references to data private to the thread.

Example 2–4 shows how to set this up.

EXAMPLE 2–4 Initializing the Thread-Specific Data

void make_mywindow(void) {
FILE **win;
static pthread_once_t mykeycreated = PTHREAD_ONCE_INIT;

pthread_once(&mykeycreated, mykeycreate);

win = malloc(sizeof(*win));
create_window(win, ...);

pthread_setspecific(mywindow_key, win);
}

void mykeycreate(void) {
pthread_key_create(&mywindow_key, free_key);

}

void free_key(void *win) {
free(win);

}

First, get a unique value for the key, mywin_key. This key is used to identify the
thread-specific class of data. So, the first thread to call make_mywin() eventually calls
pthread_key_create(), which assigns to its first argument a unique key. The
second argument is a destructor function that is used to deallocate a thread’s
instance of this thread-specific data item once the thread terminates.

The next step is to allocate the storage for the caller’s instance of this thread-specific
data item. Having allocated the storage, a call is made to the create_window()
routine, which sets up a window for the thread and sets the storage pointed to by win
to refer to it. Finally, a call is made to pthread_setspecific(), which associates
the value contained in win (that is, the location of the storage containing the reference
to the window) with the key.

After this, whenever this thread calls pthread_getspecific(), passing the global
key, it gets the value that was associated with this key by this thread when it called
pthread_setspecific().

Chapter 2 • Basic Threads Programming 35

When a thread terminates, calls are made to the destructor functions that were set
up in pthread_key_create(). Each destructor function is called only if the
terminating thread established a value for the key by calling
pthread_setspecific().

Get the Thread Identifier

pthread_self(3THR)
Use pthread_self(3THR) to get the thread identifier of the calling thread.

Prototype:

pthread_t pthread_self(void);

#include <pthread.h>

pthread_t tid;

tid = pthread_self();

Return Values

pthread_self() returns the thread identifier of the calling thread.

Compare Thread IDs

pthread_equal(3THR)
Use pthread_equal(3THR) to compare the thread identification numbers of two
threads.

Prototype:

int pthread_equal(pthread_t tid1, pthread_t tid2);

#include <pthread.h>

pthread_t tid1, tid2;
int ret;

ret = pthread_equal(tid1, tid2);

Return Values

pthread_equal() returns a nonzero value when tid1 and tid2 are equal; otherwise,
zero is returned. When either tid1 or tid2 is an invalid thread identification number,
the result is unpredictable.

36 Multithreaded Programming Guide • May 2002

Initializing Threads

pthread_once(3THR)
Use pthread_once(3THR) to call an initialization routine the first time
pthread_once(3THR) is called. Subsequent calls to pthread_once() have no
effect.

Prototype:
int pthread_once(pthread_once_t *once_control,

void (*init_routine)(void));

#include <pthread.h>

pthread_once_t once_control = PTHREAD_ONCE_INIT;
int ret;

ret = pthread_once(&once_control, init_routine);

The once_control parameter determines whether the associated initialization routine
has been called.

Return Values

pthread_once() returns zero after completing successfully. Any other return value
indicates that an error occurred. When the following condition occurs,
pthread_once() fails and returns the corresponding value.

EINVAL
once_control or init_routine is NULL.

Yield Thread Execution

sched_yield(3RT)
Use sched_yield(3RT) to cause the current thread to yield its execution in favor of
another thread with the same or greater priority.

Prototype:

int sched_yield(void);

#include <sched.h>

int ret;

Chapter 2 • Basic Threads Programming 37

ret = sched_yield();

Return Values

sched_yield() returns zero after completing successfully. Otherwise -1 is returned
and errno is set to indicate the error condition.

ENOSYS
sched_yield(3RT) is not supported in this implementation.

Set the Thread Priority

pthread_setschedparam(3THR)
Use pthread_setschedparam(3THR) to modify the priority of an existing thread.
This function has no effect on scheduling policy.

Prototype:
int pthread_setschedparam(pthread_t tid, int policy,

const struct sched_param *param);

#include <pthread.h>

pthread_t tid;
int ret;
struct sched_param param;
int priority;

/* sched_priority will be the priority of the thread */
sched_param.sched_priority = priority;

/* only supported policy, others will result in ENOTSUP */
policy = SCHED_OTHER;

/* scheduling parameters of target thread */

ret = pthread_setschedparam(tid, policy, ¶m);

Return Values

pthread_setschedparam() returns zero after completing successfully. Any other
return value indicates that an error occurred. When either of the following conditions
occurs, the pthread_setschedparam() function fails and returns the
corresponding value.

EINVAL
The value of the attribute being set is not valid.

38 Multithreaded Programming Guide • May 2002

ENOTSUP
An attempt was made to set the attribute to an unsupported value.

Get the Thread Priority

pthread_getschedparam(3THR)
pthread_getschedparam(3THR) gets the priority of the existing thread.

Prototype:
int pthread_getschedparam(pthread_t tid, int policy,

struct schedparam *param);

#include <pthread.h>

pthread_t tid;
sched_param param;
int priority;
int policy;
int ret;

/* scheduling parameters of target thread */
ret = pthread_getschedparam (tid, &policy, ¶m);

/* sched_priority contains the priority of the thread */

priority = param.sched_priority;

Return Values

pthread_getschedparam() returns zero after completing successfully. Any other
return value indicates that an error occurred. When the following condition occurs, the
function fails and returns the corresponding value.

ESRCH
The value specified by tid does not refer to an existing thread.

Send a Signal to a Thread

pthread_kill(3THR)
Use pthread_kill(3THR) to send a signal to a thread.

Prototype:

int pthread_kill(thread_t tid, int sig);

Chapter 2 • Basic Threads Programming 39

#include <pthread.h>
#include <signal.h>
int sig;
pthread_t tid;
int ret;

ret = pthread_kill(tid, sig);

pthread_kill() sends the signal sig to the thread specified by tid. tid must be a
thread within the same process as the calling thread. The sig argument must be from
the list given in signal(5).

When sig is zero, error checking is performed but no signal is actually sent. This can be
used to check the validity of tid.

Return Values

pthread_kill() returns zero after completing successfully. Any other return value
indicates that an error occurred. When either of the following conditions occurs,
pthread_kill() fails and returns the corresponding value.

EINVAL
sig is not a valid signal number.

ESRCH
tid cannot be found in the current process.

Access the Signal Mask of the Calling Thread

pthread_sigmask(3THR)
Use pthread_sigmask(3THR) to change or examine the signal mask of the calling
thread.

Prototype:

int pthread_sigmask(int how, const sigset_t *new, sigset_t *old);

#include <pthread.h>
#include <signal.h>
int ret;
sigset_t old, new;

ret = pthread_sigmask(SIG_SETMASK, &new, &old); /* set new mask */
ret = pthread_sigmask(SIG_BLOCK, &new, &old); /* blocking mask */

ret = pthread_sigmask(SIG_UNBLOCK, &new, &old); /* unblocking */

how determines how the signal set is changed. It can have one of the following values:

40 Multithreaded Programming Guide • May 2002

� SIG_BLOCK—Add new to the current signal mask, where new indicates the set of
signals to block.

� SIG_UNBLOCK—Delete new from the current signal mask, where new indicates the
set of signals to unblock.

� SIG_SETMASK—Replace the current signal mask with new, where new indicates the
new signal mask.

When the value of new is NULL, the value of how is not significant and the signal mask
of the thread is unchanged. So, to inquire about currently blocked signals, assign a
NULL value to the new argument.

The old variable points to the space where the previous signal mask is stored, unless it
is NULL.

Return Values

pthread_sigmask() returns zero when it completes successfully. Any other return
value indicates that an error occurred. When the following condition occurs,
pthread_sigmask() fails and returns the corresponding value.

EINVAL
The value of how is not defined.

Forking Safely

pthread_atfork(3THR)
See the discussion about pthread_atfork(3THR) in “The
Solution—pthread_atfork(3THR)” on page 138.

Prototype:

int pthread_atfork(void (*prepare) (void), void (*parent) (void),

void (*child) (void));

Terminate a Thread

pthread_exit(3THR)
Use pthread_exit(3THR) to terminate a thread.

Chapter 2 • Basic Threads Programming 41

Prototype:

void pthread_exit(void *status);

#include <pthread.h>

void *status;

pthread_exit(status); /* exit with status */

The pthread_exit() function terminates the calling thread. All thread-specific data
bindings are released. If the calling thread is not detached, then the thread’s ID and
the exit status specified by status are retained until the thread is waited for via
pthread_join(). Otherwise, status is ignored and the thread’s ID can be reclaimed
immediately. For information on thread detachment, see “Set Detach State”
on page 52.

Return Values

The calling thread terminates with its exit status set to the contents of status.

Finishing Up
A thread can terminate its execution in the following ways:

� By returning from its first (outermost) procedure, the threads start routine; see
pthread_create(3THR)

� By calling pthread_exit(), supplying an exit status

� By termination with POSIX cancel functions; see pthread_cancel()

The default behavior of a thread is to linger until some other thread has acknowledged
its demise by “joining” with it. This is the same as the default pthread_create()
attribute being nondetached; see pthread_detach(3THR). The result of the join is
that the joining thread picks up the exit status of the dying thread and the dying
thread vanishes.

An important special case arises when the initial thread — the one calling main(),—
returns from calling main() or calls exit(3C). This action causes the entire process
to be terminated, along with all its threads. So take care to ensure that the initial
thread does not return from main() prematurely.

Note that when the main thread merely calls pthread_exit(3THR), it terminates
only itself—the other threads in the process, as well as the process, continue to exist.
(The process terminates when all threads terminate.)

42 Multithreaded Programming Guide • May 2002

Cancellation
Cancellation allows a thread to terminate the execution of any other thread, or all
threads, in the process. Cancellation is an option when all further operations of a
related set of threads are undesirable or unnecessary.

One example of thread cancellation is an asynchronously generated cancel condition,
such as, when a user requesting to close or exit some running application. Another
example is the completion of a task undertaken by a number of threads. One of the
threads might ultimately complete the task while the others continue to operate. Since
they are serving no purpose at that point, they all should be cancelled.

There are dangers in performing cancellations. Most deal with properly restoring
invariants and freeing shared resources. A thread that is cancelled without care might
leave a mutex in a locked state, leading to a deadlock. Or it might leave a region of
memory allocated with no way to identify it and therefore no way to free it.

The pthreads library specifies a cancellation interface that permits or forbids
cancellation programmatically. The library defines the set of points at which
cancellation can occur (cancellation points). It also allows the scope of cancellation
handlers, which provide clean up services, to be defined so that they are sure to operate
when and where intended.

Placement of cancellation points and the effects of cancellation handlers must be based
on an understanding of the application. A mutex is explicitly not a cancellation point
and should be held only the minimal essential time.

Limit regions of asynchronous cancellation to sequences with no external
dependencies that could result in dangling resources or unresolved state conditions.
Take care to restore cancellation state when returning from some alternate, nested
cancellation state. The interface provides features to facilitate restoration:
pthread_setcancelstate(3THR) preserves the current cancel state in a
referenced variable; pthread_setcanceltype(3THR) preserves the current cancel
type in the same way.

Cancellations can occur under three different circumstances:

� Asynchronously

� At various points in the execution sequence as defined by the standard

� At discrete points specified by the application

By default, cancellation can occur only at well-defined points as defined by the POSIX
standard.

In all cases, take care that resources and state are restored to a condition consistent
with the point of origin.

Chapter 2 • Basic Threads Programming 43

Cancellation Points
Be careful to cancel a thread only when cancellation is safe. The pthreads standard
specifies several cancellation points, including:

� Programmatically establish a thread cancellation point through a
pthread_testcancel(3THR) call.

� Threads waiting for the occurrence of a particular condition in
pthread_cond_wait(3THR) or pthread_cond_timedwait(3THR).

� Threads waiting for termination of another thread in pthread_join(3THR).

� Threads blocked on sigwait(2).

� Some standard library calls. In general, these are functions in which threads can
block; see the man page cancellation(3THR) for a list.

Cancellation is enabled by default. At times you might want an application to disable
cancellation. This has the result of deferring all cancellation requests until they are
enabled again.

See “pthread_setcancelstate(3THR)” on page 45 for information about disabling
cancellation.

Cancel a Thread

pthread_cancel(3THR)
Use pthread_cancel(3THR) to cancel a thread.

Prototype:

int pthread_cancel(pthread_t thread);

#include <pthread.h>

pthread_t thread;
int ret;

ret = pthread_cancel(thread);

How the cancellation request is treated depends on the state of the target thread. Two
functions, pthread_setcancelstate(3THR) and
pthread_setcanceltype(3THR), determine that state.

Return Values

pthread_cancel() returns zero after completing successfully. Any other return
value indicates that an error occurred. When the following condition occurs, the
function fails and returns the corresponding value.

44 Multithreaded Programming Guide • May 2002

ESRCH
No thread could be found corresponding to that specified by the given thread ID.

Enable or Disable Cancellation

pthread_setcancelstate(3THR)
Use pthread_setcancelstate(3THR) to enable or disable thread cancellation.
When a thread is created, thread cancellation is enabled by default.

Prototype:

int pthread_setcancelstate(int state, int *oldstate);

#include <pthread.h>

int oldstate;
int ret;

/* enabled */
ret = pthread_setcancelstate(PTHREAD_CANCEL_ENABLE, &oldstate);

/* disabled */

ret = pthread_setcancelstate(PTHREAD_CANCEL_DISABLE, &oldstate);

Return Values

pthread_setcancelstate() returns zero after completing successfully. Any other
return value indicates that an error occurred. When the following condition occurs, the
pthread_setcancelstate() function fails and returns the corresponding value.

EINVAL
The state is not PTHREAD_CANCEL_ENABLE or PTHREAD_CANCEL_DISABLE.

Set Cancellation Type

pthread_setcanceltype(3THR)
Use pthread_setcanceltype(3THR) to set the cancellation type to either deferred
or asynchronous mode. When a thread is created, the cancellation type is set to
deferred mode by default. In deferred mode, the thread can be cancelled only at
cancellation points. In asynchronous mode, a thread can be cancelled at any point
during its execution. Using asynchronous mode is discouraged.

Chapter 2 • Basic Threads Programming 45

Prototype:

int pthread_setcanceltype(int type, int *oldtype);

#include <pthread.h>

int oldtype;
int ret;

/* deferred mode */
ret = pthread_setcanceltype(PTHREAD_CANCEL_DEFERRED, &oldtype);

/* async mode*/

ret = pthread_setcanceltype(PTHREAD_CANCEL_ASYNCHRONOUS, &oldtype);

Return Values

pthread_setcanceltype() returns zero after completing successfully. Any other
return value indicates that an error occurred. When the following condition occurs, the
function fails and returns the corresponding value.

EINVAL
The type is not PTHREAD_CANCEL_DEFERRED or
PTHREAD_CANCEL_ASYNCHRONOUS.

Create a Cancellation Point

pthread_testcancel(3THR)
Use pthread_testcancel(3THR) to establish a cancellation point for a thread.

Prototype:

void pthread_testcancel(void);

#include <pthread.h>

pthread_testcancel();

The pthread_testcancel() function is effective when thread cancellation is
enabled and in deferred mode. Calling this function while cancellation is disabled has
no effect.

Be careful to insert pthread_testcancel() only in sequences where it is safe to
cancel a thread. In addition to programmatically establishing cancellation points
through the pthread_testcancel() call, the pthreads standard specifies several
cancellation points. See “Cancellation Points” on page 44 for more details.

46 Multithreaded Programming Guide • May 2002

There is no return value.

Push a Handler Onto the Stack
Use cleanup handlers to restore conditions to a state consistent with that at the point
of origin, such as cleaning up allocated resources and restoring invariants. Use the
pthread_cleanup_push(3THR) and pthread_cleanup_pop(3THR) functions to
manage the handlers.

Cleanup handlers are pushed and popped in the same lexical scope of a program.
They should always match; otherwise compiler errors will be generated.

pthread_cleanup_push(3THR)
Use pthread_cleanup_push(3THR) to push a cleanup handler onto a cleanup stack
(LIFO).

Prototype:

void pthread_cleanup_push(void(*routine)(void *), void *args);

#include <pthread.h>

/* push the handler "routine" on cleanup stack */

pthread_cleanup_push (routine, arg);

Pull a Handler Off the Stack

pthread_cleanup_pop(3THR)
Use pthread_cleanup_pop(3THR) to pull the cleanup handler off the cleanup
stack.

A nonzero argument in the pop function removes the handler from the stack and
executes it. An argument of zero pops the handler without executing it.

pthread_cleanup_pop() is effectively called with a nonzero argument if a thread
either explicitly or implicitly calls pthread_exit(3THR) or if the thread accepts a cancel
request.

Prototype:

void pthread_cleanup_pop(int execute);

#include <pthread.h>

/* pop the "func" out of cleanup stack and execute "func" */

Chapter 2 • Basic Threads Programming 47

pthread_cleanup_pop (1);

/* pop the "func" and DONT execute "func" */

pthread_cleanup_pop (0);

There are no return values.

48 Multithreaded Programming Guide • May 2002

CHAPTER 3

Thread Create Attributes

The previous chapter covered the basics of threads creation using default attributes.
This chapter discusses setting attributes at thread creation time.

Note that only pthreads uses attributes and cancellation, so the API covered in this
chapter is for POSIX threads only. Otherwise, the functionality for Solaris threads and
pthreads is largely the same. (See Chapter 9, Programming With Solaris Threads, for
more information about similarities and differences.)

� “Initialize Attributes” on page 50
� “Destroy Attributes” on page 52
� “Set Detach State” on page 52
� “Get Detach State” on page 53
� “Set Stack Guard Size” on page 54
� “Get Stack Guard Size” on page 55
� “Set Scope” on page 56
� “Get Scope” on page 57
� “Set Thread Concurrency Level” on page 57
� “Get Thread Concurrency Level” on page 58
� “Set Scheduling Policy” on page 58
� “Get Scheduling Policy” on page 59
� “Set Inherited Scheduling Policy” on page 60
� “Get Inherited Scheduling Policy” on page 61
� “Set Scheduling Parameters” on page 61
� “Get Scheduling Parameters” on page 62
� “Set Stack Size” on page 64
� “Get Stack Size” on page 65
� “Set Stack Address” on page 67
� “Get Stack Address” on page 68

49

Attributes
Attributes are a way to specify behavior that is different from the default. When a
thread is created with pthread_create(3THR) or when a synchronization variable
is initialized, an attribute object can be specified. The defaults are usually sufficient.

An attribute object is opaque, and cannot be directly modified by assignments. A set of
functions is provided to initialize, configure, and destroy each object type.

Once an attribute is initialized and configured, it has process-wide scope. The
suggested method for using attributes is to configure all required state specifications at
one time in the early stages of program execution. The appropriate attribute object can
then be referred to as needed.

Using attribute objects has two primary advantages.

� First, it adds to code portability.

Even though supported attributes might vary between implementations, you need
not modify function calls that create thread entities because the attribute object is
hidden from the interface.

If the target port supports attributes that are not found in the current port,
provision must be made to manage the new attributes. This is an easy porting task
though, because attribute objects need only be initialized once in a well-defined
location.

� Second, state specification in an application is simplified.

As an example, consider that several sets of threads might exist within a process,
each providing a separate service, and each with its own state requirements.

At some point in the early stages of the application, a thread attribute object can be
initialized for each set. All future thread creations will then refer to the attribute
object initialized for that type of thread. The initialization phase is simple and
localized, and any future modifications can be made quickly and reliably.

Attribute objects require attention at process exit time. When the object is initialized,
memory is allocated for it. This memory must be returned to the system. The
pthreads standard provides function calls to destroy attribute objects.

Initialize Attributes

pthread_attr_init(3THR)
Use pthread_attr_init(3THR) to initialize object attributes to their default values.
The storage is allocated by the thread system during execution.

50 Multithreaded Programming Guide • May 2002

Prototype:

int pthread_attr_init(pthread_attr_t *tattr);

#include <pthread.h>

pthread_attr_t tattr;
int ret;

/* initialize an attribute to the default value */

ret = pthread_attr_init(&tattr);

Table 3–1 shows the default values for attributes (tattr) .

TABLE 3–1 Default Attribute Values for tattr

Attribute Value Result

scope PTHREAD_SCOPE_PROCESS New thread is unbound – not
permanently attached to LWP.

detachstate PTHREAD_CREATE_JOINABLE Exit status and thread are
preserved after the thread
terminates.

stackaddr NULL New thread has system-allocated
stack address.

stacksize 0 New thread has system-defined
stack size.

priority 0 New thread has priority 0.

inheritsched PTHREAD_EXPLICIT_SCHED New thread does not inherit
parent thread scheduling priority.

schedpolicy SCHED_OTHER New thread uses Solaris-defined
fixed priorities for synchronization
object contention; threads run
until preempted or until they
block or yield.

Return Values

pthread_attr_init() returns zero after completing successfully. Any other return
value indicates that an error occurred. If the following condition occurs, the function
fails and returns the corresponding value.

ENOMEM
Returned when there is not enough memory to initialize the thread attributes
object.

Chapter 3 • Thread Create Attributes 51

Destroy Attributes

pthread_attr_destroy(3THR)
Use pthread_attr_destroy(3THR) to remove the storage allocated during
initialization. The attribute object becomes invalid.

Prototype:

int pthread_attr_destroy(pthread_attr_t *tattr);

#include <pthread.h>

pthread_attr_t tattr;
int ret;

/* destroy an attribute */

ret = pthread_attr_destroy(&tattr);

Return Values

pthread_attr_destroy() returns zero after completing successfully. Any other
return value indicates that an error occurred. If the following condition occurs, the
function fails and returns the corresponding value.

EINVAL
Indicates that the value of tattr was not valid.

Set Detach State

pthread_attr_setdetachstate(3THR)
When a thread is created detached (PTHREAD_CREATE_DETACHED), its thread ID and
other resources can be reused as soon as the thread terminates. Use
pthread_attr_setdetachstate(3THR) when the calling thread does not want to
wait for the thread to terminate.

When a thread is created nondetached (PTHREAD_CREATE_JOINABLE), it is assumed
that you will be waiting for it. That is, it is assumed that you will be executing a
pthread_join() on the thread.

Whether a thread is created detached or nondetached, the process does not exit until
all threads have exited. See “Finishing Up” on page 42 for a discussion of process
termination caused by premature exit from main().

Prototype:

int pthread_attr_setdetachstate(pthread_attr_t *tattr,int detachstate);

52 Multithreaded Programming Guide • May 2002

#include <pthread.h>

pthread_attr_t tattr;
int ret;

/* set the thread detach state */

ret = pthread_attr_setdetachstate(&tattr,PTHREAD_CREATE_DETACHED);

Note – When there is no explicit synchronization to prevent it, a newly created,
detached thread can die and have its thread ID reassigned to another new thread
before its creator returns from pthread_create().

For nondetached (PTHREAD_CREATE_JOINABLE) threads, it is very important that
some thread join with it after it terminates—otherwise the resources of that thread are
not released for use by new threads. This commonly results in a memory leak. So
when you do not want a thread to be joined, create it as a detached thread.

EXAMPLE 3–1 Creating a Detached Thread

#include <pthread.h>

pthread_attr_t tattr;
pthread_t tid;
void *start_routine;
void arg
int ret;

/* initialized with default attributes */
ret = pthread_attr_init()(&tattr);
ret = pthread_attr_setdetachstate()(&tattr,PTHREAD_CREATE_DETACHED);
ret = pthread_create()(&tid, &tattr, start_routine, arg);

Return Values

pthread_attr_setdetachstate() returns zero after completing successfully. Any
other return value indicates that an error occurred. If the following condition occurs,
the function fails and returns the corresponding value.

EINVAL
Indicates that the value of detachstate or tattr was not valid.

Get Detach State

pthread_attr_getdetachstate(3THR)
Use pthread_attr_getdetachstate(3THR) to retrieve the thread create state,
which can be either detached or joined.

Chapter 3 • Thread Create Attributes 53

Prototype:

int pthread_attr_getdetachstate(const pthread_attr_t *tattr,

int *detachstate;

#include <pthread.h>

pthread_attr_t tattr;
int detachstate;
int ret;

/* get detachstate of thread */

ret = pthread_attr_getdetachstate (&tattr, &detachstate);

Return Values

pthread_attr_getdetachstate() returns zero after completing successfully. Any
other return value indicates that an error occurred. If the following condition occurs,
the function fails and returns the corresponding value.

EINVAL
Indicates that the value of detachstate is NULL or tattr is invalid.

Set Stack Guard Size

pthread_attr_setguardsize(3THR)
pthread_attr_setguardsize(3THR) sets the guardsize of the attr object.

The guardsize argument provides protection against overflow of the stack pointer. If a
thread’s stack is created with guard protection, the implementation allocates extra
memory at the overflow end of the stack as a buffer against stack overflow of the stack
pointer. If an application overflows into this buffer an error results (possibly in a
SIGSEGV signal being delivered to the thread).

The guardsize attribute is provided to the application for two reasons:

1. Overflow protection can potentially result in wasted system resources. An
application that creates a large number of threads, and knows its threads will never
overflow their stack, can save system resources by turning off guard areas.

2. When threads allocate large data structures on stack, a large guard area may be
needed to detect stack overflow.

If guardsize is zero, a guard area will not be provided for threads created with attr. If
guardsize is greater than zero, a guard area of at least size guardsize bytes is provided
for each thread created with attr. By default, a thread has an implementation-defined,
non-zero guard area.

54 Multithreaded Programming Guide • May 2002

A conforming implementation is permitted to round up the value contained in
guardsize to a multiple of the configurable system variable PAGESIZE (see PAGESIZE
in sys/mman.h). If an implementation rounds up the value of guardsize to a multiple
of PAGESIZE, a call to pthread_attr_getguardsize() specifying attr will store,
in guardsize, the guard size specified in the previous call to
pthread_attr_setguardsize().

#include <pthread.h>

int pthread_attr_setguardsize(pthread_attr_t *attr, size_t guardsize);

Return Value

pthread_attr_setguardsize() fails if:

EINVAL
The argument attr is invalid, the argument guardsize is invalid, or the argument
guardsize contains an invalid value.

Get Stack Guard Size

pthread_attr_getguardsize(3THR)
pthread_attr_getguardsize(3THR) gets the guardsize of the attr object.

A conforming implementation is permitted to round up the value contained in
guardsize to a multiple of the configurable system variable PAGESIZE (see PAGESIZE
in sys/mman.h). If an implementation rounds up the value of guardsize to a multiple
of PAGESIZE, a call to pthread_attr_getguardsize() specifying attr will store,
in guardsize, the guard size specified in the previous call to
pthread_attr_setguardsize().

#include <pthread.h>

int pthread_attr_getguardsize(const pthread_attr_t *attr,

size_t *guardsize);

Return Value

pthread_attr_getguardsize() fails if:

EINVAL
The argument attr is invalid, the argument guardsize is invalid, or the argument
guardsize contains an invalid value.

Chapter 3 • Thread Create Attributes 55

Set Scope

pthread_attr_setscope(3THR)
Use pthread_attr_setscope(3THR) to create a bound thread
(PTHREAD_SCOPE_SYSTEM) or an unbound thread (PTHREAD_SCOPE_PROCESS).

Note – Both thread types are accessible only within a given process.

Prototype:

int pthread_attr_setscope(pthread_attr_t *tattr,int scope);

#include <pthread.h>

pthread_attr_t tattr;
int ret;

/* bound thread */
ret = pthread_attr_setscope(&tattr, PTHREAD_SCOPE_SYSTEM);

/* unbound thread */

ret = pthread_attr_setscope(&tattr, PTHREAD_SCOPE_PROCESS);

Notice that there are three function calls in this example: one to initialize the
attributes, one to set any variations from the default attributes, and one to create the
pthreads.

#include <pthread.h>

pthread_attr_t attr;
pthread_t tid;
void start_routine;
void arg;
int ret;

/* initialized with default attributes */
ret = pthread_attr_init (&tattr);

/* BOUND behavior */
ret = pthread_attr_setscope(&tattr, PTHREAD_SCOPE_SYSTEM);

ret = pthread_create (&tid, &tattr, start_routine, arg);

Return Values

pthread_attr_setscope() returns zero after completing successfully. Any other
return value indicates that an error occurred. If the following conditions occur, the
function fails and returns the corresponding value.

56 Multithreaded Programming Guide • May 2002

EINVAL
An attempt was made to set tattr to a value that is not valid.

Get Scope

pthread_attr_getscope(3THR)
Use pthread_attr_getscope(3THR) to retrieve the thread scope, which indicates
whether the thread is bound or unbound.

Prototype:

int pthread_attr_getscope(pthread_attr_t *tattr, int *scope);

#include <pthread.h>

pthread_attr_t tattr;
int scope;
int ret;

/* get scope of thread */

ret = pthread_attr_getscope(&tattr, &scope);

Return Values

pthread_attr_getscope() returns zero after completing successfully. Any other
return value indicates that an error occurred. If the following condition occurs, the
function fails and returns the corresponding value.

EINVAL
The value of scope is NULL or tattr is invalid.

Set Thread Concurrency Level

pthread_setconcurrency(3THR)
pthread_setconcurrency(3THR) is provided for standards compliance. It is used
by an application to inform the threads library of its desired concurrency level. For the
threads implementation introduced in Solaris 9, this interface has no effect; all
runnable threads are attached to LWPs.

#include <pthread.h>

int pthread_setconcurrency(int new_level);

Chapter 3 • Thread Create Attributes 57

Return Value

pthread_setconcurrency() fails if:

EINVAL
The value specified by new_level is negative.

EAGAIN
The value specified by new_level would cause a system resource to be exceeded.

Get Thread Concurrency Level

pthread_getconcurrency(3THR)
pthread_getconcurrency(3THR) returns the value set by a previous call to
pthread_setconcurrency(). If the pthread_setconcurrency() function was
not previously called, pthread_getconcurrency() returns zero.

#include <pthread.h>

int pthread_getconcurrency(void);

Return Value

pthread_getconcurrency() always returns the concurrency level set by a
previous call to pthread_setconcurrency(). If pthread_setconcurrency()
has never been called, pthread_getconcurrency() returns zero.

Set Scheduling Policy

pthread_attr_setschedpolicy(3THR)
Use pthread_attr_setschedpolicy(3THR) to set the scheduling policy. The
POSIX standard specifies scheduling policy attributes of SCHED_FIFO
(first-in-first-out), SCHED_RR (round-robin), or SCHED_OTHER (an
implementation-defined method).

� SCHED_FIFO

First-In-First-Out; threads whose contention scope is system
(PTHREAD_SCOPE_SYSTEM) are in real-time (RT) scheduling class if the calling
process has an effective user id of 0. These threads, if not preempted by a higher
priority thread, will proceed until they yield or block. SCHED_FIFO for threads

58 Multithreaded Programming Guide • May 2002

that have a contention scope of process (PTHREAD_SCOPE_PROCESS) or whose
calling process does not have an effective user id of 0 is based on the TS scheduling
class.

� SCHED_RR

Round-Robin; threads whose contention scope is system
(PTHREAD_SCOPE_SYSTEM) are in real-time (RT) scheduling class if the calling
process has an effective user id of 0. These threads, if not preempted by a higher
priority thread, and if they do not yield or block, will execute for a time period
determined by the system. SCHED_RR for threads that have a contention scope of
process (PTHREAD_SCOPE_PROCESS) or whose calling process does not have an
effective user id of 0 is based on the TS scheduling class.

SCHED_FIFO and SCHED_RR are optional in POSIX, and are supported for real time
bound threads only.

For a discussion of scheduling, see the section “Scheduling” on page 21.

Prototype:

int pthread_attr_setschedpolicy(pthread_attr_t *tattr, int policy);

#include <pthread.h>

pthread_attr_t tattr;
int policy;
int ret;

/* set the scheduling policy to SCHED_OTHER */

ret = pthread_attr_setschedpolicy(&tattr, SCHED_OTHER);

Return Values

pthread_attr_setschedpolicy() returns zero after completing successfully. Any
other return value indicates that an error occurred. When either of the following
conditions occurs, the function fails and returns the corresponding value.

EINVAL
An attempt was made to set tattr to a value that is not valid.

ENOTSUP
An attempt was made to set the attribute to an unsupported value.

Get Scheduling Policy

pthread_attr_getschedpolicy(3THR)
Use pthread_attr_getschedpolicy(3THR) to retrieve the scheduling policy.

Chapter 3 • Thread Create Attributes 59

Prototype:

int pthread_attr_getschedpolicy(pthread_attr_t *tattr, int *policy);

#include <pthread.h>

pthread_attr_t tattr;
int policy;
int ret;

/* get scheduling policy of thread */

ret = pthread_attr_getschedpolicy (&tattr, &policy);

Return Values

pthread_attr_getschedpolicy() returns zero after completing successfully. Any
other return value indicates that an error occurred. If the following condition occurs,
the function fails and returns the corresponding value.

EINVAL
The parameter policy is NULL or tattr is invalid.

Set Inherited Scheduling Policy

pthread_attr_setinheritsched(3THR)
Use pthread_attr_setinheritsched(3THR) to set the inherited scheduling
policy.

An inherit value of PTHREAD_INHERIT_SCHED means that the scheduling policies
defined in the creating thread are to be used, and any scheduling attributes defined in
the pthread_create() call are to be ignored. If PTHREAD_EXPLICIT_SCHED (the
default) is used, the attributes from the pthread_create() call are to be used.

Prototype:

int pthread_attr_setinheritsched(pthread_attr_t *tattr, int inherit);

#include <pthread.h>

pthread_attr_t tattr;
int inherit;
int ret;

/* use the current scheduling policy */

ret = pthread_attr_setinheritsched(&tattr, PTHREAD_EXPLICIT_SCHED);

60 Multithreaded Programming Guide • May 2002

Return Values

pthread_attr_setinheritsched() returns zero after completing successfully.
Any other return value indicates that an error occurred. When either of the following
conditions occurs, the function fails and returns the corresponding value.

EINVAL
An attempt was made to set tattr to a value that is not valid.

ENOTSUP
An attempt was made to set the attribute to an unsupported value.

Get Inherited Scheduling Policy

pthread_attr_getinheritsched(3THR)
pthread_attr_getinheritsched(3THR) returns the scheduling policy set by
pthread_attr_setinheritsched().

Prototype:

int pthread_attr_getinheritsched(pthread_attr_t *tattr, int *inherit);

#include <pthread.h>

pthread_attr_t tattr;
int inherit;
int ret;

/* get scheduling policy and priority of the creating thread */

ret = pthread_attr_getinheritsched (&tattr, &inherit);

Return Values

pthread_attr_getinheritsched() returns zero after completing successfully.
Any other return value indicates that an error occurred. If the following condition
occurs, the function fails and returns the corresponding value.

EINVAL
The parameter inherit is NULL or tattr is invalid.

Set Scheduling Parameters

pthread_attr_setschedparam(3THR)
pthread_attr_setschedparam(3THR) sets the scheduling parameters.

Chapter 3 • Thread Create Attributes 61

Scheduling parameters are defined in the param structure; only priority is supported.
Newly created threads run with this priority.

Prototype:

int pthread_attr_setschedparam(pthread_attr_t *tattr,
const struct sched_param *param);

#include <pthread.h>

pthread_attr_t tattr;
int newprio;
sched_param param;
newprio = 30;

/* set the priority; others are unchanged */
param.sched_priority = newprio;

/* set the new scheduling param */

ret = pthread_attr_setschedparam (&tattr, ¶m);

Return Values

pthread_attr_setschedparam() returns zero after completing successfully. Any
other return value indicates that an error occurred. If the following conditions occur,
the function fails and returns the corresponding value.

EINVAL
The value of param is NULL or tattr is invalid.

You can manage pthreads priority two ways. You can set the priority attribute before
creating a child thread, or you can change the priority of the parent thread and then
change it back.

Get Scheduling Parameters

pthread_attr_getschedparam(3THR)
pthread_attr_getschedparam(3THR) returns the scheduling parameters defined
by pthread_attr_setschedparam().

Prototype:

int pthread_attr_getschedparam(pthread_attr_t *tattr,
const struct sched_param *param);

#include <pthread.h>

pthread_attr_t attr;

62 Multithreaded Programming Guide • May 2002

struct sched_param param;
int ret;

/* get the existing scheduling param */

ret = pthread_attr_getschedparam (&tattr, ¶m);

Return Values

pthread_attr_getschedparam() returns zero after completing successfully. Any
other return value indicates that an error occurred. If the following condition occurs,
the function fails and returns the corresponding value.

EINVAL
The value of param is NULL or tattr is invalid.

Creating a Thread With a Specified Priority

You can set the priority attribute before creating the thread. The child thread is created
with the new priority that is specified in the sched_param structure (this structure
also contains other scheduling information).

It is always a good idea to get the existing parameters, change the priority, create the
thread, and then reset the priority.

Example 3–2 shows an example of this.

EXAMPLE 3–2 Creating a Prioritized Thread

#include <pthread.h>
#include <sched.h>

pthread_attr_t tattr;
pthread_t tid;
int ret;
int newprio = 20;
sched_param param;

/* initialized with default attributes */
ret = pthread_attr_init (&tattr);

/* safe to get existing scheduling param */
ret = pthread_attr_getschedparam (&tattr, ¶m);

/* set the priority; others are unchanged */
param.sched_priority = newprio;

/* setting the new scheduling param */
ret = pthread_attr_setschedparam (&tattr, ¶m);

/* with new priority specified */

Chapter 3 • Thread Create Attributes 63

EXAMPLE 3–2 Creating a Prioritized Thread (Continued)

ret = pthread_create (&tid, &tattr, func, arg);

Set Stack Size

pthread_attr_setstacksize(3THR)
pthread_attr_setstacksize(3THR) sets the thread stack size.

The stacksize attribute defines the size of the stack (in bytes) that the system will
allocate. The size should not be less than the system-defined minimum stack size. See
“About Stacks” on page 65 for more information.

Prototype:

int pthread_attr_setstacksize(pthread_attr_t *tattr, size_t size);

#include <pthread.h>

pthread_attr_t tattr;
size_t size;
int ret;

size = (PTHREAD_STACK_MIN + 0x4000);

/* setting a new size */

ret = pthread_attr_setstacksize(&tattr, size);

In the example above, size contains the number of bytes for the stack that the new
thread uses. If size is zero, a default size is used. In most cases, a zero value works
best.

PTHREAD_STACK_MIN is the amount of stack space required to start a thread. This
does not take into consideration the threads routine requirements that are needed to
execute application code.

Return Values

pthread_attr_setstacksize() returns zero after completing successfully. Any
other return value indicates that an error occurred. If the following condition occurs,
the function fails and returns the corresponding value.

EINVAL
The value of size is less than PTHREAD_STACK_MIN, or exceeds a system-imposed
limit, or tattr is not valid.

64 Multithreaded Programming Guide • May 2002

Get Stack Size

pthread_attr_getstacksize(3THR)
pthread_attr_getstacksize(3THR) returns the stack size set by
pthread_attr_setstacksize().

Prototype:

int pthread_attr_getstacksize(pthread_attr_t *tattr, size_t *size);

#include <pthread.h>

pthread_attr_t tattr;
size_t size;
int ret;

/* getting the stack size */

ret = pthread_attr_getstacksize(&tattr, &size);

Return Values

pthread_attr_getstacksize() returns zero after completing successfully. Any
other return value indicates that an error occurred. If the following condition occurs,
the function fails and returns the corresponding value.

EINVAL
tattr is not valid.

About Stacks
Typically, thread stacks begin on page boundaries and any specified size is rounded
up to the next page boundary. A page with no access permission is appended to the
overflow end of the stack so that most stack overflows result in sending a SIGSEGV
signal to the offending thread. Thread stacks allocated by the caller are used as is.

When a stack is specified, the thread should also be created
PTHREAD_CREATE_JOINABLE. That stack cannot be freed until the
pthread_join(3THR) call for that thread has returned, because the thread’s stack
cannot be freed until the thread has terminated. The only reliable way to know if such
a thread has terminated is through pthread_join(3THR).

Generally, you do not need to allocate stack space for threads. The threads library
allocates 1 megabyte (for 32 bit) or 2 megabytes (for 64 bit) of virtual memory for each
thread’s stack with no swap space reserved. (The library uses the MAP_NORESERVE
option of mmap() to make the allocations.)

Chapter 3 • Thread Create Attributes 65

Each thread stack created by the threads library has a red zone. The library creates the
red zone by appending a page to the overflow end of a stack to catch stack overflows.
This page is invalid and causes a memory fault if it is accessed. Red zones are
appended to all automatically allocated stacks whether the size is specified by the
application or the default size is used.

Note – Because runtime stack requirements vary, you should be absolutely certain that
the specified stack will satisfy the runtime requirements needed for library calls and
dynamic linking.

There are very few occasions when it is appropriate to specify a stack, its size, or both.
It is difficult even for an expert to know if the right size was specified. This is because
even a program compliant with ABI standards cannot determine its stack size
statically. Its size is dependent on the needs of the particular runtime environment in
which it executes.

Building Your Own Stack
When you specify the size of a thread stack, be sure to account for the allocations
needed by the invoked function and by each function called. The accounting should
include calling sequence needs, local variables, and information structures.

Occasionally you want a stack that is a bit different from the default stack. An obvious
situation is when the thread needs more than the default stack size. A less obvious
situation is when the default stack is too large. You might be creating thousands of
threads and not have enough virtual memory to handle the gigabytes of stack space
that this many default stacks require.

The limits on the maximum size of a stack are often obvious, but what about the limits
on its minimum size? There must be enough stack space to handle all of the stack
frames that are pushed onto the stack, along with their local variables, and so on.

You can get the absolute minimum limit on stack size by calling the macro
PTHREAD_STACK_MIN, which returns the amount of stack space required for a
thread that executes a NULL procedure. Useful threads need more than this, so be very
careful when reducing the stack size.

#include <pthread.h>

pthread_attr_t tattr;
pthread_t tid;
int ret;

size_t size = PTHREAD_STACK_MIN + 0x4000;

/* initialized with default attributes */
ret = pthread_attr_init(&tattr);

66 Multithreaded Programming Guide • May 2002

/* setting the size of the stack also */
ret = pthread_attr_setstacksize(&tattr, size);

/* only size specified in tattr*/

ret = pthread_create(&tid, &tattr, start_routine, arg);

Set Stack Address

pthread_attr_setstackaddr(3THR)
pthread_attr_setstackaddr(3THR) sets the thread stack address.

The stackaddr attribute defines the base of the thread’s stack. If this is set to non-null
(NULL is the default) the system initializes the stack at that address.

Prototype:

int pthread_attr_setstackaddr(pthread_attr_t *tattr,void *stackaddr);

#include <pthread.h>

pthread_attr_t tattr;
void *base;
int ret;

base = (void *) malloc(PTHREAD_STACK_MIN + 0x4000);

/* setting a new address */

ret = pthread_attr_setstackaddr(&tattr, base);

In the previous example, base contains the address for the stack that the new thread
uses. If base is NULL, then pthread_create(3THR) allocates a stack for the new
thread with at least PTHREAD_STACK_MIN bytes.

Return Values

pthread_attr_setstackaddr() returns zero after completing successfully. Any
other return value indicates that an error occurred. If the following condition occurs,
the function fails and returns the corresponding value.

EINVAL
The value of base or tattr is incorrect.

This example shows how to create a thread with a custom stack address and size.

#include <pthread.h>

pthread_attr_t tattr;

Chapter 3 • Thread Create Attributes 67

pthread_t tid;
int ret;
void *stackbase;

/* initialized with default attributes */
ret = pthread_attr_init(&tattr);

/* setting the size of the stack */
ret = pthread_attr_setstacksize(&tattr, size);

/* setting the base address of the stack */
ret = pthread_attr_setstackaddr(&tattr, stackbase);

/* address and size specified */

ret = pthread_create(&tid, &tattr, func, arg);

Get Stack Address

pthread_attr_getstackaddr(3THR)
pthread_attr_getstackaddr(3THR) returns the thread stack address set by
pthread_attr_setstackaddr().

Prototype:

int pthread_attr_getstackaddr(pthread_attr_t *tattr,void * *stackaddr);

#include <pthread.h>

pthread_attr_t tattr;
void *base;
int ret;

/* getting a new address */

ret = pthread_attr_getstackaddr (&tattr, &base);

Return Values

pthread_attr_getstackaddr() returns zero after completing successfully. Any
other return value indicates that an error occurred. If the following condition occurs,
the function fails and returns the corresponding value.

EINVAL
The value or base or tattr is incorrect.

68 Multithreaded Programming Guide • May 2002

CHAPTER 4

Programming with Synchronization
Objects

This chapter describes the synchronization types available with threads and discusses
when and how to use synchronization.

� “Mutual Exclusion Lock Attributes” on page 70
� “Using Mutual Exclusion Locks” on page 86
� “Condition Variable Attributes” on page 98
� “Using Condition Variables” on page 102
� “Semaphores” on page 114
� “Read-Write Lock Attributes” on page 122
� “Set Mutex Attribute’s Protocol” on page 76
� “Synchronization Across Process Boundaries” on page 131
� “Interprocess Locking Without the Threads Library” on page 133
� “Comparing Primitives” on page 133

Synchronization objects are variables in memory that you access just like data. Threads
in different processes can communicate with each other through synchronization
objects placed in threads-controlled shared memory, even though the threads in
different processes are generally invisible to each other.

Synchronization objects can also be placed in files and can have lifetimes beyond that
of the creating process.

The available types of synchronization objects are:

� Mutex Locks
� Condition Variables
� Read-Write Locks
� Semaphores

Here are situations that can benefit from the use of synchronization:

� When synchronization is the only way to ensure consistency of shared data.

� When threads in two or more processes can use a single synchronization object
jointly. Note that the synchronization object should be initialized by only one of the
cooperating processes, because reinitializing a synchronization object sets it to the

69

unlocked state.

� When synchronization can ensure the safety of mutable data.

� When a process can map a file and have a thread in this process get a record’s lock.
Once the lock is acquired, any other thread in any process mapping the file that
tries to acquire the lock is blocked until the lock is released.

� Even when accessing a single primitive variable, such as an integer. On machines
where the integer is not aligned to the bus data width or is larger than the data
width, a single memory load can use more than one memory cycle. While this
cannot happen on the SPARC® Platform Edition architecture, portable programs
cannot rely on this.

Note – On 32-bit architectures a long long is not atomic1 and is read and written as
two 32-bit quantities. The types int, char, float, and pointers are atomic on SPARC
Platform Edition machines and Intel Architecture machines.

Mutual Exclusion Lock Attributes
Use mutual exclusion locks (mutexes) to serialize thread execution. Mutual exclusion
locks synchronize threads, usually by ensuring that only one thread at a time executes
a critical section of code. Mutex locks can also preserve single-threaded code.

To change the default mutex attributes, you can declare and initialize an attribute
object. Often, the mutex attributes are set in one place at the beginning of the
application so they can be located quickly and modified easily. Table 4–1 lists the
functions discussed in this section that manipulate mutex attributes.

TABLE 4–1 Mutex Attributes Routines

Operation Destination Discussion

Initialize a mutex attribute object “pthread_mutexattr_init(3THR)” on page 72

Destroy a mutex attribute object “pthread_mutexattr_destroy(3THR)” on page 72

Set the scope of a mutex “pthread_mutexattr_setpshared(3THR)”
on page 73

Get the scope of a mutex “pthread_mutexattr_getpshared(3THR)”
on page 74

1 An atomic operation cannot be divided into smaller operations.

70 Multithreaded Programming Guide • May 2002

TABLE 4–1 Mutex Attributes Routines (Continued)
Operation Destination Discussion

Set the mutex type attribute “pthread_mutexattr_settype(3THR)” on page 75

Get the mutex type attribute “pthread_mutexattr_gettype(3THR)” on page 76

Set mutex attribute’s protocol “pthread_mutexattr_setprotocol(3THR)”
on page 76

Get mutex attribute’s protocol “pthread_mutexattr_getprotocol(3THR)”
on page 79

Set mutex attribute’s priority ceiling “pthread_mutexattr_setprioceiling(3THR)”
on page 79

Get mutex attribute’s priority ceiling “pthread_mutexattr_getprioceiling(3THR)”
on page 80

Set mutex’s priority ceiling “pthread_mutex_setprioceiling(3THR)”
on page 82

Get mutex’s priority ceiling “pthread_mutex_getprioceiling(3THR)”
on page 83

Set mutex’s robust attribute “pthread_mutexattr_setrobust_np(3THR)”
on page 83

Get mutex’s robust attribute “pthread_mutexattr_getrobust_np(3THR)”
on page 85

The differences between Solaris threads and POSIX threads, when defining the scope
of a mutex, are shown in Table 4–2.

TABLE 4–2 Mutex Scope Comparison

Solaris POSIX Definition

USYNC_PROCESS PTHREAD_PROCESS_SHARED Use to synchronize
threads in this and
other processes

USYNC_PROCESS_ROBUST No POSIX equivalent Use to robustly
synchronize threads
between processes

USYNC_THREAD PTHREAD_PROCESS_PRIVATE Use to synchronize
threads in this
process only

Chapter 4 • Programming with Synchronization Objects 71

Initialize a Mutex Attribute Object

pthread_mutexattr_init(3THR)
Use pthread_mutexattr_init(3THR) to initialize attributes associated with this
object to their default values. Storage for each attribute object is allocated by the
threads system during execution.

The default value of the pshared attribute when this function is called is
PTHREAD_PROCESS_PRIVATE, which means that the initialized mutex can be used
within a process.

Prototype:

int pthread_mutexattr_init(pthread_mutexattr_t *mattr);

#include <pthread.h>

pthread_mutexattr_t mattr;
int ret;

/* initialize an attribute to default value */

ret = pthread_mutexattr_init(&mattr);

mattr is an opaque type that contains a system-allocated attribute object. The possible
values of mattr’s scope are PTHREAD_PROCESS_PRIVATE (the default) and
PTHREAD_PROCESS_SHARED.

Before a mutex attribute object can be reinitialized, it must first be destroyed by a call
to pthread_mutexattr_destroy(3THR). The pthread_mutexattr_init() call
results in the allocation of an opaque object. If the object is not destroyed, a memory
leak will result.

Return Values

pthread_mutexattr_init() returns zero after completing successfully. Any other
return value indicates that an error occurred. If either of the following conditions
occurs, the function fails and returns the corresponding value.

ENOMEM
There is not enough memory to initialize the mutex attributes object.

Destroy a Mutex Attribute Object

pthread_mutexattr_destroy(3THR)
pthread_mutexattr_destroy(3THR) deallocates the storage space used to
maintain the attribute object created by pthread_mutexattr_init().

72 Multithreaded Programming Guide • May 2002

Prototype:

int pthread_mutexattr_destroy(pthread_mutexattr_t *mattr)

#include <pthread.h>

pthread_mutexattr_t mattr;
int ret;

/* destroy an attribute */

ret = pthread_mutexattr_destroy(&mattr);

Return Values

pthread_mutexattr_destroy() returns zero after completing successfully. Any
other return value indicates that an error occurred. If the following condition occurs,
the function fails and returns the corresponding value.

EINVAL
The value specified by mattr is invalid.

Set the Scope of a Mutex

pthread_mutexattr_setpshared(3THR)
pthread_mutexattr_setpshared(3THR) sets the scope of the mutex variable.

The scope of a mutex variable can be either process private (intraprocess) or system
wide (interprocess). If the mutex is created with the pshared attribute set to the
PTHREAD_PROCESS_SHARED state, and it exists in shared memory, it can be shared
among threads from more than one process. This is equivalent to the USYNC_PROCESS
flag in mutex_init() in the original Solaris threads.

Prototype:
int pthread_mutexattr_setpshared(pthread_mutexattr_t *mattr,

int pshared);

#include <pthread.h>

pthread_mutexattr_t mattr;
int ret;

ret = pthread_mutexattr_init(&mattr);
/*
* resetting to its default value: private
*/

ret = pthread_mutexattr_setpshared(&mattr,
PTHREAD_PROCESS_PRIVATE);

Chapter 4 • Programming with Synchronization Objects 73

If the mutex pshared attribute is set to PTHREAD_PROCESS_PRIVATE, only those
threads created by the same process can operate on the mutex.

Return Values

pthread_mutexattr_setpshared() returns zero after completing successfully.
Any other return value indicates that an error occurred. If the following condition
occurs, the function fails and returns the corresponding value.

EINVAL
The value specified by mattr is invalid.

Get the Scope of a Mutex

pthread_mutexattr_getpshared(3THR)
pthread_mutexattr_getpshared(3THR) returns the scope of the mutex variable
defined by pthread_mutexattr_setpshared().

Prototype:
int pthread_mutexattr_getpshared(pthread_mutexattr_t *mattr,

int *pshared);

#include <pthread.h>

pthread_mutexattr_t mattr;
int pshared, ret;

/* get pshared of mutex */

ret = pthread_mutexattr_getpshared(&mattr, &pshared);

Get the current value of pshared for the attribute object mattr. It is either
PTHREAD_PROCESS_SHARED or PTHREAD_PROCESS_PRIVATE.

Return Values

pthread_mutexattr_getpshared() returns zero after completing successfully.
Any other return value indicates that an error occurred. If the following condition
occurs, the function fails and returns the corresponding value.

EINVAL
The value specified by mattr is invalid.

74 Multithreaded Programming Guide • May 2002

Set the Mutex Type Attribute

pthread_mutexattr_settype(3THR)
#include <pthread.h>

int pthread_mutexattr_settype(pthread_mutexattr_t *attr , int type);

pthread_mutexattr_settype(3THR) sets the mutex type attribute. The default
value of the type attribute is PTHREAD_MUTEX_DEFAULT.

The type argument specifies the type of mutex. Valid mutex types include:

PTHREAD_MUTEX_NORMAL
This type of mutex does not detect deadlock. A thread attempting to relock this
mutex without first unlocking it will deadlock. Attempting to unlock a mutex
locked by a different thread results in undefined behavior. Attempting to unlock an
unlocked mutex results in undefined behavior.

PTHREAD_MUTEX_ERRORCHECK
This type of mutex provides error checking. A thread attempting to relock this
mutex without first unlocking it will return with an error. A thread attempting to
unlock a mutex which another thread has locked will return with an error. A thread
attempting to unlock an unlocked mutex will return with an error.

PTHREAD_MUTEX_RECURSIVE
A thread attempting to relock this mutex without first unlocking it will succeed in
locking the mutex. The relocking deadlock which can occur with mutexes of type
PTHREAD_MUTEX_NORMAL cannot occur with this type of mutex. Multiple locks of
this mutex require the same number of unlocks to release the mutex before another
thread can acquire the mutex. A thread attempting to unlock a mutex which
another thread has locked will return with an error. A thread attempting to unlock
an unlocked mutex will return with an error.

PTHREAD_MUTEX_DEFAULT
Attempting to recursively lock a mutex of this type results in undefined behavior.
Attempting to unlock a mutex of this type which was not locked by the calling
thread results in undefined behavior. Attempting to unlock a mutex of this type
which is not locked results in undefined behavior. An implementation is allowed to
map this mutex to one of the other mutex types. (For Solaris threads,
PTHREAD_PROCESS_DEFAULT is mapped to PTHREAD_PROCESS_NORMAL.)

Return Values

If successful, the pthread_mutexattr_settype function returns zero. Otherwise,
an error number is returned to indicate the error.

Chapter 4 • Programming with Synchronization Objects 75

EINVAL
The value type is invalid.

EINVAL
The value specified by attr is invalid.

Get the Mutex Type Attribute

pthread_mutexattr_gettype(3THR)
#include <pthread.h>

int pthread_mutexattr_gettype(pthread_mutexattr_t *attr , int *type);

pthread_mutexattr_gettype(3THR) gets the mutex type attribute set by
pthread_mutexattr_settype(). The default value of the type attribute is
PTHREAD_MUTEX_DEFAULT.

The type argument specifies the type of mutex. Valid mutex types include:

� PTHREAD_MUTEX_NORMAL
� PTHREAD_MUTEX_ERRORCHECK
� PTHREAD_MUTEX_RECURSIVE
� PTHREAD_MUTEX_DEFAULT

For a description of each type, see “pthread_mutexattr_settype(3THR)” on page 75.

Set Mutex Attribute’s Protocol

pthread_mutexattr_setprotocol(3THR)
pthread_mutexattr_setprotocol(3THR) sets the protocol attribute of a mutex attribute
object.

#include <pthread.h>

int pthread_mutexattr_setprotocol(pthread_mutexattr_t *attr, int protocol);

attr points to a mutex attribute object created by an earlier call to
pthread_mutexattr_init().

protocol defines the protocol applied to the mutex attribute object.

The value of protocol, defined in pthread.h, can be: PTHREAD_PRIO_NONE,
PTHREAD_PRIO_INHERIT, or PTHREAD_PRIO_PROTECT.

76 Multithreaded Programming Guide • May 2002

� PTHREAD_PRIO_NONE

A thread’s priority and scheduling are not affected by the mutex ownership.

� PTHREAD_PRIO_INHERIT

This protocol value affects a thread’s (such as thrd1) priority and scheduling
when higher-priority threads block on one or more mutexes owned by thrd1
where those mutexes are initialized with PTHREAD_PRIO_INHERIT. thrd1 runs
with the higher of its priority or the highest priority of any thread waiting on any
of the mutexes owned by thrd1.

If thrd1 blocks on a mutex owned by another thread, thrd3, the same priority
inheritance effect recursively propagates to thrd3.

Use PTHREAD_PRIO_INHERIT to avoid priority inversion. Priority inversion
occurs when a low-priority thread holds a lock that a higher-priority thread wants.
Because the higher-priority thread cannot continue until the lower-priority thread
releases the lock, each thread is treated as if it had the inverse of its intended
priority.

If the symbol _POSIX_THREAD_PRIO_INHERIT is defined, for a mutex initialized
with the protocol attribute value PTHREAD_PRIO_INHERIT, the following actions
occur in the Solaris Operating Environment when the owner of that mutex dies:

Note – The behavior on owner death depends on the value of the robustness
argument of pthread_mutexattr_setrobust_np().

� The mutex is unlocked.

� The next owner of the mutex acquires it with an error return of EOWNERDEAD.

� The next owner of the mutex should try to make the state protected by the
mutex consistent—the state might have been left inconsistent when the
previous owner died. If the owner is successful in making the state consistent,
call pthread_mutex_init() for the mutex and unlock the mutex.

Note – If pthread_mutex_init() is called on a previously initialized, but
not yet destroyed mutex, the mutex is not reinitialized.

� If the owner is unable to make the state consistent, do not call
pthread_mutex_init(), but unlock the mutex. In this event, all waiters will
be woken up and all subsequent calls to pthread_mutex_lock() will fail to
acquire the mutex and return an error code of ENOTRECOVERABLE. You can
now make the mutex state consistent by calling pthread_mutex_destroy()
to uninitialize the mutex and calling pthread_mutex_init() to reinitialize it.

� If the thread that acquired the lock with EOWNERDEAD dies, the next owner
acquires the lock with an error code of EOWNERDEAD.

� PTHREAD_PRIO_PROTECT

Chapter 4 • Programming with Synchronization Objects 77

This protocol value affects a thread’s (such as thrd2) priority and scheduling
when the thread owns one or more mutexes initialized with
PTHREAD_PRIO_PROTECT. thrd2 runs with the higher of its priority or the
highest-priority ceiling of all mutexes it owns. Higher-priority threads blocked on
any of the mutexes, owned by thrd2, have no effect on the scheduling of thrd2.

When a thread owns a mutex that is initialized with PTHREAD_PRIO_INHERIT or
PTHREAD_PRIO_PROTECT, and that thread’s original priority changes, such as by a
call to sched_setparam(), the scheduler does not move the thread to the tail of the
scheduling queue at it’s new priority. Similarly, when a thread unlocks a mutex that is
initialized with PTHREAD_PRIO_INHERIT or PTHREAD_PRIO_PROTECT, and that
thread’s original priority changes, the scheduler does not move the thread to the tail of
the scheduling queue at it’s new priority.

If a thread simultaneously owns several mutexes initialized with a mix of
PTHREAD_PRIO_INHERIT and PTHREAD_PRIO_PROTECT, it executes at the highest
priority obtained by either of these protocols.

Return Values

On successful completion, pthread_mutexattr_setprotocol() returns 0. Any
other return value indicates that an error occurred.

If either of the following conditions occurs, pthread_mutexattr_setprotocol()
fails and returns the corresponding value.

ENOSYS
Neither of the options _POSIX_THREAD_PRIO_INHERIT and
_POSIX_THREAD_PRIO_PROTECT is defined and the implementation does not
support the function.

ENOTSUP
The value specified by protocol is an unsupported value.

If either of the following conditions occurs, pthread_mutexattr_setprotocol()
might fail and return the corresponding value.

EINVAL
The value specified by attr or protocol is not valid.

EPERM
The caller does not have the privilege to perform the operation.

78 Multithreaded Programming Guide • May 2002

Get Mutex Attribute’s Protocol

pthread_mutexattr_getprotocol(3THR)
pthread_mutexattr_getprotocol(3THR) gets the protocol attribute of a mutex attribute
object.

#include <pthread.h>

int pthread_mutexattr_getprotocol(const pthread_mutexattr_t *attr,
int *protocol);

attr points to a mutex attribute object created by an earlier call to
pthread_mutexattr_init().

protocol contains the protocol attribute: PTHREAD_PRIO_NONE,
PTHREAD_PRIO_INHERIT, or PTHREAD_PRIO_PROTECT.

Return Values

On successful completion, pthread_mutexattr_getprotocol() returns 0. Any
other return value indicates that an error occurred.

If the following condition occurs, pthread_mutexattr_getprotocol() fails and
returns the corresponding value.

ENOSYS
Neither of the options, _POSIX_THREAD_PRIO_INHERIT nor
_POSIX_THREAD_PRIO_PROTECT is defined and the implementation does not
support the function.

If either of the following conditions occurs, pthread_mutexattr_getprotocol()
might fail and return the corresponding value.

EINVAL
The value specified by attr is invalid.

EPERM
The caller does not have the privilege to perform the operation.

Set Mutex Attribute’s Priority Ceiling

pthread_mutexattr_setprioceiling(3THR)
pthread_mutexattr_setprioceiling(3THR) sets the priority ceiling attribute of a mutex
attribute object.

Chapter 4 • Programming with Synchronization Objects 79

#include <pthread.h>

int pthread_mutexattr_setprioceiling(pthread_mutexatt_t *attr,
int prioceiling,
int *oldceiling);

attr points to a mutex attribute object created by an earlier call to
pthread_mutexattr_init().

prioceiling specifies the priority ceiling of initialized mutexes. The ceiling defines the
minimum priority level at which the critical section guarded by the mutex is executed.
prioceiling will be within the maximum range of priorities defined by SCHED_FIFO. To
avoid priority inversion, prioceiling will be set to a priority higher than or equal to the
highest priority of all the threads that might lock the particular mutex.

oldceiling contains the old priority ceiling value.

Return Values

On successful completion, pthread_mutexattr_setprioceiling() returns 0.
Any other return value indicates that an error occurred.

If any of the following conditions occurs,
pthread_mutexattr_setprioceiling() fails and returns the corresponding
value.

ENOSYS
The option _POSIX_THREAD_PRIO_PROTECT is not defined and the
implementation does not support the function.

If either of the following conditions occurs,
pthread_mutexattr_setprioceiling() might fail and return the corresponding
value.

EINVAL
The value specified by attr or prioceiling is invalid.

EPERM
The caller does not have the privilege to perform the operation.

Get Mutex Attribute’s Priority Ceiling

pthread_mutexattr_getprioceiling(3THR)
pthread_mutexattr_getprioceiling(3THR) gets the priority ceiling attribute of a mutex
attribute object.

80 Multithreaded Programming Guide • May 2002

#include <pthread.h>

int pthread_mutexattr_getprioceiling(const pthread_mutexatt_t *attr,
int *prioceiling);

attr designates the attribute object created by an earlier call to
pthread_mutexattr_init().

Note – The attr mutex attribute object includes the priority ceiling attribute only if the
symbol _POSIX_THREAD_PRIO_PROTECT is defined.

pthread_mutexattr_getprioceiling() returns the priority ceiling of initialized
mutexes in prioceiling. The ceiling defines the minimum priority level at which the
critical section guarded by the mutex is executed. prioceiling will be within the
maximum range of priorities defined by SCHED_FIFO. To avoid priority inversion,
prioceiling will be set to a priority higher than or equal to the highest priority of all the
threads that might lock the particular mutex.

Return Values

On successful completion, pthread_mutexattr_getprioceiling() returns 0.
Any other return value indicates that an error occurred.

If any of the following conditions occurs,
pthread_mutexattr_getprioceiling() fails and returns the corresponding
value.

ENOSYS
The option _POSIX_THREAD_PRIO_PROTECT is not defined and the
implementation does not support the function.

If either of the following conditions occurs,
pthread_mutexattr_getprioceiling() might fail and return the corresponding
value.

EINVAL
The value specified by attr is invalid.

EPERM
The caller does not have the privilege to perform the operation.

Chapter 4 • Programming with Synchronization Objects 81

Set Mutex’s Priority Ceiling

pthread_mutex_setprioceiling(3THR)
pthread_mutex_setprioceiling(3THR) sets the priority ceiling of a mutex.

#include <pthread.h>

int pthread_mutex_setprioceiling(pthread_mutex_t *mutex,
int prioceiling,
int *old_ceiling);

pthread_mutex_setprioceiling() changes the priority ceiling, prioceiling, of a
mutex, mutex. pthread_mutex_setprioceiling() locks the mutex if it is
unlocked, or blocks until it can successfully lock the mutex, changes the priority
ceiling of the mutex and releases the mutex. The process of locking the mutex need not
adhere to the priority protect protocol.

If pthread_mutex_setprioceiling() succeeds, the previous value of the priority
ceiling is returned in old_ceiling. If pthread_mutex_setprioceiling() fails, the
mutex priority ceiling remains unchanged.

Return Values

On successful completion, pthread_mutex_setprioceiling() returns 0. Any
other return value indicates that an error occurred.

If the following condition occurs, pthread_mutexatt_setprioceiling() fails
and returns the corresponding value.

ENOSYS
The option _POSIX_THREAD_PRIO_PROTECT is not defined and the
implementation does not support the function.

If any of the following conditions occurs, pthread_mutex_setprioceiling()
might fail and return the corresponding value.

EINVAL
The priority requested by prioceiling is out of range.

EINVAL
The value specified by mutex does not refer to a currently existing mutex.

ENOSYS
The implementation does not support the priority ceiling protocol for mutexes.

EPERM
The caller does not have the privilege to perform the operation.

82 Multithreaded Programming Guide • May 2002

Get Mutex’s Priority Ceiling

pthread_mutex_getprioceiling(3THR)
pthread_mutex_getprioceiling(3THR) gets the priority ceiling of a mutex.

#include <pthread.h>

int pthread_mutex_getprioceiling(const pthread_mutex_t *mutex,
int *prioceiling);

pthread_mutex_getprioceiling() returns the priority ceiling, prioceiling of a
mutex mutex.

Return Values

On successful completion, pthread_mutex_getprioceiling() returns 0. Any
other return value indicates that an error occurred.

If any of the following conditions occurs, pthread_mutexatt_getprioceiling()
fails and returns the corresponding value.

ENOSYS
The option _POSIX_THREAD_PRIO_PROTECT is not defined and the
implementation does not support the function.

If any of the following conditions occurs, pthread_mutex_getprioceiling()
might fail and return the corresponding value.

EINVAL
The value specified by mutex does not refer to a currently existing mutex.

ENOSYS
The implementation does not support the priority ceiling protocol for mutexes.

EPERM
The caller does not have the privilege to perform the operation.

Set Mutex’s Robust Attribute

pthread_mutexattr_setrobust_np(3THR)
pthread_mutexattr_setrobust_np(3THR) sets the robust attribute of a mutex attribute
object.

Chapter 4 • Programming with Synchronization Objects 83

#include <pthread.h>

int pthread_mutexattr_setrobust_np(pthread_mutexattr_t *attr,
int *robustness);

Note – pthread_mutexattr_setrobust_np() applies only if the symbol
_POSIX_THREAD_PRIO_INHERIT is defined.

attr points to the mutex attribute object previously created by a call to
pthread_mutexattr_init().

robustness defines the behavior when the owner of the mutex dies. The value of
robustness, defined in pthread.h, is PTHREAD_MUTEX_ROBUST_NP or
PTHREAD_MUTEX_STALLED_NP. The default value is
PTHREAD_MUTEX_STALLED_NP.

� PTHREAD_MUTEX_ROBUST_NP

When the owner of the mutex dies, all subsequent calls to
pthread_mutex_lock() are blocked from progress in an unspecified manner.

� PTHREAD_MUTEX_STALLED_NP

When the owner of the mutex dies, the mutex is unlocked. The next owner of this
mutex acquires it with an error return of EOWNWERDEAD.

Note – Your application must check the return code from
pthread_mutex_lock() for a mutex of this type.

� The new owner of this mutex should make the state protected by the mutex
consistent; this state might have been left inconsistent when the previous owner
died.

� If the new owner is able to make the state consistent, call
pthread_mutex_consistent_np() for the mutex, and unlock the mutex.

� If the new owner is not able to make the state consistent, do not call
pthread_mutex_consistent_np() for the mutex, but unlock the mutex.

All waiters are woken up and all subsequent calls to pthread_mutex_lock()
fail to acquire the mutex. The return code is ENOTRECOVERABLE. The mutex
can be made consistent by calling pthread_mutex_destroy() to uninitialize
the mutex, and calling pthread_mutex_int() to reinitialize it.

If the thread that acquire the lock with EOWNERDEAD died, the next owner acquires
the lock with an EOWNERDEAD return code.

84 Multithreaded Programming Guide • May 2002

Return Values

On successful completion, pthread_mutexattr_setrobust_np() returns 0. Any
other return value indicates that an error occurred.

If any of the following conditions occurs, pthread_mutexattr_setrobust_np()
fails and returns the corresponding value.

ENOSYS
The option _POSIX_THREAD_PRIO__INHERIT is not defined or the
implementation does not support pthread_mutexattr_setrobust_np().

ENOTSUP
The value specified by robustness is not supported.

pthread_mutexattr_setrobust_np() might fail if:

EINVAL
The value specified by attr or robustness is invalid.

Get Mutex’s Robust Attribute

pthread_mutexattr_getrobust_np(3THR)
pthread_mutexattr_getrobust_np(3THR) gets the robust attribute of a mutex attribute
object.

#include <pthread.h>

int pthread_mutexattr_getrobust_np(const pthread_mutexattr_t *attr,
int *robustness);

Note – pthread_mutexattr_getrobust_np() applies only if the symbol
_POSIX_THREAD_PRIO_INHERIT is defined.

attr points to the mutex attribute object previously created by a call to
pthread_mutexattr_init().

robustness is the value of the robust attribute of a mutex attribute object.

Return Values

On successful completion, pthread_mutexattr_getrobust_np() returns 0. Any
other return value indicates that an error occurred.

Chapter 4 • Programming with Synchronization Objects 85

If any of the following conditions occurs, pthread_mutexattr_getrobust_np()
fails and returns the corresponding value.

ENOSYS
The option _POSIX_THREAD_PRIO__INHERIT is not defined or the
implementation does not support pthread_mutexattr_getrobust_np().

pthread_mutexattr_getrobust_np() might fail if:

EINVAL
The value specified by attr or robustness is invalid.

Using Mutual Exclusion Locks
Table 4–3 lists the functions discussed in this chapter that manipulate mutex locks.

TABLE 4–3 Routines for Mutual Exclusion Locks

Operation Destination Discussion

Initialize a mutex “pthread_mutex_init(3THR)” on page 87

Make mutex consistent “pthread_mutex_consistent_np(3THR)”
on page 88

Lock a mutex “pthread_mutex_lock(3THR)” on page 89

Unlock a mutex “pthread_mutex_unlock(3THR)” on page 91

Lock with a nonblocking mutex “pthread_mutex_trylock(3THR)” on page 92

Destroy a mutex “pthread_mutex_destroy(3THR)” on page 93

The default scheduling policy, SCHED_OTHER, does not specify the order in which
threads can acquire a lock. When multiple threads are waiting for a mutex, the order
of acquisition is undefined. When there is contention, the default behavior is to
unblock threads in priority order.

86 Multithreaded Programming Guide • May 2002

Initialize a Mutex

pthread_mutex_init(3THR)
Use pthread_mutex_init(3THR) to initialize the mutex pointed at by mp to its
default value (mattr is NULL), or to specify mutex attributes that have already been set
with pthread_mutexattr_init(). (For Solaris threads, see “mutex_init(3THR)”
on page 196.)

Prototype:
int pthread_mutex_init(pthread_mutex_t *mp,

const pthread_mutexattr_t *mattr);

#include <pthread.h>

pthread_mutex_t mp = PTHREAD_MUTEX_INITIALIZER;
pthread_mutexattr_t mattr;
int ret;

/* initialize a mutex to its default value */
ret = pthread_mutex_init(&mp, NULL);

/* initialize a mutex */

ret = pthread_mutex_init(&mp, &mattr);

When the mutex is initialized, it is in an unlocked state. The mutex can be in memory
shared between processes or in memory private to a process.

Note – The mutex memory must be cleared to zero before initialization.

The effect of mattr being NULL is the same as passing the address of a default mutex
attribute object, but without the memory overhead.

Statically defined mutexes can be initialized directly to have default attributes with the
macro PTHREAD_MUTEX_INITIALIZER.

A mutex lock must not be reinitialized or destroyed while other threads might be
using it. Program failure will result if either action is not done correctly. If a mutex is
reinitialized or destroyed, the application must be sure the mutex is not currently in
use.

Return Values

pthread_mutex_init() returns zero after completing successfully. Any other
return value indicates that an error occurred. When any of the following conditions
occurs, the function fails and returns the corresponding value.

Chapter 4 • Programming with Synchronization Objects 87

EBUSY
The implementation has detected an attempt to reinitialize the object referenced by
mp (a previously initialized, but not yet destroyed mutex).

EINVAL
The mattr attribute value is invalid. The mutex has not been modified.

EFAULT
The address for the mutex pointed at by mp is invalid.

Make Mutex Consistent

pthread_mutex_consistent_np(3THR)
#include <pthread.h>

int pthread_mutex_consistent_np(pthread_mutex_t *mutex);

Note – pthread_mutex_consistent_np() applies only if the symbol
_POSIX_THREAD_PRIO_INHERIT is defined and for mutexes that are initialized with
the protocol attribute value PTHREAD_PRIO_INHERIT.

If the owner of a mutex dies, the mutex can become inconsistent.

pthread_mutex_consistent_np makes the mutex object, mutex, consistent after the death
of its owner.

Call pthread_mutex_lock() to acquire the inconsistent mutex. The EOWNWERDEAD
return value indicates an inconsistent mutex.

Call pthread_mutex_consistent_np() while holding the mutex acquired by a
previous call to pthread_mutex_lock().

Because the critical section protected by the mutex might have been left in an
inconsistent state by the dead owner, make the mutex consistent only if you are able to
make the critical section protected by the mutex consistent.

Calls to pthread_mutex_lock(), pthread_mutex_unlock(), and
pthread_mutex_trylock() for a consistent mutex behave in the normal manner.

The behavior of pthread_mutex_consistent_np() for a mutex that is not
inconsistent, or that is not held, is undefined.

88 Multithreaded Programming Guide • May 2002

Return Values

pthread_mutex_consistent_np() returns zero after completing successfully. Any
other return value indicates that an error occurred. When any of the following
conditions occurs, the function fails and returns the corresponding value.

pthread_mutex_consistent_np() fails if:

ENOSYS
The option _POSIX_THREAD_PRIO_INHERIT is not defined or the
implementation does not support pthread_mutex_consistent_np().

pthread_mutex_consistent_np() might fail if:

EINVAL
The value specified by mutex is invalid.

Lock a Mutex

pthread_mutex_lock(3THR)
Prototype:

int pthread_mutex_lock(pthread_mutex_t *mutex);

#include <pthread.h>

pthread_mutex_t mutex;
int ret;

ret = pthread_ mutex_lock(&mp); /* acquire the mutex */

Use pthread_mutex_lock(3THR) to lock the mutex pointed to by mutex. When
pthread_mutex_lock() returns, the mutex is locked and the calling thread is the
owner. If the mutex is already locked and owned by another thread, the calling thread
blocks until the mutex becomes available. (For Solaris threads, see
“mutex_lock(3THR)” on page 198.)

If the mutex type is PTHREAD_MUTEX_NORMAL, deadlock detection is not provided.
Attempting to relock the mutex causes deadlock. If a thread attempts to unlock a
mutex that it has not locked or a mutex that is unlocked, undefined behavior results.

If the mutex type is PTHREAD_MUTEX_ERRORCHECK, then error checking is provided.
If a thread attempts to relock a mutex that it has already locked, an error will be
returned. If a thread attempts to unlock a mutex that it has not locked or a mutex that
is unlocked, an error will be returned.

If the mutex type is PTHREAD_MUTEX_RECURSIVE, then the mutex maintains the
concept of a lock count. When a thread successfully acquires a mutex for the first time,
the lock count is set to one. Every time a thread relocks this mutex, the lock count is

Chapter 4 • Programming with Synchronization Objects 89

incremented by one. Each time the thread unlocks the mutex, the lock count is
decremented by one. When the lock count reaches zero, the mutex becomes available
for other threads to acquire. If a thread attempts to unlock a mutex that it has not
locked or a mutex which is unlocked, an error will be returned.

If the mutex type is PTHREAD_MUTEX_DEFAULT, attempting to recursively lock the
mutex results in undefined behavior. Attempting to unlock the mutex if it was not
locked by the calling thread results in undefined behavior. Attempting to unlock the
mutex if it is not locked results in undefined behavior.

Return Values

pthread_mutex_lock() returns zero after completing successfully. Any other
return value indicates that an error occurred. When any of the following conditions
occurs, the function fails and returns the corresponding value.

EAGAIN
The mutex could not be acquired because the maximum number of recursive locks
for mutex has been exceeded.

EDEADLK
The current thread already owns the mutex.

If the symbol _POSIX_THREAD_PRIO_INHERIT is defined, the mutex is initialized
with the protocol attribute value PTHREAD_PRIO_INHERIT, and the robustness
argument of pthread_mutexattr_setrobust_np() is
PTHREAD_MUTEX_ROBUST_NP the function fails and returns:

EOWNERDEAD
The last owner of this mutex died while holding the mutex. This mutex is now
owned by the caller. The caller must attempt to make the state protected by the
mutex consistent.

If the caller is able to make the state consistent, call
pthread_mutex_consistent_np() for the mutex and unlock the mutex.
Subsequent calls to pthread_mutex_lock() will behave normally.

If the caller is unable to make the state consistent, do not call
pthread_mutex_init() for the mutex, but unlock the mutex. Subsequent calls
to pthread_mutex_lock() fail to acquire the mutex and return an
ENOTRECOVERABLE error code.

If the owner that acquired the lock with EOWNERDEAD dies, the next owner
acquires the lock with EOWNERDEAD.

90 Multithreaded Programming Guide • May 2002

ENOTRECOVERABLE
The mutex you are trying to acquire is protecting state left irrecoverable by the
mutex’s previous owner that died while holding the lock. The mutex has not been
acquired. This condition can occur when the lock was previously acquired with
EOWNERDEAD and the owner was unable to cleanup the state and had unlocked the
mutex without making the mutex state consistent.

ENOMEM
The limit on the number of simultaneously held mutexes has been exceeded.

Unlock a Mutex

pthread_mutex_unlock(3THR)
Use pthread_mutex_unlock(3THR) to unlock the mutex pointed to by mutex. (For
Solaris threads, see “mutex_unlock(3THR)” on page 198.)

Prototype:

int pthread_mutex_unlock(pthread_mutex_t *mutex);

#include <pthread.h>

pthread_mutex_t mutex;
int ret;

ret = pthread_mutex_unlock(&mutex); /* release the mutex */

pthread_mutex_unlock() releases the mutex object referenced by mutex. The
manner in which a mutex is released is dependent upon the mutex’s type attribute. If
there are threads blocked on the mutex object referenced by mutex when
pthread_mutex_unlock() is called, resulting in the mutex becoming available, the
scheduling policy is used to determine which thread shall acquire the mutex. (In the
case of PTHREAD_MUTEX_RECURSIVE mutexes, the mutex becomes available when
the count reaches zero and the calling thread no longer has any locks on this mutex).

Return Values

pthread_mutex_unlock() returns zero after completing successfully. Any other
return value indicates that an error occurred. When any of the following conditions
occurs, the function fails and returns the corresponding value.

EPERM
The current thread does not own the mutex.

Chapter 4 • Programming with Synchronization Objects 91

Lock With a Nonblocking Mutex

pthread_mutex_trylock(3THR)
Use pthread_mutex_trylock(3THR) to attempt to lock the mutex pointed to by
mutex. (For Solaris threads, see “mutex_trylock(3THR)” on page 198.)

Prototype:

int pthread_mutex_trylock(pthread_mutex_t *mutex);

#include <pthread.h>

pthread_mutex_t mutex;
int ret;

ret = pthread_mutex_trylock(&mutex); /* try to lock the mutex */

pthread_mutex_trylock() is a nonblocking version of
pthread_mutex_lock(). If the mutex object referenced by mutex is currently locked
(by any thread, including the current thread), the call returns immediately. Otherwise,
the mutex is locked and the calling thread is the owner.

Return Values

pthread_mutex_trylock() returns zero after completing successfully. Any other
return value indicates that an error occurred. When any of the following conditions
occurs, the function fails and returns the corresponding value.

EBUSY
The mutex could not be acquired because the mutex pointed to by mutex was
already locked.

EAGAIN
The mutex could not be acquired because the maximum number of recursive locks
for mutex has been exceeded.

If the symbol _POSIX_THREAD_PRIO_INHERIT is defined, the mutex is initialized
with the protocol attribute value PTHREAD_PRIO_INHERIT, and the robustness
argument of pthread_mutexattr_setrobust_np() is
PTHREAD_MUTEX_ROBUST_NP the function fails and returns:

EOWNERDEAD
The last owner of this mutex died while holding the mutex. This mutex is now
owned by the caller. The caller must attempt to make the state protected by the
mutex consistent.

If the caller is able to make the state consistent, call
pthread_mutex_consistent_np() for the mutex and unlock the mutex.
Subsequent calls to pthread_mutex_lock() will behave normally.

92 Multithreaded Programming Guide • May 2002

If the caller is unable to make the state consistent, do not call
pthread_mutex_init() for the mutex, but unlock the mutex. Subsequent calls
to pthread_mutex_trylock() fail to acquire the mutex and return an
ENOTRECOVERABLE error code.

If the owner that acquired the lock with EOWNERDEAD dies, the next owner
acquires the lock with EOWNERDEAD.

ENOTRECOVERABLE
The mutex you are trying to acquire is protecting state left irrecoverable by the
mutex’s previous owner that died while holding the lock. The mutex has not been
acquired. This condition can occur when the lock was previously acquired with
EOWNERDEAD and the owner was unable to cleanup the state and had unlocked the
mutex without making the mutex state consistent.

ENOMEM
The limit on the number of simultaneously held mutexes has been exceeded.

Destroy a Mutex

pthread_mutex_destroy(3THR)
Use pthread_mutex_destroy(3THR) to destroy any state associated with the
mutex pointed to by mp. (For Solaris threads, see “mutex_destroy(3THR)”
on page 197.)

Prototype:

int pthread_mutex_destroy(pthread_mutex_t *mp);

#include <pthread.h>

pthread_mutex_t mp;
int ret;

ret = pthread_mutex_destroy(&mp); /* mutex is destroyed */

Note that the space for storing the mutex is not freed.

Return Values

pthread_mutex_destroy() returns zero after completing successfully. Any other
return value indicates that an error occurred. When any of the following conditions
occur, the function fails and returns the corresponding value.

EINVAL
The value specified by mp does not refer to an initialized mutex object.

Chapter 4 • Programming with Synchronization Objects 93

Mutex Lock Code Examples
Example 4–1 shows some code fragments with mutex locking.

EXAMPLE 4–1 Mutex Lock Example

#include <pthread.h>

pthread_mutex_t count_mutex;
long long count;

void
increment_count()
{

pthread_mutex_lock(&count_mutex);
count = count + 1;

pthread_mutex_unlock(&count_mutex);
}

long long
get_count()
{

long long c;

pthread_mutex_lock(&count_mutex);
c = count;

pthread_mutex_unlock(&count_mutex);
return (c);

}

The two functions in Example 4–1 use the mutex lock for different purposes. The
increment_count() function uses the mutex lock simply to ensure an atomic
update of the shared variable. The get_count() function uses the mutex lock to
guarantee that the 64-bit quantity count is read atomically. On a 32-bit architecture, a
long long is really two 32-bit quantities.

Reading an integer value is an atomic operation because integer is the common word
size on most machines.

Using Locking Hierarchies
You will occasionally want to access two resources at once. Perhaps you are using one
of the resources, and then discover that the other resource is needed as well. There
could be a problem if two threads attempt to claim both resources but lock the
associated mutexes in different orders. For example, if the two threads lock mutexes 1
and 2 respectively, then a deadlock occurs when each attempts to lock the other
mutex. Example 4–2 shows possible deadlock scenarios.

94 Multithreaded Programming Guide • May 2002

EXAMPLE 4–2 Deadlock

Thread 1 Thread 2

pthread_mutex_lock(&m1);

/* use resource 1 */

pthread_mutex_lock(&m2);

/* use resources1 and 2 */

pthread_mutex_unlock(&m2);

pthread_mutex_unlock(&m1);

pthread_mutex_lock(&m2);

/* use resource 2 */

pthread_mutex_lock(&m1);

/* use resources 1 and 2 */

pthread_mutex_unlock(&m1);

pthread_mutex_unlock(&m2);

The best way to avoid this problem is to make sure that whenever threads lock
multiple mutexes, they do so in the same order. When locks are always taken in a
prescribed order, deadlock should not occur. This technique is known as lock
hierarchies: order the mutexes by logically assigning numbers to them.

Also, honor the restriction that you cannot take a mutex that is assigned n when you
are holding any mutex assigned a number greater than n.

However, this technique cannot always be used—sometimes you must take the
mutexes in an order other than prescribed. To prevent deadlock in such a situation,
use pthread_mutex_trylock(). One thread must release its mutexes when it
discovers that deadlock would otherwise be inevitable.

EXAMPLE 4–3 Conditional Locking

Thread 1 Thread 2

pthread_mutex_lock(&m1);
pthread_mutex_lock(&m2);

/* no processing */

pthread_mutex_unlock(&m2);

pthread_mutex_unlock(&m1);

for (; ;)

{ pthread_mutex_lock(&m2);

if(pthread_mutex_trylock(&m1)==0)

/* got it! */

break;

/* didn’t get it */

pthread_mutex_unlock(&m2);

}

/* get locks; no processing */

pthread_mutex_unlock(&m1);

pthread_mutex_unlock(&m2);

Chapter 4 • Programming with Synchronization Objects 95

In Example 4–3, thread 1 locks mutexes in the prescribed order, but thread 2 takes
them out of order. To make certain that there is no deadlock, thread 2 has to take
mutex 1 very carefully; if it were to block waiting for the mutex to be released, it is
likely to have just entered into a deadlock with thread 1.

To ensure this does not happen, thread 2 calls pthread_mutex_trylock(), which
takes the mutex if it is available. If it is not, thread 2 returns immediately, reporting
failure. At this point, thread 2 must release mutex 2, so that thread 1 can lock it, and
then release both mutex 1 and mutex 2.

Nested Locking With a Singly Linked List
Example 4–4 and Example 4–5 show how to take three locks at once, but prevent
deadlock by taking the locks in a prescribed order.

EXAMPLE 4–4 Singly Linked List Structure

typedef struct node1 {
int value;
struct node1 *link;
pthread_mutex_t lock;

} node1_t;

node1_t ListHead;

This example uses a singly linked list structure with each node containing a mutex. To
remove a node from the list, first search the list starting at ListHead (which itself is
never removed) until the desired node is found.

To protect this search from the effects of concurrent deletions, lock each node before
any of its contents are accessed. Because all searches start at ListHead, there is never a
deadlock because the locks are always taken in list order.

When the desired node is found, lock both the node and its predecessor since the
change involves both nodes. Because the predecessor’s lock is always taken first, you
are again protected from deadlock. Example 4–5 shows the C code to remove an item
from a singly linked list.

EXAMPLE 4–5 Singly Linked List With Nested Locking

node1_t *delete(int value)
{

node1_t *prev, *current;

prev = &ListHead;
pthread_mutex_lock(&prev->lock);
while ((current = prev->link) != NULL) {

pthread_mutex_lock(¤t->lock);
if (current->value == value) {

prev->link = current->link;

96 Multithreaded Programming Guide • May 2002

EXAMPLE 4–5 Singly Linked List With Nested Locking (Continued)

pthread_mutex_unlock(¤t->lock);
pthread_mutex_unlock(&prev->lock);
current->link = NULL;
return(current);

}
pthread_mutex_unlock(&prev->lock);
prev = current;

}
pthread_mutex_unlock(&prev->lock);
return(NULL);

}

Nested Locking With a Circular Linked List
Example 4–6 modifies the previous list structure by converting it into a circular list.
There is no longer a distinguished head node; now a thread might be associated with a
particular node and might perform operations on that node and its neighbor. Note
that lock hierarchies do not work easily here because the obvious hierarchy (following
the links) is circular.

EXAMPLE 4–6 Circular Linked List Structure

typedef struct node2 {
int value;
struct node2 *link;
pthread_mutex_t lock;

} node2_t;

Here is the C code that acquires the locks on two nodes and performs an operation
involving both of them.

Chapter 4 • Programming with Synchronization Objects 97

EXAMPLE 4–7 Circular Linked List With Nested Locking

void Hit Neighbor(node2_t *me) {
while (1) {

pthread_mutex_lock(&me->lock);
if (pthread_mutex_lock(&me->link->lock)!= 0) {

/* failed to get lock */
pthread_mutex_unlock(&me->lock);
continue;

}
break;

}
me->link->value += me->value;
me->value /=2;
pthread_mutex_unlock(&me->link->lock);
pthread_mutex_unlock(&me->lock);

}

Condition Variable Attributes
Use condition variables to atomically block threads until a particular condition is true.
Always use condition variables together with a mutex lock.

With a condition variable, a thread can atomically block until a condition is satisfied.
The condition is tested under the protection of a mutual exclusion lock (mutex).

When the condition is false, a thread usually blocks on a condition variable and
atomically releases the mutex waiting for the condition to change. When another
thread changes the condition, it can signal the associated condition variable to cause
one or more waiting threads to wake up, acquire the mutex again, and reevaluate the
condition.

Condition variables can be used to synchronize threads among processes when they
are allocated in memory that can be written to and is shared by the cooperating
processes.

The scheduling policy determines how blocking threads are awakened. For the default
SCHED_OTHER, threads are awakened in priority order.

The attributes for condition variables must be set and initialized before the condition
variables can be used. The functions that manipulate condition variable attributes are
listed in Table 4–4.

98 Multithreaded Programming Guide • May 2002

TABLE 4–4 Condition Variable Attributes

Operation Destination Discussion

Initialize a condition variable attribute “pthread_condattr_init(3THR)” on page 99

Remove a condition variable attribute “pthread_condattr_destroy(3THR)” on page 100

Set the scope of a condition variable “pthread_condattr_setpshared(3THR)”
on page 101

Get the scope of a condition variable “pthread_condattr_getpshared(3THR)”
on page 102

The differences between Solaris and POSIX threads, when defining the scope of a
condition variable, are shown in Table 4–5.

TABLE 4–5 Condition Variable Scope Comparison

Solaris POSIX Definition

USYNC_PROCESS PTHREAD_PROCESS_SHARED Use to synchronize
threads in this and other
processes

USYNC_THREAD PTHREAD_PROCESS_PRIVATE Use to synchronize
threads in this process
only

Initialize a Condition Variable Attribute

pthread_condattr_init(3THR)
Use pthread_condattr_init(3THR) to initialize attributes associated with this
object to their default values. Storage for each attribute object is allocated by the
threads system during execution. The default value of the pshared attribute when this
function is called is PTHREAD_PROCESS_PRIVATE, which means that the initialized
condition variable can be used within a process.

Prototype:

int pthread_condattr_init(pthread_condattr_t *cattr);

#include <pthread.h>
pthread_condattr_t cattr;
int ret;

/* initialize an attribute to default value */

ret = pthread_condattr_init(&cattr);

Chapter 4 • Programming with Synchronization Objects 99

cattr is an opaque data type that contains a system-allocated attribute object. The
possible values of cattr’s scope are PTHREAD_PROCESS_PRIVATE (the default) and
PTHREAD_PROCESS_SHARED.

Before a condition variable attribute can be reused, it must first be reinitialized by
pthread_condattr_destroy(3THR). The pthread_condattr_init() call
returns a pointer to an opaque object. If the object is not destroyed, a memory leak will
result.

Return Values

pthread_condattr_init() returns zero after completing successfully. Any other
return value indicates that an error occurred. When either of the following conditions
occurs, the function fails and returns the corresponding value.

ENOMEM
There is not enough memory to initialize the thread attributes object.

EINVAL
The value specified by cattr is invalid.

Remove a Condition Variable Attribute

pthread_condattr_destroy(3THR)
Use pthread_condattr_destroy(3THR) to remove storage and render the
attribute object invalid.

Prototype:

int pthread_condattr_destroy(pthread_condattr_t *cattr);

#include <pthread.h>
pthread_condattr_t cattr;
int ret;

/* destroy an attribute */
ret
= pthread_condattr_destroy(&cattr);

Return Values

pthread_condattr_destroy() returns zero after completing successfully. Any
other return value indicates that an error occurred. If the following condition occurs,
the function fails and returns the corresponding value.

100 Multithreaded Programming Guide • May 2002

EINVAL
The value specified by cattr is invalid.

Set the Scope of a Condition Variable

pthread_condattr_setpshared(3THR)
pthread_condattr_setpshared(3THR) sets the scope of a condition variable to
either process private (intraprocess) or system wide (interprocess). If the condition
variable is created with the pshared attribute set to the PTHREAD_PROCESS_SHARED
state, and it exists in shared memory, it can be shared among threads from more than
one process. This is equivalent to the USYNC_PROCESS flag in mutex_init() in the
original Solaris threads.

If the mutex pshared attribute is set to PTHREAD_PROCESS_PRIVATE (default value),
only those threads created by the same process can operate on the mutex. Using
PTHREAD_PROCESS_PRIVATE results in the same behavior as with the
USYNC_THREAD flag in the original Solaris threads cond_init() call, which is that of
a local condition variable. PTHREAD_PROCESS_SHARED is equivalent to a global
condition variable.

Prototype:
int pthread_condattr_setpshared(pthread_condattr_t *cattr,

int pshared);

#include <pthread.h>

pthread_condattr_t cattr;
int ret;

/* all processes */
ret = pthread_condattr_setpshared(&cattr, PTHREAD_PROCESS_SHARED);

/* within a process */

ret = pthread_condattr_setpshared(&cattr, PTHREAD_PROCESS_PRIVATE);

Return Values

pthread_condattr_setpshared() returns zero after completing successfully. Any
other return value indicates that an error occurred. If the following condition occurs,
the function fails and returns the corresponding value.

EINVAL
The value of cattr is invalid, or the pshared value is invalid.

Chapter 4 • Programming with Synchronization Objects 101

Get the Scope of a Condition Variable

pthread_condattr_getpshared(3THR)
pthread_condattr_getpshared(3THR) gets the current value of pshared for the
attribute object cattr. The value is either PTHREAD_PROCESS_SHARED or
PTHREAD_PROCESS_PRIVATE.

Prototype:
int pthread_condattr_getpshared(const pthread_condattr_t *cattr,

int *pshared);

#include <pthread.h>

pthread_condattr_t cattr;
int pshared;
int ret;

/* get pshared value of condition variable */

ret = pthread_condattr_getpshared(&cattr, &pshared);

Return Values

pthread_condattr_getpshared() returns zero after completing successfully. Any
other return value indicates that an error occurred. When the following condition
occurs, the function fails and returns the corresponding value.

EINVAL
The value of cattr is invalid.

Using Condition Variables
This section explains using condition variables. Table 4–6 lists the functions that are
available.

TABLE 4–6 Condition Variables Functions

Operation Destination Discussion

Initialize a condition variable “pthread_cond_init(3THR)” on page 103

Block on a condition variable “pthread_cond_wait(3THR)” on page 104

102 Multithreaded Programming Guide • May 2002

TABLE 4–6 Condition Variables Functions (Continued)
Operation Destination Discussion

Unblock a specific thread “pthread_cond_signal(3THR)” on page 105

Block until a specified time “pthread_cond_timedwait(3THR)”
on page 107

Block for a specified interval “pthread_cond_reltimedwait_np(3THR)”
on page 108

Unblock all threads “pthread_cond_broadcast(3THR)”
on page 109

Destroy condition variable state “pthread_cond_destroy(3THR)” on page 110

Initialize a Condition Variable

pthread_cond_init(3THR)
Use pthread_cond_init(3THR) to initialize the condition variable pointed at by cv
to its default value (cattr is NULL), or to specify condition variable attributes that are
already set with pthread_condattr_init(). The effect of cattr being NULL is the
same as passing the address of a default condition variable attribute object, but
without the memory overhead. (For Solaris threads, see “cond_init(3THR)”
on page 199.)

Prototype:
int pthread_cond_init(pthread_cond_t *cv,

const pthread_condattr_t *cattr);

#include <pthread.h>

pthread_cond_t cv;
pthread_condattr_t cattr;
int ret;

/* initialize a condition variable to its default value */
ret = pthread_cond_init(&cv, NULL);

/* initialize a condition variable */

ret = pthread_cond_init(&cv, &cattr);

Statically defined condition variables can be initialized directly to have default
attributes with the macro PTHREAD_COND_INITIALIZER. This has the same effect as
dynamically allocating pthread_cond_init() with null attributes. No error
checking is done.

Multiple threads must not simultaneously initialize or reinitialize the same condition
variable. If a condition variable is reinitialized or destroyed, the application must be
sure the condition variable is not in use.

Chapter 4 • Programming with Synchronization Objects 103

Return Values

pthread_cond_init() returns zero after completing successfully. Any other return
value indicates that an error occurred. When any of the following conditions occurs,
the function fails and returns the corresponding value.

EINVAL
The value specified by cattr is invalid.

EBUSY
The condition variable is being used.

EAGAIN
The necessary resources are not available.

ENOMEM
There is not enough memory to initialize the condition variable.

Block on a Condition Variable

pthread_cond_wait(3THR)
Use pthread_cond_wait(3THR) to atomically release the mutex pointed to by mp
and to cause the calling thread to block on the condition variable pointed to by cv. (For
Solaris threads, see “cond_wait(3THR)” on page 200.)

Prototype:

int pthread_cond_wait(pthread_cond_t *cv,pthread_mutex_t *mutex);

#include <pthread.h>

pthread_cond_t cv;
pthread_mutex_t mp;
int ret;

/* wait on condition variable */

ret = pthread_cond_wait(&cv, &mp);

The blocked thread can be awakened by a pthread_cond_signal(), a
pthread_cond_broadcast(), or when interrupted by delivery of a signal.

Any change in the value of a condition associated with the condition variable cannot
be inferred by the return of pthread_cond_wait(), and any such condition must be
reevaluated.

The pthread_cond_wait() routine always returns with the mutex locked and
owned by the calling thread, even when returning an error.

104 Multithreaded Programming Guide • May 2002

This function blocks until the condition is signaled. It atomically releases the
associated mutex lock before blocking, and atomically acquires it again before
returning.

In typical use, a condition expression is evaluated under the protection of a mutex
lock. When the condition expression is false, the thread blocks on the condition
variable. The condition variable is then signaled by another thread when it changes
the condition value. This causes one or all of the threads waiting on the condition to
unblock and to try to acquire the mutex lock again.

Because the condition can change before an awakened thread reacquires the mutes
and returns from pthread_cond_wait(), and because a waiting thread can be
awakened spuriously, the condition that caused the wait must be retested before
continuing execution from the point of the pthread_cond_wait(). The
recommended test method is to write the condition check as a while() loop that calls
pthread_cond_wait().

pthread_mutex_lock();
while(condition_is_false)

pthread_cond_wait();

pthread_mutex_unlock();

No specific order of acquisition is guaranteed when more than one thread blocks on
the condition variable.

Note – pthread_cond_wait() is a cancellation point. If a cancel is pending and the
calling thread has cancellation enabled, the thread terminates and begins executing its
cleanup handlers while continuing to hold the lock.

Return Values

pthread_cond_wait() returns zero after completing successfully. Any other return
value indicates that an error occurred. When the following condition occurs, the
function fails and returns the corresponding value.

EINVAL
The value specified by cv or mp is invalid.

Unblock One Thread

pthread_cond_signal(3THR)
Use pthread_cond_signal(3THR) to unblock one thread that is blocked on the
condition variable pointed to by cv. (For Solaris threads, see “cond_signal(3THR)”
on page 201.)

Chapter 4 • Programming with Synchronization Objects 105

Prototype:

int pthread_cond_signal(pthread_cond_t *cv);

#include <pthread.h>

pthread_cond_t cv;
int ret;

/* one condition variable is signaled */

ret = pthread_cond_signal(&cv);

Call pthread_cond_signal() under the protection of the same mutex used with
the condition variable being signaled. Otherwise, the condition variable could be
signaled between the test of the associated condition and blocking in
pthread_cond_wait(), which can cause an infinite wait.

The scheduling policy determines the order in which blocked threads are awakened.
For SCHED_OTHER, threads are awakened in priority order.

When no threads are blocked on the condition variable, calling
pthread_cond_signal() has no effect.

Return Values

pthread_cond_signal() returns zero after completing successfully. Any other
return value indicates that an error occurred. When the following condition occurs, the
function fails and returns the corresponding value.

EINVAL
cv points to an illegal address.

Example 4–8 shows how to use pthread_cond_wait() and
pthread_cond_signal().

EXAMPLE 4–8 Using pthread_cond_wait() and pthread_cond_signal()

pthread_mutex_t count_lock;
pthread_cond_t count_nonzero;
unsigned count;

decrement_count()
{

pthread_mutex_lock(&count_lock);
while (count == 0)

pthread_cond_wait(&count_nonzero, &count_lock);
count = count - 1;
pthread_mutex_unlock(&count_lock);

}

increment_count()
{

pthread_mutex_lock(&count_lock);

106 Multithreaded Programming Guide • May 2002

EXAMPLE 4–8 Using pthread_cond_wait() and pthread_cond_signal()
(Continued)

if (count == 0)
pthread_cond_signal(&count_nonzero);

count = count + 1;
pthread_mutex_unlock(&count_lock);

}

Block Until a Specified Time

pthread_cond_timedwait(3THR)
Prototype:
int pthread_cond_timedwait(pthread_cond_t *cv,

pthread_mutex_t *mp, const struct timespec *abstime);

#include <pthread.h>
#include <time.h>

pthread_cond_t cv;
pthread_mutex_t mp;
timestruct_t abstime;
int ret;

/* wait on condition variable */

ret = pthread_cond_timedwait(&cv, &mp, &abstime);

Use pthread_cond_timedwait(3THR) as you would use pthread_cond_wait(),
except that pthread_cond_timedwait() does not block past the time of day
specified by abstime. pthread_cond_timedwait() always returns with the mutex
locked and owned by the calling thread, even when it is returning an error. (For
Solaris threads, see “cond_timedwait(3THR)” on page 201.)

The pthread_cond_timedwait() function blocks until the condition is signaled or
until the time of day, specified by the last argument, has passed.

Note – pthread_cond_timedwait() is also a cancellation point.

Return Values

pthread_cond_timedwait() returns zero after completing successfully. Any other
return value indicates that an error occurred. When either of the following conditions
occurs, the function fails and returns the corresponding value.

EINVAL
cv or abstime points to an illegal address.

Chapter 4 • Programming with Synchronization Objects 107

ETIMEDOUT
The time specified by abstime has passed.

The timeout is specified as a time of day so that the condition can be retested
efficiently without recomputing the value, as shown in Example 4–9.

EXAMPLE 4–9 Timed Condition Wait

pthread_timestruc_t to;
pthread_mutex_t m;
pthread_cond_t c;
...
pthread_mutex_lock(&m);
to.tv_sec = time(NULL) + TIMEOUT;
to.tv_nsec = 0;
while (cond == FALSE) {

err = pthread_cond_timedwait(&c, &m, &to);
if (err == ETIMEDOUT) {

/* timeout, do something */
break;

}
}

pthread_mutex_unlock(&m);

Block For a Specified Interval

pthread_cond_reltimedwait_np(3THR)
Prototype:
int pthread_cond_reltimedwait_np(pthread_cond_t *cv,

pthread_mutex_t *mp,
const struct timespec *reltime);

#include <pthread.h>
#include <time.h>

pthread_cond_t cv;
pthread_mutex_t mp;
timestruct_t reltime;
int ret;

/* wait on condition variable */

ret = pthread_cond_reltimedwait_np(&cv, &mp, &reltime);

Use pthread_cond_reltimedwait_np(3THR) as you would use
pthread_cond_timedwait(), except that pthread_cond_reltimedwait_np()
takes a relative time interval rather than an absolute future time of day as the value of
its last argument. pthread_cond_reltimedwait_np() always returns with the
mutex locked and owned by the calling thread, even when it is returning an error. (For

108 Multithreaded Programming Guide • May 2002

Solaris threads, see cond_reltimedwait(3THR).) The
pthread_cond_reltimedwait_np() function blocks until the condition is signaled
or until the time interval, specified by the last argument, has elapsed.

Note – pthread_cond_reltimedwait_np() is also a cancellation point.

Return Values

pthread_cond_reltimedwait_np() returns zero after completing successfully.
Any other return value indicates that an error occurred. When either of the following
conditions occurs, the function fails and returns the corresponding value.

EINVAL
cv or reltime points to an illegal address.

ETIMEDOUT
The time interval specified by reltime has passed.

Unblock All Threads

pthread_cond_broadcast(3THR)
Prototype:

int pthread_cond_broadcast(pthread_cond_t *cv);

#include <pthread.h>

pthread_cond_t cv;
int ret;

/* all condition variables are signaled */

ret = pthread_cond_broadcast(&cv);

Use pthread_cond_broadcast(3THR) to unblock all threads that are blocked on
the condition variable pointed to by cv, specified by pthread_cond_wait(). When
no threads are blocked on the condition variable, pthread_cond_broadcast() has
no effect. (For Solaris threads, see “cond_broadcast(3THR)” on page 202.)

Return Values

pthread_cond_broadcast() returns zero after completing successfully. Any other
return value indicates that an error occurred. When the following condition occurs, the
function fails and returns the corresponding value.

Chapter 4 • Programming with Synchronization Objects 109

EINVAL
cv points to an illegal address.

Condition Variable Broadcast Example

Since pthread_cond_broadcast() causes all threads blocked on the condition to
contend again for the mutex lock, use it with care. For example, use
pthread_cond_broadcast() to allow threads to contend for varying resource
amounts when resources are freed, as shown in Example 4–10.

EXAMPLE 4–10 Condition Variable Broadcast

pthread_mutex_t rsrc_lock;
pthread_cond_t rsrc_add;
unsigned int resources;

get_resources(int amount)
{

pthread_mutex_lock(&rsrc_lock);
while (resources < amount) {

pthread_cond_wait(&rsrc_add, &rsrc_lock);
}
resources -= amount;
pthread_mutex_unlock(&rsrc_lock);

}

add_resources(int amount)
{

pthread_mutex_lock(&rsrc_lock);
resources += amount;
pthread_cond_broadcast(&rsrc_add);
pthread_mutex_unlock(&rsrc_lock);

}

Note that in add_resources() it does not matter whether resources is updated first
or if pthread_cond_broadcast() is called first inside the mutex lock.

Call pthread_cond_broadcast() under the protection of the same mutex that is
used with the condition variable being signaled. Otherwise, the condition variable
could be signaled between the test of the associated condition and blocking in
pthread_cond_wait(), which can cause an infinite wait.

Destroy Condition Variable State

pthread_cond_destroy(3THR)
Use pthread_cond_destroy(3THR) to destroy any state associated with the
condition variable pointed to by cv. (For Solaris threads, see “cond_destroy(3THR)”
on page 200.)

110 Multithreaded Programming Guide • May 2002

Prototype:

int pthread_cond_destroy(pthread_cond_t *cv);

#include <pthread.h>

pthread_cond_t cv;
int ret;

/* Condition variable is destroyed */

ret = pthread_cond_destroy(&cv);

Note that the space for storing the condition variable is not freed.

Return Values

pthread_cond_destroy() returns zero after completing successfully. Any other
return value indicates that an error occurred. When any of the following conditions
occur, the function fails and returns the corresponding value.

EINVAL
The value specified by cv is invalid.

The Lost Wake-Up Problem
Calling pthread_cond_signal() or pthread_cond_broadcast() when the
thread does not hold the mutex lock associated with the condition can lead to lost
wake-up bugs.

A lost wake-up occurs when:

� A thread calls pthread_cond_signal() or pthread_cond_broadcast().

� And another thread is between the test of the condition and the call to
pthread_cond_wait().

� And no threads are waiting.

The signal has no effect, and therefore is lost.

The Producer/Consumer Problem
This problem is one of the small collection of standard, well-known problems in
concurrent programming: a finite-size buffer and two classes of threads, producers
and consumers, put items into the buffer (producers) and take items out of the buffer
(consumers).

A producer must wait until the buffer has space before it can put something in, and a
consumer must wait until something is in the buffer before it can take something out.

Chapter 4 • Programming with Synchronization Objects 111

A condition variable represents a queue of threads waiting for some condition to be
signaled.

Example 4–11 has two such queues, one (less) for producers waiting for a slot in the
buffer, and the other (more) for consumers waiting for a buffer slot containing
information. The example also has a mutex, as the data structure describing the buffer
must be accessed by only one thread at a time.

EXAMPLE 4–11 The Producer/Consumer Problem and Condition Variables

typedef struct {
char buf[BSIZE];
int occupied;
int nextin;
int nextout;
pthread_mutex_t mutex;
pthread_cond_t more;
pthread_cond_t less;

} buffer_t;

buffer_t buffer;

As Example 4–12 shows, the producer thread acquires the mutex protecting the
buffer data structure and then makes certain that space is available for the item
being produced. If not, it calls pthread_cond_wait(), which causes it to join the
queue of threads waiting for the condition less, representing there is room in the buffer,
to be signaled.

At the same time, as part of the call to pthread_cond_wait(), the thread releases
its lock on the mutex. The waiting producer threads depend on consumer threads to
signal when the condition is true (as shown in Example 4–12). When the condition is
signaled, the first thread waiting on less is awakened. However, before the thread can
return from pthread_cond_wait(), it must acquire the lock on the mutex again.

This ensures that it again has mutually exclusive access to the buffer data structure.
The thread then must check that there really is room available in the buffer; if so, it
puts its item into the next available slot.

At the same time, consumer threads might be waiting for items to appear in the buffer.
These threads are waiting on the condition variable more. A producer thread, having
just deposited something in the buffer, calls pthread_cond_signal() to wake up
the next waiting consumer. (If there are no waiting consumers, this call has no effect.)

Finally, the producer thread unlocks the mutex, allowing other threads to operate on
the buffer data structure.

EXAMPLE 4–12 The Producer/Consumer Problem—the Producer

void producer(buffer_t *b, char item)
{

pthread_mutex_lock(&b->mutex);

112 Multithreaded Programming Guide • May 2002

EXAMPLE 4–12 The Producer/Consumer Problem—the Producer (Continued)

while (b->occupied >= BSIZE)
pthread_cond_wait(&b->less, &b->mutex);

assert(b->occupied < BSIZE);

b->buf[b->nextin++] = item;

b->nextin %= BSIZE;
b->occupied++;

/* now: either b->occupied < BSIZE and b->nextin is the index
of the next empty slot in the buffer, or
b->occupied == BSIZE and b->nextin is the index of the
next (occupied) slot that will be emptied by a consumer
(such as b->nextin == b->nextout) */

pthread_cond_signal(&b->more);

pthread_mutex_unlock(&b->mutex);

}

Note the use of the assert() statement; unless the code is compiled with NDEBUG
defined, assert() does nothing when its argument evaluates to true (that is,
nonzero), but causes the program to abort if the argument evaluates to false (zero).
Such assertions are especially useful in multithreaded programs—they immediately
point out runtime problems if they fail, and they have the additional effect of being
useful comments.

The comment that begins /* now: either b->occupied ... could better be
expressed as an assertion, but it is too complicated as a Boolean-valued expression and
so is given in English.

Both the assertion and the comments are examples of invariants. These are logical
statements that should not be falsified by the execution of the program, except during
brief moments when a thread is modifying some of the program variables mentioned
in the invariant. (An assertion, of course, should be true whenever any thread executes
it.)

Using invariants is an extremely useful technique. Even if they are not stated in the
program text, think in terms of invariants when you analyze a program.

The invariant in the producer code that is expressed as a comment is always true
whenever a thread is in the part of the code where the comment appears. If you move
this comment to just after the mutex_unlock(), this does not necessarily remain
true. If you move this comment to just after the assert(), this is still true.

Chapter 4 • Programming with Synchronization Objects 113

The point is that this invariant expresses a property that is true at all times, except
when either a producer or a consumer is changing the state of the buffer. While a
thread is operating on the buffer (under the protection of a mutex), it might
temporarily falsify the invariant. However, once the thread is finished, the invariant
should be true again.

Example 4–13 shows the code for the consumer. Its flow is symmetric with that of the
producer.

EXAMPLE 4–13 The Producer/Consumer Problem—the Consumer

char consumer(buffer_t *b)
{

char item;
pthread_mutex_lock(&b->mutex);
while(b->occupied <= 0)

pthread_cond_wait(&b->more, &b->mutex);

assert(b->occupied > 0);

item = b->buf[b->nextout++];
b->nextout %= BSIZE;
b->occupied--;

/* now: either b->occupied > 0 and b->nextout is the index
of the next occupied slot in the buffer, or
b->occupied == 0 and b->nextout is the index of the next
(empty) slot that will be filled by a producer (such as
b->nextout == b->nextin) */

pthread_cond_signal(&b->less);
pthread_mutex_unlock(&b->mutex);

return(item);

}

Semaphores
Semaphores are a programming construct designed by E. W. Dijkstra in the late 1960s.
Dijkstra’s model was the operation of railroads: consider a stretch of railroad in which
there is a single track over which only one train at a time is allowed.

Guarding this track is a semaphore. A train must wait before entering the single track
until the semaphore is in a state that permits travel. When the train enters the track,
the semaphore changes state to prevent other trains from entering the track. A train
that is leaving this section of track must again change the state of the semaphore to
allow another train to enter.

114 Multithreaded Programming Guide • May 2002

In the computer version, a semaphore appears to be a simple integer. A thread waits
for permission to proceed and then signals that it has proceeded by performing a P
operation on the semaphore.

The semantics of the operation are such that the thread must wait until the
semaphore’s value is positive, then change the semaphore’s value by subtracting one
from it. When it is finished, the thread performs a V operation, which changes the
semaphore’s value by adding one to it. It is crucial that these operations take place
atomically—they cannot be subdivided into pieces between which other actions on the
semaphore can take place. In the P operation, the semaphore’s value must be positive
just before it is decremented (resulting in a value that is guaranteed to be nonnegative
and one less than what it was before it was decremented).

In both P and V operations, the arithmetic must take place without interference. If two
V operations are performed simultaneously on the same semaphore, the net effect
should be that the semaphore’s new value is two greater than it was.

The mnemonic significance of P and V is unclear to most of the world, as Dijkstra is
Dutch. However, in the interest of true scholarship: P stands for prolagen, a made-up
word derived from proberen te verlagen, which means try to decrease. V stands for
verhogen, which means increase. This is discussed in one of Dijkstra’s technical notes,
EWD 74.

sem_wait(3RT) and sem_post(3RT) correspond to Dijkstra’s P and V operations.
sem_trywait(3RT) is a conditional form of the P operation: if the calling thread
cannot decrement the value of the semaphore without waiting, the call returns
immediately with a nonzero value.

There are two basic sorts of semaphores: binary semaphores, which never take on
values other than zero or one, and counting semaphores, which can take on arbitrary
nonnegative values. A binary semaphore is logically just like a mutex.

However, although it is not enforced, mutexes should be unlocked only by the thread
holding the lock. There is no notion of “the thread holding the semaphore,” so any
thread can perform a V (or sem_post(3RT)) operation.

Counting semaphores are about as powerful as conditional variables (used in
conjunction with mutexes). In many cases, the code might be simpler when it is
implemented with counting semaphores rather than with condition variables (as
shown in the next few examples).

However, when a mutex is used with condition variables, there is an implied
bracketing—it is clear which part of the program is being protected. This is not
necessarily the case for a semaphore, which might be called the go to of concurrent
programming—it is powerful but too easy to use in an unstructured, indeterminate
way.

Chapter 4 • Programming with Synchronization Objects 115

Counting Semaphores
Conceptually, a semaphore is a nonnegative integer count. Semaphores are typically
used to coordinate access to resources, with the semaphore count initialized to the
number of free resources. Threads then atomically increment the count when resources
are added and atomically decrement the count when resources are removed.

When the semaphore count becomes zero, indicating that no more resources are
present, threads trying to decrement the semaphore block wait until the count
becomes greater than zero.

TABLE 4–7 Routines for Semaphores

Operation Destination Discussion

Initialize a semaphore “sem_init(3RT)” on page 116

Increment a semaphore “sem_post(3RT)” on page 118

Block on a semaphore count “sem_wait(3RT)” on page 119

Decrement a semaphore count “sem_trywait(3RT)” on page 119

Destroy the semaphore state “sem_destroy(3RT)” on page 120

Because semaphores need not be acquired and released by the same thread, they can
be used for asynchronous event notification (such as in signal handlers). And, because
semaphores contain state, they can be used asynchronously without acquiring a mutex
lock as is required by condition variables. However, semaphores are not as efficient as
mutex locks.

By default, there is no defined order of unblocking if multiple threads are waiting for a
semaphore.

Semaphores must be initialized before use, but they do not have attributes.

Initialize a Semaphore

sem_init(3RT)
Prototype:

int sem_init(sem_t *sem, int pshared, unsigned int value);

#include <semaphore.h>

sem_t sem;
int pshared;
int ret;

116 Multithreaded Programming Guide • May 2002

int value;

/* initialize a private semaphore */
pshared = 0;
value = 1;

ret = sem_init(&sem, pshared, value);

Use sema_init(3THR) to initialize the semaphore variable pointed to by sem to value
amount. If the value of pshared is zero, then the semaphore cannot be shared between
processes. If the value of pshared is nonzero, then the semaphore can be shared
between processes. (For Solaris threads, see “sema_init(3THR)” on page 202.)

Multiple threads must not initialize the same semaphore.

A semaphore must not be reinitialized while other threads might be using it.

Return Values

sem_init() returns zero after completing successfully. Any other return value
indicates that an error occurred. When any of the following conditions occurs, the
function fails and returns the corresponding value.

EINVAL
The value argument exceeds SEM_VALUE_MAX.

ENOSPC
A resource required to initialize the semaphore has been exhausted. The limit on
semaphores SEM_NSEMS_MAX has been reached.

EPERM
The process lacks the appropriate privileges to initialize the semaphore.

Initializing Semaphores With Intraprocess Scope

When pshared is 0, the semaphore can be used by all the threads in this process only.

#include <semaphore.h>

sem_t sem;
int ret;
int count = 4;

/* to be used within this process only */

ret = sem_init(&sem, 0, count);

Initializing Semaphores With Interprocess Scope

When pshared is nonzero, the semaphore can be shared by other processes.

Chapter 4 • Programming with Synchronization Objects 117

#include <semaphore.h>

sem_t sem;
int ret;
int count = 4;

/* to be shared among processes */

ret = sem_init(&sem, 1, count);

Named Semaphores
The functions sem_open(3RT), sem_getvalue(3RT), sem_close(3RT), and
sem_unlink(3RT) are available to open, retrieve, close, and remove named
semaphores. Using sem_open(), you can create a semaphore that has a name defined
in the file system name space.

Named semaphores are like process shared semaphores, except that they are
referenced with a pathname rather than a pshared value.

For more information about named semaphores, see sem_open(3RT),
sem_getvalue(3RT), sem_close(3RT), and sem_unlink(3RT).

Increment a Semaphore

sem_post(3RT)
Prototype:

int sem_post(sem_t *sem);

#include <semaphore.h>

sem_t sem;
int ret;

ret = sem_post(&sem); /* semaphore is posted */

Use sema_post(3THR) to atomically increment the semaphore pointed to by sem.
When any threads are blocked on the semaphore, one of them is unblocked. (For
Solaris threads, see “sema_post(3THR)” on page 203.)

Return Values

sem_post() returns zero after completing successfully. Any other return value
indicates that an error occurred. When the following condition occurs, the function
fails and returns the corresponding value.

118 Multithreaded Programming Guide • May 2002

EINVAL
sem points to an illegal address.

Block on a Semaphore Count

sem_wait(3RT)
Prototype:

int sem_wait(sem_t *sem);

#include <semaphore.h>

sem_t sem;
int ret;

ret = sem_wait(&sem); /* wait for semaphore */

Use sema_wait(3THR) to block the calling thread until the count in the semaphore
pointed to by sem becomes greater than zero, then atomically decrement it.

Return Values

sem_wait() returns zero after completing successfully. Any other return value
indicates that an error occurred. When any of the following conditions occurs, the
function fails and returns the corresponding value.

EINVAL
sem points to an illegal address.

EINTR
A signal interrupted this function.

Decrement a Semaphore Count

sem_trywait(3RT)
Prototype:

int sem_trywait(sem_t *sem);

#include <semaphore.h>

sem_t sem;

Chapter 4 • Programming with Synchronization Objects 119

int ret;

ret = sem_trywait(&sem); /* try to wait for semaphore*/

Use sem_trywait(3RT) to try to atomically decrement the count in the semaphore
pointed to by sem when the count is greater than zero. This function is a nonblocking
version of sem_wait(); that is it returns immediately if unsuccessful.

Return Values

sem_trywait() returns zero after completing successfully. Any other return value
indicates that an error occurred. When any of the following conditions occurs, the
function fails and returns the corresponding value.

EINVAL
sem points to an illegal address.

EINTR
A signal interrupted this function.

EAGAIN
The semaphore was already locked, so it cannot be immediately locked by the
sem_trywait() operation.

Destroy the Semaphore State

sem_destroy(3RT)
Prototype:

int sem_destroy(sem_t *sem);

#include <semaphore.h>

sem_t sem;
int ret;

ret = sem_destroy(&sem); /* the semaphore is destroyed */

Use sem_destroy(3RT) to destroy any state associated with the semaphore pointed
to by sem. The space for storing the semaphore is not freed. (For Solaris threads, see
“sem_destroy(3THR)” on page 204.)

Return Values

sem_destroy() returns zero after completing successfully. Any other return value
indicates that an error occurred. When the following condition occurs, the function
fails and returns the corresponding value.

120 Multithreaded Programming Guide • May 2002

EINVAL
sem points to an illegal address.

The Producer/Consumer Problem, Using
Semaphores
The data structure in Example 4–14 is similar to that used for the condition variables
example (see Example 4–11). Two semaphores represent the number of full and empty
buffers and ensure that producers wait until there are empty buffers and that
consumers wait until there are full buffers.

EXAMPLE 4–14 The Producer/Consumer Problem With Semaphores

typedef struct {
char buf[BSIZE];
sem_t occupied;
sem_t empty;
int nextin;
int nextout;
sem_t pmut;
sem_t cmut;

} buffer_t;

buffer_t buffer;

sem_init(&buffer.occupied, 0, 0);
sem_init(&buffer.empty,0, BSIZE);
sem_init(&buffer.pmut, 0, 1);
sem_init(&buffer.cmut, 0, 1);

buffer.nextin = buffer.nextout = 0;

Another pair of (binary) semaphores plays the same role as mutexes, controlling
access to the buffer when there are multiple producers and multiple empty buffer
slots, and when there are multiple consumers and multiple full buffer slots. Mutexes
would work better here, but would not provide as good an example of semaphore use.

EXAMPLE 4–15 The Producer/Consumer Problem—the Producer

void producer(buffer_t *b, char item) {
sem_wait(&b->empty);
sem_wait(&b->pmut);

b->buf[b->nextin] = item;
b->nextin++;
b->nextin %= BSIZE;

sem_post(&b->pmut);
sem_post(&b->occupied);

}

Chapter 4 • Programming with Synchronization Objects 121

EXAMPLE 4–16 The Producer/Consumer Problem—the Consumer

char consumer(buffer_t *b) {
char item;

sem_wait(&b->occupied);

sem_wait(&b->cmut);

item = b->buf[b->nextout];
b->nextout++;
b->nextout %= BSIZE;

sem_post(&b->cmut);

sem_post(&b->empty);

return(item);

}

Read-Write Lock Attributes
Read-write locks permit concurrent reads and exclusive writes to a protected shared
resource. The read-write lock is a single entity that can be locked in read or write mode.
To modify a resource, a thread must first acquire the exclusive write lock. An exclusive
write lock is not permitted until all read locks have been released.

Database access can be synchronized with a read-write lock. Read-write locks support
concurrent reads of database records because the read operation does not change the
record’s information. When the database is to be updated, the write operation must
acquire an exclusive write lock.

To change the default read-write lock attributes, you can declare and initialize an
attribute object. Often, the read-write lock attributes are set up in one place at the
beginning of the application so they can be located quickly and modified easily. The
following table lists the functions discussed in this section that manipulate read-write
lock attributes.

See “Similar Synchronization Functions—Read-Write Locks” on page 181 for the
Solaris threads implementation of read-write locks.

122 Multithreaded Programming Guide • May 2002

TABLE 4–8 Routines for Read-Write Lock Attributes

Operation Destination Discussion

Initialize a read-write lock
attribute

“pthread_rwlockattr_init(3THR)” on page 123

Destroy a read-write lock
attribute

“pthread_rwlockattr_destroy(3THR)” on page 123

Set a read-write lock attribute “pthread_rwlockattr_setpshared(3THR)” on page 124

Get a read-write lock attribute “pthread_rwlockattr_getpshared(3THR)” on page 125

Initialize a Read-Write Lock Attribute

pthread_rwlockattr_init(3THR)
#include <pthread.h>

int pthread_rwlockattr_init(pthread_rwlockattr_t *attr);

pthread_rwlockattr_init(3THR) initializes a read-write lock attributes object attr
with the default value for all of the attributes defined by the implementation.

Results are undefined if pthread_rwlockattr_init is called specifying an already
initialized read-write lock attributes object. After a read-write lock attributes object has
been used to initialize one or more read-write locks, any function affecting the
attributes object (including destruction) does not affect any previously initialized
read-write locks.

Return Values

If successful, pthread_rwlockattr_init() returns zero. Otherwise, an error
number is returned to indicate the error.

ENOMEM
Insufficient memory exists to initialize the rwlock attributes object.

Destroy a Read-Write Lock Attribute

pthread_rwlockattr_destroy(3THR)
#include <pthread.h>

int pthread_rwlockattr_destroy(pthread_rwlockattr_t *attr);

Chapter 4 • Programming with Synchronization Objects 123

pthread_rwlockattr_destroy(3THR) destroys a read-write lock attributes object.
The effect of subsequent use of the object is undefined until the object is re-initialized
by another call to pthread_rwlockattr_init() An implementation can cause
pthread_rwlockattr_destroy() to set the object referenced by attr to an invalid
value.

Return Values

If successful, pthread_rwlockattr_destroy() returns zero. Otherwise, an error
number is returned to indicate the error.

EINVAL
The value specified by attr is invalid.

Set a Read-Write Lock Attribute

pthread_rwlockattr_setpshared(3THR)
#include <pthread.h>

int pthread_rwlockattr_setpshared(pthread_rwlockattr_t *attr,

int pshared);

pthread_rwlockattr_setpshared(3THR) sets the process-shared read-write lock
attribute.

PTHREAD_PROCESS_SHARED
Permits a read-write lock to be operated on by any thread that has access to the
memory where the read-write lock is allocated, even if the read-write lock is
allocated in memory that is shared by multiple processes.

PTHREAD_PROCESS_PRIVATE
The read-write lock will only be operated upon by threads created within the same
process as the thread that initialized the read-write lock; if threads of differing
processes attempt to operate on such a read-write lock, the behavior is undefined.
The default value of the process-shared attribute is PTHREAD_PROCESS_PRIVATE.

Return Value

If successful, pthread_rwlockattr_setpshared() returns zero. Otherwise, an
error number is returned to indicate the error.

EINVAL
The value specified by attr or pshared is invalid.

124 Multithreaded Programming Guide • May 2002

Get a Read-Write Lock Attribute

pthread_rwlockattr_getpshared(3THR)
#include <pthread.h>

int pthread_rwlockattr_getpshared(const pthread_rwlockattr_t *attr,

int *pshared);

pthread_rwlockattr_getpshared(3THR) gets the process-shared read-write lock
attribute.

pthread_rwlockattr_getpshared() obtains the value of the process-shared
attribute from the initialized attributes object referenced by attr.

Return Value

If successful, pthread_rwlockattr_getpshared() returns zero. Otherwise, an
error number is returned to indicate the error.

EINVAL
The value specified by attr or pshared is invalid.

Using Read-Write Locks
After the attributes for a read-write lock are configured, you initialize the read-write
lock itself. The following functions are used to initialize or destroy, lock or unlock, or
try to lock a read-write lock. The following table lists the functions discussed in this
section that manipulate read-write locks.

TABLE 4–9 Routines that Manipulate Read-Write Locks

Operation Destination Discussion

Initialize a read-write lock “pthread_rwlock_init(3THR)” on page 126

Read lock on read-write lock “pthread_rwlock_rdlock(3THR)” on page 127

Read lock with a nonblocking
read-write lock

“pthread_rwlock_tryrdlock(3THR)” on page 128

Write lock on read-write lock “pthread_rwlock_wrlock(3THR)” on page 128

Chapter 4 • Programming with Synchronization Objects 125

TABLE 4–9 Routines that Manipulate Read-Write Locks (Continued)
Operation Destination Discussion

Write lock with a nonblocking
read-write lock

“pthread_rwlock_trywrlock(3THR)” on page 129

Unlock a read-write lock “pthread_rwlock_unlock(3THR)” on page 129

Destroy a read-write lock “pthread_rwlock_destroy(3THR)” on page 130

Initialize a Read-Write Lock

pthread_rwlock_init(3THR)
#include <pthread.h>

int pthread_rwlock_init(pthread_rwlock_t *rwlock,
const pthread_rwlockattr_t *attr);

pthread_rwlock_t rwlock = PTHREAD_RWLOCK_INITIALIZER;

Use pthread_rwlock_init(3THR) to initialize the read-write lock referenced by
rwlock with the attributes referenced by attr. If attr is NULL, the default read-write lock
attributes are used; the effect is the same as passing the address of a default read-write
lock attributes object. Once initialized, the lock can be used any number of times
without being re-initialized. On successful initialization, the state of the read-write
lock becomes initialized and unlocked. Results are undefined if
pthread_rwlock_init() is called specifying an already initialized read-write lock.
Results are undefined if a read-write lock is used without first being initialized. (For
Solaris threads, see “rwlock_init(3THR)” on page 182.)

In cases where default read-write lock attributes are appropriate, the macro
PTHREAD_RWLOCK_INITIALIZER can be used to initialize read-write locks that are
statically allocated. The effect is equivalent to dynamic initialization by a call to
pthread_rwlock_init() with the parameter attr specified as NULL, except that no
error checks are performed.

Return Value

If successful, pthread_rwlock_init() returns zero. Otherwise, an error number is
returned to indicate the error.

If pthread_rwlock_init() fails, rwlock is not initialized and the contents of rwlock
are undefined.

EINVAL
The value specified by attr or rwlock is invalid.

126 Multithreaded Programming Guide • May 2002

Read Lock on Read-Write Lock

pthread_rwlock_rdlock(3THR)
#include <pthread.h>

int pthread_rwlock_rdlock(pthread_rwlock_t *rwlock);

pthread_rwlock_rdlock(3THR) applies a read lock to the read-write lock
referenced by rwlock. The calling thread acquires the read lock if a writer does not hold
the lock and there are no writers blocked on the lock. It is unspecified whether the
calling thread acquires the lock when a writer does not hold the lock and there are
writers waiting for the lock. If a writer holds the lock, the calling thread will not
acquire the read lock. If the read lock is not acquired, the calling thread blocks (that is,
it does not return from the pthread_rwlock_rdlock()) until it can acquire the
lock. Results are undefined if the calling thread holds a write lock on rwlock at the time
the call is made.

Implementations are allowed to favor writers over readers to avoid writer starvation.
(For instance, the Solaris threads implementation favors writers over readers. See
“rw_rdlock(3THR)” on page 183.)

A thread can hold multiple concurrent read locks on rwlock (that is, successfully call
pthread_rwlock_rdlock() n times) If so, the thread must perform matching
unlocks (that is, it must call pthread_rwlock_unlock() n times).

Results are undefined if pthread_rwlock_rdlock() is called with an uninitialized
read-write lock.

If a signal is delivered to a thread waiting for a read-write lock for reading, on return
from the signal handler the thread resumes waiting for the read-write lock for reading
as if it was not interrupted.

Return Value

If successful, pthread_rwlock_rdlock() returns zero. Otherwise, an error number
is returned to indicate the error.

EINVAL
The value specified by attr or rwlock is invalid.

Chapter 4 • Programming with Synchronization Objects 127

Read Lock With a Nonblocking Read-Write Lock

pthread_rwlock_tryrdlock(3THR)
#include <pthread.h>

int pthread_rwlock_tryrdlock(pthread_rwlock_t *rwlock);

pthread_rwlock_tryrdlock(3THR) applies a read lock as in
pthread_rwlock_rdlock() with the exception that the function fails if any thread
holds a write lock on rwlock or there are writers blocked on rwlock. (For Solaris threads,
see “rw_tryrdlock(3THR)” on page 184.)

Return Value

pthread_rwlock_tryrdlock() returns zero if the lock for reading on the
read-write lock object referenced by rwlock is acquired. Otherwise an error number is
returned to indicate the error.

EBUSY
The read-write lock could not be acquired for reading because a writer holds the
lock or was blocked on it.

Write Lock on Read-Write Lock

pthread_rwlock_wrlock(3THR)
#include <pthread.h>

int pthread_rwlock_wrlock(pthread_rwlock_t *rwlock);

pthread_rwlock_wrlock(3THR) applies a write lock to the read-write lock
referenced by rwlock. The calling thread acquires the write lock if no other thread
(reader or writer) holds the read-write lock rwlock. Otherwise, the thread blocks (that
is, does not return from the pthread_rwlock_wrlock() call) until it can acquire the
lock. Results are undefined if the calling thread holds the read-write lock (whether a
read or write lock) at the time the call is made.

Implementations are allowed to favor writers over readers to avoid writer starvation.
(For instance, the Solaris threads implementation favors writers over readers. See
“rw_wrlock(3THR)” on page 185.)

Results are undefined if pthread_rwlock_wrlock() is called with an uninitialized
read-write lock.

128 Multithreaded Programming Guide • May 2002

If a signal is delivered to a thread waiting for a read-write lock for writing, upon
return from the signal handler the thread resumes waiting for the read-write lock for
writing as if it was not interrupted.

Return Value

pthread_rwlock_rwlock() returns zero if the lock for writing on the read-write
lock object referenced by rwlock is acquired. Otherwise an error number is returned to
indicate the error.

Write Lock With a Nonblocking Read-Write Lock

pthread_rwlock_trywrlock(3THR)
#include <pthread.h>

int pthread_rwlock_trywrlock(pthread_rwlock_t *rwlock);

pthread_rwlock_trywrlock(3THR) applies a write lock like
pthread_rwlock_wrlock(), with the exception that the function fails if any thread
currently holds rwlock (for reading or writing). (For Solaris threads, see
“rw_trywrlock(3THR)” on page 185.)

Results are undefined if pthread_rwlock_trywrlock() is called with an
uninitialized read-write lock.

If a signal is delivered to a thread waiting for a read-write lock for writing, on return
from the signal handler the thread resumes waiting for the read-write lock for writing
as if it was not interrupted.

Return Value

If successful, pthread_rwlock_trywrlock() returns zero if the lock for writing on
the read-write lock object referenced by rwlock is acquired. Otherwise, an error number
is returned to indicate the error.

EBUSY
The read-write lock could not be acquired for writing because it is already locked
for reading or writing.

Unlock a Read-Write Lock

pthread_rwlock_unlock(3THR)
#include <pthread.h>

Chapter 4 • Programming with Synchronization Objects 129

pthread_rwlock_unlock(3THR) releases a lock held on the read-write lock object
referenced by rwlock. Results are undefined if the read-write lock rwlock is not held by
the calling thread. (For Solaris threads, see “rw_unlock(3THR)” on page 186.)

If pthread_rwlock_unlock() is called to release a read lock from the read-write
lock object and there are other read locks currently held on this read-write lock object,
the read-write lock object remains in the read locked state. If
pthread_rwlock_unlock() releases the calling thread’s last read lock on this
read-write lock object, then the calling thread is no longer one of the owners of the
object. If pthread_rwlock_unlock() releases the last read lock for this read-write
lock object, the read-write lock object will be put in the unlocked state with no owners.

If pthread_rwlock_unlock() is called to release a write lock for this read-write
lock object, the read-write lock object will be put in the unlocked state with no owners.

If the call to the pthread_rwlock_unlock() results in the read-write lock object
becoming unlocked and there are multiple threads waiting to acquire the read-write
lock object for writing, the scheduling policy is used to determine which thread
acquires the read-write lock object for writing. If there are multiple threads waiting to
acquire the read-write lock object for reading, the scheduling policy is used to
determine the order in which the waiting threads acquire the read-write lock object for
reading. If there are multiple threads blocked on rwlock for both read locks and write
locks, it is unspecified whether the readers acquire the lock first or whether a writer
acquires the lock first.

Results are undefined if pthread_rwlock_unlock() is called with an uninitialized
read-write lock.

Return Value

If successful, pthread_rwlock_unlock() returns zero. Otherwise, an error number
is returned to indicate the error.

Destroy a Read-Write Lock

pthread_rwlock_destroy(3THR)
#include <pthread.h>

int pthread_rwlock_destroy(pthread_rwlock_t *rwlock);

pthread_rwlock_t rwlock = PTHREAD_RWLOCK_INITIALIZER;

pthread_rwlock_destroy(3THR) destroys the read-write lock object referenced by
rwlock and releases any resources used by the lock. The effect of subsequent use of the
lock is undefined until the lock is re-initialized by another call to
pthread_rwlock_init() An implementation can cause

130 Multithreaded Programming Guide • May 2002

pthread_rwlock_destroy() to set the object referenced by rwlock to an invalid
value. Results are undefined if pthread_rwlock_destroy() is called when any
thread holds rwlock. Attempting to destroy an uninitialized read-write lock results in
undefined behavior. A destroyed read-write lock object can be re-initialized using
pthread_rwlock_init(); the results of otherwise referencing the read-write lock
object after it has been destroyed are undefined. (For Solaris threads, see
“rwlock_destroy(3THR)” on page 186.)

Return Value

If successful, pthread_rwlock_destroy() returns zero. Otherwise, an error
number is returned to indicate the error.

EINVAL
The value specified by attr or rwlock is invalid.

Synchronization Across Process
Boundaries
Each of the synchronization primitives can be set up to be used across process
boundaries. This is done quite simply by ensuring that the synchronization variable is
located in a shared memory segment and by calling the appropriate init() routine,
after the primitive has been initialized with its shared attribute set as interprocess.

Producer/Consumer Problem Example
Example 4–17 shows the producer/consumer problem with the producer and
consumer in separate processes. The main routine maps zero-filled memory (that it
shares with its child process) into its address space.

A child process is created that runs the consumer. The parent runs the producer.

This example also shows the drivers for the producer and consumer. The
producer_driver() simply reads characters from stdin and calls producer().
The consumer_driver() gets characters by calling consumer() and writes them to
stdout.

The data structure for Example 4–17 is the same as that used for the condition
variables example (see Example 4–4). Two semaphores represent the number of full
and empty buffers and ensure that producers wait until there are empty buffers and
that consumers wait until there are full buffers.

Chapter 4 • Programming with Synchronization Objects 131

EXAMPLE 4–17 Synchronization Across Process Boundaries

main() {
int zfd;
buffer_t *buffer;
pthread_mutexattr_t mattr;
pthread_condattr_t cvattr_less, cvattr_more;

zfd = open("/dev/zero", O_RDWR);
buffer = (buffer_t *)mmap(NULL, sizeof(buffer_t),

PROT_READ|PROT_WRITE, MAP_SHARED, zfd, 0);
buffer->occupied = buffer->nextin = buffer->nextout = 0;

pthread_mutex_attr_init(&mattr);
pthread_mutexattr_setpshared(&mattr,

PTHREAD_PROCESS_SHARED);

pthread_mutex_init(&buffer->lock, &mattr);
pthread_condattr_init(&cvattr_less);
pthread_condattr_setpshared(&cvattr_less, PTHREAD_PROCESS_SHARED);
pthread_cond_init(&buffer->less, &cvattr_less);
pthread_condattr_init(&cvattr_more);
pthread_condattr_setpshared(&cvattr_more,

PTHREAD_PROCESS_SHARED);
pthread_cond_init(&buffer->more, &cvattr_more);

if (fork() == 0)
consumer_driver(buffer);

else
producer_driver(buffer);

}

void producer_driver(buffer_t *b) {
int item;

while (1) {
item = getchar();
if (item == EOF) {

producer(b, ‘\0’);
break;

} else
producer(b, (char)item);

}
}

void consumer_driver(buffer_t *b) {
char item;

while (1) {
if ((item = consumer(b)) == ’\0’)

break;
putchar(item);

}

}

132 Multithreaded Programming Guide • May 2002

Interprocess Locking Without the
Threads Library
Although not generally recommended, you can do interprocess locking without using
the threads library. If this is something you want to do, see the instructions in “Using
LWPs Between Processes” on page 205.

Comparing Primitives
The most basic synchronization primitive in threads is the mutual exclusion lock. So, it
is the most efficient mechanism in both memory use and execution time. The basic use
of a mutual exclusion lock is to serialize access to a resource.

The next most efficient primitive in threads is the condition variable. The basic use of a
condition variable is to block on a change of state; that is it provides a thread wait
facility. Remember that a mutex lock must be acquired before blocking on a condition
variable and must be unlocked after returning from pthread_cond_wait(). The
mutex lock must also be held across the change of state that occurs before the
corresponding call to pthread_cond_signal().

The semaphore uses more memory than the condition variable. It is easier to use in
some circumstances because a semaphore variable functions on state rather than on
control. Unlike a lock, a semaphore does not have an owner. Any thread can increment
a semaphore that has blocked.

The read-write lock permits concurrent reads and exclusive writes to a protected
resource. The read-write lock is a single entity that can be locked in read or write mode.
To modify a resource, a thread must first acquire the exclusive write lock. An exclusive
write lock is not permitted until all read locks have been released.

Chapter 4 • Programming with Synchronization Objects 133

134 Multithreaded Programming Guide • May 2002

CHAPTER 5

Programming With the Operating
Environment

This chapter describes how multithreading interacts with the Solaris operating
environment and how the operating environment has changed to support
multithreading.

� “Process Creation—exec(2) and exit(2) Issues” on page 139
� “Timers, Alarms, and Profiling” on page 140
� “Nonlocal Goto—setjmp(3C) and longjmp(3C)” on page 142
� “Resource Limits” on page 142
� “LWPs and Scheduling Classes” on page 142
� “Extending Traditional Signals” on page 145
� “I/O Issues” on page 154

Process Creation—Forking Issues
The default handling of the fork() function in the Solaris operating environment is
somewhat different from the way fork() is handled in POSIX threads, although the
Solaris operating environment does support both mechanisms.

Table 5–1 compares the differences and similarities of Solaris and pthreads fork()
handling. When the comparable interface is not available either in POSIX threads or in
Solaris threads, the ‘—’ character appears in the table column.

TABLE 5–1 Comparing POSIX and Solaris fork() Handling

Solaris Operating Environment Interface POSIX Threads Interface

Fork-one model fork1(2) fork(2)

Fork-all model fork(2) —

135

TABLE 5–1 Comparing POSIX and Solaris fork() Handling (Continued)
Solaris Operating Environment Interface POSIX Threads Interface

Fork safety — pthread_atfork(3THR)

The Fork-One Model
As shown in Table 5–1, the behavior of the pthreads fork(2) function is the same as
that of the Solaris fork1(2) function. Both the pthreads fork(2) function and the
Solaris fork1(2) create a new process, duplicating the complete address space in the
child, but duplicating only the calling thread in the child process.

This is useful when the child process immediately calls exec(), which is what
happens after most calls to fork(). In this case, the child process does not need a
duplicate of any thread other than the one that called fork().

In the child, do not call any library functions after calling fork() and before calling
exec() because one of the library functions might use a lock that was held in the
parent at the time of the fork(). The child process might execute only
Async-Signal-Safe operations until one of the exec() handlers is called.

The Fork-One Safety Problem and Solution
In addition to all of the usual concerns such as locking shared data, a library should be
well behaved with respect to forking a child process when only one thread is running
(the one that called fork()). The problem is that the sole thread in the child process
might try to grab a lock that is held by a thread that wasn’t duplicated in the child.

This is not a problem most programs are likely to encounter. Most programs call
exec() in the child right after the return from fork(). However, if the program
wishes to carry out some actions in the child before the call to exec(), or never calls
exec(), then the child could encounter deadlock scenarios.

Each library writer should provide a safe solution, although not providing a fork-safe
library is not a large concern because this condition is rare.

For example, assume that T1 is in the middle of printing something (and so is holding
a lock for printf()), when T2 forks a new process. In the child process, if the sole
thread (T2) calls printf(), it promptly deadlocks.

The POSIX fork() or Solaris fork1() duplicates only the thread that calls it.
(Calling the Solaris fork() duplicates all threads, so this issue does not come up.)

To prevent deadlock, ensure that no such locks are being held at the time of forking.
The most obvious way to do this is to have the forking thread acquire all the locks that
could possibly be used by the child. Because you cannot do this for locks like those in
printf() (because printf() is owned by libc), you must ensure that printf() is
not being used at fork() time.

136 Multithreaded Programming Guide • May 2002

To manage the locks in your library:

� Identify all the locks used by the library.

� Identify the locking order for the locks used by the library. (If a strict locking order
is not used, then lock acquisition must be managed carefully.)

� Arrange to acquire those locks at fork time. In Solaris threads this must be done
manually, obtaining the locks just before calling fork1(), and releasing them right
after.

In the following example, the list of locks used by the library is {L1,...Ln}, and the
locking order for these locks is also L1...Ln.

mutex_lock(L1);
mutex_lock(L2);
fork1(...);
mutex_unlock(L1);

mutex_unlock(L2);

In pthreads, you can add a call to pthread_atfork(f1, f2, f3) in your library’s
.init() section, where f1(), f2(), f3() are defined as follows:

f1() /* This is executed just before the process forks. */
{
mutex_lock(L1); |
mutex_lock(...); | -- ordered in lock order
mutex_lock(Ln); |
} V

f2() /* This is executed in the child after the process forks. */
{
mutex_unlock(L1);
mutex_unlock(...);
mutex_unlock(Ln);
}

f3() /* This is executed in the parent after the process forks. */
{
mutex_unlock(L1);
mutex_unlock(...);
mutex_unlock(Ln);

}

Another example of deadlock would be a thread in the parent process—other than the
one that called Solaris fork1(2)—that has locked a mutex. This mutex is copied into
the child process in its locked state, but no thread is copied over to unlock the mutex.
So, any thread in the child that tries to lock the mutex waits forever.

Chapter 5 • Programming With the Operating Environment 137

Virtual Forks–vfork(2)

The standard vfork(2) function is unsafe in multithreaded programs. vfork(2) is
like fork1(2) in that only the calling thread is copied in the child process. As in
nonthreaded implementations, vfork() does not copy the address space for the child
process.

Be careful that the thread in the child process does not change memory before it calls
exec(2). Remember that vfork() gives the parent address space to the child. The
parent gets its address space back after the child calls exec() or exits. It is important
that the child not change the state of the parent.

For example, it is disastrous to create new threads between the call to vfork() and
the call to exec().

The Solution—pthread_atfork(3THR)

Use pthread_atfork() to prevent deadlocks whenever you use the fork-one model.

#include <pthread.h>

int pthread_atfork(void (*prepare) (void), void (*parent) (void),

void (*child) (void));

The pthread_atfork() function declares fork() handlers that are called before
and after fork() in the context of the thread that called fork().

� The prepare handler is called before fork() starts.
� The parent handler is called after fork() returns in the parent.
� The child handler is called after fork() returns in the child.

Any one of these can be set to NULL. The order in which successive calls to
pthread_atfork() are made is significant.

For example, a prepare handler could acquire all the mutexes needed, and then the
parent and child handlers could release them. This ensures that all the relevant locks
are held by the thread that calls the fork function before the process is forked,
preventing the deadlock in the child.

Using the fork all model avoids the deadlock problem described in “The Fork-One
Safety Problem and Solution” on page 136.

Return Values

pthread_atfork() returns a zero when it completes successfully. Any other return
value indicates that an error occurred. If the following condition is detected,
pthread_atfork(3THR) fails and returns the corresponding value.

ENOMEM
Insufficient table space exists to record the fork handler addresses.

138 Multithreaded Programming Guide • May 2002

The Fork-All Model
The Solaris fork(2) function duplicates the address space and all the threads (and
LWPs) in the child. This is useful, for example, when the child process never calls
exec(2) but does use its copy of the parent address space. The fork-all functionality
is not available in POSIX threads.

Note that when one thread in a process calls Solaris fork(2), threads that are blocked
in an interruptible system call return EINTR.

Also, be careful not to create locks that are held by both the parent and child
processes. This can happen when locks are allocated in memory that is sharable (that
is use mmap() with the MAP_SHARED flag). Note that this is not a problem if the
fork-one model is used.

Choosing the Right Fork
You determine whether fork() has a “fork-all” or a “fork-one” semantic in your
application by linking with the appropriate library. Linking with -lthread gives you
the “fork-all” semantic for fork(), and linking with -lpthread gives the “fork-one”
semantic for fork() (see Figure 7–1for an explanation of compiling options).

Cautions for Any Fork
Be careful when using global state after a call to any fork() function.

For example, when one thread reads a file serially and another thread in the process
successfully calls one of the forks, each process then contains a thread that is reading
the file. Because the seek pointer for a file descriptor is shared after a fork(), the
thread in the parent gets some data while the thread in the child gets the other. This
introduces gaps in the sequential read accesses.

Process Creation—exec(2) and exit(2)
Issues
Both the exec(2) and exit(2) system calls work as they do in single-threaded
processes except that they destroy all the threads in the address space. Both calls block
until all the execution resources (and so all active threads) are destroyed.

When exec() rebuilds the process, it creates a single lightweight process (LWP) . The
process startup code builds the initial thread. As usual, if the initial thread returns, it
calls exit() and the process is destroyed.

Chapter 5 • Programming With the Operating Environment 139

When all the threads in a process exit, the process exits. A call to any exec() function
from a process with more than one thread terminates all threads, and loads and
executes the new executable image. No destructor functions are called.

Timers, Alarms, and Profiling
The “End of Life” announcements for per-LWP timers (see timer_create(3RT))
and per-thread alarms (see alarm(2) or setitimer(2)) were made in the Solaris
2.5 release. Both features are now replaced with the per-process variants described in
this section.

Originally, each LWP had a unique realtime interval timer and alarm that a thread
bound to the LWP could use. The timer or alarm delivered one signal to the thread
when the timer or alarm expired.

Each LWP also had a virtual time or profile interval timer that a thread bound to the
LWP could use. When the interval timer expired, either SIGVTALRM or SIGPROF, as
appropriate, was sent to the LWP that owned the interval timer.

Per-LWP POSIX Timers
In the Solaris 2.3 and 2.4 releases, the timer_create(3RT) function returned a timer
object with a timer ID meaningful only within the calling LWP and with expiration
signals delivered to that LWP. Because of this, the only threads that could use the
POSIX timer facility were bound threads.

Even with this restricted use, POSIX timers in the Solaris 2.3 and 2.4 releases for
multithreaded applications were unreliable about masking the resulting signals and
delivering the associated value from the sigvent structure.

Beginning with the Solaris 2.5 release, an application that is compiled defining the
macro _POSIX_PER_PROCESS_TIMERS, or with a value greater that 199506L for the
symbol _POSIX_C_SOURCE, can create per-process timers.

Effective with the Solaris 9 Operating Environment, all timers are per-process except
for the virtual time and profile interval timers (see setitimer(2) for
ITIMER_VIRTUAL and ITIMER_PROF), which remain per-LWP.

The timer IDs of per-process timers are usable from any LWP, and the expiration
signals are generated for the process rather than directed to a specific LWP.

The per-process timers are deleted only by timer_delete(3RT) or when the process
terminates.

140 Multithreaded Programming Guide • May 2002

Per-Thread Alarms
In the Solaris Operating Environment 2.3 and 2.4 releases, a call to alarm(2) or
setitimer(2) was meaningful only within the calling LWP. Such timers were
deleted automatically when the creating LWP terminated. Because of this, the only
threads that could use alarm() or setitimer() were bound threads.

Even with this restricted use, alarm() and setitimer() timers in Solaris Operating
Environment 2.3 and 2.4 multithreaded applications were unreliable about masking
the signals from the bound thread that issued these calls. When such masking was not
required, then these two system calls worked reliably from bound threads.

With the Solaris Operating Environment 2.5 release, an application linking with
-lpthread (POSIX) threads got per-process delivery of SIGALRM when calling
alarm(). The SIGALRM generated by alarm() is generated for the process rather than
directed to a specific LWP. Also, the alarm is reset when the process terminates.

Applications compiled with a release before the Solaris Operating Environment 2.5
release, or not linked with -lpthread, will continue to see a per-LWP delivery of
signals generated by alarm() and setitimer()

Effective with the Solaris 9 Operating Environment, calls to alarm() or to
setitimer(ITIMER_REAL) will cause the resulting SIGALRM signal to be sent to the
process.

Profiling
In Solaris releases prior to 2.6, calling profil() in a multithreaded program would
impact only the calling LWP; the profile state was not inherited at LWP creation time.
To profile a multithreaded program with a global profile buffer, each thread needed to
issue a call to profil() at threads start-up time, and each thread had to be a bound
thread. This was cumbersome and did not easily support dynamically turning
profiling on and off. In Solaris 2.6 and later releases, the profil() system call for
multithreaded processes has global impact—that is, a call to profil() impacts all
LWPs/threads in a process. This may cause applications that depend on the previous
per-LWP semantic to break, but it is expected to improve multithreaded programs that
wish to turn profiling on and off dynamically at runtime.

Chapter 5 • Programming With the Operating Environment 141

Nonlocal Goto—setjmp(3C) and
longjmp(3C)
The scope of setjmp() and longjmp() is limited to one thread, which is fine most
of the time. However, this does mean that a thread that handles a signal can
longjmp() only when setjmp() is performed in the same thread.

Resource Limits
Resource limits are set on the entire process and are determined by adding the
resource use of all threads in the process. When a soft resource limit is exceeded, the
offending thread is sent the appropriate signal. The sum of the resources used in the
process is available through getrusage(3C).

LWPs and Scheduling Classes
The Solaris kernel has three classes of scheduling. The highest-priority scheduling
class is Realtime (RT). The middle-priority scheduling class is system. The system
class cannot be applied to a user process. The lowest-priority scheduling class is
timeshare (TS), which is also the default class.

Scheduling class is maintained for each LWP. When a process is created, the initial
LWP inherits the scheduling class and priority of the creating LWP in the parent
process. As more LWPs are created to run unbound threads, they also inherit this
scheduling class and priority.

Threads have the scheduling class and priority of their underlying LWPs. Each LWP in
a process can have a unique scheduling class and priority that is visible to the kernel.
If a thread is bound, it will always be associated with the same LWP.

Thread priorities regulate contention for synchronization objects. By default LWPs are
in the timesharing class. For compute-bound multithreading, thread priorities are not
very useful. For multithreaded applications that do a lot of synchronization using the
MT libraries, thread priorities become more meaningful.

142 Multithreaded Programming Guide • May 2002

The scheduling class is set by priocntl(2). How you specify the first two arguments
determines whether just the calling LWP or all the LWPs of one or more processes are
affected. The third argument of priocntl() is the command, which can be one of the
following.

� PC_GETCID. Get the class ID and class attributes for a specific class.

� PC_GETCLINFO. Get the class name and class attributes for a specific class.

� PC_GETPARMS. Get the class identifier and the class-specific scheduling parameters
of a process, an LWP with a process, or a group of processes.

� PC_SETPARMS. Set the class identifier and the class-specific scheduling parameters
of a process, an LWP with a process, or a group of processes.

Note that priocntl() affects the scheduling of the LWP associated with the calling
thread. For unbound threads, the calling thread is not guaranteed to be associated
with the affected LWP after the call to priocntl() returns.

Timeshare Scheduling
Timeshare scheduling distributes the processing resource fairly among the LWPs in
this scheduling class. Other parts of the kernel can monopolize the processor for short
intervals without degrading response time as seen by the user.

The priocntl(2) call sets the nice(2) level of one or more processes. The
priocntl() call also affects the nice() level of all the timesharing class LWPs in the
process. The nice() level ranges from 0 to +20 normally and from -20 to +20 for
processes with superuser privilege. The lower the value, the higher the priority.

The dispatch priority of time shared LWPs is calculated from the instantaneous CPU
use rate of the LWP and from its nice() level. The nice() level indicates the relative
priority of the LWPs to the timeshare scheduler.

LWPs with a greater nice() value get a smaller, but nonzero, share of the total
processing. An LWP that has received a larger amount of processing is given lower
priority than one that has received little or no processing.

Realtime Scheduling
The Realtime class (RT) can be applied to a whole process or to one or more LWPs in a
process. This requires superuser privilege.

Unlike the nice(2) level of the timeshare class, LWPs that are classified Realtime can
be assigned priorities either individually or jointly. A priocntl(2) call affects the
attributes of all the Realtime LWPs in the process.

Chapter 5 • Programming With the Operating Environment 143

The scheduler always dispatches the highest-priority Realtime LWP. It preempts a
lower-priority LWP when a higher-priority LWP becomes runnable. A preempted LWP
is placed at the head of its level queue.

A Realtime LWP retains control of a processor until it is preempted, it suspends, or its
Realtime priority is changed. LWPs in the RT class have absolute priority over
processes in the TS class.

A new LWP inherits the scheduling class of the parent process or LWP. An RT class
LWP inherits the parent’s time slice, whether finite or infinite.

An LWP with a finite time slice runs until it terminates, blocks (for example, to wait
for an I/O event), is preempted by a higher-priority runnable Realtime process, or the
time slice expires.

An LWP with an infinite time slice ceases execution only when it terminates, blocks, or
is preempted.

Fair Share Scheduling
The fair share scheduler (FSS) scheduling class allows allocation of CPU time based on
shares.

By default, the FSS scheduling class uses the same range of priorities (0 to 59) as the
TS and interactive (IA) scheduling classes. All LWPs in a process must run in the same
scheduling class. The FSS class schedules individual LWPs, not whole processes. Thus,
a mix of processes in the FSS and TS/IA classes could result in unexpected scheduling
behavior in both cases.

With the use of processor sets, you can mix TS/IA with FSS in one system as long as
all the processes running on each processor set are in either the TS/IA or the FSS
scheduling class, so they do not compete for the same CPUs.

Fixed Priority Scheduling
The fixed priority scheduling class (FX) assigns fixed priorities and time quantum that
are not adjusted to accomodate resource consumption. Process priority can be changed
only by the process itself or another appropriately privileged process. For more
information about FX, see the priocntl(1) and dispadmin(1M) manual pages.

Threads in this class share the same range of priorities (0 to 59) as the TS and
interactive (IA) scheduling classes. TS is usually the default. FX will usually be used in
conjunction with TS.

144 Multithreaded Programming Guide • May 2002

Extending Traditional Signals
The traditional UNIX signal model is extended to threads in a fairly natural way. The
key characteristics are that the signal disposition is process-wide, but the signal mask
is per-thread. The process-wide disposition of signals is established using the
traditional mechanisms (signal(3C), sigaction(2), and so on).

When a signal handler is marked SIG_DFL or SIG_IGN, the action on receipt of the
signal (exit, core dump, stop, continue, or ignore) is performed on the entire receiving
process, affecting all threads in the process. For these signals that don’t have handlers,
the issue of which thread picks the signal is unimportant, because the action on receipt
of the signal is carried out on the whole process. See signal(5) for basic information
about signals.

Each thread has its own signal mask. This lets a thread block some signals while it
uses memory or another state that is also used by a signal handler. All threads in a
process share the set of signal handlers set up by sigaction(2) and its variants.

A thread in one process cannot send a signal to a specific thread in another process. A
signal sent by kill(2), sigsend(2) or sigqueue(3RT) to a process is handled by any
one of the receptive threads in the process.

Signals are divided into two categories: traps and exceptions (synchronously
generated signals) and interrupts (asynchronously generated signals).

As in traditional UNIX, if a signal is pending, additional occurrences of that signal
normally have no additional effect—a pending signal is represented by a bit, not by a
counter. However, signals posted via the sigqueue(3RT) interface allow multiple
instances of the same signal to be queued to the process.

As is the case with single-threaded processes, when a thread receives a signal while
blocked in a system call, the thread might return early, either with the EINTR error
code, or, in the case of I/O calls, with fewer bytes transferred than requested.

Of particular importance to multithreaded programs is the effect of signals on
pthread_cond_wait(3THR). This call usually returns without error (a return value
of zero) only in response to a pthread_cond_signal(3THR) or a
pthread_cond_broadcast(3THR), but, if the waiting thread receives a traditional
UNIX signal, it returns with a return value of zero even though the wakeup was
spurious. The Solaris threads cond_wait(3THR) function returns EINTR in this
circumstance. See “Interrupted Waits on Condition Variables” on page 153for more
information.

Chapter 5 • Programming With the Operating Environment 145

Synchronous Signals
Traps (such as SIGILL, SIGFPE, SIGSEGV) result from something a thread does to
itself, such as dividing by zero or making reference to nonexistent memory. A trap is
handled only by the thread that caused it. Several threads in a process can generate
and handle the same type of trap simultaneously.

Extending the idea of signals to individual threads is easy for
synchronously-generated signals—the handler is invoked on the thread that generated
the synchronous signal.

However, if the process has not chosen to deal with such problems by establishing an
appropriate signal handler, then the default action will be taken when a trap occurs,
even if the offending thread has the generated signal blocked. The default action for
such signals is to terminate the process, perhaps with a core dump.

Because such a synchronous signal usually means that something is seriously wrong
with the whole process, and not just with a thread, terminating the process is often a
good choice.

Asynchronous Signals
Interrupts (such as SIGINT and SIGIO) are asynchronous with any thread and result
from some action outside the process. They might be signals sent explicitly by another
process, or they might represent external actions such as a user typing Control-c.

An interrupt can be handled by any thread whose signal mask allows it. When more
than one thread is able to receive the interrupt, only one is chosen.

When multiple occurrences of the same signal are sent to a process, then each
occurrence can be handled by a separate thread, as long as threads are available that
do not have it masked. When all threads have the signal masked, then the signal is
marked pending and the first thread to unmask the signal handles it.

Continuation Semantics
Continuation semantics are the traditional way to deal with signals. The idea is that
when a signal handler returns, control resumes where it was at the time of the
interruption. This is well suited for asynchronous signals in single-threaded processes,
as shown in Example 5–1.

This is also used as the exception-handling mechanism in some programming
languages, such as PL/1.

EXAMPLE 5–1 Continuation Semantics

unsigned int nestcount;

146 Multithreaded Programming Guide • May 2002

EXAMPLE 5–1 Continuation Semantics (Continued)

unsigned int A(int i, int j) {
nestcount++;

if (i==0)
return(j+1)

else if (j==0)
return(A(i-1, 1));

else
return(A(i-1, A(i, j-1)));

}

void sig(int i) {
printf("nestcount = %d\n", nestcount);

}

main() {
sigset(SIGINT, sig);
A(4,4);

}

Operations on Signals

pthread_sigmask(3THR)
pthread_sigmask(3THR) does for a thread what sigprocmask(2) does for a
process—it sets the thread’s signal mask. When a new thread is created, its initial
mask is inherited from its creator.

The call to sigprocmask() in a multithreaded process is equivalent to a call to
pthread_sigmask(). See the sigprocmask(2) page for more information.

pthread_kill(3THR)
pthread_kill(3THR) is the thread analog of kill(2)—it sends a signal to a
specific thread. This, of course, is different from sending a signal to a process. When a
signal is sent to a process, the signal can be handled by any thread in the process. A
signal sent by pthread_kill() can be handled only by the specified thread.

Note than you can use pthread_kill() to send signals only to threads in the
current process. This is because the thread identifier (type thread_t) is local in scope—it
is not possible to name a thread in any process but your own.

Note also that the action taken (handler, SIG_DFL, SIG_IGN) on receipt of a signal by
the target thread is global, as usual. This means, for example, that if you send SIGXXX
to a thread, and the SIGXXX signal disposition for the process is to kill the process,
then the whole process is killed when the target thread receives the signal.

Chapter 5 • Programming With the Operating Environment 147

sigwait(2)
For multithreaded programs, sigwait(2) is the preferred interface to use, because it
deals well with asynchronously generated signals.

sigwait() causes the calling thread to wait until any signal identified by its set
argument is delivered to the thread. While the thread is waiting, signals identified by
the set argument are unmasked, but the original mask is restored when the call
returns.

All signals identified by the set argument must be blocked on all threads, including
the calling thread; otherwise, sigwait() might not work correctly.

Use sigwait() to separate threads from asynchronous signals. You can create one
thread that is listening for asynchronous signals while your other threads are created
to block any asynchronous signals that might be set to this process.

New sigwait() Implementations

Two versions of sigwait() are available beginning with the Solaris Operating
Environment 2.5 release: the new Solaris Operating Environment 2.5 version, and the
POSIX.1c version. New applications and libraries should use the POSIX standard
interface, as the Solaris Operating Environment version might not be available in
future releases.

The syntax for the two versions of sigwait() is shown below.

#include <signal.h>

/* the Solaris 2.5 version*/
int sigwait(sigset_t *set);

/* the POSIX.1c version */

int sigwait(const sigset_t *set, int *sig);

When the signal is delivered, the POSIX.1c sigwait() clears the pending signal and
places the signal number in sig. Many threads can call sigwait() at the same time,
but only one thread returns for each signal that is received.

With sigwait() you can treat asynchronous signals synchronously—a thread that
deals with such signals simply calls sigwait() and returns as soon as a signal
arrives. By ensuring that all threads (including the caller of sigwait()) have such
signals masked, you can be sure that signals are handled only by the intended handler
and that they are handled safely.

By always masking all signals in all threads, and just calling sigwait() as necessary,
your application will be much safer for threads that depend on signals.

Usually, you create one or more threads that call sigwait() to wait for signals.
Because sigwait() can retrieve even masked signals, be sure to block the signals of
interest in all other threads so they are not accidentally delivered.

148 Multithreaded Programming Guide • May 2002

When a signal arrives, a thread returns from sigwait(), handles the signal, and calls
sigwait() again to wait for more signals. The signal-handling thread is not
restricted to using Async-Signal-Safe functions and can synchronize with other threads
in the usual way. (The Async-Signal-Safe category is defined in “MT Interface Safety
Levels” on page 160.)

Note – sigwait() cannot receive synchronously-generated signals.

sigtimedwait(3RT)
sigtimedwait(3RT) is similar to sigwait(2) except that it fails and returns an
error when a signal is not received in the indicated amount of time.

Thread-Directed Signals
The UNIX signal mechanism is extended with the idea of thread-directed signals.
These are just like ordinary asynchronous signals, except that they are sent to a
particular thread instead of to a process.

Waiting for asynchronous signals in a separate thread can be safer and easier than
installing a signal handler and processing the signals there.

A better way to deal with asynchronous signals is to treat them synchronously. By
calling sigwait(2), discussed in “sigwait(2)” on page 148, a thread can wait until a
signal occurs.

EXAMPLE 5–2 Asynchronous Signals and sigwait(2)

main() {
sigset_t set;
void runA(void);
int sig;

sigemptyset(&set);
sigaddset(&set, SIGINT);
pthread_sigmask(SIG_BLOCK, &set, NULL);
pthread_create(NULL, 0, runA, NULL, PTHREAD_DETACHED, NULL);

while (1) {
sigwait(&set, &sig);
printf("nestcount = %d\n", nestcount);
printf("received signal %d\n", sig);

}
}

void runA() {
A(4,4);

Chapter 5 • Programming With the Operating Environment 149

EXAMPLE 5–2 Asynchronous Signals and sigwait(2) (Continued)

exit(0);

}

This example modifies the code of Example 5–1: the main routine masks the SIGINT
signal, creates a child thread that calls the function A of the previous example, and
then issues sigwait() to handle the SIGINT signal.

Note that the signal is masked in the compute thread because the compute thread
inherits its signal mask from the main thread. The main thread is protected from
SIGINT while, and only while, it is not blocked inside of sigwait().

Also, note that there is never any danger of having system calls interrupted when you
use sigwait().

Completion Semantics
Another way to deal with signals is with completion semantics.

Use completion semantics when a signal indicates that something so catastrophic has
happened that there is no reason to continue executing the current code block. The
signal handler runs instead of the remainder of the block that had the problem. In
other words, the signal handler completes the block.

In Example 5–3, the block in question is the body of the then part of the if statement.
The call to setjmp(3C) saves the current register state of the program in jbuf and
returns 0, thereby executing the block.

EXAMPLE 5–3 Completion Semantics

sigjmp_buf jbuf;
void mult_divide(void) {

int a, b, c, d;
void problem();

sigset(SIGFPE, problem);
while (1) {

if (sigsetjmp(&jbuf) == 0) {
printf("Three numbers, please:\n");
scanf("%d %d %d", &a, &b, &c);
d = a*b/c;
printf("%d*%d/%d = %d\n", a, b, c, d);

}
}

}

void problem(int sig) {
printf("Couldn’t deal with them, try again\n");

150 Multithreaded Programming Guide • May 2002

EXAMPLE 5–3 Completion Semantics (Continued)

siglongjmp(&jbuf, 1);

}

If a SIGFPE (a floating-point exception) occurs, the signal handler is invoked.

The signal handler calls siglongjmp(3C), which restores the register state saved in
jbuf, causing the program to return from sigsetjmp() again (among the registers
saved are the program counter and the stack pointer).

This time, however, sigsetjmp(3C) returns the second argument of
siglongjmp(), which is 1. Notice that the block is skipped over, only to be executed
during the next iteration of the while loop.

Note that you can use sigsetjmp(3C) and siglongjmp(3C) in multithreaded
programs, but be careful that a thread never does a siglongjmp() using the results
of another thread’s sigsetjmp().

Also, sigsetjmp() and siglongjmp() save and restore the signal mask, but
setjmp(3C) and longjmp(3C) do not.

It is best to use sigsetjmp() and siglongjmp() when you work with signal
handlers.

Completion semantics are often used to deal with exceptions. In particular, the Sun
Ada™ programming language uses this model.

Note – Remember, sigwait(2) should never be used with synchronous signals.

Signal Handlers and Async-Signal Safety
A concept similar to thread safety is Async-Signal safety. Async-Signal-Safe operations
are guaranteed not to interfere with operations that are being interrupted.

The problem of Async-Signal safety arises when the actions of a signal handler can
interfere with the operation that is being interrupted.

For example, suppose a program is in the middle of a call to printf(3S) and a
signal occurs whose handler itself calls printf(). In this case, the output of the two
printf() statements would be intertwined. To avoid this, the handler should not call
printf() itself when printf() might be interrupted by a signal.

This problem cannot be solved by using synchronization primitives because any
attempted synchronization between the signal handler and the operation being
synchronized would produce immediate deadlock.

Chapter 5 • Programming With the Operating Environment 151

Suppose that printf() is to protect itself by using a mutex. Now suppose that a
thread that is in a call to printf(), and so holds the lock on the mutex, is interrupted
by a signal.

If the handler (being called by the thread that is still inside of printf()) itself calls
printf(), the thread that holds the lock on the mutex will attempt to take it again,
resulting in an instant deadlock.

To avoid interference between the handler and the operation, either ensure that the
situation never arises (perhaps by masking off signals at critical moments) or invoke
only Async-Signal-Safe operations from inside signal handlers.

The only routines that POSIX guarantees to be Async-Signal-Safe are listed in Table
5–2. Any signal handler can safely call in to one of these functions.

TABLE 5–2 Async-Signal-Safe Functions

_exit() fstat() read() sysconf()

access() getegid() rename() tcdrain()

alarm() geteuid() rmdir() tcflow()

cfgetispeed() getgid() setgid() tcflush()

cfgetospeed() getgroups() setpgid() tcgetattr()

cfsetispeed() getpgrp() setsid() tcgetpgrp()

cfsetospeed() getpid() setuid() tcsendbreak()

chdir() getppid() sigaction() tcsetattr()

chmod() getuid() sigaddset() tcsetpgrp()

chown() kill() sigdelset() time()

close() link() sigemptyset() times()

creat() lseek() sigfillset() umask()

dup2() mkdir() sigismember() uname()

dup() mkfifo() sigpending() unlink()

execle() open() sigprocmask() utime()

execve() pathconf() sigsuspend() wait()

fcntl() pause() sleep() waitpid()

fork() pipe() stat() write()

152 Multithreaded Programming Guide • May 2002

Interrupted Waits on Condition Variables
When an unmasked, caught signal is delivered to a thread while the thread is waiting
on a condition variable, then when the signal handler returns, the thread returns from
the condition wait with a spurious wakeup (one not caused by a condition signal call
from another thread). In this case, the Solaris threads interfaces (cond_wait() and
cond_timedwait()) return EINTR while the POSIX threads interfaces
(pthread_cond_wait() and pthread_cond_timedwait()) return 0. In all cases,
the associated mutex lock is reacquired before returning from the condition wait.

This does not imply that the mutex is locked while the thread is executing the signal
handler. The state of the mutex in the signal handler is undefined.

The implementation of libthread in releases of Solaris prior to the Solaris 9 release
guaranteed that the mutex was held while in the signal handler. Applications that rely
on this old behavior will require revision for Solaris 9 and subsequent releases.

Handler cleanup is illustrated by Example 5–4.

EXAMPLE 5–4 Condition Variables and Interrupted Waits

int sig_catcher() {
sigset_t set;
void hdlr();

mutex_lock(&mut);

sigemptyset(&set);
sigaddset(&set, SIGINT);
sigsetmask(SIG_UNBLOCK, &set, 0);

if (cond_wait(&cond, &mut) == EINTR) {
/* signal occurred and lock is held */
cleanup();
mutex_unlock(&mut);
return(0);

}
normal_processing();
mutex_unlock(&mut);
return(1);

}

void hdlr() {
/* state of the lock is undefined */
...

}

Assume that the SIGINT signal is blocked in all threads on entry to sig_catcher()
and that hdlr() has been established (with a call to sigaction(2)) as the handler
for the SIGINT signal. When an unmasked and caught instance of the SIGINT signal

Chapter 5 • Programming With the Operating Environment 153

is delivered to the thread while it is in cond_wait(), the thread calls hdlr(), then
returns to the cond_wait() function where the lock on the mutex is reacquired, if
necessary, and then returns EINTR from cond_wait().

Note that whether SA_RESTART has been specified as a flag to sigaction() has no
effect here; cond_wait(3THR) is not a system call and is not automatically restarted.
When a caught signal occurs while a thread is blocked in cond_wait(), the call
always returns EINTR.

I/O Issues
One of the attractions of multithreaded programming is I/O performance. The
traditional UNIX API gave you little assistance in this area—you either used the
facilities of the file system or bypassed the file system entirely.

This section shows how to use threads to get more flexibility through I/O concurrency
and multibuffering. This section also discusses the differences and similarities between
the approaches of synchronous I/O (with threads) and asynchronous I/O (with and
without threads).

I/O as a Remote Procedure Call
In the traditional UNIX model, I/O appears to be synchronous, as if you were placing
a remote procedure call to the I/O device. Once the call returns, then the I/O has
completed (or at least it appears to have completed—a write request, for example,
might merely result in the transfer of the data to a buffer in the operating
environment).

The advantage of this model is that it is easy to understand because, as a programmer
you are very familiar with the concept of procedure calls.

An alternative approach not found in traditional UNIX systems is the asynchronous
model, in which an I/O request merely starts an operation. The program must
somehow discover when the operation completes.

This approach is not as simple as the synchronous model, but it has the advantage of
allowing concurrent I/O and processing in traditional, single-threaded UNIX
processes.

154 Multithreaded Programming Guide • May 2002

Tamed Asynchrony
You can get most of the benefits of asynchronous I/O by using synchronous I/O in a
multithreaded program. Where, with asynchronous I/O, you would issue a request
and check later to determine when it completes, you can instead have a separate
thread perform the I/O synchronously. The main thread can then check (perhaps by
calling pthread_join(3THR)) for the completion of the operation at some later time.

Asynchronous I/O
In most situations there is no need for asynchronous I/O, since its effects can be
achieved with the use of threads, with each thread doing synchronous I/O. However,
in a few situations, threads cannot achieve what asynchronous I/O can.

The most straightforward example is writing to a tape drive to make the tape drive
stream. Streaming prevents the tape drive from stopping while it is being written to
and moves the tape forward at high speed while supplying a constant stream of data
that is written to tape.

To do this, the tape driver in the kernel must issue a queued write request when the
tape driver responds to an interrupt that indicates that the previous tape-write
operation has completed.

Threads cannot guarantee that asynchronous writes will be ordered because the order
in which threads execute is indeterminate. Specifying the order of a write to a tape, for
example, is not possible.

Asynchronous I/O Operations
#include <sys/asynch.h>

int aioread(int fildes, char *bufp, int bufs, off_t offset,
int whence, aio_result_t *resultp);

int aiowrite(int filedes, const char *bufp, int bufs,
off_t offset, int whence, aio_result_t *resultp);

aio_result_t *aiowait(const struct timeval *timeout);

int aiocancel(aio_result_t *resultp);

aioread(3AIO) and aiowrite(3AIO) are similar in form to pread(2) and
pwrite(2), except for the addition of the last argument. Calls to aioread() and
aiowrite() result in the initiation (or queueing) of an I/O operation.

The call returns without blocking, and the status of the call is returned in the structure
pointed to by resultp. This is an item of type aio_result_t that contains the
following:

Chapter 5 • Programming With the Operating Environment 155

int aio_return;

int aio_errno;

When a call fails immediately, the failure code can be found in aio_errno.
Otherwise, this field contains AIO_INPROGRESS, meaning that the operation has been
successfully queued.

You can wait for an outstanding asynchronous I/O operation to complete by calling
aiowait(3AIO). This returns a pointer to the aio_result_t structure supplied
with the original aioread(3AIO) or aiowrite(3) call.

This time aio_result_t contains whatever read(2) or write(2) would have
returned if one of them had been called instead of the asynchronous version. If the
read() or write() is successful, aio_return contains the number of bytes that
were read or written; if it was not successful, aio_return is -1, and aio_errno
contains the error code.

aiowait() takes a timeout argument, which indicates how long the caller is willing to
wait. As usual, a NULL pointer here means that the caller is willing to wait indefinitely,
and a pointer to a structure containing a zero value means that the caller is unwilling
to wait at all.

You might start an asynchronous I/O operation, do some work, then call aiowait()
to wait for the request to complete. Or you can use SIGIO to be notified,
asynchronously, when the operation completes.

Finally, a pending asynchronous I/O operation can be cancelled by calling
aiocancel(). This routine is called with the address of the result area as an
argument. This result area identifies which operation is being cancelled.

Shared I/O and New I/O System Calls
When multiple threads are performing I/O operations at the same time with the same
file descriptor, you might discover that the traditional UNIX I/O interface is not
thread safe. The problem occurs with nonsequential I/O. This uses the lseek(2)
system call to set the file offset, which is then used in the next read(2) or write(2)
call to indicate where in the file the operation should start. When two or more threads
are issuing lseeks() to the same file descriptor, a conflict results.

To avoid this conflict, use the pread(2) and pwrite(2) system calls.

#include <sys/types.h>
#include <unistd.h>

ssize_t pread(int fildes, void *buf, size_t nbyte, off_t offset);

ssize_t pwrite(int filedes, void *buf, size_t nbyte,

off_t offset);

156 Multithreaded Programming Guide • May 2002

These behave just like read(2) and write(2) except that they take an additional
argument, the file offset. With this argument, you specify the offset without using
lseek(2), so multiple threads can use these routines safely for I/O on the same file
descriptor.

Alternatives to getc(3C) and putc(3C)
An additional problem occurs with standard I/O. Programmers are accustomed to
routines such as getc(3C) and putc(3C) being very quick—they are implemented
as macros. Because of this, they can be used within the inner loop of a program with
no concerns about efficiency.

However, when they are made thread safe they suddenly become more
expensive—they now require (at least) two internal subroutine calls, to lock and
unlock a mutex.

To get around this problem, alternative versions of these routines are supplied,
getc_unlocked(3S) and putc_unlocked(3C).

These do not acquire locks on a mutex and so are as quick as the original,
nonthread-safe versions of getc(3C) and putc(3C).

However, to use them in a thread-safe way, you must explicitly lock and release the
mutexes that protect the standard I/O streams, using flockfile(3C) and
funlockfile(3C). The calls to these latter routines are placed outside the loop, and
the calls to getc_unlocked() or putc_unlocked() are placed inside the loop.

Chapter 5 • Programming With the Operating Environment 157

158 Multithreaded Programming Guide • May 2002

CHAPTER 6

Safe and Unsafe Interfaces

This chapter defines MT-safety levels for functions and libraries.

� “Thread Safety” on page 159
� “MT Interface Safety Levels” on page 160
� “Async-Signal-Safe Functions” on page 162
� “MT Safety Levels for Libraries” on page 163

Thread Safety
Thread safety is the avoidance of data races—situations in which data are set to either
correct or incorrect values, depending upon the order in which multiple threads access
and modify the data.

When no sharing is intended, give each thread a private copy of the data. When
sharing is important, provide explicit synchronization to make certain that the
program behaves in a deterministic manner.

A procedure is thread safe when it is logically correct when executed simultaneously
by several threads. At a practical level, it is convenient to recognize three levels of
safety.

� Unsafe
� Thread safe - Serializable
� Thread safe - MT-Safe

An unsafe procedure can be made thread safe and serializable by surrounding it with
statements to lock and unlock a mutex. Example 6–1 shows three simplified
implementations of fputs(), initially thread unsafe.

159

Next is a serializable version of this routine with a single mutex protecting the
procedure from concurrent execution problems. Actually, this is stronger
synchronization than is usually necessary. When two threads are sending output to
different files using fputs(), one need not wait for the other—the threads need
synchronization only when they are sharing an output file.

The last version is MT-safe. It uses one lock for each file, allowing two threads to print
to different files at the same time. So, a routine is MT-safe when it is thread safe and its
execution does not negatively affect performance.

EXAMPLE 6–1 Degrees of Thread Safety

/* not thread-safe */
fputs(const char *s, FILE *stream) {

char *p;
for (p=s; *p; p++)

putc((int)*p, stream);
}

/* serializable */
fputs(const char *s, FILE *stream) {

static mutex_t mut;
char *p;
mutex_lock(&m);
for (p=s; *p; p++)

putc((int)*p, stream);

mutex_unlock(&m);
}

/* MT-Safe */
mutex_t m[NFILE];
fputs(const char *s, FILE *stream) {

static mutex_t mut;
char *p;
mutex_lock(&m[fileno(stream)]);
for (p=s; *p; p++)

putc((int)*p, stream);
mutex_unlock(&m[fileno(stream)]0;

}

MT Interface Safety Levels
The threads man pages, man(3THR), use the safety level categories listed in Table 6–1
to describe how well an interface supports threads (these categories are explained
more fully in the Intro(3) reference manual page).

160 Multithreaded Programming Guide • May 2002

TABLE 6–1 Interface Safety Levels

Category Description

Safe This code can be called from a multithreaded
application

Safe with exceptions See the NOTES sections of these pages for a
description of the exceptions.

Unsafe This interface is not safe to use with
multithreaded applications unless the
application arranges for only one thread at a
time to execute within the library.

MT-Safe This interface is fully prepared for
multithreaded access in that it is both safe and
it supports some concurrency.

MT-Safe with exceptions See the NOTES sections of these pages in the
man(3THR): Library Routines for a list of the
exceptions.

Async-Signal-Safe This routine can safely be called from a signal
handler. A thread that is executing an
Async-Signal-Safe routine does not deadlock
with itself when it is interrupted by a signal.

Fork1–Safe This interface releases locks it has held
whenever the Solaris fork1(2) or the POSIX
fork(2) is called.

See the section 3 manual pages for the safety levels of library routines.

Some functions have purposely not been made safe for the following reasons.

� Making the interface MT-Safe would have negatively affected the performance of
single-threaded applications.

� The library has an Unsafe interface. For example, a function might return a pointer
to a buffer in the stack. You can use reentrant counterparts for some of these
functions. The reentrant function name is the original function name with “_r”
appended.

Caution – There is no way to be certain that a function with a name not ending in
“_r” is MT-Safe other than by checking its reference manual page. Use of a function
identified as not MT-Safe must be protected by a synchronizing device or by
restriction to the initial thread.

Chapter 6 • Safe and Unsafe Interfaces 161

Reentrant Functions for Unsafe Interfaces
For most functions with Unsafe interfaces, an MT-Safe version of the routine exists.
The name of the new MT-Safe routine is always the name of the old Unsafe routine
with “_r” appended. The Table 6–2 “_r” routines are supplied in the Solaris
environment.

TABLE 6–2 Reentrant Functions

asctime_r(3c) gethostbyname_r(3n) getservbyname_r(3n)

ctermid_r(3s) gethostent_r(3n) getservbyport_r(3n)

ctime_r(3c) getlogin_r(3c) getservent_r(3n)

fgetgrent_r(3c) getnetbyaddr_r(3n) getspent_r(3c)

fgetpwent_r(3c) getnetbyname_r(3n) getspnam_r(3c)

fgetspent_r(3c) getnetent_r(3n) gmtime_r(3c)

gamma_r(3m) getnetgrent_r(3n) lgamma_r(3m)

getauclassent_r(3) getprotobyname_r(3n) localtime_r(3c)

getauclassnam_r(3) getprotobynumber_r(3n) nis_sperror_r(3n)

getauevent_r(3) getprotoent_r(3n) rand_r(3c)

getauevnam_r(3) getpwent_r(3c) readdir_r(3c)

getauevnum_r(3) getpwnam_r(3c) strtok_r(3c)

getgrent_r(3c) getpwuid_r(3c) tmpnam_r(3s)

getgrgid_r(3c) getrpcbyname_r(3n) ttyname_r(3c)

getgrnam_r(3c) getrpcbynumber_r(3n)

gethostbyaddr_r(3n) getrpcent_r(3n)

Async-Signal-Safe Functions
Functions that can safely be called from signal handlers are Async-Signal-Safe. The
POSIX standard defines and lists Async-Signal-Safe functions (IEEE Std 1003.1-1990,
3.3.1.3 (3)(f), page 55). In addition to the POSIX Async-Signal-Safe functions, these
three functions from the Solaris threads library are also Async- Signal-Safe.

� sema_post(3THR)
� thr_sigsetmask(3THR), similar to pthread_sigmask(3THR)
� thr_kill(3THR), similar to pthread_kill(3THR)

162 Multithreaded Programming Guide • May 2002

MT Safety Levels for Libraries
All routines that can potentially be called by a thread from a multithreaded program
should be MT-Safe.

This means that two or more activations of a routine must be able to correctly execute
concurrently. So, every library interface that a multithreaded program uses must be
MT-Safe.

Not all libraries are now MT-Safe. The commonly used libraries that are MT-Safe are
listed in Table 6–3. Additional libraries will eventually be modified to be MT-Safe.

TABLE 6–3 Some MT-Safe Libraries

Library Comments

lib/libc Interfaces that are not safe have thread-safe interfaces of the
form *_r (often with different semantics)

lib/libdl_stubs To support static switch compiling

lib/libintl Internationalization library

lib/libm Math library compliant with System V Interface Definition,
Edition 3, X/Open and ANSI C

lib/libmalloc Space-efficient memory allocation library; see malloc(3X)

lib/libmapmalloc Alternative mmap(2)-based memory allocation library; see
mapmalloc(3X)

lib/libnsl The TLI interface, XDR, RPC clients and servers, netdir,
netselect and getXXbyYY interfaces are not safe, but have
thread-safe interfaces of the form getXXbyYY_r

lib/libresolv Thread-specific errno support

lib/libsocket Socket library for making network connections

lib/libw Wide character and wide string functions for supporting
multibyte locales

lib/straddr Network name-to-address translation library

lib/libX11 X11 Windows library routines

lib/libC C++ runtime shared objects

Chapter 6 • Safe and Unsafe Interfaces 163

Unsafe Libraries
Routines in libraries that are not guaranteed to be MT-Safe can safely be called by
multithreaded programs only when such calls are single threaded.

164 Multithreaded Programming Guide • May 2002

CHAPTER 7

Compiling and Debugging

This chapter describes how to compile and debug multithreaded programs.

� “Compiling a Multithreaded Application” on page 165
� “Debugging a Multithreaded Program” on page 169

Compiling a Multithreaded Application
Many options are available for header files, define flags, and linking.

Preparing for Compilation
The following items are required to compile and link a multithreaded program. Except
for the C compiler, all should come with your Solaris operating environment.

� A standard C compiler
� Include files:

� <thread.h> and <pthread.h>
� <errno.h>, <limits.h>, <signal.h>, <unistd.h>

� The regular Solaris linker, ln(1)
� The Solaris threads library (libthread), the POSIX threads library

(libpthread), and possibly the POSIX realtime library (librt) for semaphores
� MT-safe libraries (libc, libm, libw, libintl, libnsl, libsocket,

libmalloc, libmapmalloc, and so on)

165

Choosing Solaris or POSIX Semantics
Certain functions, including the ones listed in Table 7–1, have different semantics in
the POSIX 1003.1c standard than in the Solaris 2.4 Operating Environment release,
which was based on an earlier POSIX draft. Function definitions are chosen at compile
time. See the man Pages(3): Library Routines for a description of the differences in
expected parameters and return values.

TABLE 7–1 Functions With POSIX/Solaris Semantic Differences

sigwait(2)

ctime_r(3C) asctime_r(3C)

ftrylockfile(3S) - new getlogin_r(3C)

getgrnam_r(3C) getgrgid_r(3C)

getpwnam_r(3C) getpwuid_r(3C)

readdir_r(3C) ttyname_r(3C)

The Solaris fork(2) function duplicates all threads (fork-all behavior), while the POSIX
fork(2) function duplicates only the calling thread (fork-one behavior), as does the
Solaris fork1() function.

Including <thread.h> or <pthread.h>
The include file <thread.h>, used with the -lthread library, compiles code that is
upward compatible with earlier releases of the Solaris Operating Environment. This
library contains both interfaces—those with Solaris semantics and those with POSIX
semantics. To call thr_setconcurrency(3THR) with POSIX threads, your program
needs to include <thread.h>.

The include file <pthread.h>, used with the -lpthread library, compiles code that
is conformant with the multithreading interfaces defined by the POSIX 1003.1c
standard. For complete POSIX compliance, the define flag _POSIX_C_SOURCE should
be set to a (long) value ≥ 199506:

cc [flags] file... -D_POSIX_C_SOURCE=N (where N 199506L)

You can mix Solaris threads and POSIX threads in the same application, by including
both <thread.h> and <pthread.h>, and linking with either the -lthread or
-lpthread library.

In mixed use, Solaris semantics prevail when compiling with -D_REENTRANT and
linking with -lthread, whereas POSIX semantics prevail when compiling with
-D_POSIX_C_SOURCE and linking with -lpthread.

166 Multithreaded Programming Guide • May 2002

Defining _REENTRANT or _POSIX_C_SOURCE
For POSIX behavior, compile applications with the -D_POSIX_C_SOURCE flag set ≥
199506L. For Solaris behavior, compile multithreaded programs with the
-D_REENTRANT flag. This applies to every module of an application. .

For mixed applications (for example, Solaris threads with POSIX semantics), compile
with the -D_REENTRANT and -D_POSIX_PTHREAD_SEMANTICS flags.

To compile a single-threaded application, define neither the -D_REENTRANT nor the
-D_POSIX_C_SOURCE flag. When these flags are not present, all the old definitions
for errno, stdio, and so on, remain in effect.

Note – Compile single-threaded applications, not linked with either of the thread
libraries (libthread.so.1 or libpthread.so.1), without the -D_REENTRANT
flag. This eliminates performance degradation incurred when macros, such as
putc(3s), are converted into reentrant function calls.

To summarize, POSIX applications that define -D_POSIX_C_SOURCE get the POSIX
1003.1c semantics for the routines listed in Table 7–1. Applications that define only
-D_REENTRANT get the Solaris semantics for these routines. Solaris applications that
define -D_POSIX_PTHREAD_SEMANTICS get the POSIX semantics for these routines,
but can still use the Solaris threads interface.

Applications that define both -D_POSIX_C_SOURCE and -D_REENTRANT get the
POSIX semantics.

Linking With libthread or libpthread
For POSIX threads behavior, load the libpthread library. For Solaris threads
behavior, load the libthread library. Some POSIX programmers might want to link
with -lthread to preserve the Solaris distinction between fork() and fork1(). All
that -lpthread really does is to make fork() behave the same way as the Solaris
fork1() call.

To use libthread, specify -lthread before -lc on the ld command line, or last on
the cc command line.

To use libpthread, specify -lpthread before -lc on the ld command line, or last
on the cc command line.

Prior to Solaris 9, you should not link a nonthreaded program with -lthread or
-lpthread. Doing so establishes multithreading mechanisms at link time that are
initiated at runtime. These slow down a single-threaded application, waste system
resources, and produce misleading results when you debug your code.

Chapter 7 • Compiling and Debugging 167

In Solaris 9 and subsequent releases, linking a nonthreaded program with -lthread
or -lpthread makes no semantic difference to the program. No extra threads or
LWPs are created and the main (and only) thread executes as a traditional
single-threaded process. The only effect on the program is to make system library
locks become real locks (as opposed to dummy function calls) and you pay the price
of acquiring uncontended locks.

Figure 7–1 summarizes the compile options.

cc [flags] file... -D_POSIX_C_SOURCE=n
[-lrt] -lpthread

cc [flags] file... -D_REENTRANT
-D_POSIX_PTHREAD_SEMANTICS
[-lrt] -lthread

cc [flags] file... -D_REENTRANT -lthread

Choose
semantics

POSIX

Mixed usage

Solaris

FIGURE 7–1 Compilation Flowchart

In mixed usage, you need to include both thread.h and pthread.h.

All calls to libthread and libpthread are no-ops if the application does not link
-lthread or -lpthread. The runtime library libc has many predefined
libthread and libpthread stubs that are null procedures. True procedures are
interposed by libthread or libpthread when the application links both libc and
the thread library.

Note – For C++ programs that use threads, use the -mt option, rather than
-lthread, to compile and link your application. The -mt option links with
libthread and ensures proper library linking order. Using -lthread might cause
your program to core dump.

Linking With -lrt for POSIX Semaphores
The Solaris semaphore routines, sema_*(3THR), are contained in the libthread
library. By contrast, you link with the -lrt library to get the standard sem_*(3R)
POSIX 1003.1c semaphore routines described in “Semaphores” on page 114.

168 Multithreaded Programming Guide • May 2002

Link Old With New
Table 7–2 shows that multithreaded object modules should be linked with old object
modules only with great caution.

TABLE 7–2 Compiling With and Without the _REENTRANT Flag

The File Type Compiled Reference And Return

Old object files
(nonthreaded) and
new object files

Without the _REENTRANT
or _POSIX_C_SOURCE
flag

Static storage The traditional errno

New object files With the _REENTRANT or
_POSIX_C_SOURCE flag

__errno, the new
binary entry point

The address of the
thread’s definition
of errno

Programs using TLI in
libnsl1

With the _REENTRANT or
_POSIX_C_SOURCE flag
(required)

__t_errno, a new
entry point

The address of the
thread’s definition
of t_errno.

1. Include tiuser.h to get the TLI global error variable.

The Alternate libthread
The Solaris 8 Operating Environment introduced an alternate threads library
implementation, located in the directories /usr/lib/lwp (32-bit) and
/usr/lib/lwp/64 (64-bit). In the Solaris 9 Operating Environment, this
implementation is the standard threads implementation found in /usr/lib and
/usr/lib/64.

Debugging a Multithreaded Program

Common Oversights
The following list points out some of the more frequent oversights that can cause bugs
in multithreaded programs.

� Passing a pointer to the caller’s stack as an argument to a new thread.

� Accessing global memory (shared changeable state) without the protection of a
synchronization mechanism.

Chapter 7 • Compiling and Debugging 169

� Creating deadlocks caused by two threads trying to acquire rights to the same pair
of global resources in alternate order (so that one thread controls the first resource
and the other controls the second resource and neither can proceed until the other
gives up).

� Trying to reacquire a lock already held (recursive deadlock).

� Creating a hidden gap in synchronization protection. This is caused when a code
segment protected by a synchronization mechanism contains a call to a function
that frees and then reacquires the synchronization mechanism before it returns to
the caller. The result is that it appears to the caller that the global data has been
protected when it actually has not.

� Mixing UNIX signals with threads—it is better to use the sigwait(2) model for
handling asynchronous signals.

� Using setjmp(3C) and longjmp(3C), and then long-jumping away without
releasing the mutex locks.

� Failing to reevaluate the conditions after returning from a call to *_cond_wait()
or *_cond_timedwait().

� Forgetting that default threads are created PTHREAD_CREATE_JOINABLE and
must be reclaimed with pthread_join(3THR); note, pthread_exit(3THR)
does not free up its storage space.

� Making deeply nested, recursive calls and using large automatic arrays can cause
problems because multithreaded programs have a more limited stack size than
single-threaded programs.

� Specifying an inadequate stack size, or using nondefault stacks.

And, note that multithreaded programs (especially those containing bugs) often
behave differently in two successive runs, given identical inputs, because of
differences in the thread scheduling order.

In general, multithreading bugs are statistical instead of deterministic. Tracing is
usually a more effective method of finding order of execution problems than is
breakpoint-based debugging.

Tracing and Debugging With the TNF Utilities
Use the TNF utilities (included as part of the Solaris system) to trace, debug, and
gather performance analysis information from your applications and libraries. The
TNF utilities integrate trace information from the kernel and from multiple user
processes and threads, and so are especially useful for multithreaded code.

With the TNF utilities, you can easily trace and debug multithreaded programs. See
the TNF utilities chapter in the Programming Utilities Guide for detailed information on
using prex(1), tnfdump(1), and other TNF utilities.

170 Multithreaded Programming Guide • May 2002

Using truss(1)
See truss(1) for information on tracing system calls, signals and user-level function
calls.

Using mdb(1)
The following mdb commands can be used to access the LWPs of a multithreaded
program.

TABLE 7–3 MT mdb Commands

pid:A Attaches to process # pid. This stops the process and all its LWPs.

:R Detaches from process. This resumes the process and all its LWPs.

$L Lists all active LWPs in the (stopped) process.

n:l Switches focus to LWP # n.

$l Shows the LWP currently focused.

num:i Ignores signal number num.

These commands to set conditional breakpoints are often useful.

TABLE 7–4 Setting mdb Breakpoints

[label],[count]:b [expression] Breakpoint is detected when expression equals
zero

foo,ffff:b <g7-0xabcdef Stop at foo when g7 = the hex value 0xABCDEF

Using dbx
With the dbx utility you can debug and execute source programs written in C++,
ANSI C, and FORTRAN. dbx accepts the same commands as the Debugger, but uses a
standard terminal (TTY) interface. Both dbx and the Debugger support debugging
multithreaded programs. For a full overview of dbx and Debugger features see the
dbx(1) reference manual page and the Using Sun Workshop user’s guide.

All the dbx options listed in Table 7–5 can support multithreaded applications.

Chapter 7 • Compiling and Debugging 171

TABLE 7–5 dbx Options for MT Programs

Option Meaning

cont at line [sig signo id] Continues execution at line with signal signo. The id, if
present, specifies which thread or LWP to continue. The
default value is all.

lwp Displays current LWP. Switches to given LWP [lwpid].

lwps Lists all LWPs in the current process.

next ... tid Steps the given thread. When a function call is skipped,
all LWPs are implicitly resumed for the duration of that
function call. Nonactive threads cannot be stepped.

next ... lid Steps the given LWP. Does not implicitly resume all
LWPs when skipping a function. The LWP on which the
given thread is active. Does not implicitly resume all
LWP when skipping a function.

step... tid Steps the given thread. When a function call is skipped,
all LWPs are implicitly resumed for the duration of that
function call. Nonactive threads cannot be stepped.

step... lid Steps the given LWP. Does not implicitly resume all
LWPs when skipping a function.

stepi... lid The given LWP.

stepi... tid The LWP on which the given thread is active.

thread Displays current thread. Switches to thread tid. In all the
following variations, an optional tid implies the current
thread.

thread -info [tid] Prints everything known about the given thread.

thread -locks [tid] Prints all locks held by the given thread.

thread -suspend [tid] Puts the given thread into suspended state.

thread -continue [tid] Unsuspends the given thread.

thread -hide [tid] Hides the given (or current) thread. It will not appear in
the generic threads listing.

thread -unhide [tid] Unhides the given (or current) thread.

allthread-unhide Unhides all threads.

threads Prints the list of all known threads.

threads-all Prints threads that are not usually printed (zombies).

all|filterthreads-mode Controls whether threads prints all threads or filters
them by default.

172 Multithreaded Programming Guide • May 2002

TABLE 7–5 dbx Options for MT Programs (Continued)
Option Meaning

auto|manualthreads-mode Enables automatic updating of the thread listing.

threads-mode Echoes the current modes. Any of the previous forms
can be followed by a thread or LWP ID to get the
traceback for the specified entity.

Chapter 7 • Compiling and Debugging 173

174 Multithreaded Programming Guide • May 2002

CHAPTER 8

Programming With Solaris Threads

This chapter compares the Application Programming Interface (API) for Solaris and
POSIX threads, and explains the Solaris features that are not found in POSIX threads.

� “Comparing APIs for Solaris Threads and POSIX Threads” on page 175
� “Unique Solaris Threads Functions” on page 180
� “Similar Synchronization Functions—Read-Write Locks” on page 181
� “Similar Solaris Threads Functions” on page 188
� “Similar Synchronization Functions—Mutual Exclusion Locks” on page 196
� “Similar Synchronization Functions—Condition Variables” on page 199
� “Similar Synchronization Functions—Semaphores” on page 202
� “Special Issues for fork() and Solaris Threads” on page 207

Comparing APIs for Solaris Threads and
POSIX Threads
The Solaris threads API and the pthreads API are two solutions to the same problem:
building parallelism into application software. Although each API is complete in itself,
you can safely mix Solaris threads functions and pthread functions in the same
program.

The two APIs do not match exactly, however. Solaris threads supports functions that
are not found in pthreads, and pthreads includes functions that are not supported in
the Solaris interface. For those functions that do match, the associated arguments
might not, although the information content is effectively the same.

By combining the two APIs, you can use features not found in one to enhance the
other. Similarly, you can run applications using Solaris threads, exclusively, with
applications using pthreads, exclusively, on the same system.

175

Major API Differences
Solaris threads and pthreads are very similar in both API action and syntax. The major
differences are listed in Table 8–1.

TABLE 8–1 Unique Solaris Threads and pthreads Features

Solaris Threads (libthread) POSIX Threads (libpthread)

thr_ prefix for threads function names;
sema_ prefix for semaphore function
names

pthread_ prefix for pthreads function names;
sem_ prefix for semaphore function names

Ability to create “daemon” threads Cancellation semantics

Suspending and continuing a thread Scheduling policies

Function Comparison Table
The following table compares Solaris threads functions with pthreads functions. Note
that even when Solaris threads and pthreads functions appear to be essentially the
same, the arguments to the functions can differ.

When a comparable interface is not available either in pthreads or Solaris threads, a
hyphen ‘-’ appears in the column. Entries in the pthreads column that are followed by
“POSIX 1003.4” or “POSIX.4” are part of the POSIX Realtime standard specification
and are not part of pthreads.

TABLE 8–2 Solaris Threads and POSIX pthreads Comparison

Solaris Threads (libthread) pthreads (libpthread)

thr_create() pthread_create()

thr_exit() pthread_exit()

thr_join() pthread_join()

thr_yield() sched_yield() POSIX.4

thr_self() pthread_self()

thr_kill() pthread_kill()

thr_sigsetmask() pthread_sigmask()

thr_setprio() pthread_setschedparam()

thr_getprio() pthread_getschedparam()

thr_setconcurrency() pthread_setconcurrency()

176 Multithreaded Programming Guide • May 2002

TABLE 8–2 Solaris Threads and POSIX pthreads Comparison (Continued)
Solaris Threads (libthread) pthreads (libpthread)

thr_getconcurrency() pthread_getconcurrency()

thr_suspend() -

thr_continue() -

thr_keycreate() pthread_key_create()

- pthread_key_delete()

thr_setspecific() pthread_setspecific()

thr_getspecific() pthread_getspecific()

- pthread_once()

- pthread_equal()

- pthread_cancel()

- pthread_testcancel()

- pthread_cleanup_push()

- pthread_cleanup_pop()

- pthread_setcanceltype()

- pthread_setcancelstate()

mutex_lock() pthread_mutex_lock()

mutex_unlock() pthread_mutex_unlock()

mutex_trylock() pthread_mutex_trylock()

mutex_init() pthread_mutex_init()

mutex_destroy() pthread_mutex_destroy()

cond_wait() pthread_cond_wait()

cond_timedwait() pthread_cond_timedwait()

cond_reltimedwait() pthread_cond_reltimedwait_np()

cond_signal() pthread_cond_signal()

cond_broadcast() pthread_cond_broadcast()

cond_init() pthread_cond_init()

cond_destroy() pthread_cond_destroy()

rwlock_init() pthread_rwlock_init()

Chapter 8 • Programming With Solaris Threads 177

TABLE 8–2 Solaris Threads and POSIX pthreads Comparison (Continued)
Solaris Threads (libthread) pthreads (libpthread)

rwlock_destroy() pthread_rwlock_destroy()

rw_rdlock() pthread_rwlock_rdlock()

rw_wrlock() pthread_rwlock_wrlock()

rw_unlock() pthread_rwlock_unlock()

rw_tryrdlock() pthread_rwlock_tryrdlock()

rw_trywrlock() pthread_rwlock_trywrlock()

- pthread_rwlockattr_init()

- pthread_rwlockattr_destroy()

- pthread_rwlockattr_getpshared()

- pthread_rwlockattr_setpshared()

sema_init() sem_init() POSIX 1003.4

sema_destroy() sem_destroy() POSIX 1003.4

sema_wait() sem_wait() POSIX 1003.4

sema_post() sem_post() POSIX 1003.4

sema_trywait() sem_trywait() POSIX 1003.4

fork1() fork()

- pthread_atfork()

fork() (multiple thread copy) -

- pthread_mutexattr_init()

- pthread_mutexattr_destroy()

type argument in mutex_init() pthread_mutexattr_setpshared()

- pthread_mutexattr_getpshared()

- pthread_mutex_attr_settype()

- pthread_mutex_attr_gettype()

- pthread_condattr_init()

- pthread_condattr_destroy()

type argument in cond_init() pthread_condattr_setpshared()

- pthread_condattr_getpshared()

178 Multithreaded Programming Guide • May 2002

TABLE 8–2 Solaris Threads and POSIX pthreads Comparison (Continued)
Solaris Threads (libthread) pthreads (libpthread)

- pthread_attr_init()

- pthread_attr_destroy()

THR_BOUND flag in thr_create() pthread_attr_setscope()

- pthread_attr_getscope()

- pthread_attr_setguardsize()

- pthread_attr_getguardsize()

stack_size argument in
thr_create()

pthread_attr_setstacksize()

- pthread_attr_getstacksize()

stack_addr argument in
thr_create()

pthread_attr_setstackaddr()

- pthread_attr_getstackaddr()

THR_DETACH flag in thr_create() pthread_attr_setdetachstate()

- pthread_attr_getdetachstate()

- pthread_attr_setschedparam()

- pthread_attr_getschedparam()

- pthread_attr_setinheritsched()

- pthread_attr_getinheritsched()

- pthread_attr_setsschedpolicy()

- pthread_attr_getschedpolicy()

To use the Solaris threads functions described in this chapter, you must link with the
Solaris threads library -lthread).

Where functionality is virtually the same for both Solaris threads and for pthreads,
(even though the function names or arguments might differ), only a brief example
consisting of the correct include file and the function prototype is presented. Where
return values are not given for the Solaris threads functions, see the appropriate pages
in man(3): Library Routines for the function return values.

For more information on Solaris related functions, see the related pthreads
documentation for the similarly named function.

Where Solaris threads functions offer capabilities that are not available in pthreads, a
full description of the functions is provided.

Chapter 8 • Programming With Solaris Threads 179

Unique Solaris Threads Functions
� “Suspend Thread Execution” on page 180
� “Continue a Suspended Thread” on page 181

Suspend Thread Execution

thr_suspend(3THR)
thr_suspend(3THR) immediately suspends the execution of the thread specified by
target_thread. On successful return from thr_suspend(), the suspended thread is
no longer executing.

Once a thread is suspended, subsequent calls to thr_suspend() have no effect.
Signals cannot awaken the suspended thread; they remain pending until the thread
resumes execution.

#include <thread.h>

int thr_suspend(thread_t tid);

In the following synopsis, pthread_t tid as defined in pthreads is the same as thread_t
tid in Solaris threads. tid values can be used interchangeably either by assignment or
through the use of casts.

thread_t tid; /* tid from thr_create() */

/* pthreads equivalent of Solaris tid from thread created */
/* with pthread_create() */
pthread_t ptid;

int ret;

ret = thr_suspend(tid);

/* using pthreads ID variable with a cast */

ret = thr_suspend((thread_t) ptid);

Return Values

thr_suspend() returns zero after completing successfully. Any other return value
indicates that an error occurred. When the following condition occurs,
thr_suspend() fails and returns the corresponding value.

ESRCH
tid cannot be found in the current process.

180 Multithreaded Programming Guide • May 2002

Continue a Suspended Thread

thr_continue(3THR)
thr_continue(3THR) resumes the execution of a suspended thread. Once a
suspended thread is continued, subsequent calls to thr_continue() have no effect.

#include <thread.h>

int thr_continue(thread_t tid);

A suspended thread will not be awakened by a signal. The signal stays pending until
the execution of the thread is resumed by thr_continue().

pthread_t tid as defined in pthreads is the same as thread_t tid in Solaris threads. tid
values can be used interchangeably either by assignment or through the use of casts.

thread_t tid; /* tid from thr_create()*/

/* pthreads equivalent of Solaris tid from thread created */
/* with pthread_create()*/
pthread_t ptid;

int ret;

ret = thr_continue(tid);

/* using pthreads ID variable with a cast */

ret = thr_continue((thread_t) ptid)

Return Values

thr_continue() returns zero after completing successfully. Any other return value
indicates that an error occurred. When the following condition occurs,
thr_continue() fails and returns the corresponding value.

ESRCH
tid cannot be found in the current process.

Similar Synchronization
Functions—Read-Write Locks
Read-write locks allow simultaneous read access by many threads while restricting
write access to only one thread at a time.

Chapter 8 • Programming With Solaris Threads 181

� “Initialize a Read-Write Lock” on page 182
� “Acquire a Read Lock” on page 183
� “Try to Acquire a Read Lock” on page 184
� “Acquire a Write Lock” on page 185
� “Try to Acquire a Write Lock” on page 185
� “Unlock a Read-Write Lock” on page 186
� “Destroy Read-Write Lock State” on page 186

When any thread holds the lock for reading, other threads can also acquire the lock for
reading but must wait to acquire the lock for writing. If one thread holds the lock for
writing, or is waiting to acquire the lock for writing, other threads must wait to
acquire the lock for either reading or writing.

Read-write locks are slower than mutexes, but can improve performance when they
protect data that are not frequently written but that are read by many concurrent
threads.

Use read-write locks to synchronize threads in this process and other processes by
allocating them in memory that is writable and shared among the cooperating
processes (see mmap(2)) and by initializing them for this behavior.

By default, the acquisition order is not defined when multiple threads are waiting for a
read-write lock. However, to avoid writer starvation, the Solaris threads package tends
to favor writers over readers.

Read-write locks must be initialized before use.

Initialize a Read-Write Lock

rwlock_init(3THR)
#include <synch.h> (or #include <thread.h>)

int rwlock_init(rwlock_t *rwlp, int type, void * arg);

Use rwlock_init(3THR) to initialize the read-write lock pointed to by rwlp and to
set the lock state to unlocked. type can be one of the following (note that arg is
currently ignored). (For POSIX threads, see “pthread_rwlock_init(3THR)”
on page 126.)

� USYNC_PROCESS The read-write lock can be used to synchronize threads in this
process and other processes. arg is ignored.

� USYNC_THREAD The read-write lock can be used to synchronize threads in this
process, only. arg is ignored.

182 Multithreaded Programming Guide • May 2002

Multiple threads must not initialize the same read-write lock simultaneously.
Read-write locks can also be initialized by allocation in zeroed memory, in which case
a type of USYNC_THREAD is assumed. A read-write lock must not be reinitialized
while other threads might be using it.

Initializing Read-Write Locks With Intraprocess Scope
#include <thread.h>

rwlock_t rwlp;
int ret;

/* to be used within this process only */

ret = rwlock_init(&rwlp, USYNC_THREAD, 0);

Initializing Read-Write Locks With Interprocess Scope
#include <thread.h>

rwlock_t rwlp;
int ret;

/* to be used among all processes */

ret = rwlock_init(&rwlp, USYNC_PROCESS, 0);

Return Values

rwlock_init() returns zero after completing successfully. Any other return value
indicates that an error occurred. When any of the following conditions occurs, the
function fails and returns the corresponding value.

EINVAL
Invalid argument.

EFAULT
rwlp or arg points to an illegal address.

Acquire a Read Lock

rw_rdlock(3THR)
#include <synch.h> (or #include <thread.h>)

int rw_rdlock(rwlock_t *rwlp);

Chapter 8 • Programming With Solaris Threads 183

Use rw_rdlock(3THR) to acquire a read lock on the read-write lock pointed to by
rwlp. When the read-write lock is already locked for writing, the calling thread blocks
until the write lock is released. Otherwise, the read lock is acquired. (For POSIX
threads, see “pthread_rwlock_rdlock(3THR)” on page 127.)

Return Values

rw_rdlock() returns zero after completing successfully. Any other return value
indicates that an error occurred. When any of the following conditions occurs, the
function fails and returns the corresponding value.

EINVAL
Invalid argument.

EFAULT
rwlp points to an illegal address.

Try to Acquire a Read Lock

rw_tryrdlock(3THR)
#include <synch.h> (or #include <thread.h>)

int rw_tryrdlock(rwlock_t *rwlp);

Use rw_tryrdlock(3THR) to attempt to acquire a read lock on the read-write lock
pointed to by rwlp. When the read-write lock is already locked for writing, it returns
an error. Otherwise, the read lock is acquired. (For POSIX threads, see
“pthread_rwlock_tryrdlock(3THR)” on page 128.)

Return Values

rw_tryrdlock() returns zero after completing successfully. Any other return value
indicates that an error occurred. When any of the following conditions occurs, the
function fails and returns the corresponding value.

EINVAL
Invalid argument.

EFAULT
rwlp points to an illegal address.

EBUSY
The read-write lock pointed to by rwlp was already locked.

184 Multithreaded Programming Guide • May 2002

Acquire a Write Lock

rw_wrlock(3THR)
#include <synch.h> (or #include <thread.h>)

int rw_wrlock(rwlock_t *rwlp);

Use rw_wrlock(3THR) to acquire a write lock on the read-write lock pointed to by
rwlp. When the read-write lock is already locked for reading or writing, the calling
thread blocks until all the read locks and write locks are released. Only one thread at a
time can hold a write lock on a read-write lock. (For POSIX threads, see
“pthread_rwlock_wrlock(3THR)” on page 128.)

Return Values

rw_wrlock() returns zero after completing successfully. Any other return value
indicates that an error occurred. When any of the following conditions occurs, the
function fails and returns the corresponding value.

EINVAL
Invalid argument.

EFAULT
rwlp points to an illegal address.

Try to Acquire a Write Lock

rw_trywrlock(3THR)
#include <synch.h> (or #include <thread.h>)

int rw_trywrlock(rwlock_t *rwlp);

Use rw_trywrlock(3THR) to attempt to acquire a write lock on the read-write lock
pointed to by rwlp. When the read-write lock is already locked for reading or writing,
it returns an error. (For POSIX threads, see “pthread_rwlock_trywrlock(3THR)”
on page 129.)

Return Values

rw_trywrlock() returns zero after completing successfully. Any other return value
indicates that an error occurred. When any of the following conditions occurs, the
function fails and returns the corresponding value.

Chapter 8 • Programming With Solaris Threads 185

EINVAL
Invalid argument.

EFAULT
rwlp points to an illegal address.

EBUSY
The read-write lock pointed to by rwlp was already locked.

Unlock a Read-Write Lock

rw_unlock(3THR)
#include <synch.h> (or #include <thread.h>)

int rw_unlock(rwlock_t *rwlp);

Use rw_unlock(3THR) to unlock a read-write lock pointed to by rwlp. The read-write
lock must be locked and the calling thread must hold the lock either for reading or
writing. When any other threads are waiting for the read-write lock to become
available, one of them is unblocked. (For POSIX threads, see
“pthread_rwlock_unlock(3THR)” on page 129.)

Return Values

rw_unlock() returns zero after completing successfully. Any other return value
indicates that an error occurred. When any of the following conditions occurs, the
function fails and returns the corresponding value.

EINVAL
Invalid argument.

EFAULT
rwlp points to an illegal address.

Destroy Read-Write Lock State

rwlock_destroy(3THR)
#include <synch.h> (or #include <thread.h>)

int rwlock_destroy(rwlock_t *rwlp);

186 Multithreaded Programming Guide • May 2002

Use rwlock_destroy(3THR) to destroy any state associated with the read-write lock
pointed to by rlwp. The space for storing the read-write lock is not freed. (For POSIX
threads, see “pthread_rwlock_destroy(3THR)” on page 130.)

Return Values

rwlock_destroy() returns zero after completing successfully. Any other return
value indicates that an error occurred. When any of the following conditions occurs,
the function fails and returns the corresponding value.

EINVAL
Invalid argument.

EFAULT
rwlp points to an illegal address.

Read-Write Lock Example

Example 8–1 uses a bank account to demonstrate read-write locks. While the program
could allow multiple threads to have concurrent read-only access to the account
balance, only a single writer is allowed. Note that the get_balance() function needs the
lock to ensure that the addition of the checking and saving balances occurs atomically.

EXAMPLE 8–1 Read-Write Bank Account

rwlock_t account_lock;
float checking_balance = 100.0;
float saving_balance = 100.0;
...
rwlock_init(&account_lock, 0, NULL);
...

float
get_balance() {

float bal;

rw_rdlock(&account_lock);
bal = checking_balance + saving_balance;
rw_unlock(&account_lock);
return(bal);

}

void
transfer_checking_to_savings(float amount) {

rw_wrlock(&account_lock);
checking_balance = checking_balance - amount;
saving_balance = saving_balance + amount;
rw_unlock(&account_lock);

}

Chapter 8 • Programming With Solaris Threads 187

Similar Solaris Threads Functions
TABLE 8–3 Similar Solaris Threads Functions

Operation Destination Discussion

Create a thread “thr_create(3THR)” on page 188

Get the minimal stack size “thr_min_stack(3THR)” on page 191

Get the thread identifier “thr_self(3THR)” on page 191

Yield thread execution “thr_yield(3THR)” on page 192

Send a signal to a thread “thr_kill(3THR)” on page 192

Access the signal mask of the calling thread “thr_sigsetmask(3THR)” on page 192

Terminate a thread “thr_exit(3THR)” on page 192

Wait for thread termination “thr_join(3THR)” on page 193

Create a thread-specific data key “thr_keycreate(3THR)” on page 194

Set thread-specific data “thr_setspecific(3THR)” on page 194

Get thread-specific data “thr_getspecific(3THR)” on page 194

Set the thread priority “thr_setprio(3THR)” on page 195

Get the thread priority “thr_getprio(3THR)” on page 195

Create a Thread
The thr_create(3THR) routine is one of the most elaborate of all the Solaris threads
library routines.

thr_create(3THR)
Usethr_create(3THR) to add a new thread of control to the current process. (For
POSIX threads, see “pthread_create(3THR)” on page 26.)

Note that the new thread does not inherit pending signals, but it does inherit priority
and signal masks.

#include <thread.h>

int thr_create(void *stack_base, size_t stack_size,
void *(*start_routine) (void *), void *arg, long flags,

188 Multithreaded Programming Guide • May 2002

thread_t *new_thread);

size_t thr_min_stack(void);

stack_base—Contains the address for the stack that the new thread uses. If stack_base is
NULL then thr_create() allocates a stack for the new thread with at least stack_size
bytes.

stack_size—Contains the size, in number of bytes, for the stack that the new thread
uses. If stack_size is zero, a default size is used. In most cases, a zero value works best.
If stack_size is not zero, it must be greater than the value returned by
thr_min_stack().

There is no general need to allocate stack space for threads. The threads library
allocates 1 megabyte of virtual memory for each thread’s stack with no swap space
reserved. (The library uses the -MAP_NORESERVE option of mmap(2) to make the
allocations.)

start_routine—Contains the function with which the new thread begins execution.
When start_routine() returns, the thread exits with the exit status set to the value
returned by start_routine (see “thr_exit(3THR)” on page 192).

arg—Can be anything that is described by void, which is typically any 4-byte value.
Anything larger must be passed indirectly by having the argument point to it.

Note that you can supply only one argument. To get your procedure to take multiple
arguments, encode them as one (such as by putting them in a structure).

flags—Specifies attributes for the created thread. In most cases a zero value works best.

The value in flags is constructed from the bitwise inclusive OR of the following:

� THR_SUSPENDED—Suspends the new thread and does not execute start_routine
until the thread is started by thr_continue(). Use this to operate on the thread
(such as changing its priority) before you run it. The termination of a detached
thread is ignored.

� THR_DETACHED—Detaches the new thread so that its thread ID and other
resources can be reused as soon as the thread terminates. Set this when you do not
want to wait for the thread to terminate.

Note – When there is no explicit synchronization to prevent it, an unsuspended,
detached thread can die and have its thread ID reassigned to another new thread
before its creator returns from thr_create().

� THR_BOUND—Permanently binds the new thread to an LWP (the new thread is a
bound thread).

Chapter 8 • Programming With Solaris Threads 189

� THR_DAEMON—Marks the new thread as a daemon. A daemon thread is always
detached (THR_DAEMON implies THR_DETACHED). The process exits when all
nondaemon threads exit. Daemon threads do not affect the process exit status and
are ignored when counting the number of thread exits.

A process can exit either by calling exit() or by having every thread in the process
that was not created with the THR_DAEMON flag call thr_exit(3THR). An
application, or a library it calls, can create one or more threads that should be
ignored (not counted) in the decision of whether to exit. The THR_DAEMON flag
identifies threads that are not counted in the process exit criterion.

new_thread—Points to a location (when new_thread is not NULL) where the ID of the
new thread is stored when thr_create() is successful. The caller is responsible for
supplying the storage this argument points to. The ID is valid only within the calling
process.

If you are not interested in this identifier, supply a NULL value to new_thread.

Return Values

thr_create() returns zero when it completes successfully. Any other return value
indicates that an error occurred. When any of the following conditions is detected,
thr_create() fails and returns the corresponding value.

EAGAIN
A system limit is exceeded, such as when too many LWPs have been created.

ENOMEM
Not enough memory was available to create the new thread.

EINVAL
stack_base is not NULL and stack_size is less than the value returned by
thr_min_stack.()

Stack Behavior

Stack behavior in Solaris threads is generally the same as that in pthreads. For more
information about stack setup and operation, see “About Stacks” on page 65.

You can get the absolute minimum on stack size by calling thr_min_stack(), which
returns the amount of stack space required for a thread that executes a null procedure.
Useful threads need more than this, so be very careful when reducing the stack size.

You can specify a custom stack in two ways. The first is to supply a NULL for the stack
location, thereby asking the runtime library to allocate the space for the stack, but to
supply the desired size in the stacksize parameter to thr_create().

190 Multithreaded Programming Guide • May 2002

The other approach is to take overall aspects of stack management and supply a
pointer to the stack to thr_create(). This means that you are responsible not only
for stack allocation but also for stack deallocation—when the thread terminates, you
must arrange for the disposal of its stack.

When you allocate your own stack, be sure to append a red zone to its end by calling
mprotect(2).

Get the Minimal Stack Size

thr_min_stack(3THR)
Use thr_min_stack(3THR) to get the minimum stack size for a thread.

#include <thread.h>

size_t thr_min_stack(void);

thr_min_stack() returns the amount of space needed to execute a null thread (a
null thread is a thread that is created to execute a null procedure).

A thread that does more than execute a null procedure should allocate a stack size
greater than the size of thr_min_stack().

When a thread is created with a user-supplied stack, the user must reserve enough
space to run the thread. In a dynamically linked execution environment, it is difficult
to know what the thread minimal stack requirements are.

Most users should not create threads with user-supplied stacks. User-supplied stacks
exist only to support applications that require complete control over their execution
environments.

Instead, users should let the threads library manage stack allocation. The threads
library provides default stacks that should meet the requirements of any created
thread.

Get the Thread Identifier

thr_self(3THR)
Use thr_self(3THR) to get the ID of the calling thread. (For POSIX threads, see
“pthread_self(3THR)” on page 36.)

#include <thread.h>

thread_t thr_self(void);

Chapter 8 • Programming With Solaris Threads 191

Yield Thread Execution

thr_yield(3THR)
thr_yield(3THR) causes the current thread to yield its execution in favor of another
thread with the same or greater priority; otherwise it has no effect. There is no
guarantee that a thread calling thr_yield() will do so.

#include <thread.h>

void thr_yield(void);

Send a Signal to a Thread

thr_kill(3THR)
thr_kill(3THR) sends a signal to a thread. (For POSIX threads, see
“pthread_kill(3THR)” on page 39.)

#include <thread.h>
#include <signal.h>

int thr_kill(thread_t target_thread, int sig);

Access the Signal Mask of the Calling Thread

thr_sigsetmask(3THR)
Use thr_sigsetmask(3THR) to change or examine the signal mask of the calling
thread.

#include <thread.h>
#include <signal.h>

int thr_sigsetmask(int how, const sigset_t *set, sigset_t *oset);

Terminate a Thread

thr_exit(3THR)
Use thr_exit(3THR) to terminate a thread. (For POSIX threads, see
“pthread_exit(3THR)” on page 41.)

192 Multithreaded Programming Guide • May 2002

#include <thread.h>

void thr_exit(void *status);

Wait for Thread Termination

thr_join(3THR)
Use thr_join(3THR) to wait for a thread to terminate. (For POSIX threads, see
“pthread_join(3THR)” on page 27.)

#include <thread.h>

int thr_join(thread_t tid, thread_t *departedid, void **status);

Join specific
#include <thread.h>

thread_t tid;
thread_t departedid;
int ret;
void *status;

/* waiting to join thread "tid" with status */
ret = thr_join(tid, &departedid, &status);

/* waiting to join thread "tid" without status */
ret = thr_join(tid, &departedid, NULL);

/* waiting to join thread "tid" without return id and status */

ret = thr_join(tid, NULL, NULL);

When the tid is (thread_t)0, then thread_join() waits for any undetached thread in
the process to terminate. In other words, when no thread identifier is specified, any
undetached thread that exits causes thread_join() to return.

Join any
#include <thread.h>

thread_t tid;
thread_t departedid;
int ret;
void *status;

/* waiting to join any non-detached thread with status */

Chapter 8 • Programming With Solaris Threads 193

ret = thr_join(0, &departedid, &status);

By indicating 0 as the thread id in the Solaris thr_join(), a join will take place when
any non detached thread in the process exits. The departedid will indicate the thread ID
of the exiting thread.

Create a Thread-Specific Data Key
Except for the function names and arguments, thread specific data is the same for
Solaris as it is for POSIX. The synopses for the Solaris functions are given in this
section.

thr_keycreate(3THR)
thr_keycreate(3THR) allocates a key that is used to identify thread-specific data in
a process. (For POSIX threads, see “pthread_key_create(3THR)” on page 30.)

#include <thread.h>

int thr_keycreate(thread_key_t *keyp,
void (*destructor) (void *value));

Set Thread-Specific Data

thr_setspecific(3THR)
thr_setspecific(3THR) binds value to the thread-specific data key, key, for the
calling thread. (For POSIX threads, see “pthread_setspecific(3THR)” on page 32.)

#include <thread.h>

int thr_setspecific(thread_key_t key, void *value);

Get Thread-Specific Data

thr_getspecific(3THR)
thr_getspecific(3THR) stores the current value bound to key for the calling thread
into the location pointed to by valuep. (For POSIX threads, see
“pthread_getspecific(3THR)” on page 33.)

194 Multithreaded Programming Guide • May 2002

#include <thread.h>

int thr_getspecific(thread_key_t key, void **valuep);

Set the Thread Priority
In Solaris threads, if a thread is to be created with a priority other than that of its
parent’s, it is created in SUSPEND mode. While suspended, the threads priority is
modified using the thr_setprio(3THR) function call; then it is continued.

A higher priority thread will receive precedence by libthread over lower priority
threads with respect to synchronization object contention.

thr_setprio(3THR)
thr_setprio(3THR) changes the priority of the thread, specified by tid, within the
current process to the priority specified by newprio. (For POSIX threads, see
“pthread_setschedparam(3THR)” on page 38.)

#include <thread.h>

int thr_setprio(thread_t tid, int newprio)

By default, threads are scheduled based on fixed priorities that range from zero, the
least significant, to 127 the most significant.

thread_t tid;
int ret;
int newprio = 20;

/* suspended thread creation */
ret = thr_create(NULL, NULL, func, arg, THR_SUSPENDED, &tid);

/* set the new priority of suspended child thread */
ret = thr_setprio(tid, newprio);

/* suspended child thread starts executing with new priority */

ret = thr_continue(tid);

Get the Thread Priority

thr_getprio(3THR)
Use thr_getprio(3THR) to get the current priority for the thread. Each thread
inherits a priority from its creator. thr_getprio() stores the current priority, tid, in
the location pointed to by newprio. (For POSIX threads, see
“pthread_getschedparam(3THR)” on page 39.)

Chapter 8 • Programming With Solaris Threads 195

#include <thread.h>

int thr_getprio(thread_t tid, int *newprio)

Similar Synchronization
Functions—Mutual Exclusion Locks
� “Initialize a Mutex” on page 196
� “Destroy a Mutex” on page 197
� “Acquire a Mutex” on page 198
� “Release a Mutex” on page 198
� “Try to Acquire a Mutex” on page 198

Initialize a Mutex

mutex_init(3THR)
#include <synch.h> (or
#include <thread.h>)

int mutex_init(mutex_t *mp, int type, void *arg));

Use mutex_init(3THR) to initialize the mutex pointed to by mp. The type can be one
of the following (note that arg is currently ignored). (For POSIX threads, see “Initialize
a Mutex” on page 87.)

� USYNC_PROCESS The mutex can be used to synchronize threads in this and other
processes.

� USYNC_PROCESS_ROBUST The mutex can be used to robustly synchronize threads
in this and other processes.

� USYNC_THREAD The mutex can be used to synchronize threads in this process only.

When a process dies while holding a USYNC_PROCESS lock, subsequent requestors of
that lock hang. This is a problem for systems which share locks with client processes
because the client processes can be abnormally killed. To avoid the problem of
hanging on a lock held by a dead process, use USYNC_PROCESS_ROBUST to lock the
mutex. USYNC_PROCESS_ROBUST adds two capabilities:

� In the case of process death, all owned locks held by that process are unlocked.

� The next requestor for any of the locks owned by the dead process receives the
lock, but with an error return indicating that the previous owner died while
holding the lock..

196 Multithreaded Programming Guide • May 2002

Mutexes can also be initialized by allocation in zeroed memory, in which case a type of
USYNC_THREAD is assumed.

Multiple threads must not initialize the same mutex simultaneously. A mutex lock
must not be reinitialized while other threads might be using it.

Mutexes With Intraprocess Scope
#include <thread.h>

mutex_t mp;
int ret;

/* to be used within this process only */

ret = mutex_init(&mp, USYNC_THREAD, 0);

Mutexes With Interprocess Scope
#include <thread.h>

mutex_t mp;
int ret;

/* to be used among all processes */

ret = mutex_init(&mp, USYNC_PROCESS, 0);

Mutexes With Interprocess Scope-Robust
#include <thread.h>

mutex_t mp;
int ret;

/* to be used among all processes */

ret = mutex_init(&mp, USYNC_PROCESS_ROBUST, 0);

Destroy a Mutex

mutex_destroy(3THR)
#include <thread.h>

int mutex_destroy (mutex_t *mp);

Use mutex_destroy(3THR) to destroy any state associated with the mutex pointed
to by mp. Note that the space for storing the mutex is not freed. (For POSIX threads,
see “pthread_mutex_destroy(3THR)” on page 93.)

Chapter 8 • Programming With Solaris Threads 197

Acquire a Mutex

mutex_lock(3THR)
#include <thread.h>

int mutex_lock(mutex_t *mp);

Use mutex_lock(3THR) to lock the mutex pointed to by mp. When the mutex is
already locked, the calling thread blocks until the mutex becomes available (blocked
threads wait on a prioritized queue). (For POSIX threads, see
“pthread_mutex_lock(3THR)” on page 89.)

Release a Mutex

mutex_unlock(3THR)
#include <thread.h>

int mutex_unlock(mutex_t *mp);

Use mutex_unlock(3THR) to unlock the mutex pointed to by mp. The mutex must be
locked and the calling thread must be the one that last locked the mutex (the owner).
(For POSIX threads, see “pthread_mutex_unlock(3THR)” on page 91.)

Try to Acquire a Mutex

mutex_trylock(3THR)
#include <thread.h>

int mutex_trylock(mutex_t *mp);

Use mutex_trylock(3THR) to attempt to lock the mutex pointed to by mp. This
function is a nonblocking version of mutex_lock(). (For POSIX threads, see
“pthread_mutex_trylock(3THR)” on page 92.)

198 Multithreaded Programming Guide • May 2002

Similar Synchronization
Functions—Condition Variables
� “Initialize a Condition Variable” on page 199
� “Destroy a Condition Variable” on page 200
� “Wait for a Condition” on page 200
� “Wait for an Absolute Time” on page 201
� “Wait for a Time Interval” on page 201
� “Unblock One Thread” on page 201
� “Unblock All Threads” on page 202

Initialize a Condition Variable

cond_init(3THR)
#include <thread.h>

int cond_init(cond_t *cv, int type, int arg);

Use cond_init(3THR) to initialize the condition variable pointed to by cv. The type
can be one of the following (note that arg is currently ignored). (For POSIX threads, see
“pthread_condattr_init(3THR)” on page 99.)

� USYNC_PROCESS The condition variable can be used to synchronize threads in this
and other processes. arg is ignored.

� USYNC_THREAD The condition variable can be used to synchronize threads in this
process only. arg is ignored.

Condition variables can also be initialized by allocation in zeroed memory, in which
case a type of USYNC_THREAD is assumed.

Multiple threads must not initialize the same condition variable simultaneously. A
condition variable must not be reinitialized while other threads might be using it.

Condition Variables With Intraprocess Scope
#include <thread.h>

cond_t cv;
int ret;

Chapter 8 • Programming With Solaris Threads 199

/* to be used within this process only */

ret = cond_init(cv, USYNC_THREAD, 0);

Condition Variables With Interprocess Scope
#include <thread.h>

cond_t cv;
int ret;

/* to be used among all processes */

ret = cond_init(&cv, USYNC_PROCESS, 0);

Destroy a Condition Variable

cond_destroy(3THR)
#include <thread.h>

int cond_destroy(cond_t *cv);

Use cond_destroy(3THR) to destroy state associated with the condition variable
pointed to by cv. The space for storing the condition variable is not freed. (For POSIX
threads, see “pthread_condattr_destroy(3THR)” on page 100.)

Wait for a Condition

cond_wait(3THR)
#include <thread.h>

int cond_wait(cond_t *cv, mutex_t *mp);

Use cond_wait(3THR) to atomically release the mutex pointed to by mp and to cause
the calling thread to block on the condition variable pointed to by cv. The blocked
thread can be awakened by cond_signal(), cond_broadcast(), or when
interrupted by delivery of a signal or a fork(). (For POSIX threads, see
“pthread_cond_wait(3THR)” on page 104.)

200 Multithreaded Programming Guide • May 2002

Wait for an Absolute Time

cond_timedwait(3THR)
#include <thread.h>

int cond_timedwait(cond_t *cv, mutex_t *mp, timestruct_t abstime);

Use cond_timedwait(3THR) as you would use cond_wait(), except that
cond_timedwait() does not block past the time of day specified by abstime. (For
POSIX threads, see “pthread_cond_timedwait(3THR)” on page 107.)

cond_timedwait() always returns with the mutex locked and owned by the calling
thread even when returning an error.

The cond_timedwait() function blocks until the condition is signaled or until the
time of day specified by the last argument has passed. The timeout is specified as the
time of day so the condition can be retested efficiently without recomputing the
time-out value.

Wait for a Time Interval

cond_reltimedwait(3THR)
#include <thread.h>

int cond_reltimedwait(cond_t *cv, mutex_t *mp,
timestruct_t reltime);

Use cond_reltimedwait(3THR) as you would use cond_timedwait(), except
that cond_reltimedwait() takes a relative time interval value in its third argument
rather than an absolute time of day value. (For POSIX threads see,
pthread_cond_reltimedwait_np(3THR).

cond_reltimedwait() always returns with the mutex locked and owned by the
calling thread even when returning an error. The cond_reltimedwait() function
blocks until the condition is signaled or until the time interval specified by the last
argument has elapsed.

Unblock One Thread

cond_signal(3THR)
#include <thread.h>

Chapter 8 • Programming With Solaris Threads 201

int cond_signal(cond_t *cv);

Use cond_signal(3THR) to unblock one thread that is blocked on the condition
variable pointed to by cv. Call this function under protection of the same mutex used
with the condition variable being signaled. Otherwise, the condition could be signaled
between its test and cond_wait(), causing an infinite wait.

Unblock All Threads

cond_broadcast(3THR)
#include <thread.h>

int cond_broadcast(cond_t *cv);

Use cond_broadcast(3THR) to unblock all threads that are blocked on the condition
variable pointed to by cv. When no threads are blocked on the condition variable then
cond_broadcast() has no effect.

Similar Synchronization
Functions—Semaphores
Semaphore operations are the same in both the Solaris Operating Environment and
the POSIX environment. The function name changed from sema_ in the Solaris
Operating Environment to sem_ in pthreads.

� “Initialize a Semaphore” on page 202
� “Increment a Semaphore” on page 203
� “Block on a Semaphore Count” on page 204
� “Decrement a Semaphore Count” on page 204
� “Destroy the Semaphore State” on page 204

Initialize a Semaphore

sema_init(3THR)
#include <thread.h>

int sema_init(sema_t *sp, unsigned int count, int type,

202 Multithreaded Programming Guide • May 2002

void *arg);

Use sema_init(3THR) to initialize the semaphore variable pointed to by sp by count
amount. type can be one of the following (note that arg is currently ignored).

USYNC_PROCESS The semaphore can be used to synchronize threads in this process
and other processes. Only one process should initialize the semaphore. arg is ignored.

USYNC_THREAD The semaphore can be used to synchronize threads in this process,
only. arg is ignored.

Multiple threads must not initialize the same semaphore simultaneously. A semaphore
must not be reinitialized while other threads might be using it.

Semaphores With Intraprocess Scope
#include <thread.h>

sema_t sp;
int ret;
int count;
count = 4;

/* to be used within this process only */

ret = sema_init(&sp, count, USYNC_THREAD, 0);

Semaphores With Interprocess Scope
#include <thread.h>

sema_t sp;
int ret;
int count;
count = 4;

/* to be used among all the processes */

ret = sema_init (&sp, count, USYNC_PROCESS, 0);

Increment a Semaphore

sema_post(3THR)
#include <thread.h>

int sema_post(sema_t *sp);

Use sema_post(3THR) to atomically increment the semaphore pointed to by sp.
When any threads are blocked on the semaphore, one is unblocked.

Chapter 8 • Programming With Solaris Threads 203

Block on a Semaphore Count

sema_wait(3THR)
#include <thread.h>

int sema_wait(sema_t *sp);

Use sema_wait(3THR) to block the calling thread until the count in the semaphore
pointed to by sp becomes greater than zero, then atomically decrement it.

Decrement a Semaphore Count

sema_trywait(3THR)
#include <thread.h>

int sema_trywait(sema_t *sp);

Use sema_trywait(3THR) to atomically decrement the count in the semaphore
pointed to by sp when the count is greater than zero. This function is a nonblocking
version of sema_wait().

Destroy the Semaphore State

sem_destroy(3THR)
#include <thread.h>

int sema_destroy(sema_t *sp);

Use sem_destroy(3THR) to destroy any state associated with the semaphore pointed
to by sp. The space for storing the semaphore is not freed.

204 Multithreaded Programming Guide • May 2002

Synchronization Across Process
Boundaries
Each of the synchronization primitives can be set up to be used across process
boundaries. This is done quite simply by ensuring that the synchronization variable is
located in a shared memory segment and by calling the appropriate init routine with
type set to USYNC_PROCESS.

If this has been done, then the operations on the synchronization variables work just
as they do when type is USYNC_THREAD.

mutex_init(&m, USYNC_PROCESS, 0);
rwlock_init(&rw, USYNC_PROCESS, 0);
cond_init(&cv, USYNC_PROCESS, 0);

sema_init(&s, count, USYNC_PROCESS, 0);

Using LWPs Between Processes
Using locks and condition variables between processes does not require using the
threads library. The recommended approach is to use the threads library interfaces,
but when this is not desirable, then the _lwp_mutex_* and _lwp_cond_* interfaces
can be used as follows:

1. Allocate the locks and condition variables as usual in shared memory (either with
shmop(2) or mmap(2)).

2. Then initialize the newly allocated objects appropriately with the USYNC_PROCESS
type. Because no interface is available to perform the initialization
(_lwp_mutex_init(2) and _lwp_cond_init(2) do not exist), the objects can be
initialized using statically allocated and initialized dummy objects.

For example, to initialize lockp:

lwp_mutex_t *lwp_lockp;
lwp_mutex_t dummy_shared_mutex = SHAREDMUTEX;

/* SHAREDMUTEX is defined in /usr/include/synch.h */
...
...
lwp_lockp = alloc_shared_lock();

*lwp_lockp = dummy_shared_mutex;

Similarly, for condition variables:

lwp_cond_t *lwp_condp;
lwp_cond_t dummy_shared_cv = SHAREDCV;

/* SHAREDCV is defined in /usr/include/synch.h */
...

Chapter 8 • Programming With Solaris Threads 205

...
lwp_condp = alloc_shared_cv();

*lwp_condp = dummy_shared_cv;

Producer/Consumer Problem Example
Example 8–2 shows the producer/consumer problem with the producer and consumer
in separate processes. The main routine maps zero-filled memory (that it shares with
its child process) into its address space. Note that mutex_init() and cond_init()
must be called because the type of the synchronization variables is USYNC_PROCESS.

A child process is created that runs the consumer. The parent runs the producer.

This example also shows the drivers for the producer and consumer. The
producer_driver() simply reads characters from stdin and calls producer(). The
consumer_driver() gets characters by calling consumer() and writes them to
stdout.

The data structure for Example 8–2 is the same as that used for the solution with
condition variables (see “Nested Locking With a Singly Linked List” on page 96).

EXAMPLE 8–2 The Producer/Consumer Problem, Using USYNC_PROCESS

main() {
int zfd;
buffer_t *buffer;

zfd = open(“/dev/zero”, O_RDWR);
buffer = (buffer_t *)mmap(NULL, sizeof(buffer_t),

PROT_READ|PROT_WRITE, MAP_SHARED, zfd, 0);
buffer->occupied = buffer->nextin = buffer->nextout = 0;

mutex_init(&buffer->lock, USYNC_PROCESS, 0);
cond_init(&buffer->less, USYNC_PROCESS, 0);
cond_init(&buffer->more, USYNC_PROCESS, 0);
if (fork() == 0)

consumer_driver(buffer);
else

producer_driver(buffer);
}

void producer_driver(buffer_t *b) {
int item;

while (1) {
item = getchar();
if (item == EOF) {

producer(b, ‘\0’);
break;

} else
producer(b, (char)item);

206 Multithreaded Programming Guide • May 2002

EXAMPLE 8–2 The Producer/Consumer Problem, Using USYNC_PROCESS (Continued)

}
}

void consumer_driver(buffer_t *b) {
char item;

while (1) {
if ((item = consumer(b)) == ’\0’)

break;
putchar(item);

}

}

A child process is created to run the consumer; the parent runs the producer.

Special Issues for fork() and Solaris
Threads
Solaris threads and POSIX threads define the behavior of fork() differently. See
“Process Creation—exec(2) and exit(2) Issues” on page 139 for a thorough discussion
of fork() issues.

Solaris libthread supports both fork() and fork1(). The fork() call has
“fork-all” semantics—it duplicates everything in the process, including threads and
LWPs, creating a true clone of the parent. The fork1() call creates a clone that has
only one thread; the process state and address space are duplicated, but only the
calling thread is cloned.

POSIX libpthread supports only fork(), which has the same semantics as
fork1() in Solaris threads.

Whether fork() has “fork-all” semantics or “fork-one” semantics is dependent on
which library is used. Linking with -lthread assigns “fork-all” semantics to
fork(), while linking with -lpthread assigns “fork-one” semantics to fork().

See “Linking With libthread or libpthread” on page 167 for more details.

Chapter 8 • Programming With Solaris Threads 207

208 Multithreaded Programming Guide • May 2002

CHAPTER 9

Programming Guidelines

This chapter gives some pointers on programming with threads. Most pointers apply
to both Solaris and POSIX threads, but where functionality differs, it is noted.
Changing from single-threaded thinking to multithreaded thinking is emphasized in
this chapter.

� “Rethinking Global Variables” on page 209
� “Providing for Static Local Variables” on page 210
� “Synchronizing Threads” on page 211
� “Avoiding Deadlock” on page 214
� “Following Some Basic Guidelines” on page 216
� “Creating and Using Threads” on page 217
� “Working With Multiprocessors” on page 219
� “Summary” on page 224

Rethinking Global Variables
Historically, most code has been designed for single-threaded programs. This is
especially true for most of the library routines called from C programs. The following
implicit assumptions were made for single-threaded code:

� When you write into a global variable and then, a moment later, read from it, what
you read is exactly what you just wrote.

� This is also true for nonglobal, static storage.

� You do not need synchronization because there is nothing to synchronize with.

The next few examples discuss some of the problems that arise in multithreaded
programs because of these assumptions, and how you can deal with them.

209

Traditional, single-threaded C and UNIX have a convention for handling errors
detected in system calls. System calls can return anything as a functional value (for
example, write() returns the number of bytes that were transferred). However, the
value -1 is reserved to indicate that something went wrong. So, when a system call
returns -1, you know that it failed.

EXAMPLE 9–1 Global Variables and errno

extern int errno;
...
if (write(file_desc, buffer, size) == -1) {

/* the system call failed */
fprintf(stderr, “something went wrong, “

“error code = %d\n”, errno);
exit(1);

}

...

Rather than return the actual error code (which could be confused with normal return
values), the error code is placed into the global variable errno. When the system call
fails, you can look in errno to find out what went wrong.

Now consider what happens in a multithreaded environment when two threads fail at
about the same time, but with different errors. Both expect to find their error codes in
errno, but one copy of errno cannot hold both values. This global variable approach
simply does not work for multithreaded programs.

Threads solves this problem through a conceptually new storage class—thread-specific
data. This storage is similar to global storage in that it can be accessed from any
procedure in which a thread might be running. However, it is private to the
thread—when two threads refer to the thread-specific data location of the same name,
they are referring to two different areas of storage.

So, when using threads, each reference to errno is thread specific because each thread
has a private copy of errno. This is achieved in this implementation by making
errno a macro that expands to a function call.

Providing for Static Local Variables
Example 9–2 shows a problem similar to the errno problem, but involving static
storage instead of global storage. The function gethostbyname(3NSL) is called with
the computer name as its argument. The return value is a pointer to a structure
containing the required information for contacting the computer through network
communications.

210 Multithreaded Programming Guide • May 2002

EXAMPLE 9–2 The gethostbyname() Problem

struct hostent *gethostbyname(char *name) {
static struct hostent result;

/* Lookup name in hosts database */
/* Put answer in result */

return(&result);

}

Returning a pointer to a local variable is generally not a good idea, although it works
in this case because the variable is static. However, when two threads call this variable
at once with different computer names, the use of static storage conflicts.

Thread-specific data could be used as a replacement for static storage, as in the errno
problem, but this involves dynamic allocation of storage and adds to the expense of
the call.

A better way to handle this kind of problem is to make the caller of
gethostbyname() supply the storage for the result of the call. This is done by
having the caller supply an additional argument, an output argument, to the routine.
This requires a new interface to gethostbyname().

This technique is used in threads to fix many of these problems. In most cases, the
name of the new interface is the old name with “_r” appended, as in
gethostbyname_r(3NSL).

Synchronizing Threads
The threads in an application must cooperate and synchronize when sharing the data
and the resources of the process.

A problem arises when multiple threads call something that manipulates an object. In
a single-threaded world, synchronizing access to such objects is not a problem, but as
Example 9–3 illustrates, this is a concern with multithreaded code. (Note that the
printf(3S) function is safe to call for a multithreaded program; this example
illustrates what could happen if printf() were not safe.)

EXAMPLE 9–3 The printf() Problem

/* thread 1: */
printf("go to statement reached");

/* thread 2: */
printf("hello world");

Chapter 9 • Programming Guidelines 211

EXAMPLE 9–3 The printf() Problem (Continued)

printed on display:

go to hello

Single-Threaded Strategy
One strategy is to have a single, application-wide mutex lock that is acquired
whenever any thread in the application is running and is released before it must block.
Since only one thread can be accessing shared data at any one time, each thread has a
consistent view of memory.

Because this is effectively a single-threaded program, very little is gained by this
strategy.

Reentrance
A better approach is to take advantage of the principles of modularity and data
encapsulation. A reentrant function is one that behaves correctly if it is called
simultaneously by several threads. Writing a reentrant function is a matter of
understanding just what behaves correctly means for this particular function.

Functions that are callable by several threads must be made reentrant. This might
require changes to the function interface or to the implementation.

Functions that access global state, like memory or files, have reentrance problems.
These functions need to protect their use of global state with the appropriate
synchronization mechanisms provided by threads.

The two basic strategies for making functions in modules reentrant are code locking
and data locking.

Code Locking
Code locking is done at the function call level and guarantees that a function executes
entirely under the protection of a lock. The assumption is that all access to data is done
through functions. Functions that share data should execute under the same lock.

Some parallel programming languages provide a construct called a monitor that
implicitly does code locking for functions that are defined within the scope of the
monitor. A monitor can also be implemented by a mutex lock.

Functions under the protection of the same mutex lock or within the same monitor are
guaranteed to execute atomically with respect to each other.

212 Multithreaded Programming Guide • May 2002

Data Locking
Data locking guarantees that access to a collection of data is maintained consistently.
For data locking, the concept of locking code is still there, but code locking is around
references to shared (global) data, only. For a mutual exclusion locking protocol, only
one thread can be in the critical section for each collection of data.

Alternatively, in a multiple readers, single writer protocol, several readers can be
allowed for each collection of data or one writer. Multiple threads can execute in a
single module when they operate on different data collections and do not conflict on a
single collection for the multiple readers, single writer protocol. So, data locking
typically allows more concurrency than does code locking.

What strategy should you use when using locks (whether implemented with mutexes,
condition variables, or semaphores) in a program? Should you try to achieve
maximum parallelism by locking only when necessary and unlocking as soon as
possible (fine-grained locking)? Or should you hold locks for long periods to minimize
the overhead of taking and releasing them (coarse-grained locking)?

The granularity of the lock depends on the amount of data it protects. A very
coarse-grained lock might be a single lock to protect all data. Dividing how the data is
protected by the appropriate number of locks is very important. Too fine a grain of
locking can degrade performance. The overhead associated with acquiring and
releasing locks can become significant when there are too many locks.

The common wisdom is to start with a coarse-grained approach, identify bottlenecks,
and add finer-grained locking where necessary to alleviate the bottlenecks. This is
reasonably sound advice, but use your own judgment about finding the balance
between maximizing parallelism and minimizing lock overhead.

Invariants
For both code locking and data locking, invariants are important to control locking
complexity. An invariant is a condition or relation that is always true.

The definition is modified somewhat for concurrent execution: an invariant is a
condition or relation that is true when the associated lock is being set. Once the lock is
set, the invariant can be false. However, the code holding the lock must reestablish the
invariant before releasing the lock.

An invariant can also be a condition or relation that is true when a lock is being set.
Condition variables can be thought of as having an invariant that is the condition.

EXAMPLE 9–4 Testing the Invariant With assert(3X)

mutex_lock(&lock);
while((condition)==FALSE)

cond_wait(&cv,&lock);
assert((condition)==TRUE);

Chapter 9 • Programming Guidelines 213

EXAMPLE 9–4 Testing the Invariant With assert(3X) (Continued)

.

.

.

mutex_unlock(&lock);

The assert() statement is testing the invariant. The cond_wait() function does
not preserve the invariant, which is why the invariant must be reevaluated when the
thread returns.

Another example is a module that manages a doubly linked list of elements. For each
item on the list a good invariant is the forward pointer of the previous item on the list
that should also point to the same thing as the backward pointer of the forward item.

Assume this module uses code-based locking and therefore is protected by a single
global mutex lock. When an item is deleted or added the mutex lock is acquired, the
correct manipulation of the pointers is made, and the mutex lock is released.
Obviously, at some point in the manipulation of the pointers the invariant is false, but
the invariant is reestablished before the mutex lock is released.

Avoiding Deadlock
Deadlock is a permanent blocking of a set of threads that are competing for a set of
resources. Just because some thread can make progress does not mean that there is not
a deadlock somewhere else.

The most common error causing deadlock is self deadlock or recursive deadlock: a thread
tries to acquire a lock it is already holding. Recursive deadlock is very easy to program
by mistake.

For example, if a code monitor has every module function grabbing the mutex lock for
the duration of the call, then any call between the functions within the module
protected by the mutex lock immediately deadlocks. If a function calls some code
outside the module which, through some circuitous path, calls back into any method
protected by the same mutex lock, then it will deadlock too.

The solution for this kind of deadlock is to avoid calling functions outside the module
when you don’t know whether they will call back into the module without
reestablishing invariants and dropping all module locks before making the call. Of
course, after the call completes and the locks are reacquired, the state must be verified
to be sure the intended operation is still valid.

214 Multithreaded Programming Guide • May 2002

An example of another kind of deadlock is when two threads, thread 1 and thread 2,
each acquires a mutex lock, A and B, respectively. Suppose that thread 1 tries to
acquire mutex lock B and thread 2 tries to acquire mutex lock A. Thread 1 cannot
proceed and it is blocked waiting for mutex lock B. Thread 2 cannot proceed and it is
blocked waiting for mutex lock A. Nothing can change, so this is a permanent
blocking of the threads, and a deadlock.

This kind of deadlock is avoided by establishing an order in which locks are acquired
(a lock hierarchy). When all threads always acquire locks in the specified order, this
deadlock is avoided.

Adhering to a strict order of lock acquisition is not always optimal. When thread 2 has
many assumptions about the state of the module while holding mutex lock B, giving
up mutex lock B to acquire mutex lock A and then reacquiring mutex lock B in order
would cause it to discard its assumptions and reevaluate the state of the module.

The blocking synchronization primitives usually have variants that attempt to get a
lock and fail if they cannot, such as mutex_trylock(). This allows threads to violate
the lock hierarchy when there is no contention. When there is contention, the held
locks must usually be discarded and the locks reacquired in order.

Deadlocks Related to Scheduling
Because there is no guaranteed order in which locks are acquired, a problem in
threaded programs is that a particular thread never acquires a lock, even though it
seems that it should.

This usually happens when the thread that holds the lock releases it, lets a small
amount of time pass, and then reacquires it. Because the lock was released, it might
seem that the other thread should acquire the lock. But, because nothing blocks the
thread holding the lock, it continues to run from the time it releases the lock until it
reacquires the lock, and so no other thread is run.

You can usually solve this type of problem by calling thr_yield(3THR) just before
the call to reacquire the lock. This allows other threads to run and to acquire the lock.

Because the time-slice requirements of applications are so variable, the threads library
does not impose any. Use calls to thr_yield() to make threads share time as you
require.

Locking Guidelines
Here are some simple guidelines for locking.

� Try not to hold locks across long operations like I/O where performance can be
adversely affected.

Chapter 9 • Programming Guidelines 215

� Don’t hold locks when calling a function that is outside the module and that might
reenter the module.

� In general, start with a coarse-grained approach, identify bottlenecks, and add
finer-grained locking where necessary to alleviate the bottlenecks. Most locks are
held for short amounts of time and contention is rare, so fix only those locks that
have measured contention.

� When using multiple locks, avoid deadlocks by making sure that all threads
acquire the locks in the same order.

Following Some Basic Guidelines
� Know what you are importing and whether it is safe.

A threaded program cannot arbitrarily enter nonthreaded code.

� Threaded code can safely refer to unsafe code only from the initial thread.

This ensures that the static storage associated with the initial thread is used only by
that thread.

� Sun-supplied libraries are assumed to be unsafe unless explicitly documented as
safe.

If a reference manual entry does not state explicitly that an interface is MT-Safe,
you should assume that the interface is unsafe.

� Use compilation flags to manage binary incompatible source changes. (See Chapter
7, Compiling and Debugging, for complete instructions.)

� -D_REENTRANT enables multithreading with the -lthread library.

� -D_POSIX_C_SOURCE with -lpthread gives POSIX threads behavior.

� -D_POSIX_PTHREADS_SEMANTICS with -lthread gives both Solaris threads
and pthreads interfaces with a preference given to the POSIX interfaces when
the two interfaces conflict.

� When making a library safe for multithreaded use, do not thread global process
operations.

Do not change global operations (or actions with global side effects) to behave in a
threaded manner. For example, if file I/O is changed to per-thread operation,
threads cannot cooperate in accessing files.

For thread-specific behavior, or thread cognizant behavior, use thread facilities. For
example, when the termination of main() should terminate only the thread that is
exiting main(), the end of main() should be:

thr_exit();

/*NOTREACHED*/

216 Multithreaded Programming Guide • May 2002

Creating and Using Threads
The threads packages will cache the threads data structure and stacks so that the
repetitive creation of threads can be reasonably inexpensive.

However, creating and destroying threads as they are required is usually more
expensive than managing a pool of threads that wait for independent work.

A good example of this is an RPC server that creates a thread for each request and
destroys it when the reply is delivered, instead of trying to maintain a pool of threads
to service requests.

While thread creation has less overhead compared to that of process creation, it is not
efficient when compared to the cost of a few instructions. Create threads for processing
that lasts at least a couple of thousand machine instructions.

Lightweight Processes
Figure 9–1 illustrates the relationship between LWPs and the user and kernel levels.

Chapter 9 • Programming Guidelines 217

User

Kernel

Hardware

Proc 1 Proc 4Proc 2 Proc 3 Proc 5

= thread = LWP = Processor

Traditional process

FIGURE 9–1 Multithreading Levels and Relationships

The user-level threads library ensures that the number of LWPs available is adequate
for the currently active user-level threads. The operating environment decides which
LWP should run on which processor and when. It has no knowledge about user
threads. The kernel schedules LWPs onto CPU resources according to their scheduling
classes and priorities.

Each LWP is independently dispatched by the kernel, performs independent system
calls, incurs independent page faults, and runs in parallel on a multiprocessor system.

An LWP has some capabilities that are not exported directly to threads, such as a
special scheduling class.

The new threads library introduced in Solaris 9 actually assigns one LWP to every
thread. This is the same as the alternate libthread in Solaris 8.

The new implementation solves many problems that were inherent in the design of
the old threads library, principally in the areas of signal handling and concurrency.
The new threads library does not have to be told the desired degree of concurrency via
thr_setconcurrency(3THR) because every thread executes on an LWP.

218 Multithreaded Programming Guide • May 2002

In future Solaris releases, the threads library might reintroduce multiplexing of
unbound threads over LWPs, but with the constraints currently in effect for Solaris 9:

� all runnable threads are attached to LWPs
� no hidden threads are created by the library itself
� a multithreaded process with only one thread has semantics identical to the

semantics of a traditional single threaded process.

Unbound Threads
The library invokes LWPs as needed and assigns them to execute runnable threads.
The LWP assumes the state of the thread and executes its instructions. If the thread
becomes blocked on a synchronization mechanism, the threads library may save the
thread state in process memory and assign another thread to the LWP to run.

Bound Threads
Bound threads are guaranteed to execute on the same LWP from the time the thread is
created to the time the thread exits.

Thread Creation Guidelines
Here are some simple guidelines for using threads.

� Use threads for independent activities that must do a meaningful amount of work.

� Use bound threads only when a thread needs resources that are available only
through the underlying LWP, such as when the thread must be visible to the kernel,
as in realtime scheduling.

Working With Multiprocessors
Multithreading lets you take advantage of multiprocessors, primarily through
parallelism and scalability. Programmers should be aware of the differences between
the memory models of a multiprocessor and a uniprocessor.

Memory consistency is directly interrelated to the processor interrogating memory. For
uniprocessors, memory is obviously consistent because there is only one processor
viewing memory.

Chapter 9 • Programming Guidelines 219

To improve multiprocessor performance, memory consistency is relaxed. You cannot
always assume that changes made to memory by one processor are immediately
reflected in the other processors’ views of that memory.

You can avoid this complexity by using synchronization variables when you use
shared or global variables.

Barrier synchronization is sometimes an efficient way to control parallelism on
multiprocessors. An example of barriers can be found in Appendix B, Solaris Threads
Example: barrier.c.

Another multiprocessor issue is efficient synchronization when threads must wait until
all have reached a common point in their execution.

Note – The issues discussed here are not important when the threads synchronization
primitives are always used to access shared memory locations.

The Underlying Architecture
When threads synchronize access to shared storage locations using the threads
synchronization routines, the effect of running a program on a shared-memory
multiprocessor is identical to the effect of running the program on a uniprocessor.

However, in many situations a programmer might be tempted to take advantage of
the multiprocessor and use “tricks” to avoid the synchronization routines. As Example
9–5 and Example 9–6 show, such tricks can be dangerous.

Understanding the memory models supported by common multiprocessor
architectures helps to understand the dangers.

The major multiprocessor components are:

� The processors themselves

� Store buffers, which connect the processors to their caches

� Caches, which hold the contents of recently accessed or modified storage locations

� memory, which is the primary storage (and is shared by all processors).

In the simple traditional model, the multiprocessor behaves as if the processors are
connected directly to memory: when one processor stores into a location and another
immediately loads from the same location, the second processor loads what was
stored by the first.

Caches can be used to speed the average memory access, and the desired semantics
can be achieved when the caches are kept consistent with one another.

220 Multithreaded Programming Guide • May 2002

A problem with this simple approach is that the processor must often be delayed to
make certain that the desired semantics are achieved. Many modern multiprocessors
use various techniques to prevent such delays, which, unfortunately, change the
semantics of the memory model.

Two of these techniques and their effects are explained in the next two examples.

“Shared-Memory” Multiprocessors
Consider the purported solution to the producer/consumer problem shown in
Example 9–5.

Although this program works on current SPARC-based multiprocessors, it assumes
that all multiprocessors have strongly ordered memory. This program is therefore not
portable.

EXAMPLE 9–5 The Producer/Consumer Problem—Shared Memory Multiprocessors

char buffer[BSIZE];
unsigned int in = 0;
unsigned int out = 0;

void char
producer(char item) { consumer(void) {

char item;
do

;/* nothing */ do
while ;/* nothing */

(in - out == BSIZE); while
(in - out == 0);

buffer[in%BSIZE] = item; item = buffer[out%BSIZE];
in++; out++;

} }

When this program has exactly one producer and exactly one consumer and is run on
a shared-memory multiprocessor, it appears to be correct. The difference between in
and out is the number of items in the buffer.

The producer waits (by repeatedly computing this difference) until there is room for a
new item, and the consumer waits until there is an item in the buffer.

For memory that is strongly ordered (for instance, a modification to memory on one
processor is immediately available to the other processors), this solution is correct (it is
correct even taking into account that in and out will eventually overflow, as long as
BSIZE is less than the largest integer that can be represented in a word).

Shared-memory multiprocessors do not necessarily have strongly ordered memory. A
change to memory by one processor is not necessarily available immediately to the
other processors. When two changes to different memory locations are made by one
processor, the other processors do not necessarily detect the changes in the order in
which they were made because changes to memory do not happen immediately.

Chapter 9 • Programming Guidelines 221

First the changes are stored in store buffers that are not visible to the cache.

The processor checks these store buffers to ensure that a program has a consistent
view, but because store buffers are not visible to other processors, a write by one
processor does not become visible until it is written to cache.

The synchronization primitives (see Chapter 4, Programming With Synchronization
Objects) use special instructions that flush the store buffers to cache. So, using locks
around your shared data ensures memory consistency.

When memory ordering is very relaxed, Example 9–5 has a problem because the
consumer might see that in has been incremented by the producer before it sees the
change to the corresponding buffer slot.

This is called weak ordering because stores made by one processor can appear to
happen out of order by another processor (memory, however, is always consistent
from the same processor). To fix this, the code should use mutexes to flush the cache.

The trend is toward relaxing memory order. Because of this, programmers are
becoming increasingly careful to use locks around all global or shared data.

As demonstrated by Example 9–5 and Example 9–6, locking is essential.

Peterson’s Algorithm
The code in Example 9–6 is an implementation of Peterson’s Algorithm, which
handles mutual exclusion between two threads. This code tries to guarantee that there
is never more than one thread in the critical section and that, when a thread calls
mut_excl(), it enters the critical section sometime “soon.”

An assumption here is that a thread exits fairly quickly after entering the critical
section.

EXAMPLE 9–6 Mutual Exclusion for Two Threads?

void mut_excl(int me /* 0 or 1 */) {
static int loser;
static int interested[2] = {0, 0};
int other; /* local variable */

other = 1 - me;
interested[me] = 1;
loser = me;
while (loser == me && interested[other])

;

/* critical section */
interested[me] = 0;

}

222 Multithreaded Programming Guide • May 2002

This algorithm works some of the time when it is assumed that the multiprocessor has
strongly ordered memory.

Some multiprocessors, including some SPARC-based multiprocessors, have store
buffers. When a thread issues a store instruction, the data is put into a store buffer. The
buffer contents are eventually sent to the cache, but not necessarily right away. (Note
that the caches on each of the processors maintain a consistent view of memory, but
modified data does not reach the cache right away.)

When multiple memory locations are stored into, the changes reach the cache (and
memory) in the correct order, but possibly after a delay. SPARC-based multiprocessors
with this property are said to have total store order (TSO).

When one processor stores into location A and then loads from location B, and another
processor stores into location B and loads from location A, the expectation is that
either the first processor fetches the newly modified value in location B or the second
processor fetches the newly modified value in location A, or both. However, the case
in which both processors load the old values simply cannot happen.

Moreover, with the delays caused by load and store buffers, the “impossible case” can
happen.

What could happen with Peterson’s algorithm is that two threads running on separate
processors each stores into its own slot of the particular array and then loads from the
other slot. They both read the old values (0), assume that the other party is not
present, and both enter the critical section. (Note that this is the sort of problem that
might not occur when you test a program, but only much later.)

This problem is avoided when you use the threads synchronization primitives, whose
implementations issue special instructions to force the writing of the store buffers to
the cache.

Parallelizing a Loop on a Shared-Memory Parallel
Computer
In many applications, and especially numerical applications, while part of the
algorithm can be parallelized, other parts are inherently sequential, as shown in the
following:

Thread1 Thread2 through Threadn

Chapter 9 • Programming Guidelines 223

while(many_iterations) {

sequential_computation
--- Barrier ---
parallel_computation

}

while(many_iterations) {

--- Barrier ---
parallel_computation

}

For example, you might produce a set of matrixes with a strictly linear computation,
then perform operations on the matrixes using a parallel algorithm, then use the
results of these operations to produce another set of matrixes, then operate on them in
parallel, and so on.

The nature of the parallel algorithms for such a computation is that little
synchronization is required during the computation, but synchronization of all the
threads employed is required to ensure that the sequential computation is finished
before the parallel computation begins.

The barrier forces all the threads that are doing the parallel computation to wait until
all threads involved have reached the barrier. When they’ve reached the barrier, they
are released and begin computing together.

Summary
This guide has covered a wide variety of important threads programming issues. Look
in Appendix A, Sample Application—Multithreaded grep, for a pthreads program
example that uses many of the features and styles that have been discussed. Look in
Appendix B, Solaris Threads Example, for a program example that uses Solaris
threads.

Further Reading
For more in-depth information about multithreading, see the following book:

� Programming with Threads by Steve Kleiman, Devang Shah, and Bart Smaalders
(Prentice-Hall, published in 1995)

224 Multithreaded Programming Guide • May 2002

APPENDIX A

Sample Application—Multithreaded
grep

Description of tgrep
The tgrep sample program is a multithreaded version of find(1) combined with
grep(1). tgrep supports all but the -w (word search) options of the normal grep, and
a few exclusively available options.

By default, the tgrep searches are like the following command:

find . -exec grep [options] pattern {} \;

For large directory hierarchies, tgrep gets results more quickly than the find
command, depending on the number of processors available. On uniprocessor
machines it is about twice as fast, and on four processor machines it is about four
times as fast.

The -e option changes the way tgrep interprets the pattern string. Ordinarily
(without the -e option) tgrep uses a literal string match. With the -e option, tgrep
uses an MT-Safe public domain version of a regular expression handler. The regular
expression method is slower.

The -B option tells tgrep to use the value of the environment variable called
TGLIMIT to limit the number of threads it will use during a search. This option has no
affect if TGLIMIT is not set. Because tgrep can use a lot of system resources, this is a
way to run it politely on a timesharing system.

225

Getting Online Source Code
Source for tgrep is included on the Catalyst Developer’s CD. Contact your sales
representative to find out how you can get a copy.

Only the multithreaded main.c module appears here. Other modules, including
those for regular expression handling, plus documentation and Makefiles, are
available on the Catalyst Developer’s CD.

EXAMPLE A–1 Source Code for tgrep Program

/* Copyright (c) 1993, 1994 Ron Winacott */
/* This program may be used, copied, modified, and redistributed freely */
/* for ANY purpose, so long as this notice remains intact. */

#define _REENTRANT

#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <unistd.h>
#include <assert.h>
#include <errno.h>
#include <ctype.h>
#include <sys/types.h>
#include <time.h>
#include <sys/stat.h>
#include <dirent.h>

#include "version.h"

#include <fcntl.h>
#include <sys/uio.h>
#include <pthread.h>
#include <sched.h>

#ifdef MARK
#include <prof.h> /* to turn on MARK(), use -DMARK to compile (see man prof5)*/
#endif

#include "pmatch.h"

#define PATH_MAX 1024 /* max # of characters in a path name */
#define HOLD_FDS 6 /* stdin,out,err and a buffer */
#define UNLIMITED 99999 /* The default tglimit */
#define MAXREGEXP 10 /* max number of -e options */

#define FB_BLOCK 0x00001
#define FC_COUNT 0x00002
#define FH_HOLDNAME 0x00004
#define FI_IGNCASE 0x00008

226 Multithreaded Programming Guide • May 2002

EXAMPLE A–1 Source Code for tgrep Program (Continued)

#define FL_NAMEONLY 0x00010
#define FN_NUMBER 0x00020
#define FS_NOERROR 0x00040
#define FV_REVERSE 0x00080
#define FW_WORD 0x00100
#define FR_RECUR 0x00200
#define FU_UNSORT 0x00400
#define FX_STDIN 0x00800
#define TG_BATCH 0x01000
#define TG_FILEPAT 0x02000
#define FE_REGEXP 0x04000
#define FS_STATS 0x08000
#define FC_LINE 0x10000
#define TG_PROGRESS 0x20000

#define FILET 1
#define DIRT 2

typedef struct work_st {
char *path;
int tp;
struct work_st *next;

} work_t;

typedef struct out_st {
char *line;
int line_count;
long byte_count;
struct out_st *next;

} out_t;

#define ALPHASIZ 128
typedef struct bm_pattern { /* Boyer - Moore pattern */

short p_m; /* length of pattern string */
short p_r[ALPHASIZ]; /* "r" vector */
short *p_R; /* "R" vector */
char *p_pat; /* pattern string */

} BM_PATTERN;

/* bmpmatch.c */
extern BM_PATTERN *bm_makepat(char *p);
extern char *bm_pmatch(BM_PATTERN *pat, register char *s);
extern void bm_freepat(BM_PATTERN *pattern);
BM_PATTERN *bm_pat; /* the global target read only after main */

/* pmatch.c */
extern char *pmatch(register PATTERN *pattern, register char *string, int *len);
extern PATTERN *makepat(char *string, char *metas);
extern void freepat(register PATTERN *pat);
extern void printpat(PATTERN *pat);
PATTERN *pm_pat[MAXREGEXP]; /* global targets read only for pmatch */

#include "proto.h" /* function prototypes of main.c */

Appendix A • Sample Application—Multithreaded grep 227

EXAMPLE A–1 Source Code for tgrep Program (Continued)

/* local functions to POSIX only */
void pthread_setconcurrency_np(int con);
int pthread_getconcurrency_np(void);
void pthread_yield_np(void);

pthread_attr_t detached_attr;
pthread_mutex_t output_print_lk;
pthread_mutex_t global_count_lk;

int global_count = 0;

work_t *work_q = NULL;
pthread_cond_t work_q_cv;
pthread_mutex_t work_q_lk;
pthread_mutex_t debug_lock;

#include "debug.h" /* must be included AFTER the
mutex_t debug_lock line */

work_t *search_q = NULL;
pthread_mutex_t search_q_lk;
pthread_cond_t search_q_cv;
int search_pool_cnt = 0; /* the count in the pool now */
int search_thr_limit = 0; /* the max in the pool */

work_t *cascade_q = NULL;
pthread_mutex_t cascade_q_lk;
pthread_cond_t cascade_q_cv;
int cascade_pool_cnt = 0;
int cascade_thr_limit = 0;

int running = 0;
pthread_mutex_t running_lk;

pthread_mutex_t stat_lk;
time_t st_start = 0;
int st_dir_search = 0;
int st_file_search = 0;
int st_line_search = 0;
int st_cascade = 0;
int st_cascade_pool = 0;
int st_cascade_destroy = 0;
int st_search = 0;
int st_pool = 0;
int st_maxrun = 0;
int st_worknull = 0;
int st_workfds = 0;
int st_worklimit = 0;
int st_destroy = 0;

int all_done = 0;
int work_cnt = 0;

228 Multithreaded Programming Guide • May 2002

EXAMPLE A–1 Source Code for tgrep Program (Continued)

int current_open_files = 0;
int tglimit = UNLIMITED; /* if -B limit the number of

threads */
int progress_offset = 1;
int progress = 0; /* protected by the print_lock ! */
unsigned int flags = 0;
int regexp_cnt = 0;
char *string[MAXREGEXP];
int debug = 0;
int use_pmatch = 0;
char file_pat[255]; /* file patten match */
PATTERN *pm_file_pat; /* compiled file target string (pmatch()) */

/*
* Main: This is where the fun starts
*/
int
main(int argc, char **argv)
{

int c,out_thr_flags;
long max_open_files = 0l, ncpus = 0l;
extern int optind;
extern char *optarg;
int prio = 0;
struct stat sbuf;
pthread_t tid,dtid;
void *status;
char *e = NULL, *d = NULL; /* for debug flags */
int debug_file = 0;
struct sigaction sigact;
sigset_t set,oset;
int err = 0, i = 0, pm_file_len = 0;
work_t *work;
int restart_cnt = 10;

/* NO OTHER THREADS ARE RUNNING */
flags = FR_RECUR; /* the default */

while ((c = getopt(argc, argv, "d:e:bchilnsvwruf:p:BCSZzHP:")) != EOF) {
switch (c) {

#ifdef DEBUG
case ’d’:

debug = atoi(optarg);
if (debug == 0)

debug_usage();

d = optarg;
fprintf(stderr,"tgrep: Debug on at level(s) ");
while (*d) {

for (i=0; i<9; i++)
if (debug_set[i].level == *d) {

debug_levels |= debug_set[i].flag;
fprintf(stderr,"%c ",debug_set[i].level);

Appendix A • Sample Application—Multithreaded grep 229

EXAMPLE A–1 Source Code for tgrep Program (Continued)

break;
}

d++;
}
fprintf(stderr,"\n");
break;

case ’f’: debug_file = atoi(optarg); break;
#endif /* DEBUG */

case ’B’:
flags |= TG_BATCH;

#ifndef __lock_lint
/* locklint complains here, but there are no other threads */

if ((e = getenv("TGLIMIT"))) {
tglimit = atoi(e);

}
else {

if (!(flags & FS_NOERROR)) /* order dependent! */
fprintf(stderr,"env TGLIMIT not set, overriding -B\n");

flags &= ~TG_BATCH;
}

#endif
break;

case ’p’:
flags |= TG_FILEPAT;
strcpy(file_pat,optarg);
pm_file_pat = makepat(file_pat,NULL);
break;

case ’P’:
flags |= TG_PROGRESS;
progress_offset = atoi(optarg);
break;

case ’S’: flags |= FS_STATS; break;
case ’b’: flags |= FB_BLOCK; break;
case ’c’: flags |= FC_COUNT; break;
case ’h’: flags |= FH_HOLDNAME; break;
case ’i’: flags |= FI_IGNCASE; break;
case ’l’: flags |= FL_NAMEONLY; break;
case ’n’: flags |= FN_NUMBER; break;
case ’s’: flags |= FS_NOERROR; break;
case ’v’: flags |= FV_REVERSE; break;
case ’w’: flags |= FW_WORD; break;
case ’r’: flags &= ~FR_RECUR; break;
case ’C’: flags |= FC_LINE; break;
case ’e’:

if (regexp_cnt == MAXREGEXP) {
fprintf(stderr,"Max number of regexp’s (%d) exceeded!\n",

MAXREGEXP);
exit(1);

}
flags |= FE_REGEXP;
if ((string[regexp_cnt] =(char *)malloc(strlen(optarg)+1))==NULL){

fprintf(stderr,"tgrep: No space for search string(s)\n");

230 Multithreaded Programming Guide • May 2002

EXAMPLE A–1 Source Code for tgrep Program (Continued)

exit(1);
}
memset(string[regexp_cnt],0,strlen(optarg)+1);
strcpy(string[regexp_cnt],optarg);
regexp_cnt++;
break;

case ’z’:
case ’Z’: regexp_usage();

break;
case ’H’:
case ’?’:
default : usage();
}

}
if (flags & FS_STATS)

st_start = time(NULL);

if (!(flags & FE_REGEXP)) {
if (argc - optind < 1) {

fprintf(stderr,"tgrep: Must supply a search string(s) "
"and file list or directory\n");

usage();
}
if ((string[0]=(char *)malloc(strlen(argv[optind])+1))==NULL){

fprintf(stderr,"tgrep: No space for search string(s)\n");
exit(1);

}
memset(string[0],0,strlen(argv[optind])+1);
strcpy(string[0],argv[optind]);
regexp_cnt=1;
optind++;

}

if (flags & FI_IGNCASE)
for (i=0; i<regexp_cnt; i++)

uncase(string[i]);

if (flags & FE_REGEXP) {
for (i=0; i<regexp_cnt; i++)

pm_pat[i] = makepat(string[i],NULL);
use_pmatch = 1;

}
else {

bm_pat = bm_makepat(string[0]); /* only one allowed */
}

flags |= FX_STDIN;

max_open_files = sysconf(_SC_OPEN_MAX);
ncpus = sysconf(_SC_NPROCESSORS_ONLN);
if ((max_open_files - HOLD_FDS - debug_file) < 1) {

fprintf(stderr,"tgrep: You MUST have at least ONE fd "

Appendix A • Sample Application—Multithreaded grep 231

EXAMPLE A–1 Source Code for tgrep Program (Continued)

"that can be used, check limit (>10)\n");
exit(1);

}
search_thr_limit = max_open_files - HOLD_FDS - debug_file;
cascade_thr_limit = search_thr_limit / 2;
/* the number of files that can be open */
current_open_files = search_thr_limit;

pthread_attr_init(&detached_attr);
pthread_attr_setdetachstate(&detached_attr,

PTHREAD_CREATE_DETACHED);

pthread_mutex_init(&global_count_lk,NULL);
pthread_mutex_init(&output_print_lk,NULL);
pthread_mutex_init(&work_q_lk,NULL);
pthread_mutex_init(&running_lk,NULL);
pthread_cond_init(&work_q_cv,NULL);
pthread_mutex_init(&search_q_lk,NULL);
pthread_cond_init(&search_q_cv,NULL);
pthread_mutex_init(&cascade_q_lk,NULL);
pthread_cond_init(&cascade_q_cv,NULL);

if ((argc == optind) && ((flags & TG_FILEPAT) || (flags & FR_RECUR))) {
add_work(".",DIRT);
flags = (flags & ~FX_STDIN);

}
for (; optind < argc; optind++) {

restart_cnt = 10;
flags = (flags & ~FX_STDIN);

STAT_AGAIN:
if (stat(argv[optind], &sbuf)) {

if (errno == EINTR) { /* try again !, restart */
if (--restart_cnt)

goto STAT_AGAIN;
}
if (!(flags & FS_NOERROR))

fprintf(stderr,"tgrep: Can’t stat file/dir %s, %s\n",
argv[optind], strerror(errno));

continue;
}
switch (sbuf.st_mode & S_IFMT) {
case S_IFREG :

if (flags & TG_FILEPAT) {
if (pmatch(pm_file_pat, argv[optind], &pm_file_len))

DP(DLEVEL1,("File pat match %s\n",argv[optind]));
add_work(argv[optind],FILET);

}
else {

add_work(argv[optind],FILET);
}
break;

case S_IFDIR :
if (flags & FR_RECUR) {

232 Multithreaded Programming Guide • May 2002

EXAMPLE A–1 Source Code for tgrep Program (Continued)

add_work(argv[optind],DIRT);
}
else {

if (!(flags & FS_NOERROR))
fprintf(stderr,"tgrep: Can’t search directory %s, "

"-r option is on. Directory ignored.\n",
argv[optind]);

}
break;

}
}

pthread_setconcurrency_np(3);

if (flags & FX_STDIN) {
fprintf(stderr,"tgrep: stdin option is not coded at this time\n");
exit(0); /* XXX Need to fix this SOON */
search_thr(NULL);
if (flags & FC_COUNT) {

pthread_mutex_lock(&global_count_lk);
printf("%d\n",global_count);
pthread_mutex_unlock(&global_count_lk);

}
if (flags & FS_STATS)

prnt_stats();
exit(0);

}

pthread_mutex_lock(&work_q_lk);
if (!work_q) {

if (!(flags & FS_NOERROR))
fprintf(stderr,"tgrep: No files to search.\n");

exit(0);
}
pthread_mutex_unlock(&work_q_lk);

DP(DLEVEL1,("Starting to loop through the work_q for work\n"));

/* OTHER THREADS ARE RUNNING */
while (1) {

pthread_mutex_lock(&work_q_lk);
while ((work_q == NULL || current_open_files == 0 || tglimit <= 0) &&

all_done == 0) {
if (flags & FS_STATS) {

pthread_mutex_lock(&stat_lk);
if (work_q == NULL)

st_worknull++;
if (current_open_files == 0)

st_workfds++;
if (tglimit <= 0)

st_worklimit++;
pthread_mutex_unlock(&stat_lk);

}

Appendix A • Sample Application—Multithreaded grep 233

EXAMPLE A–1 Source Code for tgrep Program (Continued)

pthread_cond_wait(&work_q_cv,&work_q_lk);
}
if (all_done != 0) {

pthread_mutex_unlock(&work_q_lk);
DP(DLEVEL1,("All_done was set to TRUE\n"));
goto OUT;

}
work = work_q;
work_q = work->next; /* maybe NULL */
work->next = NULL;
current_open_files--;
pthread_mutex_unlock(&work_q_lk);

tid = 0;
switch (work->tp) {
case DIRT:

pthread_mutex_lock(&cascade_q_lk);
if (cascade_pool_cnt) {

if (flags & FS_STATS) {
pthread_mutex_lock(&stat_lk);
st_cascade_pool++;
pthread_mutex_unlock(&stat_lk);

}
work->next = cascade_q;
cascade_q = work;
pthread_cond_signal(&cascade_q_cv);
pthread_mutex_unlock(&cascade_q_lk);
DP(DLEVEL2,("Sent work to cascade pool thread\n"));

}
else {

pthread_mutex_unlock(&cascade_q_lk);
err = pthread_create(&tid,&detached_attr,cascade,(void *)work);
DP(DLEVEL2,("Sent work to new cascade thread\n"));
if (flags & FS_STATS) {

pthread_mutex_lock(&stat_lk);
st_cascade++;
pthread_mutex_unlock(&stat_lk);

}
}
break;

case FILET:
pthread_mutex_lock(&search_q_lk);
if (search_pool_cnt) {

if (flags & FS_STATS) {
pthread_mutex_lock(&stat_lk);
st_pool++;
pthread_mutex_unlock(&stat_lk);

}
work->next = search_q; /* could be null */
search_q = work;
pthread_cond_signal(&search_q_cv);
pthread_mutex_unlock(&search_q_lk);
DP(DLEVEL2,("Sent work to search pool thread\n"));

234 Multithreaded Programming Guide • May 2002

EXAMPLE A–1 Source Code for tgrep Program (Continued)

}
else {

pthread_mutex_unlock(&search_q_lk);
err = pthread_create(&tid,&detached_attr,

search_thr,(void *)work);
pthread_setconcurrency_np(pthread_getconcurrency_np()+1);
DP(DLEVEL2,("Sent work to new search thread\n"));
if (flags & FS_STATS) {

pthread_mutex_lock(&stat_lk);
st_search++;
pthread_mutex_unlock(&stat_lk);

}
}
break;

default:
fprintf(stderr,"tgrep: Internal error, work_t->tp not valid\n");
exit(1);

}
if (err) { /* NEED TO FIX THIS CODE. Exiting is just wrong */

fprintf(stderr,"Could not create new thread!\n");
exit(1);

}
}

OUT:
if (flags & TG_PROGRESS) {

if (progress)
fprintf(stderr,".\n");

else
fprintf(stderr,"\n");

}
/* we are done, print the stuff. All other threads are parked */
if (flags & FC_COUNT) {

pthread_mutex_lock(&global_count_lk);
printf("%d\n",global_count);
pthread_mutex_unlock(&global_count_lk);

}
if (flags & FS_STATS)

prnt_stats();
return(0); /* should have a return from main */

}

/*
* Add_Work: Called from the main thread, and cascade threads to add file
* and directory names to the work Q.
*/
int
add_work(char *path,int tp)
{

work_t *wt,*ww,*wp;

if ((wt = (work_t *)malloc(sizeof(work_t))) == NULL)
goto ERROR;

Appendix A • Sample Application—Multithreaded grep 235

EXAMPLE A–1 Source Code for tgrep Program (Continued)

if ((wt->path = (char *)malloc(strlen(path)+1)) == NULL)
goto ERROR;

strcpy(wt->path,path);
wt->tp = tp;
wt->next = NULL;
if (flags & FS_STATS) {

pthread_mutex_lock(&stat_lk);
if (wt->tp == DIRT)

st_dir_search++;
else

st_file_search++;
pthread_mutex_unlock(&stat_lk);

}
pthread_mutex_lock(&work_q_lk);
work_cnt++;
wt->next = work_q;
work_q = wt;
pthread_cond_signal(&work_q_cv);
pthread_mutex_unlock(&work_q_lk);
return(0);

ERROR:
if (!(flags & FS_NOERROR))

fprintf(stderr,"tgrep: Could not add %s to work queue. Ignored\n",
path);

return(-1);
}

/*
* Search thread: Started by the main thread when a file name is found
* on the work Q to be serached. If all the needed resources are ready
* a new search thread will be created.
*/
void *
search_thr(void *arg) /* work_t *arg */
{

FILE *fin;
char fin_buf[(BUFSIZ*4)]; /* 4 Kbytes */
work_t *wt,std;
int line_count;
char rline[128];
char cline[128];
char *line;
register char *p,*pp;
int pm_len;
int len = 0;
long byte_count;
long next_line;
int show_line; /* for the -v option */
register int slen,plen,i;
out_t *out = NULL; /* this threads output list */

pthread_yield_np();

236 Multithreaded Programming Guide • May 2002

EXAMPLE A–1 Source Code for tgrep Program (Continued)

wt = (work_t *)arg; /* first pass, wt is passed to use. */

/* len = strlen(string);*/ /* only set on first pass */

while (1) { /* reuse the search threads */
/* init all back to zero */
line_count = 0;
byte_count = 0l;
next_line = 0l;
show_line = 0;

pthread_mutex_lock(&running_lk);
running++;
pthread_mutex_unlock(&running_lk);
pthread_mutex_lock(&work_q_lk);
tglimit--;
pthread_mutex_unlock(&work_q_lk);
DP(DLEVEL5,("searching file (STDIO) %s\n",wt->path));

if ((fin = fopen(wt->path,"r")) == NULL) {
if (!(flags & FS_NOERROR)) {

fprintf(stderr,"tgrep: %s. File \"%s\" not searched.\n",
strerror(errno),wt->path);

}
goto ERROR;

}
setvbuf(fin,fin_buf,_IOFBF,(BUFSIZ*4)); /* XXX */
DP(DLEVEL5,("Search thread has opened file %s\n",wt->path));
while ((fgets(rline,127,fin)) != NULL) {

if (flags & FS_STATS) {
pthread_mutex_lock(&stat_lk);
st_line_search++;
pthread_mutex_unlock(&stat_lk);

}
slen = strlen(rline);
next_line += slen;
line_count++;
if (rline[slen-1] == ’\n’)

rline[slen-1] = ’\0’;
/*
** If the uncase flag is set, copy the read in line (rline)
** To the uncase line (cline) Set the line pointer to point at
** cline.
** If the case flag is NOT set, then point line at rline.
** line is what is compared, rline is what is printed on a
** match.
*/
if (flags & FI_IGNCASE) {

strcpy(cline,rline);
uncase(cline);
line = cline;

}
else {

Appendix A • Sample Application—Multithreaded grep 237

EXAMPLE A–1 Source Code for tgrep Program (Continued)

line = rline;
}
show_line = 1; /* assume no match, if -v set */
/* The old code removed */
if (use_pmatch) {

for (i=0; i<regexp_cnt; i++) {
if (pmatch(pm_pat[i], line, &pm_len)) {

if (!(flags & FV_REVERSE)) {
add_output_local(&out,wt,line_count,

byte_count,rline);
continue_line(rline,fin,out,wt,

&line_count,&byte_count);
}
else {

show_line = 0;
} /* end of if -v flag if / else block */
/*
** if we get here on ANY of the regexp targets
** jump out of the loop, we found a single
** match so do not keep looking!
** If name only, do not keep searcthing the same
** file, we found a single match, so close the file,
** print the file name and move on to the next file.
*/
if (flags & FL_NAMEONLY)

goto OUT_OF_LOOP;
else

goto OUT_AND_DONE;
} /* end found a match if block */

} /* end of the for pat[s] loop */
}
else {

if (bm_pmatch(bm_pat, line)) {
if (!(flags & FV_REVERSE)) {

add_output_local(&out,wt,line_count,byte_count,rline);
continue_line(rline,fin,out,wt,

&line_count,&byte_count);
}
else {

show_line = 0;
}
if (flags & FL_NAMEONLY)

goto OUT_OF_LOOP;
}

}
OUT_AND_DONE:
if ((flags & FV_REVERSE) && show_line) {

add_output_local(&out,wt,line_count,byte_count,rline);
show_line = 0;

}
byte_count = next_line;

}
OUT_OF_LOOP:

238 Multithreaded Programming Guide • May 2002

EXAMPLE A–1 Source Code for tgrep Program (Continued)

fclose(fin);
/*
** The search part is done, but before we give back the FD,
** and park this thread in the search thread pool, print the
** local output we have gathered.
*/
print_local_output(out,wt); /* this also frees out nodes */
out = NULL; /* for the next time around, if there is one */

ERROR:
DP(DLEVEL5,("Search done for %s\n",wt->path));
free(wt->path);
free(wt);

notrun();
pthread_mutex_lock(&search_q_lk);
if (search_pool_cnt > search_thr_limit) {

pthread_mutex_unlock(&search_q_lk);
DP(DLEVEL5,("Search thread exiting\n"));
if (flags & FS_STATS) {

pthread_mutex_lock(&stat_lk);
st_destroy++;
pthread_mutex_unlock(&stat_lk);

}
return(0);

}
else {

search_pool_cnt++;
while (!search_q)

pthread_cond_wait(&search_q_cv,&search_q_lk);
search_pool_cnt--;
wt = search_q; /* we have work to do! */
if (search_q->next)

search_q = search_q->next;
else

search_q = NULL;
pthread_mutex_unlock(&search_q_lk);

}
}
/*NOTREACHED*/

}

/*
* Continue line: Special case search with the -C flag set. If you are
* searching files like Makefiles, some lines might have escape char’s to
* contine the line on the next line. So the target string can be found, but
* no data is displayed. This function continues to print the escaped line
* until there are no more "\" chars found.
*/
int
continue_line(char *rline, FILE *fin, out_t *out, work_t *wt,

int *lc, long *bc)
{

int len;

Appendix A • Sample Application—Multithreaded grep 239

EXAMPLE A–1 Source Code for tgrep Program (Continued)

int cnt = 0;
char *line;
char nline[128];

if (!(flags & FC_LINE))
return(0);

line = rline;
AGAIN:
len = strlen(line);
if (line[len-1] == ’\\’) {

if ((fgets(nline,127,fin)) == NULL) {
return(cnt);

}
line = nline;
len = strlen(line);
if (line[len-1] == ’\n’)

line[len-1] = ’\0’;
*bc = *bc + len;
*lc++;
add_output_local(&out,wt,*lc,*bc,line);
cnt++;
goto AGAIN;

}
return(cnt);

}

/*
* cascade: This thread is started by the main thread when directory names
* are found on the work Q. The thread reads all the new file, and directory
* names from the directory it was started when and adds the names to the
* work Q. (it finds more work!)
*/

void *
cascade(void *arg) /* work_t *arg */
{

char fullpath[1025];
int restart_cnt = 10;
DIR *dp;

char dir_buf[sizeof(struct dirent) + PATH_MAX];
struct dirent *dent = (struct dirent *)dir_buf;
struct stat sbuf;
char *fpath;
work_t *wt;
int fl = 0, dl = 0;
int pm_file_len = 0;

pthread_yield_np(); /* try toi give control back to main thread */
wt = (work_t *)arg;

while(1) {

240 Multithreaded Programming Guide • May 2002

EXAMPLE A–1 Source Code for tgrep Program (Continued)

fl = 0;
dl = 0;
restart_cnt = 10;
pm_file_len = 0;

pthread_mutex_lock(&running_lk);
running++;
pthread_mutex_unlock(&running_lk);
pthread_mutex_lock(&work_q_lk);
tglimit--;
pthread_mutex_unlock(&work_q_lk);

if (!wt) {
if (!(flags & FS_NOERROR))

fprintf(stderr,"tgrep: Bad work node passed to cascade\n");
goto DONE;

}
fpath = (char *)wt->path;
if (!fpath) {

if (!(flags & FS_NOERROR))
fprintf(stderr,"tgrep: Bad path name passed to cascade\n");

goto DONE;
}
DP(DLEVEL3,("Cascading on %s\n",fpath));
if ((dp = opendir(fpath)) == NULL) {

if (!(flags & FS_NOERROR))
fprintf(stderr,"tgrep: Can’t open dir %s, %s. Ignored.\n",

fpath,strerror(errno));
goto DONE;

}
while ((readdir_r(dp,dent)) != NULL) {

restart_cnt = 10; /* only try to restart the interupted 10 X */

if (dent->d_name[0] == ’.’) {
if (dent->d_name[1] == ’.’ && dent->d_name[2] == ’\0’)

continue;
if (dent->d_name[1] == ’\0’)

continue;
}

fl = strlen(fpath);
dl = strlen(dent->d_name);
if ((fl + 1 + dl) > 1024) {

fprintf(stderr,"tgrep: Path %s/%s is too long. "
"MaxPath = 1024\n",
fpath, dent->d_name);

continue; /* try the next name in this directory */
}
strcpy(fullpath,fpath);
strcat(fullpath,"/");
strcat(fullpath,dent->d_name);

RESTART_STAT:

Appendix A • Sample Application—Multithreaded grep 241

EXAMPLE A–1 Source Code for tgrep Program (Continued)

if (stat(fullpath,&sbuf)) {
if (errno == EINTR) {

if (--restart_cnt)
goto RESTART_STAT;

}
if (!(flags & FS_NOERROR))

fprintf(stderr,"tgrep: Can’t stat file/dir %s, %s. "
"Ignored.\n",
fullpath,strerror(errno));

goto ERROR;
}

switch (sbuf.st_mode & S_IFMT) {
case S_IFREG :

if (flags & TG_FILEPAT) {
if (pmatch(pm_file_pat, dent->d_name, &pm_file_len)) {

DP(DLEVEL3,("file pat match (cascade) %s\n",
dent->d_name));

add_work(fullpath,FILET);
}

}
else {

add_work(fullpath,FILET);
DP(DLEVEL3,("cascade added file (MATCH) %s to Work Q\n",

fullpath));
}
break;

case S_IFDIR :
DP(DLEVEL3,("cascade added dir %s to Work Q\n",fullpath));
add_work(fullpath,DIRT);
break;

}
}

ERROR:
closedir(dp);

DONE:
free(wt->path);
free(wt);
notrun();
pthread_mutex_lock(&cascade_q_lk);
if (cascade_pool_cnt > cascade_thr_limit) {

pthread_mutex_unlock(&cascade_q_lk);
DP(DLEVEL5,("Cascade thread exiting\n"));
if (flags & FS_STATS) {

pthread_mutex_lock(&stat_lk);
st_cascade_destroy++;
pthread_mutex_unlock(&stat_lk);

}
return(0); /* pthread_exit */

}

242 Multithreaded Programming Guide • May 2002

EXAMPLE A–1 Source Code for tgrep Program (Continued)

else {
DP(DLEVEL5,("Cascade thread waiting in pool\n"));
cascade_pool_cnt++;
while (!cascade_q)

pthread_cond_wait(&cascade_q_cv,&cascade_q_lk);
cascade_pool_cnt--;
wt = cascade_q; /* we have work to do! */
if (cascade_q->next)

cascade_q = cascade_q->next;
else

cascade_q = NULL;
pthread_mutex_unlock(&cascade_q_lk);

}
}
/*NOTREACHED*/

}

/*
* Print Local Output: Called by the search thread after it is done searching
* a single file. If any oputput was saved (matching lines), the lines are
* displayed as a group on stdout.
*/
int
print_local_output(out_t *out, work_t *wt)
{

out_t *pp, *op;
int out_count = 0;
int printed = 0;

pp = out;
pthread_mutex_lock(&output_print_lk);
if (pp && (flags & TG_PROGRESS)) {

progress++;
if (progress >= progress_offset) {

progress = 0;
fprintf(stderr,".");

}
}
while (pp) {

out_count++;
if (!(flags & FC_COUNT)) {

if (flags & FL_NAMEONLY) { /* Pint name ONLY ! */
if (!printed) {

printed = 1;
printf("%s\n",wt->path);

}
}
else { /* We are printing more then just the name */

if (!(flags & FH_HOLDNAME))
printf("%s :",wt->path);

if (flags & FB_BLOCK)
printf("%ld:",pp->byte_count/512+1);

if (flags & FN_NUMBER)

Appendix A • Sample Application—Multithreaded grep 243

EXAMPLE A–1 Source Code for tgrep Program (Continued)

printf("%d:",pp->line_count);
printf("%s\n",pp->line);

}
}
op = pp;
pp = pp->next;
/* free the nodes as we go down the list */
free(op->line);
free(op);

}

pthread_mutex_unlock(&output_print_lk);
pthread_mutex_lock(&global_count_lk);
global_count += out_count;
pthread_mutex_unlock(&global_count_lk);
return(0);

}

/*
* add output local: is called by a search thread as it finds matching lines.
* the matching line, its byte offset, line count, etc. are stored until the
* search thread is done searching the file, then the lines are printed as
* a group. This way the lines from more then a single file are not mixed
* together.
*/

int
add_output_local(out_t **out, work_t *wt,int lc, long bc, char *line)
{

out_t *ot,*oo, *op;

if ((ot = (out_t *)malloc(sizeof(out_t))) == NULL)
goto ERROR;

if ((ot->line = (char *)malloc(strlen(line)+1)) == NULL)
goto ERROR;

strcpy(ot->line,line);
ot->line_count = lc;
ot->byte_count = bc;

if (!*out) {
*out = ot;
ot->next = NULL;
return(0);

}
/* append to the END of the list; keep things sorted! */
op = oo = *out;
while(oo) {

op = oo;
oo = oo->next;

}
op->next = ot;
ot->next = NULL;

244 Multithreaded Programming Guide • May 2002

EXAMPLE A–1 Source Code for tgrep Program (Continued)

return(0);

ERROR:
if (!(flags & FS_NOERROR))

fprintf(stderr,"tgrep: Output lost. No space. "
"[%s: line %d byte %d match : %s\n",
wt->path,lc,bc,line);

return(1);
}

/*
* print stats: If the -S flag is set, after ALL files have been searched,
* main thread calls this function to print the stats it keeps on how the
* search went.
*/

void
prnt_stats(void)
{

float a,b,c;
float t = 0.0;
time_t st_end = 0;
char tl[80];

st_end = time(NULL); /* stop the clock */
printf("\n----------------- Tgrep Stats. --------------------\n");
printf("Number of directories searched: %d\n",st_dir_search);
printf("Number of files searched: %d\n",st_file_search);
c = (float)(st_dir_search + st_file_search) / (float)(st_end - st_start);
printf("Dir/files per second: %3.2f\n",c);
printf("Number of lines searched: %d\n",st_line_search);
printf("Number of matching lines to target: %d\n",global_count);

printf("Number of cascade threads created: %d\n",st_cascade);
printf("Number of cascade threads from pool: %d\n",st_cascade_pool);
a = st_cascade_pool; b = st_dir_search;
printf("Cascade thread pool hit rate: %3.2f%%\n",((a/b)*100));
printf("Cascade pool overall size: %d\n",cascade_pool_cnt);
printf("Number of search threads created: %d\n",st_search);
printf("Number of search threads from pool: %d\n",st_pool);
a = st_pool; b = st_file_search;
printf("Search thread pool hit rate: %3.2f%%\n",((a/b)*100));
printf("Search pool overall size: %d\n",search_pool_cnt);
printf("Search pool size limit: %d\n",search_thr_limit);
printf("Number of search threads destroyed: %d\n",st_destroy);

printf("Max # of threads running concurrenly: %d\n",st_maxrun);
printf("Total run time, in seconds. %d\n",

(st_end - st_start));

/* Why did we wait ? */
a = st_workfds; b = st_dir_search+st_file_search;
c = (a/b)*100; t += c;

Appendix A • Sample Application—Multithreaded grep 245

EXAMPLE A–1 Source Code for tgrep Program (Continued)

printf("Work stopped due to no FD’s: (%.3d) %d Times, %3.2f%%\n",
search_thr_limit,st_workfds,c);

a = st_worknull; b = st_dir_search+st_file_search;
c = (a/b)*100; t += c;
printf("Work stopped due to no work on Q: %d Times, %3.2f%%\n",

st_worknull,c);
if (tglimit == UNLIMITED)

strcpy(tl,"Unlimited");
else

sprintf(tl," %.3d ",tglimit);
a = st_worklimit; b = st_dir_search+st_file_search;
c = (a/b)*100; t += c;
printf("Work stopped due to TGLIMIT: (%.9s) %d Times, %3.2f%%\n",

tl,st_worklimit,c);
printf("Work continued to be handed out: %3.2f%%\n",100.00-t);
printf("--\n");

}
/*
* not running: A glue function to track if any search threads or cascade
* threads are running. When the count is zero, and the work Q is NULL,
* we can safely say, WE ARE DONE.
*/
void
notrun (void)
{

pthread_mutex_lock(&work_q_lk);
work_cnt--;
tglimit++;
current_open_files++;
pthread_mutex_lock(&running_lk);
if (flags & FS_STATS) {

pthread_mutex_lock(&stat_lk);
if (running > st_maxrun) {

st_maxrun = running;
DP(DLEVEL6,("Max Running has increased to %d\n",st_maxrun));

}
pthread_mutex_unlock(&stat_lk);

}
running--;
if (work_cnt == 0 && running == 0) {

all_done = 1;
DP(DLEVEL6,("Setting ALL_DONE flag to TRUE.\n"));

}
pthread_mutex_unlock(&running_lk);
pthread_cond_signal(&work_q_cv);
pthread_mutex_unlock(&work_q_lk);

}

/*
* uncase: A glue function. If the -i (case insensitive) flag is set, the
* target strng and the read in line is converted to lower case before
* comparing them.
*/

246 Multithreaded Programming Guide • May 2002

EXAMPLE A–1 Source Code for tgrep Program (Continued)

void
uncase(char *s)
{

char *p;

for (p = s; *p != NULL; p++)
*p = (char)tolower(*p);

}

/*
* usage: Have to have one of these.
*/

void
usage(void)
{

fprintf(stderr,"usage: tgrep <options> pattern <{file,dir}>...\n");
fprintf(stderr,"\n");
fprintf(stderr,"Where:\n");

#ifdef DEBUG
fprintf(stderr,"Debug -d = debug level -d <levels> (-d0 for usage)\n");
fprintf(stderr,"Debug -f = block fd’s from use (-f #)\n");

#endif
fprintf(stderr," -b = show block count (512 byte block)\n");
fprintf(stderr," -c = print only a line count\n");
fprintf(stderr," -h = Do NOT print file names\n");
fprintf(stderr," -i = case insensitive\n");
fprintf(stderr," -l = print file name only\n");
fprintf(stderr," -n = print the line number with the line\n");
fprintf(stderr," -s = Suppress error messages\n");
fprintf(stderr," -v = print all but matching lines\n");

#ifdef NOT_IMP
fprintf(stderr," -w = search for a \"word\"\n");

#endif
fprintf(stderr," -r = Do not search for files in all "

"sub-directories\n");
fprintf(stderr," -C = show continued lines (\"\\\")\n");
fprintf(stderr," -p = File name regexp pattern. (Quote it)\n");
fprintf(stderr," -P = show progress. -P 1 prints a DOT on stderr\n"

" for each file it finds, -P 10 prints a DOT\n"
" on stderr for each 10 files it finds, etc...\n");

fprintf(stderr," -e = expression search.(regexp) More then one\n");
fprintf(stderr," -B = limit the number of threads to TGLIMIT\n");
fprintf(stderr," -S = Print thread stats when done.\n");
fprintf(stderr," -Z = Print help on the regexp used.\n");
fprintf(stderr,"\n");
fprintf(stderr,"Notes:\n");
fprintf(stderr," If you start tgrep with only a directory name\n");
fprintf(stderr," and no file names, you must not have the -r option\n");
fprintf(stderr," set or you will get no output.\n");
fprintf(stderr," To search stdin (piped input), you must set -r\n");
fprintf(stderr," Tgrep will search ALL files in ALL \n");
fprintf(stderr," sub-directories. (like */* */*/* */*/*/* etc..)\n");

Appendix A • Sample Application—Multithreaded grep 247

EXAMPLE A–1 Source Code for tgrep Program (Continued)

fprintf(stderr," if you supply a directory name.\n");
fprintf(stderr," If you do not supply a file, or directory name,\n");
fprintf(stderr," and the -r option is not set, the current \n");
fprintf(stderr," directory \".\" will be used.\n");
fprintf(stderr," All the other options should work \"like\" grep\n");
fprintf(stderr," The -p patten is regexp; tgrep will search only\n");
fprintf(stderr,"\n");
fprintf(stderr," Copy Right By Ron Winacott, 1993-1995.\n");
fprintf(stderr,"\n");
exit(0);

}

/*
* regexp usage: Tell the world about tgrep custom (THREAD SAFE) regexp!
*/
int
regexp_usage (void)
{

fprintf(stderr,"usage: tgrep <options> -e \"pattern\" <-e ...> "
"<{file,dir}>...\n");

fprintf(stderr,"\n");
fprintf(stderr,"metachars:\n");
fprintf(stderr," . - match any character\n");
fprintf(stderr," * - match 0 or more occurrences of previous char\n");
fprintf(stderr," + - match 1 or more occurrences of previous char.\n");
fprintf(stderr," ^ - match at beginning of string\n");
fprintf(stderr," $ - match end of string\n");
fprintf(stderr," [- start of character class\n");
fprintf(stderr,"] - end of character class\n");
fprintf(stderr," (- start of a new pattern\n");
fprintf(stderr,") - end of a new pattern\n");
fprintf(stderr," @(n)c - match <c> at column <n>\n");
fprintf(stderr," | - match either pattern\n");
fprintf(stderr," \\ - escape any special characters\n");
fprintf(stderr," \\c - escape any special characters\n");
fprintf(stderr," \\o - turn on any special characters\n");
fprintf(stderr,"\n");
fprintf(stderr,"To match two diffrerent patterns in the same command\n");
fprintf(stderr,"Use the or function. \n"

"ie: tgrep -e \"(pat1)|(pat2)\" file\n"
"This will match any line with \"pat1\" or \"pat2\" in it.\n");

fprintf(stderr,"You can also use up to %d -e expressions\n",MAXREGEXP);
fprintf(stderr,"RegExp Pattern matching brought to you by Marc Staveley\n");
exit(0);

}

/*
* debug usage: If compiled with -DDEBUG, turn it on, and tell the world
* how to get tgrep to print debug info on different threads.
*/

#ifdef DEBUG
void

248 Multithreaded Programming Guide • May 2002

EXAMPLE A–1 Source Code for tgrep Program (Continued)

debug_usage(void)
{

int i = 0;

fprintf(stderr,"DEBUG usage and levels:\n");
fprintf(stderr,"--\n");
fprintf(stderr,"Level code\n");
fprintf(stderr,"--\n");
fprintf(stderr,"0 This message.\n");
for (i=0; i<9; i++) {

fprintf(stderr,"%d %s\n",i+1,debug_set[i].name);
}
fprintf(stderr,"--\n");
fprintf(stderr,"You can or the levels together like -d134 for levels\n");
fprintf(stderr,"1 and 3 and 4.\n");
fprintf(stderr,"\n");
exit(0);

}
#endif

/* Pthreads NP functions */

#ifdef __sun
void
pthread_setconcurrency_np(int con)
{

thr_setconcurrency(con);
}

int
pthread_getconcurrency_np(void)
{

return(thr_getconcurrency());
}

void
pthread_yield_np(void)
{
/* In Solaris 2.4, these functions always return - 1 and set errno to ENOSYS */

if (sched_yield()) /* call UI interface if we are older than 2.5 */
thr_yield();

}

#else
void
pthread_setconcurrency_np(int con)
{

return;
}

int
pthread_getconcurrency_np(void)
{

Appendix A • Sample Application—Multithreaded grep 249

EXAMPLE A–1 Source Code for tgrep Program (Continued)

return(0);
}

void
pthread_yield_np(void)
{

return;
}

#endif

250 Multithreaded Programming Guide • May 2002

APPENDIX B

Solaris Threads Example: barrier.c

The barrier.c program demonstrates an implementation of a barrier for Solaris
threads. (See “Parallelizing a Loop on a Shared-Memory Parallel Computer”
on page 223 for a definition of barriers.)

EXAMPLE B–1 Solaris Threads Example: barrier.c

#define _REENTRANT

/* Include Files */

#include <thread.h>
#include <errno.h>

/* Constants & Macros *

/* Data Declarations */

typedef struct {
int maxcnt; /* maximum number of runners */
struct _sb {

cond_t wait_cv; /* cv for waiters at barrier */
mutex_t wait_lk; /* mutex for waiters at barrier */
int runners; /* number of running threads */

} sb[2];
struct _sb *sbp; /* current sub-barrier */

} barrier_t;

/*
* barrier_init - initialize a barrier variable.
*
*/

int
barrier_init(barrier_t *bp, int count, int type, void *arg) {

int n;

251

EXAMPLE B–1 Solaris Threads Example: barrier.c (Continued)

int i;

if (count < 1)
return(EINVAL);

bp->maxcnt = count;
bp->sbp = &bp->sb[0];

for (i = 0; i < 2; ++i) {
#if defined(__cplusplus)

struct barrier_t::_sb *sbp = &(bp->sb[i]);
#else

struct _sb *sbp = &(bp->sb[i]);
#endif

sbp->runners = count;

if (n = mutex_init(&sbp->wait_lk, type, arg))
return(n);

if (n = cond_init(&sbp->wait_cv, type, arg))
return(n);

}
return(0);

}

/*
* barrier_wait - wait at a barrier for everyone to arrive.
*
*/

int
barrier_wait(register barrier_t *bp) {
#if defined(__cplusplus)

register struct barrier_t::_sb *sbp = bp->sbp;
#else

register struct _sb *sbp = bp->sbp;
#endif

mutex_lock(&sbp->wait_lk);

if (sbp->runners == 1) { /* last thread to reach barrier */
if (bp->maxcnt != 1) {
/* reset runner count and switch sub-barriers */

sbp->runners = bp->maxcnt;
bp->sbp = (bp->sbp == &bp->sb[0])

? &bp->sb[1] : &bp->sb[0];

/* wake up the waiters */
cond_broadcast(&sbp->wait_cv);

}
} else {

sbp->runners--; /* one less runner */

while (sbp->runners != bp->maxcnt)

252 Multithreaded Programming Guide • May 2002

EXAMPLE B–1 Solaris Threads Example: barrier.c (Continued)

cond_wait(&sbp->wait_cv, &sbp->wait_lk);
}

mutex_unlock(&sbp->wait_lk);

return(0);
}

/*
* barrier_destroy - destroy a barrier variable.
*
*/

int
barrier_destroy(barrier_t *bp) {

int n;
int i;

for (i=0; i < 2; ++ i) {
if (n = cond_destroy(&bp->sb[i].wait_cv))

return(n);

if (n = mutex_destroy(&bp->sb[i].wait_lk))
return(n);

}

return(0);
}

#define NTHR 4
#define NCOMPUTATION 2
#define NITER 1000
#define NSQRT 1000

void *
compute(barrier_t *ba)
{

int count = NCOMPUTATION;

while (count--) {
barrier_wait(ba);
/* do parallel computation */

}
}

main(int argc, char *argv[]) {
int i;
int niter;
int nthr;
barrier_t ba;
double et;
thread_t *tid;

Appendix B • Solaris Threads Example: barrier.c 253

EXAMPLE B–1 Solaris Threads Example: barrier.c (Continued)

switch (argc) {
default:
case 3 : niter = atoi(argv[1]);

nthr = atoi(argv[2]);
break;

case 2 : niter = atoi(argv[1]);
nthr = NTHR;
break;

case 1 : niter = NITER;
nthr = NTHR;
break;

}

barrier_init(&ba, nthr + 1, USYNC_THREAD, NULL);
tid = (thread_t *) calloc(nthr, sizeof(thread_t));

for (i = 0; i < nthr; ++i) {
int n;

if (n = thr_create(NULL, 0,
(void *(*)(void *)) compute,
&ba, NULL, &tid[i])) {

errno = n;
perror("thr_create");
exit(1);

}
}

for (i = 0; i < NCOMPUTATION; i++) {
barrier_wait(&ba);

/* do parallel algorithm */
}

for (i = 0; i < nthr; i++) {
thr_join(tid[i], NULL, NULL);

}

}

254 Multithreaded Programming Guide • May 2002

Index

Numbers and Symbols
32-bit architectures, 70
64–bit environment

data type model, 23
/dev/kmem, 23
/dev/mem, 23
large file support, 24
large virtual address space, 23
libkvm, 23
libraries, 23
/proc restrictions, 23
registers, 24

A
Ada, 151
adding

signals to mask, 41
aio_errno, 156
AIO_INPROGRESS, 156
aio_result_t, 156
aiocancel(3AIO), 155
aioread(3AIO), 155
aiowait(3AIO), 156
aiowrite(3AIO), 155
algorithms

faster with MT, 17
parallel, 224
sequential, 224

ANSI C, 171
application-level threads, 16

architecture
multiprocessor, 220
SPARC, 223
SPARC, 70, 221

assert statement, 113, 214
Async-Signal-Safe

signal handlers, 151
functions, 149, 162

asynchronous
event notification, 116
I/O, 154
semaphore use, 116
signals, 145, 149

atomic, defined, 70
automatic

stack allocation, 66

B
binary semaphores, 115
binding

threads to LWPs, 189
values to keys, 30, 194

bottlenecks, 216
bound threads, 16, 20

defined, 16
reasons to bind, 22

C
C++, 171

255

cache, defined, 220
caching

threads data structure, 217
changing the signal mask, 40, 192
coarse-grained locking, 213
code lock, 212
code monitor, 212, 214
compile flag

-D_POSIX_C_SOURCE, 167
-D_POSIX_PTHREAD_SEMANTICS, 167
-D_REENTRANT, 167
single-threaded application, 167

completion semantics, 150
cond_broadcast(3THR), 200, 202
cond_destroy(3THR), 200
cond_init(3THR), 199, 205
cond_signal(3THR), 200
cond_timedwait(3THR), 201
cond_wait(3THR), 154, 200
condition variables, 70, 98, 114
condition wait

POSIX threads, 153
Solaris threads, 153

contention, 215
continue execution, 181
counting semaphores, 16, 115
creating

stacks, 66, 189, 191
thread-specific keys, 30, 194
threads, 26, 28, 217

critical section, 222
custom stack, 66, 190

D
daemon threads, 190
data

global, 30
local, 30
lock, 212
races, 159
shared, 20, 222
thread specific

See thread-specific data
dbx(1), 171
deadlock, 214
debugging, 169, 173

debugging (continued)
asynchronous signals, 170
dbx(1), 171
deadlocks, 170
hidden gap in synchronization, 170
inadequate stack size, 170
large automatic arrays, 170
long-jumping without releasing mutex

lock, 170
mdb(1), 171
no synchronization of global memory, 169
passing pointer to caller’s stack, 169
recursive deadlock, 170
reevaluate conditions after return from

condition wait, 170
deleting signals from mask, 41
destructor function, 31, 36
detached threads, 28, 53, 189
Dijkstra, E. W., 114

E
EAGAIN, 27, 31, 90, 92, 104, 120, 190
EBUSY, 88, 92, 104, 129, 184, 186
EDEADLK, 28, 90
EFAULT, 88, 183
EINTR, 119, 139, 145, 154
EINVAL, 27, 30, 32, 37, 40, 45, 52, 57, 59, 67, 73,

78, 85, 88, 93, 100, 104, 109, 117, 119, 123, 131,
183, 190

ENOMEM, 31, 72, 91, 93, 100, 104, 190
ENOSPC, 117
ENOSYS, 38, 78, 85, 89
ENOTRECOVERABLE, 91, 93
ENOTSUP, 39, 59, 61, 78, 85
EOWNERDEAD, 90, 92
EPERM, 78, 91, 117
errno, 34, 167, 169, 210
__errno, 169
errno

global variables, 210
error checking, 40
ESRCH, 28, 30, 39, 45, 180
ETIME, 108
event notification, 116
examining the signal mask, 40, 192
exec(2), 136, 138

256 Multithreaded Programming Guide • May 2002

exit(2), 139, 190
exit(3C), 42

F
fair share scheduler (FSS) scheduling class, 144
finding

minimum stack size, 191
thread priority, 195

fine-grained locking, 213
fixed priority scheduling class (FX), 144
flags to thr_create(), 189
flockfile(3C), 157
flowchart of compile options, 168
fork(2), 137, 139, 200
fork1(2), 138
FORTRAN, 171
funlockfile(3C), 157

G
getc(3C), 157
getc_unlocked(3C), 157
gethostbyname(3NSL), 210
gethostbyname_r(3NSL), 211
getrusage(3C), 142
global

data, 213
side effects, 216
state, 212
variables, 33, 209

H
heap, malloc(3C) storage from, 28

I
I/O

asynchronous, 154
nonsequential, 156
standard, 157
synchronous, 154

inheriting priority, 188

interrupt, 145
invariants, 113, 213

J
joining threads, 27, 53, 193

K
keys

bind value to key, 194
get specific key, 33, 194
global into private, 35
storing value of, 33, 194

kill(2), 145, 147

L
/lib/libc, 163, 165, 168
/lib/libC, 163
/lib/libdl_stubs, 163
/lib/libintl, 163, 165
/lib/libm, 163, 165
/lib/libmalloc, 163, 165
/lib/libmapmalloc, 163, 165
/lib/libnsl, 163, 165, 169
/lib/libpthread, 165, 168
/lib/libresolv, 163
/lib/librt, 165
/lib/libsocket, 163, 165
/lib/libthread, 19, 165, 168, 217
/lib/libw, 163, 165
/lib/libX11, 163
/lib/strtoaddr, 163
libraries

MT-Safe, 163
library

C routines, 209
threads, 165, 217

lightweight processes, 20, 142, 217
creation, 219
debugging, 171
defined, 16
independence, 218
not supported, 20

Index 257

lightweight processes (continued)
special capabilities, 218

limits, resources, 142
linking with libpthread

-lc, 167
ld, 167
-lpthread, 167

linking with libthread
-lc, 167
ld, 167
-lthread, 167

ln(1)
linking, 165

local variable, 211
lock hierarchy, 215
locking, 212

coarse grained, 213, 216
code, 212
conditional, 95
data, 213
fine-grained, 213, 216
guidelines, 215
invariants, 213

locks, 70
mutual exclusion, 70, 97, 137
read-write, 187
readers/writer, 70

longjmp(3C), 142, 151
-lposix4 library

POSIX 1003.1c semaphore, 168
lseek(2), 157
LWPs, See lightweight processes

M
main(), 216
malloc(3C), 28
MAP_NORESERVE, 65
MAP_SHARED, 139
mdb(1), 171
memory

consistency, 219
ordering, relaxed, 222
strongly ordered, 221

mmap(2), 65, 139
monitor, code, 212, 214
mprotect(2), 191

-mt, 168
MT-Safe libraries

alternative mmap(2)-based memory
allocation library, 163

C++ runtime shared objects, 163
internationalization, 163
math library, 163
network interfaces of the form

getXXbyYY_r, 163
network name-to-address translation, 163
socket library for making network

connections, 163
space-efficient memory allocation, 163
static switch compiling, 163
thread-safe form of unsafe interfaces, 163
thread-specific errno support, 163
wide character and wide string support for

multibyte locales, 163
X11 Windows routines, 163

multiple-readers, single-writer locks, 187
multiprocessors, 219, 224
multithreading

defined, 16
mutex

PTHREAD_MUTEX_ERRORCHECK, 89
PTHREAD_MUTEX_NORMAL, 89
PTHREAD_MUTEX_RECUSIVE, 89

mutex, mutual exclusion locks, 214
mutex_destroy(3THR), 197
mutex_init(3THR), 196, 205
mutex_lock(3THR), 198
mutex scope, 73
mutex_trylock(3THR), 198, 215
mutex_unlock(3THR), 198
mutual exclusion locks, 70, 97, 137

attributes, 72
deadlock, 94
default attributes, 70
scope, Solaris and POSIX, 71
type attribute, 75

N
NDEBUG, 113
netdir, 163
netselect, 163
nice(2), 143

258 Multithreaded Programming Guide • May 2002

nondetached threads, 42
nonsequential I/O, 156
null

threads, 66, 190
null procedures

/lib/libpthread stub, 168
/lib/libthread stub, 168

P
parallel

algorithms, 224
Pascal, 171
PC

program counter, 19
PC_GETCID, 143
PC_GETCLINFO, 143
PC_GETPARMS, 143
PC_SETPARMS, 143
Peterson’s Algorithm, 222
PL/1 language, 146
portability, 70
POSIX 1003.4a, 17
pread(2), 155
printf(3S), 151
printf problem, 211
priocntl(2), 143

PC_GETCID, 143
PC_GETCLINFO, 143
PC_GETPARMS, 143
PC_SETPARMS, 143

priority, 19, 143
finding for a thread, 195
inheritance, 188, 195
and scheduling, 195
range, 195
setting for a thread, 195

priority inversion, 77
process

terminating, 42
traditional UNIX, 15

producer/consumer problem, 131, 206, 221
programmer-allocated stack, 66, 191
prolagen

semaphore, P operation, 115
pthread_atfork(3THR), 41, 138
pthread_attr_destroy(3THR), 52

pthread_attr_getdetachstate(3THR), 53
pthread_attr_getguardsize(3THR), 55
pthread_attr_getinheritsched(3THR), 61
pthread_attr_getschedparam(3THR), 62
pthread_attr_getschedpolicy(3THR), 59
pthread_attr_getscope(3THR), 57
pthread_attr_getstackaddr(3THR), 68
pthread_attr_getstacksize(3THR), 65
pthread_attr_init(3THR), 50

attribute values, 51
pthread_attr_setdetachstate(3THR), 52
pthread_attr_setguardsize(3THR), 54
pthread_attr_setinheritsched(3THR), 60
pthread_attr_setschedparam(3THR), 61
pthread_attr_setschedpolicy(3THR), 58
pthread_attr_setscope(3THR), 56
pthread_attr_setstackaddr(3THR), 67
pthread_attr_setstacksize(3THR), 64
pthread_cancel(3THR), 44
pthread_cleanup_pop(3THR), 47
pthread_cleanup_push(3THR), 47
pthread_cond_broadcast(3THR), 104,

109, 111, 145
example, 110

pthread_cond_destroy(3THR), 110
pthread_cond_init(3THR), 103
pthread_cond_signal(3THR), 104, 111,

145
example, 107

pthread_cond_timedwait(3THR), 107
example, 108

pthread_cond_wait(3THR), 104, 111, 145
example, 107

pthread_condattr_destroy(3THR), 100
pthread_condattr_getpshared(3THR), 102
pthread_condattr_init(3THR), 99
pthread_condattr_setpshared(3THR), 101
pthread_create(3THR), 26
pthread_detach(3THR), 29
pthread_equal(3THR), 36
pthread_exit(3THR), 41
pthread_getconcurrency(3THR), 58
pthread_getschedparam(3THR), 39
pthread_getspecific(3THR), 33
pthread_join(3THR), 27, 65, 155
pthread_key_create(3THR), 30, 35

example, 35
pthread_key_delete(3THR), 31

Index 259

pthread_kill(3THR), 39, 147
pthread_mutex_consistent_np(3THR), 88
pthread_mutex_destroy(3THR), 93
pthread_mutex_getprioceiling(3THR)

get priority ceiling of mutex, 83
pthread_mutex_init(3THR), 87
pthread_mutex_lock(3THR), 89

example, 94, 96
pthread_mutex_lock(3THR)

example, 98
pthread_mutex_setprioceiling(3THR)

set priority ceiling of mutex, 82
pthread_mutex_trylock(3THR), 92, 96
pthread_mutex_unlock(3THR), 91

example, 94, 97
pthread_mutex_unlock(3THR)

example, 98
pthread_mutexattr_destroy(3THR), 72
pthread_mutexattr_getprioceiling(3THR)

get priority ceiling of mutex attribute, 80
pthread_mutexattr_getprotocol(3THR)

get protocol of mutex attribute, 79
pthread_mutexattr_getpshared(3THR), 74
pthread_mutexattr_getrobust_np(3THR)

get robust attribute of mutex, 85
pthread_mutexattr_gettype(3THR), 76
pthread_mutexattr_init(3THR), 72
pthread_mutexattr_setprioceiling(3THR)

set priority ceiling of mutex attribute, 79
pthread_mutexattr_setprotocol(3THR)

set protocol of mutex attribute, 76
pthread_mutexattr_setpshared(3THR), 73
pthread_mutexattr_setrobust_np(3THR)

set robust attribute of mutex, 83
pthread_mutexattr_settype(3THR), 75
pthread_once(3THR), 37
PTHREAD_PRIO_INHERIT, 77
PTHREAD_PRIO_NONE, 77
PTHREAD_PRIO_PROTECT, 78
pthread_rwlock_destroy(3THR), 130
pthread_rwlock_init(3THR), 126
pthread_rwlock_rdlock(3THR), 127
pthread_rwlock_tryrdlock(3THR), 128
pthread_rwlock_trywrlock(3THR), 129
pthread_rwlock_unlock(3THR), 129
pthread_rwlock_wrlock(3THR), 128
pthread_rwlockattr_destroy(3THR), 123
pthread_rwlockattr_getpshared(3THR), 125

pthread_rwlockattr_init(3THR), 123
pthread_rwlockattr_setpshared(3THR), 124
PTHREAD_SCOPE_PROCESS, 21, 56
PTHREAD_SCOPE_SYSTEM, 22, 56
pthread_self(3THR), 36
pthread_setcancelstate(3THR), 45
pthread_setcanceltype(3THR), 45
pthread_setconcurrency(3THR), 57
pthread_setschedparam(3THR), 38
pthread_setspecific(3THR), 32, 35

example, 35
pthread_sigmask(3THR), 40, 147
PTHREAD_STACK_MIN(), 66
pthread_testcancel(3THR), 46
putc(3C), 157
putc_unlocked(3C), 157
pwrite(2), 155

R
_r, 211
read(2), 156
read-write locks, 125, 187

attribute, 124
attributes, 122

readers/writer locks, 70
realtime

scheduling, 143
red zone, 66, 191
reentrant, 212

described, 212
functions, 161
strategies for making, 212

register state, 19
relaxed memory ordering, 222
remote procedure call RPC, 18
replacing signal mask, 41
resume execution, 181
RPC, 18, 163, 217
RT,, See realtime
rw_rdlock(3THR), 183
rw_tryrdlock(3THR), 184
rw_trywrlock(3THR), 185
rw_unlock(3THR), 186
rw_wrlock(3THR), 185
rwlock_destroy(3THR), 186
rwlock_init(3THR), 182, 205

260 Multithreaded Programming Guide • May 2002

S
SA_RESTART, 154
safety, threads interfaces, 159, 164
sched_yield(3RT), 37
scheduling

realtime, 143
system class, 142
timeshare, 143

scheduling class
fair share scheduler (FSS), 144
fixed priority scheduler (FX), 144
priority, 142
timeshare, 144

sem_destroy(3RT), 120
sem_init(3RT), 116

example, 121
sem_post(3RT), 115, 118

example, 121
sem_trywait(3RT), 115, 119
sem_wait(3RT), 115, 119

example, 121
sema_destroy(3THR), 204
sema_init(3THR), 202, 205
sema_post(3THR), 162
sema_post(3THR), 203
sema_trywait(3THR), 204
sema_wait(3THR), 204
semaphores, 70, 114, 133

binary, 115
counting, 115
counting, defined, 16
decrement semaphore value, 115
increment semaphore value, 115
interprocess, 117
intraprocess, 117
named, 118

sending signal to thread, 39, 192
sequential algorithms, 223
setjmp(3C), 142, 150
shared data, 20, 213
shared-memory multiprocessor, 221
SIG_BLOCK, 41
SIG_DFL, 145
SIG_IGN, 145
SIG_SETMASK, 41
SIG_UNBLOCK, 41
sigaction(2), 145, 154
SIGFPE, 146, 151

SIGILL, 146
SIGINT, 146, 150, 154
SIGIO, 146, 156
siglongjmp(3C), 151
signal(3C), 145
signal(5), 145
signal.h, 40, 192
signals

access mask, 40, 192
add to mask, 41
asynchronous, 145, 149
delete from mask, 41
handler, 145, 149
inheritance, 188
masks, 19
pending, 181, 188
replace current mask, 41
send to thread, 39, 192
SIG_BLOCK, 41
SIG_SETMASK, 41
SIG_UNBLOCK, 41
SIGSEGV, 65
unmasked and caught, 153

sigprocmask(2), 147
SIGPROF

interval timer, 140
sigqueue(3RT), 145
SIGSEGV, 65, 146
sigsend(2), 145
sigsetjmp(3C), 151
sigtimedwait(3RT), 149
SIGVTALRM

interval timer, 140
sigwait(2), 148, 151
single-threaded

assumptions, 209
code, 70
defined, 16
processes, 139

size of stack, 64, 66, 189, 191
stack, 217

address, 67, 189
boundaries, 65
creation, 67, 189
custom, 190
deallocation, 191
minimum size, 66, 191
overflows, 66

Index 261

stack (continued)
parameters, 28
pointer, 19
programmer-allocated, 66, 191
red zone, 66, 191
returning a pointer to, 161
size, 64, 66, 189, 191

stack_base, 67, 189
stack_size, 64, 189
standard I/O, 157
standards, 17
start_routine(), 189
static storage, 169, 209
stdio, 34, 167
store buffer, 223
storing thread key value, 33, 194
streaming a tape drive, 155
strongly ordered memory, 221
suspending a new thread, 189
swap space, 65
synchronization objects, 69, 133

condition variables, 70, 98, 114
mutex locks, 70, 97
read-write locks, 187
semaphores, 70, 114, 131, 202, 206

synchronous I/O, 154
system calls

handling errors, 210
system scheduling class, 142

T
__t_errno, 169
tape drive, streaming, 155
terminating

process, 42
threads, 28

THR_BOUND, 189
thr_continue(3THR), 181, 189
thr_create(3THR), 188, 190
THR_DAEMON, 190
THR_DETACHED, 189
thr_exit(3THR), 190, 192
thr_getprio(3THR), 195
thr_getspecific(3THR), 194
thr_join(3THR), 193
thr_keycreate(3THR), 194

thr_kill(3THR), 162
thr_kill(3THR), 192
thr_min_stack(3THR), 189
thr_self(3THR), 191
thr_setprio(3THR), 195
thr_setspecific(3THR), 194
thr_sigsetmask(3THR), 162
thr_sigsetmask(3THR), 192
THR_SUSPENDED, 189
thr_yield(3THR), 192, 215
thread-directed signal, 149
thread-private storage, 20
thread-specific data, 30, 36

global, 33
global into private, 34
new storage class, 210
private, 33

thread synchronization
condition variables, 23
mutex locks, 22
mutual exclusion locks, 70
read-write locks, 122
read/write locks, 22
semaphores, 23, 114

threads
creating, 26, 28, 188, 190, 217
daemon, 190
defined, 16
detached, 28, 53, 189
exit status, 26
identifiers, 36, 42, 189
initial, 42
joining, 27, 42, 193
keys, 194
library, 165, 217
lightweight processes, 20
nondetached, 42
null, 66, 190
priority, 188
private data, 30
safety, 159, 164
signals, 153
stack, 161
suspended, 181
suspending, 189
synchronizing, 70, 133
terminating, 28, 41, 192
thread-specific data, 210

262 Multithreaded Programming Guide • May 2002

threads (continued)
unbound threads, 21
user-level, 16, 19

time-out, 201
example, 108

timeshare scheduling class, 143
tiuser.h, 169
TLI, 163
TLI, 169
tools

dbx(1), 171
mdb(1), 171

total store order, 223
trap, 145

default action, 146
TS,, See timeshare scheduling class
TSD, See thread-specific data

U
unbound threads, 142

caching, 217
priorities, 142
and scheduling, 142
priocntl(2), 143

UNIX, 15, 17, 19, 145, 154, 156, 210
user-level threads, 16, 19
/usr/include/errno.h, 165
/usr/include/limits.h, 165
/usr/include/pthread.h, 165
/usr/include/signal.h, 165
/usr/include/thread.h, 165
/usr/include/unistd.h, 165
/usr/lib

32–bit threads library, Solaris 9 Operating
Environment, 169

/usr/lib/lwp
32–bit threads library, Solaris 8 Operating

Environment, 169
/usr/lib/lwp/64

64-bit threads library, Solaris 8 Operating
Environment, 169

USYNC_PROCESS, 182, 196, 199, 203, 205
USYNC_PROCESS_ROBUST, 196
USYNC_THREAD, 182, 196, 199, 203, 205

V
variables

condition, 70, 98, 114, 133
global, 209
primitive, 70

verhogen
semaphore, V operation, 115

vfork(2), 138

W
write(2), 156

X
XDR, 163

Index 263

264 Multithreaded Programming Guide • May 2002

